WorldWideScience

Sample records for accreting x-ray pulsars

  1. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  2. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  3. Accreting millisecond X-ray pulsars: recent developments

    NARCIS (Netherlands)

    Wijnands, R.

    2010-01-01

    It is now more than eleven years since the discovery of the first accreting millisecond X-ray pulsar. Since then, eleven additional systems have been found, two of them during the last year. Here I briefly discuss the most recent developments with respect to these systems.

  4. Toward a New Spectral Modeling Capability for Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael T.; Becker, P. A.; Marcu, D.; Pottschmidt, K.; Wilms, J.; Wood, K. S.

    2013-04-01

    Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near the neutron star compact objects in high mass X-ray binary systems. In such systems the accreting plasma is initially channeled from an accretion disk by the strong neutron star magnetic field into a funneled supersonic flow onto the magnetic polar cap of the neutron star. Many of these accreting X-ray pulsars have X-ray spectra that consist of broadband Comptonized power-law X-ray continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. We are undertaking a new program to develop a spectral analysis tool based on the analytical work of Becker & Wolff (2007) for accreting X-ray pulsar spectra inside the XSPEC spectral analysis framework. We will apply this new analysis tool to the large amount of data on numerous bright accreting X-ray pulsars currently residing in the HEASARC archive. In this presentation we discuss the physical processes that are likely to occur in such a flow and how one might self-consistently model the broadband pulsar X-ray spectrum. A previous attempt at developing such a modeling capability made significant contributions to the understanding of one source in particular, namely, 4U0115+634 (Ferrigno et al. 2010) and we expect to build on that success. Our models will incorporate bremsstrahlung emission, black body emission, and cyclotron emission, all in a strongly Comptonizing environment inside the shock-heated accreting plasma. We will discuss how we will include these physical processes in the calculations as well as the algorithm such a tool will use to converge to a solution. This program is both feasible and timely in light of the expected launch of the LOFT X-ray timing mission. This research is supported by the NASA Astrophysical Data Analysis Program and the Office of Naval Research.

  5. Connecting the coherent and stochastic X-ray variability of accreting millisecond pulsars

    NARCIS (Netherlands)

    Bult, P.M.

    2015-01-01

    Accreting millisecond pulsars are rapidly rotating neutron stars with a dynamically important magnetic field. These objects are found in low-mass X-ray binary systems, where a small companion star acts as a mass donor, transferring material to the neutron star. As this plasma spirals toward the

  6. A New Model for Thermal and Bulk Comptonization in Accretion-Powered X-ray Pulsars

    Science.gov (United States)

    Becker, Peter A.; Wolff, Michael T.

    2018-01-01

    The theory of spectral formation in accretion-powered X-ray pulsars has advanced considerably in the past decade, with the development of new models for the continuum and the cyclotron line formation processes. In many sources, the cyclotron line centroid energy is observed to vary as a function of source luminosity (and therefore accretion rate). In some cases, the variations in the luminosity seem to indicate a change in the structure of the accretion column, as the source passes from the sub-critical to the super-critical regime. With the recent launches of NuSTAR and NICER, observations of accreting X-ray pulsars are entering a new era, with large effective areas, broadband energy coverage, and good temporal resolution. These observations are already presenting new challenges to the theory, requiring the development of a new generation of more sophisticated physical models. In this paper, we discuss an improved model for bulk and thermal Comptonization in X-ray pulsars that will allow greater self-consistency in the data analysis process than current models, leading to more rigorous determinations of source parameters such as magnetic field strength, temperature, etc. The model improvements include (1) a more realistic geometry for the accretion column; (2) a more rigorous accretion velocity profile that merges smoothly with Newtonian free-fall as r → ∞ and (3) a more realistic free-streaming radiative boundary condition at the top of the column. This latter improvement means that we can now compute the pencil and fan beam components separately, which is necessary in order to analyze phase-dependent spectral data. We discuss applications of the new model to Her X-1, LMC X-4, and Cen X-3, and also to the Be X-ray binary 4U 0115+63.

  7. Pulse-to-pulse variations in accreting X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Kretschmar Peter

    2014-01-01

    Full Text Available In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.

  8. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    Science.gov (United States)

    Caballero, I.

    2009-04-01

    the cyclotron line energy with the X-ray luminosity are thought to be related to a change in the height of the accretion column as the mass accretion rate varies. A detailed timing analysis has been performed, and we find for the first time the onset of a spin-up, at a phase close to the periastron passage, during a normal outburst, providing evidence for an accretion disk around the neutron star. Energy-dependent pulse profiles of the source have been studied and compared to historical observations. During the rising part of the outburst a series of flares were observed. RXTE observed one of these flares, and we found during the flare the energy of the fundamental cyclotron line shifted to a significantly higher position compared to the rest of the outburst. Also, the energy-dependent pulse profiles during the flare were found to vary significantly from the rest of the outburst. These differences have been interpreted in terms of a theoretical model, based on the presence of magnetospheric instabilities at the onset of the accretion. We applied a decomposition method to A 0535+26 energy-dependent pulse profiles. Basic assumptions of the method are that the asymmetry observed in the pulse profiles is caused by non-antipodal magnetic poles, and that the emission regions have axisymmetric beam patterns. Using pulse profiles obtained from RXTE observations, the contribution of the two emission regions has been disentangled. Constraints on the geometry of the pulsar and a possible solution of the beam pattern are given. The reconstructed beam pattern is interpreted in terms of a geometrical model that includes relativistic light deflection.

  9. Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

    NARCIS (Netherlands)

    Falanga, M.; Kuiper, L.; Poutanen, J.; Galloway, D.K.; Bozzo, E.; Goldwurm, A.; Hermsen, W.; Stella, L.

    2012-01-01

    Context. IGR J17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims. We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the

  10. An observational review of accretion-driven millisecond X-ray pulsars

    Science.gov (United States)

    Wijnands, Rudy

    2004-06-01

    I present an observational review of the five currently known accretion-driven millisecond X-ray pulsars. A prominent place in this review is given to SAX J1808.4-3658 it was the first such system discovered and currently four outbursts have been observed from this source. This makes SAX J1808.4-3658 the best studied example of the group. Its most recent outburst in October 2002 is of particular interest because of the discovery of two simultaneous kilohertz quasi-periodic oscillations and nearly coherent oscillations during type-I X-ray bursts. This is the first time that such phenomena are observed in a system for which the neutron star spin frequency is exactly known. The other four systems were discovered within the last two years and only limited results have been published. Since new exiting results are to be expected in the future for all five sources, this review will only represent a snap-shot of the current observational knowledge of accretion-driven millisecond X-ray pulsars. A more extended and fully up-to-date review can be found at http://zon.wins.uva.nl/~rudy/admxp/.

  11. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    Science.gov (United States)

    Laycock, Silas; Yang, Jun; Christodoulou, Dimitris; Coe, Malcolm; Cappallo, Rigel; Zezas, Andreas; Ho, Wynn C. G.; Hong, JaeSub; Fingerman, Samuel; Drake, Jeremy J.; Kretschmar, Peter; Antoniou, Vallia

    2017-08-01

    We present our multi-satellite library of X-ray Pulsar observations to the community, and highlight recent science results. Available at www.xraypulsars.space the library provides a range of high-level data products, including: activity histories, pulse-profiles, phased event files, and a unique pulse-profile modeling interface. The initial release (v1.0) contains some 15 years of RXTE-PCA, Chandra ACIS-I, and XMM-PN observations of the Small Magellanic Cloud, creating a valuable record of pulsar behavior. Our library is intended to enable new progress on fundamental NS parameters and accretion physics. The major motivations are (1) Assemble a large homogeneous sample to enable population statistics. This has so far been used to map the propeller transition, and explore the role of retrograde and pro-grade accretion disks. (2) Obtain pulse-profiles for the same pulsars on many different occasions, at different luminosities and states in order to break model degeneracies. This effort has led to preliminary measurements of the offsets between magnetic and spin axes. With the addition of other satellites, and Galactic pulsars, the library will cover the entire available range of luminosity, variability timescales and accretion regimes.

  12. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    Science.gov (United States)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  13. X-ray Bursts from the Accreting Millisecond Pulsar XTE J1814-338

    OpenAIRE

    Strohmayer, Tod E.; Markwardt, Craig B.; Swank, Jean H.; Zand, Jean in 't

    2003-01-01

    Since the discovery of the accreting millisecond pulsar XTE J1814-338 a total of 27 thermonuclear bursts have been observed from the source with the Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE). Spectroscopy of the bursts, as well as the presence of continuous burst oscillations, suggests that all but one of the bursts are sub-Eddington. The remaining burst has the largest peak bolometric flux of 2.64 x E^-8 erg/sec/cm^2, as well as a gap in the burst oscill...

  14. An observational review of accretion-driven millisecond X-ray pulsars

    OpenAIRE

    Wijnands, Rudy

    2003-01-01

    I present an observational review of the five currently known accretion-driven millisecond X-ray pulsars. A prominent place in this review is given to SAX J1808.4-3658; it was the first such system discovered and currently four outbursts have been observed from this source. This makes SAX J1808.4-3658 the best studied example of the group. Its most recent outburst in October 2002 is of particular interest because of the discovery of two simultaneous kilohertz quasi-periodic oscillations and n...

  15. A New Accreting Millisecond X-ray Pulsar: IGR J17062-6143

    Science.gov (United States)

    Strohmayer, Tod E.; Keek, Laurens

    2017-08-01

    We present the discovery that the bursting, neutron star binary IGR J17062-6143 is a 164 Hz accreting millisecond X-ray pulsar (AMXP). We detected the pulsations in the only observation obtained of the source with the Rossi X-ray TIming Explorer (RXTE). We find evidence for variations in the pulsation frequency consistent with binary motion of the neutron star. The observation length (~1200 s) was too short to measure the orbital period, but coherent phase timing excludes periods shorter than about 17 minutes. The mean source pulsed amplitude is 9.4 +- 1.1 % (half amplitude). For the range of acceptable circular orbits we find that the inferred binary mass function substantially overlaps the observed range for the AMXP populatoin as a whole. IGR J17062-6143 is the slowest spinning AMXP presently known.

  16. On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1

    Science.gov (United States)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.

    2017-10-01

    We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.

  17. IGR J17062–6143 Is an Accreting Millisecond X-Ray Pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Keek, Laurens [X-ray Astrophysics Laboratory, NASA/GSFC and CRESST and the Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-02-20

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062−6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer . This detection makes IGR J17062−6143 the lowest-frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2–12 keV band with an overall significance of 4.3 σ and an observed pulsed amplitude of 5.54% ± 0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the ≈1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  18. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    Science.gov (United States)

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  19. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    DEFF Research Database (Denmark)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca A.

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50ks. We present the results of this observation which enabled the discovery of acyclotron resonant scattering feature with a centroid energy of 29...

  20. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  1. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  2. X-ray Emission from Millisecond Pulsars

    Science.gov (United States)

    Zavlin, Vyacheslav

    2006-01-01

    Isolated (solitary or non-accreting) millisecond pulsars with observed X-ray emission can be divided in two distinct groups: those emitting nonthermal (magnetospheric) radiation and pulsars with the bulk of X-rays of a thermal origin, presumably emitted from small hot spots around the magnetic poles on the neutron star surface (polar caps). I will discuss properties of X-ray emission detected with Chandra and XMM-Newton from a number of millisecond pulsars, with emphasis on those of the thermal component, and compare them with predictions of radio pulsar models.

  3. New outburst of the accreting millisecond X-ray pulsar NGC 6440 X-2 and discovery of a strong 1 Hz modulation in the light-curve

    NARCIS (Netherlands)

    Patruno, A.; Yang, Y.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Klis, M. Van Der; Watts, A.; Wijnands, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Markwardt, C.; Strohmayer, T.; Heinke, C.

    On June 11th, 2010, RXTE/PCA galactic bulge scan observations showed an increase in activity from the globular cluster NGC 6440. Two accreting millisecond X-ray pulsars (AMXPs) and 22 other X-ray binaries are known in NGC 6440 (see Pooley et al. 2002, ApJ 573, 184, Altarmirano et al. 2010, ApJL 712,

  4. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X- ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary sys- tems (XBPs). First, I will discuss soft ...

  5. XMM-Newton Spectroscopy of the Accretion-driven Millisecond X-Ray Pulsar XTE J1751-305 in Outburst

    NARCIS (Netherlands)

    Miller, J. M.; Wijnands, R.; Méndez, M.; Kendziorra, E.; Tiengo, A.; van der Klis, M.; Chakrabarty, D.; Gaensler, B. M.; Lewin, W. H. G.

    2003-01-01

    We present an analysis of the first high-resolution spectra measured from an accretion-driven millisecond X-ray pulsar in outburst. We observed XTE J1751-305 with XMM-Newton on 2002 April 7 for approximately 35 ks. Using a simple absorbed blackbody plus power-law model, we measure an unabsorbed flux

  6. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; hide

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of -29.3(sup +1.1)(sub -1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 +/- 0.1) x 10(exp 12) G. The known pulsation period is now observed at 904.0+/- 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P= -2 x 10(exp -8) s s(exp -1) (-0.6 s per year, or a frequency derivative of v = 3 x 10(exp -14) Hz s(exp -1)). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 x 10(exp 8) cm.

  7. New outburst of the accreting-millisecond X-ray pulsar NGC 6440 X-2

    NARCIS (Netherlands)

    Altamirano, D.; Patruno, A.; Heinke, C.; Linares, M.; Markwardt, C.; Strohmayer, T.

    2010-01-01

    On Friday 19th, 2010 (19h 13m 26s UT), the RXTE galactic bulge scans detected a flux excess in the direction of the globular cluster NGC 6440. This globular cluster is known to harbor at least 24 X-ray sources (Pooley et al. 2002, ApJ 573, 184), of which two have been identified as

  8. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the ...

  9. The Intensity Modulation of the Fluorescent Line by a Finite Light Speed Effect in Accretion-powered X-Ray Pulsars

    Science.gov (United States)

    Yoshida, Yuki; Kitamoto, Shunji; Hoshino, Akio

    2017-11-01

    The X-ray line diagnostic method is a powerful tool for an investigation of plasma around accretion-powered X-ray pulsars. We point out an apparent intensity modulation of emission lines, with their rotation period of neutron stars, due to the finite speed of light (we call this effect the “finite light speed effect”) if the line emission mechanism is a kind of reprocessing, such as fluorescence or recombination after ionization by X-ray irradiation from pulsars. The modulation amplitude is determined by the size of the emission region, which is in competition with the smearing effect by the light crossing time in the emission region. This is efficient if the size of the emission region is roughly comparable to that of the rotation period multiplied by the speed of light. We apply this effect to a symbiotic X-ray pulsar, GX 1+4, where a spin modulation of the intense iron line of which has been reported. The finite light speed effect can explain the observed intensity modulation if its fluorescent region is the size of ˜ {10}12 cm.

  10. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Bachetti, Matteo; Miyasaka, Hiromasa; Harrison, Fiona

    2014-01-01

    The NuSTAR hard X-ray telescope observed the transient Be/X-ray binary GS 0834􀀀430 during its 2012 outburst. The source is detected between 3 – 79 keV with high statistical significance, and we were able to perform very accurate spectral and timing analysis. The phase-averaged spectrum....... The pulse profile can be modeled with a double Gaussian and shows a strong and smooth hard lag of up to 0.3 cycles in phase, or about 4s between the pulse at ∼ 3 and >∼ 30 keV. This is the first report of such a strong lag in high-mass X-ray binary (HMXB) pulsars. Previously reported lags have been...

  11. The Transient Accreting X-Ray Pulsar XTE J1946+274: Stability of X-Ray Properties at Low Flux and Updated Orbital Solution

    Science.gov (United States)

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Caballero, Isabel; Finger, Mark H.; Jenke, Peter J.; Wilson-Hodge, Colleen A.; Fürst, Felix; Grinberg, Victoria; Hemphill, Paul B.; Kreykenbohm, Ingo; Klochkov, Dmitry; Rothschild, Richard E.; Terada, Yukikatsu; Enoto, Teruaki; Iwakiri, Wataru; Wolff, Michael T.; Becker, Peter A.; Wood, Kent S.; Wilms, Jörn

    2015-12-01

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2-3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi-Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ˜35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (˜5 × 1037 erg s-1) and lowest (˜5 × 1036 erg s-1) observed 3-60 keV luminosities.

  12. THE TRANSIENT ACCRETING X-RAY PULSAR XTE J1946+274: STABILITY OF X-RAY PROPERTIES AT LOW FLUX AND UPDATED ORBITAL SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja [CRESST and Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Kreykenbohm, Ingo [Dr. Karl Remeis-Observatory and ECAP, University Erlangen-Nuremberg, Sternwartstr. 7, Bamberg (Germany); Caballero, Isabel [Laboratoire AIM, CEA/IRFU, CNRS/INSU, Université Paris Diderot, CEA DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Finger, Mark H. [Universities Space Research Association, National Space Science and Technology Center, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Jenke, Peter J. [University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Wilson-Hodge, Colleen A. [Astrophysics Office, ZP 12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Grinberg, Victoria [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Hemphill, Paul B.; Rothschild, Richard E. [University of California, San Diego, Center for Astrophysics and Space Sciences, 9500 Gilman Drive, La Jolla, CA 92093-0424 (United States); Klochkov, Dmitry [Institut für Astronomie und Astrophysik, Universität Tübingen (IAAT), Sand 1, Tübingen (Germany); Terada, Yukikatsu [Graduate School of Science and Engineering, Saitama University, 255 Simo-Ohkubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); and others

    2015-12-10

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2–3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi–Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ∼35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (∼5 × 10{sup 37} erg s{sup −1}) and lowest (∼5 × 10{sup 36} erg s{sup −1}) observed 3–60 keV luminosities.

  13. X-ray Observations of "Recycled" Pulsars

    Science.gov (United States)

    Bogdanov, Slavko

    2014-11-01

    The Chandra X-ray Observatory has been instrumental in establishing the X-ray properties of the Galactic population of rotation-powered ("recycled") millisecond pulsars. In this talk I will provide a summary of deep X-ray studies of globular cluster millisecond pulsars, as well as several nearby field millisecond pulsars. These include thermally-emitting recycled pulsars that may provide stringent constraints on the elusive neutron star equation of state, and so-called "redback" binary pulsars, which seem to sporadically revert to an X-ray binary-like state.

  14. Discovery of a soft X-ray 8 mHz QPO from the accreting millisecond pulsar IGR J00291+5934

    Science.gov (United States)

    Ferrigno, C.; Bozzo, E.; Sanna, A.; Pintore, F.; Papitto, A.; Riggio, A.; Burderi, L.; Di Salvo, T.; Iaria, R.; D'Aì, A.

    2017-04-01

    We report on the analysis of the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint NuSTAR and XMM-Newton observation performed during the source outburst in 2015. The light curve of the source is characterized by a flaring-like behaviour, with typical rise and decay time-scales of ˜120 s. The flares are accompanied by a remarkable spectral variability, with the X-ray emission being generally softer at the peak of the flares. A strong quasi-periodic oscillation (QPO) is detected at ˜8 mHz in the power spectrum of the source and clearly associated with the flaring-like behaviour. This feature has the strongest power at soft X-rays ( ≲ 3 keV). We carried out a dedicated hardness-ratio-resolved spectral analysis and a QPO phase-resolved spectral analysis, together with an in-depth study of the source-timing properties, to investigate the origin of this behaviour. We suggest that the unusual variability of IGR J00291+5934 observed by XMM-Newton and NuSTAR could be produced by a heartbeat-like mechanism, similar to that observed in black hole X-ray binaries. The possibility that this variability, and the associated QPO, are triggered by phases of quasi-stable nuclear burning, as sustained in the literature for a number of other neutron star binaries displaying a similar behaviour, cannot be solidly tested in the case of IGR J00291+5934 due to the paucity of type I X-ray bursts detected from this source.

  15. The Optical Counterpart to the Accreting Millisecond X-Ray Pulsar SAX J1748.9-2021 in the Globular Cluster NGC 6440

    Science.gov (United States)

    Cadelano, M.; Pallanca, C.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.; Patruno, A.

    2017-07-01

    We used a combination of deep optical and {{H}}α images of the Galactic globular cluster NGC 6440, acquired with the Hubble Space Telescope, to identify the optical counterpart to the accreting millisecond X-ray pulsar SAX J1748.9-2021 during quiescence. A strong {{H}}α emission has been detected from a main-sequence star (hereafter COM-SAX J1748.9-2021) located at only 0.″15 from the nominal position of the X-ray source. The position of the star also agrees with the optical counterpart found by Verbunt et al. during an outburst. We propose this star as the most likely optical counterpart to the binary system. By direct comparison with isochrones, we estimated that COM-SAX J1748.9-2021 has a mass of 0.70{--}0.83 {M}⊙ , a radius of 0.88+/- 0.02 {R}⊙ , and a superficial temperature of 5250 ± 80 K. These parameters, combined with the orbital characteristics of the binary, suggest that the system is observed at a very low inclination angle (˜ 8^\\circ {--}14^\\circ ) and that the star is filling or even overflowing its Roche lobe. This, together with the EW of the {{H}}α emission (˜20 Å), suggests possible ongoing mass transfer. The possible presence of such an ongoing mass transfer during a quiescence state also suggests that the radio pulsar is not active yet and thus this system, despite its similarity with the class of redback millisecond pulsars, is not a transitional millisecond pulsar. Based on observations collected with the NASA/ESA HST (Prop. 12517, 13410), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  16. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  17. Timing the Millisecond X-ray Pulsar with RXTE

    Science.gov (United States)

    Chakrabarty, Deepto

    2003-01-01

    The science from this program was published in a paper entitled 'The Erratic Luminosity Behavior of SAX J1808.4-3658 During Its 2000 Outburst'. This paper discussed the unusual outburst lightcurve of this source in early 2000, and contrasted its behavior with the more typical outburst lightcurves observed in other soft X-ray transients. After this grant had expired, some of the data products generated in this program were also mentioned in two more recent papers entitled 'Nuclear-Powered Millisecond Pulsars and the Maximum Spin Frequency of Neutron Stars' and 'Kilohertz Quasi-Periodic X-Ray Brightness Fluctuations from an Accreting Millisecond Pulsar'.

  18. Rotation powered pulsars in the x-rays

    Science.gov (United States)

    Arumugasamy, Prakash

    non-recycled X-ray pulsars, PSR J0108-3430 tauc = 166 Myr and E = 5.8 x 1030 erg s -1. The pulsar's spectrum likely consists of a thermal component, emitted from a hot polar cap, and a non-thermal component, emitted from its magnetosphere. The X-ray pulse profile shows a single, asymmetric peak which could be explained by an axially-asymmetric temperature distribution at the pole or by the non-thermal emission from the outer gap. The three pulsars represent important stages in the evolutionary path that a hypothetical single young pulsar like J2022+3842 might take, as it passes through stages close to gamma-ray emission turn-off (like J1836+5925) and X-ray turn-off (similar to J0108-3430). Pulsars in binaries can follow an alternative path. By accreting matter from their companions they can be 'recycled' to short millisecond periods and emit X-rays and gamma-rays for billions of years. I also present a special class of such recycled pulsars which are believed to be in the process of fatally ablating their companions. I present the X-ray analysis of PSR J1446-4701, an E = 3.6 x 1034 erg s-1 pulsar in a 6.7 hr binary orbit, and PSR J1311-3430, an E = 4.9 x 1034 erg s-1 pulsar in an extreme 1.6 hr binary orbit. PSR J1446-4701 turned out to be a non-eclipser with possibly low (face-on) orbital inclination, with emission from both the pulsar and the intra-binary shock observable throughout the binary orbit. PSR J1311-3430 is a known eclipser, in which hints of spectral variability have been found, between pulsar superior and inferior conjunction phases. I also present a comprehensive comparison of the sample of such extremely low-mass binary pulsars. We reveal the true nature of pulsars, slowly and steadily, usually one target at a time, but eventually we expect useful patterns to emerge that improves our understanding of the population of rotation powered pulsars.

  19. Relations Between Timing Features and Colors in Accreting Millisecond Pulsars

    NARCIS (Netherlands)

    van Straaten, S.; van der Klis, M.; Wijnands, R.A.D.

    2005-01-01

    We have studied the aperiodic X-ray timing and color behavior of the accreting millisecond pulsars SAX J1808.4-3658, XTE J1751-305, XTE J0929-314, and XTE J1814-338 using large data sets obtained with the Rossi X-Ray Timing Explorer. We find that the accreting millisecond pulsars have timing

  20. Axion mass limits from pulsar x rays

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.E.

    1984-12-01

    Axions thermally emitted by a neutron star would be converted into x rays in the strong magnetic field surrounding the star. An improvement in the observational upper limit of pulsed x rays from the Vela pulsar (PSR 0833-45) by a factor of 12 would constrain the axion mass M/sub a/ < 2 x 10/sup -3/eV if the core is non-superfluid and at temperature T/sub c/ greater than or equal to 2 x 10/sup 8/K. If the core is superfluid throughout, an improvement factor of 240 would be needed to provide the same constraint on the axion mass, while in the absence of superfluidity, an improvement factor of 200 could constrain M/sub a/ < 6 x 10/sup -4/eV. A search for modulated hard x rays from PSR 1509-58 or other young pulsars at presently attainable sensitivities may enable the setting of an upper limit for the axion mass. Observation of hard x rays from a very young hot pulsar with T/sub c/ greater than or equal to 7 x 10/sup 8/K could set a firm bound on the axion mass, since neutron superfluidity is not expected above this temperature. The remaining axion mass range 6 x 10/sup -4/eV > M/sub a/ > 10/sup -5/eV (the cosmological lower bound) can be covered by an improved Sikivie type laboratory cavity detector for relic axions constituting the galactic halo. 48 refs.

  1. X-rays from the eclipsing pulsar 1957+20

    Science.gov (United States)

    Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.

    1992-01-01

    The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.

  2. Featured Image: A Slow-Spinning X-Ray Pulsar

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    This image (click for a closer look!) reveals the sky location of a new discovery: the slowest spinning X-ray pulsar a spinning, highly magnetized neutron star ever found in an extragalactic globular cluster. The pulsar, XB091D (circled in the bottom left inset), lies in the globular cluster B091D in the Andromeda galaxy. In a recent study led by Ivan Zolotukhin (University of Toulouse, Moscow State University, and Special Astrophysical Observatory of the Russian Academy of Sciences), a team of scientists details the importance of this discovery. This pulsar is gradually spinning faster and faster a process thats known as recycling, thought to occur as a pulsar accretes material from a donor star in a binary system. Zolotukhin and collaborators think that this particular pairing formed relatively recently, when the pulsar captured a passing star into a binary system. Were now seeing it in a unique stage of evolution where the pulsar is just starting to get recycled. For more information, check out the paper below!CitationIvan Yu. Zolotukhin et al 2017 ApJ 839 125. doi:10.3847/1538-4357/aa689d

  3. The Use of X-Ray Pulsars for Aiding GPS Satellite Orbit Determination

    Science.gov (United States)

    2005-03-01

    called “ recycled ” pulsars , are extremely old pulsars (1 - 14 Gyr4) whose spin rates have been rejuvenated from the accretion of mass and angular momentum...THE USE OF X-RAY PULSARS FOR AIDING GPS SATELLITE ORBIT DETERMINATION THESIS Dennis W. Woodfork, II Captain, USAF AFIT/GA/ENG/05-01 DEPARTMENT OF THE...Department of Defense, or the United States Government. AFIT/GA/ENG/05-01 THE USE OF X-RAY PULSARS FOR AIDING GPS SATELLITE ORBIT DETERMINATION THESIS

  4. The magnetic spectrum of X-ray pulsars

    Science.gov (United States)

    Ferrigno, C.; Farinelli, R.; Bozzo, E.

    2014-07-01

    We have developed a new model based on the solution of the radiative transfer equation exploiting the analytical formalisation of Becker & Wolff (2007, ApJ 654, 435). Our model overcomes the purely phenomenological approach that is usually adopted to describe the high energy emissions from these sources and allows us to better understand the state of the accretion column in terms of model parameters, such as the radius and height of the column, the magnetic field intensity, the plasma temperature. We have successfully applied this model to several X-ray pulsars at different luminosity levels. One of our main findings is that the collisional excitation of electrons plays a key role in shaping the source X-ray spectrum and originates a broad line-like emission centred at the cyclotron energy of the accreting plasma. Such feature has been repeatedly modelled in the literature as a bump in the spectrum at ˜10-20 keV, but its physical origin was never clearly understood. Our study highlights that a broad-band energy coverage is fundamental to constrain the physics of accretion in highly magnetized pulsars. Promising new perspective will be provided by the instruments on-board the Astro-H mission, covering the energy range 0.3-600 keV.

  5. The X-ray properties of Be/X-ray pulsars in quiescence

    Science.gov (United States)

    Tsygankov, Sergey S.; Wijnands, Rudy; Lutovinov, Alexander A.; Degenaar, Nathalie; Poutanen, Juri

    2017-09-01

    Observations of accreting neutron stars (NSs) with strong magnetic fields can be used not only for studying the accretion flow interaction with the NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest are (I) the interaction of a rotating NS (magnetosphere) with the infalling matter at different accretion rates, and (II) the theory of deep crustal heating and the influence of a strong magnetic field on this process. Here, we present results of the first systematic investigation of 16 X-ray pulsars with Be optical companions during their quiescent states, based on data from the Chandra, XMM-Newton and Swift observatories. The whole sample of sources can be roughly divided into two distinct groups: (I) relatively bright objects with a luminosity around ˜1034 erg s-1 and (hard) power-law spectra, and (II) fainter ones showing thermal spectra. X-ray pulsations were detected from five objects in group (I) with quite a large pulse fraction of 50-70 per cent. The obtained results are discussed within the framework of the models describing the interaction of the infalling matter with the NS magnetic field and those describing heating and cooling in accreting NSs.

  6. Timing the accretion flow around accreting millisecond pulsars

    NARCIS (Netherlands)

    Linares, M.

    2008-01-01

    At present, ten years after they were first discovered, ten accreting millisecond pulsars are known. I present a study of the aperiodic X-ray variability in three of these systems, which led to the discovery of simultaneous kHz quasi periodic oscillations in XTE J1807—294 and extremely strong

  7. Accreting millisecond pulsars: one on each hand

    NARCIS (Netherlands)

    Linares, M.; van der Klis, M.; Wijnands, R.

    2007-01-01

    We report on the X-ray aperiodic timing analysis of two accreting millisecond pulsars: XTE J1807-294 and IGR J00291+5934. On the one hand, we discovered in XTE J1807-294 seven pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) separated in frequency by nearly the spin frequency

  8. Navigation in space by X-ray pulsars

    CERN Document Server

    Emadzadeh, Amir Abbas

    2011-01-01

    This book covers modeling of X-ray pulsar signals and explains how X-ray pulsar signals can be used to solve the relative navigation problem. It formulates the problem, proposes a recursive solution and analyzes different aspects of the navigation system.

  9. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)

    powered millisecond X-ray pulsar SAX J1808.4–3658 using. X-ray data obtained during four outbursts of this source. Extensive obser- vations were made with the proportional counter array of the Rossi X-ray. Timing Explorer (RXTE) during the four ...

  10. X-ray Pulsars in the Magellanic Clouds: Time Evolution of their Luminosities and Spin Periods

    Science.gov (United States)

    Yang, Jun; Laycock, Silas; Coe, Malcolm J.; Drake, Jeremy J.; Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Ho, Wynn C. G.

    2017-08-01

    We have collected and analyzed the complete archive of XMM-Newton (116), Chandra (151), and RXTE (952) observations of the Small Magellanic Cloud (SMC), spanning 1997-2014. The resulting observational library provides a comprehensive view of the physical, temporal and statistical properties of the SMC pulsar population across the luminosity range of L_X= 10^{31.2}-10^{38} erg/s. From a sample of 65 pulsars we report 1654 individual pulsar detections, yielding 1393 pulse period measurements. Our pipeline generates a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, we generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars. In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison sample for Magellanic Cloud X-ray pulsars.

  11. X-Ray Pulsar Based Navigation and Time Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will build on the Phase I X-ray pulsar-based navigation and timing (XNAV) feasibility assessment to develop a detailed XNAV simulation capability to...

  12. X-ray emission from two nearby millisecond pulsars

    Science.gov (United States)

    Thorsett, S. E.

    1994-01-01

    This grant, titled 'X-Ray Emission from Two Nearby Millisecond Pulsars,' included ROSAT observations of the nearby pulsars PSR J2322+20 and PSR J2019+24. Neither was detected, although the observations were among the most sensitive ever made towards millisecond pulsars, reaching 1.5 x 10(exp 29) and 2.7 x 10(exp 29) erg s(exp -1) (0.1-2.4 keV), respectively. This is about, or slightly below, the predicted level of emission from the Seward and Wang empirical prediction, based on an extrapolation from slower pulsars. To understand the significance of this result, we have compared these limits with observations of four other millisecond pulsars, taken from the ROSAT archives. Except for the case of PSR B1821-21, where we identified a possible x-ray counterpart, only upper limits on x-ray flux were obtained. From these results, we conclude that x-ray emission beaming does not follow the same dependence on pulsar period as that of radio emission: while millisecond pulsars have beaming fractions near unity in the radio, x-ray emission is observed only for favorable viewing geometries.

  13. The magnetic-field strengths of accreting millisecond pulsars

    NARCIS (Netherlands)

    Mukherjee, D.; Bult, P.; van der Klis, M.; Bhattacharya, D.

    2015-01-01

    In this work we have estimated upper and lower limits to the strength of the magnetic dipole moment of all 14 accreting millisecond X-ray pulsars observed with the Rossi X-ray Timing Explorer (RXTE). For each source we searched the archival RXTE data for the highest and lowest flux levels with a

  14. Can X-ray Observations Provide Accurate Pulsar Distances?

    Science.gov (United States)

    Roberts, Mallory; Bognar, K.; Chatterjee, S.

    2014-01-01

    X-ray observations are often used to estimate pulsar distances based on such things as the observed correlation between the spin down power and the X-ray luminosity, the fit value of the absorption, or thermal emission from an assumed surface area. However, none of these methods have been systematically tested against pulsars with accurately known distances. We will present initial results from a systematic analysis of archival X-ray data of pulsars which have well determined distances through parallax measurements. We will use these results to derive a new Lx-Edot relationship for both young and recycled pulsars, compare the measured nH to the Drimmel et al. (2003) 3D Galactic Extinction Model, and estimate the surface emission radii using both blackbody and neutron star atmosphere models.

  15. Constraining pulsar birth properties with supernova X-ray observations

    Science.gov (United States)

    Gallant, Y. A.; Bandiera, R.; Bucciantini, N.; Amato, E.

    2017-02-01

    A large fraction of core-collapse supernovae are thought to result in the birth of a rotation-powered pulsar, which is later observable as a radio pulsar up to great ages. The birth properties of these pulsars, and in particular the distribution of their initial rotation periods, are however difficult to infer from studies of the radio pulsar population in our Galaxy. Yet the distributions of their birth properties is an important assumption for scenarios in which ultra-high-energy cosmic rays (UHECRs) originate in very young, extragalactic pulsars with short birth periods and/or high magnetic fields. Using a model of the very young pulsar wind nebula's dynamical and spectral evolution, with pulsar wind and accelerated particle parameters assumed similar to those inferred from modeling young pulsar wind nebulae (PWNe) in our Galaxy, we show that X-ray observations of supernovae, a few years to decades after the explosion, constitute a favored window to obtain meaningful constraints on the initial spin-down luminosity of the newly-formed pulsar. We examine the expected emerging PWN spectral component, taking into account the X-ray opacity of the expanding supernova ejecta, and find that it is typically best detectable in building on the work of Perna et al. (2008). We note that a resulting limit on spin-down luminosity corresponds univocally to a limit on the maximum magnetospheric acceleration potential, irrespective of the specific combination of magnetic field and rotation period that achieves it. We use available X-ray observations of supernovae to place constraints on the birth spin-down luminosity and period distribution of classical pulsars. We also examine the case of magnetars, born with much higher magnetic fields, and show that their much shorter initial spin-down time implies that any plausible signature of young magnetar wind nebulae can only be observed in harder X-ray or gamma-rays.

  16. A multi-model approach to X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Schönherr G.

    2014-01-01

    Full Text Available The emission characteristics of X-ray pulsars are governed by magnetospheric accretion within the Alfvén radius, leading to a direct coupling of accretion column properties and interactions at the magnetosphere. The complexity of the physical processes governing the formation of radiation within the accreted, strongly magnetized plasma has led to several sophisticated theoretical modelling efforts over the last decade, dedicated to either the formation of the broad band continuum, the formation of cyclotron resonance scattering features (CRSFs or the formation of pulse profiles. While these individual approaches are powerful in themselves, they quickly reach their limits when aiming at a quantitative comparison to observational data. Too many fundamental parameters, describing the formation of the accretion columns and the systems’ overall geometry are unconstrained and different models are often based on different fundamental assumptions, while everything is intertwined in the observed, highly phase-dependent spectra and energy-dependent pulse profiles. To name just one example: the (phase variable line width of the CRSFs is highly dependent on the plasma temperature, the existence of B-field gradients (geometry and observation angle, parameters which, in turn, drive the continuum radiation and are driven by the overall two-pole geometry for the light bending model respectively. This renders a parallel assessment of all available spectral and timing information by a compatible across-models-approach indispensable. In a collaboration of theoreticians and observers, we have been working on a model unification project over the last years, bringing together theoretical calculations of the Comptonized continuum, Monte Carlo simulations and Radiation Transfer calculations of CRSFs as well as a General Relativity (GR light bending model for ray tracing of the incident emission pattern from both magnetic poles. The ultimate goal is to implement a

  17. X-raying a nearby gamma-ray millisecond pulsar

    Science.gov (United States)

    Pavlov, George

    2013-10-01

    We propose an exploratory EPIC observation of a nearby recycled gamma-ray pulsar recently detected in the radio. The radio pulsations were found in a follow-up search at the location of a bright Fermi source. There are few millisecond pulsars whose spectral properties have been studied both in X-rays and gamma-rays. Those for which a multiwavelength analysis has been done show an intriguing connection between the gamma-ray and X-ray spectra. In a modest exposure we will collect enough counts to test the putative link between the the gamma-ray and X-ray spectra. The results will advance our understanding of the inner workings of the pulsar magnetospheres, including pair cascades, particle acceleration, magnetospheric current distribution, and radiation processes in superstrong magnetic fields.

