WorldWideScience

Sample records for accreting pulsar 4u

  1. Observations of Accreting Pulsars with the FERMI-GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen

    2012-01-01

    The Gamma-ray Burst Monitor (GBM) on-board Fermi comprises 12 NaI detectors spanning the 8-1000 keV band and 2 BGO detectors spanning the 100 keV to 40 MeV band. These detectors view the entire unocculted sky, providing long (approximately 40 ks/day) observations of accreting pulsars daily, which allow long-term monitoring of spin-frequencies and pulsed uxes via epoch-folded searches plus daily blind searches for new pulsars. Phase averaged uxes can be measured using the Earth occultation technique. In this talk I will present highlights of GBM accretion-powered pulsar monitoring such as the discovery of a torque reversal in 4U1626-67, a high-energy QPO in A0535+26, and evidence for a stable accretion disk in OAO 1657-415.

  2. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly

  3. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  4. Theory of quasi-spherical accretion in X-ray pulsars

    Science.gov (United States)

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2012-02-01

    A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.

  5. Transitional millisecond pulsars in the low-level accretion state

    Science.gov (United States)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  6. X-ray pulsars: accretion flow deceleration

    International Nuclear Information System (INIS)

    Miller, G.S.

    1987-01-01

    X-ray pulsars are thought to be neutron stars that derive the energy for their x-ray emission by accreting material onto their magnetic polar caps. The accreting material and the x-ray pulsar atmospheres were idealized as fully ionized plasmas consisting only of electrons and protons. A high magnetic field (∼ 5 x 10 12 Gauss) permeates the atmospheric plasma, and causes the motion of atmospheric electrons perpendicular to the field to be quantized into discrete Landau levels. All atmospheric electrons initially lie in the Landau ground state, but in the author's calculations of Coulomb collisions between atmospheric electrons and accreting protons, he allows for processes that leave the electrons in the first excited Landau level. He also considers interactions between accreting protons and the collective modes of the atmospheric plasma. Division of the electromagnetic interaction of a fast proton with a magnetized plasma into single particle and collective effects is described in detail in Chapter 2. Deceleration of the accretion flow due to Coulomb collisions with atmospheric electrons and collective plasma effects was studied in a number of computer simulations. These simulations, along with a discussion of the physical state of the atmospheric plasma and its interactions with a past proton, are presented in Chapter 3. Details of the atmospheric model and a description of the results of the simulations are given in Chapter 4. Chapter 5 contains some brief concluding remarks, and some thoughts on future research

  7. How young the accretion-powered pulsars could be?

    Science.gov (United States)

    Kostina, M. V.; Ikhsanov, N. R.

    2017-12-01

    A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.

  8. A New Model for Thermal and Bulk Comptonization in Accretion-Powered X-ray Pulsars

    Science.gov (United States)

    Becker, Peter A.; Wolff, Michael T.

    2018-01-01

    The theory of spectral formation in accretion-powered X-ray pulsars has advanced considerably in the past decade, with the development of new models for the continuum and the cyclotron line formation processes. In many sources, the cyclotron line centroid energy is observed to vary as a function of source luminosity (and therefore accretion rate). In some cases, the variations in the luminosity seem to indicate a change in the structure of the accretion column, as the source passes from the sub-critical to the super-critical regime. With the recent launches of NuSTAR and NICER, observations of accreting X-ray pulsars are entering a new era, with large effective areas, broadband energy coverage, and good temporal resolution. These observations are already presenting new challenges to the theory, requiring the development of a new generation of more sophisticated physical models. In this paper, we discuss an improved model for bulk and thermal Comptonization in X-ray pulsars that will allow greater self-consistency in the data analysis process than current models, leading to more rigorous determinations of source parameters such as magnetic field strength, temperature, etc. The model improvements include (1) a more realistic geometry for the accretion column; (2) a more rigorous accretion velocity profile that merges smoothly with Newtonian free-fall as r → ∞ and (3) a more realistic free-streaming radiative boundary condition at the top of the column. This latter improvement means that we can now compute the pencil and fan beam components separately, which is necessary in order to analyze phase-dependent spectral data. We discuss applications of the new model to Her X-1, LMC X-4, and Cen X-3, and also to the Be X-ray binary 4U 0115+63.

  9. An Accretion Model for Anomalous X-Ray Pulsars

    Science.gov (United States)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  10. Swings between rotation and accretion power in a binary millisecond pulsar.

    Science.gov (United States)

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  11. SAX J1808.4−3658, an accreting millisecond pulsar shining in gamma rays?

    International Nuclear Information System (INIS)

    Oña Wilhelmi, E. de; Papitto, A.; Li, J.; Rea, N.

    2015-01-01

    We report the detection of a possible gamma-ray counterpart of the accreting millisec- ond pulsar SAXJ1808.4–3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a re- gion of 15° radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6σ (Test Statistic TS = 32), with position compatible with that of SAXJ1808.4–3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 ± 0.5) × 10 -12 erg cm -2 s -1 and the spectrum is well-represented by a power-law function with photon index 2.1±0.1. We searched for significant variation of the flux at the spin frequency of the pulsar and for orbital modulation, taking into account the trials due to the uncertain- ties in the position, the orbital motion of the pulsar and the intrinsic evolution of the pulsar spin. No significant deviation from a constant flux at any time scale was found, preventing a firm identification via time variability. Nonetheless, the association of the LAT source as the gamma-ray counterpart of SAXJ1808.4–3658 would match the emission expected from the millisecond pulsar, if it switches on as a rotation-powered source during X-ray quiescence.

  12. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2017-01-20

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.

  13. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  14. A Spectral Analysis of the X-Ray Pulsar 4U 1907+09 obtained at thePeriastron Passage with the XMM-Newton Observatory

    NARCIS (Netherlands)

    Balman, Solen; Mendez, Mariano; Diaz Trigo, Maria; Inam, Cagdas; Baykal, Altan

    2010-01-01

    We present results from a 20 ksec observation of the wind-accreting X-ray pulsar 4U 1907+09 obtained using the XMM-Newton Observatory at the periastron passage. The XMM-Newton spectrum allows us to study the continuum emission and the emission line at 6.4 keV with the high sensitivity and

  15. Discovery of an Accreting Millisecond Pulsar in the Eclipsing Binary System SWIFT J1749.4-2807

    NARCIS (Netherlands)

    Altamirano, D.; Cavecchi, Y.; Patruno, A.; Watts, A.; Linares, M.; Degenaar, N.; Kalamkar, M.; van der Klis, M.; Rea, N.; Casella, P.; Padilla, M. Armas; Kaur, R.; Yang, Y. J.; Soleri, P.; Wijnands, R.

    2011-01-01

    We report on the discovery and the timing analysis of the first eclipsing accretion-powered millisecond X-ray pulsar (AMXP): SWIFT J1749.4-2807. The neutron star rotates at a frequency of similar to 517.9 Hz and is in a binary system with an orbital period of 8.8 hr and a projected semimajor axis of

  16. Radio emission from Sgr A*: pulsar transits through the accretion disc

    Science.gov (United States)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  17. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  18. A model of two-stream non-radial accretion for binary X-ray pulsars

    International Nuclear Information System (INIS)

    Lipunov, V.M.

    1982-01-01

    The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered. (orig.)

  19. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    Science.gov (United States)

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  20. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Bachetti, Matteo; Miyasaka, Hiromasa; Harrison, Fiona

    2014-01-01

    is consistent with that observed in many other magnetized accreting pulsars. We fail to detect cyclotron resonance scattering features in either phase-averaged nor phase-resolved spectra that would allow us to constrain the pulsar’s magnetic field. We detect a pulse period of ∼ 12.29 s in all energy bands....... The pulse profile can be modeled with a double Gaussian and shows a strong and smooth hard lag of up to 0.3 cycles in phase, or about 4s between the pulse at ∼ 3 and >∼ 30 keV. This is the first report of such a strong lag in high-mass X-ray binary (HMXB) pulsars. Previously reported lags have been...

  1. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    Science.gov (United States)

    Laycock, Silas

    We propose to expand the scope of our successful project providing a multi-satellite library of X-ray Pulsar observations to the community. The library provides high-level products, activity monitoring, pulse-profiles, phased event files, spectra, and a unique pulse-profile modeling interface. The library's scientific footprint will expand in 4 key directions: (1) Update, by processing all new XMM-Newton and Chandra observations (2015-2017) of X-ray Binary Pulsars in the Magellanic Clouds. (2) Expand, by including all archival Suzaku, Swift and NuStar observations, and including Galactic pulsars. (3) Improve, by offering innovative data products that provide deeper insight. (4) Advance, by implementing a new generation of physically motivated emission and pulse-profile models. The library currently includes some 2000 individual RXTE-PCA, 200 Chandra ACIS-I, and 120 XMM-PN observations of the SMC spanning 15 years, creating an unrivaled record of pulsar temporal behavior. In Phase-2, additional observations of SMC pulsars will be added: 221 Chandra (ACIS-S and ACIS-I), 22 XMM-PN, 142 XMM-MOS, 92 Suzaku, 25 NuSTAR, and >10,000 Swift; leveraging our pipeline and analysis techniques already developed. With the addition of 7 Galactic pulsars each having many hundred multisatellite observations, these datasets cover the entire range of variability timescales and accretion regimes. We will model the pulse-profiles using state of the art techniques to parameterize their morphology and obtain the distribution of offsets between magnetic and spin axes, and create samples of profiles under specific accretion modes (whether pencil-beam or fan-beam dominated). These products are needed for the next generation of advances in neutron star theory and modeling. The long-duration of the dataset and “whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X

  2. Accretion torques and motion of the hot spot on the accreting millisecond pulsar XTE J1807-294

    NARCIS (Netherlands)

    Patruno, A.; Hartman, J.M.; Wijnands, R.; Chakrabarty, D.; van der Klis, M.

    2010-01-01

    We present a coherent timing analysis of the 2003 outburst of the accreting millisecond pulsar (AMXP) XTEJ1807-294. We find a 95% confidence interval for the pulse frequency derivative of (+0.7, +4.7) x 10(-14) Hz s(-1) and (-0.6, +3.8) x 10(-14) Hz s(-1) for the fundamental and second harmonics,

  3. Coherence of burst oscillations and accretion-powered pulsations in the accreting millisecond pulsar XTE J1814-338

    NARCIS (Netherlands)

    Watts, A.L.; Patruno, A.; van der Klis, M.

    2008-01-01

    X-ray timing of the accretion-powered pulsations during the 2003 outburst of the accreting millisecond pulsar XTE J1814-338 has revealed variation in the pulse time of arrival residuals. These can be interpreted in several ways, including spin-down and wandering of the fuel impact point around the

  4. Timing Studies and QPO Detection for Transient Xray Pulsar 4u 0115+634 by RXTE.

    Science.gov (United States)

    Ram Dugair, Moti; Jaaffrey, S. N. A.

    We present results of timing analysis of data of the transient X-ray pulsar 4U 0115+634 (Neu-tron star with fast spin entry) taken by the Rossi X-ray Timing Explorer (RXTE) space satellite. We first time observed the occurrence of 3 QPOs of 3 m Hz, 8 m Hz and 60 m Hz of the X-ray outburst of 2008. In particular the frequencies of the QPO's may be attributed to those of oscillations of disturbance occuring in the inner region of the accreted disk of the neutron star during the truncation of viscous circum stellar disc around the Be-star. The role of the interaction between the neutron star and the circumstellar is very important. Appearance of three QPOs in X-ray Binary system is a new phenomenon and difficult to understand.

  5. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    Energy Technology Data Exchange (ETDEWEB)

    West, Brent F. [Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States); Wolfram, Kenneth D. [Naval Research Laboratory (retired), Washington, DC (United States); Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA USA (United States)

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  6. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    Science.gov (United States)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  7. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  8. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    Science.gov (United States)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  9. Swinging between rotation and accretion power in a binary millisecond pulsar

    Directory of Open Access Journals (Sweden)

    Papitto A.

    2014-01-01

    While accreting mass, the X-ray emission of IGR J18245–2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of the newly established class of transitional pulsars are also briefly discussed.

  10. Further NICER observations of the accreting millisecond pulsar Swift J1756.9-2508

    Science.gov (United States)

    Bult, P. M.; Gendreau, K. C.; Ray, P. S.; Altamirano, D.; Arzoumanian, Z.; Strohmayer, T. E.; Homan, J.; Chakrabarty, D.

    2018-04-01

    The accreting millisecond X-ray pulsar Swift J1756.9-2508 has been in outburst since 2018 April 1 (ATel #11497, #11502, #11505, #11523, #11566) and has been subject to regular monitoring with NICER (ATel #11502).

  11. Dynamic effects on cyclotron scattering in pulsar accretion columns

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Meszaros, P.

    1991-01-01

    A resonant scattering model for photon reprocessing in a pulsar accretion column is presented. The accretion column is optically thin to Thomson scattering and optically thick to resonant scattering at the cyclotron frequency. Radiation from the neutron star surface propagates freely through the column until the photon energy equals the local cyclotron frequency, at which point the radiation is scattered, much of it back toward the star. The radiation pressure in this regime is insufficient to stop the infall. Some of the scattered radiation heats the stellar surface around the base of the column, which adds a softer component to the spectrum. The partial blocking by the accretion column of X-rays from the surface produces a fan beam emission pattern. X-rays above the surface cyclotron frequency freely escape and are characterized by a pencil beam. Gravitational light bending produces a pencil beam pattern of column-scattered radiation in the antipodal direction, resulting in a strongly angle-dependent cyclotron feature. 31 refs

  12. Motion of the hot spot and spin torque in accreting millisecond pulsars

    NARCIS (Netherlands)

    Patruno, A.

    2008-01-01

    The primary concern of this contribution is that accreting millisecond pulsars (AMXPs) show a much larger amount of information than is commonly believed. The three questions to be addressed are: 1. Is the apparent spin torque observed in AMXPs real ? 2. Why do we see correlations and

  13. A soft mHz quasi periodic oscillation in the fastest accreting millisecond pulsar.

    Science.gov (United States)

    Ferrigno, C.; Bozzo, E.; Sanna, A.; Pintore, F.; Papitto, A.; Riggio, A.; Burderi, L.; Di Salvo, T.; Iaria, R.; D'ai, A.

    2017-10-01

    We illustrate the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint Nustar and XMM-Newton observation performed during the source outburst in 2015. The lightcurve of the source is characterized by a flaring behavior, with typical rise and decay timescales of ˜120 s. The flares are accompanied by a remarkable spectral variability, with the X- ray emission being generally softer at the peak of the flares. A strong QPO is detected at ˜8 mHz in the power spectrum of the source and clearly associated to its flaring-like behaviour. This feature has the strongest power at soft X-rays (hearth-beat in the black-hole binary GRS 1915+105, or, less likely, to unstable nuclear burning on the neutron star surface, as observed in the burster 4U 1636-536. This phenomenology could be ideally studied with the large throughput and wide energy coverage of present and future instruments.

  14. Evidence for a Millisecond Pulsar in 4U 1636-53 During a Superburst

    Science.gov (United States)

    Strohmayer, Tod E.; Markwardt, Craig B.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery with the Proportional Counter Array on board the Rossi X-ray Timing Explorer of highly coherent 582 Hz pulsations during the February 22, 2001 (UT) 'superburst' from 4U 1636-53. The pulsations are detected during an 800 s interval spanning the flux maximum of the burst. Within this interval the barycentric oscillation frequency increases in a monotonic fashion from 581.89 to 581.93 Hz. The predicted orbital motion of the neutron star during this interval is consistent with such an increase as long as optical maximum corresponds roughly with superior conjunction of V801 Arae, the optical companion to the neutron star in 4U 1636-53. We show that a range of circular orbits with 90 phi(sub 0) > 0.277 for the neutron star can provide an excellent description of the frequency and phase evolution. The brevity of the observed pulse train with respect to the 3.8 hour orbital period unfortunately does not allow more precise constraints. The average pulse profile is sinusoidal and the time averaged pulsation amplitude, as inferred from the half amplitude of the sinusoid is 1%, smaller than typical for burst oscillations observed in normal thermonuclear bursts. We do not detect any higher harmonics nor the putative subharmonic near 290 Hz. The 90% upper limits on signal amplitude at the subharmonic and first harmonic are 0.1 and 0.06%, respectively. The highly coherent pulsation, with a Q = v(sub 0)/delta-v > 4.5 x 10(exp 5) provides compelling evidence for a rapidly rotating neutron star in 4U 1636-53, and further supports the connection of burst oscillation frequencies with the spin frequencies of neutron stars. Our results provide further evidence that some millisecond pulsars are spun up via accretion in LMXBs. We also discuss the implications of our orbital velocity constraint for the masses of the components of 4U 1636-53.

  15. Discovery of a 205.89 Hz accreting millisecond X-ray pulsar in the globular cluster NGC 6440

    NARCIS (Netherlands)

    Altamirano, D.; Patruno, A.; Heinke, C.O.; Markwardt, C.; Strohmayer, T.E.; Linares, M.; Wijnands, R.; van der Klis, M.; Swank, J.H.

    2010-01-01

    We report on the discovery of the second accreting millisecond X-ray pulsar (AMXP) in the globular cluster NGC 6440. Pulsations with a frequency of 205.89 Hz were detected with RXTE on 2009 August 30, October 1 and October 28, during the decays of less than or similar to 4 day outbursts of a newly

  16. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    Directory of Open Access Journals (Sweden)

    Bachetti Matteo

    2014-01-01

    Full Text Available The NuSTAR hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst. The source is detected between 3 – 79 keV with high statistical significance, and we were able to perform very accurate spectral and timing analysis. The phase-averaged spectrum is consistent with that observed in many other magnetized accreting pulsars. We fail to detect cyclotron resonance scattering features in either phase-averaged nor phase-resolved spectra that would allow us to constrain the pulsar’s magnetic field. We detect a pulse period of ~ 12:29 s in all energy bands. The pulse profile can be modeled with a double Gaussian and shows a strong and smooth hard lag of up to 0.3 cycles in phase, or about 4s between the pulse at ~ 3 and ≳ 30 keV. This is the first report of such a strong lag in high-mass X-ray binary (HMXB pulsars. Previously reported lags have been significantly smaller in phase and restricted to low-energies (E<10 keV. We investigate the possible mechanisms that might produce such lags. We find the most likely explanation for this effect to be a complex beam geometry.

  17. The accretion-heated crust of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    Degenaar, N.; Wijnands, R.

    2011-01-01

    We report on a Chandra Director’s Discretionary Time observation of the globular cluster Terzan 5, carried out ∼7 weeks after the cessation of the 2010 outburst of the newly discovered transiently accreting 11-Hz X-ray pulsar. We detect a thermal spectrum that can be fitted with a neutron star

  18. Pulse-to-pulse variations in accreting X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Kretschmar Peter

    2014-01-01

    Full Text Available In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.

  19. A Comparison of the Variability of the Symbiotic X-ray Binaries GX 1+4, 4U 1954+31, and 4U 1700+24 from Swift/BAT and RXTE/ASM Observations

    Science.gov (United States)

    Corbet, R. H. D.; Sokoloski, J. L.; Mukai, K.; Markwardt, C. B.; Tueller, J.

    2007-01-01

    We present an analysis of the X-ray variability of three symbiotic X-ray binaries, GX 1+4, 4U 1700+24, and 4U 1954+31, using observations made with the Swift Burst Alert Telescope (BAT) and the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Observations of 4U 1954+31 with the Swift BAT show modulation at a period near 5 hours. Models to explain this modulation are discussed including the presence of an exceptionally slow X-ray pulsar in the system and accretion instabilities. We conclude that the most likely interpretation is that 4U 1954+31 contains one of the slowest known X-ray pulsars. Unlike 4U 1954+31, neither GX 1+4 nor 4U 1700+24 show any evidence for modulation on a timescale of hours. An analysis of the RXTE ASM light curves of GX l+4, 4U 1700+24, and 4U 1954+31 does not show the presence of periodic modulation in any source, although there is considerable variability on long timescales for all three sources. There is no modulation in GX 1+4 on either the optical 1161 day orbital period or a previously reported 304 day X-ray period. For 4U 1700+24 we do not confirm the 404 day period previously proposed for this source from a shorter duration ASM light curve.

  20. The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

    Science.gov (United States)

    Baglio, M. C.; Campana, S.; D'Avanzo, P.; Papitto, A.; Burderi, L.; Di Salvo, T.; Muñoz-Darias, T.; Rea, N.; Torres, D. F.

    2017-04-01

    We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4 m Gran Telescopio Canarias (GTC) in August 2014. Although the source was in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced in bluer filters (I.e. the g-band). After subtracting the flares, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even when a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars, was detected. We conclude that the observed flaring could be a manifestation of the presence of an accretion disc in the system. The observed light curve variability could be explained by the presence of a superhump, which might be another proof of the formation of an accretion disc. In particular, the disc at the time of our observations was probably preparing the new outburst of the source, which occurred a few months later, in 2015. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  1. Discovery of a Second Millesecond Accreting Pulsar: XTE J1751-305

    Science.gov (United States)

    Markwardt, C. B.; Swank, J. H.; Strohmayer, T. E.; intZand, J. J. M.; Marshall, F. E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f(sub x) = (1.278 +/- 0.003) x 10 (exp -6) solar mass, yields a minimum mass for the companion of between 0.013 and 0.0017 solar mass depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30 deg-85 deg and the companion mass to be 0.013-0.035 solar mass. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.

  2. The 4U 0115+63: Another energetic gamma ray binary pulsar

    Science.gov (United States)

    Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.

    1985-01-01

    Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.

  3. Binary system containing the pulsar PSR 1913 + 16 and ultra-violet and x-radiation from accreting magnetic white dwarfs

    International Nuclear Information System (INIS)

    Masters, A.R.

    1978-01-01

    Part I of the thesis deals with the binary system containing the pulsar PSR 1913 + 16. The system has been touted as a laboratory for testing relativistic theories of gravity, and is also a challenge for theories of stellar evolution. However, proposed uses of the system rely on assumptions about the nature of the pulsar's unobserved companion. Ways of determining the nature of the companion from observation of the pulsar are discussed. Geometrical constraints on the size of the pulsar's orbit and the observed slow rate of the orbit's precession require that the companion be a black hole, a neutron star, a white dwarf or a helium main-sequence star. Observable second-order relativistic effects may or may not further restrict the list of candidates. The discussion summarizes Masters and Roberts, 1975 Ap.J. (Letters), 195, L107, and Roberts, Masters and Arnett, 1976, Ap. J., 203, 196. Part II of the thesis treats ultra-violet and X-radiation from accreting magnetic white dwarfs. Matter from a companion star falling onto a white dwarf is shock-heated near the stellar surface and radiatively cooled. The post-shock region is approximated by a uniform, geometrically thin slab and determine the physical conditions behind the shock and the emitted spectrum for a range of stellar masses, magnetic fields and accretion rates. At low magnetic fields and high accretion rates, bremsstrahlung is the dominant cooling mechanism and the post-shock material is a single fluid (the electrons and ions have a common temperature). As the magnetic field increases or the accretion rate decreases, cyclotron emission becomes more important than bremsstrahlung

  4. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    Science.gov (United States)

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  5. 4U 1909+07: a Hidden Pearl

    Directory of Open Access Journals (Sweden)

    I. Kreykenbohm

    2011-01-01

    Full Text Available We present a detailed spectral and timing analysis of the High Mass X-ray Binary (HMXB 4U 1909+07 with INTEGRAL and RXTE. 4U1909+07 is a persistent accreting X-ray pulsar with a period of approximately 605 s. The period changes erratically consistent with a random walk expected for a wind accreting system. INTEGRAL detects the source with an average of 2.4 cps (corresponding to 15mCrab, but sometimes exhibits flaring activity up to 50 cps (i.e. 300mCrab. The strongly energy dependent pulse profile shows a double peaked structure at low energies and only a single narrow peak at energies above 20 keV. The phase averaged spectrum is well described by a powerlaw modified at higher energies by an exponential cutoff and photoelectric absorption at low energies. In addition at 6.4 keV a strong iron fluorescence line and at lower energies a blackbody component are present. We performed phase resolved spectroscopy to study the pulse phase dependence of the spectral parameters: while most spectral parameters are constant within uncertainties, the blackbody normalization and the cutoff folding energy vary strongly with phase.