  18. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    Science.gov (United States)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  19. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  20. X-Ray Observations of Black Widow Pulsars

    NARCIS (Netherlands)

    Gentile, P.A.; Roberts, M.S.E.; McLaughlin, M.A.; Camilo, F.; Hessels, J.W.T.; Kerr, M.; Ransom, S.M.; Ray, P.S.; Stairs, I.H.

    2014-01-01

    We describe the first X-ray observations of five short orbital period (PB < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124-3653, J1810+1744, and J2256-1024—are "black-widow" pulsars, with degenerate companions of mass Lt0.1 M ☉, three of which exhibit

  1. The Slowest Spinning X-Ray Pulsar in an Extragalactic Globular Cluster

    Science.gov (United States)

    Zolotukhin, Ivan Yu.; Bachetti, Matteo; Sartore, Nicola; Chilingarian, Igor V.; Webb, Natalie A.

    2017-04-01

    Neutron stars are thought to be born rapidly rotating and then exhibit a phase of rotation-powered pulsations as they slow down to 1-10 s periods. The significant population of millisecond pulsars observed in our Galaxy is explained by the recycling concept: during an epoch of accretion from a donor star in a binary system, the neutron star is spun up to millisecond periods. However, only a few pulsars are observed during this recycling process, with relatively high rotational frequencies. Here we report the detection of an X-ray pulsar with {P}{spin}=1.20 {{s}} in the globular cluster B091D in the Andromeda galaxy, the slowest pulsar ever found in a globular cluster. This bright (up to 30% of the Eddington luminosity) spinning-up pulsar, persistent over the 12 years of observations, must have started accreting less than 1 Myr ago and has not yet had time to accelerate to hundreds of Hertz. The neutron star in this unique wide binary with an orbital period {P}{orb}=30.5 {hr} in a 12 Gyr old, metal-rich star cluster accretes from a low-mass, slightly evolved post-main-sequence companion. We argue that we are witnessing a binary formed at a relatively recent epoch by getting a ˜0.8 {M}⊙ star in a dynamical interaction—a viable scenario in a massive, dense globular cluster like B091D with high global and specific stellar encounter rates. This intensively accreting non-recycled X-ray pulsar therefore provides a long-sought missing piece in the standard pulsar recycling picture.

  2. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    Science.gov (United States)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  3. Accretion Disks and Coronae in the X-Ray Flashlight

    Science.gov (United States)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  4. The X-ray pulsar 2A 1822-371 as a super-Eddington source

    Science.gov (United States)

    Bak Nielsen, Ann-Sofie; Patruno, Alessandro; D'Angelo, Caroline

    2017-06-01

    The low-mass X-ray binary 2A 1822-371 is an eclipsing system with an accretion disc corona and with an orbital period of 5.57 h. The primary is a 0.59 s X-ray pulsar with a proposed strong magnetic field of 1010-1012 G. In this paper, we study the spin evolution of the pulsar and constrain the geometry of the system. We find that, contrary to previous claims, a thick corona is not required and that the system characteristics could be best explained by a thin accretion outflow due to a super-Eddington mass transfer rate and a geometrically thick inner accretion flow. The orbital, spectral and timing observations can be reconciled in this scenario under the assumption that the mass transfer proceeds on a thermal time-scale that would make 2A 1822-371 a mildly super-Eddington source viewed at high inclination angles. The timing analysis on 13 yr of Rossi X-ray Timing Explorer data shows a remarkably stable spin-up that implies that 2A 1822-371 might quickly turn into a millisecond pulsar in the next few thousand years.

  5. 1 Hz Flaring in the Accreting Millisecond Pulsar NGC 6440 X-2: Disk Trapping and Accretion Cycles

    NARCIS (Netherlands)

    Patruno, A.; D'Angelo, C.

    2013-01-01

    The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars (AMXPs) is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well understood, particularly at low accretion

  6. X-ray bounds on the r-mode amplitude in millisecond pulsars

    Science.gov (United States)

    Schwenzer, Kai; Boztepe, Tuğba; Güver, Tolga; Vurgun, Eda

    2017-04-01

    r-mode asteroseismology provides a unique way to study the internal composition of compact stars. Due to their precise timing, recycled millisecond radio pulsars present a particularly promising class of sources. Although their thermal properties are still poorly constrained, X-ray data is very useful for asteroseismology since r-modes could strongly heat a star. Using known and new upper bounds on the temperatures and luminosities of several non-accreting millisecond radio pulsars, we derive bounds on the r-mode amplitude as low as α ≲ 10-8 and discuss the impact on scenarios for their internal composition.

  7. AX J1910.7+0917: the slowest X-ray pulsar

    Science.gov (United States)

    Sidoli, L.; Israel, G. L.; Esposito, P.; Rodríguez Castillo, G. A.; Postnov, K.

    2017-08-01

    Pulsations from the high-mass X-ray binary AX J1910.7+0917 were discovered during Chandra observations performed in 2011. We report here more details on this discovery and discuss the source nature. The period of the X-ray signal is P = 36200 ± 110 s, with a pulsed fraction, PF, of 63 ± 4 per cent. Given the association with a massive B-type companion star, we ascribe this long periodicity to the rotation of the neutron star (NS), making AX J1910.7+0917 the slowest known X-ray pulsar. We also report on the spectroscopy of XMM-Newton observations that serendipitously covered the source field, resulting in a highly absorbed (column density almost reaching 1023 cm-2), power-law X-ray spectrum. The X-ray flux is variable on a time-scale of years, spanning a dynamic range ≳ 60. The very long NS spin period can be explained within a quasi-spherical settling accretion model that applies to low luminosity, wind-fed, X-ray pulsars.

  8. X-ray observations of black widow pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, P. A.; McLaughlin, M. A. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Roberts, M. S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Kerr, M. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ray, P. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2014-03-10

    We describe the first X-ray observations of five short orbital period (P{sub B} < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124–3653, J1810+1744, and J2256–1024—are 'black-widow' pulsars, with degenerate companions of mass <<0.1 M {sub ☉}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing 'redback' with a near Roche-lobe filling ∼0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256–1024, show significant orbital variability while PSR J1124–3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038.

  9. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    Science.gov (United States)

    Kaspi, V. M.

    2008-03-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  10. X-ray reflection in oxygen-rich accretion discs of ultracompact X-ray binaries

    DEFF Research Database (Denmark)

    Madej, O. K.; Garcia, Jeronimo; Jonker, P. G.

    2014-01-01

    . The donor star in these sources is a carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O viii Ly alpha line particularly strong. Modelling the X-ray reflection off a carbon- and oxygen-enriched, hydrogen- and helium-poor disc with models...

  11. Intermittent accreting millisecond pulsars: Light houses with broken lamps?

    NARCIS (Netherlands)

    Altamirano, D.; Casella, P.

    2008-01-01

    Intermittent accreting millisecond X-ray pulsars are an exciting new type of sources. Their pulsations appear and disappear either on timescales of hundreds of seconds or on timescales of days. The study of these sources add new observational constraints to present models that explain the presence

  12. X-ray reverberation around accreting black holes

    Science.gov (United States)

    Uttley, P.; Cackett, E. M.; Fabian, A. C.; Kara, E.; Wilkins, D. R.

    2014-08-01

    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy dependence of the high-frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.

  13. Anomalous X-ray Pulsars and Soft Gamma Repeaters as Magnetars: The RXTE Legacy

    Science.gov (United States)

    Kaspi, Victoria M.

    2012-01-01

    Prior to the launch of RXTE, the hypothesis by Thompson and Duncan that there exists a class of ultra-highly magnetized young neutron stars whose emission is powered by the decay of their magnetic field -- the so-called `magnetar' model -- was beautiful, yet unproven. The magnetar model was motivated the existence of Soft Gamma Repeaters (SGRs), which had been observed to exhibit dramatic X-ray and soft gamma ray bursts and in one case, 8-s pulsations in the tail of a major flare. Meanwhile, there was recognized another puzzling group of seemingly very different objects, the 'Anomalous X-ray Pulsars' (AXPs), so-called due to their bright, several-second X-ray pulsations, steady spin down, low spin-down power and absence of any binary companion from which mass could be accreted. AXPs had also been suggested to be magnetars by Thompson and Duncan, though this too was unproven. Today, thanks to multiple landmark RXTE results, these two groups of object have been united into a single source class, which is now nearly universally identified with magnetars. Specifically, the discovery from SGRs of regular X-ray pulsations and steady spin-down (as had been observed in AXPs), as well as the discovery of bright X-ray bursts from AXPs (as had been observed in SGRs) has demonstrated unambiguously the common nature of AXPs and SGRs, as was predicted uniquely in the magnetar model. Moreover, RXTE discoveries of several observational links between AXPs, SGRs and rotation-powered pulsars, specifically the detection of spin-up glitches in AXPs, as well as the observation of a temporary metamorphosis of one rotation-powered pulsar into a magnetar-like source, hint at a broader unification of the magnetars with the general radio pulsar population, with the observational differences attributable to a combination of age and magnetic field.

  14. Anti-correlated X-ray and Radio Variability in the Transitional Millisecond Pulsar PSR J1023+0038

    Science.gov (United States)

    Bogdanov, Slavko; Deller, Adam; Miller-Jones, James; Archibald, Anne; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D'Angelo, Caroline

    2018-01-01

    The PSR J1023+0038 binary system hosts a 1.69-ms neutron star and a low-mass, main-sequence-like star. The system underwent a transformation from a rotation-powered to a low-luminosity accreting state in 2013 June, in which it has remained since. We present an unprecedented set of strictly simultaneous Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations, which for the first time reveal a highly reproducible, anti-correlated variability pattern. Rapid declines in X-ray flux are always accompanied by a radio brightening with duration that closely matches the low X-ray flux mode intervals. We discuss these findings in the context of accretion and jet outflow physics and their implications for using the radio/X-ray luminosity plane to distinguish low-luminosity candidate black hole binary systems from accreting transitional millisecond pulsars.

  15. X-ray reverberation around accreting black holes

    NARCIS (Netherlands)

    Uttley, P.; Cackett, E.M.; Fabian, A.C.; Kara, E.; Wilkins, D.R.

    2014-01-01

    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time delays between changes in the direct coronal emission and corresponding variations in its reflection from the

  16. Hiccup accretion in the swinging pulsar IGR J18245-2452

    NARCIS (Netherlands)

    Ferrigno, C.; Bozzo, E.; Papitto, A.; Rea, N.; Pavan, L.; Campana, S.; Wieringa, M.; Filipović, M.; Falanga, M.; Stella, L.

    2014-01-01

    The source IGR J18245-2452 is the fifteenth discovered accreting millisecond X-ray pulsar and the first neutron star to show direct evidence of a transition between accretion- and rotation-powered emission states. These swings provided the strongest confirmation to date of the pulsar recycling

  17. X-Ray Emissions from Accreting White Dwarfs: A Review

    Science.gov (United States)

    Mukai, K.

    2017-01-01

    Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.

  18. Exploring the Time Evolution of Luminosity and Pulse Profile in X-Ray Pulsars.

    Science.gov (United States)

    Laycock, Silas; Christodoulou, Dimitris; Cappallo, Rigel; Ho, Wynn; Coe, Malcolm; Corbet, Robin; Klus, Helen; Kazanas, Demosthenes; Galache, Jose Luis; Fingerman, Samuel; Yang, Jun; Norton, Scott

    2015-01-01

    We report progress in our effort to analyze and model the large collection of observations made by RXTE, XMM-Newton and Chandra of X-ray Binary Pulsars in the Magellanic Clouds. There are >2000 individual RXTE PCA, and > 200 XMM-Newton and Chandra observations of the Magellanic clouds. Each observation covers a large fraction of the whole SMC (or LMC) population, and we are able to deconvolve the often simultaneous signals to create a 20 year record of individual pulsar's activity. Together, these datasets cover the entire range of variability timescales and accretion regimes in High Mass X-ray Binaries. We are compiling a library of energy-resolved pulse profiles covering the entire luminosity and spin-period parameter space. In parallel we are developing a suite of computational models to parameterize the pulse profile morphology. We begin with a pair of isotropically emitting poles with general relativity, and then add complexity in the form of fan and pencil beam components. The initial goal is to discover the ratio of the beam components as a function of accretion rate and luminosity, and ultimately the distribution of offsets between magnetic and spin axes. These products are needed for the next generation of advances in neutron star theory and modeling. This unique dataset enables us to determine the upper and lower limits of accretion powered luminosity in a large statistically complete sample of neutron stars, and hence make several direct tests of fundamental NS parameters and accretion physics.

  19. On the origin of cyclotron lines in the spectra of X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Mushtukov A. A.

    2014-01-01

    Full Text Available Cyclotron resonance scattering features are observed in the spectra of some X-ray pulsars and show significant changes in the line energy with the pulsar luminosity. In a case of bright sources, the line centroid energy is anti-correlated with the luminosity. Such a behaviour is often associated with the onset and growth of the accretion column, which is believed to be the origin of the observed emission and the cyclotron lines. However, this scenario inevitably implies large gradient of the magnetic field strength within the line-forming region, and it makes the formation of the observed line-like features problematic. Moreover, the observed variation of the cyclotron line energy is much smaller than could be anticipated for the corresponding luminosity changes. We argue that a more physically realistic situation is that the cyclotron line forms when the radiation emitted by the accretion column is reflected from the neutron star surface. The idea is based on the facts that a substantial part of column luminosity is intercepted by the neutron star surface and the reflected radiation should contain absorption features. The reflection model is developed and applied to explain the observed variations of the cyclotron line energy in a bright X-ray pulsar V 0332+53 over a wide range of luminosities.

  20. X-ray flares from postmerger millisecond pulsars.

    Science.gov (United States)

    Dai, Z G; Wang, X Y; Wu, X F; Zhang, B

    2006-02-24

    Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The x-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy-release time scales. Here, we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection-driven explosive events then occur, leading to multiple x-ray flares minutes after the original gamma-ray burst.

  1. Accretion turnoff and rapid evaporation of very light secondaries in low-mass X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.; Shaham, J.; Tavani, M.

    1989-01-01

    The illumination of companion stars in very low mass X-ray binaries by various kinds of radiation from the neighborhood of the neutron star after accretion has terminated or during accretion is considered. If a neutron star's spun-up period approaches 0.001 s, pulsar kHz radiation can quench accretion by pushing surrounding plasma away from the neutron star, and may leave the companion to be evaporated by the high-energy radiation component expected from an isolated millisecond radiopulsar. Expected accretion-powered MeV gamma-rays and e(+ or -) winds may also be effective in evaporating dwarf companions. Neutron star spin-down energy release may sustain the power in these radiation mechanisms even while accretion falls. Accretion-powered soft X-rays may speed the mass loss of highly evolved dwarf companions, particularly those with a large fraction of carbon and oxygen. 30 references.

  2. Detectability of rotation-powered pulsars in future hard X-ray surveys

    Science.gov (United States)

    Wang, Wei

    2009-11-01

    Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 1033-1037 erg s-1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of LX propto Lsd1.31suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100 keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of LX propto Lsd1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the LX - Lsd relations: LX propto Lsd1.31 and LX propto Lsd1.5. More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.

  3. Mission Overview and Initial Observation Results of the X-Ray Pulsar Navigation-I Satellite

    OpenAIRE

    Xinyuan Zhang; Ping Shuai; Liangwei Huang; Shaolong Chen; Lihong Xu

    2017-01-01

    The newly launched X-ray pulsar navigation-I (XPNAV-1) is an experimental satellite of China that is designed for X-ray pulsar observation. This paper presents the initial observation results and aims to recover the Crab pulsar’s pulse profile to verify the X-ray instrument’s capability of observing pulsars in space. With the grazing-incidence focusing type instrument working at the soft X-ray band (0.5–10 keV), up to 162 segments of observations of the Crab pulsar are fulfilled, and more tha...

  4. EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2015-11-20

    Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that the abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.

  5. Orbitally-Modulated X-rays From Millisecond Pulsar Binaries

    Science.gov (United States)

    Kust Harding, Alice; Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus; Baring, Matthew G.

    2017-06-01

    A large number of new Black Widow (BW) and Redback (RB) rotation-powered millisecond pulsars have been discovered through radio searches of unidentified Fermi sources, increasing the known number of these systems from 4 to 28. We model the high-energy synchrotron emission component from particles accelerated to several TeV in intrabinary shocks in two known BW and RB systems, and its predicted modulation at the binary orbital period. Constructing a geometric model of the shock, we use radio eclipse data in conjunction with optical constraints on the binary inclination angle to constrain the shock stagnation point distance from either the pulsar or companion star. We next model the X-ray synchrotron orbital light curves and compare them to those observed from the PSR B1957+20, where the shock surrounds the companion, and PSR J1023+0038, where the shock surrounds the pulsar, to constrain the bulk Lorentz factor of the wind flow as well as further constrain the inclination angle.

  6. Accreting Millisecond Pulsars and Fundamental Physics

    Science.gov (United States)

    Strohmayer, Tod

    2005-01-01

    X-ray emission from the surfaces of rapidly rotating neutron stars encodes information about their global properties as well as physical conditions locally. Detailed modelling of, for example, the energy dependent pulse profiles observed from accreting millisecond pulsars and thermonuclear burst oscillations can be used to derive constraints on the masses and radii of neutron stars. These measurements provide direct information on the properties of the dense matter equation of state of the supranuclear density matter in their interiors. Study of absorption lines created in the surface layers can also provide measurements of masses and radii, and may be able to probe aspects of relativistic gravity, such as frame dragging. I will discuss the results of recent efforts to carry out such measurements and their implications for the properties of dense matter.

  7. Coherence of burst oscillations and accretion-powered pulsations in the accreting millisecond pulsar XTE J1814-338

    NARCIS (Netherlands)

    Watts, A.L.; Patruno, A.; van der Klis, M.

    2008-01-01

    X-ray timing of the accretion-powered pulsations during the 2003 outburst of the accreting millisecond pulsar XTE J1814-338 has revealed variation in the pulse time of arrival residuals. These can be interpreted in several ways, including spin-down and wandering of the fuel impact point around the

  8. Timing and spectral properties of the accreting millisecond pulsar SWIFT J1756.9-2508

    NARCIS (Netherlands)

    Linares, M.; Wijnands, R.; van der Klis, M.; Krimm, H.; Markwardt, C.B.; Chakrabarty, D.

    2008-01-01

    SWIFT J1756.9-2508 is one of the few accreting millisecond pulsars (AMPs) discovered to date. We report here the results of our analysis of its aperiodic X-ray variability, as measured with the Rossi X-Ray Timing Explorer during the 2007 outburst of the source. We detect strong (~35%) flat-topped

  9. An x-ray nebula associated with the millisecond pulsar B1957+20.

    Science.gov (United States)

    Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G

    2003-02-28

    We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.

  10. Chandra X-ray Observations of 12 Millisecond Pulsars in the Globular Cluster M28

    NARCIS (Netherlands)

    Bogdanov, S.; van den Berg, M.C.; Servillat, M.; Heinke, C.O.; Grindlay, J.E.; Stairs, I.H.; Ransom, s.m.; Freire, P.C.C.; Bégin, S.; Becker, W.

    2011-01-01

    We present a Chandra X-ray Observatory investigation of the millisecond pulsars in the globular cluster M28 (NGC 6626). In what is one of the deepest X-ray observations of a globular cluster, we firmly detect seven and possibly detect two of the 12 known M28 pulsars. With the exception of PSRs

  11. An ultraluminous X-ray source powered by an accreting neutron star.

    Science.gov (United States)

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-09

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  12. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    NARCIS (Netherlands)

    Middleton, M.J.; Walton, D.J.; Fabian, A.; Roberts, T.P.; Heil, L.; Pinto, C.; Anderson, G.; Sutton, A.

    2015-01-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or

  13. Swings between rotation and accretion power in a binary millisecond pulsar.

    Science.gov (United States)

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  14. Swings between rotation and accretion power in a binary millisecond pulsar

    Science.gov (United States)

    Papitto, A.; Ferrigno, C.; Bozzo, E.; Rea, N.; Pavan, L.; Burderi, L.; Burgay, M.; Campana, S.; di Salvo, T.; Falanga, M.; Filipović, M. D.; Freire, P. C. C.; Hessels, J. W. T.; Possenti, A.; Ransom, S. M.; Riggio, A.; Romano, P.; Sarkissian, J. M.; Stairs, I. H.; Stella, L.; Torres, D. F.; Wieringa, M. H.; Wong, G. F.

    2013-09-01

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  15. Spin clustering of accreting X-ray neutron stars as possible evidence of quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, Norman K.; Weber, Fridolin

    2001-06-27

    A neutron star in binary orbit with a low-mass non-degenerate companion becomes a source of x-rays with millisecond variability when mass accretion spins it up. Centrifugally driven changes in density profile may initiate a phase transition in a growing region of the core parallel to what may take place in an isolated millisecond pulsar, but in reverse. Such a star will spend a longer time in the spin frequency range over which the transition occurs than elsewhere because the change of phase, paced by the spinup rate, is accompanied by a growth in the moment of inertia. The population of accreters will exhibit a clustering in the critical frequency range. A phase change triggered by changing spin and the accompanying adjustment of moment of inertia has its analogue in rotating nuclei.

  16. Accretion in supergiant High Mass X-ray Binaries

    Directory of Open Access Journals (Sweden)

    Manousakis Antonios

    2014-01-01

    Full Text Available Supergiant High Mass X-ray Binary systems (sgHMXBs consist of a massive, late type, star and a neutron star. The massive stars exhibits strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i A heavily obscured sgHMXB (IGR J17252–3616 discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii A classical sgHMXB (Vela X-1 has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior. In conclusion, the neutron star, in these two examples, acts very effciently as a probe to study stellar winds.

  17. An accretion disk model for periodic timing variations of pulsars

    Science.gov (United States)

    Qiao, G. J.; Xue, Y. Q.; Xu, R. X.; Wang, H. G.; Xiao, B. W.

    2003-08-01

    The long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of two isolated pulsars (PSRs) PSR B1828-11 and PSR B1642-03 were discovered recently. This phenomenon may provide evidence for ``free precession'' as suggested in the literature. Some authors presented various kinds of models to explain this phenomenon within the framework of free precession. Here we present an accretion disk model for this precession phenomenon instead. Under reasonable parameters, the observed phenomenon can be explained by an isolated pulsar with a fossil disk. This may link radio pulsars and anomalous X-ray pulsars (AXPs) and present an indirect evidence for the existence of the fossil disk in nature.

  18. Vaporizing neutron stars in low-mass x-ray binaries and the statistics of millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, M. (California Univ., Livermore, CA (United States). Inst. of Geophysics and Planetary Physics)

    1991-08-08

    Recent data on low-mass X-ray binaries (LMXBs) and msec pulsars (MSPs) pose a challenge to evolutionary which neglect the effects of disk and companion irradiation. Here we discuss the main features of a radiation-driven (RD) evolutionary model that may be applicable to several LMXBs. According to this model, irradiation from the accreting compact star LMXBs vaporizes'' the accretion disk and the companion star by driving a self-sustained mass loss until a sudden accretion-turn of occurs. The main characteristics of the RD-evolution are: (1) the lifetime of RD-LMXB's is of order 10{sup 7} years or less: (2) both the orbital period gap and the X-ray luminosity may be consequences of RD-evolution of LMXB's containing lower main sequence and degenerate companion stars; (3) the companion star may transfer mass to the primary even if it underfills its Roche lobe; (4) the recycled msec pulsar can continue to vaporize the low-mass companion star even after the accretion turn-off produced by a strong pulsar wind; (5) the RD-evolutionary model resolves the apparent statistical discrepancy between the number of MSP's and their LMXB progenitors. 14 refs., 1 fig., 1 tab.

  19. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Burgay, M.; Possenti, A. [INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Esposito, P.; Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Israel, G. [INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Kerr, M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Sarkissian, J. [CSIRO Astronomy and Space Science, Parkes Observatory, P.O. Box 276, Parkes, NSW 2870 (Australia); Scholz, P., E-mail: archibald@astro.utoronto.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada)

    2017-11-10

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.

  20. Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star

    Science.gov (United States)

    Farinelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2012-02-01

    Context. Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative equation according to the expected physical conditions of the systems under study. Aims: We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods: We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system τ using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results: We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth τ produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions: The algorithm has been implemented in the xspec package for X-ray spectral fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (≳ 1012 G). This latter case is expected to be typical of accreting systems such as X-ray

  1. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    Science.gov (United States)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X-ray

  2. Luminosity Dependent Study of the High Mass X-ray Binary Pulsar ...

    Indian Academy of Sciences (India)

    1997-02-10

    Feb 10, 1997 ... these spectral characteristics as observed with ASCA with those of other satellites. We also compare ... periodicity has been observed in the X-ray light curves of 4U 0114 + 65 from the analysis of archival ... The X-ray spectrum emanating from the pulsar is nicely fitted with a generic model applicable in the ...

  3. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    Science.gov (United States)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Haberl, Frank; Sasaki, Manami; Drake, Jeremy J.; Plucinsky, Paul P.; Laycock, Silas

    2017-09-01

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg2 region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb-Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5-8 keV X-ray luminosity (L X ) of the pulsars ranges from 1034 to 1037 erg s-1 at 60 kpc. All of the Chandra sources with L X ≳ 4 × 1035 erg s-1 exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (I.e., changes in photon indices).

  4. Analysis and design of grazing incidence x-ray optics for pulsar navigation

    Science.gov (United States)

    Zuo, Fuchang; Chen, Jianwu; Li, Liansheng; Mei, Zhiwu

    2013-10-01

    As a promising new technology for deep space exploration due to autonomous capability, pulsar navigation has attracted extensive attentions from academy and engineering domains. The pulsar navigation accuracy is determined by the measurement accuracy of Time of Arrival (TOA) of X-ray photon, which can be enhanced through design of appropriate optics. The energy band of X-ray suitable for pulsar navigation is 0.1-10keV, the effective focusing of which can be primely and effectively realized by the grazing incidence reflective optics. The Wolter-I optics, originally proposed based on a paraboloid mirror and a hyperboloid mirror for X-ray imaging, has long been widely developed and employed in X-ray observatory. Some differences, however, remain in the requirements on optics between astronomical X-ray observation and pulsar navigation. X-ray concentrator, the simplified Wolter-I optics, providing single reflection by a paraboloid mirror, is more suitable for pulsar navigation. In this paper, therefore, the requirements on aperture, effective area and focal length of the grazing incidence reflective optics were firstly analyzed based on the characteristics, such as high time resolution, large effective area and low angular resolution, of the pulsar navigation. Furthermore, the preliminary design of optical system and overall structure, as well as the diaphragm, was implemented for the X-ray concentrator. Through optical and FEA simulation, system engineering analysis on the X-ray concentrator was finally performed to analyze the effects of environmental factors on the performance, providing basis and guidance for fabrication of the X-ray concentrator grazing incidence optics.

  5. The Radiative X-ray and Gamma-ray Efficiencies of Rotation-powered Pulsars

    NARCIS (Netherlands)

    Vink, J.|info:eu-repo/dai/nl/182880559; Bamba, A.; Yamazaki, R.

    2011-01-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev & Pavlov, and we complement this with an analysis of the γ -ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which

  6. Radiation-driven evolution of low-mass x-ray binaries and the formation of millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, M. (Lawrence Livermore National Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Astronomy)

    1991-08-08

    Recent data on low-mass X-ray binaries (LMXBs) and millisecond pulsars (MSPs) pose a challenge to evolutionary theories which neglect the effects of disk and comparison irradiation. Here we discuss the main features of a radiation-driven (RD) evolutionary model that may be applicable to several LMXBs. According to this model, radiation from the accreting compact star in LMXBs vaporizes'' the accretion disk and the companion star by driving a self-sustained mass loss until a sudden accretion-turn off occurs. The main characteristics of the RD-evolution are: (1) lifetime of RD-LMXB's is of order 10{sup 7} years or less; (2) both the orbital period gap and the X-ray luminosity may be consequences of RD-evolution of LMXB's containing lower main sequence and degeneration companion stars; (3) the companion star may transfer mass to the primary even if it underfills its Roche lobe; (4) a class of recycled MSPs can continue to vaporize the low-mass companions by a strong pulsar wind even after the accretion turn-off; (5) the RD-evolutionary model resolves the apparent statistical descrepancy between the number of MSPs and their LMXB progenitors in the Galaxy. We discuss the implications of the discovery of single MSPs in low-density globular clusters and the recent measurements of short orbital timescales of four LMXBs. 34 refs., 3 figs., 2 tabs.

  7. ORBITAL DECAY AND EVIDENCE OF DISK FORMATION IN THE X-RAY BINARY PULSAR OAO 1657-415

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A. [MSFC/NPP, Huntsville, AL 35812 (United States); Finger, M. H. [Universities Space Research Association, Huntsville, AL 35806 (United States); Wilson-Hodge, C. A. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Camero-Arranz, A. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell, E-08193, Barcelona (Spain)

    2012-11-10

    OAO 1657-415 is an eclipsing X-ray binary wind-fed pulsar that has exhibited smooth spin-up/spin-down episodes and has undergone several torque reversals throughout its long history of observation. We present a frequency history spanning nearly 19 years of observations from the Burst and Transient Source Experiment and from the Gamma-Ray Burst Monitor (Fermi/GBM). Our analysis suggests two modes of accretion: one resulting in steady spin-up correlated with flux during which we believe a stable accretion disk is present and one in which the neutron star is spinning down at a lesser rate which is uncorrelated with flux. Orbital elements of the pulsar system are determined at several intervals throughout this history. With these ephemerides, statistically significant orbital decay with a P-dot {sub orb}=(-9.74{+-}0.78) Multiplication-Sign 10{sup -8} is established.

  8. X-Ray and γ-Ray Studies of the Millisecond Pulsar and Possible X-Ray Binary/Radio Pulsar Transition Object PSR J1723-2837

    Science.gov (United States)

    Bogdanov, Slavko; Esposito, Paolo; Crawford, Fronefield, III; Possenti, Andrea; McLaughlin, Maura A.; Freire, Paulo

    2014-01-01

    We present X-ray observations of the "redback" eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is lsim5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  9. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Esposito, Paolo [INAF-IASF Milano, via East Bassini 15, I-20133 Milano (Italy); Crawford III, Fronefield [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Possenti, Andrea [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); McLaughlin, Maura A. [Department of Physics and Astronomy, West Virginia University, 210E Hodges Hall, Morgantown, WV 26506 (United States); Freire, Paulo, E-mail: slavko@astro.columbia.edu [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany)

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  10. Discovery of Hard Nonthermal Pulsed X-Ray Emission from the Anomalous X-Ray Pulsar 1E 1841-045

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Méndez, R.M.

    2004-01-01

    We report the discovery of nonthermal pulsed X-ray/soft gamma-ray emission up to ~150 keV from the anomalous 11.8 s X-ray pulsar AXP 1E 1841-045 located near the center of supernova remnant Kes 73 using Rossi X-Ray Timing Explorer (RXTE) Proportional Counter Array and High Energy X-Ray Timing

  11. Two populations of X-ray pulsars produced by two types of supernova.

    Science.gov (United States)

    Knigge, Christian; Coe, Malcolm J; Podsiadlowski, Philipp

    2011-11-09

    Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core-collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct subpopulations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two subpopulations are most probably associated with the two distinct types of neutron-star-forming supernova, with electron-capture supernovae preferentially producing systems with short spin periods, short orbital periods and low eccentricities. Intriguingly, the split between the two subpopulations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explained. © 2011 Macmillan Publishers Limited. All rights reserved

  12. Mission Overview and Initial Observation Results of the X-Ray Pulsar Navigation-I Satellite

    Directory of Open Access Journals (Sweden)

    Xinyuan Zhang

    2017-01-01

    Full Text Available The newly launched X-ray pulsar navigation-I (XPNAV-1 is an experimental satellite of China that is designed for X-ray pulsar observation. This paper presents the initial observation results and aims to recover the Crab pulsar’s pulse profile to verify the X-ray instrument’s capability of observing pulsars in space. With the grazing-incidence focusing type instrument working at the soft X-ray band (0.5–10 keV, up to 162 segments of observations of the Crab pulsar are fulfilled, and more than 5 million X-ray events are recorded. Arrival times of photons are corrected to the solar system barycentre, and the 33 ms pulse period is sought out for Crab. Epoch folding of all the corrected photon times generates the refined pulse profile of Crab. The characteristic two-peak profile proves that the Crab pulsar has been clearly seen, so that the conclusion is made that XPNAV-1’s goal of being capable of observing pulsars is achieved.

  13. Synchronous X-ray and Radio Mode Switches: A Rapid Global Transformation of the Pulsar Magnetosphere

    Science.gov (United States)

    Hermsen, W.; Hessels, J. W. T.; Kuiper, L.; van Leeuwen, J.; Mitra, D.; de Plaa, J.; Rankin, J. M.; Stappers, B. W.; Wright, G. A. E.; Basu, R.; Alexov, A.; Coenen, T.; Grießmeier, J.-M.; Hassall, T. E.; Karastergiou, A.; Keane, E.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Noutsos, A.; Serylak, M.; Pilia, M.; Sobey, C.; Weltevrede, P.; Zagkouris, K.; Asgekar, A.; Avruch, I. M.; Batejat, F.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Bîrzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; de Gasperin, F.; de Geus, E.; Gunst, A. W.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Kuper, G.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mevius, M.; Miller-Jones, J. C. A.; Morganti, R.; Munk, H.; Orrú, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Rawlings, S.; Reich, W.; Röttgering, H.; Scaife, A. M. M.; Schoenmakers, A.; Shulevski, A.; Sluman, J.; Steinmetz, M.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van de Brink, R. H.; van Weeren, R. J.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-01-01

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  14. General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars

    Science.gov (United States)

    Parfrey, Kyle; Tchekhovskoy, Alexander

    2017-12-01

    Accreting neutron stars can power a wide range of astrophysical phenomena including short- and long-duration gamma-ray bursts, ultra-luminous X-ray sources, and X-ray binaries. Numerical simulations are a valuable tool for studying the accretion-disk–magnetosphere interaction that is central to these problems, most clearly for the recently discovered transitional millisecond pulsars. However, magnetohydrodynamic (MHD) methods, widely used for simulating accretion, have difficulty in highly magnetized stellar magnetospheres, while force-free methods, suitable for such regions, cannot include the accreting gas. We present an MHD method that can stably evolve essentially force-free, highly magnetized regions, and describe the first time-dependent relativistic simulations of magnetized accretion onto millisecond pulsars. Our axisymmetric general-relativistic MHD simulations for the first time demonstrate how the interaction of a turbulent accretion flow with a pulsar’s electromagnetic wind can lead to the transition of an isolated pulsar to the accreting state. This transition naturally leads to the formation of relativistic jets, whose power can greatly exceed the power of the isolated pulsar’s wind. If the accretion rate is below a critical value, the pulsar instead expels the accretion stream. More generally, our simulations produce for the first time the four possible accretion regimes, in order of decreasing mass accretion rate: (a) crushed magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar wind.

  15. The gravitational microlens influence on X-ray spectral line generated by an AGN accretion disc

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2001-01-01

    Full Text Available The influence of gravitational microlensing on the X-ray spectral line profiles originated from a relativistic accretion disc has been studied. Using a disc model, we show that microlensing can induce noticeable changes in the line shapes when the Einstein ring radius associated with the microlens is of a size comparable to that of the accretion disc. Taking into account the relatively small size of the X-ray accretion disc, we found that compact objects (of about a Solar mass which belong to the bulge of the host galaxy can produce significant changes in the X-ray line profile of AGN.

  16. Characterization of Pulsar Sources for X-ray Navigation

    OpenAIRE

    Ray, Paul S.; Wood, Kent S.; Wolff, Michael T.

    2017-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron Star Interior Composition Explorer (NICER) mission, which is scheduled to launch in 2017 and will be hosted as an externally attached payload on the International Space Station (ISS). During NICER's 18-month baseline science mission to understand ultra-dense matter through observations of neutron stars in the soft X-ray band, SEXTANT will, for the first-time, demo...

  17. Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources

    Science.gov (United States)

    Walton, D. J.; Fürst, F.; Harrison, F. A.; Stern, D.; Bachetti, M.; Barret, D.; Brightman, M.; Fabian, A. C.; Middleton, M. J.; Ptak, A.; Tao, L.

    2018-02-01

    We present a detailed, broad-band X-ray spectral analysis of the ultraluminous X-ray source (ULX) pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the XMM-Newton, NuSTAR and Chandra observatories. The broad-band XMM-Newton+NuSTAR spectrum of P13 is qualitatively similar to the rest of the ULX sample with broad-band coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures ∼0.5 and 1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be comparable, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron star's magnetic field soon after its onset, implying a limit of B ≲ 6 × 1012 G for the dipolar component of the central neutron star's magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual 'off' states. These data require both a hard power-law component, suggesting residual accretion on to the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system.

  18. The X-ray properties of Be/X-ray pulsars in quiescence

    NARCIS (Netherlands)

    Tsygankov, S.S.; Wijnands, R.; Lutovinov, A.A.; Degenaar, N.; Poutanen, J.

    2017-01-01

    Observations of accreting neutron stars (NSs) with strong magnetic fields can be used not only for studying the accretion flow interaction with the NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest

  19. Superorbital Period Variations in the X-ray Pulsar LMC X-4

    Indian Academy of Sciences (India)

    We report the discovery of a decay in the superorbital period of the binary X-ray pulsar LMC X-4. Combining archival data and published long term X-ray light curves, we have found a decay in the third period in this system ( ∼ 30.3 day, P ˙ ∼ -2 × 10-5 s s-1). Along with this result, a comparison of the superorbital intensity ...

  20. Superorbital Period Variations in the X-ray Pulsar LMC X-4 B. Paul ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2Department of Physics, Rikkyo University, Nishii-Ikebukuro, 3-34-1, Toshima-ku, Tokyo,. 171-8501, Japan. Abstract. We report the discovery of a decay in the superorbital period of the binary X-ray pulsar LMC X-4. Combining archival data and published long term X-ray light curves, we have found a decay in the third ...

  1. The luminosity and energy dependence of pulse phase lags in the accretion-powered millisecond pulsar SAX J1808.4-3658

    NARCIS (Netherlands)

    Hartman, J.M.; Watts, A.L.; Chakrabarty, D.

    2009-01-01

    Soft phase lags, in which X-ray pulses in lower energy bands arrive later than pulses in higher energy bands, have been observed in nearly all accretion-powered millisecond pulsars, but their origin remains an open question. In a study of the 2.5 ms accretion-powered pulsar SAX J1808.4-3658, we

  2. Optical observations of low-mass X-ray binaries and millisecond pulsars

    Science.gov (United States)

    Callanan, Paul J.

    1992-01-01

    We review recent results from optical observations of low-mass X-ray binaries (LMXBs) and millisecond pulsars. We discuss the optical and X-ray properties of those LMXBs which have been suspected of harboring black holes, reviewing in particular recent work on GX 339-4. We also present preliminary results from new optical observations of the ablating millisecond pulsar system PSR 1957 + 20. The orbital modulation is smooth and symmetrical, and is at least four magnitudes deep in R. However, the overall shape of the light curve can be reproduced by a simple model assuming blackbody reradiation from the secondary.

  3. Probing the Accretion Processes in Soft X-Ray Selected Polars

    Directory of Open Access Journals (Sweden)

    I. Traulsen

    2015-02-01

    Full Text Available High-energy data of accreting white dwarfs give access to the regime of the primary accretion-induced energy release and the different proposed accretion scenarios. We perform XMM-Newton observations of polars selected due to their ROSAT hardness ratios close to -1.0 and model the emission processes in accretion column and accretion region. Our models consider the multi-temperature structure of the emission regions and are mainly determined by mass-flow density, magnetic field strength, and white-dwarf mass. To describe the full spectral energy distribution from infrared to X-rays in a physically consistent way, we include the stellar contributions and establish composite models, which will also be of relevance for future X-ray missions. We confirm the X-ray soft nature of three polars.

  4. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    Science.gov (United States)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  5. A flux state comparison of the transient X-ray pulsar SAX J2103.5+4545

    Science.gov (United States)

    Brumback, McKinley; Hickox, Ryan C.; Fuerst, Felix; Pottschmidt, Katja; Britton Hemphill, Paul; Tomsick, John; Wilms, Joern

    2017-08-01

    We present the first NuSTAR observations of SAX J2103.5+4545, a Be X-ray binary with a history of X-ray flares occurring every 2-3 years. We carried out two Target of Opportunity observations in spring of 2016, as J2103 went into outburst with the strongest flux seen from this object since the launch of NuSTAR. We obtained high-quality X-ray spectra in both epochs, with one observation capturing the bright precursor flare for the first time. We fit the spectra with an NPEX (Negative and Positive power law with an EXponential cut-off) model with Gaussian emission lines to constrain the iron line complex and detect a highly ionized iron line at 6.9 keV for the first time. We perform pulse-phase spectroscopy and find that the model parameters do not vary significantly with pulse phase, which has implications for the geometry and orientation of the accretion flow. We also detect a weak absorption feature at ~12 keV that shows strong pulse phase dependence and could, with further study, be classified as a cyclotron resonance scattering feature. If this line is related to cyclotron scattering, it would imply that J2103 has an unusually low magnetic field (~1e12 G) and opens the possibility of using NuSTAR to detect similar features in other transient X-ray pulsars.

  6. Swinging between rotation and accretion power in a binary millisecond pulsar

    Directory of Open Access Journals (Sweden)

    Papitto A.

    2014-01-01

    While accreting mass, the X-ray emission of IGR J18245–2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of the newly established class of transitional pulsars are also briefly discussed.

  7. Constraining the Inner Accretion Flow onto Black Holes with X-ray Polarimetry Observations

    Science.gov (United States)

    Beheshtipour, Banafsheh; Krawczynski, Henric

    2018-01-01

    Spectropolarimetric observations, can be used to explore the structure of the inner accretion flow on to astrophysical stellar mass and supermassive black holes. The recent NASA granted X-ray polarimetry mission, Imaging X-ray Polarimetry Explorer (IXPE) and the X-ray Imaging Polarimetry Explorer (XIPE) proposed to ESA will provide valuable new information from astrophysical sources. In this talk, I will present results from general relativistic ray tracing studies showing reflection spectra and polarization signatures of the inner accretion flow of active galactic nuclei. Combining polarimetric with spectral and timing results will allow us to understand the physical properties of the accretion disk and corona with higher accuracy. I will present the potential of X-ray polarization observations and reflection spectra in distinguishing among different corona models. Our results show that the future IXPE and XIPE missions will provide new insights into the physical properties of the plasma close to the event horizon of black holes.

  8. The observed spin distributions of millisecond radio and X-ray pulsars

    NARCIS (Netherlands)

    Hessels, J.W.T.

    2008-01-01

    We consider the currently observed spin distributions of various types of neutron stars, including isolated and binary radio millisecond pulsars in the Galactic plane and globular cluster system as well as neutron stars in low-mass X-ray binary systems where the spin rate is known either through

  9. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    Science.gov (United States)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  10. On the disruption of pulsar and X-ray binar ies in globular clusters

    Science.gov (United States)

    Verbunt, Frank; Freire, Paulo C. C.

    2014-01-01

    The stellar encounter rate Γ has been shown to be strongly correlated with the number of X-ray binaries in globular clusters (GCs) and also to the number of radio pulsars. However, the pulsar populations in different GCs show remarkably different characteristics: in some GCs the population is dominated by binary systems, in others by single pulsars and exotic systems that result from exchange encounters. In this paper, we describe a second dynamical parameter for GCs, the encounter rate for a single binary, γ. We find that this parameter provides a good characterization of the differences between the pulsar populations of different GCs. The higher γ is for any particular GC, the more isolated pulsars and products of exchange interactions are observed. Furthermore, we also find that slow and "young" pulsars are found almost exclusively in clusters with a high γ; this suggests that these kinds of objects are formed by the disruption of X-ray binaries, thus halting the recycling of a previously dead neutron star. We discuss the implications of this for the nature of young pulsars and for the formation of neutron stars in GCs.

  11. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    Science.gov (United States)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  12. A Comprehensive Library of X-Ray Pulsars in the Small Magellanic Cloud: Time Evolution of Their Luminosities and Spin Periods

    Science.gov (United States)

    Yang, J.; Laycock, S. G. T.; Christodoulou, D. M.; Fingerman, S.; Coe, M. J.; Drake, J. J.

    2017-04-01

    We have collected and analyzed the complete archive of XMM-Newton (116), Chandra (151), and RXTE (952) observations of the Small Magellanic Cloud (SMC), spanning 1997-2014. The resulting observational library provides a comprehensive view of the physical, temporal, and statistical properties of the SMC pulsar population across the luminosity range of {L}X={10}31.2{--}{10}38 erg s-1. From a sample of 65 pulsars we report ˜1654 individual pulsar detections, yielding ˜1260 pulse-period measurements. Our pipeline generates a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light curve, pulse profile, periodogram, and spectrum. Combining all three satellites, we generated complete histories of the spin periods, pulse amplitudes, pulsed fractions, and X-ray luminosities. Some pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/spin-down trends are seen in 12/11 pulsars, respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. Of the sample, 30 pulsars have a relatively very small spin period derivative and may be close to equilibrium spin. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity and showing that fast pulsars (P library so that it can be used by other researchers. We intend the library to be useful in driving improved models of neutron star magnetospheres and accretion physics.

  13. X-Ray Pulsar Profile Recovery Based on Tracking-Differentiator

    Directory of Open Access Journals (Sweden)

    Dapeng Zhang

    2016-01-01

    Full Text Available The profile recovery is an important work in X-ray pulsar-based navigation. It is a key step for the analysis on the pulsar signal’s characteristic and the computing of time of arrival (TOA. This paper makes an argument for an algorithm based on the tracking-differentiator (TD to recover the profile from the low Signal-to-Noise Ratio (SNR signals. In the method, a TD filter with cascade structure is designed which has very low phase delay and amplitude distortion. In the simulation experiment, two typical pulsars (PSR B0531+21 and PSR B1937+21 are used to verify the algorithm’s performance. The simulation results show that the method satisfies the application requirements in the aspects of SNR and profile fidelity. By processing the data collected by the Rossi X-Ray Timing Explorer (RXTE satellite in space, similar results can also be achieved.

  14. Measurement of Neutron Star Radii with X-ray Binaries and Recycled Pulsars

    Science.gov (United States)

    Bogdanov, Slavko

    2014-03-01

    Detailed modeling of the observed surface X-ray radiation from neutron stars can in principle reveal their interior structure, thereby constraining the state of matter at the most extreme densities. This talk will provide a summary of on-going observational efforts with the Chandra X-ray Observatory and XMM-Newton towards this end, with a focus on two particular varieties of neutron stars - thermally-emitting quiescent low-mass X-ray binaries and ``recycled'' millisecond pulsars. An overview of future prospects for measuring the elusive neutron star equation of state using forthcoming X-ray missions such as the Neutron Star Interior Composition ExploreR (NICER) and Athena+ will also be presented.

  15. CubeSAT X-ray Telescope (CubeX) for Elemental Abundance Mapping of Airless Bodies and X-ray Pulsar Navigation (XNAV)

    Science.gov (United States)

    Romaine, S.; Hong, J.; Elvis, M.

    2017-09-01

    The CubeSAT X-ray Telescope (CubeX) is a concept for a 12U planetary X-ray telescope, which utilizes Miniature Wolter-I X-ray optics (MiXO) and a combination of X-ray CMOS and SDD sensors for the focal plane. CubeX will map the surface elemental composition of diverse airless bodies using X-ray Fluorescence (XRF), which can help us to understand the formation and evolutionary history of the individual bodies and the workings of the Solar system as a whole. CubeX will also conduct a feasibility and performance test of X-ray pulsar timing based deep space navigation (XNAV), which can lower operation costs of space navigation and enable autonomous deep space navigation.

  16. A Possible X-Ray Detection of the Binary Millisecond Pulsar J1012+5307

    Science.gov (United States)

    Halpern, Jules P.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    A possible X-ray detection of the newly discovered binary millisecond radio pulsar PSR J1012+5307 was obtained from an archival ROSAT observation. The 80 +/- 24 photons detected correspond to a 0.1 - 2.4 keV luminosity of approx. = 2.5 x 10(exp 30) erg/s at the nominal dispersion-measure distance of 520 pc. This luminosity is a factor of 2 less than that of PSR J0437-4715, a near twin of PSR J1012+5307 in its spin parameters and energetics, and the only millisecond pulsar from which pulsed X-rays have definitely been detected. PSR J1012+5307 is also within 6 deg of the "HI hole" in Ursa Major, providing a new estimate of the electron column density through this region which confirms that the ionized column density is also low. The small neutral column density to PSR J1012+5307, N(sub H) less than 7.5 x 10(exp 19)/sq cm, will facilitate future soft X-ray study, which will help to discriminate between thermal and nonthermal origins of the X-ray emission in millisecond pulsars.

  17. The transitional millisecond pulsar IGR J18245-2452 during its 2013 outburst at X-rays and soft gamma-rays

    Science.gov (United States)

    De Falco, V.; Kuiper, L.; Bozzo, E.; Ferrigno, C.; Poutanen, J.; Stella, L.; Falanga, M.

    2017-07-01

    IGR J18245-2452/PSR J1824-2452I is one of the rare transitional accreting millisecond X-ray pulsars, showing direct evidence of switches between states of rotation-powered radio pulsations and accretion-powered X-ray pulsations, dubbed transitional pulsars. IGR J18245-2452 with a spin frequency of 254.3 Hz is the only transitional pulsar so far to have shown a full accretion episode, reaching an X-ray luminosity of 1037 erg s-1 permitting its discovery with INTEGRAL in 2013. In this paper, we report on a detailed analysis of the data collected with the IBIS/ISGRI and the two JEM-X monitors on-board INTEGRAL at the time of the 2013 outburst. We make use of some complementary data obtained with the instruments on-board XMM-Newton and Swift in order to perform the averaged broad-band spectral analysis of the source in the energy range 0.4-250 keV. We have found that this spectrum is the hardest among the accreting millisecond X-ray pulsars. We improved the ephemeris, now valid across its full outburst, and report the detection of pulsed emission up to 60 keV in both the ISGRI (10.9σ) and Fermi/GBM (5.9σ) bandpass. The alignment of the ISGRI and Fermi GBM 20-60 keV pulse profiles are consistent at a 25 μs level. We compared the pulse profiles obtained at soft X-rays with XMM-Newton with the soft γ-ray ones, and derived the pulsed fractions of the fundamental and first harmonic, as well as the time lag of the fundamental harmonic, up to 150 μs, as a function of energy. We report on a thermonuclear X-ray burst detected with INTEGRAL, and using the properties of the previously type-I X-ray burst, we show that all these events are powered primarily by helium ignited at a depth of yign ≈ 2.7 × 108 g cm{-2}. For such a helium burst the estimated recurrence time of Δtrec ≈ 5.6 d is in agreement with the observations.

  18. Neutron Star Equation of State Constraints from X-ray Observations of Recycled Millisecond Pulsars

    Science.gov (United States)

    Bogdanov, Slavko

    2014-08-01

    The surface thermal radiation from neutron stars can serve as a powerful probe of the extremely dense matter in their centers. For "recycled" millisecond pulsars in particular, realistic modeling of the rotation-induced thermal X-ray pulsations offers a promising approach toward constraining the elusive neutron star equation of state. In this talk, I will summarize existing observational studies of millisecond pulsars with XMM-Newton and Chandra and the exciting prospect of high-precision constraints on the neutron star mass-radius relation using the Neutron Star Interior Composition ExploreR (NICER).

  19. Theoretical Considerations on the Properties of Accreting Millisecond Pulsars

    Science.gov (United States)

    Nelson, Lorne A.; Rappaport, Saul

    2004-01-01

    We examine a number of evolutionary scenarios for the recently discovered class of accretion-powered millisecond X-ray pulsars in ultracompact binaries, including XTE JO929-314 and XTE J1751-305. These systems have very short orbital periods of Porb = 43.6 and 42.4 minutes, respectively, and extremely small mass functions. We focus on a particular scenario that can naturally explain the present-day properties of these systems. This model invokes a donor star that was either very close to the main-sequence turnoff at the onset of mass transfer or had sufficient time to evolve during the mass-transfer phase. We have run a systematic set of binary evolution calculations with a wide range of initial conditions.

  20. X-ray emission from the planet pulsar B1257+12

    OpenAIRE

    Pavlov, G. G.; Kargaltsev, O.; Garmire, G. P.; Wolszczan, A.

    2007-01-01

    We report the detection of the millisecond pulsar B1257+12 with the Chandra X-ray Observatory. In a 20 ks exposure we detected 25 photons from the pulsar, with energies between 0.4 and 2.0 keV, corresponding to the flux F_X=(4.4+/- 0.9)*10^{-15} ergs s^{-1} cm^{-2} in this energy range. The X-ray spectrum can be described by a power-law model with photon index Gamma = 2.8 and luminosity L_X \\approx 2.5*10^{29} ergs s^{-1} in the 0.3--8 keV band, for a plausible distance of 500 pc and hydrogen...

  1. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    Science.gov (United States)

    Kaspi, Victoria

    2011-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO13, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  2. Understanding X-ray Reflection as a Probe of Accreting Black Holes

    Science.gov (United States)

    Wilkins, Dan

    2014-01-01

    Active galactic nuclei (AGN) are some of the most luminous objects we see in the Universe, powered by the accretion of matter onto a supermassive black hole in the centre of a galaxy, yet many of the physical processes by which the energy is released and injected into the surroundings remain a mystery. X-rays are emitted from a ‘corona’ of energetic particles surrounding the black hole and as well as being observed directly, they are seen to be reflected from the accreting disc, producing a number of spectral features including emission lines that are broadened by relativistic effects in the proximity of the black hole. In my thesis, I develop methods through which detailed measurement of the reflected X-rays from the accretion disc can be used to probe the innermost regions of accretion flow and corona, right down to the innermost stable orbit and the event horizon. Novel spectral analysis techniques allow us to reconstruct, from the observed relativistic X-ray reflection spectrum the spatially resolved illumination pattern of the accretion disc and will discuss how comparing this to the results of systematic general relativistic ray tracing simulations I have developed, we are able to constrain the location and geometry of the X-ray emitting corona and understand the dramatic change of the narrow line Seyfert 1 galaxy 1H 0707-495 into an extremely low flux state in terms of a collapse in the corona. I will discuss how measurements of the X-ray variability, specifically the reverberation time lags that are observed between variability in the directly observed X-rays from the corona and those reflected from the accretion disc add a further dimension to the study of accreting black holes, letting us not only build up a three dimensional image of the immediate vicinity of the black hole but also to probe mechanisms by which the energy is released from the accretion flow; techniques that will let us exploit not just current instrumentation but future proposed X-ray

  3. X-RAY OBSERVATIONS OF DISRUPTED RECYCLED PULSARS: NO REFUGE FOR ORPHANED CENTRAL COMPACT OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Gotthelf, E. V.; Halpern, J. P. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Allen, B.; Knispel, B. [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany)

    2013-08-20

    We present a Chandra X-ray survey of the disrupted recycled pulsars (DRPs), isolated radio pulsars with P > 20 ms and B{sub s} < 3 Multiplication-Sign 10{sup 10} G. These observations were motivated as a search for the immediate descendants of the Almost-Equal-To 10 central compact objects (CCOs) in supernova remnants (SNRs), 3 of which have similar timing and magnetic properties as the DRPs, but are bright, thermal X-ray sources consistent with minimal neutron star (NS) cooling curves. Since none of the DPRs were detected in this survey, there is no evidence that they are ''orphaned'' CCOs, NSs whose SNRs has dissipated. Upper limits on their thermal X-ray luminosities are in the range of log L{sub x} [erg s{sup -1}] = 31.8-32.8, which implies cooling ages >10{sup 4}-10{sup 5} yr, roughly 10 times the ages of the Almost-Equal-To 10 known CCOs in a similar volume of the Galaxy. The order of a hundred CCO descendants that could be detected by this method are thus either intrinsically radio quiet or occupy a different region of (P, B{sub s} ) parameter space from the DRPs. This motivates a new X-ray search for orphaned CCOs among radio pulsars with larger B-fields, which could verify the theory that their fields are buried by the fall-back of supernova ejecta, but quickly regrow to join the normal pulsar population.

  4. Observation of the X-ray pulsar A0535 + 26 with the FIGARO II experiment

    Science.gov (United States)

    Olive, J. F.; Agrinier, B.; Barouch, E.; Comte, R.; Costa, E.; Cusumano, G. C.; Gerardi, G.; Mandrou, P.; Masnou, J. L.; Massaro, E.; Matt, G.; Mineo, T.; Niel, M.; Parlier, B.; Sacco, B.; Salvati, M.; Scarsi, L.

    1993-01-01

    The FIGARO II experiment observed the transient X-ray pulsar A0535 + 26 in the 0.15-4 MeV range, only 11.1 +/- 4 days after an expected outburst. We found evidence for periodicity at 103.2 sec close to the extrapolated value. The light-curve and the spectral shape of this low energy gamma-ray emission are presented here.

  5. Discovery of burst oscillations near the spin frequency in the intermittent accreting millisecond pulsar HETE J1900.1-2455

    NARCIS (Netherlands)

    Watts, A.; Altamirano, D.; Casella, P.; Cavecchi, Y.; Degenaar, N.; Linares, M.; Patruno, A.; Rea, N.; Soleri, P.; van der Klis, M.; Wijnands, R.

    2009-01-01

    RXTE observations of the intermittent accreting millisecond X-ray pulsar HETE J1900.1-2455 (Kaaret et al. 2006 ApJ 638, 963; Galloway et al. 2007 ApJ 654, L73) showed a Type I X-ray burst on April 2 2009 (08:57 UTC). We detect strong burst oscillations during the peak and initial decay of the burst,

  6. Performance enhancement of X-ray pulsar navigation using autonomous optical sensor

    Science.gov (United States)

    Kai, Xiong; Chunling, Wei; Liangdong, Liu

    2016-11-01

    This paper develops an integrated navigation method based on the X-ray pulsar navigation (XNAV) system and an autonomous optical navigation system for spacecrafts. The X-ray pulsar navigation is implemented by using the difference between the measured and predicated pulse arrival time, which is calculated by comparing an observed pulse profile with a standard pulse profile. A problem arises from the X-ray signal processing in that the spacecraft's orbit information, which may be unknown, is required to construct the observed pulse profile. The effect of the spacecraft orbit error on the accuracy of the pulse TOA (time of arrival) difference determination is analyzed. It is specified that the performance of the XNAV system may be degraded in the presence of large orbit error. In order to improve the navigation accuracy, an integrated navigation scheme is presented by fusing the measurement information of a X-ray detector and an ultraviolet optical sensor. The XNAV/optical integrated navigation system is effective to mitigate the effect of the spacecraft orbit error. The superiority of the presented scheme is illustrated through numerical simulations.

  7. GBM Observations of Be X-Ray Binary Outbursts

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  8. MN Lup: X-RAYS FROM A WEAKLY ACCRETING T TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H. M.; Wolk, S. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wolter, U.; Robrade, J., E-mail: hguenther@cfa.harvard.edu [Universitaet Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2013-07-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L{sub X} /L{sub bol} close to the saturation limit. However, we find high densities (n{sub e} > 3 Multiplication-Sign 10{sup 10} cm{sup -3}) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub Sun} yr{sup -1}. Despite the simple H{alpha} line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the H{alpha} line we see a prominence in absorption about 2R{sub *} above the stellar surface-the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  9. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    Science.gov (United States)

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  10. Long term hard X-ray variability of the anomalous X-ray pulsar 1RXS J170849.0-400910 discovered with INTEGRAL

    NARCIS (Netherlands)

    Götz, D.; Rea, N.; Israel, G.L.; Zane, S.; Esposito, P.; Gotthelf, E.V.; Mereghetti, S.; Tiengo, A.; Turolla, R.

    2007-01-01

    Aims.We report on a multi-band high-energy observing campaign aimed at studying the long term spectral variability of the Anomalous X-ray Pulsar (AXP) 1RXS J170849.0-400910, one of the magnetar candidates. Methods: We observed 1RXS J170849.0-400910 in Fall 2006 and Spring 2007 simultaneously with

  11. Monitoring and Discovering X-Ray Pulsars in the Small Magellanic Cloud (core Program)

    Science.gov (United States)

    A long-term program of repeated observations of the SMC has been highly successful. A huge number of new pulsars have been discovered, optical counterparts identified, and orbital periods found. We propose here to continue this campaign with the aims of both finding new X-ray pulsars and monitoring the pulsed flux of known pulsars. We will use the results to investigate and confirm several new relationships found between astrophysical parameters of these systems. Although we are requesting a relatively large amount of time we believe this program offers good ``value for money'' because of the large number of sources that will be studied and the scope for new astrophysical insight. For this round we propose to study three overlapping regions that will cover most of the SMC.

  12. Monitoring and Discovering X-Ray Pulsars in the Small Magellanic Cloud

    Science.gov (United States)

    Corbet, Robin

    A long-term program of repeated observations of the SMC has been highly successful. A huge number of new pulsars have been discovered, optical counterparts identified, and orbital periods found. We propose here to continue this campaign with the aims of both finding new X-ray pulsars and monitoring the pulsed flux of known pulsars. We will use the results to investigate and confirm several new relationships found between astrophysical parameters of these systems. Although we are requesting a relatively large amount of time we believe this program offers good ``value for money'' because of the large number of sources that will be studied and the scope for new astrophysical insight. For this round we propose to study three overlapping regions that will cover most of the SMC.

  13. A Search for Millisecond-pulsar Radio Emission from the Faint Quiescent Soft X-Ray Transient 1H 1905+000

    Science.gov (United States)

    Mikhailov, K.; van Leeuwen, J.; Jonker, P. G.

    2017-05-01

    Transitional millisecond pulsars (tMSPs) switch between an accretion-powered state without radio pulsations and a rotation-powered state with radio pulsations. In the former state, tMSPs are X-ray bright, while in the latter state, they are X-ray dim. Soft X-ray transients (SXTs) undergo similar switches in X-ray, between “high” states with bright X-ray outbursts and “low” states of quiescence. The upper limit on the quiescent X-ray luminosity of SXT 1H 1905+000 suggests that its luminosity might be similar to that of the known tMSPs. A detection of radio pulsations would link SXTs more strongly with tMSPs; and thus, e.g., put stricter constraints on tMSP transitional timescales through the connection with the well-known SXT periods of quiescence. A nondetection allows us, based on the telescope sensitivity, to estimate how likely these sources are to pulsate in radio. Over a 10-year span, 2006-2015, we carried out targeted radio observations at 400/800 MHz with Arecibo, and searched for radio pulsations from the quiescent SXT 1H 1905+000. None of the observations have revealed radio pulsations from the targeted SXT. For a 1 ms pulsar, our flux density upper limit is 10.3 μJy. At an assumed distance of 10 kpc this translates to a pseudo-luminosity upper limit of 1.0 mJy kpc2, which makes our search complete to ˜85% of the known MSP population. Given the high sensitivity, and the generally large beaming fraction of millisecond pulsars, we conclude that SXT 1H 1905+000 is unlikely to emit in radio as a tMSP.

  14. A Search for Millisecond-pulsar Radio Emission from the Faint Quiescent Soft X-Ray Transient 1H 1905+000

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, K.; Van Leeuwen, J. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Jonker, P. G., E-mail: K.Mikhailov@uva.nl [SRON, the Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht (Netherlands)

    2017-05-01

    Transitional millisecond pulsars (tMSPs) switch between an accretion-powered state without radio pulsations and a rotation-powered state with radio pulsations. In the former state, tMSPs are X-ray bright, while in the latter state, they are X-ray dim. Soft X-ray transients (SXTs) undergo similar switches in X-ray, between “high” states with bright X-ray outbursts and “low” states of quiescence. The upper limit on the quiescent X-ray luminosity of SXT 1H 1905+000 suggests that its luminosity might be similar to that of the known tMSPs. A detection of radio pulsations would link SXTs more strongly with tMSPs; and thus, e.g., put stricter constraints on tMSP transitional timescales through the connection with the well-known SXT periods of quiescence. A nondetection allows us, based on the telescope sensitivity, to estimate how likely these sources are to pulsate in radio. Over a 10-year span, 2006–2015, we carried out targeted radio observations at 400/800 MHz with Arecibo, and searched for radio pulsations from the quiescent SXT 1H 1905+000. None of the observations have revealed radio pulsations from the targeted SXT. For a 1 ms pulsar, our flux density upper limit is 10.3 μ Jy. At an assumed distance of 10 kpc this translates to a pseudo-luminosity upper limit of 1.0 mJy kpc{sup 2}, which makes our search complete to ∼85% of the known MSP population. Given the high sensitivity, and the generally large beaming fraction of millisecond pulsars, we conclude that SXT 1H 1905+000 is unlikely to emit in radio as a tMSP.

  15. Hiccup accretion in the swinging pulsar IGR J18245-2452

    Science.gov (United States)

    Ferrigno, C.; Bozzo, E.; Papitto, A.; Rea, N.; Pavan, L.; Campana, S.; Wieringa, M.; Filipović, M.; Falanga, M.; Stella, L.

    2014-07-01

    The source IGR J18245-2452 is the fifteenth discovered accreting millisecond X-ray pulsar and the first neutron star to show direct evidence of a transition between accretion- and rotation-powered emission states. These swings provided the strongest confirmation to date of the pulsar recycling scenario. During the two XMM-Newton observations that were carried out while the source was in outburst in April 2013, IGR J18245-2452 displayed a unique and peculiar X-ray variability. In this work, we report on a detailed analysis of the XMM-Newton data and focus on the timing and spectral variability of the source. In the 0.4-11 keV energy band, IGR J18245-2452 continuously switched between lower and higher intensity states, with typical variations in flux by factor of ~100 on time scales as short as a few seconds. These variations in the source intensity were sometimes accompanied by dramatic spectral hardening, during which the X-ray power-law photon index varied from Γ = 1.7 to Γ = 0.9. The pulse profiles extracted at different count-rates, hardnesses, and energies also showed a complex variability. These phenomena were never observed in accreting millisecond X-ray pulsars, at least not on such a short time-scale. Fast variability was also found in the 5.5 and 9 GHz ATCA radio observations that were carried out for about 6 h during the outburst. We interpret the variability observed from IGR J18245-2452 in terms of a hiccup accretion phase, during which the accretion of material from the inner boundary of the Keplerian disk is reduced by the onset of centrifugal inhibition of accretion, possibly causing the launch of outflows. Changes across accretion and propeller regimes have been long predicted and reproduced by magnetohydrodynamic simulations of accreting millisecond X-ray pulsars, but have never observed to produce as extreme a variability as that shown by IGR J18245-2452.

  16. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    Science.gov (United States)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  17. Broadband x-ray imaging and spectroscopy of the crab nebula and pulsar with NuSTAR

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Reynolds, Stephen; Harrison, Fiona

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ~9 ke...

  18. The X-Ray Polarization of the Accretion Disk Coronae of Active Galactic Nuclei

    Science.gov (United States)

    Beheshtipour, Banafsheh; Krawczynski, Henric; Malzac, Julien

    2017-11-01

    Hard X-rays observed in Active Galactic Nuclei (AGNs) are thought to originate from the Comptonization of the optical/UV accretion disk photons in a hot corona. Polarization studies of these photons can help to constrain the corona geometry and the plasma properties. We have developed a ray-tracing code that simulates the Comptonization of accretion disk photons in coronae of arbitrary shapes, and use it here to study the polarization of the X-ray emission from wedge and spherical coronae. We study the predicted polarization signatures for the fully relativistic and various approximate treatments of the elemental Compton scattering processes. We furthermore use the code to evaluate the impact of nonthermal electrons and cyclo-synchrotron photons on the polarization properties. Finally, we model the NuSTAR observations of the Seyfert I galaxy Mrk 335 and predict the associated polarization signal. Our studies show that X-ray polarimetry missions such as NASA’s Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer proposed to ESA will provide valuable new information about the physical properties of the plasma close to the event horizon of AGN black holes.

  19. Radio emission from Sgr A*: pulsar transits through the accretion disc

    Science.gov (United States)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  20. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.

    2014-01-01

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes(1,2). Their X-ray luminosities in the 0...... at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear...... region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity...

  1. Probing the Evolving X-ray Sources of Accreting Black Holes

    Science.gov (United States)

    Wilkins, Dan

    2013-04-01

    Material spiralling into black holes powers some of the most luminous objects we see in the Unviverse; AGN and galactic black hole binaries. X-rays are emitted from a corona of energetic particles around the black hole and are seen to reflect off of the accretion disc. As well as being impressive objects in their own right, the black holes in AGN can emit such large amounts of energy that they are important in governing the growth of galaxies and clusters. Through detailed analysis of the observed reflection features in the X-ray spectrum and the variability of the detected emission showing reverberation time lags between the directly observed continuum and the reflection, it is possible to detect the emission from material right down to the innermost stable orbit around the black hole. Comparing these observations to the results of general relativistic ray tracing simulations allows them to be analysed in the context of the geometry of the X-ray emitting region and it has been possible to constrain the locations of the X-ray sources in a number of AGN including 1H 0707-495, IRAS 13224-3809 and MCG-6-30-15. With high quality data from long X-ray observations of these sources, it has, for the first time, been possible to follow the evolution of the coronal X-ray source as the luminosity of the source goes up and down. We are able to find evidence that the size and other properties of the X-ray source changes on the timescale of a few hours, giving rise to the extreme variability seen in these sources with the source increasing in size as the luminosity increases. Such detailed analysis of observations (both of spectra and variability) and studies of how the X-ray source is changing is paving the way to the science that will be possible with the next generation of X-ray instruments (NuStar and Astro-H) and will allow us to understand the processes at work in the innermost regions of accretion black holes, releasing energy from the accretion flow to power some of the

  2. EXTraS discovery of a 1.2-s X-ray pulsar in M31

    Science.gov (United States)

    Esposito, P.; Israel, G.; Belfiore, A.; Novara, G.; Sidoli, L.; Rodriguez Castillo, G.; De Luca, A.; Tiengo, A.; Haberl, F.; Salvaterra, R.

    2017-10-01

    A systematic search for periodic signals in the XMM-Newton's EPIC archive carried out within the EXTraS project resulted in the discovery of a 1.2-s flux modulation in 3XMM J004301.4+413017. It is the first accreting neutron star in M31 for which the spin period has been detected. Besides this distinction, 3XMM J0043 proved to be an interesting system. Doppler shifts of the spin modulation revealed an orbital motion with period of 1.27 d and the analysis of optical data shows that, while the source is likely associated to a globular cluster, a counterpart with V ˜ 22 outside the cluster cannot be excluded. The emission of the pulsar appears rather hard (most data are described by a power law with photon index <1) and, assuming the distance to M31, the 0.3-10 keV luminosity was variable, from ˜3×10^{37} to 2×10^{38} erg/s. Based on this, we discuss two main possible scenarios for 3X J0043: a peculiar low-mass X-ray binary, perhaps similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary akin Her X-1.

  3. RADIO-QUIET AND RADIO-LOUD PULSARS: SIMILAR IN GAMMA-RAYS BUT DIFFERENT IN X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Mignani, R. P.; Luca, A. De; Salvetti, D. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133, Milano (Italy); Parkinson, P. M. Saz [Santa Cruz Institute for Particle Physics, Department of Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Hartog, P. R. Den [Stanford University HEPL/KIPAC, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Wolff, M. T., E-mail: marelli@iasf-milano.inaf.it [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2015-04-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet (RQ) γ-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from γ-ray pulsar timing. For PSR J2030+4415 we found evidence for a ∼10″-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. and confirm that, on average, the γ-ray-to-X-ray flux ratios (F{sub γ}/F{sub X}) of RQ pulsars are higher than for the radio-loud (RL) ones. Furthermore, while the F{sub γ}/F{sub X} distribution features a single peak for the RQ pulsars, the distribution is more dispersed for the RL ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.

  4. Modeling X-ray and gamma-ray emission in the intrabinary shock of pulsar binaries

    Science.gov (United States)

    An, H.

    2017-10-01

    We present broadband SED and light curve, and a wind interaction model for the gamma-ray binary 1FGL J1018.6-5856 (J1018) which exhibits double peaks in the X-ray light curve. Assuming that the X-ray to low-energy gamma-ray emission is produced by synchrotron radiation and high-energy gamma rays by inverse Compton scattering in the intrabinary shock (IBS), we model the broadband SED and light curve of J1018 using a two-component model having slow electrons in the shock and fast bulk-accelerated electrons at the skin of the shock. The model explains the broadband SED and light curve of J1018 qualitatively well. In particular, modeling the synchrotron emission constrains the orbital geometry. We discuss potential use of the model for other pulsar binaries.

  5. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars

    Science.gov (United States)

    Kaspi, Victoria

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  6. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars (core Program)

    Science.gov (United States)

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  7. X-ray Reflected Spectra from Accretion Disk Models: A Complete Grid of Ionized Reflection Calculations

    Science.gov (United States)

    Garcia, Javier; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Narayan, R.; Wilms, J.; Eikmann, W.

    2013-04-01

    We present a new and complete library of synthetic spectra to model the reprocessed and reflected X-ray radiation from illuminated accretion disks, using an updated version of our code XILLVER. Several improvements have been implemented to both the routines and the atomic data, allowing the production a large grid of reflection models covering a wide range of parameters. Each model is characterized by the photon index Γ of the illuminating radiation (assumed to be a power-law), the ionization parameter ξ at the surface of the disk (i.e., the ratio of the X-ray flux over the gas density), and the iron abundance AFe with respect to the solar value. The ranges of the parameters covered are: 1.2 ≤ Γ ≤ 3.4, 1 ≤ ξ ≤ 104, and 0.5 ≤ AFe ≤ 10. This choice is motivated to represent the physical conditions typically observed in most active galactic nuclei, as well as in some galactic black holes. This library is particularly intended to model reflection from accreting sources where the thermal disk emission is small compared to the incident power-law spectrum. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in XSPEC. A detailed comparison with previous models highlights the improvements achieved in the present calculations, and their implications on the analysis of X-ray spectra is discussed.

  8. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    Science.gov (United States)

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  9. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres

    Science.gov (United States)

    Garcia, Javier; Kallman, Timothy R.

    2009-01-01

    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  10. System mass constraints for the accreting millisecond pulsar XTE J1814-338 using Bowen fluorescence

    Science.gov (United States)

    Wang, L.; Steeghs, D.; Casares, J.; Charles, P. A.; Muñoz-Darias, T.; Marsh, T. R.; Hynes, R. I.; O'Brien, K.

    2017-04-01

    We present phase-resolved spectroscopy of the millisecond X-ray pulsar XTE J1814-338 obtained during its 2003 outburst. The spectra are dominated by high-excitation emission lines of He II λ4686, Hβ, and the Bowen blend C III/N III 4630-50 Å. We exploit the proven Bowen fluorescence technique to establish a complete set of dynamical system parameter constraints using bootstrap Doppler tomography, a first for an accreting millisecond X-ray pulsar binary. The reconstructed Doppler map of the N III λ4640 Bowen transition exhibits a statistically significant (>4σ) spot feature at the expected position of the companion star. If this feature is driven by irradiation of the surface of the Roche lobe filling companion, we derive a strict lower limit to the true radial velocity semi-amplitude K2. Combining our donor constraint with the well-constrained orbit of the neutron star leads to a determination of the binary mass ratio: q = 0.123^{+0.012}_{-0.010}. The component masses are not tightly constrained given our lack of knowledge of the binary inclination. We cannot rule out a canonical neutron star mass of 1.4 M⊙ (1.1 M⊙ millisecond pulsar in XTE J1814-338 during an X-ray quiescent state. The companion mass is typical of the so-called redback pulsar binary systems (M2 ˜ 0.2 M⊙).

  11. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    Science.gov (United States)

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  12. The accretion environment of supergiant fast X-ray transients probed with XMM-Newton

    Science.gov (United States)

    Bozzo, E.; Bernardini, F.; Ferrigno, C.; Falanga, M.; Romano, P.; Oskinova, L.