  6. A Comprehensive Spectral Analysis of the X-Ray Pulsar 4U 1907+09 from Two Observations with the Suzaku X-Ray Observatory

    Science.gov (United States)

    Rivers, Elizabeth; Markowitz, Alex; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Furst, Felix; Suchy, Slawomir; Kreykenbohm, Ingo; Wilms, Jorn; Rothschild, Richard

    2009-01-01

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind

  7. A non-radial oscillation mode in an accreting millisecond pulsar?

    Energy Technology Data Exchange (ETDEWEB)

    Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mahmoodifar, Simin [Department of Physics and Joint Space-Science Institute, University of Maryland College Park, MD 20742 (United States)

    2014-03-20

    We present results of targeted searches for signatures of non-radial oscillation modes (such as r- and g-modes) in neutron stars using RXTE data from several accreting millisecond X-ray pulsars (AMXPs). We search for potentially coherent signals in the neutron star rest frame by first removing the phase delays associated with the star's binary motion and computing fast Fourier transform power spectra of continuous light curves with up to 2{sup 30} time bins. We search a range of frequencies in which both r- and g-modes are theoretically expected to reside. Using data from the discovery outburst of the 435 Hz pulsar XTE J1751–305 we find a single candidate, coherent oscillation with a frequency of 0.5727597 × ν{sub spin} = 249.332609 Hz, and a fractional Fourier amplitude of 7.46 × 10{sup –4}. We estimate the significance of this feature at the 1.6 × 10{sup –3} level, slightly better than a 3σ detection. Based on the observed frequency we argue that possible mode identifications include rotationally modified g-modes associated with either a helium-rich surface layer or a density discontinuity due to electron captures on hydrogen in the accreted ocean. In the latter case the presence of sufficient hydrogen in this ultracompact system with a likely helium-rich donor would present an interesting puzzle. Alternatively, the frequency could be identified with that of an inertial mode or a core r-mode modified by the presence of a solid crust; however, the r-mode amplitude required to account for the observed modulation amplitude would induce a large spin-down rate inconsistent with the observed pulse timing measurements. For the AMXPs XTE J1814–338 and NGC 6440 X–2 we do not find any candidate oscillation signals, and we place upper limits on the fractional Fourier amplitude of any coherent oscillations in our frequency search range of 7.8 × 10{sup –4} and 5.6 × 10{sup –3}, respectively. We briefly discuss the prospects and sensitivity for

  8. Swift observations of the accreting millisecond pulsar IGR J17498-2921 : From outburst to quiescence

    NARCIS (Netherlands)

    Linares, M.; Bozzo, E.; Altamirano, D.; Degenaar, N.; Wijnands, R.; Soleri, P.; Belloni, T.; Di Salvo, T.; D'Ai, A.; Papitto, A.; Riggio, A.; Burderi, L.

    Swift has been monitoring the accreting millisecond pulsar IGR J17498-2921 since the start of its outburst in 2011 August 12 (ATels #3551, #3555, #3556). We detected two X-ray bursts on Aug. 18 and 28. During the first ~12 days the average persistent XRT count rate remained approximately constant at

  9. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    OpenAIRE

    Tauris, Thomas M.; Sanyal, Debashis; Yoon, Sung-Chul; Langer, Norbert

    2013-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequ...

  10. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  11. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    DEFF Research Database (Denmark)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.

    2018-01-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062−6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5...... of the neutron star. A coherent search for the orbital solution using the Z2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period...

  12. IGR J170626143 is an Accreting Millisecond X-Ray Pulsar

    Science.gov (United States)

    Strohmayer, Tod E.; Keek, Laurens

    2017-01-01

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062-6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062-6143 the lowest frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2-12 keV band with an overall significance of 4.3sigma and an observed pulsed amplitude of 5.54% +/-0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the approx. =1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  13. Discovery of 245 Hz burst oscillations from the accreting millisecond pulsar IGR J17511-3057

    NARCIS (Netherlands)

    Watts, A.L.; Altamirano, D.; Markwardt, C.B.; Strohmayer, T.E.

    2009-01-01

    RXTE observations of the bursting accreting millisecond X-ray pulsar IGR J17511-3057 (ATEL #2196, #2197, #2198) showed a short Type I X-ray burst on September 14th 2009. We detect strong burst oscillations at 245 Hz, very close to the spin frequency. Maximum Leahy power is in the range 130-215 in 3

  14. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    Science.gov (United States)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  15. Discovery of burst oscillations in the intermittent accretion-powered millisecond pulsar HETE J1900.1-2455

    NARCIS (Netherlands)

    Watts, A.L.; Altamirano, D.; Linares, M.; Patruno, A.; Casella, P.; Cavecchi, Y.; Degenaar, N.; Rea, N.; Soleri, P.; van der Klis, M.; Wijnands, R.

    2009-01-01

    We report the discovery of burst oscillations from the intermittent accretion-powered millisecond pulsar (AMP) HETE J1900.1-2455, with a frequency ~1 Hz below the known spin frequency. The burst oscillation properties are far more similar to those of the non-AMPs and Aql X-1 (an intermittent AMP

  16. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    Science.gov (United States)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  17. XMM-Newton Spectroscopy of the Accretion-driven Millisecond X-Ray Pulsar XTE J1751-305 in Outburst

    NARCIS (Netherlands)

    Miller, J. M.; Wijnands, R.; Méndez, M.; Kendziorra, E.; Tiengo, A.; van der Klis, M.; Chakrabarty, D.; Gaensler, B. M.; Lewin, W. H. G.

    2003-01-01

    We present an analysis of the first high-resolution spectra measured from an accretion-driven millisecond X-ray pulsar in outburst. We observed XTE J1751-305 with XMM-Newton on 2002 April 7 for approximately 35 ks. Using a simple absorbed blackbody plus power-law model, we measure an unabsorbed flux

  18. Low-frequency quasi-periodic oscillation from the 11 Hz accreting pulsar in Terzan 5: not frame dragging

    NARCIS (Netherlands)

    Altamirano, D.; Ingram, A.; van der Klis, M.; Wijnands, R.; Linares, M.; Homan, J.

    2012-01-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a

  19. NuSTAR DETECTION OF HARD X-RAY PHASE LAGS FROM THE ACCRETING PULSAR GS 0834–430

    Energy Technology Data Exchange (ETDEWEB)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix; Bellm, Eric C.; Grefenstette, Brian W.; Madsen, Kristin K.; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Boggs, Steven E.; Craig, William W.; Tomsick, John A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Chakrabarty, Deepto [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chenevez, Jerome; Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Natalucci, Lorenzo [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, Roma I-00133 (Italy); Pottschmidt, Katja [CRESST, UMBC, and NASA GSFC, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wilms, Jörn, E-mail: miyasaka@srl.caltech.edu [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); and others

    2013-09-20

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29 s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.

  20. Discovery of the Accretion-Powered Millisecond Pulsar SWIFT 51756.9-2508 with a Low-Mass Companion

    Science.gov (United States)

    Krimm, H.A.; Markwardt, C.B.; Deloye, C.J.; Romano, P.; Chakrabarty, S.; Campana. S.; Cummings, J.C.; Galloway, D.K.; Gehrels, N.; Hartman, J.M.; hide

    2007-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar: SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 Solar Mass, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 Solar Mass (95% confidence level). Such a low mass is inconsistent with brown dwarf models. and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts. dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approx. 13 days and no earlier outbursts were found in archival data.

  1. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  2. The Stochastic X-Ray Variability of the Accreting Millisecond Pulsar MAXI J0911-655

    Science.gov (United States)

    Bult, Peter

    2017-01-01

    In this work, I report on the stochastic X-ray variability of the 340 hertz accreting millisecond pulsar MAXI J0911-655. Analyzing pointed observations of the XMM-Newton and NuSTAR observatories, I find that the source shows broad band-limited stochastic variability in the 0.01-10 hertz range with a total fractional variability of approximately 24 percent root mean square timing residuals in the 0.4 to 3 kiloelectronvolt energy band that increases to approximately 40 percent root mean square timing residuals in the 3 to 10 kiloelectronvolt band. Additionally, a pair of harmonically related quasi-periodic oscillations (QPOs) are discovered. The fundamental frequency of this harmonic pair is observed between frequencies of 62 and 146 megahertz. Like the band-limited noise, the amplitudes of the QPOs show a steep increase as a function of energy; this suggests that they share a similar origin, likely the inner accretion flow. Based on their energy dependence and frequency relation with respect to the noise terms, the QPOs are identified as low-frequency oscillations and discussed in terms of the Lense-Thirring precession model.

  3. Magnetic field decay in black widow pulsars

    Science.gov (United States)

    Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.

    2018-04-01

    We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.

  4. IGR J17062–6143 Is an Accreting Millisecond X-Ray Pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Keek, Laurens [X-ray Astrophysics Laboratory, NASA/GSFC and CRESST and the Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-02-20

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062−6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer . This detection makes IGR J17062−6143 the lowest-frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2–12 keV band with an overall significance of 4.3 σ and an observed pulsed amplitude of 5.54% ± 0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the ≈1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  5. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  6. GMRT Discovery of A Millisecond Pulsar in a Very Eccentric Binary System

    OpenAIRE

    Freire, Paulo C.; Gupta, Yashwant; Ransom, Scott M.; Ishwara-Chandra, C. H.

    2004-01-01

    We report the discovery of the binary millisecond pulsar J0514-4002A, which is the first known pulsar in the globular cluster NGC 1851 and the first pulsar discovered using the Giant Metrewave Radio Telescope (GMRT). The pulsar has a rotational period of 4.99 ms, an orbital period of 18.8 days, and the most eccentric pulsar orbit yet measured (e = 0.89). The companion has a minimum mass of 0.9 M_sun and its nature is presently unclear. After accreting matter from a low-mass companion star whi...

  7. Wind accretion: Theory and observations

    Science.gov (United States)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  8. 1980 outburst of 4U 0115+63 (V635 Cassiopeiae)

    International Nuclear Information System (INIS)

    Kriss, G.A.; Cominsky, L.R.; Remillard, R.A.; Williams, G.; Thorstensen, J.R.

    1983-01-01

    Optical observations of the proposed Be companion star (V635 Cas) to the hard transient X-ray pulsar 4U 0115+63 have been used to predict the 1980 December X-ray outburst, thus confirming the identification. V635 Cas increased in brightness by 1.7 magnitudes over the three months preceding the X-ray outburst, and strong, variable Hα emission was always present. These results demonstrate for the first time that increased optical activity in the Be companion star can lead directly to a ''hard'' transient X-ray outburst. There is a delay of approx.60 days between the onset of optical activity and the X-ray outburst. This delay and the absence of orbital modulation of the 1980 X-ray outburst (or any of the previous X-ray outburst) rule out direct accretion from a stellar wind. We suggest that the delay represents the time for material near the X-ray source to form an accretion disk and move inward toward the neutron star surface, and we discuss the observational implications of this interpretation. Future observations of similar transient events may provide a firm basis for the study of accretion disk dynamics

  9. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    Energy Technology Data Exchange (ETDEWEB)

    West, Brent F. [Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States); Wolfram, Kenneth D. [Naval Research Laboratory (retired), Washington, DC (United States); Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States)

    2017-02-01

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.

  10. On the theory of X-ray pulsar radiation

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1981-01-01

    The origin of hard X-ray spectrum (continuum and cyclotron lines) of pulsars in binary systems is discussed. A model of the polar region of a neutron star consisting of a hot spot in a dense plasma atmosphere with a quasi-homogeneous magnetic field and an extended accreting column in an inhomogeneous dipolar field is investigated. In the hot spot bremsstrahlung and Thomson scattering form continuum radiation, while bremsstrahlung and cyclotron scattering produce the absorption cyclotron lines. By the observed continuum intensity one can estimate the maximum distances to pulsars. Cyclotron scattering in gyro-resonant layers localized in the accreting column leads to a general attenuation of the radiation of a hot spot, but is unable to ensure the formation of cyclotron lines. For strong accretion the hot spot radiation becomes insignificant, the lines disappear and the pulsating component of an X-ray pulsar is produced by the accreting column bremsstrahlung transformed by Thomson scattering. (orig.)

  11. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.

    2014-01-01

    the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects....

  12. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)

    accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using. X-ray data .... converts the photon arrival times to the solar system barycenter. ... applies all the known RXTE clock corrections and converts the photon arrival times.

  13. Quasi-periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Energy Technology Data Exchange (ETDEWEB)

    Bult, Peter [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Doesburgh, Marieke van; Klis, Michiel van der [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2017-08-20

    We introduce a new method for analyzing the aperiodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain light curve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and aperiodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton . We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  14. Quasi-Periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Science.gov (United States)

    Bult, Peter; van Doesburgh, Marieke; van der Klis, Michiel

    2017-01-01

    We introduce a new method for analyzing the a periodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain lightcurve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and a periodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton. We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  15. Ghost supernova remnants : evidence for pulsar reactivation in dusty molecular clouds

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1983-01-01

    An evidence in favour of a new model for pulsar evolution is discussed, according to which pulsars may only function as regularly pulsed emitters if an accretion disc provides a sufficiently continuous return-current to the radio pulsar (neutron star). (L.C.) [pt

  16. A WHITE DWARF MERGER AS PROGENITOR OF THE ANOMALOUS X-RAY PULSAR 4U 0142+61?

    International Nuclear Information System (INIS)

    Rueda, J. A.; Boshkayev, K.; Izzo, L.; Ruffini, R.; Lorén-Aguilar, P.; Külebi, B.; Aznar-Siguán, G.; García-Berro, E.

    2013-01-01

    It has been recently proposed that massive, fast-rotating, highly magnetized white dwarfs could describe the observational properties of some of soft gamma-ray repeaters and anomalous X-ray pulsars (AXPs). Moreover, it has also been shown that high-field magnetic white dwarfs can be the outcome of white dwarf binary mergers. The products of these mergers consist of a hot central white dwarf surrounded by a rapidly rotating disk. Here we show that the merger of a double degenerate system can explain the characteristics of the peculiar AXP 4U 0142+61. This scenario accounts for the observed infrared excess. We also show that the observed properties of 4U 0142+6 are consistent with an approximately 1.2 M ☉ white dwarf, remnant of the coalescence of an original system made of two white dwarfs of masses 0.6 M ☉ and 1.0 M ☉ . Finally, we infer a post-merging age τ WD ≈ 64 kyr and a magnetic field B ≈ 2 × 10 8 G. Evidence for such a magnetic field may come from the possible detection of the electron cyclotron absorption feature observed between the B and V bands at ≈10 15 Hz in the spectrum of 4U 0142+61

  17. Soft excess and orbital evolution studies of X-ray pulsars with BeppoSAX

    International Nuclear Information System (INIS)

    Paul, B.; Naik, S.; Bhatt, N.

    2004-01-01

    We present here a spectral study of two accreting binary X-ray pulsars LMC X-4 and SMC X-1 made with the BeppoSAX observatory. The energy spectrum of both the pulsars in 0.1-10.0 keV band can be described by a model consisting of a hard power-law component, a soft excess and an iron emission line at 6.4 keV. In addition, the power-law component of SMC X-1 also has an exponential cutoff at ∼ 6 keV. Pulse-phase resolved spectroscopy confirms a pulsating nature of the soft spectral component in both the pulsars, with a certain phase offset compared to the hard power-law component. A dissimilar pulse profile of the two spectral components and a phase difference between the pulsating soft and hard spectral components are evidence for their different origins. In another study of an accreting binary X-ray pulsar Her X-1, we have made accurate measurements of new mid-eclipse times from pulse arrival time delays using observations made with the BeppoSAX and RXTE observatories. The new measurements, combined with the earlier reported mid-eclipse times are used to investigate orbital evolution of the binary. The most recent observation indicates deviation from a quadratic trend coincident with an anomalous low X-ray state, observed for the second time in this pulsar

  18. Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields

    Science.gov (United States)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2018-05-01

    Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.

  19. New outburst of the accreting millisecond X-ray pulsar NGC 6440 X-2 and discovery of a strong 1 Hz modulation in the light-curve

    NARCIS (Netherlands)

    Patruno, A.; Yang, Y.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Klis, M. Van Der; Watts, A.; Wijnands, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Markwardt, C.; Strohmayer, T.; Heinke, C.

    On June 11th, 2010, RXTE/PCA galactic bulge scan observations showed an increase in activity from the globular cluster NGC 6440. Two accreting millisecond X-ray pulsars (AMXPs) and 22 other X-ray binaries are known in NGC 6440 (see Pooley et al. 2002, ApJ 573, 184, Altarmirano et al. 2010, ApJL 712,

  20. Binary millisecond pulsar discovery via gamma-ray pulsations.

    Science.gov (United States)

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  1. X-ray pulsars in nearby irregular galaxies

    Science.gov (United States)

    Yang, Jun

    2018-01-01

    The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison

  2. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    Science.gov (United States)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.; Bult, P. M.; Chakrabarty, D.; Enoto, T.; Gendreau, K. C.; Guillot, S.; Harding, A. K.; Ho, W. C. G.; Homan, J.; Jaisawal, G. K.; Keek, L.; Kerr, M.; Mahmoodifar, S.; Markwardt, C. B.; Ransom, S. M.; Ray, P. S.; Remillard, R.; Wolff, M. T.

    2018-05-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062‑6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5.3-day span in 2017 August, and again for 14 and 11 ks in 2017 October and November, respectively. A power spectral analysis of the August exposure confirms the previous detection of pulsations at 163.656 Hz in Rossi X-ray Timing Explorer (RXTE) data, and reveals phase modulation due to orbital motion of the neutron star. A coherent search for the orbital solution using the Z 2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period for an AMXP. The mass function is 9.12 × 10‑8 M ⊙, presently the smallest known for a stellar binary. The minimum donor mass ranges from ≈0.005 to 0.007 M ⊙ for a neutron star mass from 1.2 to 2 M ⊙. Assuming mass transfer is driven by gravitational radiation, we find donor mass and binary inclination bounds of 0.0175–0.0155 M ⊙ and 19° < i < 27.°5, where the lower and upper bounds correspond to 1.4 and 2 M ⊙ neutron stars, respectively. Folding the data accounting for the orbital modulation reveals a sinusoidal profile with fractional amplitude 2.04 ± 0.11% (0.3–3.2 keV).

  3. A spin-down mechanism for accreting neutron stars

    International Nuclear Information System (INIS)

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  4. Fulltext PDF

    Indian Academy of Sciences (India)

    Low-lying States of V III, 157. Jain Chetana Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk, 175; Pulse Phase. Dependence of the Magnetar Bursts, 185; Orbital Evolution Measurement of the. Accreting Millisecond X-ray Pulsar SAX J1808.4–3658, ...

  5. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    V appeared.Hong and collaborators were then left with the task of piecing together this strange behavior into a picture of what was happening with this binary system.The authors proposed model for SXP 214. Here the binary has a ~30-day orbit tilted at 15 to the circumstellar disk. The pulsar passes through the circumstellar disk of its companion once per orbit. The interval marked A (orange line) is suggested as the period of time corresponding to the Chandra observations in this study: just as the neutron star is emerging from the disk after passing through it. [Hong et al. 2016]Passing Through a DiskIn the model the authors propose, the pulsar is on a ~30-day eccentric orbit that takes it through the circumstellar disk of its companion once per orbit.In this picture, the authors Chandra detections must have been made just as the pulsar was emerging from the circumstellar disk. The disk had initially hidden the soft X-ray emission from the pulsar, but as the pulsar emerged, that component became brighter, causing both the overall rise in X-ray counts and the shift in the spectrum to lower energies.Since the pulsars accretion is fueled by material picked up as it passes through the circumstellar disk, the accretion from a recent passage through the disk likely also caused the observed spin-up to the shorter period.If the authors model is correct, this series of observations of the pulsar as it emerges from the disk provides a rare opportunity to examine what happens to X-ray emission during this passage. More observations of this intriguing system can help us learn about the properties of the disk and the emission geometry of the neutron star surface.CitationJaeSub Hong et al 2016 ApJ 826 4. doi:10.3847/0004-637X/826/1/4

  6. Where Are the r-modes? Chandra Observations of Millisecond Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodifar, Simin; Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-05-10

    We present the results of Chandra observations of two non-accreting millisecond pulsars, PSRs J1640+2224 (J1640) and J1709+2313 (J1709), with low inferred magnetic fields and spin-down rates in order to constrain their surface temperatures, obtain limits on the amplitude of unstable r -modes in them, and make comparisons with similar limits obtained for a sample of accreting low-mass X-ray binary (LMXB) neutron stars. We detect both pulsars in the X-ray band for the first time. They are faint, with inferred soft X-ray fluxes (0.3–3 keV) of ≈6 × 10{sup −15} and 3 × 10{sup −15} erg cm{sup −2} s{sup −1} for J1640 and J1709, respectively. Spectral analysis assuming hydrogen atmosphere emission gives global effective temperature upper limits (90% confidence) of 3.3–4.3 × 10{sup 5} K for J1640 and 3.6–4.7 × 10{sup 5} K for J1709, where the low end of the range corresponds to canonical neutron stars ( M = 1.4 M {sub ⊙}), and the upper end corresponds to higher-mass stars ( M = 2.21 M {sub ⊙}). Under the assumption that r -mode heating provides the thermal support, we obtain dimensionless r -mode amplitude upper limits of 3.2–4.8 × 10{sup −8} and 1.8–2.8 × 10{sup −7} for J1640 and J1709, respectively, where again the low end of the range corresponds to lower-mass, canonical neutron stars ( M = 1.4 M {sub ⊙}). These limits are about an order of magnitude lower than those we derived previously for a sample of LMXBs, except for the accreting millisecond X-ray pulsar SAX J1808.4–3658, which has a comparable amplitude limit to J1640 and J1709.

  7. SWIFT OBSERVATIONS OF TWO OUTBURSTS FROM THE MAGNETAR 4U 0142+61

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Kaspi, V. M.; Scholz, P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal QC, H3A 2T8 (Canada); Beardmore, A. P. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kennea, J. A., E-mail: rarchiba@physics.mcgill.ca [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States)

    2017-01-10

    4U 0142+61 is one of a small class of persistently bright magnetars. Here, we report on a monitoring campaign of 4U 0142+61 from 2011 July 26 to 2016 June 12 using the Swift X-ray Telescope, continuing a 16-year timing campaign with the Rossi X-ray Timing Explorer . We show that 4U 0142+61 had two radiatively loud timing events, on 2011 July 29 and 2015 February 28, both with short soft γ -ray bursts, and a long-lived flux decay associated with each case. We show that the 2015 timing event resulted in a net spin-down of the pulsar that is due to overrecovery of a glitch. We compare this timing event to previous such events in other pulsars with high magnetic fields and discuss net spin-down glitches now seen in several young, high-B pulsars.

  8. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; hide

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of -29.3(sup +1.1)(sub -1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 +/- 0.1) x 10(exp 12) G. The known pulsation period is now observed at 904.0+/- 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P= -2 x 10(exp -8) s s(exp -1) (-0.6 s per year, or a frequency derivative of v = 3 x 10(exp -14) Hz s(exp -1)). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 x 10(exp 8) cm.

  9. Spin-down of radio millisecond pulsars at genesis.

    Science.gov (United States)

    Tauris, Thomas M

    2012-02-03

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  10. Line features in the X-ray spectrum of the crab pulsar

    International Nuclear Information System (INIS)

    Hasinger, G.; Pietsch, W.; Reppin, C.; Truemper, J.; Voges, W.; Kendziorra, E.; Staubert, R.

    1982-01-01

    Beside the well-known synchrotron behaviour of the Crab pulsar, there may be another source of high energy emission due to a hot plasma. The similarities between this component and common accretion-fed X-ray binaries are the frame in which the present balloon observation of the Crab pulsar will be discussed. (orig./WL)

  11. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  12. On hard X-ray spectra of accreting neutron stars

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1982-01-01

    Formation of the spectra of X-ray pulsars and gamma bursters is investigated. Interpretation of a hard X-ray spectrum of pulsars containing cyclotron lines is feasible on the basis of an isothermal model of a polar spot heated due to acccretion to a neutron star. It has been ascertained that in the regions responsible for the formation of continuum radiation and lines the mode polarization is determined by a magnetized vacuum rather than by a plasma. Bearing this in mind, the influence of the magnetic field of a star on the wide wings of the cyclotron line and on its depth is discussed. The part played by the accreting column in the case of strong accretion (approx. equal to 10 19 el cm -3 ) needed for long sustaining of the high level of X-rays from a neutron star-pulsar is studied. There occur the gaps in spectrum at frequencies close to the electron gyro-frequency and its harmonics due to the screening of the hot spot by the opaque gyro-resonant layer located within the accreting column. These gaps ensure the formation of cyclotron lines in absorption irrespective of the presence of such lines in the X-ray spectrum of a polar hot spot. (orig./WL)

  13. On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1

    Science.gov (United States)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.

    2017-10-01

    We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.

  14. Simulating X-ray bursts during a transient accretion event

    Science.gov (United States)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  15. A curious case of the accretion-powered X-ray pulsar GX 1+4

    Science.gov (United States)

    Jaisawal, Gaurava K.; Naik, Sachindra; Gupta, Shivangi; Chenevez, Jérôme; Epili, Prahlad

    2018-04-01

    We present detailed spectral and timing studies using a NuSTAR observation of GX 1+4 in October 2015 during an intermediate intensity state. The measured spin period of 176.778 s is found to be one of the highest values since its discovery. In contrast to a broad sinusoidal-like pulse profile, a peculiar sharp peak is observed in profiles below ˜25 keV. The profiles at higher energies are found to be significantly phase-shifted compared to the soft X-ray profiles. Broadband energy spectra of GX 1+4, obtained from NuSTAR and Swift observations, are described with various continuum models. Among these, a two component model consisting of a bremsstrahlung and a blackbody component is found to best-fit the phase-averaged and phase-resolved spectra. Physical models are also used to investigate the emission mechanism in the pulsar, which allows us to estimate the magnetic field strength to be in ˜(5-10)× 1012 G range. Phase-resolved spectroscopy of NuSTAR observation shows a strong blackbody emission component in a narrow pulse phase range. This component is interpreted as the origin of the peculiar peak in the pulse profiles below ≤25 keV. The size of emitting region is calculated to be ˜400 m. The bremsstrahlung component is found to dominate in hard X-rays and explains the nature of simple profiles at high energies.

  16. Conditions for accretion-induced collapse of white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, Kenichi; Kondo, Yoji

    1991-01-01

    Recent discovery of an unexpectedly large number of low-mass binary pulsars (LMBPs) in globular clusters has instigated active discussions on the evolutionary origin of binary pulsars. Prompted by the possibility that at least some of LMBPs originate from accretion-induced collapse (AIC) of white dwarfs, a reexamination is conducted as to whether or not AIC occurs for the new models of O + Ne + Mg white dwarfs and solid C + O white dwarfs that can ignite explosive nuclear burning at significantly lower central densities than in the previous models. Even with low critical densities, AIC is still much more likely than explosion for both types of white dwarfs. Possible regions for AIC are presented in a diagram of mass accretion rate vs initial mass of the white dwarfs. 42 refs

  17. The Velocity Distribution of Isolated Radio Pulsars

    Science.gov (United States)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    spatially bounded surveys; (3) an important low-velocity population exists that increases the fraction of neutron stars retained by globular clusters and is consistent with the number of old objects that accrete from the interstellar medium; (4) under standard assumptions for supernova remnant expansion and pulsar spin-down, approx. 10% of pulsars younger than 20 kyr will appear to lie outside of their host remnants. Finally, we comment on the ramifications of our birth velocity distribution for binary survival and the population of inspiraling binary neutron stars relevant to some GRB models and potential sources for LIGO.

  18. The Green Bank Northern Celestial Cap Pulsar Survey. II. The Discovery and Timing of 10 Pulsars

    Science.gov (United States)

    Kawash, A. M.; McLaughlin, M. A.; Kaplan, D. L.; DeCesar, M. E.; Levin, L.; Lorimer, D. R.; Lynch, R. S.; Stovall, K.; Swiggum, J. K.; Fonseca, E.; Archibald, A. M.; Banaszak, S.; Biwer, C. M.; Boyles, J.; Cui, B.; Dartez, L. P.; Day, D.; Ernst, S.; Ford, A. J.; Flanigan, J.; Heatherly, S. A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Kondratiev, V. I.; Leake, S.; Lunsford, G.; Martinez, J. G.; Mata, A.; Matheny, T. D.; Mcewen, A. E.; Mingyar, M. G.; Orsini, A. L.; Ransom, S. M.; Roberts, M. S. E.; Rohr, M. D.; Siemens, X.; Spiewak, R.; Stairs, I. H.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.

    2018-04-01

    We present timing solutions for 10 pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program during an analysis of drift-scan data. Following the discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high-precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930‑2301, a pulsar with a nulling fraction lower limit of ∼30% and a nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557‑2948 is an isolated, 44 ms pulsar that has been partially recycled and is likely a former member of a binary system that was disrupted by a second supernova. The paucity of such so-called “disrupted binary pulsars” (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 ms pulsar in a 44-day orbit with a low-mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.

  19. A 5.75-millisecond pulsar in the globular cluster 47 Tucanae

    International Nuclear Information System (INIS)

    Manchester, R.N.; Lyne, A.G.; Johnston, S.; D'Amico, N.; Lim, J.; Kniffen, D.A.

    1990-01-01

    Millisecond pulsars are generally believed to be old pulsars that have been spun up ('recycled') as a result of accretion of matter from a companion in a low-mass X-ray binary system. As there is a high incidence of such systems in globular clusters, these are good places to search for millisecond pulsars; so far, ten globular-cluster pulsars have been detected unambiguously. Using the Parkes radiotelescope in Australia, we have found a pulsar with a period of 5.75 ms and a dispersion measure of 25 cm -3 pc in the direction of 47 Tucanae. Despite its probable origin as a member of a binary system, timing measurements show that the pulsar is now single. The observed dispersion measure is consistent with the pulsar lying outside the galactic electron layer and within 47 Tucanae; but it is very different from the value of 67 cm -3 pc for the pulsars that were reported recently as being in this globular cluster, and we suggest that the latter pulsars probably do not in fact lie within 47 Tucanae. (author)

  20. 4U 1626-67 as Seen by Suzaku Before and After the 2008 Torque Reversal

    Science.gov (United States)

    Camero-Arranz, A.; Pottschmidt, K.; Finger, M. H.; Ikhsanov, N. R.; Wilson-Hodge, C. A.; Marcu, D. M.

    2012-01-01

    Aims. The accretion-powered pulsar 4U 1626-67 experienced a new torque reversal at the beginning of 2008, after about 18 years of steadily spinning down. The main goal of the present work is to study this recent torque reversal that occurred in 2008 February. Methods. We present a spectral analysis of this source using two pointed observations performed by Suzaku in 2006 March and in 2010 September. Results. We confirm with Suzaku the presence of a strong emission-line complex centered on 1 keV, with the strongest line being the hydrogen-like Ne Lya at 1.025(3) keV. We were able to resolve this complex with up to seven emission lines. A dramatic increase of the intensity of the Ne Lya line after the 2008 torque reversal occurred, with the equivalent width of this line reaching almost the same value measured by ASCA in 1993. We also report on the detection of a cyclotron line feature centered at approximately 37 keV. In spite of the fact that an increase of the X-ray luminosity (0.5-100keV) of a factor of approximately 2.8 occurred between these two observations, no significant change in the energy of the cyclotron line feature was observed. However, the intensity of the approximately 1 keV line complex increased by an overall factor of approximately 8. Conclusions. Our results favor a scenario in which the neutron star in 4U 1626-67 accretes material from a geometrically thin disk during both the spin-up and spin-down phases.

  1. Studies of accreting and non-accreting neutron stars

    International Nuclear Information System (INIS)

    Stollman, G.M.

    1987-01-01

    This thesis is divided into three parts. Part A is devoted to the statistical study of radio pulsars, in which the observations of nearly all known pulsars are used to study their properties such as magnetic field strengths, rotation periods, space velocities as well as their evolution in time. Part B is devoted to the modelling and understanding of quasi-periodic oscillations (QPO) in low-mass X-ray binaries. But, this study is mainly concerned with the accretion process in these sources, and one may hope to learn more about the neutron stars in these systems when the understanding of QPO is improved. In Part C the problem of 'super-Eddington luminosities' in X-ray burst sources is treated. The idea is that a good understanding of the burst process, which takes place directly at the surface of the neutron star, will eventually improve our understanding of the neutron stars themselves. (Auth.)

  2. Effect of non-stationary accretion on spectral state transitions: An example of a persistent neutron star LMXB 4U1636–536

    Science.gov (United States)

    Zhang, Hui; Yu, Wen-Fei

    2018-03-01

    Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition, indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions. It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work, we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary (LMXB) 4U 1636–536 based on data from the All Sky Monitor (ASM) on board RXTE, the Gas Slit Camera (GSC) on board MAXI and the Burst Alert Telescope (BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares, which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.

  3. LOW-FREQUENCY QUASI-PERIODIC OSCILLATION FROM THE 11 Hz ACCRETING PULSAR IN TERZAN 5: NOT FRAME DRAGGING

    International Nuclear Information System (INIS)

    Altamirano, D.; Van der Klis, M.; Wijnands, R.; Ingram, A.; Linares, M.; Homan, J.

    2012-01-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480–2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480–2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  4. Low-frequency Quasi-periodic Oscillation from the 11 Hz Accreting Pulsar in Terzan 5: Not Frame Dragging

    Science.gov (United States)

    Altamirano, D.; Ingram, A.; van der Klis, M.; Wijnands, R.; Linares, M.; Homan, J.

    2012-11-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  5. Polarimetric Evidence of the First White Dwarf Pulsar: The Binary System AR Scorpii

    Directory of Open Access Journals (Sweden)

    David A.H. Buckley

    2018-01-01

    Full Text Available The binary star AR Scorpii was recently discovered to exhibit high amplitude coherent variability across the electromagnetic spectrum (ultraviolet to radio at two closely spaced ∼2 min periods, attributed to the spin period of a white dwarf and the beat period. There is strong evidence (low X-ray luminosity, lack of flickering and absense of broad emission lines that AR Sco is a detached non-accreting system whose luminosity is dominated by the spin-down power of a white dwarf, due to magnetohydrodynamical (MHD interactions with its M5 companion. Optical polarimetry has revealed highly pulsed linear polarization on the same periods, reaching a maximum of 40%, consistent with a pulsar-like dipole, with the Stokes Q and U variations reminiscent of the Crab pulsar. These observations, coupled with the spectral energy distribution (SED which is dominated by non-thermal emission, characteristic of synchrotron emission, support the notion that a strongly magnetic (∼200 MG white dwarf is behaving like a pulsar, whose magnetic field interacts with the secondary star’s photosphere and magnetosphere. Radio synchrotron emission is produced from the pumping action of the white dwarf’s magnetic field on coronal loops from the M-star companion, while emission at high frequencies (UV/optical/X-ray comes from the particle wind, driven by large electric potential, again reminiscent of processes seen in neutron star pulsars.

  6. High-energy Emissions from the Pulsar/Be Binary System PSR J2032+4127/MT91 213

    Energy Technology Data Exchange (ETDEWEB)

    Takata, J. [School of physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tam, P. H. T. [Institute of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China); Ng, C. W.; Cheng, K. S. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Li, K. L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: takata@hust.edu.cn [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2017-02-20

    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25–50 years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR B1259–63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.

  7. A PROPELLER MODEL FOR THE SUB-LUMINOUS STATE OF THE TRANSITIONAL MILLISECOND PULSAR PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Papitto, A.; Torres, D. F. [Institute of Space Sciences (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193, Cerdanyola del Vallés, Barcelona (Spain)

    2015-07-01

    The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk and emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumptions that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk–magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray bands. The average emission observed from PSR J1023+0038 is modeled by a disk in-flow with a rate of 1–3 × 10{sup −11} M{sub ⊙} yr{sup −1}, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that assume that a rotation-powered pulsar is turned on, showing how the spin-down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.

  8. Constraints on the inner accretion flow of 4U/MXB 1636-53 (V 801 Arae) from a comparison of X-ray burst and persistent emission

    NARCIS (Netherlands)

    Damen, E.; Wijers, R.A.M.J.; van Paradijs, J.; Penninx, W.; Oosterbroek, T.; Lewin, W.H.G.; Jansen, F.

    1990-01-01

    A detailed analysis is presented of the importance of Comptonization in burst and persistent spectra of the low-mass X-ray binary 4U/MXB 1636-53, and from this analysis it is inferred that the inner accretion flow is geometrically thin. It is found that burst spectra of 1636-53 are very nearly

  9. Accreting X-Ray pulsars. The high energy picture

    OpenAIRE

    Camero Arranz, Ascension

    2007-01-01

    El objetivo principal de esta tesis ha sido el estudio del comportamiento transitorio durante estallidos de distinto tipo, de una selección de pulsares acretores en rayos X, localizados en el plano galáctico.Con ello se pretende haber avanzado hacia una explicación más clara de la naturaleza de estas objetos binarios de alta masa (con estrella de neutrones como objeto compacto), así como de los mecanismos físicos que operan en este escenario. Para todo esto se han analizado datos de dos misio...

  10. A 110-ms pulsar, with negative period derivative, in the globular cluster M15

    Science.gov (United States)

    Wolszczan, A.; Kulkarni, S. R.; Middleditch, J.; Backer, D. C.; Fruchter, A. S.; Dewey, R. J.

    1989-01-01

    The discovery of a 110-ms pulsar, PSR2127+11, in the globular cluster M15, is reported. The results of nine months of timing measurements place the new pulsar about 2 arcsec from the center of the cluster, and indicate that it is not a member of a close binary system. The measured negative value of the period derivative is probably the result of the pulsar being bodily accelerated in our direction by the gravitational field of the collapsed core of M15. This apparently overwhelms a positive contribution to the period derivative due to magnetic braking. Although the pulsar has an unexpectedly long period, it is argued that it belongs to the class of 'recycled' pulsars, which have been spun up by accretion in a binary system. The subsequent loss of the pulsar's companion is probably due to disruption of the system by close encounters with other stars.

  11. Discovery of the Orbit of the X-ray pulsar OAO 1657-415

    Science.gov (United States)

    Chakrabarty, Deepto; Grunsfeld, John M.; Prince, Thomas A.; Bildsten, Lars; Finger, Mark H.; Wilson, Robert B.; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.

    1993-01-01

    Timing observations of the 38 s accreting X-ray pulsar OAO 1657-415 made with the BATSE large-area detectors on the Compton Gamma Ray Observatory have revealed a binary orbit with an X-ray eclipse by the stellar companion. From the pulsar mass function fx(M) = 11.7 +/- 0.2 solar masses and the measured eclipse half-angle theta(e) = 29.7 +/- 1.3 deg, we infer that the stellar companion is a supergiant of spectral class B0-B6. If the companion can be identified and its orbital velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and spin-down of the pulsar were measured during our observation.

  12. A 110-ms pulsar, with negative period derivative, in the global cluster M15

    International Nuclear Information System (INIS)

    Wolszczan, A.; Kulkarni, S.R.; Middleditch, J.; Backer, D.C.; Fruchter, A.S.; Dewey, R.J.

    1989-01-01

    We report the discovery of a 110-ms pulsar, PSR2127 + 11, in the globular cluster M15 (NGC7078). The results of nine months of timing measurements place the new pulsar about 2'' from the centre of the cluster, and indicate that it is not a member of a close binary system. The measured negative value of the period derivative, P ∼-2 x 10 -17 s s -1 , is probably the result of the pulsar being bodily accelerated in our direction by the gravitational field of the collapsed core of M15. Although PSR2127 + 11 has an unexpectedly long period, we argue that it belongs to the class of 'recycled' pulsars, which have been spun up by accretion in a binary system. (author)

  13. On the timing behaviour of PSR B1259-63 under the propeller torque from a transient accretion disc

    Science.gov (United States)

    Yi, Shu-Xu; Cheng, K. S.

    2018-05-01

    The γ-ray pulsar binary system PSR B1259-63 flares in GeV after each periastron. The origin of these flares is still under debate. Recently, in 2017, we proposed a mechanism that might explain the GeV flares. In that model, a transient accretion disc is expected to be formed from the matter that was gravity-captured by the neutron star from the main-sequence companion's circumstellar disc. The transient accretion disc exerts a spin-down torque on the neutron star (i.e. the propeller effect), which might be traceable via pulsar timing observations of PSR B1259-63. In this paper, we consider the propeller effect phenomenologically using a parameter χ, which describes the coupling between the disc matter and the neutron star. Comparing the expected timing residuals with recent observations by Shannon et al., we conclude that the angular momentum transfer is very weak (with the coupling parameter χ ≤ 10-4).

  14. Anti-correlation between X-ray luminosity and pulsed fraction in the Small Magellanic Cloud pulsar SXP 1323

    Science.gov (United States)

    Yang, Jun; Zezas, Andreas; Coe, Malcolm J.; Drake, Jeremy J.; Hong, JaeSub; Laycock, Silas G. T.; Wik, Daniel R.

    2018-05-01

    We report the evidence for the anti-correlation between pulsed fraction (PF) and luminosity of the X-ray pulsar SXP 1323, found for the first time in a luminosity range 1035-1037 erg s-1 from observations spanning 15 years. The phenomenon of a decrease in X-ray PF when the source flux increases has been observed in our pipeline analysis of other X-ray pulsars in the Small Magellanic Cloud (SMC). It is expected that the luminosity under a certain value decreases as the PF decreases due to the propeller effect. Above the propeller region, an anti-correlation between the PF and flux might occur either as a result of an increase in the un-pulsed component of the total emission or a decrease of the pulsed component. Additional modes of accretion may also be possible, such as spherical accretion and a change in emission geometry. At higher mass accretion rates, the accretion disk could also extend closer to the neutron star (NS) surface, where a reduced inner radius leads to hotter inner disk emission. These modes of plasma accretion may affect the change in the beam configuration to fan-beam dominant emission.

  15. ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Shannon, Ryan M.; Cordes, James M.

    2010-01-01

    We investigate rotational spin noise (referred to as timing noise) in non-accreting pulsars: millisecond pulsars, canonical pulsars, and magnetars. Particular attention is placed on quantifying the strength and non-stationarity of timing noise in millisecond pulsars because the long-term stability of these objects is required to detect nanohertz gravitational radiation. We show that a single scaling law is sufficient to characterize timing noise in millisecond and canonical pulsars while the same scaling law underestimates the levels of timing noise in magnetars. The scaling law, along with a detailed study of the millisecond pulsar B1937+21, leads us to conclude that timing noise is latent in most millisecond pulsars and will be measurable in many objects when better arrival time estimates are obtained over long data spans. The sensitivity of a pulsar timing array to gravitational radiation is strongly affected by any timing noise. We conclude that detection of proposed gravitational wave backgrounds will require the analysis of more objects than previously suggested over data spans that depend on the spectra of both the gravitational wave background and of the timing noise. It is imperative to find additional millisecond pulsars in current and future surveys in order to reduce the effects of timing noise.

  16. The spin histories of PSR1821-24 in M28 and PSR1951+32 in CTB80

    International Nuclear Information System (INIS)

    White, N.E.; Stella, L.

    1988-01-01

    The spin histories of the 3.05-ms pulsar PSR 1821-24 in the globular cluster M28 and the pulsar PSR 1951 + 32 in the supernova remnant C + B80, show that the equation for the minimum possible period for the spin-up by accretion of an accreting magnetized neutron star is not correct. Also the equation should not be considered a 'hard' barrier when considering the magnetic field-period distribution of recycled radio pulsars. The rapid rotation period and period derivative of both pulsars are consistent with both having undergone a previous interval of accretion. (U.K.)

  17. Radio Pulse Search and X-Ray Monitoring of SAX J1808.4−3658: What Causes Its Orbital Evolution?

    Energy Technology Data Exchange (ETDEWEB)

    Patruno, Alessandro; King, Andrew R. [Leiden Observatory, Leiden University, Neils Bohrweg 2, 2333 CA, Leiden (Netherlands); Jaodand, Amruta; Hessels, Jason W. T. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7900 AA, Dwingeloo (Netherlands); Kuiper, Lucien [SRON-National Institute for Space Research, Sorbonnelaan 2, NL-3584 CA, Utrecht (Netherlands); Bult, Peter; Wijnands, Rudy; Van der Klis, Michiel [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Knigge, Christian [University of Southampton, School of Physics and Astronomy, Southampton SO17 1BJ (United Kingdom)

    2017-06-01

    The accreting millisecond X-ray pulsar SAX J1808.4−3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin–orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4−3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deep radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra , Swift XRT, and INTEGRAL . In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4−3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4−3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin–orbit coupling.

  18. Magnetospheres of accreting compact objects in binary systems

    International Nuclear Information System (INIS)

    Aly, J.J.

    1985-09-01

    Bright pulsating X-ray sources (X-ray pulsars, AM Her stars,...) have been identified as strongly magnetized compact objects accreting matter from a binary companion. We give here a summary of some of the work which has been recently done to try to understand the interaction between the magnetic field of the compact object and the matter around. We examine in turn the models describing the interaction of the field with: i) a spherically symmetric accretion flow; ii) a thin keplerian accretion disk; iii) the companion itself. In all these cases, we pay particular attention to the following problems: i) how the external plasma interacting with the magnetosphere can get mixed with the field; ii) by which mechanism the magnetic field controls the mass-momentum-energy exchanges between the two stars. In conclusion, we compare the magnetosphere of an accreting compact object with that one of a planet [fr

  19. ASM observations of X-ray flares from 4U 0115+63 and ASM 1354-64.

    Science.gov (United States)

    Tsunemi, H.; Kitamoto, S.

    The authors report two X-ray flares detected with the All Sky Monitor (ASM) on board the GINGA satellite. One is from the recurrent X-ray pulsar 4U 0115+63 and the other is from the probable recurrent X-ray nova named ASM 1354-64. The maximum intensity for 4U 0115+63 was 180 mCrab and its duration was at least 22 days. Its spectrum was hard and resembled those of X-ray pulsars. The maximum intensity of ASM 1354-64 was 300 mCrab. It faded down below the detection limit at the end of August 1987. Its spectrum was soft and was similar to those of black hole candidates.

  20. A lower limit for the birth rate of pulsars

    International Nuclear Information System (INIS)

    Narayan, R.; Vivekanand, M.

    1981-01-01

    Using experimental data on observed pulsars, a lower limit for the birth rate of pulsars in our galaxy was estimated, taking into account the beam factor which allows for the possibility that only a fraction of all pulsars is beamed towards the earth. The calculation reduces the discrepancy between pulsar and supernova birth rates. (U.K.)

  1. Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Yen

    2013-09-01

    Full Text Available We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a γ-ray emitting millisecond pulsar (MSP in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the γ-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of γ-ray emitting pulsars -the ‘black widows’- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

  2. EXTraS discovery of a 1.2-s X-ray pulsar in M31

    Science.gov (United States)

    Esposito, P.; Israel, G.; Belfiore, A.; Novara, G.; Sidoli, L.; Rodriguez Castillo, G.; De Luca, A.; Tiengo, A.; Haberl, F.; Salvaterra, R.

    2017-10-01

    A systematic search for periodic signals in the XMM-Newton's EPIC archive carried out within the EXTraS project resulted in the discovery of a 1.2-s flux modulation in 3XMM J004301.4+413017. It is the first accreting neutron star in M31 for which the spin period has been detected. Besides this distinction, 3XMM J0043 proved to be an interesting system. Doppler shifts of the spin modulation revealed an orbital motion with period of 1.27 d and the analysis of optical data shows that, while the source is likely associated to a globular cluster, a counterpart with V ˜ 22 outside the cluster cannot be excluded. The emission of the pulsar appears rather hard (most data are described by a power law with photon index <1) and, assuming the distance to M31, the 0.3-10 keV luminosity was variable, from ˜3×10^{37} to 2×10^{38} erg/s. Based on this, we discuss two main possible scenarios for 3X J0043: a peculiar low-mass X-ray binary, perhaps similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary akin Her X-1.

  3. Wind accretion in the massive X-ray binary 4U 2206+54: abnormally slow wind and a moderately eccentric orbit

    Science.gov (United States)

    Ribó, M.; Negueruela, I.; Blay, P.; Torrejón, J. M.; Reig, P.