    2017-12-01

    Context. Supergiant fast X-ray (SFXT) transients are a peculiar class of supergiant X-ray binaries characterized by a remarkable variability in the X-ray domain, widely ascribed to accretion from a clumpy stellar wind. Aims: In this paper we performed a systematic and homogeneous analysis of the sufficiently bright X-ray flares observed with XMM-Newton from the supergiant fast X-ray transients to probe spectral variations on timescales as short as a few hundred seconds. Our ultimate goal is to investigate whether SFXT flares and outbursts are triggered by the presence of clumps, and to reveal whether strongly or mildly dense clumps are required. Methods: For all sources, we employ a technique developed by our group already exploited in a number of our previous papers, making use of an adaptive rebinned hardness ratio to optimally select the time intervals for the spectral extraction. A total of twelve observations performed in the direction of five SFXTs are reported, providing the largest sample of events available so far. Results: Using the original results reported here and those obtained with our technique from the analysis of two previously published XMM-Newton observations of IGR J17544-2619 and IGR J18410-0535, we show that both strongly and mildly dense clumps can trigger these events. In the former case, the local absorption column density may increase by a factor of ≫3, while in the latter case, the increase is only a factor of 2-3 (or lower). An increase in the absorption column density is generally recorded during the rise of the flares/outbursts, while a drop follows when the source achieves peak flux. In a few cases, a re-increase of the absorption column density after the flare is also detected, and we discovered one absorption event related to the passage of an unaccreted clump in front of the compact object. Overall, there seems to be no obvious correlation between the dynamic ranges in the X-ray fluxes and absorption column densities in

  13. Multi-timescale X-ray reverberation mapping of accreting black holes

    Science.gov (United States)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-01-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disk. The reverberation lag resulting from the path length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modeling of energy dependent time lags and variability amplitude for a wide range of variability timescales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  14. X-Rays from the Nearby Solitary Millisecond Pulsar PSR J0030+0451 - the Final ROSAT Observations

    CERN Document Server

    Becker, W; Bäcker, A N; Lommen, D; Becker, Werner; Tr"umper, Joachim; Backer, Andrea N.Lommen & Donald C.

    2000-01-01

    We report on X-ray observations of the solitary 4.8 ms pulsar PSR J0030+0451. The pulsar was one of the last targets observed in DEC-98 by the ROSAT PSPC. X-ray pulses are detected on a $4.5\\sigma$ level and make the source the $11^{th}$ millisecond pulsar detected in the X-ray domain. The pulsed fraction is found to be $69\\pm18%$. The X-ray pulse profile is characterized by two narrow peaks which match the gross pulse profile observed at 1.4 GHz. Assuming a Crab-like spectrum the X-ray flux is in the range $f_x= 2-3\\times 10^{-13}$ erg s$^{-1}$ cm$^{-2} $ ($0.1-2.4$ keV), implying an X-ray efficiency of $L_x/\\dot{E}\\sim 0.5-5 \\times 10^{-3} (d/0.23 {kpc})^2$.

  15. Energetic X-ray-emitting jets from the fast-moving middle-aged pulsar B2224+65

    Science.gov (United States)

    Wang, Q. Daniel; Johnson, Seth

    2017-08-01

    We present evidence for jets from the nearby pulsar, B2224+65, based on three epochs of Chandra X-ray observations, separated by 6 years from each other. This relatively slow rotating pulsar is well known for its extreme velocity of proper motion and associated "Guitar"-shaped optical nebula in the opposite direction. The main jet-like X-ray-emitting feature is extremely narrow and significantly curved near the pulsar, but further away remains amazingly straight and is directed about 62 degrees away from the nebula, the X-ray emission of which is also detected. We find the consistent proper motions of the pulsar and the feature. The substructure of the feature varies among the epochs, while its spectrum is well characterized by a power law with a photon index of 1.2, is significantly harder than that of the pulsar, and remains remarkably consistent spatially and with the time. These results can be explained most intuitively by ballistic, relativistic, and probably magnetic field-dominated jets from the pulsar, similar to those from active galactic nuclei. Indeed, we also detect the extended X-ray emission from the putative counter-jet, albeit at a much fainter level and a much smaller scale. The luminosity of these features is 7e30 erg/s in the Chandra band, accounting for about 1% of the spin-down energy rate of the pulsar. Because of the flat nonthermal X-ray spectrum, this fraction increases with the photon energy. The total power required to generate the jets is likely greater than 10% of the rate. Much of the acceleration of the particles for the (synchrotron) X-ray emission to energies > 100 TeV likely occurs within the jets, probably via magnetic field re-connection. This jet scenario and the underlying physics can be further tested by a carefully designed X-ray monitoring of the substructure and by a measurement of the radio polarization of the pulsar, as its spin axis is expected to be aligned with the jets. We speculate that the energetic jet ejection

  16. CONTINUED NEUTRON STAR CRUST COOLING OF THE 11 Hz X-RAY PULSAR IN TERZAN 5: A CHALLENGE TO HEATING AND COOLING MODELS?

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R.; Altamirano, D.; Fridriksson, J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Brown, E. F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201 (United States); Homan, J. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Heinke, C. O.; Sivakoff, G. R. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Pooley, D., E-mail: degenaar@umich.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2013-09-20

    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11 week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ≅2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled.

  17. Theoretical modeling of Comptonized X-ray spectra of super-Eddington accretion flow: Origin of hard excess in ultraluminous X-ray sources

    Science.gov (United States)

    Kitaki, Takaaki; Mineshige, Shin; Ohsuga, Ken; Kawashima, Tomohisa

    2017-12-01

    X-ray continuum spectra of super-Eddington accretion flow are studied by means of Monte Carlo radiative transfer simulations based on the radiation hydrodynamic simulation data, in which both thermal- and bulk-Compton scatterings are taken into account. We compare the calculated spectra of accretion flow around black holes with masses of MBH = 10, 102, 103, and 104 M⊙ for a fixed mass injection rate (from the computational boundary at 103 rs) of 103 LEdd/c2 (with rs, LEdd, and c being the Schwarzschild radius, the Eddington luminosity, and the speed of light, respectively). The soft X-ray spectra exhibit mass dependence in accordance with the standard-disk relation; the maximum surface temperature is scaled as T ∝ M_{ BH}^{ -1/4}. The spectra in the hard X-ray band, by contrast with soft X-ray, look to be quite similar among different models, if we normalize the radiation luminosity by MBH. This reflects that the hard component is created by thermal- and bulk-Compton scatterings of soft photons originating from an accretion flow in the overheated and/or funnel regions, the temperatures of which have no dependence on mass. The hard X-ray spectra can be reproduced by a Wien spectrum with the temperature of T ˜ 3 keV accompanied by a hard excess at photon energy above several keV. The excess spectrum can be fitted well with a power law with a photon index of Γ ˜ 3. This feature is in good agreement with that of the recent NuSTAR observations of ULXs (ultra-luminous X-ray sources).

  18. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  19. Accretion geometry in the persistent Be/X-ray binary RXJ0440.9+4431

    Directory of Open Access Journals (Sweden)

    Ferrigno C.

    2014-01-01

    Full Text Available The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL. We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~ 2 × 1036 erg s−1. The luminosity dependency of the size of the black body emission region is found to be rBB ∝ LX0.39±0.02. This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the size of the black-body emitting hotspot is larger than the footprint of the accretion column. This phenomenon can be due to illumination of the surface by a growing column or by a a structure of the neutron star magnetic field more complicated than a simple dipole at least close to the surface.

  20. Soft x-ray properties of the binary millisecond pulsar J0437-4715

    Science.gov (United States)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1995-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0. 27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2-1.5, intervening column density NH = (5-8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1-2. 4 keV band. We also use a bright EUVE/ROSAT source only 4.3 deg from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = lES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, NH less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50-600 m and temperature (1.0-3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4-12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.

  1. X-ray properties of the mode-switching pulsar PSR B0943+10

    Science.gov (United States)

    Mereghetti, S.; Kuiper, L.; Tiengo, A.; Hessels, J.; Hermsen, W.; Stovall, K.; Possenti, A.; Rankin, J.; Esposito, P.; Turolla, R.; Mitra, D.; Wright, G.; Stappers, B.; Horneffer, A.; Oslowski, S.; Serylak, M.; Griessmeier, J.-M.; Rigoselli, M.

    2017-12-01

    The mode-switching pulsar PSR B0943+10 has been extensively studied in the radio band for many years and, more recently, it has been found to vary also in X-rays, with a flux anticorrelated with the radio emission. Here we review the results of long observations of PSR B0943+10 carried out with XMM-Newton and the LOFAR, LWA and Arecibo radio telescopes in 2014. These results support a scenario in which both unpulsed non-thermal emission, likely of magnetospheric origin, and pulsed thermal emission from a small polar cap (∼1500 m2) with a strong non-dipolar magnetic field (∼ 1014 G), are present during both radio modes and vary in intensity in a correlated way.

  2. High-energy X-rays from J174545.5-285829, the cannonball: a candidate pulsar wind nebula associated with SGR a east

    DEFF Research Database (Denmark)

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya

    2013-01-01

    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few-arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity ( v proj ~ 500 km s-1) pulsar candidate with a cometary...

  3. INTEGRAL detects a new outburst from the millisecond X-ray pulsar IGR J17511-3057

    DEFF Research Database (Denmark)

    Bozzo, E.; Kuulkers, E.; Bazzano, A.

    2015-01-01

    During the observations performed in the direction of the Galactic Bulge on 2015 March 23 from 02:49 to 07:26 (UTC), the instruments on-board INTEGRAL detected a new outburst from the millisecond X-ray pulsar IGR J17511-3057 (ATel #2196, #2197; Papitto et al., 2010, MNRAS, 407, 2575). The source ...

  4. SEXTANT: A Demonstration of X-ray Pulsar-Based Navigation Using NICER

    Science.gov (United States)

    Ray, Paul S.; Mitchell, Jason W; Winternitz, Luke M; Hasouneh, Monther A; Price, Samuel R; Valdez, Jennifer; Yu, Wayne H; Semper, Sean R; Wood, Kent S.; Wolff, Michael Thomas; Arzoumanian, Zaven; Litchford, Ronald J; Gendreau, Keith

    2014-08-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology-demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray pulsar-based navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. The SEXTANT XNAV demonstration will exploit the large collecting area (>1800 cm^2), low background (SEXTANT flight software will demonstrate real-time orbit determination with error less than 10 km in any direction, through measurements made over 2 weeks or less in the highly dynamic low-Earth ISS orbit. The completed technology demonstration will bring the XNAV concept and algorithms to a Technology Readiness Level of 8 and will inform the design and configuration of future practical XNAV implementations.

  5. Using `LIRA' To Quantify Diffuse Structure Around X-ray and Gamma-Ray Pulsars

    Science.gov (United States)

    Connors, Alanna; Stein, Nathan M.; van Dyk, David; Siemiginowska, Aneta; Kashyap, Vinay; Roberts, Mallory

    2009-09-01

    In this poster, we exploit several capabilities of a Low-count Image Restoration and Analysis (LIRA) package, to quantify details of faint ``scruffy'' emission, consistent with PWN around X-ray and gamma-ray pulsars. Our preliminary results show evidence for irregular structure on scales of 1''-10'' or less (i.e. Astro-Statistics Collaboration (CBASC) on analyzing high resolution, high energy Poisson images from X-ray and gamma-ray telescopes (see Stein et. al. these proceedings; also Esch et al 2004; and Connors and van Dyk in SCMAIV). LIRA fits: a ``Null'' or background model shape, times a scale factor; plus a flexible Multi-Scale (MS) model; folded though an instrument response (PSF, exposure). Embedding this in a fully Poisson probability structure allows us to map out uncertainties in our image analysis and reconstruction, via many MCMC samples. Specifically, for quantifying irregular nebular structure, we exploit the Multi-Scale model's smoothing parameters at each length-scale, as ``Summary Statistics'' (i.e low-dimensional summaries of the probability space). When distributions of these summary statistics, from analysis of simulated ``Null'' data sets, are compared with those from the actual Chandra data, we can set quantitative limits on structures at different length scales. Since one can do this for very low counts, one is able to analyze and compare structure in several energy slices. This work is supported by NSF and AISR funds.

  6. Tracing the accretion history of supermassive Black Holes through X-ray variability

    Science.gov (United States)

    Paolillo, M.; Papadakis, I.

    2017-10-01

    Using the 7Ms observations of the Chandra Deep Field South spanning more than 15 years, we study the variability properties of high-redshift AGNs. We show that distant supermassive Black Holes behave similarly to nearby sources, possessing a red noise PDS with a possible break at high frequencies. We test different models to describe the X-ray variability showing that the observations favour a dependence of the variability on both BH mass and accretion rate. Using this result we trace for the AGN accretion history up to z˜ 3 finding that it is consistent with values obtained by different tracers, suggesting an almost constant Eddington rate with a tentative slight increase at 2

  7. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  8. X-ray timing and spectral analysis of the old gamma-ray pulsar J1836+5925

    Science.gov (United States)

    Arumugasamy, Prakash; Pavlov, George; Blake, Joseph

    PSR J1836+5925 is a bright gamma-ray source with a long observational history in various energy bands. Its radio-quietness, and non-detection of X-ray pulsations in previous observations have hindered a detailed analysis of this source. At the characteristic age of 1.83 Myr, it is one of the oldest non-recycled gamma-ray pulsars known, making it a useful object for understanding evolution of high-energy emission from rotation powered pulsars. In our 80 ks XMM-Newton observation of this pulsar, we detected unambiguous 5.77 Hz pulsations, consistent with its known gamma-ray ephemeris and assessed a low X-ray pulsed fraction of ˜ 0.34. In the 0.15 - 10 keV phase-integrated spectrum, non-thermal emission with the photon index Gamma ≈ 1.8 ± 0.2 dominates above 0.7 keV, whereas at lower energies, the spectrum requires a dominant kT = 63 ± 5 eV blackbody or, alternatively, a 24 ± 3 eV neutron star atmosphere model. We will also present the phase-resolved analysis of the pulsar spectrum and phase-matched X-ray and gamma-ray pulse profiles. Finally, we will discuss the implications of our results for thermal and magnetospheric emission of rotation powered pulsars.

  9. A Benchmark Experiment for Photoionized Plasma Emission from Accretion-Powered X-ray Sources

    Science.gov (United States)

    Loisel, G.; Bailey, J.; Nagayama, T.; Hansen, S.; Rochau, G.; Liedahl, D.; Fontes, C.; Kallman, T.; Mancini, R.

    2017-10-01

    Accretion-powered emission from X-ray binaries or black-hole accretion in Active Galactic Nuclei is a powerful diagnostic for their behavior and structure. Interpretation of x-ray emission from these objects requires a spectral synthesis model for photoionized plasma. Models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. At the Z facility, we have measured simultaneously emission and absorption from a photoionized silicon plasma suitable to benchmark photoionization and spectrum formation models with +/-5% reproducibility and E/dE >2500 spectral resolution. Plasma density, temperature, and charge state distribution are determined with absorption spectroscopy. Self-emission measured at adjustable column densities tests radiation transport effects. Observation of 14 transitions in He-like silicon will help understand population mechanisms in a photoionized plasma. First observation of radiative recombination continuum in a photoionized plasma will be presented. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  10. The Comptonization of accretion disc X-ray emission: consequences for X-ray reflection and the geometry of AGN coronae

    Science.gov (United States)

    Wilkins, D. R.; Gallo, L. C.

    2015-03-01

    We consider the Comptonization of the photons that make up the relativistically blurred reflection that is commonly detected from the accretion discs of active galactic nuclei by the coronae of energetic particles believed to give rise to the powerful X-ray continua by the inverse-Compton scattering of thermal seed photons from the disc. Recent measurements of the emissivity profiles of accretion discs as well as reverberation time lags between the primary X-ray continuum and the reflection suggest that this corona is situated at a low height above the disc and extends radially, tens of gravitational radii over the disc surface, hence should also Compton scatter the reflected X-rays. We find that the detection of blurred reflection from as close in as the innermost stable circular orbits (ISCOs) of maximally rotating black holes is consistent with such coronae, but requires that the corona be patchy, consisting perhaps of a number of isolated flares throughout the region. Considering only the requirement that it be possible to detect reflection from the ISCO, we find that at any given moment, the covering fraction of the inner part of the accretion disc by the corona needs to be less than 85 per cent, although the detection of `reflection-dominated' spectra in which the total reflected flux exceeds that seen in the continuum requires covering fractions as low as 50 or 25 per cent.

  11. Centrally Concentrated X-Ray Radiation from an Extended Accreting Corona in Active Galactic Nuclei

    Science.gov (United States)

    Liu, B. F.; Taam, Ronald E.; Qiao, Erlin; Yuan, Weimin

    2017-10-01

    The X-ray emission from bright active galactic nuclei (AGNs) is believed to originate in a hot corona lying above a cold, geometrically thin accretion disk. A highly concentrated corona located within ˜10 gravitational radii above the black hole is inferred from observations. Based on the accretion of interstellar medium/wind, a disk corona model has been proposed in which the corona is well coupled to the disk by radiation, thermal conduction, as well as by mass exchange. Such a model avoids artificial energy input to the corona and has been used to interpret the spectral features observed in AGN. In this work, it is shown that the bulk emission size of the corona is very small for the extended accretion flow in our model. More than 80% of the hard X-ray power is emitted from a small region confined within 10 Schwarzschild radii around a non-spinning black hole, which is expected to be even smaller accordingly for a spinning black hole. Here, the corona emission is more extended at higher Eddington ratios. The compactness parameter of the corona, l=\\tfrac{L}{R}\\tfrac{{σ }{{T}}}{{m}{{e}}{c}3}, is shown to be in the range of 1-33 for Eddington ratios of 0.02-0.1. Combined with the electron temperature in the corona, this indicates that electron-positron pair production is not dominant in this regime. A positive relation between the compactness parameter and photon index is also predicted. By comparing the above model predictions with observational features, we find that the model is in agreement with observations.

  12. Evidence from Quasi-Periodic Oscillations for a Millisecond Pulsar in the Low Mass X-Ray Binary 4U 0614+091

    Science.gov (United States)

    Ford, E.; Kaaret, P.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We have detected quasi-periodic oscillations (QPOs) near 1 kHz from the low mass X-ray binary 4U 0614+091 in observations with RXTE. The observations span several months and sample the source over a large range of X-ray luminosity. In every interval QPOs are present above 400 Hz with fractional RMS amplitudes from 3 to 12% over the full PCA band. At high count rates, two high frequency QPOs are detected simultaneously. The difference of their frequency centroids is consistent with a constant value of 323 Hz in all observations. During one interval a third signal is detected at 328 +/- 2 Hz. This suggests the system has a stable 'clock' which is most likely the neutron star with spin period 3.1 msec. Thus, our observations of 4U 0614+091 and those of 4U 1728-34 provide the first evidence for millisecond pulsars within low-mass X-ray binary systems and reveal the 'missing-link' between millisecond radiopulsars and the late stages of binary evolution in low mass X-ray binaries. The constant difference of the high frequency QPOs sug,,ests a beat-frequency interpretation. In this model, the high frequency QPO is associated with the Keplerian frequency of the inner accretion disk and the lower frequency QPO is a 'beat' between the differential rotation frequency of the inner disk and the spinning neutron star. Assuming the high frequency QPO is a Keplerian orbital frequency for the accretion disk, we find a maximum mass of 1.9 solar mass and a maximum radius of 17 km for the neutron star.

  13. Simulations of the magnetospheres of accreting millisecond pulsars

    Science.gov (United States)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2017-08-01

    Accreting pulsars power relativistic jets and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field, shaped by its interaction with the surrounding accretion disc. Here, we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The magnetic field is also evolved inside the disc, which is a defined volume with a specified velocity field and conductivity profile, found using an α-disc model. We study a range of disc α-parameters, thicknesses, magnetic Prandtl numbers and inner truncation radii. We find that a large fraction of the magnetic flux in the pulsar's closed zone is opened by the intrusion of the disc, leading to an enhancement of the power extracted by the pulsar wind and the spin-down torque applied to the pulsar. In our simulations, most of the spin-down contribution to the stellar torque acts on open field lines. The efficiency of field-line opening is high in the simulations' long-term quasi-steady states, which implies that a millisecond pulsar's electromagnetic wind could be strong enough to power the observed neutron-star radio jets, and may significantly affect the pulsar's spin evolution.

  14. The rotation-powered nature of some soft gamma-ray repeaters and anomalous X-ray pulsars

    Science.gov (United States)

    Coelho, Jaziel G.; Cáceres, D. L.; de Lima, R. C. R.; Malheiro, M.; Rueda, J. A.; Ruffini, R.

    2017-03-01

    Context. Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slow rotating isolated pulsars whose energy reservoir is still matter of debate. Adopting neutron star (NS) fiducial parameters; mass M = 1.4 M⊙, radius R = 10 km, and moment of inertia, I = 1045 g cm2, the rotational energy loss, Ėrot, is lower than the observed luminosity (dominated by the X-rays) LX for many of the sources. Aims: We investigate the possibility that some members of this family could be canonical rotation-powered pulsars using realistic NS structure parameters instead of fiducial values. Methods: We compute the NS mass, radius, moment of inertia and angular momentum from numerical integration of the axisymmetric general relativistic equations of equilibrium. We then compute the entire range of allowed values of the rotational energy loss, Ėrot, for the observed values of rotation period P and spin-down rate Ṗ. We also estimate the surface magnetic field using a general relativistic model of a rotating magnetic dipole. Results: We show that realistic NS parameters lowers the estimated value of the magnetic field and radiation efficiency, LX/Ėrot, with respect to estimates based on fiducial NS parameters. We show that nine SGRs/AXPs can be described as canonical pulsars driven by the NS rotational energy, for LX computed in the soft (2-10 keV) X-ray band. We compute the range of NS masses for which LX/Ėrotpowered NSs. This additional hard X-ray component dominates over the soft one leading to LX/Ėrot > 1 in two of them. Conclusions: We show that 9 SGRs/AXPs can be rotation-powered NSs if we analyze their X-ray luminosity in the soft 2-10 keV band. Interestingly, four of them show radio emission and six have been associated with supernova remnants (including Swift J1834.9-0846 the first SGR observed with a surrounding wind nebula). These observations give additional support to our results of a natural explanation of these sources in terms of ordinary pulsars

  15. Swift Detects a New Outburst of the Millisecond Accreting Pulsar SAX J1808.4-3658

    Science.gov (United States)

    Markwardt, C. B.; Palmer, D. M.; Barthelmy, S. D.; Gehrels, N.; Hoversten, E. A.; Krimm, H. A.; Sbarufatti, B.; Siegel, M. H.; Zhang, B.-B.

    2011-11-01

    We report the detection of a new outburst of the accreting millisecond X-ray pulsar, SAX J1808.4-3658 with the Swift Burst Alert Telescope (BAT). This source is a 401 Hz pulsar in a binary orbit of period 2.01 hr. It has recurrent outbursts every 2-3 years, the last one occurring in October, 2008. At 02:55:12 UT, BAT triggered and located a source (trigger=506961). The BAT on-board calculated location is RA, Dec 272.114, -36.991 which is, RA(J2000) = 18h 08m 27s, Dec(J2000) = -36d 59' 26", with an uncertainty of 3 arcmin (radius, 90% containment, including systematic uncertainty).

  16. The Slow Orbital Evolution of the Accreting Millisecond Pulsar IGR J0029+5934

    Science.gov (United States)

    Patruno, Alessandro

    2017-04-01

    The accreting millisecond pulsars IGR J00291+5934 and SAX J1808.4-3658 are two compact binaries with very similar orbital parameters. The latter has been observed to evolve on a very short timescale of ˜70 Myr, which is more than an order of magnitude shorter than expected. There is an ongoing debate on the possibility that the pulsar spin-down power ablates the companion, generating large amounts of mass-loss in the system. Therefore it is interesting to study whether IGR J00291+5934 does show a similar behavior as its twin system SAX J1808.4-3658. In this work we present the first constraints on the orbital period derivative of IGR J00291+5934. By using XMM-Newton data recorded during the 2015 outburst and adding the previous results of the 2004 and 2008 outbursts, we are able to measure a 90% confidence level allowed range of -5× {10}-13pulsar wind and X-ray/gamma-ray radiation for the two pulsars, with IGR J00291+5934 requiring an extraordinarily low efficiency of less than ˜5% to explain the observations. We thus conclude that the pulsar wind ablation model is unlikely to be an accurate description of the mechanism driving the orbital evolution of the two systems.

  17. A Giant Glitch in the Energetic 69 Millisecond X-Ray Pulsar AXS J161730-505505.

    Science.gov (United States)

    Torii; Gotthelf; Vasisht; Dotani; Kinugasa

    2000-05-01

    We present new results on the recently discovered 69 ms X-ray pulsar AXS J161730-505505, the sixth youngest example of a rotation-powered pulsar. We have undertaken a comprehensive X-ray-observing campaign of AXS J161730-505505 with the ASCA, BeppoSAX, and RXTE observatories and follow its long-term spin-down history between 1989 and 1999 using these observations and archival Ginga and ASCA data sets. The spin-down is not simply described by a linear function as originally thought, but instead we find evidence of a giant glitch (DeltaP&solm0;P greater, similar10-6) between 1993 August and 1997 September, perhaps the largest yet observed from a young pulsar. The glitch is well described by steps in P and P&d2; accompanied by a persistent P&d3; similar to those seen in the Vela pulsar. The pulse profile of AXS J161730-505505 presents a single asymmetric peak that is maintained over all observation epochs. The energy spectrum is also steady over time, characterized by a highly absorbed power law with a photon index Gamma=1.4+/-0.2, consistent with that found for other young rotation powered pulsars.

  18. Absolute navigation for Mars final approach using relative measurements of X-ray pulsars and Mars orbiter

    Science.gov (United States)

    Wang, Shuo; Cui, Pingyuan; Gao, Ai; Yu, Zhengshi; Cao, Menglong

    2017-09-01

    To achieve a precise Mars landing, the autonomous navigation performance of Mars final approach phase need to be further improved. In this paper, an absolute navigation scheme for Mars finial approach phase using relative measurements of X-ray pulsars and Mars orbiter is proposed. By introducing the difference of time of arrival (DTOA) measurement, the states of approach spacecraft and orbiter are estimated at the same time. Compared to the navigation scheme based on the absolute measurements of pulsars, the error sources such as planetary ephemeris error, pulsar parameter uncertainties, and radio beacon position deviations, are correspondingly reduced or eliminated. Through observability analysis, the method of absolute navigation using relative information is proved observable under the condition of reasonable pulsars selection. The design optimization of beacon configuration based on the Fisher Information Matrix (FIM) is also carried out for achieving a better observability. Two navigation schemes respectively based on the absolute/relative measurements of X-ray pulsars are compared by numerical simulations, and the navigation performance is assessed and the feasibility of the proposed scheme is verified.

  19. IDENTIFICATION OF THE HIGH-ENERGY GAMMA-RAY SOURCE 3FGL J1544.6–1125 AS A TRANSITIONAL MILLISECOND PULSAR BINARY IN AN ACCRETING STATE

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko; Halpern, Jules P. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2015-04-20

    We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4–112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6–1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ∼10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270–4859, which are also associated with γ-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4–112820 and 3FGL J1544.6–1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4–112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.

  20. Detailed Physical Modeling Reveals the Magnetar Nature of a Transient Anomalous X-ray Pulsar

    Science.gov (United States)

    Guever, T.; Oezel, F.; Goegues, E.; Kouveliotou, C.

    2007-01-01

    Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.

  1. The Magnetar Nature and the Outburst Mechanism of a Transient Anomalous X-ray Pulsar

    Science.gov (United States)

    Guver, Tolga; Ozel, Feryal; Gogus, Ersin; Kouveliotou, Chryssa

    2007-01-01

    Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.

  2. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  3. Discovery of the Accretion-Powered Millisecond Pulsar SWIFT 51756.9-2508 with a Low-Mass Companion

    Science.gov (United States)

    Krimm, H.A.; Markwardt, C.B.; Deloye, C.J.; Romano, P.; Chakrabarty, S.; Campana. S.; Cummings, J.C.; Galloway, D.K.; Gehrels, N.; Hartman, J.M.; hide

    2007-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar: SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 Solar Mass, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 Solar Mass (95% confidence level). Such a low mass is inconsistent with brown dwarf models. and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts. dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approx. 13 days and no earlier outbursts were found in archival data.

  4. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Directory of Open Access Journals (Sweden)

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  5. Suzaku observation of the eclipsing high mass X-ray binary pulsar ...

    Indian Academy of Sciences (India)

    Jincy Devasia

    2018-02-09

    Feb 9, 2018 ... The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments. Keywords. X-ray: neutron stars—X-ray binaries: individual (XTE J1855-026). 1. Introduction.

  6. Looking into the Theory of Pulsar Accretion: The Case of XTE J1946+274

    Science.gov (United States)

    Marcu, Diana Monica; Pottschmidt, Katja; Kühnel, Matthias; Wolff, Michael Thomas; Becker, Peter A.; Müller, Sebastian; Hemphill, Paul Britton; Caballero, Isabel; Finger, Mark H.; Jenke, Peter; Wilson-Hodge, Colleen; Fuerst, Felix; Grinberg, Victoria; Kreykenbohm, Ingo; Klochkov, Dmitry; Rothschild, Richard E.; Terada, Yukikatsu; Enoto, Teruaki; Iwakiri, Wataru; Nakajima, Motoki; Wilms, Joern

    2014-08-01

    XTE J1946+274 is a transient accreting pulsar with a Be companion and a Cyclotron Resonance Scattering Feature (CRSF). It has been observed during several outbursts, with multiple instruments, and over a large range of luminosities. We extend previous studies to low flux using a Suzaku observation from the end of an outburst. This study focuses on the relationship between the cyclotron line energy and X-ray luminosity, which is believed to be linked to the physical processes occurring in the CRSF forming region. The physics of pulsar accretion, i.e., the process of plasma flow onto the neutron star surface, can be further constrained from its spectral properties. To this end, we discuss a new implementation of the physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435). The model comprises Comptonized black body, bremsstrahlung, and cyclotron emission. We discuss preliminary results of applying the new tool to the test case of XTE J1946+274. We are working towards making this pulsar continuum model available in Xspec.

  7. Nustar and Suzaku X-Ray Spectroscopy Of Ngc 4151: Evidence For Reflection From The Inner Accretion Disk

    DEFF Research Database (Denmark)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.

    2015-01-01

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN......) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity...... profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which...

  8. Propagating mass accretion rate fluctuations in black hole X-ray binaries: quantitative tests

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-10-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of Black Hole X-ray Binaries (BHBs). However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and QPO. Because of propagation, the emission from different regions of the disc/hot flow geometry is correlated. In our study we applied the model PROPFLUC on different BHBs (including XTE J1550-564 and Cygnus X-1) in different spectral states, fitting jointly the power spectra in two energy bands and the cross-spectrum between these two bands. This represents the first study to utilize quantitive fitting of a physical model simultaneously to observed power and cross-spectra. For the case of XTE J1550-564, which displays a strong QPO, we found quantitative and qualitative discrepancies between model predictions and data, whereas we find a good fit for the Cygnus X-1 data, which does not display a QPO. We conclude that the discrepancies are generic to the propagating fluctuations paradigm, and may be related to the mechanism originating the QPO.

  9. X-Ray Analysis of the Proper Motion and Pulsar Wind Nebula for PSR J1741-2054

    Science.gov (United States)

    Auchettl, Katie; Slane, Patrick; Romani, Roger W.; Posselt, Bettina; Pavlov, George G.; Kargaltsev, Oleg; Ng, C-Y.; Temim, Tea; Weisskopf, Martin C.; Bykov, Andrei; hide

    2015-01-01

    We obtained six observations of PSR J1741-2054 using the Chandra ACIS-S detector totaling approx.300 ks. By registering this new epoch of observations to an archival observation taken 3.2 yr earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at micron = 109 +/- 10 mas yr(exp. -1) in a direction consistent with the symmetry axis of the observed H(alpha) nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index gamma = 2.68 +/- 0.04, plus a blackbody with an emission radius of (4.5(+3.2/-2.5))d(0.38) km, for a DM-estimated distance of 0.38d(0.38) kpc and a temperature of 61.7 +/- 3.0 eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of gamma = 1.67 +/- 0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.

  10. The influence of the positronium photoionization rate on the polar cap X-ray luminosity of radio pulsars

    Science.gov (United States)

    Barsukov, D. P.; Vorontsov, M. V.

    2017-12-01

    The influence of the positronium photoionization rate on the polar cap X-ray luminosity of old radio pulsars is considered. It is assumed that the polar cap is heated only by reverse positrons accelerated in the pulsar diode. It is supposed that the pulsar diode is in a stationary state with the lower plate located near the star surface (polar cap model) occupies all the pulsar tube cross section and operates in the regime of steady space charge by the limited electron flow. The influence of a small-scale magnetic field on the electric field inside the pulsar diode is taken into account. The reverse positron current is calculated in the framework of two models: rapid and gradual screening. To calculate the production rate of electron-positron pairs we take into account only the curvature radiation of primary electrons and its absorption in the magnetic field. It is assumed that some fraction of electron-positron pairs is created in a bound state (positronium). Later, such positroniums are photoionized by thermal photons from the polar cap.

  11. X-Ray and Optical Study of the Gamma-ray Source 3FGL J0838.8-2829: Identification of a Candidate Millisecond Pulsar Binary and an Asynchronous Polar

    Science.gov (United States)

    Halpern, Jules P.; Bogdanov, Slavko; Thorstensen, John R.

    2017-04-01

    We observed the field of the Fermi source 3FGL J0838.8-2829 in optical and X-rays, initially motivated by the cataclysmic variable (CV) 1RXS J083842.1-282723 that lies within its error circle. Several X-ray sources first classified as CVs have turned out to be γ-ray emitting millisecond pulsars (MSPs). We find that 1RXS J083842.1-282723 is in fact an unusual CV, a stream-fed asynchronous polar in which accretion switches between magnetic poles (that are ≈120° apart) when the accretion rate is at minimum. High-amplitude X-ray modulation at periods of 94.8 ± 0.4 minutes and 14.7 ± 1.2 hr are seen. The former appears to be the spin period, while the latter is inferred to be one-third of the beat period between the spin and the orbit, implying an orbital period of 98.3 ± 0.5 minutes. We also measure an optical emission-line spectroscopic period of 98.413 ± 0.004 minutes, which is consistent with the orbital period inferred from the X-rays. In any case, this system is unlikely to be the γ-ray source. Instead, we find a fainter variable X-ray and optical source, XMMU J083850.38-282756.8, that is modulated on a timescale of hours in addition to exhibiting occasional sharp flares. It resembles the black widow or redback pulsars that have been discovered as counterparts of Fermi sources, with the optical modulation due to heating of the photosphere of a low-mass companion star by, in this case, an as-yet undetected MSP. We propose XMMU J083850.38-282756.8 as the MSP counterpart of 3FGL J0838.8-2829.

  12. Quasi-periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Science.gov (United States)

    Bult, Peter; van Doesburgh, Marieke; van der Klis, Michiel

    2017-08-01

    We introduce a new method for analyzing the aperiodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain light curve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and aperiodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton. We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  13. Quasi-periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Energy Technology Data Exchange (ETDEWEB)

    Bult, Peter [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Doesburgh, Marieke van; Klis, Michiel van der [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2017-08-20

    We introduce a new method for analyzing the aperiodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain light curve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and aperiodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton . We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  14. $\\gamma$-ray and X-ray luminosities from spin-powered pulsars in the full polar cap cascade model

    CERN Document Server

    Zhang, B; Zhang, Bing; Harding, Alice K.

    2000-01-01

    We modify the conventional curvature radiation (inverse Compton scattering) + synchrotron radiation polar cap cascade model by including the inverse Compton scattering of the higher generation pairs. Within the framework of the space-charge-limited-flow acceleration model with frame-dragging proposed by Harding & Muslimov (1998), such a full polar cap cascade scenario can well reproduce the $L_\\gamma \\propto (L_{\\rm sd})^{1/2}$ and the $L_x \\sim 10^{-3} L_{\\rm sd}$ dependences observed from the known spin-powered pulsars. According to this model, the ``pulsed'' soft ROSAT-band X-rays from most of the millisecond pulsars might be of thermal origin, if there are no strong multipole magnetic components near their surfaces.

  15. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Science.gov (United States)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  16. X-Ray Measurement of the Spin-down of Calvera: A Radio- and Gamma-Ray-Quiet Pulsar

    Science.gov (United States)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V.

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is \\dot{P}=(3.19+/- \\,0.08)\\times 10^{-15}, which corresponds to spin-down luminosity \\dot{E}=6.1\\times 10^{35} erg s-1, characteristic age \\tau _c\\equiv P/2\\dot{P}=2.9\\times 10^5 yr, and surface dipole magnetic field strength Bs = 4.4 × 1011 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d pulsar of comparable \\dot{E}. Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  17. Direct formation of millisecond pulsars from rotationally delayed accretion-induced collapse of massive white dwarfs

    Science.gov (United States)

    Freire, Paulo C. C.; Tauris, Thomas M.

    2014-02-01

    Millisecond pulsars (MSPs) are believed to be old neutron stars, formed via Type Ib/c core-collapse supernovae, which have subsequently been spun up to high rotation rates via accretion from a companion star in a highly circularized low-mass X-ray binary. The recent discoveries of Galactic field binary MSPs in eccentric orbits, and mass functions compatible with that expected for helium white dwarf companions, PSR J2234+06 and PSR J1946+3417, therefore challenge this picture. Here, we present a hypothesis for producing this new class of systems, where the MSPs are formed directly from a rotationally delayed accretion-induced collapse of a super-Chandrasekhar mass white dwarf. We compute the orbital properties of the MSPs formed in such events and demonstrate that our hypothesis can reproduce the observed eccentricities, masses and orbital periods of the white dwarfs, as well as forecasting the pulsar masses and velocities. Finally, we compare this hypothesis to a triple-star scenario.