    2006-04-01

    Massive X-ray binaries are usually classified by the properties of the donor star in classical, supergiant and Be X-ray binaries, the main difference being the mass transfer mechanism between the two components. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_∞) of ~350 km s-1, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela X-1, reinforcing the idea that 4U 2206+54 is also a wind-fed system. We find a quasi-period decreasing from ~270 to ~130 d, noticed in previous works but never studied in detail. We discuss possible scenarios for its origin and conclude that long-term quasi-periodic variations in the mass-loss rate of the primary are probably driving such variability in the measured X-ray flux. We obtain an improved orbital period of P_orb=9.5591±0.0007 d with maximum X-ray flux at MJD 51856.6±0.1. Our study of the orbital X-ray variability in the context of wind accretion suggests a moderate eccentricity around 0.15 for this binary system. Moreover, the low value of v_∞ solves the long-standing problem of the relatively high X-ray luminosity for the unevolved nature of the donor, BD +53°2790, which is probably an O9.5 V star. We note that changes in v_∞ and/or the mass-loss rate of the primary alone cannot explain the different patterns displayed by the orbital X-ray variability. We finally emphasize that 4U 2206+54, together with LS 5039, could be part of a new population of wind-fed HMXBs with main sequence donors, the natural progenitors of supergiant X-ray binaries.

  4. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    Science.gov (United States)

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by

  5. Ultraluminous X-ray sources as neutrino pulsars

    Science.gov (United States)

    Mushtukov, Alexander A.; Tsygankov, Sergey S.; Suleimanov, Valery F.; Poutanen, Juri

    2018-05-01

    The classical limit on the accretion luminosity of a neutron star is given by the Eddington luminosity. The advanced models of accretion on to magnetized neutron stars account for the appearance of magnetically confined accretion columns and allow the accretion luminosity to be higher than the Eddington value by a factor of tens. However, the recent discovery of pulsations from ultraluminous X-ray source (ULX) in NGC 5907 demonstrates that the accretion luminosity can exceed the Eddington value up to by a factor of 500. We propose a model explaining observational properties of ULX-1 in NGC 5907 without any ad hoc assumptions. We show that the accretion column at extreme luminosity becomes advective. Enormous energy release within a small geometrical volume and advection result in very high temperatures at the bottom of accretion column, which demand to account for the energy losses due to neutrino emission which can be even more effective than the radiation energy losses. We show that the total luminosity at the mass accretion rates above 1021 g s-1 is dominated by the neutrino emission similarly to the case of core-collapse supernovae. We argue that the accretion rate measurements based on detected photon luminosity in case of bright ULXs powered by neutron stars can be largely underestimated due to intense neutrino emission. The recently discovered pulsating ULX-1 in galaxy NGC 5907 with photon luminosity of {˜ } 10^{41} {erg s^{-1}} is expected to be even brighter in neutrinos and is thus the first known Neutrino Pulsar.

  6. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  7. On the Magnetic Field of the Ultraluminous X-Ray Pulsar M82 X-2

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210023 (China)

    2017-04-01

    The discovery of the ultraluminous X-ray pulsar M82 X-2 has stimulated lively discussion on the nature of the accreting neutron star. In most of the previous studies the magnetic field of the neutron star was derived from the observed spin-up/down rates based on the standard thin, magnetized accretion disk model. However, under super-Eddington accretion the inner part of the accretion disk becomes geometrically thick. In this work we consider both radiation feedback from the neutron star and the sub-Keplerian rotation in a thick disk and calculate the magnetic moment–mass accretion rate relations for the measured rates of spin change. We find that the derived neutron star's dipole magnetic field depends on the maximum accretion rate adopted, but is likely ≲10{sup 13} G. The predicted accretion rate change can be used to test the proposed models by comparison with observations.

  8. Understanding the spectral and timing behaviour of a newly discovered transient X-ray pulsar Swift J0243.6+6124

    DEFF Research Database (Denmark)

    Jaisawal, Gaurava K.; Naik, Sachindra; Chenevez, Jérôme

    2018-01-01

    We present the results obtained from timing and spectral studies of the newly discovered accreting X-ray binary pulsar Swift J0243.6+6124 using Nuclear Spectroscopy Telescope Array observation in 2017 October at a flux level of ~280 mCrab. Pulsations at 9.854 23(5) s were detected in the X......-ray light curves of the pulsar. Pulse profiles of the pulsar were found to be strongly energy dependent. A broad profile at lower energies was found to evolve into a double-peaked profile in ≥ 30 keV. The 3-79 keV continuum spectrum of the pulsar was well described with a negative and positive exponential...

  9. Understanding the spectral and timing behaviour of a newly discovered transient X-ray pulsar Swift J0243.6+6124

    Science.gov (United States)

    Jaisawal, Gaurava K.; Naik, Sachindra; Chenevez, Jérôme

    2018-03-01

    We present the results obtained from timing and spectral studies of the newly discovered accreting X-ray binary pulsar Swift J0243.6+6124 using Nuclear Spectroscopy Telescope Array observation in 2017 October at a flux level of ˜280 mCrab. Pulsations at 9.854 23(5) s were detected in the X-ray light curves of the pulsar. Pulse profiles of the pulsar were found to be strongly energy dependent. A broad profile at lower energies was found to evolve into a double-peaked profile in ≥ 30 keV. The 3-79 keV continuum spectrum of the pulsar was well described with a negative and positive exponential cutoff or high-energy cutoff power-law models modified with a hot blackbody at ˜3 keV. An iron emission line was also detected at 6.4 keV in the source spectrum. We did not find any signature of cyclotron absorption line in our study. Results obtained from phase-resolved and time-resolved spectroscopy are discussed in the paper.

  10. On the origin of cyclotron lines in the spectra of X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Mushtukov A. A.

    2014-01-01

    Full Text Available Cyclotron resonance scattering features are observed in the spectra of some X-ray pulsars and show significant changes in the line energy with the pulsar luminosity. In a case of bright sources, the line centroid energy is anti-correlated with the luminosity. Such a behaviour is often associated with the onset and growth of the accretion column, which is believed to be the origin of the observed emission and the cyclotron lines. However, this scenario inevitably implies large gradient of the magnetic field strength within the line-forming region, and it makes the formation of the observed line-like features problematic. Moreover, the observed variation of the cyclotron line energy is much smaller than could be anticipated for the corresponding luminosity changes. We argue that a more physically realistic situation is that the cyclotron line forms when the radiation emitted by the accretion column is reflected from the neutron star surface. The idea is based on the facts that a substantial part of column luminosity is intercepted by the neutron star surface and the reflected radiation should contain absorption features. The reflection model is developed and applied to explain the observed variations of the cyclotron line energy in a bright X-ray pulsar V 0332+53 over a wide range of luminosities.

  11. Correlation between the luminosity and spin-period changes during outbursts of 12 Be binary pulsars observed by the MAXI/GSC and the Fermi/GBM

    Science.gov (United States)

    Sugizaki, Mutsumi; Mihara, Tatehiro; Nakajima, Motoki; Makishima, Kazuo

    2017-12-01

    To study observationally the spin-period changes of accreting pulsars caused by the accretion torque, the present work analyzes X-ray light curves of 12 Be binary pulsars obtained by the MAXI Gas-Slit Camera all-sky survey and their pulse periods measured by the Fermi Gamma-ray Burst Monitor pulsar project, both covering more than six years, from 2009 August to 2016 March. The 12 objects were selected because they are accompanied by clear optical identification and accurate measurements of surface magnetic fields. The luminosity L and the spin-frequency derivatives \\dot{ν}, measured during large outbursts with L ≳ 1 × 1037 erg s-1, were found to follow approximately the theoretical relations in the accretion torque models, represented by \\dot{ν} ∝ L^{α} (α ≃ 1), and the coefficient of proportionality between \\dot{ν} and Lα agrees, within a factor of ˜3, with that proposed by Ghosh and Lamb (1979b, ApJ, 234, 296). In the course of the present study, the orbital elements of several sources were refined.

  12. A new look at the origin of the 6.67 hr period X-ray pulsar 1E 161348-5055

    Science.gov (United States)

    Ikhsanov, N. R.; Kim, V. Y.; Beskrovnaya, N. G.; Pustil'nik, L. A.

    2013-07-01

    The point X-ray source 1E 161348-5055 is observed to display pulsations with the period 6.67 hr and |dot{P}| ≤1.6 ×10^{-9} s s^{-1}. It is associated with the supernova remnant RCW 103 and is widely believed to be a ˜2000 yr old neutron star. Observations give no evidence for the star to be a member of a binary system. Nevertheless, it resembles an accretion-powered pulsar with the magnetospheric radius ˜3000 km and the mass-accretion rate ˜ 10^{14} g s^{-1}. This situation could be described in terms of accretion from a (residual) fossil disk established from the material falling back towards the star after its birth. However, current fall-back accretion scenarios encounter major difficulties explaining an extremely long spin period of the young neutron star. We show that the problems can be avoided if the accreting material is magnetized. The star in this case is surrounded by a fossil magnetic slab in which the material is confined by the magnetic field of the accretion flow itself. We find that the surface magnetic field of the neutron star within this scenario is ˜1012 G and that a presence of ≳10^{-7} M_{⊙} magnetic slab would be sufficient to explain the origin and current state of the pulsar.

  13. Kepler K2 observations of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Kennedy, M. R.; Clark, C. J.; Voisin, G.; Breton, R. P.

    2018-06-01

    For 80 d in 2017, the Kepler Space Telescope continuously observed the transitional millisecond pulsar system PSR J1023+0038 in its accreting state. We present analyses of the 59-s cadence data, focusing on investigations of the orbital light curve of the irradiated companion star and of flaring activity in the neutron star's accretion disc. The underlying orbital modulation from the companion star retains a similar amplitude and asymmetric heating profile as seen in previous photometric observations of the system in its radio pulsar state, suggesting that the heating mechanism has not been affected by the state change. We also find tentative evidence that this asymmetry may vary with time. The light curve also exhibits `flickering' activity, evident as short time-scale flux correlations throughout the observations, and periods of rapid mode-switching activity on time-scales shorter than the observation cadence. Finally, the system spent ˜ 20 per cent of the observations in a flaring state, with the length of these flares varying from <2 min up to several hours. The flaring behaviour is consistent with a self-organized criticality mechanism, most likely related to the build-up and release of mass at the inner edge of the accretion disc.

  14. Simultaneous Chandra and VLA Observations of the Transitional Millisecond Pulsar PSR J1023+0038: Anti-correlated X-Ray and Radio Variability

    Science.gov (United States)

    Bogdanov, Slavko; Deller, Adam T.; Miller-Jones, James C. A.; Archibald, Anne M.; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D’Angelo, Caroline

    2018-03-01

    We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.

  15. Polarimetry of 600 pulsars from observations at 1.4 GHz with the Parkes radio telescope

    Science.gov (United States)

    Johnston, Simon; Kerr, Matthew

    2018-03-01

    Over the past 13 yr, the Parkes radio telescope has observed a large number of pulsars using digital filter bank backends with high time and frequency resolution and the capability for Stokes recording. Here, we use archival data to present polarimetry data at an observing frequency of 1.4 GHz for 600 pulsars with spin-periods ranging from 0.036 to 8.5 s. We comment briefly on some of the statistical implications from the data and highlight the differences between pulsars with high and low spin-down energy. The data set, images and table of properties for all 600 pulsars are made available in a public data archive maintained by the CSIRO.

  16. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J. [West Virginia University, White Hall, Morgantown, WV 26506 (United States); Heatherly, S. A.; Scoles, S. [NRAO, P.O. Box 2, Green Bank, WV 24944 (United States); Lynch, R. [McGill University, Rutherford Physics Building, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Kondratiev, V. I. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Ransom, S. M. [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Moniot, M. L.; Thompson, C. [James River High School, 9906 Springwood Road, Buchanan, VA 24066 (United States); Cottrill, A.; Raycraft, M. [Lincoln High School, 100 Jerry Toth Drive, Shinnston, WV 26431 (United States); Weaver, M. [Broadway High School, 269 Gobbler Drive, Broadway, VA 22815 (United States); Snider, A. [Sherando High School, 185 South Warrior Drive, Stephens City, VA 22655 (United States); Dudenhoefer, J.; Allphin, L. [Hedgesville High School, 109 Ridge Road North, Hedgesville, WV 25427 (United States); Thorley, J., E-mail: Rachel.Rosen@mail.wvu.edu [Strasburg High School, 250 Ram Drive, Strasburg, VA 22657 (United States); and others

    2013-05-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg{sup 2} of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  17. Increasing Pulsar Timing Array Sensitivity Through Addition of Millisecond Pulsars

    Science.gov (United States)

    DeCesar, Megan E.; Crawford, Fronefield; Ferrara, Elizabeth; Lynch, Ryan; Mingarelli, Chiara; Levin Preston, Lina; Ransom, Scott; Romano, Joseph; Simon, Joseph; Spiewak, Renee; Stovall, Kevin; Swiggum, Joe; Taylor, Stephen; Green Bank North Celestial Cap Pulsar Survey, Fermi LAT Collaboration, Fermi Pulsar Search Consortium

    2018-01-01

    Siemens et al. (2013) and Taylor et al. (2016) demonstrated the importance of increasing the number of millisecond pulsars (MSPs) in pulsar timing arrays (PTAs) in order to increase the sensitivity of the array and decrease the time-to-detection of a gravitational wave background (GWB). In particular, they predict that adding four MSPs per year to the NANOGrav and International PTAs will likely yield a GWB detection in less than a decade. A more even distribution of MSPs across the sky is also important for discriminating a GWB signal from a non-quadrupolar background (Sampson et al., in prep). Pulsar surveys and targeted searches have consistently led to additions of 4 or more MSPs per year to PTAs. I will describe these ongoing efforts, particularly in the context of the Green Bank North Celestial Cap pulsar survey and Fermi-guided searches at Green Bank and Arecibo that seek to find MSPs in low-pulsar-density regions of the sky.

  18. Pulsars

    CERN Document Server

    Smith, Francis Graham

    1977-01-01

    The discovery of the pulsars ; techniques for search and for observation ; the identification with rotating neutron stars ; the X-ray pulsars ; the internal structure of neutron stars ; the magnetosphere of neutron stars ; pulse timing ; properties of the integrated radio pulses ; individual radio pulses ; the Crab nebula ; the Crab pulsar ; the interstellar medium as an indicator of pulsar distances ; the interstellar magnetic field ; interstellar scintillation ; radiation processes ; the emission mechanism I : analysis of observed particles ; the emission mechanism II : geometrical considerations ; the emission mechanism : discussion ; supernovae : the origin of the pulsars ; the distribution and the ages of pulsars ; high energies and condensed stars.

  19. Early NICER Observations of Magnetars and Young Pulsars

    Science.gov (United States)

    Nynka, Melania

    2018-01-01

    Neutron star Interior Composition ExploreR (NICER) is an X-ray telescope attached to the International Space Station (ISS). Launched in June 2017, it is designed to precisely measure the masses and radii of neutron stars (NS) and probe NS equations of state. But its precision timing capabilities and large effective area uniquely position NICER for the study of magnetars. The NICER Magnetar & Magnetosphere (M&M) science working group focuses on studying highly-magnetized neutron stars, a diverse program that includes magnetars, high-B pulsars, rotation powered pulsars, and isolated neutron stars. Our ongoing campaign has already observed targets such as 4U 0142+61, a magnetar in outburst with coincident NuSTAR and Swift observations, the radio rotation powered Vela pulsar PSR B0833-45, and a transient magnetar XTE J1810-197. I will discuss the goals of the M&M program, spectral and temporal results from the observed targets, and an overview of upcoming observations.

  20. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    International Nuclear Information System (INIS)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J.; Heatherly, S. A.; Scoles, S.; Lynch, R.; Kondratiev, V. I.; Ransom, S. M.; Moniot, M. L.; Thompson, C.; Cottrill, A.; Raycraft, M.; Weaver, M.; Snider, A.; Dudenhoefer, J.; Allphin, L.; Thorley, J.

    2013-01-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg 2 of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926–1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400–1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  1. Pulsar Wind Nebulae Created by Fast-Moving Pulsars

    OpenAIRE

    Kargaltsev, Oleg; Pavlov, George G.; Klingler, Noel; Rangelov, Blagoy

    2017-01-01

    We review multiwavelength properties of pulsar wind nebulae (PWNe) created by supersonically moving pulsars and the effects of pulsar motion on the PWN morphologies and the ambient medium. Supersonic pulsar wind nebulae (SPWNe) are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in SPWN studies have been made in deep observations with the Chandra and XMM-Newton X-ray Observatories as...

  2. Pulsar formation and the fall back mass fraction

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1988-01-01

    The picture of the explosion of 1987A following collapse to a neutron star and neutrino emission is difficult to reconcile with the subsequent behavior of the ejected mass. It is shown that the inner solar mass of ejected matter should progressively fall back onto the neutron star after it collides with the outer 10--15 M circle and after an initial phase of explosion driven by a hot bubble for t approx-gt 2 x 10 3 s. This fall back is augmented due to heating by the radioactive decay of 56 Ni. The matter accreted onto the neutron star rapidly cools due to neutrino emission and merges with the neutron star, thus resulting in zero back pressure to the free falling matter. The predicted fall back mass approx-gt 1 M circle is far larger than is consistent with observations. The author discusses how the most likely explanation is that the hot radiation dominated bubble is continuously heated by neutrino emission from continuing accretion. This accretion continues until the presumed pulsar magnetic field exceeds the bubble pressure

  3. Radio spectra of pulsars. Pt. 1

    International Nuclear Information System (INIS)

    Izekova, V.A.; Kuzmin, A.D.; Malofeev, V.M.; Shitov, Yu.P.

    1981-01-01

    The results of flux pulsar radioemission measurements at meter wavelength, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value is vsub(m) = 130 +- 80 MHz. Averaged on many pulsars, the spectral index is negative in the 39-61 MHz frequency range (anti ALPHA 39 sub(-) 61 = -1.4 +- 0.4) and passes through zero at frequencies of about 100 MHz, becoming positive in the 100-400 MHz frequency range. It was noticed that the spectral index in the 100-400 MHz interval depends upon such pulsar periods as α 100 sub(-) 400 = 0.7 log p + 0.9. Using the spectra, more precise radio luminosities of pulsars have been computed. (orig.)

  4. Pulsar Magnetospheres and Pulsar Winds

    OpenAIRE

    Beskin, Vasily S.

    2016-01-01

    Surprisingly, the chronology of nearly 50 years of the pulsar magnetosphere and pulsar wind research is quite similar to the history of our civilization. Using this analogy, I have tried to outline the main results obtained in this field. In addition to my talk, the possibility of particle acceleration due to different processes in the pulsar magnetosphere is discussed in more detail.

  5. Misaligned Accretion and Jet Production

    Science.gov (United States)

    King, Andrew; Nixon, Chris

    2018-04-01

    Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.

  6. The Parkes multibeam pulsar survey and the discovery of new energetic radio pulsars

    International Nuclear Information System (INIS)

    D'Amico, N.; Possenti, A.; Kaspi, V.M.; Manchester, R.N.; Bell, J.F.; Camilo, F.; Lyne, A.G.; Kramer, M.; Hobbs, G.; Stairs, I.H.

    2001-01-01

    The Parkes multibeam pulsar survey is a deep search of the Galactic plane for pulsars. It uses a 13-beam receiver system operating at 1.4 GHz on the 64-m Parkes radio telescope. It has much higher sensitivity than any previous similar survey and is finding large numbers of previously unknown pulsars, many of which are relatively young and energetic. On the basis of an empirical comparison of their properties with other young radio pulsars, some of the new discoveries are expected to be observable as pulsed γ-ray sources. We describe the survey motivation, the experiment characteristics and the results achieved so far

  7. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Directory of Open Access Journals (Sweden)

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  8. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    Science.gov (United States)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. Biswajit Paul. Articles written in Journal of Astrophysics and Astronomy. Volume 28 Issue 4 December 2007 pp 175-184. Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk.

  10. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. Chetana Jain. Articles written in Journal of Astrophysics and Astronomy. Volume 28 Issue 4 December 2007 pp 175-184. Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk.

  11. Integral luminosities of radio pulsars

    Science.gov (United States)

    Malov, I.; Malov, O.

    The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period Pfalls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.

  12. The disc-jet coupling in the neutron star X-ray binary 4U 1728-34

    NARCIS (Netherlands)

    Tudose, Valeriu; Tzioumis, Anastasios; Belloni, Tomaso; Altamirano, Diego; Linares, Manuel; Mendez, Mariano; Hiemstra, Beike

    2010-01-01

    The present radio proposal is part of a multi-wavelength campaign focused on the study of the accretion/ejection process in the neutron star X-ray binary system 4U 1728-34. Our intention is to study the behaviour of the inner part of the accretion disc as inferred from the X-ray observations of the

  13. Models for the formation of binary and millisecond radio pulsars

    International Nuclear Information System (INIS)

    van den Heuvel, E.P.J.

    1984-01-01

    The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of: (i) decay of the surface dipole component of neutron star magnetic fields on a timescale of (2-5).10 6 yrs, in combination with: (ii) spin up of the rotation of the neutron star during a subsequent mass-transfer phase. The two observed classes of binary radio pulsars (very close and very wide systems, respectively) are expected to have been formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a fairly massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (approx. 0.3 Msub solar) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains why PSR 1953+29 has a millisecond rotation period and why PSR 0820+02 has not. Binary coalescence models for the formation of the 1.5 millisecond pulsar appear to be viable. The companion to the neutron star may have been a low-mass red dwarf, a neutron star, or a massive (> 0.7 Msub solar) white dwarf. In the red-dwarf case the progenitor system probably was a CV binary in which the white dwarf collapsed by accretion. 66 references, 6 figures, 1 table

  14. Meter-wavelength observations of pulsars using very long baseline interferometry

    International Nuclear Information System (INIS)

    Vandenberg, N.R.

    1974-07-01

    The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to approximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured. (U.S.)

  15. Evaluation of the 4-French Pulsar-18 Self-expanding Nitinol Stent in Long Femoropopliteal Lesions.

    Science.gov (United States)

    Lichtenberg, Michael; Hailer, Birgit; Kaeunicke, Matthias; Stahlhoff, Wilhelm-Friedrich; Boese, Dirk; Breuckmann, Frank

    2014-01-01

    To evaluate the patency and the freedom of target lesion revascularization of the 4-French Pulsar-18 self-expandable (SE) nitinol stent for the treatment of long femoropopliteal occlusive disease in a two-center, prospective, all-comers registry with a follow-up period of 12 months. This registry enrolled 36 patients with symptomatic femoropopliteal long lesions for recanalization and implantation of the 4-French Pulsar-18 SE nitinol stent. Routine follow-up examination including duplex ultrasound was performed after 6 and 12 months. Primary patency was defined as no binary restenosis on duplex ultrasound (Peak systolic velocitiy ration (PSVR) Pulsar-18 SE nitinol stent for endovascular intervention of femoropopliteal disease with a mean lesion length of 182.3 ± 51.8 mm showed promising primary patency and fTLR rates after 6 and 12 months. Diabetes and renal insufficiency had no negative impact on the patency rate.

  16. RXTE PCA and Swift BAT detects the millisecond pulsar Swift J1756.9-2508 in outburst

    NARCIS (Netherlands)

    Patruno, A.; Markwardt, C.B.; Strohmayer, T.E.; Swank, J.H.; Smith, S.E.; Pereira, D.

    2009-01-01

    We report a detection of increased activity of the accreting millisecond X-ray pulsar Swift J1756.9-2508 observed with the RXTE-PCA monitoring on July 8, 9hr UTC. Increased flux is detected simultaneously on the Swift-BAT camera. RXTE-PCA follow up observations starting on July 13, 23hr UTC,

  17. The reflection component in NS LMXBs

    Directory of Open Access Journals (Sweden)

    D’Aí A.

    2014-01-01

    Full Text Available Thanks to the good spectral resolution and large effective area of the EPIC/PN instrument on board of XMM-Newton, we have at hand a large number of observations of accreting low-mass X-ray binaries, that allow for the fist time a comprehensive view on the characteristics of the reflection component at different accretion regimes and to probe the effects of a magnetosphere on its formation. We focus here on a comparative analysis of the reflection component from a series of spectroscopic studies on selected sources: 4U 1705-44, observed both in the soft and hard state, the pulsating ms pulsars SAX J1808.4-3658 and IGR J17511-3057, and the intermittent pulsar HETE J1900-2455. Although the sources can present very similar accretion rates and continuum shapes, the reflection parameters do not generally result the same, moreover the effect of a magnetosphere on the formation of the reflection component appears elusive.

  18. A model for AO538-66 the fast flaring pulsar

    International Nuclear Information System (INIS)

    Maraschi, L.; Traversini, R.; Treves, A.

    1982-01-01

    Skinner et al. (1982) propose a scenario in which the periodic X-ray flares of A0538-66 are due to the onset of the accretion process at periastron in a highly eccentric binary. A similar model was considered by Charles et al. (1982). Here we discuss the conditions for which this transition may take place and interpret the optical flare associated with the X-ray one, as due to reprocessing of X-rays in an envelope surrounding the pulsar. (orig./WL)

  19. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  20. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    Science.gov (United States)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

  1. Thermal effects on the cyclotron line formation process in X-ray pulsars

    International Nuclear Information System (INIS)

    Kirk, J.G.; Meszaros, P.

    1980-01-01

    We derive expressions for the scattering and absorption cross sections in a hot plasma including the effects of vacuum polarisation. These expressions are then used in a radiative transfer calculation for frequencies in the neighbourhood of the cyclotron resonance using a simplified model atmosphere for accreting magnetised X-ray pulsars. Cyclotron emission and absorption line model fits are discussed, the conclusion being that an emission line interpretation appears at this stage more likely. (orig.)

  2. Thin disk models of Anomalous X-ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz Eksi, K.; Ali Alpar, M

    2004-06-01

    We discuss the options of the fall-back disk model of Anomalous X-Ray Pulsars (AXPs). We argue that the power-law index of the mass inflow rate during the propeller stage can be lower than those employed in earlier models. We take into account the effect of the super-critical mass inflow at the earliest stages on the inner radius of the disk and argue that the system starts as a propeller. Our results show that, assuming a fraction of the mass inflow is accreted onto the neutron star, the fall-back disk scenario can produce AXPs for acceptable parameters.

  3. Pulsar astronomy

    International Nuclear Information System (INIS)

    Lyne, A.G.; Graham-Smith, F.

    1990-01-01

    This account of the properties of pulsars tells an exciting story of discovery in modern astronomy. Pulsars, discovered in 1967, now take their place in a very wide range of astrophysics. They are one of the endpoints of stellar evolution, in which the core of a star collapses to a rapidly spinning neutron star a few kilometres in size. This book is an introductory account for those entering the field. It introduces the circumstances of the discovery and gives an overview of pulsar astrophysics. There are chapters on search techniques, distances, pulse timing, the galactic population of pulsars, binary and millisecond pulsars, geometry and physics of the emission regions, and applications to the interstellar medium. An important feature of this book is the inclusion of an up-to-date catalogue of all known pulsars. (author)

  4. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    International Nuclear Information System (INIS)

    Hu, Chin-Ping; Ng, C.-Y.; Chou, Yi; Lin, Lupin Chun-Che; Yen, David Chien-Chang

    2017-01-01

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  5. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    Science.gov (United States)

    Hu, Chin-Ping; Chou, Yi; Ng, C.-Y.; Lin, Lupin Chun-Che; Yen, David Chien-Chang

    2017-07-01

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657-415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ˜1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  6. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chin-Ping; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Chou, Yi [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Lin, Lupin Chun-Che [Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan (China); Yen, David Chien-Chang, E-mail: cphu@hku.hk [Department of Mathematics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China)

    2017-07-20

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  7. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  8. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ronaldo V.; Malheiro, M. [Departamento de Física, Instituto Tecnológico de Aeronáutica, ITA - DCTA, Vila das Acácias, São José dos Campos, 12228-900 SP (Brazil); Coelho, J. G. [INPE - Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Av. dos Astronautas 1758, São José dos Campos, 12227-010 SP (Brazil)

    2015-12-17

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  9. Erratum: "Discovery of a Second Millisecond Accreting Pulsar: XTE J1751-305"

    Science.gov (United States)

    Markwardt, Craig; Swank, J. H.; Strohmayer, T. E.; in 'tZand, J. J. M.; Marshall, F. E.

    2007-01-01

    The original Table 1 ("Timing Parameters of XTE J1751-305") contains one error. The epoch of pulsar mean longitude 90deg is incorrect due to a numerical conversion error in the preparation of the original table text. A corrected version of Table 1 is shown. For reference, the epoch of the ascending node is also included. The correct value was used in all of the analysis leading up to the paper. As T(sub 90) is a purely fiducial reference time, the scientific conclusions of the paper are unchanged.

  10. Pulsar magnetospheres

    International Nuclear Information System (INIS)

    Kennel, C.F.; Fujimura, F.S.; Pellat, R.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetospehere depends upon the strength of its plasma source near the surface of the star. We review magnetospheric models in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strength, beyond which coherent radio emission is no longer possible. The observed distribution of pulsar spin periods and period derivates, and the distribution of pulsars with missing radio pulses, is quantitatively consistent with the pair production threshold, when its variation of neutron star radius and moment of interia with mass is taken into account. All neutron stars observed as pulsars can have relativistic magneto-hydrodynamic wind exterior magnetospheres. The properties of the wind can be directly related to those of the pair production source. Radio pulsars cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed. (orig.)

  11. Relativistic spin precession in the double pulsar.

    Science.gov (United States)

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  12. IMPLICATIONS OF X-RAY LINE VARIATIONS FOR 4U1822-371

    International Nuclear Information System (INIS)

    Ji, L.; Schulz, N. S.; Nowak, M. A.; Canizares, C. R.

    2011-01-01

    4U 1822-371 is one of the prototype accretion disk coronal sources with an orbital period of about 5.6 hr. The binary is viewed almost edge-on at a high inclination angle of 83 deg., which makes it a unique candidate to study binary orbital and accretion disk dynamics in high powered X-ray sources. We observed the X-ray source in 4U 1822-371 with the Chandra High Energy Transmission Grating Spectrometer for almost nine binary orbits. X-ray eclipse times provide an update of the orbital ephemeris. We find that our result follows the quadratic function implied by previous observations; however, it suggests a flatter trend. From the orbital line dynamics, we confirm the previous suggestion that recombination emission is located at the impact bulge of the accretion stream. Our observations show that the recombining plasma is confined to this region, and prove that it has to be a very thin layer on top of the accretion disk. Fe XXVI emission is detected at all phases and likely originates from the hot central corona which has optical depth <<1. The implied ionization parameters from both regions strongly suggest that the illuminating source is obscured with respect to the observer and is orders of magnitude brighter than what is actually observed. This is independently confirmed by the best fit of a flat power law with a high-energy cutoff and partial covering absorption with a covering fraction of about 50%. We discuss the implications of our findings with respect to the photoionized line emission and the spectral continuum on basic properties of the X-ray source.

  13. Pulsars at Parkes

    OpenAIRE

    Manchester, R. N.

    2012-01-01

    The first pulsar observations were made at Parkes on March 8, 1968, just 13 days after the publication of the discovery paper by Hewish and Bell. Since then, Parkes has become the world's most successful pulsar search machine, discovering nearly two thirds of the known pulsars, among them many highly significant objects. It has also led the world in pulsar polarisation and timing studies. In this talk I will review the highlights of pulsar work at Parkes from those 1968 observations to about ...

  14. Pulsar wind model for the spin-down behavior of intermittent pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Wang, N. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X., E-mail: tonghao@xao.ac.cn [School of Physics, Peking University, Beijing (China)

    2014-06-10

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  15. Evolution of close binaries and the formation of pulsars

    International Nuclear Information System (INIS)

    Van Den Heuvel, E.P.J.

    1981-01-01

    The various ways in which compact objects (neutron stars and black holes) may be formed in interacting binary systems are examined. Attention is given to the final evolution of the primary star in a close binary system as a function of the time of Roche-lobe overflow relative to the onset of helium burning, and conditions on primary mass and orbital period leading to the appearance of a compact remnant are noted. Consideration of the fate of the stellar envelope in stars that directly evolve to core collapse indicates that binaries that evolve with conservation of total mass and orbital angular momentum will eventually become systems of two runaway pulsars. In cases of nonconservative evolution, the final state is expected to be a young runaway pulsar with a low- or moderate mass runaway star companion, or a low-mass population I X-ray binary with high space velocity. Compact objects may also be formed when a white dwarf of suitable chemical composition is driven over the Chandrasehkar limit by accretion, resulting in a low-mass X-ray binary

  16. The Bursting Pulsar GRO J1744-28: the Slowest Transitional Pulsar?

    Science.gov (United States)

    Court, J. M. C.; Altamirano, D.; Sanna, A.

    2018-04-01

    GRO J1744-28 (the Bursting Pulsar) is a neutron star LMXB which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: `missing link' systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known Transitional Pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of oppurtunity to test our understanding of these systems in an entirely unexplored physical regime.

  17. Evolving ONe WD+He star systems to intermediate-mass binary pulsars

    Science.gov (United States)

    Liu, D.; Wang, B.; Chen, W.; Zuo, Z.; Han, Z.

    2018-06-01

    It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 M_{⊙} WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which have short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on this work.

  18. Anti-correlated X-ray and Radio Variability in the Transitional Millisecond Pulsar PSR J1023+0038

    Science.gov (United States)

    Bogdanov, Slavko; Deller, Adam; Miller-Jones, James; Archibald, Anne; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D'Angelo, Caroline

    2018-01-01

    The PSR J1023+0038 binary system hosts a 1.69-ms neutron star and a low-mass, main-sequence-like star. The system underwent a transformation from a rotation-powered to a low-luminosity accreting state in 2013 June, in which it has remained since. We present an unprecedented set of strictly simultaneous Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations, which for the first time reveal a highly reproducible, anti-correlated variability pattern. Rapid declines in X-ray flux are always accompanied by a radio brightening with duration that closely matches the low X-ray flux mode intervals. We discuss these findings in the context of accretion and jet outflow physics and their implications for using the radio/X-ray luminosity plane to distinguish low-luminosity candidate black hole binary systems from accreting transitional millisecond pulsars.

  19. The first multi-wavelength campaign of AXP 4U 0142+61 from radio to hard X-rays

    NARCIS (Netherlands)

    den Hartog, P.R.; Kuiper, L.; Hermsen, W.; Rea, N.; Durant, M.; Stappers, B.; Kaspi, V.M.; Dib, R.

    2007-01-01

    For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in

  20. Galactic distribution and evolution of pulsars

    International Nuclear Information System (INIS)

    Taylor, J.H.; Manchester, R.N.

    1977-01-01

    The distribution of pulsars with respect to period, z-distance, luminosity, and galactocentric radius has been investigated using data from three extensive pulsar surveys. It is shown that selection effects only slightly modify the observed period and z-distributions but strongly affect the observed luminosity function and galactic distribution. These latter two distributions are computed from the Jodrell Bank and Arecibo data, using an iterative procedure. The largest uncertainties in our results are the result of uncertainty in the adopted distance scale. Therefore, where relevant, separate calculations have been made for two values of the average interstellar electron density, , 0.02 cm -3 and 0.03 cm -3 .The derived luminosity function is closely represented by a power law with index (for logarithmic luminosity intervals) close to -1. For =0.03 cm -3 , the density of potentially observable pulsars is about 90 kpc -2 in the local region and increases with decreasing galactocentric radius. These distributions imply that the total number of pulsars in the Galaxy is about 10 5 . If only a fraction of all pulsars are observable because of beaming effects, then the total number in the Galaxy is correspondingly greater.Recent observations of pulsar proper motions show that pulsars are generally high-velocity objects. The observed z-distribution of pulsars implies that the mean age of observable pulsars does not exceed 2 x 10 6 years. With this mean age the pulsar birthrate required to maintain the observed galactic distribution is 10 -4 yr -1 kpc -2 in the local region and one pulsar birth every 6 years in the Galaxy as a whole. For =0.02 cm -3 , the corresponding rate is one birth every 40 years. These rates exceed most estimates of supernova occurrence rates and may require that all stars with mass greater than approx.2.5 Msun form pulsars at the end of their evolutionary life

  1. Experimental Constraints on γ-Ray Pulsar Gap Models and the Pulsar GeV to Pulsar Wind Nebula TeV Connection

    Science.gov (United States)

    Abeysekara, A. U.; Linnemann, J. T.

    2015-05-01

    The pulsar emission mechanism in the gamma ray energy band is poorly understood. Currently, there are several models under discussion in the pulsar community. These models can be constrained by studying the collective properties of a sample of pulsars, which became possible with the large sample of gamma ray pulsars discovered by the Fermi Large Area Telescope. In this paper we develop a new experimental multi-wavelength technique to determine the beaming factor ≤ft( {{f}{Ω }} \\right) dependance on spin-down luminosity of a set of GeV pulsars. This technique requires three input parameters: pulsar spin-down luminosity, pulsar phase-averaged GeV flux, and TeV or X-ray flux from the associated pulsar wind nebula (PWN). The analysis presented in this paper uses the PWN TeV flux measurements to study the correlation between {{f}{Ω }} and \\dot{E}. The measured correlation has some features that favor the Outer Gap model over the Polar Cap, Slot Gap, and One Pole Caustic models for pulsar emission in the energy range of 0.1-100 GeV, but one must keep in mind that these simulated models failed to explain many of the most important pulsar population characteristics. A tight correlation between the pulsar GeV emission and PWN TeV emission was also observed, which suggests the possibility of a linear relationship between the two emission mechanisms. In this paper we also discuss a possible mechanism to explain this correlation.

  2. SWIFT J1749.4-2807 : X-ray decay, refined position and optical observation

    NARCIS (Netherlands)

    Yang, Y.J.; Russell, D. M.; Wijnands, R.; van der Klis, M.; Altamirano, D.; Patruno, A.; Watts, A.; Armas Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Lewis, F.; Kong, A. K. H.

    We analyzed seven, target ID 31686, Swift follow-up observations of the neutron-star X-ray transient Swfit J1749.4-2807 (Wijnands et al. 2009) currently in outburst and which was found to be an accreting millisecond X-ray pulsar (ATel #2565). The observations span from April 11 to April 20.

  3. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Langston, Glen [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  4. Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays

    Science.gov (United States)

    Cornish, Neil J.; O'Beirne, Logan; Taylor, Stephen R.; Yunes, Nicolás

    2018-05-01

    The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, AVL<4 ×10-16 and ASL<4 ×10-17, while the bounds on the energy density for a scale invariant cosmological background are ΩVLh2<4 ×10-11 and ΩSLh2<3 ×10-13.

  5. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626-67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, ...

  7. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  8. Discovery and Orbital Determination of the Transient X-Ray Pulsar GRO J1750-27

    Science.gov (United States)

    Scott, D. M.; Finger, M. H.; Wilson, R. B.; Koh, D. T.; Prince, T. A.; Vaughan, B. A.; Chakrabarty, D.

    1997-01-01

    We report on the discovery and hard X-ray (20 - 70 keV) observations of the 4.45 s period transient X-ray pulsar GRO J1750-27 with the BATSE all-sky monitor on board CGRO. A relatively faint out- burst (less than 30 mcrab peak) lasting at least 60 days was observed during which the spin-up rate peaked at 38 pHz/s and was correlated with the pulsed intensity. An orbit with a period of 29.8 days was found. The large spin-up rate, spin period, and orbital period together suggest that accretion is occurring from a disk and that the outburst is a "giant" outburst typical of a Be/X-ray transient system. No optical counterpart has yet been reported.

  9. A New Standard Pulsar Magnetosphere

    Science.gov (United States)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  10. Pulsars today

    International Nuclear Information System (INIS)

    Graham-Smith, F.

    1990-01-01

    The theory concerning pulsars is reviewed, with particular attention to possible evolution, life cycle, and rejuvenation of these bodies. Quantum liquids, such as neutron superfluids, and evidence for the existence of superfluid vortices and other internal phenomena are considered with particular attention to the Crab pulsar. Rate of change of the rotation rate is measured and analyzed for the Crab pulsar and the implications of deviations in the pulse times from those of a perfect rotator are examined. Glitches, the sudden increase in rotation rate of a pulsar that has previously exhibited a steady slowdown, are discussed and it is suggested that the movement of the superfluid core relative to the crust is responsible for this phenomenon. It is noted that radio waves from pulsars can be used to determine the intensity and structure of interplanetary and interstellar gas turbulence and to provide a direct measure of the strength of the interstellar magnetic field

  11. Sigma observation of the pulsar OAO 1657 - 415: Precise localization at hard X-ray energy and discovery of spin-down

    International Nuclear Information System (INIS)

    Mereghetti, S.; Mandrou, P.; Natalucci, L.; Ballet, J.; Lambert, A.

    1991-01-01

    The region of sky containing the 38 s X-ray pulsar OAO 1657 - 415 has been observed on March 1990 with Sigma, an imaging gamma-ray telescope exploiting the coded mask technique. This observation has yielded an accurate (about arcminute-scale) localization for OAO 1657 - 415 at hard X-ray energy, confirming its association with a previously suggested soft X-ray candidate. A timing analysis of the 40-120 keV data has revealed for the first time a spin-down episode in OAO 1657 - 415, implying that an important change in the accretion torque experienced by this X-ray pulsar must have recently occurred. 18 refs

  12. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  13. Probing disk wind and other properties of 4U 1630-47

    Science.gov (United States)

    Bhattacharyya, Sudip

    2015-09-01

    The accreting Galactic black hole transient 4U 1630-47, which is currently in outburst, is an ideal source to probe two types of accreted matter ejection: (1) via disk wind and (2) via jet, both using the observed narrow spectral lines (Diaz Trigo et al., 2013, Nature, 504, 206; Neilsen et al. 2014; Diaz Trigo et al. 2014). Chandra gratings are ideal to study such lines. The source also showed indications of high-frequency (HF) quasi-periodic oscillations (QPOs) in a rather high (150-450 Hz) frequency range, which can be extremely useful to probe the strong gravity regime. The AstroSat satellite, because of its large area and high timing resolution in a broad energy band, can potentially detect and measure HF QPOs and probe the source broadband spectrum and state. Hence, our proposed 30 ks Chandra exposure, nearly contemporaneous with complementary AstroSat observations, will provide an excellent way to probe the accretion and ejection mechanism in the strong gravity regime.

  14. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907.

    Science.gov (United States)

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D'Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-24

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of [Formula: see text]1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity [Formula: see text] 10 41 erg second[Formula: see text]) might harbor NSs. Copyright © 2017, American Association for the Advancement of Science.

  15. Discovery of decaHz flaring in SAX J1808.4-3658

    NARCIS (Netherlands)

    Bult, P.

    2014-01-01

    We report on the discovery of strong decaHz flaring in the early decay of two out of five outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658. The decaHz flaring switches on and, after ~3 days, off again, on a time scale of 1-2 hours. When the flaring is present, the total 0.05-10

  16. Galactic population of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.; Manchester, R.N.

    1985-01-01

    In order to draw statistical conclusions about the overall population of pulsars in the Galaxy, a sample of 316 pulsars detected in surveys carried out at Jodrell Bank, Arecibo, Molonglo, and Green Bank has been analysed. The important selection effects of each survey are quantified and a statistically reliable pulsar distance scale based on a model for the large-scale distribution of free electrons in the Galaxy is described. These results allow the spatial and luminosity distribution functions of galactic pulsars to be computed. It is concluded that the Galaxy contains approximately 70 000 potentially observable pulsars with luminosities above 0.3 mJy kpc 2 . The period and luminosity evolution of pulsars, is also considered. (author)

  17. The Green Bank North Celestial Cap Pulsar Survey: New Pulsars and Future Prospects

    Science.gov (United States)

    Lynch, Ryan S.; Swiggum, Joe; Stovall, Kevin; Chawla, Pragya; DeCesar, Megan E.; Fonseca, Emmanuel; Levin, Lina; Cui, Bingyi; Kondratiev, Vlad; Archibald, Anne; Boyles, Jason; Hessels, Jason W. T.; Jenet, Fredrick; Kaplan, David; Karako-Argaman, Chen; Kaspi, Victoria; Martinez, Jose; McLaughlin, Maura; Ransom, Scott M.; Roberts, Mallory; Siemens, Xavier; Spiewak, Renee; Stairs, Ingrid; van Leeuwn, Joeri; Green Bank North Celestial Cap Survey Collaboration

    2018-01-01

    The Green Bank North Celestial Cap pulsar survey is the most successful low frequency pulsar survey ever. GBNCC uses the Green Bank telescope to cover the full visible sky at 350 MHz. With the survey over 70% complete, we have discovered over 150 pulsars, including 20 MSPs and 11 RRATs. I will report on the current status of the survey and plans for its completion in the coming years. I will also report on several discoveries including: timing solutions for dozens of new pulsars; new high precision MSPs and their suitability for inclusion in pulsar timing arrays; a new relativistic double neutron star system; new pulsar mass measurements; proper motion measurements for several MSPs; a new mode changing pulsar; interesting new MSP binaries; nulling fraction analyses; and possible implications of the lack of any fast radio bursts in the survey so far.

  18. INTEGRAL Galactic Plane Scans detect enhanced activity from the HMXBs IGR J19294+1816 and 4U 1909+07

    DEFF Research Database (Denmark)

    Drave, S. P.; Sguera, V.; Fiocchi, M.

    2013-01-01

    exposures of ~7.9 and ~2.9 ks respectively but neither were detected, with 6sigma flux upper limits of 6 mCrab and 8 mCrab in the 3-10 keV band respectively. 4U 1909+07 is a wind-fed SgXRB pulsar whose past variability is consistent with the enhanced flux detected in these observations. IGR J19294......+1816 is a likely BeXRB pulsar that displays recurrent outbursts, of an approximate duration of 2 months (Bozzo et al. 2011, A&A, 531, A65), modulated on the 117.2 day orbital period (Corbet and Krimm 2009, ATel #2008) along with additional fast flaring behaviour, more typical of Supergiant Fast X-ray Transients...

  19. Topics in the physics of accretion onto black holes

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1977-06-01

    The subject is covered in chapters, entitled: introduction and overview; boundary-condition modification of accretion-disk models; standard assumptions and nonkeplerian inner-disk models; the 'inner edge' of accretion disks and spiral orbits; a review of comptonization in accretion disks and a criterion for Lightman-Eardley stability; the thickening of accretion disks and flows; radial pressure gradients and low-angular-momentum accretion; accretion-disk scenarios for X-ray transient and burst sources; photon pair-creation processes in transrelativistic plasmas; and the astrophysical consequences of Rosen's bi-metric theory of gravity. (U.K.)

  20. Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Allen, B. [Leibniz Universität, Hannover, D-30167 Hannover (Germany); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Freire, P. C. C.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H. [Max-Planck-Institut für Gravitationsphysik, Callinstr. 38, D-30167 Hannover (Germany); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Department of Astronomy and Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Cardoso, F. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Ferdman, R. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T., E-mail: benjamin.knispel@aei.mpg.de [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

    2015-06-10

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  1. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    International Nuclear Information System (INIS)

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Van der Horst, A. J.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-01-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 ± 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  2. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Kim, H.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Eatough, R. P.; Keane, E. F.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Anderson, D. [University of California at Berkeley, Berkeley, CA 94720 (United States); Crawford, F.; Rastawicki, D. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Hammer, D.; Papa, M. A.; Siemens, X. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Miller, R. B. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Sarkissian, J., E-mail: benjamin.knispel@aei.mpg.de [CSIRO Parkes Observatory, Parkes, NSW 2870 (Australia); and others

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  3. Pulsar timing and its applications

    OpenAIRE

    Manchester, R N

    2018-01-01

    Pulsars are remarkably precise "celestial clocks" that can be used to explore many different aspects of physics and astrophysics. In this article I give a brief summary of pulsar properties and describe some of the applications of pulsar timing, including tests of theories of gravitation, efforts to detect low-frequency gravitational waves using pulsar timing arrays and establishment a "pulsar timescale".

  4. Pulsar slow-down epochs

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1981-01-01

    The relative importance of magnetospheric currents and low frequency waves for pulsar braking is assessed and a model is developed which tries to account for the available pulsar timing data under the unifying aspect that all pulsars have equal masses and magnetic moments and are born as rapid rotators. Four epochs of slow-down are distinguished which are dominated by different braking mechanisms. According to the model no direct relationship exists between 'slow-down age' and true age of a pulsar and leads to a pulsar birth-rate of one event per hundred years. (Author) [pt

  5. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  6. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    Science.gov (United States)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  7. INTEGRAL/JEM-X reports enhanced activity from the HMXB 4U 1036-56

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Fiocchi, M.; Bazzano, A.

    2015-01-01

    During the Galactic Plane Scanning performed by INTEGRAL on December 11th, 2015, the X-ray monitor JEM-X has detected enhanced activity from the high mass X-ray binary (HMXB) 4U 1036-56, aka RX J1037.5-5647. The position of the source was covered by the JEM-X field of view two times between UTC 6...... 1036-56 is a Be X-ray pulsar (e.g. Torres et al. 2012, ApJ 761, 49), whose last outburst was reported by Swift in February 2012 (Krimm et al. ATel #3936)....