  18. Accreting transition discs with large cavities created by X-ray photoevaporation in C and O depleted discs

    Science.gov (United States)

    Ercolano, Barbara; Weber, Michael L.; Owen, James E.

    2018-01-01

    Circumstellar discs with large dust depleted cavities and vigorous accretion on to the central star are often considered signposts for (multiple) giant planet formation. In this Letter, we show that X-ray photoevaporation operating in discs with modest (factors 3-10) gas-phase depletion of carbon and oxygen at large radii ( > 15 au) yields the inner radius and accretion rates for most of the observed discs, without the need to invoke giant planet formation. We present one-dimensional viscous evolution models of discs affected by X-ray photoevaporation assuming moderate gas-phase depletion of carbon and oxygen, well within the range reported by recent observations. Our models use a simplified prescription for scaling the X-ray photoevaporation rates and profiles at different metallicity, and our quantitative result depends on this scaling. While more rigorous hydrodynamical modelling of mass-loss profiles at low metallicities is required to constrain the observational parameter space that can be explained by our models, the general conclusion that metal sequestering at large radii may be responsible for the observed diversity of transition discs is shown to be robust. Gap opening by giant planet formation may still be responsible for a number of observed transition discs with large cavities and very high accretion rate.

  19. Truncation of the Accretion Disk at One-third of the Eddington Limit in the Neutron Star Low-mass X-Ray Binary Aquila X-1

    Science.gov (United States)

    Ludlam, R. M.; Miller, J. M.; Degenaar, N.; Sanna, A.; Cackett, E. M.; Altamirano, D.; King, A. L.

    2017-10-01

    We perform a reflection study on a new observation of the neutron star (NS) low-mass X-ray binary Aquila X-1 taken with NuSTAR during the 2016 August outburst and compare with the 2014 July outburst. The source was captured at ˜32% L Edd, which is over four times more luminous than the previous observation during the 2014 outburst. Both observations exhibit a broadened Fe line profile. Through reflection modeling, we determine that the inner disk is truncated {R}{in,2016}={11}-1+2 {R}g (where R g = GM/c 2) and {R}{in,2014}=14+/- 2 {R}g (errors quoted at the 90% confidence level). Fiducial NS parameters (M NS = 1.4 M ⊙, R NS = 10 km) give a stellar radius of R NS = 4.85 R g ; our measurements rule out a disk extending to that radius at more than the 6σ level of confidence. We are able to place an upper limit on the magnetic field strength of B ≤ 3.0-4.5 × 109 G at the magnetic poles, assuming that the disk is truncated at the magnetospheric radius in each case. This is consistent with previous estimates of the magnetic field strength for Aquila X-1. However, if the magnetosphere is not responsible for truncating the disk prior to the NS surface, we estimate a boundary layer with a maximum extent of {R}{BL,2016}˜ 10 {R}g and {R}{BL,2014}˜ 6 {R}g. Additionally, we compare the magnetic field strength inferred from the Fe line profile of Aquila X-1 and other NS low-mass X-ray binaries to known accreting millisecond X-ray pulsars.

  20. Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines

    Science.gov (United States)

    Colombo, S.; Orlando, S.; Peres, G.; Argiroffi, C.; Reale, F.

    2016-10-01

    Context. The accretion process in classical T Tauri stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV-band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims: We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams. We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods: We modeled the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through two-dimensional (2D) magnetohydrodynamic (MHD) simulations. We explored different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 Å) and O VIII (18.97 Å) line profiles. Results: The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈ 50 km s-1 and the other broader and consisting of subcomponents with redshift to speed in the range 200-400 km s-1. The profiles of O VIII lines appear more symmetric than C IV and are redshifted to speed ≈ 150 km s-1. Conclusions: Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation. Movies are available at http://www.aanda.org

  1. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  2. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10...... range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle...

  3. Modeling the effect of small-scale magnetic turbulence on the X-ray properties of Pulsar Wind Nebulae

    Science.gov (United States)

    Bucciantini, N.; Bandiera, R.; Olmi, B.; Del Zanna, L.

    2017-10-01

    Pulsar Wind Nebulae (PWNe) constitute an ideal astrophysical environment to test our current understanding of relativistic plasma processes. It is well known that magnetic fields play a crucial role in their dynamics and emission properties. At present, one of the main issues concerns the level of magnetic turbulence present in these systems, which in the absence of space resolved X-ray polarization measures cannot be directly constrained. In this work, we investigate, for the first time using simulated synchrotron maps, the effect of a small-scale fluctuating component of the magnetic field on the emission properties in X-ray. We illustrate how to include the effects of a turbulent component in standard emission models for PWNe and which consequences are expected in terms of net emissivity and depolarization, showing that the X-ray surface brightness maps can provide already some rough constraints. We then apply our analysis to the Crab and Vela nebulae and by comparing our model with Chandra and Vela data, we found that the typical energies in the turbulent component of the magnetic field are about 1.5-3 times the one in the ordered field.

  4. CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    Science.gov (United States)

    Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.

    2017-06-01

    Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are

  5. Measurement of Hard Lags and Coherences in the X-Ray Flux of Accreting Neutron Stars and Comparison with Accreting Black Holes

    OpenAIRE

    Ford, Eric C.; Van Der Klis, Michiel; Mendez, Mariano; van Paradijs, Jan; Kaaret, Philip

    1998-01-01

    Using the Rossi X-ray Timing Explorer we have measured lags of the 9 to 33 keV photons relative to the 2 to 9 keV photons in the timing noise between 0.01 and 100 Hz in the accreting neutron stars 4U 0614+091 and 4U 1705-44. We performed similar measurements on the accreting black hole candidates Cyg X-1 and GX 339-4 as a comparison. During the observations these sources were all in low (hard) states. We find phase lags of between 0.03 and 0.2 radians in all these sources, with a variation in...

  6. Probing neutron star physics using accreting neutron stars

    NARCIS (Netherlands)

    Patruno, A.

    2010-01-01

    We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars

  7. Science with a Thomson X-ray Polarimeter

    Science.gov (United States)

    Paul, Biswajit; R, Gopala Krishna M.; Puthiya Veetil, Rishin; Duraichelvan, R.; Maitra, Chandreyee

    We will describe the design, specifications, sensitivity, and development status of a Thomson X-ray polarimeter for a small satellite mission. The prime objectives of this instrument include both pulse phase averaged and pulse phase resolved polarisation measurement in accretion powered pulsars, accreting black holes in their hard and soft states, rotation powered pulsars and magnetars etc. This instrument will provide unprecedented opportunity for exploring X-ray polarisation in enregy range of 5-30 keV, in more than 50 sources with a minimum detectable linear polarisation degree of 2-3%.

  8. Probing stellar winds and accretion physics in high-mass X-ray binaries and ultra-luminous X-ray sources with LOFT

    OpenAIRE

    Orlandini, M.; Doroshenko, V.; Zampieri, L.; Bozzo, E.; Baykal, A.; Blay, P.; Chernyakova, M.; Corbet, R.; D'Aì, A.; Enoto, T.; Ferrigno, C.; Finger, M.; Klochkov, D.; Kreykenbohm, I.; Inam, S. C.

    2015-01-01

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of high-mass X-ray binaries and ultra-luminous X-ray sources. For a summary, we refer to the paper.

  9. What can X-ray polarization tell us about accreting black hole systems?

    Science.gov (United States)

    Marin, F.

    2017-10-01

    With the launch of the Imaging X-ray Polarimetry Explorer (IXPE) by the year 2020/21, X-ray polarimetry will open a new window in astrophysics. Dedicated to high energy sources with sufficient X-ray luminosity, IXPE will target both stellar-mass black holes in binary systems and supermassive black holes in active galaxies. In this talk, I intend to review the main questions to be solved or constrained by X-ray polarimetry. I will show how polarimetric observations in the 2-8 keV band will measure the spin, disk inclination and mass of the black hole. Additional information about the surrounding medium, such as the amount of circumnuclear gas in active galactic nuclei (AGN) or the composition of outflowing polar winds will be derived simultaneously. By probing the iron Kalpha line band, X-ray polarimetry will also constrain the importance of General Relativity effects that are supposed to shape the spectra of pole-on objects. Finally, I will introduce how IXPE will map the Galactic Center in search of past activity.

  10. NUSTAR and Suzaku x-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    Energy Technology Data Exchange (ETDEWEB)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.

    2015-06-15

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin $a\\gt 0.9$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  11. ELECTROMAGNETIC SPINDOWN OF A TRANSIENT ACCRETING MILLISECOND PULSAR DURING QUIESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Melatos, A.; Mastrano, A., E-mail: amelatos@unimelb.edu.au, E-mail: alpham@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2016-02-10

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751–305, SAX J1808.4–3658, and Swift J1756.9–2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  12. Probing the Accretion Induced Collapse of White Dwarfs in the Binary Millisecond Pulsars Population

    Science.gov (United States)

    Taani, Ali

    The recycling process suggested that low-mass X-ray binaries (LMXBs) could evolve into binary Millisecond Pulsars (MSPs). I will discuss another possible channel involving the Accretion Induced Collapse (AIC) of a white dwarf (WD) in binaries. I will investigate the progenitors of MSPs with a distribution of long orbital periods, to show the link between WD binaries and long orbits for some binary MSPs. For this task, I present a model that attempts to turn binary MSPs into wide binaries (P_orb > 2 d) with high eccentricities (e > 0.1). in the Galactic disk, since the AIC process in a close binary will impart a kick velocity caused by asymmetric collapse to the thus formed neutron star, and the binding energy plus the mass loss (0.2~Msun) not expected to exceed a few tens of km/s. An appropriate kick can disrupt the binary system and result in the birth of isolated MSPs. Otherwise, the binary survives and an eccentric binary MSP is formed. The circularity of the orbit implies that the companion is a WD. In addition AIC can retain pulsars in globular clusters due to the small momentum kick expected to be associated with the implosion.

  13. Synchronous X-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere

    NARCIS (Netherlands)

    Hermsen, W.; Hessels, J.W.; Kuiper, L.; van Leeuwen, J.; Mitra, D.; de Plaa, J.; Bentum, Marinus Jan; Rankin, J.M.; Stappers, B.W.; Wright, G.A.E.; Basu, R.; Alexov, A.; Coenen, T.; Griessmeier, J.M.; Hassall, T.E.; Karastergiou, A.; Keane, E.; Kondratiev, V.I.; Kramer, M.; Kuniyoshi, M.; Noutsos, A.; Serylak, M.; Pilia, M.; Sobey, C.; Weltevrede, P.; Zagkouris, K.; Asgekar, A.; Avruch, I.M.; Batejat, F.; Bell, M.E.; Bell, M.R.; Bernardi, G.; Best, P.; Birzan, L.; Bonfede, A.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H.R.; Ciardi, B.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M.A.; de Gasperin, F.; de Geus, E.; Gunst, A.W.; Heald, G.; Hoeft, M.; Homeffer, A.; Iabobelli, M.; Kuper, G.; Maat, P.; Macario, G.; Markoff, S.; McKean, J.P.; Mevius, M.; Miller-Jones, J.C.A; Morganti, R.; Munk, H.; Orrú, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V.N.; Pizzo, R.; Polatidis, A.G.; Rawlings, S.; Reich, W.; Röttgering, H.; Scaife, A.M.M.; Schoenmakers, A.; Shulevski, A.; Sluman, J.; Steinmetz, M.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van de Brink, R.H.; van Weeren, R.J.; Weijers, R.A.M.J.; Wise, M.W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-01-01

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the

  14. Synchronous X-ray and Radio Mode Switches : A Rapid Global Transformation of the Pulsar Magnetosphere

    NARCIS (Netherlands)

    Hermsen, W.; Hessels, J. W. T.; Kuiper, L.; van Leeuwen, J.; Mitra, D.; de Plaa, J.; Rankin, J. M.; Stappers, B. W.; Wright, G. A. E.; Basu, R.; Alexov, A.; Coenen, T.; Griessmeier, J. -M.; Hassall, T. E.; Karastergiou, A.; Keane, E.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Noutsos, A.; Serylak, M.; Pilia, M.; Sobey, C.; Weltevrede, P.; Zagkouris, K.; Asgekar, A.; Avruch, I. M.; Batejat, F.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brueggen, M.; Butcher, H. R.; Ciardi, B.; Duscha, S.; Eisloeffel, J.; Falcke, H.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; de Gasperin, F.; de Geus, E.; Gunst, A. W.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Kuper, G.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mevius, M.; Miller-Jones, J. C. A.; Morganti, R.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Rawlings, S.; Reich, W.; Roettgering, H.; Scaife, A. M. M.; Schoenmakers, A.; Shulevski, A.; Sluman, J.; Steinmetz, M.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van de Brink, R. H.; van Weeren, R. J.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-01-01

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the

  15. HIGH SPATIAL RESOLUTION X-RAY SPECTROSCOPY OF THE IC 443 PULSAR WIND NEBULA AND ENVIRONS

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Douglas A.; Zavlin, Vyacheslav E. [USRA, Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States); Pavlov, George G. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Clarke, Tracy [Remote Sensing Division, Code 7213, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC (United States); Castelletti, Gabriela [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC67, Suc. 28, 1428, Buenos Aires (Argentina); Bucciantini, Niccolò [INAF—Osservatorio Astrofisico di Arcetri, L. go E. Fermi 5, I-50125 Firenze (Italy); Karovska, Margarita [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Horst, Alexander J. van der [Department of Physics, The George Washington University, 725 21 Street NW, Washington, DC 20052 (United States); Yukita, Mihoko [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Weisskopf, Martin C. [Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States)

    2015-07-20

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant (SNR) IC 443 reveal an ∼5″ radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north–south across the ring and through the pulsar's location at 06{sup h}17{sup m}5.{sup s}200 + 22°21′27.″52 (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the SNR. The cometary shape of the nebula, suggesting motion toward the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion through the ambient medium; and the shape near the apex of the nebula is narrow. Comparing this observation with previous observations of the same target, we set a 99% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 44 mas yr{sup −1} (310 km s{sup −1} for a distance of 1.5 kpc), with the best-fit (but not statistically significant) projected direction toward the west.

  16. A broadband x-ray study of the Geminga pulsar with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mori, Kaya; Gotthelf, Eric V.; Dufour, Francois

    2014-01-01

    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband...... phase-integrated spectra over the 0.2-20 keV band with NuSTAR and archival XMM-Newton data do not fit to a conventional two-component model of a blackbody plus power law, but instead exhibit spectral hardening above ~5 keV. We find that two spectral models fit the data well: (1) a blackbody (kT1 ~ 42 e......V) with a broken power law (Γ1 ~ 2.0, Γ2 ~ 1.4 and Ebreak ~ 3.4 keV) and (2) two blackbody components (kT1 ~ 44 eV and kT2 ~ 195 eV) with a power-law component (Γ ~ 1.7). In both cases, the extrapolation of the Rayleigh-Jeans tail of the thermal component is consistent with the UV data, while the non...

  17. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    Science.gov (United States)

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  18. Chandra studies of the globular cluster 47 Tucanae: A deeper X-ray source catalogue, five new X-ray counterparts to millisecond radio pulsars, and new constraints to r-mode instability window

    Science.gov (United States)

    Bhattacharya, Souradeep; Heinke, Craig O.; Chugunov, Andrey I.; Freire, Paulo C. C.; Ridolfi, Alessandro; Bogdanov, Slavko

    2017-12-01

    We combined Chandra ACIS observations of the globular cluster 47 Tucanae (hereafter, 47 Tuc) from 2000, 2002, and 2014-15 to create a deeper X-ray source list, and study some of the faint radio millisecond pulsars (MSPs) present in this cluster. We have detected 370 X-ray sources within the half-mass radius (2'.79) of the cluster, 81 of which are newly identified, by including new data and using improved source detection techniques. The majority of the newly identified sources are in the crowded core region, indicating cluster membership. We associate five of the new X-ray sources with chromospherically active BY Dra or W UMa variables identified by Albrow et al. (2001). We present alternative positions derived from two methods, centroiding and image reconstruction, for faint, crowded sources. We are able to extract X-ray spectra of the recently discovered MSPs 47 Tuc aa, 47 Tuc ab, the newly timed MSP 47 Tuc Z, and the newly resolved MSPs 47 Tuc S and 47 Tuc F. Generally, they are well fit by black body or neutron star atmosphere models, with temperatures, luminosities and emitting radii similar to those of other known MSPs in 47 Tuc, though 47 Tuc aa and 47 Tuc ab reach lower X-ray luminosities. We limit X-ray emission from the full surface of the rapidly spinning (542 Hz) MSP 47 Tuc aa, and use this limit to put an upper bound for amplitude of r-mode oscillations in this pulsar as α<2.5×10^{-9}$ and constrain the shape of the r-mode instability window.

  19. Durability of the accretion disk of millisecond pulsars.

    Science.gov (United States)

    Michel, F C; Dessler, A J

    1985-05-24

    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk.

  20. BROADBAND X-RAY IMAGING AND SPECTROSCOPY OF THE CRAB NEBULA AND PULSAR WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Kristin K.; Harrison, Fiona; Grefenstette, Brian W. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Reynolds, Stephen [Physics Department, NC State University, Raleigh, NC 27695 (United States); An, Hongjun [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Boggs, Steven; Craig, William W.; Zoglauer, Andreas [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektronvej 327, DK-2800 Lyngby (Denmark); Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Livermore, CA 94550 (United States); Hailey, Charles J.; Nynka, Melania [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Markwardt, Craig; Zhang, William [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-03-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ∼9 keV in the spectral photon index of the torus structure with a steepening characterized by ΔΓ ∼ 0.25. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power law with break energy at ∼12 keV and ΔΓ ∼ 0.27. We present spectral maps of the inner 100'' of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band.

  1. Deep X-ray Observations of Four Eclipsing Binary Millisecond Pulsars

    Science.gov (United States)

    Mclaughlin, Maura

    2013-10-01

    We request deep XMM-Newton observations of four eclipsing binary millisecond pulsars (MSPs). All four MSPs have been detected with Chandra and show orbital modulation consistent with intrabinary shock emission. The requested observations will enable us to model this variability over more than two full orbits and derive constraints on the binary geometry and pulsar wind density and magnetization. We will also be able to fit multi-component spectra to determine the contributions from the MSPs themselves and from the intrabinary shock. These studies will lead to a better understanding of the growing population of these exotic objects. They will also provide important constraints on the ablation and recycling processes so critical to MSP evolution scenarios.

  2. Propagation of nuclear burning fronts on accreting neutron stars: X-ray bursts and sub-hertz noise

    Science.gov (United States)

    Bildsten, Lars

    1995-01-01

    We identify a new regime of time dependent helium burning for high accretion rate neutron stars and suggest that this burning is the origin of the low-level luminosity variations (on timescales of 10-10(exp 4) s, designated the 'very low-frequency noise'(VLFN) by van der Klis and collaborators) always detected in the brightest accreting X-ray sources. Only two nuclear burning regimes were previously recognized. At accretion rates in excess of the Eddington limit (dot-M approximately greater than (1-3) x 10(exp -8) solar mass/yr), the accreted matter fuses steadily. At very low dot-M, the star's entire surface is rapidly (approximately less than 10 s) burned by a fast propagating convective burning front at regular intervals, giving quasi-periodic Type I X-ray bursts. We show that for the observationally interesting range of 5 x 10(exp -10) solar mass/yr approximately less than dot-M approximately less than 10(exp -8) solar mass/yr, parts of the stellar surface burn slowly. At these accretion rates, a local thermonuclear instability starts a fire which propagates horizontally at v approximately 300 cm/s. The fire propagates around the flammable surface in roughly the same time it takes to accrete enough fuel for the next instability (approximately 10(exp 3)-10(exp 4), so that only a few fires are burning at once, giving rise to large luminosity flares. Nuclear burning is always time dependent for sub-Eddington local accretion rates: a local patch undergoes a recurrent cycle, accumulation fuel for hours until it becomes thermally unstable or is 'ignited' by a nearby burning region. The global pattern of burning and the resulting luminosity are thus very dependent on how fast nuclear fires spread around the star. The nuclear burning luminosity is not uniform over the stellar surface and so may provide a handle on measuring, or constraining, the spin periods of these neutron stars.

  3. High-Energy X-rays from J174545.5-285829, the Cannonball: a Candidate Pulsar Wind Nebula Associated with Sgr a East

    Science.gov (United States)

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; hide

    2013-01-01

    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity (v(proj) approximately 500 km s(exp -1)) pulsar candidate with a cometary pulsar wind nebula (PWN) located approximately 2' north-east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Gamma is approximately 1.6 power law, typical of a PWN, and has an X-ray luminosity of L(3-30 keV) = 1.3 × 10(exp 34) erg s(exp -1). The spectral and spatial results derived from X-ray and radio data strongly suggest a runaway neutron star born in the Sgr A East supernova event. We do not find any pulsed signal from the Cannonball. The NuSTAR observations allow us to deduce the PWN magnetic field and show that it is consistent with the lower limit obtained from radio observations.

  4. NuSTAR discovery of a cyclotron absorption line in the transient X-ray pulsar 2S 1553-542

    Science.gov (United States)

    Tsygankov, Sergey S.; Lutovinov, Alexander A.; Krivonos, Roman A.; Molkov, Sergey V.; Jenke, Peter J.; Finger, Mark H.; Poutanen, Juri

    2016-03-01

    We report the results of a spectral and timing analysis of the poorly studied transient X-ray pulsar 2S 1553-542 using data collected with the NuSTAR and Chandra observatories and the Fermi/GBM instrument during an outburst in 2015. The properties of the source at high energies (>30 keV) are studied for the first time and the sky position has been essentially improved. The source broad-band spectrum has a quite complicated shape and can be reasonably described by a composite model with two continuum components - a blackbody emission with the temperature about 1 keV at low energies and a power law with an exponential cut-off at high energies. Additionally, an absorption feature at ˜23.5 keV is discovered both in phase-averaged and phase-resolved spectra and interpreted as the cyclotron resonance scattering feature corresponding to the magnetic field strength of the neutron star B ˜ 3 × 1012 G. Based on the Fermi/GBM data, the orbital parameters of the system were substantially improved, which allowed us to determine the spin period of the neutron star P = 9.27880(3) s and a local spin-up dot{P} ˜eq -7.5 × 10^{-10} s s-1 due to the mass accretion during the NuSTAR observations. Assuming accretion from the disc and using standard torque models, we estimated the distance to the system as d = 20 ± 4 kpc.

  5. The Reawakening of the Sleeping X-ray Pulsar XTE J1946+274

    Science.gov (United States)

    Mueller, Sebastian; Mueller, Sebastian; Kuechnel, Matthias; Fuerst, Felix; Kreykenbohm, Ingo; Sagredo, Macarena; Obst, Maria; Wilms, Joern; Caballero, Isabel; Potttschmidt, Katja; hide

    2012-01-01

    We report on a series of outbursts of the high mass X-ray binary XTE 11946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE 11946+274 is variable between individual outbursts.

  6. GAMMA-RAY AND HARD X-RAY EMISSION FROM PULSAR-AIDED SUPERNOVAE AS A PROBE OF PARTICLE ACCELERATION IN EMBRYONIC PULSAR WIND NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Murase, Kohta [Institute for Advanced Study, Princeton, NJ 08540 (United States); Kashiyama, Kazumi [Center for Particle and Gravitational Astrophysics, Department of Physics, Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Kiuchi, Kenta [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Bartos, Imre [Department of Physics, Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States)

    2015-05-20

    It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after the explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.

  7. PULSE AMPLITUDE DEPENDS ON kHz QPO FREQUENCY IN THE ACCRETING MILLISECOND PULSAR SAX J1808.4-3658

    Energy Technology Data Exchange (ETDEWEB)

    Bult, Peter; Van der Klis, Michiel, E-mail: p.m.bult@uva.nl [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2015-01-10

    We study the relation between the 300-700 Hz upper kHz quasi-periodic oscillation (QPO) and the 401 Hz coherent pulsations across all outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 observed with the Rossi X-ray Timing Explorer. We find that the pulse amplitude systematically changes by a factor of ∼2 when the upper kHz QPO frequency passes through 401 Hz: it halves when the QPO moves to above the spin frequency and doubles again on the way back. This establishes for the first time the existence of a direct effect of kHz QPOs on the millisecond pulsations and provides a new clue to the origin of the upper kHz QPO. We discuss several scenarios and conclude that while more complex explanations can not formally be excluded, our result strongly suggests that the QPO is produced by azimuthal motion at the inner edge of the accretion disk, most likely orbital motion. Depending on whether this azimuthal motion is faster or slower than the spin, the plasma then interacts differently with the neutron-star magnetic field. The most straightforward interpretation involves magnetospheric centrifugal inhibition of the accretion flow that sets in when the upper kHz QPO becomes slower than the spin.

  8. FORMATION OF BINARY MILLISECOND PULSARS BY ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS UNDER WIND-DRIVEN EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Ablimit, Iminhaji; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2015-02-20

    Accretion-induced collapse (AIC) of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods (≳ 10 days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822–37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled owing to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with an He WD companion, with the orbital periods distributed between ≳ 0.1 days and ≲ 30 days, while some of them may follow the cataclysmic variable-like evolution toward very short orbits. If we instead assume that the newborn neutron star appears as an MSP and that part of its rotational energy is used to ablate its companion star, the binaries may also evolve to be the redback-like systems.

  9. Formation of Binary Millisecond Pulsars by Accretion-induced Collapse of White Dwarfs under Wind-driven Evolution

    Science.gov (United States)

    Ablimit, Iminhaji; Li, Xiang-Dong

    2015-02-01

    Accretion-induced collapse (AIC) of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods (gsim 10 days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822-37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled owing to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with an He WD companion, with the orbital periods distributed between >~ 0.1 days and <~ 30 days, while some of them may follow the cataclysmic variable-like evolution toward very short orbits. If we instead assume that the newborn neutron star appears as an MSP and that part of its rotational energy is used to ablate its companion star, the binaries may also evolve to be the redback-like systems.

  10. SXP 15.6: X-ray spectral and temporal properties of a newly discovered pulsar in the Small Magellanic Cloud

    Science.gov (United States)

    Vasilopoulos, G.; Zezas, A.; Antoniou, V.; Haberl, F.

    2017-10-01

    We report on the X-ray spectral and temporal properties of the Be/X-ray binary system XMMU J004855.5-734946 located in the Small Magellanic Cloud. The system was monitored by Swift/XRT during a moderate outburst in 2016 July, while an unanticipated Chandra target of opportunity observation was triggered when the luminosity of the system was greater than 1036 erg s-1 allowing a detailed study of X-ray properties of the systems. Specifically, its X-ray spectrum, as observed during the outburst, is well modelled by an absorbed power law (Γ = 0.58). Timing analysis of the collected photon events revealed coherent X-ray pulsations with a period of ˜15.64 s, thus confirming XMMU J004855.5-734946 as a high-mass X-ray binary pulsar. By analysing archival XMM-Newton observations, we determined the long-term spin period evolution of the neutron star, showing that the compact star has spun-up by \\dot{P}˜ -0.0028 s yr^{-1}. By modelling the X-ray pulsed emission as detected by Chandra, we set constraints on the inclination of the magnetic and rotation axis of the neutron star, as well to its compactness (I.e. (M/M⊙)/(R/km) = 0.095 ± 0.007).

  11. Testing the Performance and Accuracy of the RELXILL Model for the Relativistic X-Ray Reflection from Accretion Disks

    Science.gov (United States)

    Choudhury, Kishalay; García, Javier A.; Steiner, James F.; Bambi, Cosimo

    2017-12-01

    The reflection spectroscopic model RELXILL is commonly implemented in studying relativistic X-ray reflection from accretion disks around black holes. We present a systematic study of the model’s capability to constrain the dimensionless spin and ionization parameters from ∼6000 Nuclear Spectroscopic Telescope Array (NuSTAR) simulations of a bright X-ray source employing the lamp-post geometry. We employ high-count spectra to show the limitations in the model without being confused with limitations in signal-to-noise. We find that both parameters are well-recovered at 90% confidence with improving constraints at higher reflection fraction, high spin, and low source height. We test spectra across a broad range—first at 106–107 and then ∼105 total source counts across the effective 3–79 keV band of NuSTAR, and discover a strong dependence of the results on how fits are performed around the starting parameters, owing to the complexity of the model itself. A blind fit chosen over an approach that carries some estimates of the actual parameter values can lead to significantly worse recovery of model parameters. We further stress the importance to span the space of nonlinear-behaving parameters like {log} ξ carefully and thoroughly for the model to avoid misleading results. In light of selecting fitting procedures, we recall the necessity to pay attention to the choice of data binning and fit statistics used to test the goodness of fit by demonstrating the effect on the photon index Γ. We re-emphasize and implore the need to account for the detector resolution while binning X-ray data and using Poisson fit statistics instead while analyzing Poissonian data.

  12. X-Ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Science.gov (United States)

    García, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Eikmann, W.

    2013-05-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Γ of the illuminating radiation, the ionization parameter ξ at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A Fe relative to the solar value. The ranges of the parameters covered are 1.2 XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.

  13. Period variations in pulsating X-ray sources. I. Accretion flow parameters and neutron star structure from timing observations

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, F.K.; Pines, D.; Shaham, J.

    1978-09-15

    We show that valuable information about both accretion flows and neutron star structure can be obtained from X-ray timing observations of period variations in pulsating sources. Such variations can result from variations in the accretion flow, or from internal torque variations, associated with oscillations of the fluid core or the unpinning of vortices in the inner crust. We develop a statistical description of torque variations in terms of noise processes, indicate how the applicability of such a description may be tested observationally, and show how it may be used to determine from observation both the properties of accretion flows and the internal structure of neutron stars, including the relative inertial moments of the crust and superfluid neutron core, the crust-core coupling time, and the frequencies of any low-frequency internal collective modes. Particular attention is paid to the physical origin of spin-down episodes; it is shown that usyc episodes may result either from external torque reversals or from internal torque variations.With the aid of the statistical description, the response of the star to torque fluctuations is calculated for three stellar models: (i) a completely rigid star; (ii) a two-component star; and (iii) a two-component star with a finite-frequency internal mode, such as the Tkachenko mode of a rotating neutron superfluid. Our calculations show that fluctuating torques could account for the period the period variations and spin-down episodes observed in Her X-1 and Cen X-3, including the large spin-down event observed in the latter source during 1972 September-October. The torque noise strengths inferred from current timing observations using the simple two-component models are shown to be consistent with those to be expected from fluctuations in accretion flows onto magnetic neutron stars.

  14. Numerical Studies of Gravitational Accretion from X-Ray Heated Stellar Winds.

    Science.gov (United States)

    1981-12-01

    4- 4-- 1- c5 - 4--n 00= Ci. *SC 0 r= = W0’.flL-4.-I S&.-.-44- 0)~ i 0 0) (A$-4 A - - L0 4- 4Ci 0) 0 0 4--4~ -~ S- V) c(\\4- 𔃺c 4-4-- 4m tvWf 0)t -4- U...Hoyle and Lyttleton (1939) developed the analytical line accretion model to explain how a galaxy moving through the intergalactic medium could gain

  15. Testing the deep-crustal heating model using quiescent neutron-star very-faint X-ray transients and the possibility of partially accreted crusts in accreting neutron stars

    NARCIS (Netherlands)

    Wijnands, R.; Degenaar, N.; Page, D.

    2013-01-01

    It is assumed that accreting neutron stars in low-mass X-ray binaries are heated due to the compression of the existing crust by the freshly accreted matter which gives rise to a variety of nuclear reactions in the crust. It has been shown that most of the energy is released deep in the crust by

  16. Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess

    Science.gov (United States)

    Haggard, Daryl; Heinke, Craig; Hooper, Dan; Linden, Tim

    2017-05-01

    If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up to ~ 4-23% of the observed gamma-ray excess is likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected ~ 103 LMXBs from within a 10o radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.

  17. A WHITE DWARF MERGER AS PROGENITOR OF THE ANOMALOUS X-RAY PULSAR 4U 0142+61?

    Energy Technology Data Exchange (ETDEWEB)

    Rueda, J. A.; Boshkayev, K.; Izzo, L.; Ruffini, R. [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Loren-Aguilar, P. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Kuelebi, B. [Institut de Ciencies de l' Espai (CSIC), Facultat de Ciencies, Campus UAB, Torre C5-parell, E-08193 Bellaterra (Spain); Aznar-Siguan, G.; Garcia-Berro, E., E-mail: jorge.rueda@icra.it, E-mail: enrique.garcia-berro@upc.edu [Institute for Space Studies of Catalonia, c/Gran Capita 2-4, Edif. Nexus 104, E-08034 Barcelona (Spain)

    2013-08-01

    It has been recently proposed that massive, fast-rotating, highly magnetized white dwarfs could describe the observational properties of some of soft gamma-ray repeaters and anomalous X-ray pulsars (AXPs). Moreover, it has also been shown that high-field magnetic white dwarfs can be the outcome of white dwarf binary mergers. The products of these mergers consist of a hot central white dwarf surrounded by a rapidly rotating disk. Here we show that the merger of a double degenerate system can explain the characteristics of the peculiar AXP 4U 0142+61. This scenario accounts for the observed infrared excess. We also show that the observed properties of 4U 0142+6 are consistent with an approximately 1.2 M{sub Sun} white dwarf, remnant of the coalescence of an original system made of two white dwarfs of masses 0.6 M{sub Sun} and 1.0 M{sub Sun }. Finally, we infer a post-merging age {tau}{sub WD} Almost-Equal-To 64 kyr and a magnetic field B Almost-Equal-To 2 Multiplication-Sign 10{sup 8} G. Evidence for such a magnetic field may come from the possible detection of the electron cyclotron absorption feature observed between the B and V bands at Almost-Equal-To 10{sup 15} Hz in the spectrum of 4U 0142+61.

  18. Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, Daryl; Heinke, Craig; Hooper, Dan; Linden, Tim

    2017-05-01

    If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up to $\\sim$4-23% of the observed gamma-ray excess is likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected $\\sim$$10^3$ LMXBs from within a $10^{\\circ}$ radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.

  19. Optical pulsations from a transitional millisecond pulsar

    Science.gov (United States)

    Ambrosino, F.; Papitto, A.; Stella, L.; Meddi, F.; Cretaro, P.; Burderi, L.; Di Salvo, T.; Israel, G. L.; Ghedina, A.; Di Fabrizio, L.; Riverol, L.

    2017-10-01

    Millisecond pulsars are neutron stars that attain their very fast rotation during a 108-109-yr-long phase of disk accretion of matter from a low-mass companion star1,2. They can be detected as accretion-powered millisecond X-ray pulsars if towards the end of this phase their magnetic field is strong enough to channel the in-flowing matter towards their magnetic poles3. When mass transfer is reduced or ceases altogether, pulsed emission generated by magnetospheric particle acceleration and powered by the star rotation is observed, preferentially in the radio4 and gamma-ray5 bands. A few transitional millisecond pulsars that swing between an accretion-powered X-ray pulsar regime and a rotationally powered radio pulsar regime in response to variations of the mass in-flow rate have been recently identified6,7. Here, we report the detection of optical pulsations from a transitional millisecond pulsar. The pulsations were observed when the pulsar was surrounded by an accretion disk, and originated inside the magnetosphere or within a few hundreds of kilometres from it. Energy arguments rule out reprocessing of accretion-powered X-ray emission and argue against a process related to accretion onto the pulsar polar caps; synchrotron emission of electrons in a rotation-powered pulsar magnetosphere8 seems more likely.

  20. The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3

    Science.gov (United States)

    Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  1. Harnessing the full power of the widest Chandra field: average accretion rates of black holes in SDSS galaxies through X-ray stacking

    Science.gov (United States)

    Goulding, Andy D.; Greene, Jenny E.; Hickox, Ryan C.; Alexander, David M.; Forman, William R.; Jones, Christine; Lehmer, Bret

    2017-08-01

    Galaxy-scale bars are expected to provide an effective means for driving material towards the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). I will present our latest results on a statistically-complete study of the effect of bars on average BH accretion. From a well-selected sample of over 50,000 spiral galaxies extracted from the Sloan Digital Sky Survey, we separate those sources considered to contain galaxy-scale bars from those that do not. Using the first 16 years worth of data taken by the Chandra X-ray Observatory, we identify X-ray luminous AGN and perform the widest-area X-ray stacking analysis to date on the remaining X-ray undetected sources. Through our X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars, and robustly concluding that large-scale bars have little or no effect on the average growth of BHs in nearby (z < 0.15) galaxies over gigayear timescales.

  2. Swift observations of V404 Cyg during the 2015 outburst: X-ray outflows from super-Eddington accretion

    Science.gov (United States)

    Motta, S. E.; Kajava, J. J. E.; Sánchez-Fernández, C.; Beardmore, A. P.; Sanna, A.; Page, K. L.; Fender, R.; Altamirano, D.; Charles, P.; Giustini, M.; Knigge, C.; Kuulkers, E.; Oates, S.; Osborne, J. P.

    2017-10-01

    The black hole (BH) binary V404 Cyg entered the outburst phase in 2015 June after 26 yr of X-ray quiescence, and with its behaviour broke the outburst evolution pattern typical of most BH binaries. We observed the entire outburst with the Swift satellite and performed time-resolved spectroscopy of its most active phase, obtaining over a thousand spectra with exposures from tens to hundreds of seconds. All the spectra can be fitted with an absorbed power-law model, which most of the time required the presence of a partial covering. A blueshifted iron-Kα line appears in 10 per cent of the spectra together with the signature of high column densities, and about 20 per cent of the spectra seem to show signatures of reflection. None of the spectra showed the unambiguous presence of soft disc-blackbody emission, while the observed bolometric flux exceeded the Eddington value in 3 per cent of the spectra. Our results can be explained assuming that the inner part of the accretion flow is inflated into a slim disc that both hides the innermost (and brightest) regions of the flow, and produces a cold, clumpy, high-density outflow that introduces the high absorption and fast spectral variability observed. We argue that the BH in V404 Cyg might have been accreting erratically or even continuously at Eddington/super-Eddington rates - thus sustaining a surrounding slim disc - while being partly or completely obscured by the inflated disc and its outflow. Hence, the largest flares produced by the source might not be accretion-driven events, but instead the effects of the unveiling of the extremely bright source hidden within the system.