  8. Deep optical observations of the γ-ray pulsar J0357+3205

    Science.gov (United States)

    Kirichenko, A.; Danilenko, A.; Shibanov, Yu.; Shternin, P.; Zharikov, S.; Zyuzin, D.

    2014-04-01

    Context. A middle-aged radio-quiet pulsar J0357+3205 was discovered in gamma rays with Fermi and later in X-rays with Chandra and XMM-Newton observatories. It produces an unusual thermally emitting pulsar wind nebula that is observed in X-rays. Aims: Deep optical observations were obtained to search for the pulsar optical counterpart and its nebula using the Gran Telescopio Canarias (GTC). Methods: The direct imaging mode in the Sloan g' band was used. Archival X-ray data were reanalysed and compared with the optical data. Results: No pulsar optical counterpart was detected down to g'≥slant 28.1m. No pulsar nebula was identified in the optical either. We confirm early results that the X-ray spectrum of the pulsar consists of a nonthermal power-law component of the pulsar magnetospheric origin dominating at high energies and a soft thermal component from the neutron star surface. Using magnetised, partially ionised hydrogen atmosphere models in X-ray spectral fits, we found that the thermal component can come from the entire surface of the cooling neutron star with a temperature of 36+8-6 eV, making it one of the coldest among cooling neutron stars known. The surface temperature agrees with the standard neutron star cooling scenario. The optical upper limit does not put any additional constraints on the thermal component, however it does imply a strong spectral break for the nonthermal component between the optical and X-rays as is observed in other middle-aged pulsars. Conclusions: The thermal emission from the entire surface of the neutron star very likely dominates the nonthermal emission in the UV range. Observations of PSR J0357+3205 in this range are promising to put more stringent constraints on its thermal properties. Based on observations made with the Gran Telescopio Canarias (GTC), instaled in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma under Programme GTC3-12BMEX

  9. Pulsed Accretion in the T Tauri Binary TWA 3A

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)

    2017-06-20

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

  10. Detailed high-energy characteristics of AXP 4U 0142+61: Multi-year observations with INTEGRAL, RXTE, XMM-Newton, and ASCA

    NARCIS (Netherlands)

    den Hartog, P.R.; Kuiper, L.; Hermsen, W.; Kaspi, V.M.; Dib, R.; Knödlseder, J.; Gavriil, F.P.

    2008-01-01

    4U 0142+61 is one of the Anomalous X-ray Pulsars exhibiting hard X-ray emission above 10 keV discovered with INTEGRAL. In this paper we present detailed spectral and temporal characteristics both in the hard X-ray (> 10 keV) and soft X-ray (<10 keV) domains obtained using data from INTEGRAL,

  11. Oldest pulsars in the Universe

    International Nuclear Information System (INIS)

    Shaham, J.

    1987-01-01

    Since the discovery of the Vulpecula pulsar two more superfast pulsars have been reported. In 1983 a 6.13-millisecond pulsar (called 1953 + 29) was announced, and in 1986 a 5.362-millisecond pulsar (called 1855 + 09) was publicized. A candidate for a fourth has been mentioned. As more evidence becomes available, it seems increasingly likely that the superfast pulsars can be explained only as a part of a new class of pulsars. Although many of the details of the class remain obscured, some general facts are emerging. Perhaps most interesting of all is the great age these new celestial objects are thought to have. Ordinary pulsars are relatively young, typically less than a million years old; the Crab pulsar, which is the youngest one known, is a mere infant of 932 years. The superfast pulsars, in comparison, are thought to be ancient. They are probably the result of evolutionary processes that could go back as much as a billion years, or one-twentieth of the age of the universe, and they are likely to live for several billion years more. 8 figures

  12. Pulsars for the Beginner

    Science.gov (United States)

    DiLavore, Phillip; Wayland, James R.

    1971-01-01

    Presents the history of the discovery of pulsars, observations that have been made on pulsar radiation, and theories that have been presented for its presence and origin. Illustrations using pulsar's properties are presented in mechanics, electromagnetic radiation and thermodynamics. (DS)

  13. Cosmic Ray Positrons from Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  14. A multi-model approach to X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Schönherr G.

    2014-01-01

    Full Text Available The emission characteristics of X-ray pulsars are governed by magnetospheric accretion within the Alfvén radius, leading to a direct coupling of accretion column properties and interactions at the magnetosphere. The complexity of the physical processes governing the formation of radiation within the accreted, strongly magnetized plasma has led to several sophisticated theoretical modelling efforts over the last decade, dedicated to either the formation of the broad band continuum, the formation of cyclotron resonance scattering features (CRSFs or the formation of pulse profiles. While these individual approaches are powerful in themselves, they quickly reach their limits when aiming at a quantitative comparison to observational data. Too many fundamental parameters, describing the formation of the accretion columns and the systems’ overall geometry are unconstrained and different models are often based on different fundamental assumptions, while everything is intertwined in the observed, highly phase-dependent spectra and energy-dependent pulse profiles. To name just one example: the (phase variable line width of the CRSFs is highly dependent on the plasma temperature, the existence of B-field gradients (geometry and observation angle, parameters which, in turn, drive the continuum radiation and are driven by the overall two-pole geometry for the light bending model respectively. This renders a parallel assessment of all available spectral and timing information by a compatible across-models-approach indispensable. In a collaboration of theoreticians and observers, we have been working on a model unification project over the last years, bringing together theoretical calculations of the Comptonized continuum, Monte Carlo simulations and Radiation Transfer calculations of CRSFs as well as a General Relativity (GR light bending model for ray tracing of the incident emission pattern from both magnetic poles. The ultimate goal is to implement a

  15. Giant pulses of pulsar radio emission

    OpenAIRE

    Kuzmin, A. D.

    2007-01-01

    Review report of giant pulses of pulsar radio emission, based on our detections of four new pulsars with giant pulses, and the comparative analysis of the previously known pulsars with giant pulses, including the Crab pulsar and millisecond pulsar PSR B1937+21.

  16. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y., E-mail: lilirayhk@gmail.com, E-mail: akong@phys.nthu.edu.tw, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ∼79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  17. Fallback accretion onto magnetized neutron stars and the hidden magnetic field model

    International Nuclear Information System (INIS)

    Torres, A; Cerdá-Durán, P; Font, J A

    2015-01-01

    The observation of several neutron stars with relatively low values of the surface magnetic field found in supernova remnants has led in recent years to controversial interpretations. A possible explanation is the slow rotation of the proto-neutron star at birth which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, seems to be favoured over the previous one due to the observation of three low magnetic field magnetars. This scenario considers the accretion of the fallback of the supernova debris onto the neutron star as the responsible for the observed low magnetic field. In this work, we have studied under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting fluid. We have considered a simplified toy model in general relativity to estimate the balance between the incoming accretion flow an the magnetosphere. We conclude that the burial is possible for values of the surface magnetic field below 10 13 G. The preliminary results reported in this paper for simplified polytropic models should be confirmed using a more realistic thermodynamical setup. (paper)

  18. Observational properties of pulsars.

    Science.gov (United States)

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.

  19. ngVLA Key Science Goal 4: Using Pulsars in the Galactic Center as Fundamental Tests of Gravity

    Science.gov (United States)

    Bower, Geoffrey C.; Chatterjee, Shami; Cordes, James; Demorest, Paul; Dexter, Jason; Kramer, Michael; Lazio, Joseph; Ransom, Scott; Wharton, Robert; ngVLA Science Working Group 4

    2018-01-01

    Pulsars in the Galactic Center (GC) are important probes of general relativity (GR), star formation, stellar dynamics, stellar evolution, and the interstellar medium. A pulsar in orbit around the massive black hole in the GC, Sgr A*, has the power to provide a high-precision measurement of the black hole mass and spin in a unique regime of GR. It is sufficient to find and time a normal, slowly rotating pulsar in a reasonable orbit, in order to measure the mass of Sgr A* with a precision of 1 solar mass, to test the cosmic censorship conjecture to a precision of 0.1%, and to test the no-hair theorem to a precision of 1%. The pulsar population in the GC on scales from the inner parsec to the edge of the Central Molecular Zone (250 parsecs in diameter) can provide fresh insight into the complex processes at work in this region: the characteristic age distribution of the discovered pulsars will give insight into the star formation history; millisecond pulsars can be used as acceleratormeters to probe the local gravitational potential; the observed dispersion and scattering measures (and their variability) will allow us to probe the distribution, clumpiness and other properties of the central interstellar medium, including characterization of the central magnetic field using Faraday rotation. Proper motions of young pulsars can be used to point back to regions of recent star formation and/or supernova remnants.Despite years of searching, only a handful of pulsars in the central 0.5 degrees are known. This is likely the result of strong interstellar scattering along the line of sight, which broadens individual pulses to greater width than the pulse period. Scattering effects decline as wavelength to the fourth power, implying that we require observation at higher frequencies than are typical for typical pulsar searches. The characteristic steep spectrum of pulsars, however, implies the need for greater instrumental sensitivity at higher frequencies in order to detect and

  20. Search for optical millisecond pulsars in globular clusters

    International Nuclear Information System (INIS)

    Middleditch, J.H.; Imamura, J.N.; Steiman-Cameron, T.Y.

    1988-01-01

    A search for millisecond optical pulsars in several bright, compact globular clusters was conducted. The sample included M28, and the X-ray clusters 47 Tuc, NGC 6441, NGC 6624, M22, and M15. The globular cluster M28 contains the recently discovered 327 Hz radio pulsar. Upper limits of 4 sigma to pulsed emission of (1-20) solar luminosities were found for the globular clusters tested, and 0.3 solar luminosity for the M28 pulsar for frequencies up to 500 Hz. 8 references

  1. Summary of the PULSAR and ARIES studies

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.

    1994-01-01

    The PULSAR research program is a multi-institutional effort to investigate the feasibility and potential features of fusion power plants based on pulsed, inductively driven tokamak operation. In order to provide a sensible assessment of pulsed tokamak operation, a comparison with the ARIES steady-state power plant designs has been made. Two PULSAR designs have been considered: PULSAR-I uses He coolant, a solid tritium-breeding material, and SiC composite structure; PULSAR-II uses liquid Li as the coolant and tritium breeder, and a V-alloy structure material. This paper focuses on the PULSAR design and the comparison with steady-state ARIES designs. The 1000-MWe PULSAR design has an aspect ratio of 4, a plasma major radius of 8.6m, a plasma minor radius of 2.2m, and a neutron wall loading of l.3MW/m 2 . The toroidal field on axis is 7T, plasma β is 2.8%, plasma current is 14MA, and the bootstrap fraction is 37%. Because of cyclic fatigue, the allowable stress in the TF coils is lower, and, therefore, for the same magnet technology, the maximum toroidal field on the coil is 12T in the PULSAR design (corresponding to 16T in a steady-state device). This decrease in the toroidal-field strength more than offsets the gains in plasma β values for a pulsed device, resulting in a lower fusion-power density and a larger tokamak relative to a steady-state design

  2. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Science.gov (United States)

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  3. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  4. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  5. Photochemistry of U(BH4)4 and U(BD4)4

    International Nuclear Information System (INIS)

    Paine, R.T.; Schonberg, P.R.; Light, R.W.; Danen, W.C.; Freund, S.M.

    1979-01-01

    U(BH 4 ) 4 and U(BD 4 ) 4 are observed to undergo complex degradation reactions promoted by broadband UV radiation. The primary products of these reactions appear to be U(BH 4 ) 3 , B 2 H 6 , H 2 , U(BD 4 ) 3 , B 2 D 6 and D 2 . Further, U(BD 4 ) 4 undergoes a related decomposition reaction under the influence of CO 2 laser irradiation at 924.97 cm -1 . (author)

  6. Using HAWC to discover invisible pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim; Auchettl, Katie; Bramante, Joseph; Cholis, Ilias; Fang, Ke; Hooper, Dan; Karwal, Tanvi; Li, Shirley Weishi

    2017-11-01

    Observations by HAWC and Milagro have detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars. We argue that these observations, along with a substantial population of other extended TeV sources coincident with pulsar wind nebulae, constitute a new morphological class of spatially extended TeV halos. We show that HAWCs wide field-of-view unlocks an expansive parameter space of TeV halos not observable by atmospheric Cherenkov telescopes. Under the assumption that Geminga and Monogem are typical middle-aged pulsars, we show that ten-year HAWC observations should eventually observe 37$^{+17}_{-13}$ middle-aged TeV halos that correspond to pulsars whose radio emission is not beamed towards Earth. Depending on the extrapolation of the TeV halo efficiency to young pulsars, HAWC could detect more than 100 TeV halos from mis-aligned pulsars. These pulsars have historically been difficult to detect with existing multiwavelength observations. TeV halos will constitute a significant fraction of all HAWC sources, allowing follow-up observations to efficiently find pulsar wind nebulae and thermal pulsar emission. The observation and subsequent multi-wavelength follow-up of TeV halos will have significant implications for our understanding of pulsar beam geometries, the evolution of PWN, the diffusion of cosmic-rays near energetic pulsars, and the contribution of pulsars to the cosmic-ray positron excess.

  7. THE PECULIAR EVOLUTIONARY HISTORY OF IGR J17480-2446 IN TERZAN 5

    International Nuclear Information System (INIS)

    Patruno, Alessandro; Alpar, M. Ali; Van der Klis, Michiel; Van den Heuvel, Ed P. J.

    2012-01-01

    The low-mass X-ray binary (LMXB) IGR J17480-2446 in the globular cluster Terzan 5 harbors an 11 Hz accreting pulsar. This is the first object discovered in a globular cluster with a pulsar spinning at such low rate. The accreting pulsar is anomalous because its characteristics are very different from the other five known slow accreting pulsars in galactic LMXBs. Many features of the 11 Hz pulsar are instead very similar to those of accreting millisecond pulsars, spinning at frequencies >100 Hz. Understanding this anomaly is valuable because IGR J17480-2446 could be the only accreting pulsar discovered so far which is in the process of becoming an accreting millisecond pulsar. We first verify that the neutron star (NS) in IGR J17480-2446 is indeed spinning up by carefully analyzing X-ray data with coherent timing techniques that account for the presence of timing noise. We then study the present Roche lobe overflow epoch and the two previous spin-down epochs dominated by magneto-dipole radiation and stellar wind accretion. We find that IGR J17480-2446 is very likely a mildly recycled pulsar and suggest that it has started a spin-up phase in an exceptionally recent time, which has lasted less than a few 10 7 yr. We also find that the total age of the binary is surprisingly low (∼ 8 yr) when considering typical parameters for the newborn NS and propose different scenarios to explain this anomaly.

  8. The Peculiar Evolutionary History of IGR J17480-2446 in Terzan 5

    Science.gov (United States)

    Patruno, Alessandro; Alpar, M. Ali; van der Klis, Michiel; van den Heuvel, Ed P. J.

    2012-06-01

    The low-mass X-ray binary (LMXB) IGR J17480-2446 in the globular cluster Terzan 5 harbors an 11 Hz accreting pulsar. This is the first object discovered in a globular cluster with a pulsar spinning at such low rate. The accreting pulsar is anomalous because its characteristics are very different from the other five known slow accreting pulsars in galactic LMXBs. Many features of the 11 Hz pulsar are instead very similar to those of accreting millisecond pulsars, spinning at frequencies >100 Hz. Understanding this anomaly is valuable because IGR J17480-2446 could be the only accreting pulsar discovered so far which is in the process of becoming an accreting millisecond pulsar. We first verify that the neutron star (NS) in IGR J17480-2446 is indeed spinning up by carefully analyzing X-ray data with coherent timing techniques that account for the presence of timing noise. We then study the present Roche lobe overflow epoch and the two previous spin-down epochs dominated by magneto-dipole radiation and stellar wind accretion. We find that IGR J17480-2446 is very likely a mildly recycled pulsar and suggest that it has started a spin-up phase in an exceptionally recent time, which has lasted less than a few 107 yr. We also find that the total age of the binary is surprisingly low (lsim 108 yr) when considering typical parameters for the newborn NS and propose different scenarios to explain this anomaly.

  9. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1982-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the plane due to high space velocities imparted to the pulsars at birth. Statistical studies of the properties of large numbers of pulsars and proper motion measurements demonstrate that the effective magnetic dipole moments decay on a timescale of about 8 million years. This work provides a better knowledge of pulsar evolution and ages and shows that a birthrate of one pulsar every 20 to 50 years is required to sustain the observed galactic population of 300,000. This rate is comparable with most recent estimates of the galactic supernova rate, but requires nearly all supernovae to produce active pulsars. (orig.)

  10. A STACKED ANALYSIS OF 115 PULSARS OBSERVED BY THE FERMI LAT

    Energy Technology Data Exchange (ETDEWEB)

    McCann, A., E-mail: mccann@kicp.uchicago.edu [Kavli Institute for Cosmological Physics, University of Chicago 933 East 56th Street, Chicago, IL 60637 (United States)

    2015-05-10

    Due to the low gamma-ray fluxes from pulsars above 50 GeV and the small collecting area of space-based telescopes, the gamma-ray emission discovered by the Fermi Large Area Telescope (LAT) in ∼150 pulsars is largely unexplored at these energies. In this regime, the uncertainties on the spectral data points and/or the constraints from upper limits are not sufficient to provide robust tests of competing emission models in individual pulsars. The discovery of power-law-type emission from the Crab pulsar at energies exceeding 100 GeV provides a compelling justification for exploration of other pulsars at these energies. We applied the method of aperture photometry to measure pulsar emission spectra from Fermi-LAT data and present a stacked analysis of 115 pulsars selected from the Second Fermi-LAT catalog of gamma-ray pulsars. This analysis, which uses an average of ∼4.2 yr of data per pulsar, aggregates low-level emission which cannot be resolved in individual objects but can be detected in an ensemble. We find no significant stacked excess at energies above 50 GeV. An upper limit of 30% of the Crab pulsar level is found for the average flux from 115 pulsars in the 100–177 GeV energy range at the 95% confidence level. Stacked searches exclusive to the young pulsar sample, the millisecond pulsar sample, and several other promising sub-samples also return no significant excesses above 50 GeV.

  11. Arecibo pulsar survey using ALFA: probing radio pulsar intermittency and transients

    NARCIS (Netherlands)

    Deneva, J.S.; Cordes, J.M.; McLaughlin, M.A.; Nice, D.J.; Lorimer, D.R.; Crawford, F.; Bhat, N.D.R.; Camilo, F.; Champion, D.J.; Freire, P.C.C.; Edel, S.; Kondratiev, V.I.; Hessels, J.W.T.; Jenet, F.A.; Kasian, L.; Kaspi, V.M.; Kramer, M.; Lazarus, P.; Ransom, S.M.; Stairs, I.H.; Stappers, B.W.; van Leeuwen, J.; Brazier, A.; Venkataraman, A.; Zollweg, J.A.; Bogdanov, S.

    2009-01-01

    We present radio transient search algorithms, results, and statistics from the ongoing Arecibo Pulsar ALFA (PALFA) survey of the Galactic plane. We have discovered seven objects through a search for isolated dispersed pulses. All of these objects are Galactic and have measured periods between 0.4

  12. Pulsar magnetosphere-wind or wave

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review wave models of exterior pulsar magnetospheres in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strenght, beyond which coherent radio emission is no longer possible. Since the observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is consistent with the pair production threshold, those neutron stars observed as radio pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres, and cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed

  13. Radio-quiet Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Lupin Chun-Che Lin

    2016-09-01

    Full Text Available A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400 of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on are also to specified discuss their common and specific features.

  14. Exploring Pulsars with Polestar

    Science.gov (United States)

    Cappallo, Rigel; Laycock, Silas; Christodoulou, Dimitris

    2018-06-01

    An X-ray pulsar (XRP) is a highly-magnetized neutron star (NS) that rotates while emitting beams of X-ray radiation produced primarily in the vicinity of its magnetic poles. If these beams happen to cross our line of sight and the NS’s spin and magnetic axes are not aligned, then our telescopes detect it as a periodically pulsating source. With the introduction of a new class of orbit-based observatories over the last quarter of a century the field of X-ray pulsar astronomy has seen an influx of high-resolution data. This windfall demands new models of pulsar behavior and emission geometry be created and subsequently fit to this high-quality data.We have written a model (Polestar) in Python 2.7.6 that mathematically represents a simplified XRP. The code has ten different, tunable geometric parameters that can be individually incorporated or suppressed. Any given XRP has a unique pulse profile which is often energy-dependent, and changes with different luminosity states. A change in luminosity coincides with a change in the system (e.g. a periodic Type-1 outburst is triggered following periastron passage, or the orientation of the decretion disk around the donor star has changed), and as such an increase in luminosity tends to produce an increase in complexity of the accompanying pulse profile. If a particular source in a low-luminosity state can be fit well with Polestar incorporating only a few parameters then an underlying geometry may be inferred. Further, if profiles from the same source in higher-luminosity states can be fit with the addition of only one or two additional parameters it will serve to further solidify current XRP theory (e.g. the emergence of fan-like emission patterns, or the vertical growth of the accretion column).Our initial fitting campaign was directed at the ~ 100 XRPs in the Small Magellanic Cloud. Polestar also includes an interactive slider GUI that allows the user to see in real time how changing the various profiles alter the

  15. NuSTAR Observation of the Symbiotic System GX 1+4

    Science.gov (United States)

    Wolff, Michael Thomas; Becker, Peter A.; Enoto, Teruaki; Pottschmidt, Katja; Wood, Kent

    2017-08-01

    We report on a NuSTAR observation of the symbiotic binary system GX 1+4. GX 1+4 is one of a small number of systems with a red giant mass donor and a magnetic neutron star in orbit around each other. The accreting pulsar in GX 1+4 has a spin period of ~150 seconds with epochs of both spin-up and spin-down. The orbital period that has not been determined. Magnetic accretion theory in such systems suggests that the neutron star has a magnetic field in the range 1013-1014 Gauss although this is not settled because no cyclotron absorption feature has been observed in the X-ray spectrum. The NuSTAR spectrum shows broad Fe-line emission near ~6.5 keV and also shows a broad power law shape detected up to ~60 keV. We analyze and discuss the NuSTAR X-ray data with particular attention to the question of what can the spectrum tell us about the structure of the accretion flow onto the neutron star and the magnetic field strength.

  16. Millisecond pulsars: Timekeepers of the cosmos

    Science.gov (United States)

    Kaspi, Victoria M.

    1995-01-01

    A brief discussion on the characteristics of pulsars is given followed by a review of millisecond pulsar discoveries including the very first, PRS B1937+21, discovered in 1982. Methods of timing millisecond pulsars and the accuracy of millisecond pulsars as clocks are discussed. Possible reasons for the pulse residuals, or differences between the observed and predicted pulse arrival times for millisecond pulsars, are given.

  17. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Science.gov (United States)

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  18. Geriatric Pulsar Still Kicking

    Science.gov (United States)

    2009-02-01

    The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active. The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known. Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars". Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second. The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Erratic Black Hole Regulates Itself Celebrate the International Year of Astronomy Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar. "This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it

  19. A reprocessing model for the ultraviolet and optical light from 4U 1820-30

    Science.gov (United States)

    Arons, Jonathan; King, Ivan R.

    1993-01-01

    We show that the recently discovered optical and ultraviolet light from the X-ray burst source 4U 1820-30 in the globular cluster NGC 6624 is due to reprocessing of the X-rays in the outer regions of an optically thick, geometrically thin accretion disk. We suggest that observation of orbital modulation of the reprocessed light, due to the variable contribution made as the heated face of the companion turns toward and away from the observer, would provide constraints on the inclination of the binary orbit, and we suggest that detection in the reprocessed flux of the 'red noise' already observed in the X-rays would provide useful constraints on the geometry and physics of the accretion disk.

  20. Similarity of PSR J1906+0746 to PSR J0737–3039: a Candidate of a New Double Pulsar System?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Yan; Lingfu, Rong-Feng; Zhou, Zhu-Wen [School of Physics and Electronic Sciences, Guizhou Education University, Guiyang 550018 (China); Zhang, Cheng-Min; Li, Di [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wang, De-Hua [School of Physics and Electronic Sciences, Guizhou Normal University, Guiyang 550001 (China); Pan, Yuan-Yue, E-mail: yangyiyan@gznc.edu.cn, E-mail: zhangcm@bao.ac.cn [Department of Physics, Xiangtan University, Xiangtan, 411105 (China)

    2017-02-01

    PSR J1906+0746 is a nonrecycled strong magnetic field neutron star (NS), sharing the properties of the secondary-formed NS PSR J0737–3039B in the double pulsar system PSR J0737–3039AB. By comparing the orbital parameters of PSR J1906+0746 with those of PSR J0737–3039AB, we conclude that both systems have a similar origin and evolution history, involving an e-capture process for forming the second-born NS, like in the case of PSR J0737–3039B. We expect the companion of PSR J1906+0746 to be a long-lived recycled pulsar with radio beams that currently cannot be observed from Earth. We suggest possible ways to detect its presence. To compare PSR J1906+0746 with PSR J0737–3039, we also present the mass distribution of eight pairs of double NSs and find that in double NSs the mass of the recycled pulsar is usually larger than that of the nonrecycled one, which may be the result of accretion.

  1. CHANDRA OBSERVATIONS OF THE HIGH-MAGNETIC-FIELD RADIO PULSAR J1718-3718

    International Nuclear Information System (INIS)

    Zhu, W. W.; Kaspi, V. M.; Ng, C.-Y.; McLaughlin, M. A.; Pavlov, G. G.; Manchester, R. N.; Gaensler, B. M.; Woods, P. M.

    2011-01-01

    High-magnetic-field pulsars represent an important class of objects for studying the relationship between magnetars and radio pulsars. Here we report on four Chandra observations of the high-magnetic-field pulsar J1718-3718 (B = 7.4 x 10 13 G) taken in 2009 as well as a reanalysis of 2002 Chandra observations of the region. We also report an improved radio position for this pulsar based on ATCA observations. We detect X-ray pulsations at the pulsar's period in the 2009 data, with a pulsed fraction of 52% ± 13% in the 0.8-2.0 keV band. We find that the X-ray pulse is aligned with the radio pulse. The data from 2002 and 2009 show consistent spectra and fluxes: a merged overall spectrum is well fit by a blackbody of temperature 186 +19 -18 eV, slightly higher than predicted by standard cooling models; however, the best-fit neutron star atmosphere model is consistent with standard cooling. We find the bolometric luminosity L ∞ bb = 4 +5 -2 x 10 32 erg s -1 ∼0.3 E-dot for a distance of 4.5 kpc. We compile measurements of the temperatures of all X-ray-detected high-B pulsars as well as those of low-B radio pulsars and find evidence for the former being hotter on average than the latter.

  2. DISCOVERY OF FIVE NEW PULSARS IN ARCHIVAL DATA

    International Nuclear Information System (INIS)

    Mickaliger, M. B.; Collins, A.; Hough, L.; Tehrani, N.; Tenney, C.; Liska, A.; Swiggum, J.; Lorimer, D. R.; McLaughlin, M. A.; Boyles, J.

    2012-01-01

    Reprocessing of the Parkes Multibeam Pulsar Survey has resulted in the discovery of five previously unknown pulsars and several as-yet-unconfirmed candidates. PSR J0922–52 has a period of 9.68 ms and a dispersion measure (DM) of 122.4 pc cm –3 . PSR J1147–66 has a period of 3.72 ms and a DM of 133.8 pc cm –3 . PSR J1227–6208 has a period of 34.53 ms, a DM of 362.6 pc cm –3 , is in a 6.7 day binary orbit, and was independently detected in an ongoing high-resolution Parkes survey by Thornton et al. and also in independent processing by Einstein-Home volunteers. PSR J1546–59 has a period of 7.80 ms and a DM of 168.3 pc cm –3 . PSR J1725–3853 is an isolated 4.79 ms pulsar with a DM of 158.2 pc cm –3 . These pulsars were likely missed in earlier processing efforts due to the fact that they have both high DMs and short periods, and also due to the large number of candidates that needed to be looked through. These discoveries suggest that further pulsars are awaiting discovery in the multibeam survey data.

  3. Pair plasma in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Asseo, Estelle

    2003-01-01

    The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able

  4. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  5. Pulsar spin down and cosmologies with varying gravity

    International Nuclear Information System (INIS)

    Mansfield, V.N.

    1976-01-01

    Reference is made to the measured spin down of the pulsar JP1953 and it is stated that this conflicts with conclusions concerning cosmologies having weakening gravity. An explanation is also given for the lack of long period pulsars in terms of group theory cosmologies with strengthening gravity. The implications of Dirac's large number hypothesis are considered, including possibilities for the implied continuous creation of matter, both 'additive creation' in which nucleons are created uniformly throughout space and 'multiplicative creation' in which matter is created where it already exists in proportion to the amount existing. Malin's suggestion (Phys. Rev. D9:3228 (1974)) that the mass of all particles varies inversely as the four-dimensional radius of curvature of the universe is also considered. (U.K.)

  6. WHY ARE PULSAR PLANETS RARE?

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rebecca G.; Livio, Mario; Palaniswamy, Divya [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154 (United States)

    2016-12-01

    Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Only pulsars with a suitable companion (with an extreme mass ratio) are able to form planets. Second, while a dead zone (a region of low turbulence) in the disk is generally thought to be essential for planet formation, it is most probably rare in disks around pulsars, because of the irradiation from the pulsar. The irradiation strongly heats the inner parts of the disk, thus pushing the inner boundary of the dead zone out. We suggest that the rarity of pulsar planets can be explained by the low probability for these two requirements to be satisfied: a very low-mass companion and a dead zone.

  7. Millisecond radio pulsars in globular clusters

    Science.gov (United States)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  8. 40 Years of Pulsars: The Birth and Evolution of Isolated Radio Pulsars

    OpenAIRE

    Faucher-Giguere, C. -A.; Kaspi, V. M.

    2007-01-01

    We investigate the birth and evolution of isolated radio pulsars using a population synthesis method, modeling the birth properties of the pulsars, their time evolution, and their detection in the Parkes and Swinburne Multibeam (MB) surveys. Together, the Parkes and Swinburne MB surveys have detected nearly 2/3 of the known pulsars and provide a remarkably homogeneous sample to compare with simulations. New proper motion measurements and an improved model of the distribution of free electrons...

  9. The LOFAR Known Pulsar Data Pipeline

    NARCIS (Netherlands)

    Alexov, A.; Hessels, J.W.T.; Mol, J.D.; Stappers, B.; van Leeuwen, J.

    2010-01-01

    Abstract: Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being

  10. Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars

    Science.gov (United States)

    Cordes, J. M.; Chernoff, David F.

    1998-09-01

    be underrepresented (in the observed sample) by a factor ~2.3 owing to selection effects in pulsar surveys. The estimates of scale height and velocity parameters are insensitive to the explicit relation of chronological and spindown ages. A further analysis starting from our inferred velocity distribution allows us to test spindown laws and age estimates. There exist comparably good descriptions of the data involving different combinations of braking index and torque decay timescale. We find that a braking index of 2.5 is favored if torque decay occurs on a timescale of ~3 Myr, while braking indices ~4.5 +/- 0.5 are preferred if there is no torque decay. For the sample as a whole, the most probable chronological ages are typically smaller than conventional spindown ages by factors as large as 2. We have also searched for correlations between three-dimensional speeds of individual pulsars and combinations of spin period and period derivative. None appears to be significant. We argue that correlations identified previously between velocity and (apparent) magnetic moment reflect the different evolutionary paths taken by young, isolated (nonbinary), high-field pulsars and older, low-field pulsars that have undergone accretion-driven spinup. We conclude that any such correlation measures differences in spin and velocity selection in the evolution of the two populations and is not a measure of processes taking place in the core collapse that produces neutron stars in the first place. We assess mechanisms for producing high-velocity neutron stars, including disruption of binary systems by symmetric supernovae and neutrino, baryonic, or electromagnetic rocket effects during or shortly after the supernova. The largest velocities seen (~1600 km s-1), along with the paucity of low-velocity pulsars, suggest that disruption of binaries by symmetric explosions is insufficient. Rocket effects appear to be a necessary and general phenomenon. The required kick amplitudes and the

  11. Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chin-Ping; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Li, K. L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Kong, Albert K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, Lupin Chun-Che, E-mail: cphu@hku.hk, E-mail: liliray@pa.msu.edu [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China)

    2017-01-20

    NGC 7793 P13 is an ultraluminous X-ray source harboring an accreting pulsar. We report on the detection of a ∼65 day period X-ray modulation with Swift observations in this system. The modulation period found in the X-ray band is P = 65.05 ± 0.10 days and the profile is asymmetric with a fast rise and a slower decay. On the other hand, the u -band light curve collected by Swift UVOT confirmed an optical modulation with a period of P = 64.24 ± 0.13 days. We explored the phase evolution of the X-ray and optical periodicities and propose two solutions. A superorbital modulation with a period of ∼2700–4700 days probably caused by the precession of a warped accretion disk is necessary to interpret the phase drift of the optical data. We further discuss the implication if this ∼65 day periodicity is caused by the superorbital modulation. Estimated from the relationship between the spin-orbital and orbital-superorbital periods of known disk-fed high-mass X-ray binaries, the orbital period of P13 is roughly estimated as 3–7 days. In this case, an unknown mechanism with a much longer timescale is needed to interpret the phase drift. Further studies on the stability of these two periodicities with a long-term monitoring could help us to probe their physical origins.

  12. GMRT Galactic Plane Pulsar and Transient Survey and the Discovery of PSR J1838+1523

    Science.gov (United States)

    Surnis, Mayuresh P.; Joshi, Bhal Chandra; McLaughlin, Maura A.; Lorimer, Duncan R.; M A, Krishnakumar; Manoharan, P. K.; Naidu, Arun

    2018-05-01

    We report the results of a blind pulsar survey carried out with the Giant Metrewave Radio Telescope (GMRT) at 325 MHz. The survey covered about 10% of the region between Galactic longitude 45° pulsars. One of these, PSR J1838+1523, was previously unknown and has a period of 549 ms and a dispersion measure of 68 pc cm-3. We also present the timing solution of this pulsar obtained from multi-frequency timing observations carried out with the GMRT and the Ooty Radio Telescope. The measured flux density of this pulsar is 4.3±1.8 and 1.2±0.7 mJy at 325 and 610 MHz, respectively. This implies a spectral index of -2 ±0.8, thus making the expected flux density at 1.4 GHz to be about 0.2 mJy, which would be just detectable in the high frequency pulsar surveys like the Northern High Time Resolution Universe pulsar survey. This discovery underlines the importance of low frequency pulsar surveys in detecting steep spectrum pulsars, thus providing complementary coverage of the pulsar population.

  13. Visualization of Pulsar Search Data

    Science.gov (United States)

    Foster, R. S.; Wolszczan, A.

    1993-05-01

    The search for periodic signals from rotating neutron stars or pulsars has been a computationally taxing problem to astronomers for more than twenty-five years. Over this time interval, increases in computational capability have allowed ever more sensitive searches, covering a larger parameter space. The volume of input data and the general presence of radio frequency interference typically produce numerous spurious signals. Visualization of the search output and enhanced real-time processing of significant candidate events allow the pulsar searcher to optimally processes and search for new radio pulsars. The pulsar search algorithm and visualization system presented in this paper currently runs on serial RISC based workstations, a traditional vector based super computer, and a massively parallel computer. A description of the serial software algorithm and its modifications for massively parallel computing are describe. The results of four successive searches for millisecond period radio pulsars using the Arecibo telescope at 430 MHz have resulted in the successful detection of new long-period and millisecond period radio pulsars.

  14. Pulsar observations with the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Jezabel R.; Dazzi, F.; Idec, W.; Moretti, E.; Schweizer, T. [Max-Planck-Institut fuer Physik, Munich (Germany); Bonnefoy, S.; Carreto-Fidalgo, D.; Lopez, M. [Universitad Compultense, Madrid (Spain); Galindo, D.; Zanin, R. [Universitat de Barcelona, ICC/IEEC-UB, Barcelona (Spain); Ona Wilhelmi, E. de [Institute for Space Sciences (CSIC/IEEC), Barcelona (Spain); Reichardt, I. [Istituto Nazionale di Fisica Nucleare (INFN), Padova (Italy); Saito, T. [Kyoto University, Hakubi Center (Japan); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is a stereoscopic system of two IACTs, located at the ORM (Spain). Since 2008, MAGIC has played a big role in Pulsar physics due to the discovery of the first VHE gamma-ray emission from the Crab pulsar. Such a discovery was possible thanks to a revolutionary trigger technique used in the initial MAGIC mono system, the Sum-Trigger, that provided a 25 GeV energy threshold. The study of the Crab keeps providing numerous important results for the understanding of pulsar physics. The most recent ones are the bridge emission at VHE and the detection of the Crab pulsations at TeV energies. MAGIC has been also searching for new pulsars, providing recently interesting results about the Geminga pulsar and nebula. This talk reviews the essential MAGIC results about VHE pulsars and their implications for pulsar physics.Also we discuss the development of a new stereo trigger system, the Sum-Trigger-II, and the importance of the observation windows that this system opens for the study of VHE pulsars.

  15. Sensitivity of Pulsar Timing Arrays

    Science.gov (United States)

    Siemens, Xavier

    2015-08-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.

  16. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  17. Population synthesis of radio and gamma-ray millisecond pulsars using Markov Chain Monte Carlo techniques

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice

    2016-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  18. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  19. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  20. SIGPROC: Pulsar Signal Processing Programs

    Science.gov (United States)

    Lorimer, D. R.

    2011-07-01

    SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).

  1. Asymmetric supernova explosions and the origin of binary pulsars

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1978-01-01

    The author investigates the effect of asymmetric supernova explosions on the orbital parameters of binary systems with a compact component. Such explosions are related to the origin of binary pulsars. The degree of asymmetry of the explosion is represented by the kick velocity gained by the exploding star due to the asymmetric mass ejection. The required kick velocity to produce the observed parameters of the binary pulsar PSR 1913 + 16 should be larger than approximately 80 km s -1 if the mass of the exploding star is larger than approximately 4 solar masses. The mean survival probability of the binary system ( ) is examined for various degrees of asymmetry in the explosion. The rare occurrence of a binary pulsar does not neccessarily imply that such a probability is low since not all pulsars have originated in a binary system. Assuming the birth rate of pulsars by Taylor and Manchester (1977), it is derived that would be as high as 0.25. Such values of can be obtained if the mass of the exploding stars is, in general, not large (< approximately 10 solar masses). (Auth.)

  2. A novel look at the pulsar force-free magnetosphere

    Science.gov (United States)

    Petrova, S. A.; Flanchik, A. B.

    2018-03-01

    The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, B_{new}0=3.3×10^{-4}B/P, where P is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the \\cotχ-law, where χ is a random quantity uniformly distributed in the interval [0,π/2]. Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle between the magnetic and rotational axes and gives insight into the neutron star unification on the geometrical basis.

  3. Pulsar searching and timing with the Parkes telescope

    Science.gov (United States)

    Ng, C. W. Y.

    2014-11-01

    Pulsars are highly magnetised, rapidly rotating neutron stars that radiate a beam of coherent radio emission from their magnetic poles. An introduction to the pulsar phenomenology is presented in Chapter 1 of this thesis. The extreme conditions found in and around such compact objects make pulsars fantastic natural laboratories, as their strong gravitational fields provide exclusive insights to a rich variety of fundamental physics and astronomy. The discovery of pulsars is therefore a gateway to new science. An overview of the standard pulsar searching technique is described in Chapter 2, as well as a discussion on notable pulsar searching efforts undertaken thus far with various telescopes. The High Time Resolution Universe (HTRU) Pulsar Survey conducted with the 64-m Parkes radio telescope in Australia forms the bulk of this PhD. In particular, the author has led the search effort of the HTRU low-latitude Galactic plane project part which is introduced in Chapter 3. We discuss the computational challenges arising from the processing of the petabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including the potential pulsar-black hole binaries. We show that under a linear acceleration approximation, a ratio of ~0.1 of data length over orbital period results in the highest effectiveness for this search algorithm. Chapter 4 presents the initial results from the HTRU low-latitude Galactic plane survey. From the 37 per cent of data processed thus far, we have re-detected 348 previously known pulsars and discovered a further 47 pulsars. Two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar (MSP) with a heavy white dwarf companion while its short spin period of 5 ms indicates

  4. Pulsar Timing with the Fermi LAT

    Science.gov (United States)

    2010-12-01

    Pulsar Timing with the Fermi LAT Paul S. Ray∗, Matthew Kerr†, Damien Parent∗∗ and the Fermi PSC‡ ∗Naval Research Laboratory, 4555 Overlook Ave., SW...Laboratory, Washington, DC 20375, USA ‡Fermi Pulsar Search Consortium Abstract. We present an overview of precise pulsar timing using data from the Large...unbinned photon data. In addition to determining the spindown behavior of the pulsars and detecting glitches and timing noise, such timing analyses al

  5. X-RAY OBSERVATIONS OF THE YOUNG PULSAR J1357—6429 AND ITS PULSAR WIND NEBULA

    International Nuclear Information System (INIS)

    Chang, Chulhoon; Pavlov, George G.; Kargaltsev, Oleg; Shibanov, Yurii A.

    2012-01-01

    We observed the young pulsar J1357—6429 with the Chandra and XMM-Newton observatories. The pulsar spectrum fits well a combination of an absorbed power-law model (Γ = 1.7 ± 0.6) and a blackbody model (kT = 140 +60 –40 eV, R ∼ 2 km at the distance of 2.5 kpc). Strong pulsations with pulsed fraction of 42% ± 5%, apparently associated with the thermal component, were detected in 0.3-1.1 keV. Surprisingly, the pulsed fraction at higher energies, 1.1-10 keV, appears to be smaller, 23% ± 4%. The small emitting area of the thermal component either corresponds to a hotter fraction of the neutron star surface or indicates inapplicability of the simplistic blackbody description. The X-ray images also reveal a pulsar wind nebula (PWN) with complex, asymmetric morphology comprised of a brighter, compact PWN surrounded by the fainter, much more extended PWN whose spectral slopes are Γ = 1.3 ± 0.3 and Γ = 1.7 ± 0.2, respectively. The extended PWN with the observed flux of ∼7.5 × 10 –13 erg s –1 cm –2 is a factor of 10 more luminous then the compact PWN. The pulsar and its PWN are located close to the center of the extended TeV source HESS J1356-645, which strongly suggests that the very high energy emission is powered by electrons injected by the pulsar long ago. The X-ray to TeV flux ratio, ∼0.1, is similar to those of other relic PWNe. We found no other viable candidates to power the TeV source. A region of diffuse radio emission, offset from the pulsar toward the center of the TeV source, could be synchrotron emission from the same relic PWN rather than from the supernova remnant.

  6. Searching for pulsars using image pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H. [Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Brazier, A. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Lynch, R.; Scholz, P. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A. [Center for Advanced Radio Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M., E-mail: zhuww@phas.ubc.ca, E-mail: berndsen@phas.ubc.ca [Center for Gravitation, Cosmology and Astrophysics. University of Wisconsin Milwaukee, Milwaukee, WI 53211 (United States); and others

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  7. Searching for pulsars using image pattern recognition

    International Nuclear Information System (INIS)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M.

    2014-01-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  8. Searching for Pulsars Using Image Pattern Recognition

    Science.gov (United States)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  9. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    Science.gov (United States)

    Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.

    2013-07-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.

  10. The Pulsar Luminosity Function

    OpenAIRE

    O. H. Guseinov; E. Yazgan; S. O. Tagieva

    2003-01-01

    Hemos construido y examinado la función de luminosidad para pulsares, usando una nueva lista la cual incluye datos de 1328 radio pulsares. En este trabajo, se construye por primera vez la función de luminosidad en 1400 MHz. También presentamos una función de luminosidad mejorada en 400 MHz. Se comparan las funciones de luminosidad en 400 y 1400 MHz. De igual manera se construyen las funciones de luminosidad excluyendo los pulsares binarios y los de campos magnéticos pequeños. S...

  11. Automated processing of pulsar observations

    Energy Technology Data Exchange (ETDEWEB)

    Byzhlov, B.V.; Ivanova, V.V.; Izvekova, V.A.; Kuz' min, A.D.; Kuz' min, Yu.P.; Malofeev, V.M.; Popov, Yu.M.; Solomin, N.S.; Shabanova, T.V.; Shitov, Yu.P.

    1977-01-01

    Digital computer technology which processes observation results in a real time scale is used on meter-range radiotelescopes DKR-100 of the USSR Academy of Sciences Physics Institute and the BSA of the Physics Institute to study pulsars. A method which calls for the accumulation of impulses with preliminary compensation of pulsar dispersion in a broad band is used to increase sensitivity and resolution capability. Known pulsars are studied with the aid of a ''neuron'' type analyzer. A system for processing observations in an on-line set-up was created on the M-6000 computer for seeking unknown pulsars. 8 figures, 1 table, references.

  12. Orbital Dynamics of Candidate Transitional Millisecond Pulsar 3FGL J1544.6-1125: An unusually face-on system

    Science.gov (United States)

    Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo

    2018-01-01

    We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.

  13. Theoretical Study of Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Kwong Sang Cheng

    2016-06-01

    Full Text Available We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phaseaveraged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.

  14. The disc-jet coupling in the neutron star X-ray binary 4U 1728-34

    Science.gov (United States)

    Tudose, Valeriu; Tzioumis, Anastasios; Belloni, Tomaso; Altamirano, Diego; Linares, Manuel; Mendez, Mariano; Hiemstra, Beike

    2010-10-01

    The present radio proposal is part of a multi-wavelength campaign focused on the study of the accretion/ejection process in the neutron star X-ray binary system 4U 1728-34. Our intention is to study the behaviour of the inner part of the accretion disc as inferred from the X-ray observations of the Fe emission line and the kHz quasi-periodic oscillations, and to link it to the properties of the radio jet. To achieve this goal we request 5 × 11h of observing time with ATCA, scheduled at regular intervals in the period 2010 August 27- October 13, the visibility window of the granted X-ray observations with RXTE (PI: Mendez) and Suzaku (PI: Linares).

  15. Fast optical and X-ray variability in the UCXB 4U0614+09

    Science.gov (United States)

    Hakala, P. J.; Charles, P. A.; Muhli, P.

    2011-09-01

    We present results from several years of fast optical photometry of 4U0614+091 (V1055 Orionis), a candidate ultracompact X-ray binary most likely consisting of a neutron star and a degenerate secondary. We find evidence for strong accretion-driven variability at all epochs, which manifests itself as red noise. This flickering produces transient peaks in the observed power spectrum in the 15-65 min period range. Only in one of our 12 optical data sets can we see evidence for a period that cannot be reproduced using the red noise model. This period of 51 min coincides with the strongest period detected by Shahbaz et al. and can thus be taken as the prime candidate for the orbital period of the system. Furthermore, we find some tentative evidence for the X-ray versus optical flux anticorrelation discovered by Machin et al. using our data together with the all-sky X-ray monitoring data from RXTE/All Sky Monitor. We propose that the complex time series behaviour of 4U0614+09 is a result of drastic changes in the accretion disc geometry/structure on time-scales from hours to days. Finally, we want to draw attention to the interpretation of moderately strong peaks in the power spectra of especially accreting sources. Many of such 'periods' can probably be attributed to the presence of red noise (i.e. correlated events) in the data. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Uses results provided by the ASM/RXTE teams at MIT and at the RXTE SOF and GOF at NASA's GSFC.

  16. The Highly Relativistic Binary Pulsar PSR J0737-3039A: Discovery and Implications

    OpenAIRE

    Burgay, M.; D'Amico, N.; Possenti, A.; Manchester, R. N.; Lyne, A. G.; Joshi, B. C.; McLaughlin, M. A.; Kramer, M.; Sarkissian, J. M.; Camilo, F.; Kalogera, V.; Kim, C.; Lorimer, D. R.

    2004-01-01

    PSR J0737-3039A is a millisecond pulsar with a spin period of 22.7 ms included in a double-neutron star system with an orbital period of 2.4 hrs. Its companion has also been detected as a radio pulsar, making this binary the first known double-pulsar system. Its discovery has important implications for relativistic gravity tests, gravitational wave detection and plasma physics. Here we will shortly describe the discovery of the first pulsar in this unique system and present the first results ...

  17. The Discovery of the Most Accelerated Binary Pulsar

    OpenAIRE

    Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.