  3. GRB060602B = Swift J1749.4−2807: an unusual transiently accreting neutron-star X-ray binary

    NARCIS (Netherlands)

    Wijnands, R.; Rol, E.; Cackett, E.; Starling, R.L.C.; Remillard, R.A.

    2009-01-01

    We present an analysis of the Swift Burst Alert Telescope (BAT) and X-ray telescope (XRT) data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type I

  4. Broadband X-ray spectra of GX 339-4 and the geometry of accreting black holes in the hard state

    NARCIS (Netherlands)

    Tomsick, J.A.; Kalemci, E.; Kaaret, P.; Markoff, S.; Corbel, S.; Migliari, S.; Fender, R.; Bailyn, C.D.; Buxton, M.M.

    2008-01-01

    A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard'' state, with an X-ray energy spectrum dominated by a hard power-law component and radio emission coming from a steady "compact'' jet. Although the common hard

  5. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W; Liedahl, D A; Mathiesen, B F; Jimenez-Garate, M A; Raymond, J C

    2003-10-17

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.

  6. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. III. A COMPLETE GRID OF IONIZED REFLECTION CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.; McClintock, J. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dauser, T.; Wilms, J.; Eikmann, W. [Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany); Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Kallman, T. R., E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: chris@astro.umd.edu, E-mail: thomas.dauser@sternwarte.uni-erlangen.de, E-mail: joern.wilms@sternwarte.uni-erlangen.de, E-mail: wiebke.eikmann@sternwarte.uni-erlangen.de, E-mail: timothy.r.kallman@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-05-10

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index {Gamma} of the illuminating radiation, the ionization parameter {xi} at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A{sub Fe} relative to the solar value. The ranges of the parameters covered are 1.2 {<=} {Gamma} {<=} 3.4, 1 {<=} {xi} {<=} 10{sup 4}, and 0.5 {<=} A{sub Fe} {<=} 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file (http://hea-www.cfa.harvard.edu/{approx}javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.

  7. X-ray measurement of the spin-down of CalverA: A radio- and gamma-ray-quiet pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V., E-mail: jules@astro.columbia.edu [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States)

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is P-dot =(3.19± 0.08)×10{sup −15}, which corresponds to spin-down luminosity E-dot =6.1×10{sup 35} erg s{sup –1}, characteristic age τ{sub c}≡P/2 P-dot =2.9×10{sup 5} yr, and surface dipole magnetic field strength B{sub s} = 4.4 × 10{sup 11} G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 10{sup 32} erg s{sup –1}, which is less than that of any pulsar of comparable E-dot . Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  8. AGN Unification, X-Ray Absorbers and Accretion Disk MHD Winds

    Science.gov (United States)

    Kazanas, Demos

    2011-01-01

    We present the 2D photoionization structure of the MHD winds of AGN accretion disks. We focus our attention on a specific subset of winds, those with poloidal currents that lead to density profiles n(r) \\propto 1/r. We employ the code XSTAR to compute the local ionization balance, emissivities and opacity which are then used in the self-consistent transfer of radiation and ionization of a host of ionic species of a large number of elements over then entire poloidal plane. Particular attention is paid to the Absorption Measure Distribution (AMD), namely their hydrogen-equivalent column of these ions per logarithmic 7 interval, dN_H/dlog ? (? = L/n(r)r(sup 2) is the ionization parameter), which provides a measure of the winds' radial density profiles. For the given density profile, AMD is found to be independent of ?, in good agreement with analyses of Chandra and XMM data, suggesting the specific profile as a fundamental AGN property. Furthermore, the ratio of equatorial to polar column densities of these winds is \\simeq 10(exp 4); as such, it is shown they serve as the "torus" necessary for AGN unification with phenomenology consistent with the observations. The same winds are also shown to reproduce the observed columns and velocities of C IV and Fe XXV of SAL QSOs once the proper ionizing spectra and inclination angles are employed.

  9. Lighthouses with two lights: Burst oscillations from the accretion-powered millisecond pulsars

    NARCIS (Netherlands)

    Watts, A.L.

    2008-01-01

    The key contribution of the discovery of nuclear-powered pulsations from the accretion-powered millisecond pulsars (AMPs) has been the establishment of burst oscillation frequency as a reliable proxy for stellar spin rate. This has doubled the sample of rapidly-rotating accreting neutron stars and

  10. ULX spectra revisited: Accreting, highly magnetized neutron stars as the engines of ultraluminous X-ray sources

    Science.gov (United States)

    Koliopanos, Filippos; Vasilopoulos, Georgios; Godet, Olivier; Bachetti, Matteo; Webb, Natalie A.; Barret, Didier

    2017-12-01

    Aims: In light of recent discoveries of pulsating ultraluminous X-ray sources (ULXs) and recently introduced theoretical schemes that propose neutron stars (NSs) as the central engines of ULXs, we revisit the spectra of eighteen well known ULXs, in search of indications that favour this newly emerging hypothesis. Methods: We examine the spectra from high-quality XMM-Newton and NuSTAR observations. We use a combination of elementary black body and multicolour disk black body (MCD) models, to diagnose the predictions of classic and novel theoretical models of accretion onto NSs. We re-interpret the well established spectral characteristics of ULXs in terms of accretion onto lowly or highly magnetised NSs, and explore the resulting parameter space for consistency. Results: We confirm the previously noted presence of the low-energy (≲6 keV) spectral rollover and argue that it could be interpreted as due to thermal emission. The spectra are well described by a double thermal model consisting of a "hot" (≳1 keV) and a "cool" (≲0.7 keV) multicolour black body (MCB). Under the assumption that the "cool" MCD emission originates in a disk truncated at the neutron star magnetosphere, we find that all ULXs in our sample are consistent with accretion onto a highly magnetised (B ≳ 1012 G) neutron star. We note a strong correlation between the strength of the magnetic field, the temperature of the "hot" thermal component and the total unabsorbed luminosity. Examination of the NuSTAR data supports this interpretation and also confirms the presence of a weak, high-energy (≳15 keV) tail, most likely the result of modification of the MCB emission by inverse Compton scattering. We also note that the apparent high-energy tail, may simply be the result of mismodelling of MCB emission with an atypical temperature (T) versus radius (r) gradient, using a standard MCD model with a fixed gradient of T r-0.75. Conclusions: We have offered a new and robust physical interpretation for

  11. Spin frequency distributions of binary millisecond pulsars

    NARCIS (Netherlands)

    Papitto, A.; Torres, D.F.; Rea, N.; Tauris, T.M.

    2014-01-01

    Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a 108−109 yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between

  12. Achromatic late-time variability in thermonuclear X-ray bursts - an accretion disk disrupted by a nova-like shell?

    OpenAIRE

    Zand, J. J. M. in 't; Galloway, D. K.; Ballantyne, D. R.

    2010-01-01

    An unusual Eddington-limited thermonuclear X-ray burst was detected from the accreting neutron star in 2S 0918-549 with the Rossi X-ray Timing Explorer. The burst commenced with a brief (40 ms) precursor and maintained near-Eddington fluxes during the initial 77 s. These characteristics are indicative of a nova-like expulsion of a shell from the neutron star surface. Starting 122 s into the burst, the burst shows strong (87 +/- 1% peak-to-peak amplitude) achromatic fluctuations for 60 s. We s...

  13. The Effects of High Density on the X-ray Spectrum Reflected from Accretion Discs Around Black Holes

    Science.gov (United States)

    Garcia, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Micahel L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jorn

    2016-01-01

    Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter (xi), which is the ratio of the incident flux to the gas density. The density is typically fixed at n(sub e) = 10(exp 15) per cu cm. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for n(sub e) approximately greater than 10(exp 17) per cu cm that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies 2 approximately less than keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.

  14. X-RAY OBSERVATIONS OF THE SUPERNOVA REMNANT CTB 87 (G74.9+1.2): AN EVOLVED PULSAR WIND NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Matheson, H.; Safi-Harb, S. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Kothes, R., E-mail: matheson@physics.umanitoba.ca, E-mail: samar@physics.umanitoba.ca, E-mail: roland.kothes@nrc-cnrc.gc.ca [Dominion Radio Astrophysical Observatory, National Research Council Herzberg, P.O. Box 248, Penticton, British Columbia, V2A 6J9 (Canada)

    2013-09-01

    Pulsar wind nebulae (PWNe) studies with the Chandra X-Ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by {approx}100'' and located at the southeastern edge of the radio nebula. We detect a point source-the putative pulsar-at the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for {approx}250''. The spectra of the point source, compact nebula, and extended diffuse nebula are all well described by a power-law model with a photon index of 1.1 (0.7-1.6), 1.2 (0.9-1.4), and 1.7 (1.5-1.8), respectively, for a column density N{sub H} = 1.38 (1.21-1.57) Multiplication-Sign 10{sup 22} cm{sup -2} (90% confidence). The total X-ray luminosity of the source is {approx}1.6 Multiplication-Sign 10{sup 34} erg s{sup -1} at an assumed distance of 6.1 kpc, with {approx}2% and 6% contribution from the point source and compact nebula, respectively. The observed properties suggest that CTB 87 is an evolved ({approx}5-28 kyr) PWN, with the extended radio emission likely a ''relic'' PWN, as in Vela-X and G327.1-1.1. To date, however, there is no evidence for thermal X-ray emission from this SNR, and the SNR shell is still missing, suggesting expansion into a low-density medium (n{sub 0} < 0.2 D{sup -1/2}{sub 6.1} cm{sup -3}), likely

  15. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  16. NuSTAR detection of a cyclotron line in the supergiant fast X-ray transient IGR J17544-2619

    DEFF Research Database (Denmark)

    Bhalerao, Varun; Romano, Patrizia; Tomsick, John

    2015-01-01

    We present NuSTAR spectral and timing studies of the supergiant fast X-ray transient (SFXT) IGR J17544-2619. The spectrum is well described by an  ∼ 1 keV blackbody and a hard continuum component, as expected from an accreting X-ray pulsar. We detect a cyclotron line at 17 keV, confirming...

  17. The formation of low-mass helium white dwarfs orbiting pulsars . Evolution of low-mass X-ray binaries below the bifurcation period

    Science.gov (United States)

    Istrate, A. G.; Tauris, T. M.; Langer, N.

    2014-11-01

    Context. Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs) that have been spun up to high rotation rates via accretion of matter from a companion star in a low-mass X-ray binary (LMXB). This scenario has been strongly supported by various pieces of observational evidence. However, many details of this recycling scenario remain to be understood. Aims: Here we investigate binary evolution in close LMXBs to study the formation of radio MSPs with low-mass helium white dwarf companions (He WDs) in tight binaries with orbital periods Porb ≃ 2-9h. In particular, we examine i) if the observed systems can be reproduced by theoretical modelling using standard prescriptions of orbital angular momentum losses (i.e. with respect to the nature and the strength of magnetic braking), ii) if our computations of the Roche-lobe detachments can match the observed orbital periods, and iii) if the correlation between WD mass and orbital period (MWD, Porb) is valid for systems with Porb< 2 days. Methods: Numerical calculations with a detailed stellar evolution code were used to trace the mass-transfer phase in ~400 close LMXB systems with different initial values of donor star mass, NS mass, orbital period, and the so-called γ-index of magnetic braking. Subsequently, we followed the orbital and the interior evolution of the detached low-mass (proto) He WDs, including stages with residual shell hydrogen burning. Results: We find that severe fine-tuning is necessary to reproduce the observed MSPs in tight binaries with He WD companions of mass <0.20 M⊙, which suggests that something needs to be modified or is missing in the standard input physics of LMXB modelling. Results from previous independent studies support this conclusion. We demonstrate that the theoretically calculated (MWD, Porb)-relation is in general also valid for systems with Porb< 2 days, although with a large scatter in He WD masses between 0.15-0.20 M⊙. The results of the thermal

  18. X-ray Dips Followed by Superluminal Ejections as Evidence for An Accretion Disc Feeding the Jet in A Radio Galaxy

    Science.gov (United States)

    Marscher, Alan P.; Jorstad, Svetlana G.; Gomez, Jose-Luis; Aller, Margo F.; Terasranta, Harri; Lister, Matthew L.; Stirling, Alastair, M.

    2002-01-01

    Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.

  19. Tracing the Accretion History of the Universe using X-rays from the Red Galaxy Population in the Bootes Field.

    Science.gov (United States)

    Brand, K.; Brown, M. J.; Dey, A.; Jannuzi, B.; Najita, J.; Kochanek, C.; Watson, C. R.; Green, P.; Fabricant, D.; Fazio, G.; Forman, W.; Jones, C.; Kenter, A.; Murray, S.; Vikhlinin, A.; McNamara, B.; Shields, J.; Rieke, M.

    2004-05-01

    The Chandra survey within the Bootes region of the NOAO Deep Wide-Field Survey (NDWFS) is unique in its large (9 deg2) contiguous area at relatively deep flux limits as well as the comprehensive deep multi-wavelength coverage that exists within the same region. As such, it can be used to determine the X-ray properties of well defined populations of galaxies from the NDWFS. We will present a stacking analysis of the X-rays from the red galaxy population in the NDWFS. These galaxies have well determined photometric redshifts and thus can be used to study the evolution of the average X-ray emission from this population out to redshifts of z ˜1. At the depths we are considering, X-rays are expected to be emitted from both AGN and ultra-luminous X-ray binaries (as well as a possible soft X-ray contribution from hot gas). We will discuss how we measure the contribution of nuclear X-ray emission and how the X-ray luminosity and thus also the acretion rate changes with redshift. Preliminary results show that the both the X-ray luminosity and the relative fraction of hard X-rays increases with redshift. Our research is supported by the National Optical Astronomy Observatory which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the National Science Foundation. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO3-4176 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics and Space Administration under contract NAS8-39073.

  20. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119-6127 AND SUPERNOVA REMNANT G292.2-0.5

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.-Y.; Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Ho, W. C. G. [School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom); Weltevrede, P. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Shannon, R. [CSIRO Astronomy and Space Sciences, Australia Telescope National Facility, Marsfield, NSW 2210 (Australia); Gonzalez, M. E., E-mail: ncy@physics.mcgill.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2012-12-10

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 Multiplication-Sign 10{sup 13} G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 {+-} 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  1. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    Science.gov (United States)

    Tauris, T. M.; Sanyal, D.; Yoon, S.-C.; Langer, N.

    2013-10-01

    Context. Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Aims: Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequently be recycled to form MSPs and, if so, how they can observationally be distinguished from pulsars formed via the standard core-collapse SN channel in terms of their masses, spins, orbital periods and space velocities. Methods: Numerical calculations with a detailed stellar evolution code were used for the first time to study the combined pre- and post-AIC evolution of close binaries. We investigated the mass transfer onto a massive WD (treated as a point mass) in 240 systems with three different types of non-degenerate donor stars: main-sequence stars, red giants, and helium stars. When the WD is able to accrete sufficient mass (depending on the mass-transfer rate and the duration of the accretion phase) we assumed it collapses to form a NS and we studied the dynamical effects of this implosion on the binary orbit. Subsequently, we followed the mass-transfer epoch which resumes once the donor star refills its Roche lobe and calculated the continued LMXB evolution until the end. Results: We show that recycled pulsars may form via AIC from all three types of progenitor systems investigated and find that the final properties of the resulting MSPs are, in general, remarkably similar to those of MSPs formed via the standard core-collapse SN channel. However, as a consequence of the fine-tuned mass-transfer rate necessary to make the WD grow in mass, the resultant MSPs created via the AIC channel preferentially form in certain orbital period intervals. In addition

  2. Probing the accretion induced collapse of white dwarfs in millisecond pulsars

    Science.gov (United States)

    Taani, A.; Khasawneh, A.

    2017-06-01

    This paper investigates the progenitors of Millisecond Pulsars (MSPs) with a distribution of long orbital periods (Porb > 2 d), to show the link between white dwarf (WD) binaries and long orbits for some binary MSPs through the Accretion Induced Collapse (AIC) of a WD. For this purpose, a model is presented to turn binary MSPs into wide binaries and highly circular orbits (e pulsar during the AIC process, which may indicate a sizeable kick velocity along the rotation of the proto-neutron star. The results show the effects of shock wave, binding energy, and mass loss (0.2M⊙). The model shows the pulsar systems are relevant to AIC-candidates.

  3. High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high-resolutio......We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high......-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry.We find...

  4. Can the 62 Day X-ray Period of ULX M82 X-1 Be Due to a Precessing Accretion Disk?

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We have analyzed all the archival RXTE/PCA monitoring observations of the ultraluminous X-ray source (ULX) M82 X-1 in order to study the properties of its previously discovered 62 day X-ray period (Kaaret & Feng 2007). Based on the high coherence of the modulation it has been argued that the observed period is the orbital period of the binary. Utilizing a much longer data set than in previous studies we find: (1) The phase-resolved X-ray (3-15 keV) energy spectra - modeled with a thermal accretion disk and a power-law corona - suggest that the accretion disk's contribution to the total flux is responsible for the overall periodic modulation while the power-law flux remains approximately constant with phase. (2) Suggestive evidence for a sudden phase shift-of approximately 0.3 in phase (20 days)-between the first and the second halves of the light curve separated by roughly 1000 days. If confirmed, the implied timescale to change the period is approx. = 10 yrs, which is exceptionally fast for an orbital phenomenon. These independent pieces of evidence are consistent with the 62 day period being due to a precessing accretion disk, similar to the so-called super-orbital periods observed in systems like Her X-1, LMC X-4, and SS433. However, the timing evidence for a change in the period needs to be confirmed with additional observations. This should be possible with further monitoring of M82 with instruments such as the X-ray telescope (XRT) on board Swift.

  5. INTEGRAL detection of the multi-peaked emission from the Be/X-ray binary pulsar GRO J1008-57

    DEFF Research Database (Denmark)

    Fiocchi, M.; Sguera, A.; Chenevez, Jérôme

    2014-01-01

    /4 of the outbursts in Be/XRBs (e.g. Kretschmar et al., 2013, arXiv.1302.3434). We will continue to monitor the source activity with INTEGRAL through the GPS programme until December 20th. Light curves and images can be found on the GPS webpages: http://gpsiasf.iasf-roma.inaf.it/......Recent observations from the on-going INTEGRAL Galactic Plane Scanning programme (PI: A. Bazzano) have detected increasing X-ray flux from the Be/X-ray binary pulsar GRO J1008-57, confirming the re-brightening detected by MAXI/GSC (ATel #6819). The source was in the field of view of the IBIS...... and JEM-X instruments on-board INTEGRAL during revolutions 1483 (start time 2014-12-05T09:55 UTC) and 1485 (start time 2014-12-11T09:15). The hard X-ray fluxes, as detected by IBIS, have increased over the last week: in revolution 1483, GRO 1008-57 was detected with a flux of (21.6+/-1.7) mCrab in the 18...

  6. Investigation of Quasi Periodic Signals of X-Ray Bursts from Neutron ...

    African Journals Online (AJOL)

    Pheneas Nkundabakura

    star, or black hole. The QPO phenomenon help astronomers understand the innermost regions of accretion disks and the masses, radii, and spin periods of white dwarfs, neutron stars, and black holes. In this study, we present the QPOs observed from the Neutron Star called Anomalous X-ray Pulsars (AXPs) which are ...

  7. Motion of the hot spot and spin torque in accreting millisecond pulsars

    NARCIS (Netherlands)

    Patruno, A.

    2008-01-01

    The primary concern of this contribution is that accreting millisecond pulsars (AMXPs) show a much larger amount of information than is commonly believed. The three questions to be addressed are: 1. Is the apparent spin torque observed in AMXPs real ? 2. Why do we see correlations and

  8. X-Ray Polarization Measurements with the EXIST Hard X-Ray Survey Telescope

    Science.gov (United States)

    Krawczynski, Henric; Garson, A., III; Hong, J.; Grindlay, J. E.

    2009-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed NASA mission for scanning the entire sky in intermediate and hard X-rays. The EXIST mission includes a wide field of view High Energy Telescope (HET) covering the 5-600 keV energy range, and an infrared telescope. The HET has the capability to measure the energy dependent X-ray polarization properties of moderately bright and bright X-ray sources. Here we report on a study of the polarization sensitivity of EXIST as a function of the integration time. Broadband X-ray polarization measurements with EXIST have the potential to make important contributions to our understanding of a number of astrophysical source types including binary black holes, accreting neutron stars, magnetars, pulsar wind nebulae, active galactic nuclei and gamma-ray bursts. EXIST observations of the X-rays from binary black holes can be used to constrain the spins of black holes. Last but not least, EXIST observations of active galactic nuclei and gamma-ray bursts can be used for extremely sensitive Lorentz Invariance tests.

  9. 3XMM J181923.7-170616: An X-Ray Binary with a 408 s Pulsar

    Science.gov (United States)

    Qiu, Hao; Zhou, Ping; Yu, Wenfei; Li, Xiangdong; Xu, Xiaojie

    2017-09-01

    We carry out a dedicated study of 3XMM J181923.7-170616 with an approximate pulsation period of 400 s using the XMM-Newton and Swift observations spanning across nine years. We have refined the period of the source to 407.904(7) s (at epoch MJD 57142) and constrained the 1σ upper limit on the period derivative \\dot{P}≤slant 1.1× {10}-8 {{s}} {{{s}}}-1. The source radiates hard, persistent X-ray emission during the observation epochs, which is best described by an absorbed power-law model (Γ ˜ 0.2-0.8) plus faint Fe lines at 6.4 and 6.7 keV. The X-ray flux revealed a variation within a factor of 2, along with a spectral hardening as the flux increased. The pulse shape is sinusoid-like and the spectral properties of different phases do not present significant variation. The absorption {N}{{H}} (˜ 1.3× {10}22 {{cm}}-2) is similar to the total Galactic hydrogen column density along the direction, indicating that it is a distant source. A search for the counterpart in optical and near-infrared surveys reveals a low-mass K-type giant, while the existence of a Galactic OB supergiant is excluded. A symbiotic X-ray binary (SyXB) is the favored nature of 3XMM J181923.7-170616 and can essentially explain the low luminosity of 2.78× {10}34{d}102 {erg} {{{s}}}-1, slow pulsation, hard X-ray spectrum, and possible K3 III companion. An alternative explanation of the source is a persistent Be X-ray binary (BeXB) with a companion star no earlier than B3-type.

  10. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  11. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Science.gov (United States)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  12. Orbital Phase-Resolved X-ray Observations of the Black-Widow Pulsar J1446-4701

    Science.gov (United States)

    Arumugasamy, Prakash; Pavlov, G. G.

    2014-01-01

    PSR J1446--4701 is a recently discovered radio and gamma-ray recycled pulsar in a tight binary (binary period P_b = 6.6 hr, a sin i = 1.7 R_⊙). The relativistic pulsar wind at such close proximity is expected to evaporate the low mass companion (M_{min}= 0.019 M_⊙), which should lead to an orbital phase dependence of the multiwavelength emission of this Black Widow pulsar (BWP) system. We observed the system with XMM-Newton EPIC (0.3--10 keV) and Optical Monitor (B,V) for 60 ks, covering about 2.5 binary orbits, to look for the orbital variability of its flux and spectrum. The EPIC data do not show a significant orbital variability of the flux, perhaps due to a low orbital inclination. However, the orbital phase-resolved spectral analysis allowed us to separate two spectral components: thermal pulsar polar-cap emission (kT=0.18±0.02 keV, R=216±60 m), detected throughout the orbit, and a hard power-law component (Γ = 1.4±0.6), detected only for the half-orbit around superior conjunction of the pulsar. We infer the hard non-thermal component to be the intra-binary shock emission. We did not detect an optical counterpart with the optical monitor, which sets some strong constraints on the companion. In the context of similar BWPs, we discuss the pulsar's high energy emission characteristics and intra-binary shock energetics.

  13. Analysis of variability in the burst oscillations of the accreting millisecond pulsar XTE J1814-338

    Science.gov (United States)

    Watts, Anna L.; Strohmayer, Tod E.; Markwardt, Craig B.

    2005-01-01

    The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.

  14. X-Ray Polarimetry with GEMS

    Science.gov (United States)

    Strohmayer, Tod

    2011-01-01

    The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges

  15. Theory of wind accretion

    Directory of Open Access Journals (Sweden)

    Shakura N.I.

    2014-01-01

    Full Text Available A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  16. The peculiar galactic center neutron star X-ray binary XMM J174457-2850.3

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Reynolds, M. T.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R. [Anton Pannekoek Institute of Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Altamirano, D. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Kennea, J. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Haggard, D. [CIERA, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ponti, G., E-mail: degenaar@umich.edu [Max Planck Institute fur Extraterrestriche Physik, D-85748 Garching (Germany)

    2014-09-10

    The recent discovery of a millisecond radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary/radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ≅2 hr and a radiated energy output of ≅ 5 × 10{sup 40} erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of L {sub X} ≅ 5 × 10{sup 32}(D/6.5 kpc){sup 2} erg s{sup –1} and exhibits occasional accretion outbursts during which it brightens to L {sub X} ≅ 10{sup 35}-10{sup 36}(D/6.5 kpc){sup 2} erg s{sup –1} for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at L {sub X} ≅ 10{sup 33}-10{sup 34}(D/6.5 kpc){sup 2} erg s{sup –1}. This peculiar X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of Γ ≅ 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  17. LOW-FREQUENCY QUASI-PERIODIC OSCILLATION FROM THE 11 Hz ACCRETING PULSAR IN TERZAN 5: NOT FRAME DRAGGING

    Energy Technology Data Exchange (ETDEWEB)

    Altamirano, D.; Van der Klis, M.; Wijnands, R. [Astronomical Institute, ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Ingram, A. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Linares, M.; Homan, J., E-mail: d.altamirano@uva.nl [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States)

    2012-11-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  18. A Thomson X-ray polarimeter for a small satellite mission and its scientific prospects

    Science.gov (United States)

    Paul, Biswajit; Gopala Krishna, M. R.; Puthiya Veetil, Rishin; Duraichelvan, R.; Maitra, Chandreyee

    2012-07-01

    A Thomson X-ray polarimeter is under fabrication for a small satellite mission of the ISRO. A brief description of the design, specifications, sensitivity, and development status of this instrument will be given. We will then discuss some of the important scientific goals, especially about accretion powered pulsars and accreting black holes, both in their hard and soft states. With an enregy range of 5-30 keV, this instrument will be a bridge between the soft X-ray polarimeter GEMS and the various Compton polarimeters under development.

  19. Late evolution of very low mass X-ray binaries sustained by radiation from their primaries

    Science.gov (United States)

    Ruderman, M.; Shaham, J.; Tavani, M.; Eichler, D.

    1989-01-01

    The accretion-powered radiation from the X-ray pulsar system Her X-1 (McCray et al. 1982) is studied. The changes in the soft X-ray and gamma-ray flux and in the accompanying electron-positron wind are discussed. These are believed to be associated with the inward movement of the inner edge of the accretion disk corresponding to the boundary with the neutron star's corotating magnetosphere (Alfven radius). LMXB evolution which is self-sustained by secondary winds intercepting the radiation emitted near an LMXB neutron star is investigated as well.

  20. Late evolution of very low mass X-ray binaries sustained by radiation from their primaries

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.; Shaham, J.; Tavani, M.; Eichler, D. (Columbia Univ., New York, NY (USA); Maryland Univ., College Park (USA); Negev Univ., Beersheba (Israel))

    1989-08-01

    The accretion-powered radiation from the X-ray pulsar system Her X-1 (McCray et al. 1982) is studied. The changes in the soft X-ray and gamma-ray flux and in the accompanying electron-positron wind are discussed. These are believed to be associated with the inward movement of the inner edge of the accretion disk corresponding to the boundary with the neutron star's corotating magnetosphere (Alfven radius). LMXB evolution which is self-sustained by secondary winds intercepting the radiation emitted near an LMXB neutron star is investigated as well. 59 refs.

  1. Research on navigation of satellite constellation based on an asynchronous observation model using X-ray pulsar

    Science.gov (United States)

    Guo, Pengbin; Sun, Jian; Hu, Shuling; Xue, Ju

    2018-02-01

    Pulsar navigation is a promising navigation method for high-altitude orbit space tasks or deep space exploration. At present, an important reason for restricting the development of pulsar navigation is that navigation accuracy is not high due to the slow update of the measurements. In order to improve the accuracy of pulsar navigation, an asynchronous observation model which can improve the update rate of the measurements is proposed on the basis of satellite constellation which has a broad space for development because of its visibility and reliability. The simulation results show that the asynchronous observation model improves the positioning accuracy by 31.48% and velocity accuracy by 24.75% than that of the synchronous observation model. With the new Doppler effects compensation method in the asynchronous observation model proposed in this paper, the positioning accuracy is improved by 32.27%, and the velocity accuracy is improved by 34.07% than that of the traditional method. The simulation results show that without considering the clock error will result in a filtering divergence.

  2. High-Energy X-Ray Imaging of the Pulsar Wind Nebula MSH 15-52: Constraints on Particle Acceleration and Transport

    Science.gov (United States)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.; Kaspi, Victoria M.; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fryer, Chris L.; Grefenstette, Brian W.; hide

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron emitting electron distribution at approximately 200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50 of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N(sub H) map. We discuss possible origins of the shell-like structure and their implications.

  3. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    Science.gov (United States)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  4. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  5. NuSTAR Hard X-ray Observations of the Energetic Millisecond Pulsars PSR B1821-24, PSR B1937+21, and PSR J0218+4232

    Science.gov (United States)

    Gotthelf, Eric V.; Bogdanov, Slavko

    2017-08-01

    We present NuSTAR hard X-ray timing and spectroscopy of the three exceptionally energetic rotation-powered millisecond pulsars PSRs B1821-24, B1937+21, and J0218+4232. By correcting for frequency and phase drifts of the NuSTAR on-board clock we are able to recover the intrinsic hard X-ray pulse profiles of all three pulsars with a resolution down to pulsars, respectively. We conduct phase-resolved spectroscopy in the 0.5 - 79 keV range for all three objects, obtaining the best yet measurements of the broad-band spectral shape and high-energy pulsed emission to date. We find extensions of the same power-law continua seen at lower energies, with no conclusive evidence for a spectral turnover or break. Extrapolation of the X-ray power-law spectrum to higher energies reveals that a turnover in the 100 keV to 100 MeV range is required to accommodate the high energy gamma-ray emission observed with Fermi LAT, similar to the broad-band spectral energy distribution observed for the Crab pulsar.

  6. A Unified Timing and Spectral Model for the Anomalous X-ray Pulsars XTE J1810-197 and CXOU J164710.2-455216

    Science.gov (United States)

    Albano, A.; Turolla, R.; Israel, G. L.; Zane, S.; Nobili, L.; Stella, L.

    2010-10-01

    Anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) are two small classes of X-ray sources strongly suspected to host a magnetar, i.e., an ultra-magnetized neutron star with B ≈ 1014-1015 G. Many SGRs/AXPs are known to be variable, and recently the existence of genuinely "transient" magnetars was discovered. Here, we present a comprehensive study of the pulse profile and spectral evolution of the two transient AXPs (TAXPs) XTE J1810-197 and CXOU J164710.2-455216. Our analysis was carried out in the framework of the twisted magnetosphere model for magnetar emission. Starting from three-dimensional Monte Carlo simulations of the emerging spectrum, we produced a large database of synthetic pulse profiles which was fitted to observed light curves in different spectral bands and at different epochs. This allowed us to derive the physical parameters of the model and their evolution with time, together with the geometry of the two sources, i.e., the inclination of the line of sight and the magnetic axis with respect to the rotation axis. We then fitted the (phase-averaged) spectra of the two TAXPs at different epochs using a model similar to that used to calculate the pulse profiles (ntzang in XSPEC) freezing all parameters to the values obtained from the timing analysis and leaving only the normalization free to vary. This provided acceptable fits to XMM-Newton data in all the observations we analyzed. Our results support a picture in which a limited portion of the star surface close to one of the magnetic poles is heated at the outburst onset. The subsequent evolution is driven both by the cooling/varying size of the heated cap and by a progressive untwisting of the magnetosphere.

  7. The long-term evolution of the spin, pulse shape, and orbit of the accretion-powered millisecond pulsar SAX J1808.4-3658

    NARCIS (Netherlands)

    Hartman, J.M.; Patruno, A.; Chakrabarty, D.; Kaplan, D.L.; Markwardt, C.B.; Morgan, E.H.; Ray, P.S.; van der Klis, M.; Wijnands, R.

    2008-01-01

    We present a 7 yr timing study of the 2.5 ms X-ray pulsar SAX J1808.4-3658, an X-ray transient with a recurrence time of approximate to 2 yr, using data from the Rossi X-Ray Timing Explorer covering four transient outbursts (1998-2005). We verify that the 401 Hz pulsation traces the spin frequency

  8. Evidence against field decay proportional to accreted mass in neutron stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1997-01-01

    A specific class of pulsar recycling model, in which magnetic field decrease is a function only of the amount of mass accreted on to the neutron star, is examined in detail. It is shown that no model in this class is consistent with all available data on X-ray binaries and recycled pulsars. Only if

  9. On the correlation between neutron star magnetic field and accreted mass

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; Arzoumanian, Z.; van der Hooft, F.; van den Heuvel, E.P.J.

    1999-01-01

    The correlation between accreted mass and field which appears to hold for a class of binary millisecond pulsars is tested for wider applicability. When all known constraints from X-ray binaries and recycled pulsars are combined, no universal relation between amount of field decay and amount of

  10. Tracing the accretion history of supermassive black holes through X-ray variability: results from the ChandraDeep Field-South

    Science.gov (United States)

    Paolillo, M.; Papadakis, I.; Brandt, W. N.; Luo, B.; Xue, Y. Q.; Tozzi, P.; Shemmer, O.; Allevato, V.; Bauer, F. E.; Comastri, A.; Gilli, R.; Koekemoer, A. M.; Liu, T.; Vignali, C.; Vito, F.; Yang, G.; Wang, J. X.; Zheng, X. C.

    2017-11-01

    We study the X-ray variability properties of distant active galactic nuclei (AGNs) in the ChandraDeep Field-South region over 17 yr, up to z ˜ 4, and compare them with those predicted by models based on local samples. We use the results of Monte Carlo simulations to account for the biases introduced by the discontinuous sampling and the low-count regime. We confirm that variability is a ubiquitous property of AGNs, with no clear dependence on the density of the environment. The variability properties of high-z AGNs, over different temporal time-scales, are most consistent with a power spectral density (PSD) described by a broken (or bending) power law, similar to nearby AGNs. We confirm the presence of an anticorrelation between luminosity and variability, resulting from the dependence of variability on black hole (BH) mass and accretion rate. We explore different models, finding that our acceptable solutions predict that BH mass influences the value of the PSD break frequency, while the Eddington ratio λEdd affects the PSD break frequency and, possibly, the PSD amplitude as well. We derive the evolution of the average λEdd as a function of redshift, finding results in agreement with measurements based on different estimators. The large statistical uncertainties make our results consistent with a constant Eddington ratio, although one of our models suggest a possible increase of λEdd with lookback time up to z ˜ 2-3. We conclude that variability is a viable mean to trace the accretion history of supermassive BHs, whose usefulness will increase with future, wide-field/large effective area X-ray missions.

  11. Millisecond Pulsars, their Evolution and Applications

    Science.gov (United States)

    Manchester, R. N.

    2017-09-01

    Millisecond pulsars (MSPs) are short-period pulsars that are distinguished from "normal" pulsars, not only by their short period, but also by their very small spin-down rates and high probability of being in a binary system. These properties are consistent with MSPs having a different evolutionary history to normal pulsars, viz., neutron-star formation in an evolving binary system and spin-up due to accretion from the binary companion. Their very stable periods make MSPs nearly ideal probes of a wide variety of astrophysical phenomena. For example, they have been used to detect planets around pulsars, to test the accuracy of gravitational theories, to set limits on the low-frequency gravitational-wave background in the Universe, and to establish pulsar-based timescales that rival the best atomic-clock timescales in long-term stability. MSPs also provide a window into stellar and binary evolution, often suggesting exotic pathways to the observed systems. The X-ray accretion-powered MSPs, and especially those that transition between an accreting X-ray MSP and a non-accreting radio MSP, give important insight into the physics of accretion on to highly magnetized neutron stars.

  12. Status of the accretion flow solution in the Golden Jubilee year of the discovery of extra-solar X-ray sources

    Science.gov (United States)

    Chakrabarti, S. K.

    Fifty years have just passed since the first discovery of the extra-solar X-ray sources by Giacconi and his team which we know today to be some stellar mass black holes. By 1973, not only a catalog of these enigmatic objects were made, and their spectra were obtained. Today, forty years have passed since the revolutionary idea of the thin, axisymmetric, Keplerian, disk model by Shakura and Sunyaev was published. Yet, the complete predictability of their radiative properties remains as illusive as ever. The only available and self-consistent solution to date is the generalized viscous transonic flow solutions where both heating and cooling effects are included. I demonstrate that the latest `Avatar' of the accretion/outflow picture, the Generalized Two Component Advective Flow (GTCAF), is capable of explaining almost all the black hole observational results, when the results of the time dependent simulation of viscous and radiative processes are also taken into consideration. I also discuss the problems with predictability and argue that understanding companion's behaviour in terms of its habit of mass loss, ellipticity of its orbit, magnetic properties, etc. is extremely important for the prediction of emission properties of the accretion flow.

  13. Two methods for studying the X-ray variability

    NARCIS (Netherlands)

    Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Wang, Na; Liu, Siming; Li, Xiang-Dong

    2016-01-01

    The X-ray aperiodic variability and quasi-periodic oscillation (QPO) are the important tools to study the structure of the accretion flow of X-ray binaries. However, the origin of the complex X-ray variability from X-ray binaries remains yet unsolved. We proposed two methods for studying the X-ray

  14. INTEGRAL detection of continued hard X-ray emission from MAXI J0911-655

    Science.gov (United States)

    Victor, J.-G.; Kuulkers, E.; Sidoli, L.; Sanchez-Fernandez, C.; Watanabe, K.; Pavan, L.; Bozzo, E.

    2017-05-01

    During the observations performed in the direction of the Carina Region and IGR J11014-6103 between 2017 May 8 at 04:50 and May 24 at 17:39, INTEGRAL detected activity from the accreting millisecond X-ray pulsar (AMXP) MAXI J0911-655 (Sanna et al., 2017, A & A, 598, 34; Atel #8872, #8884, #8914, #8971, #8986, #9738, #9740).

  15. Nature and evolution of the eclipsing millisecond binary pulsar PSR1957 + 20

    Science.gov (United States)

    Kluzniak, W.; Ruderman, M.; Shaham, J.; Tavani, M.

    1988-01-01

    A model in which a millisecond pulsar may be able to evaporate a very light companion by a particular component of its energetic radiation is applied to the recently discovered 1.6-ms pulsar PSR1957 + 20. Pulsar turn-on in the very low-mass X-ray binary follows a stage of mass transfer dominated by an evaporative wind from the surface of the companion. The wind is driven by a large MeV gamma-ray flux powered by an accretion dynamo. That source of radiation ceases when it is replaced by that from the millisecond pulsar, which has been spun up by accretion.

  16. The origin of planets orbiting millisecond pulsars

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1992-01-01

    A model for the formation of planets around millisecond pulsar which no longer have stellar companions is suggested. Detailed hydrodynamical models are presented which suggest that planet formation can occur either in a low-mass X-ray binary progenitor to a progenitor of a star-vaporizing millisecond pulsar when the neutron star is accreting material driven off its companion by X-ray irradiation or after a pulsar has formed and is vaporizing its companion. In both cases a circumbinary disk is created in which planets can form on a timescale of 10 exp 5 to 10 exp 6 yrs and the planets can survive a second phase in which the companion star moves toward the pulsar and is completely vaporized.

  17. X-ray Detection and Processing Models for Spacecraft Navigation and Timing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on work done under Microcosm's recently completed Phase II SBIR program on X-ray pulsar based navigation (XNAV), relevant X-ray source characterization, X-ray...

  18. X-rays as a probe of the Universe

    Indian Academy of Sciences (India)

    Table of contents. X-rays as a probe of the Universe · Probing the Universe ….. Flux = sT4 umax = 1011 T (in Kelvin) · History of x-ray astronomy · X-ray Production · X-ray spectra · Celestial sphere as seen by UHURU (1970) · Slide 8 · X-rays from accreting binary systems · Slide 10 · Neutron stars: Black Hole: · Primary X-ray ...

  19. Stable accretion from a cold disc in highly magnetized neutron stars

    Science.gov (United States)

    Tsygankov, S. S.; Mushtukov, A. A.; Suleimanov, V. F.; Doroshenko, V.; Abolmasov, P. K.; Lutovinov, A. A.; Poutanen, J.

    2017-11-01

    Aims: The aim of this paper is to investigate the transition of a strongly magnetized neutron star into the accretion regime with very low accretion rate. Methods: For this purpose, we monitored the Be-transient X-ray pulsar GRO J1008-57 throughout a full orbital cycle. The current observational campaign was performed with the Swift/XRT telescope in the soft X-ray band (0.5-10 keV) between two subsequent Type I outbursts in January and September 2016. Results: The expected transition to the propeller regime was not observed. However, transitions between different regimes of accretion were detected. In particular, after an outburst, the source entered a stable accretion state characterised by an accretion rate of 1014-1015 g s-1. We associate this state with accretion from a cold (low-ionised) disc of temperature below 6500 K. We argue that a transition to this accretion regime should be observed in all X-ray pulsars that have a certain combination of the rotation frequency and magnetic field strength. The proposed model of accretion from a cold disc is able to explain several puzzling observational properties of X-ray pulsars.

  20. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  1. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  2. Magnetization of Stellar Wind in the High-Mass X-Ray Binary OAO 1657-415

    Science.gov (United States)

    Kim, V. Yu.; Ikhsanov, N. R.

    2017-06-01

    Spin evolution of the X-ray pulsar OAO 1657-415 in a wind-fed High Mass X-ray Binary (HMXB) is discussed. We suggest that its regular spin-up behaviour superposed with the spin-up/down episodes can be explained in terms of the Magnetic Levitation Accretion scenario (MLA scenario). This implies that the neutron star captures matter from a magnetized stellar wind of its massive companion. The magnetic field of the wind at a distance of the orbital separation within this scenario can be limited within the range of 20-70 mG.

  3. Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058

    Science.gov (United States)

    Gusinskaia, N. V.; Deller, A. T.; Hessels, J. W. T.; Degenaar, N.; Miller-Jones, J. C. A.; Wijnands, R.; Parikh, A. S.; Russell, T. D.; Altamirano, D.

    2017-09-01

    We present quasi-simultaneous radio (VLA) and X-ray (Swift) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9-342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright (232 ± 4 μJy at 10 GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state (19 ± 4 μJy). The source then was undetected in radio ( 0.7 (where L_R ∝ L_X^{β }). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at LX millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.

  4. X-ray and Optical Studies of SAX J1808.4-3658 in Quiescence

    Science.gov (United States)

    Heinke, C. O.; Deloye, C. J.; Jonker, P. G.; Wijnands, R.; Taam, R. E.

    2008-10-01

    We have observed the accreting millisecond X-ray pulsar SAX J1808.4-3658 (1808) in quiescence during two 50 ksec XMM-Newton observations, and acquired near-simultaneous photometry with Gemini South. We find 1808's X-ray spectrum to be hard, describable with an absorbed power-law of photon index 1.7-1.9 and unabsorbed X-ray luminosity Lx = 5.2-7.9×1031 ergs s-1. No thermal neutron star (NS) component is seen, with a limit on any possible NS component of LNS(0.01-10 keV)history, requires highly enhanced neutrino cooling in the core of 1808's NS. The near-simultaneous Gemini observations find a large sinusoidal flux modulation on 1808's orbital period, consistent with predictions from an irradiated secondary star. We model the contributions of the disk and donor star, and find that the donor must be irradiated by an external flux of Lirr = 1.15-1.78×1034 ergs/s, much larger than observed in the X-ray band. This irradiation may be in the form of relativistic particles from the NS turning on as a radio pulsar when not accreting, as suggested by Burderi et al. The amplitude and color dependence of the optical modulation constrain the system inclination and donor radius. These constraints, through the pulsar mass function, deliver constraints on the NS mass of MNS>2.2 Msolar, or for a distance uncertainty 10% larger, of MNS>1.8 Msolar. Such a heavy NS is consistent with the accelerated neutrino cooling found from the X-ray observations.

  5. Radio Pulse Search and X-Ray Monitoring of SAX J1808.4-3658: What Causes Its Orbital Evolution?

    Science.gov (United States)

    Patruno, Alessandro; Jaodand, Amruta; Kuiper, Lucien; Bult, Peter; Hessels, Jason W. T.; Knigge, Christian; King, Andrew R.; Wijnands, Rudy; van der Klis, Michiel

    2017-06-01

    The accreting millisecond X-ray pulsar SAX J1808.4-3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin-orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4-3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deep radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra, Swift XRT, and INTEGRAL. In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4-3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4-3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin-orbit coupling.

  6. Pulsare.

    Science.gov (United States)

    Lyne, A. G.; Graham-Smith, F.

    This book is a German translation, by S. Klose and S. Marx, of the English original "Pulsar astronomy" (see 51.003.020) published in 1990. Contents: 1. Die Entdeckung der Pulsare. 2. Die Pulsare - ein Überblick. 3. Suchprogramme und Durchmusterungen. 4. Die Entfernungen der Pulsare. 5. Langzeitaufzeichnungen der Pulsare. 6. Irregularitäten im Zeitverhalten. 7. Die jungen Pulsare. 8. Die galaktische Population der Pulsare. 9. Supernovae. 10. Doppelstern- und Millisekundenpulsare. 11. Röntgendoppelsterne und Röntgenburster. 12. Integrale Pulsprofile. 13. Die einzelnen Pulse. 14. Die geometrische Anordnung der emittierenden Regionen. 15. Strahlungsprozesse. 16. Der Mechanismus der Pulsaremission. 17. Interstellare Szintillation und Streuung. 18. Das interstellare magnetische Feld. 19. Erfolge und Aussichten. 20. Der Pulsarkatalog.

  7. Simultaneous optical/X-ray study of GS 1354-64 (=BW Cir) during hard outburst: evidence for optical cyclo-synchrotron emission from the hot accretion flow

    Science.gov (United States)

    Pahari, Mayukh; Gandhi, Poshak; Charles, Philip A.; Kotze, Marissa M.; Altamirano, Diego; Misra, Ranjeev

    2017-07-01

    We present results from simultaneous optical [South African Large Telescope (SALT)] and X-ray (Swift and INTEGRAL) observations of GS 1354-64/BW Cir during the 2015 hard state outburst. During the rising phase, optical/X-ray time series shows a strong anti-correlation with X-ray photons lagging optical. Optical and X-ray power spectra show quasi-periodic oscillations (QPOs) at a frequency of ˜18 mHz with a confidence level of at least 99 per cent. Simultaneous fitting of Swift/XRT and INTEGRAL spectra in the range 0.5-1000.0 keV shows non-thermal, power-law-dominated (>90 per cent) spectra with a hard power-law index of 1.48 ± 0.03, inner disc temperature of 0.12 ± 0.01 keV and an inner disc radius of ˜3000 km. All evidence is consistent with cyclo-synchrotron radiation in a non-thermal, hot electron cloud extending to ˜100 Schwarzschild radii being a major physical process for the origin of optical photons. At outburst peak about one month later, when the X-ray flux rises and the optical drops, the apparent features in the optical/X-ray correlation vanish and the optical auto correlation widens. Although ˜0.19 Hz QPO is observed from the X-ray power spectra, the optical variability is dominated by the broad-band noise, and the inner disc temperature increases. These results support a change in the dominant optical emission source between outburst rise and peak, consistent with a weakening of hot flow as the disc moves in.

  8. The NuSTAR X-ray Spectrum of Hercules X-1: A Radiation-Dominated Radiative Shock

    Science.gov (United States)

    Wolff, Michael Thomas; Becker, Peter A.; Gottlieb, Amy; Fuerst, Felix; Britton Hemphill, Paul; Marcu-Cheatham, Diana; Pottschmidt, Katja; Schwarm, Fritz-Walter; Wilms, Joern; Wood, Kent

    2016-04-01

    We report on new spectral modeling of an observation of the accreting X-ray pulsar Her X-1 by the Nuclear Spectroscopic Telescope Array (NuSTAR). We utilize a radiation-dominated radiative shock model that is an implementation of the analytic work of Becker & Wolff (2007) on Comptonized accretion flows onto magnetic neutron stars within the XSPEC analysis environment. We obtain a good fit to the Her X-1 spin-phase averaged 4 to 78 keV X-ray spectrum observed by NuSTAR during a main-on phase of the Her X-1 35-day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous spectral models that characterized the shape of the X-ray spectrum but could not determine the physical parameters of the accretion flow. We describe the details of our spectral fitting model and we discuss the interpretation of the resulting accretion flow physical parameters.This research is supported by the NASA Astrophysics Data Analysis Program.

  9. Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)

    Science.gov (United States)

    Swank, Jean

    2008-01-01

    Astrophysical X-rays bring information about location, energy, time, and polarization. X-rays from compact objects were seen in the first explorations to vary in time. Eclipses and pulsations have simple explanations that identified the importance of X-ray binaries and magnetic neutron stars in the first decade of X-ray astronomy. The dynamics of accretion onto stellar and supermassive black holes and onto neutron stars with relatively low magnetic fields shows up as more complex variations, quasi-periodic oscillations, noise with characteristic frequency spectra, broad-band changes in the energy spectra. To study these variations, RXTE instruments needed to have large area and operational flexibility to find transient activity and observe when it was present. Proportional counters and Phoswich scintillators provided it in a modest mission that has made textbook level contributions to understanding of compact objects. The first seen, and the brightest known, X-ray binary, Sco X-1 is one of a class of neutron stars with low mass companions. Before RXTE, none of these had been seen to show pulsations, though they were hypothesized to be the precursors of radio pulsars with millisecond periods and low magnetic fields. RXTE's large area led to identifying coherent millisecond pulsars in a subset which are relatively faint transients. It also led to identifying short episodes of pulsation during thermonuclear bursts, in sources where a steady signal is not seen. The X-ray stage verifies the evolution that produces millisecond radio pulsars.Masses and radii of neutron stars are being determined by various techniques, constraining the equation of state of matter at nuclear densities. Accretion should lead to a range of neutron star masses. An early stage of superstrong magnetic field neutron stars is now known to produce X-ray and gamma-ray bursts in crust quakes and magnetic field reconnection releases of energy. Soft Gamma Repeaters, Anomolous X-ray Pulsars, and high

  10. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael Thomas

    2017-08-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We will present our science plan and initial results from the first months of the NICER mission.

  11. Joint x-ray

    Science.gov (United States)

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  12. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    V appeared.Hong and collaborators were then left with the task of piecing together this strange behavior into a picture of what was happening with this binary system.The authors proposed model for SXP 214. Here the binary has a ~30-day orbit tilted at 15 to the circumstellar disk. The pulsar passes through the circumstellar disk of its companion once per orbit. The interval marked A (orange line) is suggested as the period of time corresponding to the Chandra observations in this study: just as the neutron star is emerging from the disk after passing through it. [Hong et al. 2016]Passing Through a DiskIn the model the authors propose, the pulsar is on a ~30-day eccentric orbit that takes it through the circumstellar disk of its companion once per orbit.In this picture, the authors Chandra detections must have been made just as the pulsar was emerging from the circumstellar disk. The disk had initially hidden the soft X-ray emission from the pulsar, but as the pulsar emerged, that component became brighter, causing both the overall rise in X-ray counts and the shift in the spectrum to lower energies.Since the pulsars accretion is fueled by material picked up as it passes through the circumstellar disk, the accretion from a recent passage through the disk likely also caused the observed spin-up to the shorter period.If the authors model is correct, this series of observations of the pulsar as it emerges from the disk provides a rare opportunity to examine what happens to X-ray emission during this passage. More observations of this intriguing system can help us learn about the properties of the disk and the emission geometry of the neutron star surface.CitationJaeSub Hong et al 2016 ApJ 826 4. doi:10.3847/0004-637X/826/1/4

  13. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832-093

    Science.gov (United States)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.; Hord, Ben J.; de Oña Wilhelmi, Emma; Rahoui, Farid; Tomsick, John A.; Zhang, Shuo; Hong, Jaesub; Garvin, Amani M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-10-01

    We present a hard X-ray observation of the TeV gamma-ray binary candidate HESS J1832-093, which is coincident with the supernova remnant G22.7-0.2, using the Nuclear Spectroscopic Telescope Array. Non-thermal X-ray emission from XMMU J183245-0921539, the X-ray source associated with HESS J1832-093, is detected up to ˜30 keV and is well-described by an absorbed power-law model with a best-fit photon index {{Γ }}=1.5+/- 0.1. A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245-0921539 is {50}-20+40 % (90% C.L.), much less than previously reported. A search for a pulsar spin period or binary orbit modulation yields no significant signal to a pulse fraction limit of {f}ppower spectrum to suggest active accretion from a binary system. While further evidence is required, we argue that the X-ray and gamma-ray properties of XMMU J183245-0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission from a fast-moving supernova fragment interacting with a dense molecular cloud.

  14. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  15. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    Science.gov (United States)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  16. Rapid X-ray variability properties during the unusual very hard state in neutron-star low-mass X-ray binaries

    Science.gov (United States)

    Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.

    2017-11-01

    Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.

  17. Identifying the donor star of the most extreme ULX pulsar

    Science.gov (United States)

    Heida, Marianne

    2017-08-01

    Ultraluminous X-ray sources (ULXs) were once among the most promising candidates for long sought after intermediate-mass black holes, owing to their high X-ray luminosities (>10^39 erg/s) and off-nuclear positions. NGC 5907 ULX-1 was a prime example, and since it regularly reaches 10^41 erg/s it was thought to harbour a black hole with a mass of at least 500 solar masses. But in an astonishing discovery, the source was found to exhibit pulsations in the X-rays on second-timescales, revealing it to be a pulsar powered by accretion onto a neutron star with only 1.4 solar masses. This discovery challenges every known theory of accretion onto a compact object, which in this object exceeds the Eddington limit by a factor of 500. It requires us to imagine extreme departures from known accretion theory and/or binary evolution scenarios. The fuel source should be a massive companion star in order to sustain the required mass accretion rate, however X-ray timing favors a low-mass star. With the ability to detect a massive star, a short HST/WFC3 NIR observation would solve this mystery. A detection of a supergiant donor would open the path to future dynamical mass measurements with JWST, while a non-detection would prove that this extreme ULX pulsar contains a low-mass donor star, forcing us to consider new evolutionary formation channels.

  18. Identifying Bright X-Ray Beasts

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the

  19. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y., E-mail: lilirayhk@gmail.com, E-mail: akong@phys.nthu.edu.tw, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ∼79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  20. Radio Pulse Search and X-Ray Monitoring of SAX J1808.4−3658: What Causes Its Orbital Evolution?

    Energy Technology Data Exchange (ETDEWEB)

    Patruno, Alessandro; King, Andrew R. [Leiden Observatory, Leiden University, Neils Bohrweg 2, 2333 CA, Leiden (Netherlands); Jaodand, Amruta; Hessels, Jason W. T. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7900 AA, Dwingeloo (Netherlands); Kuiper, Lucien [SRON-National Institute for Space Research, Sorbonnelaan 2, NL-3584 CA, Utrecht (Netherlands); Bult, Peter; Wijnands, Rudy; Van der Klis, Michiel [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Knigge, Christian [University of Southampton, School of Physics and Astronomy, Southampton SO17 1BJ (United Kingdom)

    2017-06-01

    The accreting millisecond X-ray pulsar SAX J1808.4−3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin–orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4−3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deep radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra , Swift XRT, and INTEGRAL . In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4−3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4−3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin–orbit coupling.

  1. X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

    Science.gov (United States)

    deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.; hide

    2013-01-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB

  2. X-ray studies of neutron stars and their magnetic fields

    Science.gov (United States)

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  3. X-ray studies of neutron stars and their magnetic fields.

    Science.gov (United States)

    Makishima, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1-7) × 10(8) T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states.

  4. Chest X-Ray

    Medline Plus

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  5. Hand x-ray

    Science.gov (United States)

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  6. X-Ray

    Science.gov (United States)

    ... show up on chest X-rays. Breast cancer. Mammography is a special type of X-ray test used to examine breast tissue. Enlarged heart. This sign of congestive heart failure shows up clearly on X-rays. Blocked blood vessels. Injecting a contrast material that contains iodine can help highlight sections ...

  7. X-ray Optics Development at MSFC

    Science.gov (United States)

    Sharma, Dharma P.

    2017-01-01

    Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.

  8. X-ray Winds from Black Holes

    Science.gov (United States)

    Miller, Jon M.

    2017-08-01

    Across the mass scale, high-resolution X-ray spectroscopy has transformed our view of accretion onto black holes. The ionized disk winds observed from stellar-mass black holes may sometimes eject more mass than is able to accrete onto the black hole. It is possible that these winds can probe the fundamental physics that drive disk accretion. The most powerful winds from accretion onto massive black holes may play a role in feedback, seeding host bulges with hot gas and halting star formation. The lessons and techniques emerging from these efforts can also reveal the accretion flow geometry in tidal disruption events (TDEs), an especially rich discovery space. This talk will review some recent progress enabled by high-resolution X-ray spectroscopy, and look at the potential of gratings spectrometers and microcalorimeters in the years ahead.

  9. Studying Microquasars with X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Giorgio Matt

    2018-03-01

    Full Text Available Microquasars are Galactic black hole systems in which matter is transferred from a donor star and accretes onto a black hole of, typically, 10–20 solar masses. The presence of an accretion disk and a relativistic jet made them a scaled down analogue of quasars—thence their name. Microquasars feature prominently in the scientific goals of X-ray polarimeters, because a number of open questions, which are discussed in this paper, can potentially be answered: the geometry of the hot corona believed to be responsible for the hard X-ray emission; the role of the jet; the spin of the black hole.

  10. X-ray polarimetry an upcoming 'new' tool in Astronomy

    Science.gov (United States)

    Soffitta, P.

    2017-10-01

    Sensitive X-ray polarimetry promises to solve many different issues in X-ray Astronomy: from disentangling physics from geometry removing degeneracies in models of magnetars and X-ray binaries hosting neutron stars, to mapping ordered magnetic fields in Supernova Remnants and Pulsar Wind Nebulae. It constrains emission mechanisms in blazars and solves the mistery of X-ray emission from cold molecular clouds in the galactic center. Moreover it can answer to questions of fundamental physics. XIPE the X-ray Imaging Polarimetry Explorer accomplished phase A as an ESA M4 candidate and IXPE the Imaging X-ray Polarimetry explorer was selected as next SMEX mission by NASA for a flight in late 2020. In this talk I will describe both missions and their ability to make energy, time and angle resolved polarimetry thanks to a detector developed at this aim and to X-ray optics with a large effective area.

  11. A PROPELLER MODEL FOR THE SUB-LUMINOUS STATE OF THE TRANSITIONAL MILLISECOND PULSAR PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Papitto, A.; Torres, D. F. [Institute of Space Sciences (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193, Cerdanyola del Vallés, Barcelona (Spain)

    2015-07-01

    The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk and emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumptions that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk–magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray bands. The average emission observed from PSR J1023+0038 is modeled by a disk in-flow with a rate of 1–3 × 10{sup −11} M{sub ⊙} yr{sup −1}, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that assume that a rotation-powered pulsar is turned on, showing how the spin-down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.

  12. Characterising the global accretion inflow variability for PSR J1023+0038

    Science.gov (United States)

    Hernandez Santisteban, Juan

    2016-10-01

    PSR J1023+0038 is one of the first discovered transitional millisecond pulsars. These systems switch between a low-mass X-ray binary and a radio millisecond pulsar state and link these two source classes, in turn, confirming the pulsar recycling mechanism. Observation of PSR J1023+0038 and other tMSPs shown that this recycling occurs at luminosity levels usually considered as quiescent for other LMXBs. Hence, tMSPs also serve as unique avenues to test low level accretion onto neutron star surface, and interaction between accretion inflow and the pulsar magnetosphere. This low-level accretion regime has remained highly stable for the last 3.75 yr as evidenced by steady X-ray light curves characterised by 'low' and 'high' modes and rapid switches between the two. Recently, we have also seen similar moding behaviour at longer wavelengths including UV and optical. This is very intriguing as the X-ray moding originates in an inner accretion flow closer to the neutron star and constrained within the light cylinder. Whereas, UV variability is thought to emanate from colder, outer parts of the accretion disk. We request HST/NUV coverage to complement our XMM-Newton observation in order to search and characterise lags between and X-ray and UV emission. This simultaneity will allow us to probe two distinct regions of the system that seem to share a common variability. Ultimately we aim to understand what controls the accretion flow and state transitions in tMSPs.

  13. INTEGRAL monitoring of the X-ray burster XTE J1739-285

    DEFF Research Database (Denmark)

    Sánchez-Fernández, C.; Kuulkers, E.; Chenevez, Jérôme

    2008-01-01

    XTE J1739-285 is a recurrent X-ray transient first discovered by INTEGRAL as an X-ray burster. We have carried out a systematic search for X-ray bursts at various levels of accretion rate onto the Neutron Star surface during the source outbursts in 2005 and 2006. A total of 25 X-ray bursts were...

  14. A new catalogue of ultraluminous X-ray sources (and more!)

    Science.gov (United States)

    Roberts, T.; Earnshaw, H.; Walton, D.; Middleton, M.; Mateos, S.

    2017-10-01

    Many of the critical issues of ultraluminous X-ray source (ULX) science - for example the prevalence of IMBH and/or ULX pulsar candidates within the wider ULX population - can only be addressed by studying statistical samples of ULXs. Similarly, characterising the range of properties displayed by ULXs, and so understanding their accretion physics, requires large samples of objects. To this end, we introduce a new catalogue of 376 ultraluminous X-ray sources and 1092 less luminous point X-ray sources associated with nearby galaxies, derived from the 3XMM-DR4 catalogue. We highlight applications of this catalogue, for example the identification of new IMBH candidates from the most luminous ULXs; and examining the physics of objects at the Eddington threshold, where their luminosities of ˜ 10^{39} erg s^{-1} indicate their accretion rates are ˜ Eddington. We also show how the catalogue can be used to start to examine a wider range of lower luminosity (sub-ULX) point sources in star forming galaxies than previously accessible through spectral stacking, and argue why this is important for galaxy formation in the high redshift Universe.

  15. Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies.

    Science.gov (United States)

    Irwin, Jimmy A; Maksym, W Peter; Sivakoff, Gregory R; Romanowsky, Aaron J; Lin, Dacheng; Speegle, Tyler; Prado, Ian; Mildebrath, David; Strader, Jay; Liu, Jifeng; Miller, Jon M

    2016-10-20

    A flaring X-ray source was found near the galaxy NGC 4697 (ref. 1). Two brief flares were seen, separated by four years. During each flare, the flux increased by a factor of 90 on a timescale of about one minute. There is no associated optical source at the position of the flares, but if the source was at the distance of NGC 4697, then the luminosities of the flares were greater than 10 39 erg per second. Here we report the results of a search of archival X-ray data for 70 nearby galaxies looking for similar flares. We found two ultraluminous flaring sources in globular clusters or ultracompact dwarf companions of parent elliptical galaxies. One source flared once to a peak luminosity of 9 × 10 40 erg per second; the other flared five times to 10 40 erg per second. The rise times of all of the flares were less than one minute, and the flares then decayed over about an hour. When not flaring, the sources appear to be normal accreting neutron-star or black-hole X-ray binaries, but they are located in old stellar populations, unlike the magnetars, anomalous X-ray pulsars or soft γ repeaters that have repetitive flares of similar luminosities.

  16. Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars.

    Science.gov (United States)

    Chakrabarty, Deepto; Morgan, Edward H; Muno, Michael P; Galloway, Duncan K; Wijnands, Rudy; Van Der Klis, Michiel; Markwardt, Craig B

    2003-07-03

    Millisecond pulsars are neutron stars that are thought to have been spun-up by mass accretion from a stellar companion. It is not known whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many neutron stars that are accreting mass from a companion star exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond-period brightness oscillations during bursts from ten neutron stars (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting neutron stars, corroborating earlier evidence. The distribution of spin frequencies of the 11 nuclear-powered pulsars cuts off well below the breakup frequency for most neutron-star models, supporting theoretical predictions that gravitational radiation losses can limit accretion torques in spinning up millisecond pulsars.

  17. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  18. Spin-down of radio millisecond pulsars at genesis.

    Science.gov (United States)

    Tauris, Thomas M

    2012-02-03

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  19. Nature and evolution of the eclipsing millisecond binary pulsar PSR1957+20

    Energy Technology Data Exchange (ETDEWEB)

    Kluzniak, W.; Ruderman, M.; Shaham, J.; Tavani, M.

    1988-07-21

    A millisecond pulsar may be able to evaporate a very light companion by a particular component of its energetic radiation. Pulsar turn-on in the binary follows a stage of mass transfer in a very low-mass X-ray binary, dominated by an evaporative wind from the surface of a very light, at least partially degenerate companion. The wind is driven by a large MeV ..gamma..-ray flux powered by an accretion dynamo. That source of irradiation ceases when it is replaced by that from the millisecond pulsar, which has been spun up by accretion. We apply this model to the recently discovered 1.6-ms pulsar PSR1957 + 20.

  20. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Deepto; Nowak, Michael A. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Psaltis, Dimitrios [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Bachetti, Matteo; Barret, Didier [Observatoire Midi-Pyrénées, Université de Toulouse III - Paul Sabatier, F-31400 Toulouse (France); Christensen, Finn E. [Division of Astrophysics, National Space Institute, Technical University of Denmark, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M. [Department of Physics, McGill University, Montreal, PQ H3A 2T8 (Canada); Miller, Jon M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wik, Daniel R.; Zhang, William W. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wilms, Jörn, E-mail: deepto@mit.edu [Dr. Karl-Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany)

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ...

  3. Accretion

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The process by which a celestial body increases its mass by aggregating smaller objects which collide with it. Several types of object grow by accretion. In binary stars in which mass transfer is taking place, one member grows at the expense of the other; black holes, including supermassive black holes believed to be present in active galactic nuclei, also increase their mass by accretion. In bot...

  4. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    Science.gov (United States)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  5. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  6. Genesis stories for the millisecond pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.A.; Shaham, J.

    1983-09-01

    Theoretical models proposed to explain the origin of the millisecond pulsar (MP) PSR 1937+214 are reviewed, examining their ability to explain its low surface dipole magnetic field (B), its low birth temperature (less than 10 to the 8th K), the absence of a companion or remnant, and its low velocity perpendicular to the Galactic plane. The models discussed are a single isolated explosion forming a rapidly spinning neutron star, spin-up of a dead pulsar by accretion from a companion, collapse of an accreting spinning white dwarf, and fusion of a tight binary composed of two old neutron stars. Although all of the models have difficulties in explaining one or more of the MP characteristics, the second model is found to be most probable in the light of present knowledge. The lack of a companion is explained by its tidal disruption after it had fed the accreting pre-pulsar for 1 Gyr or more and its mass had decreased to about 0.01 solar mass. Neutron stars accreting in this way have been observed in Galactic-bulge X-ray sources.

  7. Suzaku Observations of PSR B1259-63: A New Manifestation of Relativistic Pulsar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Yasunobu; Tanaka, Takaaki; Takahashi, Tadayuki; Mori, Koji; Nakazawa, Kazuhiro

    2009-04-27

    We observed PSR B1259-63, a young non-accreting pulsar orbiting around a Be star SS 2883, eight times with the Suzaku satellite from July to September 2007, to characterize the X-ray emission arising from the interaction between a pulsar relativistic wind and Be star outflows. The X-ray spectra showed a featureless continuum in 0.6-10 keV, modeled by a power law with a wide range of photon index 1.3-1.8. When combined with the Suzaku PIN detector which allowed spectral analysis in the hard 15-50 keV band, X-ray spectra do show a break at {approx} 5 keV in a certain epoch. Regarding the PSR B1259-63 system as a compactified pulsar wind nebula, in which e{sup {+-}} pairs are assumed to be accelerated at the inner shock front of the pulsar wind, we attribute the X-ray spectral break to the low-energy cutoff of the synchrotron radiation associated with the Lorentz factor of the relativistic pulsar wind {gamma}{sub 1} {approx} 4 x 10{sup 5}. Our result indicates that Comptonization of stellar photons by the unshocked pulsar wind will be accessible (or tightly constrained) by observations with the Fermi Gamma-ray Space Telescope during the next periastron passage. The PSR B1259-63 system allows us to probe the fundamental properties of the pulsar wind by a direct means, being complementary to the study of large-scale pulsar wind nebulae.

  8. X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fenster, A. [Univ. of Western Ontario, J.P. Robarts Institute, London, Ontario (Canada); Yaffe, M.J. [Univ. of Toronto, Depts. of Medical Biophysics and Medical Imaging, North York, Ontario (Canada)

    1995-09-01

    In this article, we briefly review the principles of x-ray imaging, consider some of its applications in medicine and describe some of the developments in this area which have taken place in Canada. X rays were first used for diagnosis and therapy in medicine almost immediately after the report of their discovery by Roentgen in 1895. X-ray imaging has remained the primary tool for the investigation of structures within the body up to the present time (Johns and Cunningham 1983). Medical x rays are produced in a vacuum tube by the electron bombardment of a metallic target. Electrons emitted from a heated cathode are accelerated through an electric field to energies of 20-150 keV (wavelength 6.2-0.83 nm) and strike a target anode. X rays appear in a spectrum of bremsstrahlung radiation with energies ranging from 0 to a value that is numerically equal to the peak voltage applied between the cathode and anode of the x-ray tube (Figure 1). In addition, where the energy of the impinging electrons exceeds the binding energy of inner atomic orbitals of the target material, electrons may be ejected from those shells. Filling of these shells by more loosely-bound electrons gives rise to x rays whose energies are equal to the difference of the binding energies of the donor and acceptor shells. The energies of these characteristic x rays are unique to the target material. Less than 1% of the energy of the incident electrons is converted to that of x rays, while the remainder is dissipated as heat in the target. For this reason, a tremendous amount of engineering has gone into the design of x-ray tubes that can yield a large fluence rate of quanta from a small effective source size, while withstanding the enormous applied heat loading (e.g. 10 kJ per exposure). Tungsten is by far the most common material used for targets in tubes for diagnostic radiology, because of its high melting point and its high atomic number; the efficiency of x-ray production is proportional to Z of the

  9. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  12. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  13. Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31

    Science.gov (United States)

    Yukita, M.; Ptak, A.; Hornschemeier, A. E.; Wik, D.; Maccarone, T. J.; Pottschmidt, K.; Zezas, A.; Antoniou, V.; Ballhausen, R.; Lehmer, B. D.; hide

    2017-01-01

    We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10keVobservations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 keV) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.

  14. Pulsar wind nebulae created by fast-moving pulsars

    Science.gov (United States)

    Kargaltsev, O.; Pavlov, G. G.; Klingler, N.; Rangelov, B.

    2017-10-01

    We review multiwavelength properties of pulsar wind nebulae created by supersonically moving pulsars and the effects of pulsar motion on the pulsar wind nebulae morphologies and the ambient medium. Supersonic pulsar wind nebulae are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in supersonic pulsar wind nebula studies have been made in deep observations with the Chandra and XMM-Newton X-ray observatories and the Hubble Space Telescope. In particular, these observations have revealed very diverse supersonic pulsar wind nebula morphologies in the pulsar vicinity, different spectral behaviours of long pulsar tails, the presence of puzzling outflows misaligned with the pulsar velocity and far-UV bow shocks. Here we review the current observational status focusing on recent developments and their implications.

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight March is National Colorectal Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight February is American Heart Month Recently posted: Carotid Intima-Media Thickness Test ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  1. Sinus x-ray

    Science.gov (United States)

    ... an infection and inflammation of the sinuses called sinusitis . A sinus x-ray is ordered when you have any of the following: Symptoms of sinusitis Other sinus disorders, such as a deviated septum ( ...

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  4. Chest X-Ray

    Medline Plus

    Full Text Available ... and You Take our survey Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You ...

  5. X-ray

    Science.gov (United States)

    ... X-ray References Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard ... Updated by: C. Benjamin Ma, MD, Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic ...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... and use a very small dose of ionizing radiation to produce pictures of the inside of the ... x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. ... University in Durham, North Carolina. I’d like to talk with you about chest radiography also known ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight October is National Breast Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  9. Aquila X-1 from outburst to quiescence: the onset of the propeller effect and signs of an awaken rotation powered pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Campana, S.; Stella, L.; Mereghetti, S.; Colpi, M.; Tavani, M.; Ricci, D.; Dal Fiume, D.; Belloni, T

    1999-01-01

    According to current evolutionary scenarios, neutron stars in Low Mass X-Ray Binaries (LMXRBs) are spun-up by accretion torques to limiting periods in the millisecond range and give rise to 'recycled' millisecond radio pulsars once accretion stops{sup 1-3}. In addition to persistent sources, the X-ray sky is populated by a number of transient sources. Among them, Soft X-Ray Transients (SXRTs), when in outburst, show properties similar to those of LMXRBs{sup 4-6}. SXRTs are characterised by luminosities, and therefore mass accretion rates, that vary over many decades: while it is clear that when in outburst their emission is powered by accretion onto the neutron star surface, the origin of the low-level emission detected during quiescence remained uncertain{sup 7,8}. Here we report on BeppoSAX pointed observations of Aql X-1, the first to follow the decay of a SXRT outburst down to quiescence. The fast X-ray flux decay that leads to quiescence is most readily interpreted in terms of the propeller effect arising from the very fast rotation of the neutron star magnetosphere. The hard X-ray spectrum that characterises the quiescent emission is probably due to shock emission powered by a turned-on radio pulsar.

  10. Insights into the High-Mass X-ray Binary Population of the Magellanic Clouds

    Science.gov (United States)

    Antoniou, V.; Zezas, A.; Hatzidimitriou, D.; Kalogera, V.

    2013-09-01

    In contrast to the Small Magellanic Cloud (SMC), the Large Magellanic Cloud (LMC), our nearest starforming galaxy with metallicity between the Galaxy and the SMC, has received little attention in X-rays so far. With the aim to compare the accreting X-ray binary (XRB) populations in two of our nearest star-forming galaxies, we recently compiled the most complete census of high-mass X-ray binaries (HMXBs) in the LMC. We found 43 members of which 13 are XRB pulsars, while we also identified their most likely optical counterpart (previously, half of these sources lacked an identification). Using this census, we investigated the link between the young accreting XRBs and their parent stellar populations. It was known that HMXBs can be used as star-formation (SF) rate indicators, but these first studies have been focused only on bright systems (Galaxy: >1038 erg s-1, Magellanic Clouds: >1036 erg s-1) and SF values for the whole galaxy. By including Magellanic Cloud sources with X-ray luminosities at least two order of magnitudes fainter than the above limits and by utilizing the detailed, spatially resolved, SF history maps of these galaxies, we were able to provide observational constraints on ill-understood parameters related to their formation and evolution (such as the kick velocities imparted into the neutron star during the supernova explosion) and to derive their formation efficiency. This work was mainly supported by the National Aeronautics and Space Administration under Grant No. NNX10AH47G issued through the Astrophysics Data Analysis Program.

  11. Globular cluster X-ray sources

    Science.gov (United States)

    Pooley, D.

    We know from observations that globular clusters are very efficient catalysts in forming unusual binary systems, such as low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and millisecond pulsars (MSPs), with formation rates per unit mass exceeding those in the Galactic disk by orders of magnitude. The high stellar densities in globular clusters trigger various dynamical interactions: exchange encounters, direct collisions, destruction of binaries, and tidal capture. This binary population is, in turn, critical to the stabilization of globular clusters against gravitational collapse; the long-term stability of a cluster is thought to depend on tapping into the gravitational binding energy of such close binaries. I will present an overview of the current state of globular cluster X-ray observations, as well as our work on deep Chandra observations of M4, where we reach some of the lowest X-ray luminosities in any globular cluster (comparable to the deep observations of 47 Tuc and NGC 6397). One of M4 X-ray sources previously classified as a white dwarf binary is likely a neutron star binary, and another X-ray source is a sub-subgiant, the nature of which is still unclear. skip=3pt

  12. Alternancia entre el estado de emisión de Rayos-X y Pulsar en Sistemas Binarios Interactuantes

    Science.gov (United States)

    De Vito, M. A.; Benvenuto, O. G.; Horvath, J. E.

    2015-08-01

    Redbacks belong to the family of binary systems in which one of the components is a pulsar. Recent observations show redbacks that have switched their state from pulsar - low mass companion (where the accretion of material over the pulsar has ceased) to low mass X-ray binary system (where emission is produced by the mass accretion on the pulsar), or inversely. The irradiation effect included in our models leads to cyclic mass transfer episodes, which allow close binary systems to switch between one state to other. We apply our results to the case of PSR J1723-2837, and discuss the need to include new ingredients in our code of binary evolution to describe the observed state transitions.

  13. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W.; Huang, H.H. (eds.)

    2007-07-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray (Radiography) - ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  1. X-ray Studies of Planetary Nebulae

    Science.gov (United States)

    Montez, Rodolfo

    2017-10-01

    X-ray emission from planetary nebulae (PNe) provides unique insight on the formation and evolution of PNe. Past observations and the ongoing Chandra Planetary Nebulae Survey (ChanPlaNS) provide a consensus on the two types of X-ray emission detected from PNe: extended and compact point-like sources. Extended X-ray emission arises from a shocked ``hot bubble'' plasma that resides within the nebular shell. Cooler than expected hot bubble plasma temperatures spurred a number of potential solutions with one emerging as the likely dominate process. The origin of X-ray emission from compact sources at the location of the central star is less clear. These sources might arise from one or combinations of the following processes: self-shocking stellar winds, spun-up binary companions, and/or accretion, perhaps from mass transfer, PN fallback, or debris disks. In the discovery phase, X-ray studies of PNe have mainly focused on the origin of the various emission processes. New directions incorporate multi-wavelength observations to study the influence of X-ray emission on the rest of the electromagnetic spectrum.

  2. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  3. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    Science.gov (United States)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  4. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  5. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2008-01-01

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in X-ray binaries. As most of the known X-ray bursters are frequently observed by INTEGRAL, an international collaboration have been taking advantage of its instrumentation to specifically monitor the occurrence...... of exceptional burst events lasting more than ~10 minutes. Half of the dozen so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading...

  6. Further Constraints on Thermal Quiescent X-Ray Emission from SAX J1808.4-3658

    Science.gov (United States)

    Heinke, C. O.; Jonker, P. G.; Wijnands, R.; Deloye, C. J.; Taam, R. E.

    2009-02-01

    We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power law with photon index 1.74 ± 0.11 and unabsorbed X-ray luminosity LX = 7.9 ± 0.7 × 1031 ergs s-1, for NH = 1.3 × 1021 cm-2. Fitting all the quiescent XMM-Newton X-ray spectra with a power law, we constrain any thermally emitting neutron star (NS) with a hydrogen atmosphere to have a temperature less than 30 eV and L NS (0.01-10 keV) history or initial NS mass in these otherwise similar systems. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  7. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.|info:eu-repo/dai/nl/08747610X

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  8. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  9. ON THE FORMATION OF THE PECULIAR LOW-MASS X-RAY BINARY IGR J17480-2446 IN TERZAN 5

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Long; Li Xiangdong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2013-07-20

    IGR J17480-2446 is an accreting X-ray pulsar in a low-mass X-ray binary harbored in the Galactic globular cluster Terzan 5. Compared with other accreting millisecond pulsars, IGR J17480-2446 is peculiar for its low spin frequency (11 Hz), which suggests that it might be a mildly recycled neutron star at the very early phase of mass transfer. However, this model seems to be in contrast with the low field strength deduced from the kilo-Hertz quasi-periodic oscillations observed in IGR J17480-2446. Here, we suggest an alternative interpretation, assuming that the current binary system was formed during an exchange encounter either between a binary (which contains a recycled neutron star) and the current donor, or between a binary and an isolated, recycled neutron star. In the resulting binary, the spin axis of the neutron star could be parallel or anti-parallel with the orbital axis. In the latter case, the abnormally low frequency of IGR J17480-2446 may result from the spin-down to spin-up evolution of the neutron star. We also briefly discuss the possible observational implications of the pulsar in this scenario.

  10. Accretion Processes in Astrophysics

    Science.gov (United States)

    González Martínez-País, Ignacio; Shahbaz, Tariq; Casares Velázquez, Jorge

    2014-03-01

    List of contributors; List of participants; Preface; Acknowledgments; Abbreviations; 1. Accretion disks Henk Spruit; 2. The evolution of binary systems Philipp Podsiadlowski; 3. Accretion onto white dwarfs Brian Warner; 4. Accretion in X-ray binary systems Robert I. Hynes; 5. X-ray binary populations in galaxies Giuseppina Fabbiano; 6. Observational characteristics of accretion onto black holes I Chris Done; 7. Observational characteristics of accretion onto black holes II Rob Fender; 8. Computing black hole accretion John F. Hawley; Appendix: Piazzi Smyth, the Cape of Good Hope, Tenerife and the siting of large telescopes Brian Warner.

  11. X-ray spectra from magnetar candidates - III. Fitting SGR/AXP soft X-ray emission with non-relativistic Monte Carlo models

    NARCIS (Netherlands)

    Zane, S.; Rea, N.; Turolla, R.; Nobili, L.

    2009-01-01

    Within the magnetar scenario, the ‘twisted magnetosphere’ model appears very promising in explaining the persistent X-ray emission from soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs). In the first two papers of the series, we have presented a 3D Monte Carlo code for solving radiation

  12. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) ... top of page What are some common uses of the procedure? A bone x-ray is used ...

  14. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  15. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  16. Ultraluminous supersoft X-ray sources

    Science.gov (United States)

    Liu, Jifeng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2017-06-01

    While ultraluminous supersoft X-ray sources (ULSs) bear features for intermediate mass black holes or very massive white dwarfs possibly close to Chandrasekhar mass limit, our recent discovery of processing relativistic baryonic jets from a prototype ULS in M81 demonstrate that they are not IMBHs or WDs, but black holes accreting at super-Eddington rates. This discovery strengthens the recent ideas that ULXs are stellar black holes with supercritical accretion, and provides a vivid manifestation of what happens when a black hole devours too much, that is, it will generate thick disk winds and fire out sub-relativistic baryonic jets along the funnel as predicted by recent numerical simulations.

  17. The 2016 super-Eddington outburst of SMC X-3: X-ray and optical properties and system parameters

    Science.gov (United States)

    Townsend, L. J.; Kennea, J. A.; Coe, M. J.; McBride, V. A.; Buckley, D. A. H.; Evans, P. A.; Udalski, A.

    2017-11-01

    On 2016 July 30 (MJD 57599), observations of the Small Magellanic Cloud by Swift/XRT found an increase in X-ray counts coming from a position consistent with the Be/X-ray binary pulsar SMC X-3. Follow-up observations on 2016 August 3 (MJD 57603) and 2016 August 10 (MJD 57610) revealed a rapidly increasing count rate and confirmed the onset of a new X-ray outburst from the system. Further monitoring by Swift began to uncover the enormity of the outburst, which peaked at 1.2 × 1039 erg s-1 on 2016 August 25 (MJD 57625). The system then began a gradual decline in flux that was still continuing over 5 months after the initial detection. We explore the X-ray and optical behaviour of SMC X-3 between 2016 July 30 and 2016 December 18 during this super-Eddington outburst. We apply a binary model to the spin-period evolution that takes into account the complex accretion changes over the outburst, to solve for the orbital parameters. Our results show SMC X-3 to be a system with a moderately low eccentricity amongst the Be/X-ray binary systems and to have a dynamically determined orbital period statistically consistent with the prominent period measured in the OGLE optical light curve. Our optical and X-ray derived ephemerides show that the peak in optical flux occurs roughly 6 d after periastron. The measured increase in I-band flux from the counterpart during the outburst is reflected in the measured equivalent width of the Hα line emission, though the Hα emission itself seems variable on sub-day time-scales, possibly due to the NS interacting with an inhomogeneous disc.

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions ... Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, ...

  20. Pelvis x-ray

    Science.gov (United States)

    The x-ray is used to look for: Fractures Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... Abnormal results may suggest: Pelvic fractures Arthritis of the hip joint ... spondylitis (abnormal stiffness of the spine and joint) ...

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... Radiology (IDoR) Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound November 8 is ...

  2. Celestial X-ray Source Modeling and Catalogues for Spacecraft Navigation and Timing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Microcosm X-ray pulsar-based navigation and timing (XNAV) team will provide the software and modeling infrastructure for NASA to support XNAV operations,...

  3. X-ray filter for x-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  4. Discovery of X-ray pulsations from a massive star.

    Science.gov (United States)

    Oskinova, Lidia M; Nazé, Yael; Todt, Helge; Huenemoerder, David P; Ignace, Richard; Hubrig, Swetlana; Hamann, Wolf-Rainer

    2014-06-03

    X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star ξ(1) CMa. This star is a variable of β Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.

  5. Disc-jet coupling in low-luminosity accreting neutron stars

    Science.gov (United States)

    Tudor, V.; Miller-Jones, J. C. A.; Patruno, A.; D'Angelo, C. R.; Jonker, P. G.; Russell, D. M.; Russell, T. D.; Bernardini, F.; Lewis, F.; Deller, A. T.; Hessels, J. W. T.; Migliari, S.; Plotkin, R. M.; Soria, R.; Wijnands, R.

    2017-09-01

    In outburst, neutron star X-ray binaries produce less powerful jets than black holes at a given X-ray luminosity. This has made them more difficult to study as they fade towards quiescence. To explore whether neutron stars power jets at low accretion rates (LX ≲ 1036 erg s-1), we investigate the radio and X-ray properties of three accreting millisecond X-ray pulsars (IGR J17511-3057, SAX J1808.4-3658 and IGR J00291+5934) during their outbursts in 2015, and of the non-pulsing neutron star Cen X-4 in quiescence (2015) and in outburst (1979). We did not detect the radio counterpart of IGR J17511-3057 in outburst or of Cen X-4 in quiescence, but did detect IGR J00291+5934 and SAX J1808.4-3658, showing that at least some neutron stars launch jets at low accretion rates. While the radio and X-ray emission in IGR J00291+5934 seem to be tightly correlated, the relationship in SAX J1808.4-3658 is more complicated. We find that SAX J1808.4-3658 produces jets during the reflaring tail, and we explore a toy model to ascertain whether the radio emission could be attributed to the onset of a strong propeller. The lack of a universal radio/X-ray correlation, with different behaviours in different neutron star systems (with various radio/X-ray correlations; some being radio faint and others not), points at distinct disc-jet interactions in individual sources, while always being fainter in the radio band than black holes at the same X-ray luminosity.

  6. New class of radio pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Alpar, M.A.; Ruderman, M.A.; Shaham, J. (Columbia Univ., New York (USA). Columbia Astrophysics Lab.); Cheng, A.F. (Rutgers--the State Univ., Piscataway, NJ (USA))

    1982-12-01

    It is proposed that the recently discussed millisecond pulsar 4C21.53, together with the binaries PSRs 1913 + 16, 0820 + 02 and 0655 + 64, a well as possibly several isolated pulsars such as PSRs 1952 + 29 and 1804 + 08, belong to a new class of fast accretion-spun-up pulsars. The spin-down rate, life-time and accretion time of such pulsars, are examined.

  7. Understanding X-ray reflection emissivity profiles in AGN: locating the X-ray source

    Science.gov (United States)

    Wilkins, D. R.; Fabian, A. C.

    2012-08-01

    The illumination pattern (or emissivity profile) of the accretion disc due to the reflection of X-rays in active galactic nucleus can be understood in terms of relativistic effects on the rays propagating from a source in a corona surrounding the central black hole, both on their trajectories and on the accretion disc itself. Theoretical emissivity profiles due to isotropic point sources as well as simple extended geometries are computed in general relativistic ray-tracing simulations performed on graphics processing units (GPUs). Such simulations assuming only general relativity naturally explain the accretion disc emissivity profiles determined from relativistically broadened emission lines which fall off steeply (with power-law indices of between 6 and 8) over the inner regions of the disc, then flattening off to almost a constant before tending to a constant power law of index 3 over the outer disc. Simulations for a variety of source locations, extents and geometries show how the emissivity profiles depend on these properties, and when combined with reverberation time lags allow the location and extent of the primary X-ray source to be constrained. Comparing the emissivity profile determined from the broadened iron K emission line in spectra of 1H 0707-495 obtained in 2008 January to theoretical emissivity profiles and applying constraints from reverberation lags suggest that there exists an extended region of primary X-ray emission located as low as 2rg above the accretion disc, extending outwards to a radius of around 30rg.

  8. Hard X-ray brightening of Ginga 1843+009 seen by INTEGRAL

    DEFF Research Database (Denmark)

    Leyder, J.-C.; Chenevez, Jérôme; Fiocchi, M.T.

    2005-01-01

    The transient X-ray pulsar, Ginga 1843+009, appears to be undergoing a hard X-ray outburst brighter than the one reported in May 2003 (ATEL #159). The source has been observed during ISWT observations of the Scutum Arm region with INTEGRAL and was first detected when the source was in the field o...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... shades of gray and air appears black. Until recently, x-ray images were maintained on large film ... assist you in finding the most comfortable position possible that still ensures x-ray image quality. top ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  13. Coherent x-ray optics

    CERN Document Server

    Paganin, David M

    2006-01-01

    'Coherent X-Ray Optics' gives a thorough treatment of the rapidly expanding field of coherent x-ray optics, which has recently experienced something of a renaissance with the availability of third-generation synchrotron sources.

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissues around or in bones. top of page How should I prepare? Most bone x-rays require ... is placed beneath the patient. top of page How does the procedure work? X-rays are a ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ... and procedures may vary by geographic region. Discuss the fees associated with your prescribed ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used ... placed beneath the patient. top of page How does the procedure work? X-rays are a form ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of ionizing radiation to produce pictures of the inside of the body. X-rays are the oldest ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray technologist if there is any possibility that they are pregnant. Many imaging tests are not performed during pregnancy ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  7. Geriatric Pulsar Still Kicking

    Science.gov (United States)

    2009-02-01

    The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active. The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known. Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars". Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second. The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Erratic Black Hole Regulates Itself Celebrate the International Year of Astronomy Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar. "This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it

  8. Mass transfer in binary X-ray systems

    Science.gov (United States)

    Mccray, R.; Hatchett, S.

    1975-01-01

    The influence of X-ray heating on gas flows in binary X-ray systems is examined. A simple estimate is obtained for the evaporative wind flux from a stellar atmosphere due to X-ray heating which agrees with numerical calculations by Alme and Wilson (1974) but disagrees with calculations by Arons (1973) and by Basko and Sunyaev (1974) for the Her X-1/HZ Her system. The wind flux is sensitive to the soft X-ray spectrum. The self-excited wind mechanism does not work. Mass transfer in the Hercules system probably occurs by flow of the atmosphere of HZ Her through the gravitational saddle point of the system. The accretion gas stream is probably opaque with atomic density of not less than 10 to the 15th power per cu cm and is confined to a small fraction of 4(pi) steradians. Other binary X-ray systems are briefly discussed.

  9. Einstein X-ray observations of M101

    Science.gov (United States)

    Trinchieri, G.; Fabbiano, G.; Romaine, S.

    1990-01-01

    The Einstein X-ray observations of the face-on spiral galaxy M101 are presented. The global X-ray luminosity L(x) of M101 is about 1.2 x 10 to the 40th ergs/s for D = 7.2 Mpc, consistent with the expected X-ray luminosity of normal spiral galaxies of its optical magnitude. The X-ray emission is mostly due to very luminous individual sources, with L(x) greater than 10 to the 38th ergs/s each, most likely very massive accreting binary systems. The data suggest a deficiency of sources in the luminosity range of L(x) from about 10 to the 37th to about 10 to the 38th ergs/s, which would indicate that the luminosity distribution of the X-ray sources in M101 might be different from that of M31 or M33.

  10. Classification of X-ray point sources in external galaxies

    Science.gov (United States)

    Vrtilek, Saeqa Dil; Islam, Nazma; Kim, Dong-Woo; McCollough, Michael

    2017-08-01

    The exquisite spatial resolution of the Chandra X-ray satellite allows us to resolve individual X-ray point sources in external galaxies. We have extracted data on extragalactic X-ray binary candidates from 150 external galaxies including a selection of elliptical, spiral, and starburst galaxies with a range of metallicities. By using X-ray binaries containing neutron stars or black holes from our own Galaxy that were multiply observed by Chandra as a training set we classify the accretion type of each object individually identified in the external galaxies. We find systematic differences in the binary populations of different classes of galaxy. Our study provides information on populations of X-ray sources in different galaxy types which has implications for the evolution of galaxies, as well as clues about how the different classes of XRBs are related to each other.

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... be taken to minimize radiation exposure to the baby. See the Safety page for more information about pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of an x-ray tube suspended over a table on which the patient ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  13. X-Ray Exam: Forearm

    Science.gov (United States)

    ... recorded on a computer or special X-ray film. This image shows the soft tissues and bones of the forearm. The X-ray image is black and white. Dense structures that block the passage of the X-ray beam through the body, such as the bones, appear white on the ...

  14. The Water Recovery X-ray Rocket (WRX-R)

    Science.gov (United States)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  15. Jovian X-ray emissions

    Science.gov (United States)

    Waite, J. H.; Lewis, W. S.; Gladstone, G. R.; Fabian, A. C.; Brandt, W. N.

    1996-01-01

    The Einstein and Rosat observations of X-ray emissions from Jupiter are summarized. Jupiter's soft X-ray emission is observed to originate from the planet's auroral zones, and specifically, from its equatorial region. The processes responsible for these emissions are not established. The brightness distribution of the Jovian X-rays is characterized by the dependence on central meridian longitude and by north-south and morning-afternoon asymmetries. The X-rays observed during the impact of the comet Shoemaker-Levy 9 are believed to be impact-induced brightenings of the X-ray aurora.

  16. GBM Accreting Pulsar Histories

    Data.gov (United States)

    National Aeronautics and Space Administration — For each source we plot the history of pulse frequency and pulsed flux measured using the Fermi Gamma-Ray Burst Monitor (GBM) NaI detectors. For these measurements...

  17. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    Science.gov (United States)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  18. The hard X-ray perspective on the soft X-ray excess

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Reynolds, Christopher S.; Lohfink, Anne M.; Zoghbi, Abderahmen [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Fabian, Andrew C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gallo, Luigi C. [Department of Astronomy and Physics, Saint Mary' s University, 923 Robie Street, Halifax, Nova Scotia B3H 3C3 (Canada); Walton, Dominic, E-mail: ranjan@astro.umd.edu [Cahill Centre for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-04-10

    The X-ray spectra of many active galactic nuclei exhibit a 'soft excess' below 1 keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionized reflection of X-rays from the inner part of the accretion disk, ionized winds/absorbers, and Comptonization. The ionized reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10 keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models but upcoming joint XMM-NuSTAR programs provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM-NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest 'observer's model' of a blackbody and neutral reflection to characterize the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.

  19. Pulsar Positioning System: A quest for evidence of extraterrestrial engineering

    OpenAIRE

    Vidal, Clément

    2017-01-01

    Abstract: Pulsars have at least two impressive applications. First, they can be used as highly accurate clocks, comparable in stability to atomic clocks; second, a small subset of pulsars, millisecond X-ray pulsars, provide all the necessary ingredients for a passive galactic positioning system. This is known in astronautics as X-ray pulsar-based navigation (XNAV). XNAV is comparable to GPS, except it operates on a galactic scale. I propose a SETI-XNAV research program, to test the hypothesis...

  20. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    DEFF Research Database (Denmark)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify...... persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr. A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra...... indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Gamma = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high...

  1. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  2. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.

    Science.gov (United States)

    Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell

    2000-06-20

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  3. Millisecond pulsars with r-modes as steady gravitational radiators.

    Science.gov (United States)

    Reisenegger, Andreas; Bonacić, Axel

    2003-11-14

    Millisecond pulsars (MSPs) probably achieve their fast rotation by mass transfer from their companion stars in low-mass x-ray binaries (LMXBs). The lack of MSPs and LMXBs rotating near breakup has been attributed to the accretion torque being balanced, at fast rotation, by gravitational radiation, perhaps caused by an unstable oscillation mode. It has been argued that internal dissipation involving hyperons may cause LMXBs to evolve into a quasisteady state, with nearly constant rotation rate, temperature, and mode amplitude. We show that MSPs descending from these LMXBs spend a long time in a similar state, as extremely steady sources of gravitational waves and thermal x rays, while they spin down due to gravitational radiation and the standard magnetic torque. Observed MSP braking torques already place meaningful constraints on this scenario.

  4. Identification of a Population of X-Ray-Emitting Massive Stars in the Galactic Plane

    Science.gov (United States)

    2011-02-01

    gravitational accretion onto a compact object such as a neutron star (NS) or black hole (BH). The two main classes of HMXBs are the Be X-ray binary systems...The Advanced Satellite for Cosmology and Astrophysics (ASCA) surveyed the inner region of the Galactic plane, detecting 163 X-ray sources with...star, X-rays produced through gravitation accretion in an HMXB or X-rays from shock-heated gas in a CWB. We now discuss each possibility in detail

  5. ROSAT observations of six millisecond pulsars

    Science.gov (United States)

    Danner, R.; Kulkarni, S. R.; Thorsett, S. E.

    1994-01-01

    We present ROSAT observations toward six known millisecond radio pulsars. These observations yielded upper limits to the X-ray flux in the ROSAT band (0.1-2.4 keV) for five pulsars and a possible association of an X-ray source with PSR B1821-24, in the globular cluster M28. At the 99.9% confidence level, the source is pulsed at the expected radio pulsar frequency. We compare our results with predicted X-ray luminosities by Seward & Wang Oegelman. The X-ray luminosities of PSRs B1257+12 and J0437-4715, millisecond pulsars with similar periods and spin-down rates, are found to differ by more than a factor of 25. X-ray emission from radio pulsars has been ascribed to a thermal component arising from a surface hot spot and a power-law magnetospheric component (Halpern & Ruderman). In the context of this model and these observations, we argue that the orientation of the magnetic and rotation axes with respect to the line of sight is very different for PSR J0437-4715 compared to PSR B1257+12. Finally, we suggest that the beaming factor for X-ray emission is independent of the pulsar period, unlike that for radio emission; if so, most millisecond pulsars are visible in the radio but no at X-ray energies.

  6. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  7. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  8. Hard X-ray Vela supernova observation on rocket experiment WRX-R

    Science.gov (United States)

    Stehlikova, V.; Urban, M.; Nentvich, O.; Daniel, V.; Sieger, L.; Tutt, J.

    2017-07-01

    This paper presents a hard X-ray telescope for the Vela nebula observation during a sounding rocket flight. The Water Recovery X-ray Rocket (WRX-R) experiment is organised by the Pennsylvania State University (PSU), USA with a primary payload of a soft X-ray spectroscope. The Czech team developed a hard X-ray Lobster-eye telescope as a secondary payload. The Czech experiment’s astrophysical object of study is the Vela pulsar in the centre of the Vela nebula.

  9. Soft X-ray optics

    CERN Document Server

    Spiller, Eberhard A

    1993-01-01

    This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction.

  10. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  11. X-Ray Production by V1647 Ori During Optical Outbursts

    Science.gov (United States)

    Teets, William; Weintraub, David; Grosso, Nicolas; Principe, David; Kastner, Joel; Hamaguchi, Kenji; Richmond, Michael

    2011-01-01

    The pre-main-sequence (PMS) star V1647 Ori has recently undergone two optical/near-infrared (OIR) outbursts that are associated with dramatic enhancements in the stellar accretion rate. Our intensive X-ray monitoring of this object affords the opportunity to investigate whether and how the intense X-ray emission is related to PMS accretion activity. Our analysis of all 14 Chandra X-Ray Observatory observations of V1647 Ori demonstrates that variations in the X-ray luminosity of V1647 Ori are correlated with similar changes in the OIR brightness of this source during both (2003-2005 and 2008) eruptions, strongly supporting the hypothesis that accretion is the primary generation mechanism for the X-ray outbursts. Furthermore, the Chandra monitoring demonstrates that the X-ray spectral properties of the second eruption were strikingly similar to those of the 2003 eruption. We find that X-ray spectra obtained immediately following the second outburstduring which V1647 Ori exhibited high X-ray luminosities, high hardness ratios, and strong X-ray variabilityare well modeled as a heavily absorbed (N H 4 1022cm2), single-component plasma with characteristic temperatures (kT X 2-6keV) that are consistently too high to be generated via accretion shocks but are in the range expected for plasma heated by magnetic reconnection events. We also find that the X-ray absorbing column has not changed significantly throughout the observing campaign. Since the OIR and X-ray changes are correlated, we hypothesize that these reconnection events either occur in the accretion stream connecting the circumstellar disk to the star or in accretion-enhanced protostellar coronal activity.

  12. Transformation of a star into a planet in a millisecond pulsar binary.

    Science.gov (United States)

    Bailes, M; Bates, S D; Bhalerao, V; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Kulkarni, S R; Levin, L; Lyne, A G; Milia, S; Possenti, A; Spitler, L; Stappers, B; van Straten, W

    2011-09-23

    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction.

  13. Chandra pulsar survey (ChaPS)

    OpenAIRE

    Kargaltsev, Oleg; Durant, Martin; Pavlov, George G.; Garmire, Gordon

    2012-01-01

    Taking advantage of the high sensitivity of the Chandra Advanced CCD Imaging Spectrometer, we have conducted a snap-shot survey of pulsars previously undetected in X-rays. We detected 12 pulsars and established deep flux limits for 11 pulsars. Using these new results, we revisit the relationship between the X-ray luminosity, L_psr_x, and spin-down power, Edot. We find that the obtained limits further increase the extremely large spread in the non-thermal X-ray efficiencies, eta_psr_x=L_psr_x/...

  14. First superburst from a classical low-mass X-ray binary transient

    NARCIS (Netherlands)

    Keek, L.; in 't Zand, J.J.M.; Kuulkers, E.; Cumming, A.; Brown, E.F.; Suzuki, M.

    2008-01-01

    We report the analysis of the first superburst from a transiently accreting neutron star system with the All-Sky Monitor (ASM) on the Rossi X-ray Timing Explorer. The superburst occurred 55 days after the onset of an accretion outburst in 4U 1608-522. During that time interval, the accretion rate

  15. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international...... collaboration lead by the JEM-X team at the Danish National Space Center has proposed to exploit the improved sensitivity of the INTEGRAL instruments to investigate the observational properties and physics up to high energies of exceptional burst events lasting between a few tens of minutes and several hours....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive data...

  16. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    -rich bursting regime to a pure helium regime. Moreover, a handful of long bursts have shown, before the extended decay phase, an initial spike similar to a normal short X-ray burst. Such twofold bursts might be a sort of link between short and super-bursts, where the premature ignition of a carbon layer could......Thermonuclear bursts on the surface of accreting neutron stars in low mass X-ray binaries have been studied for many years and have in a few cases confirmed theoretical models of nuclear ignition and burning mechanisms. The large majority of X-ray bursts last less than 100s. A good number...... of the known X-ray bursters are frequently observed by INTEGRAL, in particular in the frame of the Key Programmes. Taking advantage of the INTEGRAL instrumentation, an international collaboration led by the JEM-X team at the Danish National Space Institute has been monitoring the occurrence of uncommon burst...

  17. The inner disc radius in the propeller phase and accretion-propeller transition of neutron stars

    Science.gov (United States)

    Ertan, Ünal

    2017-04-01

    We have investigated the critical conditions required for a steady propeller effect for magnetized neutron stars with optically thick, geometrically thin accretion discs. We have shown through simple analytical calculations that a steady-state propeller mechanism cannot be sustained at an inner disc radius where the viscous and magnetic stresses are balanced. The radius calculated by equating these stresses is usually found to be close to the conventional Alfvén radius for spherical accretion, rA. Our results show that: (1) a steady propeller phase can be established with a maximum inner disc radius that is at least ∼15 times smaller than rA depending on the mass-flow rate of the disc, rotational period and strength of the magnetic dipole field of the star, (2) the critical accretion rate corresponding to the accretion-propeller transition is orders of magnitude lower than the rate estimated by equating rA to the co-rotation radius. Our results are consistent with the properties of the transitional millisecond pulsars that show transitions between the accretion powered X-ray pulsar and the rotational powered radio-pulsar states.

  18. Can isolated single black holes produce X-ray novae?

    Science.gov (United States)

    Matsumoto, Tatsuya; Teraki, Yuto; Ioka, Kunihito

    2018-03-01

    Almost all black holes (BHs) and BH candidates in our Galaxy have been discovered as soft X-ray transients, so-called X-ray novae. X-ray novae are usually considered to arise from binary systems. Here, we propose that X-ray novae are also caused by isolated single BHs. We calculate the distribution of the accretion rate from interstellar matter to isolated BHs, and find that BHs in molecular clouds satisfy the condition of the hydrogen-ionization disc instability, which results in X-ray novae. The estimated event rate is consistent with the observed one. We also check an X-ray novae catalogue (Corral-Santana et al.) and find that 16/59 ˜ 0.27 of the observed X-ray novae are potentially powered by isolated BHs. The possible candidates include IGR J17454-2919, XTE J1908-094, and SAX J1711.6-3808. Near-infrared photometric and spectroscopic follow-ups can exclude companion stars for a BH census in our Galaxy.

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... diagnosis and treatment. No radiation remains in a patient's body after an x-ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both patients and physicians. Because x-ray imaging is fast and easy, it is ... Radiation Exposure Special care is taken during x-ray examinations to use ...

  3. Chandra's X-ray Vision

    Indian Academy of Sciences (India)

    1999-07-23

    Jul 23, 1999 ... GENERAL I ARTICLE. Chandra's X-ray Vision. K P Singh. Chandra X-ray Observatory (CXO) is a scientific satellite (moon/ chandra), named after the Indian-born Nobel laureate. Subrahmanyan Chandrasekhar - one of the foremost astro- physicists of the twentieth century and popularly known as. Chandra.

  4. X-Ray Exam: Ankle

    Science.gov (United States)

    ... radiation through the ankle, and black and white images of the bones and soft tissues are recorded on a computer or special X-ray film. Dense structures that block the passage of the X-ray beam through the body, such as bones, appear white. Softer body tissues, ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ...

  6. X-Ray Tomographic Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  7. Are Spectral and Timing Correlations Similar in Different Spectral States in Black Hole X-Ray Binaries?

    NARCIS (Netherlands)

    Kalamkar, M.; Reynolds, M.T.; van der Klis, M.; Altamirano, D.; Miller, J.M.

    2015-01-01

    We study the outbursts of the black hole X-ray binaries MAXI J1659-152, SWIFT J1753.5-0127, and GX 339-4 with the Swift X-ray Telescope (XRT). The bandpass of the XRT has access to emission from both components of the accretion flow: the accretion disk and the corona/hot flow. This allows a

  8. Modeling Gamma-Ray Emission From the High-Mass X-Ray Binary LS 5039

    Directory of Open Access Journals (Sweden)

    Stan Owocki

    2012-03-01

    Full Text Available A few high-mass X-ray binaries–consisting of an OB star plus compact companion– have been observed by Fermi and ground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS to be sources of very high energy (VHE; up to 30 TeV γ-rays. This paper focuses on the prominent γ-ray source, LS 5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical (e ≈ 0.24 orbit with its companion, assumed here to be an unmagnetized compact object (e.g., black hole. Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of γ-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of γ-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the γ-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE γ-ray emission in massive-star binaries.

  9. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  10. Intermediate-mass black holes and ultraluminous X-ray sources in the Cartwheel ring galaxy

    NARCIS (Netherlands)

    Mapelli, M.; Moore, B.; Giordano, L.; Mayer, L.; Colpi, M.; Ripamonti, E.; Callegari, S.

    2008-01-01

    Chandra and XMM-Newton observations of the Cartwheel galaxy show similar to 17 bright X-ray sources (greater than or similar to 5 x 10(38) erg s(-1)), all within the gas-rich outer ring. We explore the hypothesis that these X-ray sources are powered by intermediate-mass black holes (IMBHs) accreting

  11. X-Ray Optics Research

    Science.gov (United States)

    1990-09-20

    OF FUNDING NUMBERS Building 410 PORM POET TS OKUI Bolig FBDC2032648ELEMENT NO. NO. NO ACCESiON NO 11. TITLE (include Security Classification) X - Ray Optics Research...by block number) This report describes work conducted during the period I October 1987 through 30 April 1990, under Contract AFOSR-88-00l0, " X - Ray Optics Research...growth and structure of multilayer interfaces. This capability is central to the development of future materials for multilayer x - ray optics , because

  12. The first multi-wavelength campaign of AXP 4U 0142+61 from radio to hard X-rays

    NARCIS (Netherlands)

    den Hartog, P.R.; Kuiper, L.; Hermsen, W.; Rea, N.; Durant, M.; Stappers, B.; Kaspi, V.M.; Dib, R.

    2007-01-01

    For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in

  13. Understanding the Nature of X-ray Weak Quasars

    Science.gov (United States)

    Brandt, William

    We propose a program of archival X-ray and related studies designed to advance understanding of the remarkable active galactic nucleus (AGN) population of X-ray weak quasars. These exceptional objects reveal phenomena that are more generally applicable but are difficult to investigate when more subtly expressed in the overall quasar population. X-ray weak quasars furthermore challenge a central tenet of X-ray astronomy that luminous X-ray emission is a universal property of efficiently accreting supermassive black holes; this idea underlies the utility of X-ray surveys for identifying AGNs throughout the Universe. Our previous findings indicate that understanding of Xray weak quasars is now primed for rapid further advances. Our studies of X-ray weak quasars will employ data from the vast archives of forefront X-ray missions, particularly XMM-Newton and Chandra, and they will also benefit greatly from the use of NuSTAR, ROSAT, Suzaku, Swift, GALEX, and WISE data. They are largely enabled by the enormous quasar samples delivered by modern widefield sky surveys. In particular, we will identify X-ray weak quasars using the serendipitous X-ray coverage of the 380,000 relatively bright quasars spectroscopically identified by the Sloan Digital Sky Survey (SDSS) from z 0.1-5.5; these are wellmatched to the depths of typical archival X-ray observations. The number of SDSS spectroscopic quasars has more than tripled in recent years, and the sample-size improvements at redshifts of z = 2-4, important for our investigations, are even more dramatic. We will construct an unprecedented new sample of X-ray weak quasars, about 20 times larger than those used currently, to enable systematic studies of the X-ray weakness phenomenon. This work should reveal the cause of X-ray weakness for quasars with weak emission lines, allowing testing of a model that relies upon small-scale shielding of ionizing photons by a thick inner accretion disk around a black hole accreting at a high

  14. Quasi-periodic oscillations in bright galactic-bulge X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, F.K.; Shibazaki, N.; Alpar, M.A.; Shaham, J.

    1985-10-24

    Quasi-periodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and ScoX-1. It is proposed that these sources are weakly magnetic neutron stars accreting from disks in which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk modulates the accretion rate, causing oscillations in the X-ray flux with many of the observed properties.

  15. Polarimetric Evidence of the First White Dwarf Pulsar: The Binary System AR Scorpii

    Directory of Open Access Journals (Sweden)

    David A.H. Buckley

    2018-01-01

    Full Text Available The binary star AR Scorpii was recently discovered to exhibit high amplitude coherent variability across the electromagnetic spectrum (ultraviolet to radio at two closely spaced ∼2 min periods, attributed to the spin period of a white dwarf and the beat period. There is strong evidence (low X-ray luminosity, lack of flickering and absense of broad emission lines that AR Sco is a detached non-accreting system whose luminosity is dominated by the spin-down power of a white dwarf, due to magnetohydrodynamical (MHD interactions with its M5 companion. Optical polarimetry has revealed highly pulsed linear polarization on the same periods, reaching a maximum of 40%, consistent with a pulsar-like dipole, with the Stokes Q and U variations reminiscent of the Crab pulsar. These observations, coupled with the spectral energy distribution (SED which is dominated by non-thermal emission, characteristic of synchrotron emission, support the notion that a strongly magnetic (∼200 MG white dwarf is behaving like a pulsar, whose magnetic field interacts with the secondary star’s photosphere and magnetosphere. Radio synchrotron emission is produced from the pumping action of the white dwarf’s magnetic field on coronal loops from the M-star companion, while emission at high frequencies (UV/optical/X-ray comes from the particle wind, driven by large electric potential, again reminiscent of processes seen in neutron star pulsars.

  16. Analysis of hard X-ray emission from selected very high energy {gamma}-ray sources observed with INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Agnes Irene Dorothee

    2009-11-13

    A few years ago, the era of very high energy {gamma}-ray astronomy started, when the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S. began to operate and to resolve the sources of TeV emission. Identifications via multi-wavelength studies reveal that the detected sources are supernova remnants and active galactic nuclei, but also pulsar wind nebulae and a few binaries. One widely discussed open question is, how these sources are able to accelerate particles to such high energies. The understanding of the underlying particle distribution, the acceleration processes taking place, and the knowledge of the radiation processes which produce the observed emission, is, therefore, of crucial interest. Observations in the hard X-ray domain can be a key to get information on these particle distributions and processes. Important for this thesis are the TeV and the hard X-ray range. The two instruments, H.E.S.S. and INTEGRAL, whose data were used, are, therefore, described in detail. The main part of this thesis is focused on the X-ray binary system LS 5039/RX J1826.2-1450. It was observed in several energy ranges. The nature of the compact object is still not known, and it was proposed either to be a microquasar system or a non-accreting pulsar system. The observed TeV emission is modulated with the orbital cycle. Several explanations for this variability have been discussed in recent years. The observations with INTEGRAL presented in this thesis have provided new information to solve this question. Therefore, a search for a detection in the hard X-ray range and for its orbital dependence was worthwhile. Since LS 5039 is a faint source and the sky region where it is located is crowded, a very careful, non-standard handling of the INTEGRAL data was necessary, and a cross-checking with other analysis methods was essential to provide reliable results. We found that LS 5039 is emitting in the hard X-ray energy range. A flux rate and an upper

  17. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  19. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...