    2018-01-01

    Pulsars in relativistic binary systems have emerged as fantastic natural laboratories for testing theories of gravity, the most prominent example being the double pulsar, PSR J0737$-$3039. The HTRU-South Low Latitude pulsar survey represents one of the most sensitive blind pulsar surveys taken of the southern Galactic plane to date, and its primary aim has been the discovery of new relativistic binary pulsars. Here we present our binary pulsar searching strategy and report on the survey's fla...

  18. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  19. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  20. Particle acceleration by pulsars

    International Nuclear Information System (INIS)

    Arons, Jonathan.

    1980-06-01

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  1. Pulsar populations and their evolution

    International Nuclear Information System (INIS)

    Narayan, R.; Ostriker, J.P.

    1990-01-01

    Luminosity models are developed, and an attempt is made to answer fundamental questions regarding the statistical properties of pulsars, on the basis of a large data base encompassing the periods, period derivatives, radio luminosities, vertical Galactic heights, and transverse velocities, for a homogeneous sample of 301 pulsars. A probability is established for two pulsar subpopulations, designated F and S, which are distinguished primarily on the basis of kinematic properties. The two populations are of comparable size, with the F population having an overall birth-rate close to 1 in 200 years in the Galaxy, with the less certain S pulsar birth-rate not higher than that of the F population. 51 refs

  2. GBM Observations of Be X-Ray Binary Outbursts

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  3. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  4. Aspects of pulsar evolution

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1980-01-01

    We consider pulsar statistics from the point of view of generalized evolutionary equations that assume that pulsar torques diminish exponentially with a decay-time constant T, to be determined empirically. Decay or alignment of the neutron-star magnetic moment, or a combination, may cause the torque to diminish with time. The Sturrock-Ruderman-Sutherland pair-production model provides a quantitative way to calculate pulsar lifetimes. Different test, which use th data in partially independent ways and involve differnt assumptions, consistently suggest that T is less than a million years and may be as short as several hundred thousand years

  5. Pulsars: gigantic nuclei

    International Nuclear Information System (INIS)

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)

  6. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    NARCIS (Netherlands)

    Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.

    2010-01-01

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to

  7. Pulsars and Acceleration Sites

    Science.gov (United States)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  8. CONTINUED NEUTRON STAR CRUST COOLING OF THE 11 Hz X-RAY PULSAR IN TERZAN 5: A CHALLENGE TO HEATING AND COOLING MODELS?

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R.; Altamirano, D.; Fridriksson, J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Brown, E. F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201 (United States); Homan, J. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Heinke, C. O.; Sivakoff, G. R. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Pooley, D., E-mail: degenaar@umich.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2013-09-20

    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11 week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ≅2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled.

  9. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    International Nuclear Information System (INIS)

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-01-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the γ-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and γ-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient γ-ray emitters. We divided the X-ray sample in a young (τ c 4 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and γ-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L X ∝ P-dot 3 /P 6 . For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency η≡L X / E-dot rot ∼8x10 -5 . For the γ-ray luminosity we confirm that L γ ∝ √E-dot rot . We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  10. Two-stream instability in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Usov, V.V.

    1987-01-01

    If the electron-positron plasma flow from the pulsar environment is stationary, the two-stream instability does not have enough time to develop in the pulsar magnetosphere. In that case the outflowing electron-positron plasma gathers into separate clouds. The clouds move along magnetic field lines and disperse as they go farther from the pulsar. At a distance of about 10 to the 8th cm from the pulsar surface, the high-energy particles of a given cloud catch up with the low-energy particles that belong to the cloud going ahead of it. In this region of a pulsar magnetosphere, the energy distribution of plasma particles is two-humped, and a two-stream instability may develop. The growth rate of the instability is quite sufficient for its development. 17 references

  11. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few days to two weeks before the radio disappearance...... and current multi-wavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp edged, flat bottomed `dips' are observed with widths between 30-1000 s and ingress and egress time-scales of 30-60 s. No change in hardness ratio was observed during the dips...

  12. The Peculiar Evolutionary History of IGR J17480-2446 in Terzan 5

    NARCIS (Netherlands)

    Patruno, A.; Ali Alpar, M.; van der Klis, M.; van den Heuvel, E.P.J.

    2012-01-01

    The low-mass X-ray binary (LMXB) IGR J17480-2446 in the globular cluster Terzan 5 harbors an 11 Hz accreting pulsar. This is the first object discovered in a globular cluster with a pulsar spinning at such low rate. The accreting pulsar is anomalous because its characteristics are very different

  13. EIGHT γ-RAY PULSARS DISCOVERED IN BLIND FREQUENCY SEARCHES OF FERMI LAT DATA

    International Nuclear Information System (INIS)

    Saz Parkinson, P. M.; Dormody, M.; Ziegler, M.; Belfiore, A.; Johnson, R. P.; Ray, P. S.; Abdo, A. A.; Grove, J. E.; Gwon, C.; Ballet, J.; Baring, M. G.; Burnett, T. H.; Caliandro, G. A.; Camilo, F.; Caraveo, P. A.; De Luca, A.; Ferrara, E. C.; Harding, A. K.; Johnson, T. J.; Freire, P. C. C.

    2010-01-01

    We report the discovery of eight γ-ray pulsars in blind frequency searches of ∼650 source positions using the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. PSRs J1023-5746, J1044-5737, J1413-5205, J1429-5911, and J1954+2836 are young (τ c 10 36 erg s -1 ), and located within the Galactic plane (|b| 0 ). The remaining three pulsars, PSRs J1846+0919, J1957+5033, and J2055+25, are less energetic, and located off the plane. Five pulsars are associated with sources included in the Fermi-LAT bright γ-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age (τ c = 4.6 kyr) and is the most energetic ( E-dot = 1.1x10 37 erg s -1 ) of all γ-ray pulsars discovered so far in blind searches. By analyzing >100 ks of publicly available archival Chandra X-ray data, we have identified the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant γ-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3σ excess reported by Milagro at a median energy of 35 TeV. PSRs J1957+5033 and J2055+25 have the largest characteristic ages (τ c ∼ 1 Myr) and are the least energetic ( E-dot ∼5x10 33 erg s -1 ) of the newly discovered pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the faintest known radio pulsars, indicating that these pulsars can be included among the growing population of radio-quiet pulsars in our Galaxy being

  14. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  15. SWIFT J1749.4-2807: A neutron or quark star?

    International Nuclear Information System (INIS)

    Yu Junwei; Xu Renxin

    2010-01-01

    We investigate a unique accreting millisecond pulsar with X-ray eclipses, SWIFT J1749.4-2807 (hereafter J1749), and try to set limits on the binary system by various methods including use of the Roche lobe, the mass-radius relations of both main sequence (MS) and white dwarf (WD) companion stars, as well as the measured mass function of the pulsar. The calculations are based on the assumption that the radius of the companion star has reached its Roche radius (or is at 90%), but the pulsar's mass has not been assumed to be a certain value. Our results are as follows. The companion star should be an MS one. For the case that the radius equals its Roche one, we have a companion star with mass M ≅ 0.51 M o-dot and radius R c ≅ 0.52 R o-dot , and the inclination angle is i ≅ 76.5 0 ; for the case that the radius reaches 90% of its Roche one, we have M ≅ 0.43 M o-dot , R c ≅ 0.44 R o-dot and i ≅ 75.7 0 . We also obtain the mass of J1749, M p ≅ 1 M o-dot , and conclude that the pulsar could be a quark star if the ratio of the critical frequency of rotation-mode instability to the Keplerian one is higher than ∼ 0.3. The relatively low pulsar mass (about ∼ M o-dot ) may also challenge the conventional recycling scenario for the origin and evolution of millisecond pulsars. The results presented in this paper are expected to be tested by future observations. (letters)

  16. Selection of radio pulsar candidates using artificial neural networks

    OpenAIRE

    Eatough, R. P.; Molkenthin, N.; Kramer, M.; Noutsos, A.; Keith, M. J.; Stappers, B. W.; Lyne, A. G.

    2010-01-01

    Radio pulsar surveys are producing many more pulsar candidates than can be inspected by human experts in a practical length of time. Here we present a technique to automatically identify credible pulsar candidates from pulsar surveys using an artificial neural network. The technique has been applied to candidates from a recent re-analysis of the Parkes multi-beam pulsar survey resulting in the discovery of a previously unidentified pulsar.

  17. Pulsar discovery by global volunteer computing.

    Science.gov (United States)

    Knispel, B; Allen, B; Cordes, J M; Deneva, J S; Anderson, D; Aulbert, C; Bhat, N D R; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Crawford, F; Demorest, P B; Fehrmann, H; Freire, P C C; Gonzalez, M E; Hammer, D; Hessels, J W T; Jenet, F A; Kasian, L; Kaspi, V M; Kramer, M; Lazarus, P; van Leeuwen, J; Lorimer, D R; Lyne, A G; Machenschalk, B; McLaughlin, M A; Messenger, C; Nice, D J; Papa, M A; Pletsch, H J; Prix, R; Ransom, S M; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Venkataraman, A

    2010-09-10

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

  18. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping, NSW 1710 (Australia); Lentati, L. T. [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Bhat, N. D. R. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Coles, W. A. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Dempsey, J. [CSIRO Information Management and Technology, Box 225, Dickson, ACT 2602 (Australia); Keith, M. J. [Jodrell Bank Centre for Astrophysics, University of Manchester, M13 9PL (United Kingdom); Lasky, P. D.; Levin, Y. [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Ravi, V. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Spiewak, R., E-mail: ryan.shannon@csiro.au [Department of Physics, University of Wisconsin-Milwaukee, Box 413, Milwaukee, WI 53201 (United States); and others

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  19. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    International Nuclear Information System (INIS)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L.; Lentati, L. T.; Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W.; Bhat, N. D. R.; Coles, W. A.; Dempsey, J.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Ravi, V.; Spiewak, R.

    2016-01-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  20. Photochemistry of U(BH/sub 4/)/sub 4/ and U(BD/sub 4/)/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Paine, R T; Schonberg, P R; Light, R W [New Mexico Univ., Albuquerque (USA). Dept. of Chemistry; Danen, W C; Freund, S M

    1979-01-01

    U(BH/sub 4/)/sub 4/ and U(BD/sub 4/)/sub 4/ are observed to undergo complex degradation reactions promoted by broadband UV radiation. The primary products of these reactions appear to be U(BH/sub 4/)/sub 3/, B/sub 2/H/sub 6/, H/sub 2/, U(BD/sub 4/)/sub 3/, B/sub 2/D/sub 6/ and D/sub 2/. Further, U(BD/sub 4/)/sub 4/ undergoes a related decomposition reaction under the influence of CO/sub 2/ laser irradiation at 924.97 cm/sup -1/.

  1. UNDERSTANDING BLACK HOLE MASS ASSEMBLY VIA ACCRETION AND MERGERS AT LATE TIMES IN COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Kulier, Andrea; Ostriker, Jeremiah P.; Lackner, Claire N.; Cen, Renyue; Natarajan, Priyamvada

    2015-01-01

    Accretion is thought to primarily contribute to the mass accumulation history of supermassive black holes (SMBHs) throughout cosmic time. While this may be true at high redshifts, at lower redshifts and for the most massive black holes (BHs) mergers themselves might add significantly to the mass budget. We explore this in two disparate environments—a massive cluster and a void region. We evolve SMBHs from 4 > z > 0 using merger trees derived from hydrodynamical cosmological simulations of these two regions, scaled to the observed value of the stellar mass fraction to account for overcooling. Mass gains from gas accretion proportional to bulge growth and BH-BH mergers are tracked, as are BHs that remain ''orbiting'' due to insufficient dynamical friction in a merger remnant, as well as those that are ejected due to gravitational recoil. We find that gas accretion remains the dominant source of mass accumulation in almost all SMBHs; mergers contribute 2.5% ± 0.1% for all SMBHs in the cluster and 1.0% ± 0.1% in the void since z = 4. However, mergers are significant for massive SMBHs. The fraction of mass accumulated from mergers for central BHs generally increases for larger values of the host bulge mass: in the void, the fraction is 2% at M *, bul = 10 10 M ☉ , increasing to 4% at M *, bul ≳ 10 11 M ☉ , and in the cluster it is 4% at M *, bul = 10 10 M ☉ and 23% at 10 12 M ☉ . We also find that the total mass in orbiting SMBHs is negligible in the void, but significant in the cluster, in which a potentially detectable 40% of SMBHs and ≈8% of the total SMBH mass (where the total includes central, orbiting, and ejected SMBHs) is found orbiting at z = 0. The existence of orbiting and ejected SMBHs requires modification of the Soltan argument. We estimate this correction to the integrated accreted mass density of SMBHs to be in the range 6%-21%, with a mean value of 11% ± 3%. Quantifying the growth due to mergers at these late times

  2. High-Energy Pulsar Models: Developments and New Questions

    Science.gov (United States)

    Venter, C.; Harding, A. K.

    2014-01-01

    The past few years have seen a major advance in observational knowledge of high-energy (HE) pulsars. The Fermi Large Area Telescope (LAT) and AGILE have increased the number of known gamma-ray pulsars by an order of magnitude, its members being divided roughly equally among millisecond pulsars (MSPs), young radio-loud pulsars, and young radio-quiet pulsars. Many new and diverse emission characteristics are being measured, while radio and X-ray follow-up observations increase the pulsar detection rate and enrich our multiwavelength picture of these extreme sources. The wealth of new data has provided impetus for further development and improvement of existing theoretical pulsar models. Geometric light curve (LC) modelling has uncovered three broad classes into which HE pulsars fall: those where the radio profile leads, is aligned with, or lags the gamma-ray profile. For example, the original MSP and original black widow system are members of the second class, requiring co-located emission regions and thereby breaking with traditional notions of radio emission origin. These models imply narrow accelerator gaps in the outer magnetosphere, indicating copious pair production even in MSP magnetospheres that were previously thought to be pair-starved. The increased quality and variety of the LCs necessitate construction of ever more sophisticated models. We will review progress in global magnetosphere solutions which specify a finite conductivity on field lines above the stellar surface, filling the gap between the standard vacuum and force-free (FF; plasma-filled) models. The possibility of deriving phase-resolved spectra for the brightest pulsars, coupled with the fact that the HE pulsar population is sizable enough to allow sampling of various pulsar geometries, will enable much more stringent testing of future radiation models. Reproduction of the observed phase-resolved behavior of this disparate group will be one of the next frontiers in pulsar science, impacting on

  3. Pulsar velocity observations: Correlations, interpretations, and discussion

    International Nuclear Information System (INIS)

    Helfand, D.J.; Tademaru, E.

    1977-01-01

    From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution

  4. Prospects for high-precision pulsar timing with the new Effelsberg PSRIX backend

    Science.gov (United States)

    Lazarus, P.; Karuppusamy, R.; Graikou, E.; Caballero, R. N.; Champion, D. J.; Lee, K. J.; Verbiest, J. P. W.; Kramer, M.

    2016-05-01

    The PSRIX backend is the primary pulsar timing instrument of the Effelsberg 100 m radio telescope since early 2011. This new ROACH-based system enables bandwidths up to 500 MHz to be recorded, significantly more than what was possible with its predecessor, the Effelsberg-Berkeley Pulsar Processor (EBPP). We review the first four years of PSRIX timing data for 33 pulsars collected as part of the monthly European Pulsar Timing Array (EPTA) observations. We describe the automated data analysis pipeline, COASTGUARD, that we developed to reduce these observations. We also introduce TOASTER, the EPTA timing data base, used to store timing results, processing information and observation metadata. Using these new tools, we measure the phase-averaged flux densities at 1.4 GHz of all 33 pulsars. For seven of these pulsars, our flux density measurements are the first values ever reported. For the other 26 pulsars, we compare our flux density measurements with previously published values. By comparing PSRIX data with EBPP data, we find an improvement of ˜2-5 times in signal-to-noise ratio, which translates to an increase of ˜2-5 times in pulse time-of-arrival (TOA) precision. We show that such an improvement in TOA precision will improve the sensitivity to the stochastic gravitational wave background. Finally, we showcase the flexibility of the new PSRIX backend by observing several millisecond-period pulsars (MSPs) at 5 and 9 GHz. Motivated by our detections, we discuss the potential for complementing existing pulsar timing array data sets with MSP monitoring campaigns at these higher frequencies.

  5. FOUR HIGHLY DISPERSED MILLISECOND PULSARS DISCOVERED IN THE ARECIBO PALFA GALACTIC PLANE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Stovall, K. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Lazarus, P. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Freire, P. C. C.; Champion, D. J.; Desvignes, G. [Max-Planck-Institut fuer Radioastronomie, auf dem Huegel 69, D-53121 Bonn (Germany); Allen, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Bhat, N. D. R.; Camilo, F. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace, LPC2E, CNRS et Universite d' Orleans, and Station de radioastronomie de Nancay, Observatoire de Paris, F-18330 Nancay (France); Deneva, J. S., E-mail: fcrawfor@fandm.edu [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); and others

    2012-09-20

    We present the discovery and phase-coherent timing of four highly dispersed millisecond pulsars (MSPs) from the Arecibo PALFA Galactic plane survey: PSRs J1844+0115, J1850+0124, J1900+0308, and J1944+2236. Three of the four pulsars are in binary systems with low-mass companions, which are most likely white dwarfs, and which have orbital periods on the order of days. The fourth pulsar is isolated. All four pulsars have large dispersion measures (DM >100 pc cm{sup -3}), are distant ({approx}> 3.4 kpc), faint at 1.4 GHz ({approx}< 0.2 mJy), and are fully recycled (with spin periods P between 3.5 and 4.9 ms). The three binaries also have very small orbital eccentricities, as expected for tidally circularized, fully recycled systems with low-mass companions. These four pulsars have DM/P ratios that are among the highest values for field MSPs in the Galaxy. These discoveries bring the total number of confirmed MSPs from the PALFA survey to 15. The discovery of these MSPs illustrates the power of PALFA for finding weak, distant MSPs at low-Galactic latitudes. This is important for accurate estimates of the Galactic MSP population and for the number of MSPs that the Square Kilometer Array can be expected to detect.

  6. Evidence for free precession in a pulsar

    Science.gov (United States)

    Stairs; Lyne; Shemar

    2000-08-03

    Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior.

  7. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars

    Science.gov (United States)

    Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.

    2015-07-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.

  8. A Search for Debris Disks Around Variable Pulsars

    Science.gov (United States)

    Shannon, Ryan; Cordes, J.; Lazio, J.; Kramer, M.; Lyne, A.

    2009-01-01

    After a supernova explosion, a modest amount of material will fall back and form a disk surrounding the resultant neutron star. This material can aggregate into rocky debris and the disk can be stable for the entire 10 million year lifetime of a canonical (non-recycled) radio pulsar. Previously, we developed a model that unifies the different classes of radio variability observed in many older pulsars. In this model, rocky material migrates inwards towards the neutron star and is ablated inside the pulsar magnetosphere. This material alters the electrodynamics in the magnetosphere which can cause the observed quiescent and bursting states observed in nulling pulsars, intermittent pulsars, and rotating radio transients. With this model in mind, we observed three nulling pulsars and one intermittent pulsar that are good candidates to host debris disks detectable by the Spitzer IRAC. Here we report how our IRAC observations constrain disk geometry, with particular emphasis on configurations that can provide the in-fall rate to cause the observed radio variability. We place these observations in the context of other searches for debris disks around neutron stars, which had studied either very young or very old (recycled) pulsars. By observing older canonical pulsars, all major classes of radio pulsars have been observed, and we can assess the presence of debris disks as a function of pulsar type. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  9. Observations and modeling of the companions of short period binary millisecond pulsars: evidence for high-mass neutron stars

    International Nuclear Information System (INIS)

    Schroeder, Joshua; Halpern, Jules

    2014-01-01

    We present observations of fields containing eight recently discovered binary millisecond pulsars using the telescopes at MDM Observatory. Optical counterparts to four of these systems are detected, one of which, PSR J2214+3000, is a novel detection. Additionally, we present the fully phase-resolved B, V, and R light curves of the optical counterparts to two objects, PSR J1810+1744 and PSR J2215+5135 for which we employ model fitting using the eclipsing light curve (ELC) model of Orosz and Hauschildt to measure the unknown system parameters. For PSR J1810+1744, we find that the system parameters cannot be fit even assuming that 100% of the spin-down luminosity of the pulsar is irradiating the secondary, and so radial velocity measurements of this object will be required for the complete solution. However, PSR J2215+5135 exhibits light curves that are extremely well constrained using the ELC model and we find that the mass of the neutron star is constrained by these and the radio observations to be M NS > 1.75 M ☉ at the 3σ level. We also find a discrepancy between the model temperature and the measured colors of this object, which we interpret as possible evidence for an additional high-temperature source such as a quiescent disk. Given this and the fact that PSR J2215+5135 contains a relatively high mass companion (M c > 0.1 M ☉ ), we propose that similar to the binary pulsar systems PSR J1023+0038 and IGR J18245–2452, the pulsar may transition between accretion- and rotation-powered modes.

  10. Pulsars as tools for fundamental physics & astrophysics

    NARCIS (Netherlands)

    Cordes, J.M.; Kramer, M.; Lazio, T.J.W.; Stappers, B.W.; Backer, D.C.; Johnston, S.

    2004-01-01

    The sheer number of pulsars discovered by the SKA, in combination with the exceptional timing precision it can provide, will revolutionize the field of pulsar astrophysics. The SKA will provide a complete census of pulsars in both the Galaxy and in Galactic globular clusters that can be used to

  11. Pulsar kicks with modified Urca and electrons in Landau levels

    International Nuclear Information System (INIS)

    Henley, Ernest M.; Johnson, Mikkel B.; Kisslinger, Leonard S.

    2007-01-01

    We derive the energy asymmetry given the protoneutron star during the time when the neutrino sphere is near the surface of the protoneutron star, using the modified Urca process. The electrons produced with the antineutrinos are in Landau levels due to the strong magnetic field, and this leads to asymmetry in the neutrino momentum, and a pulsar kick. The magnetic field must be strong enough for a large fraction of the electrons to be in the lowest Landau level; however, there is no direct dependence of our pulsar velocity on the strength of the magnetic field. Our main prediction is that the large pulsar kicks start at about 10 s and last for about 10 s, with the corresponding neutrinos correlated with the direction of the magnetic field. We predict a pulsar velocity of 1.03x10 -4 (T/10 10 K) 7 km/s, which reaches 1000 km/s if T≅10 11 K

  12. The spatial distribution and birth-rate of pulsars

    International Nuclear Information System (INIS)

    Guseinov, O.H.; Kasumov, F.K.

    1978-01-01

    The distribution of pulsars in the wide range of observed luminosities has been obtained. It is shown that the function of luminosity (FL) within 3 x 10 26 30 erg s -1 conforms to the power law dN/dL - c 1 Lsup(-γ), where γ = 1.76 +- 0.06. For L 26 erg s -1 , FL changes its inclination and may be approximated as dN/dL approximately Lsup(-γ 1 ), where γ 1 = 0.7 +- 0.2. On the basis of statistical selection, including all pulsars with L > 3 x 10 28 erg s -1 , the distribution of pulsars has been investigated as a function of the distance to the centre R and galactic plane Z. The obtained laws of the radial and Z-distribution of pulsars and galactic supernova remnants and also the radial distribution of types I and II supernovae in the models Sb and Sc support the hypothesis of their origin from the objects of the flat subsystem of Population I. Since there are some arguments in favour of a possible connection between supernovae I and the objects of the intermediate component of the Galaxy, one cannot exclude the possibility of supernovae explosions at the end of the evolution of stars with masses of 1.5-2 Msub(sun). It is also shown that pulsars and supernovae are evidently objects that are connected genetically, and, within the limits of statistical error, they have a similar birth-rate. The empirical law of the evolution of a pulsar's luminosity as a function of its true age has been obtained, according to which L = c 2 tsup(-β), where c 2 = (3.69+- 3.4) x 10 35 ,β = 1.32 +- 0.11. (Auth.)

  13. Detecting pulsars in the Galactic Centre

    Science.gov (United States)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (I.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  14. Fastest Pulsar Speeding Out of Galaxy, Astronomers Discover

    Science.gov (United States)

    2005-08-01

    any firm conclusions," said Wouter Vlemmings of the Jodrell Bank Observatory in the UK and Cornell University in the U.S. The observations of B1508+55 were part of a larger project to use the VLBA to measure the distances and motions of numerous pulsars. "This is the first result of this long-term project, and it's pretty exciting to have something so spectacular come this early," Brisken said. The VLBA observations were made at radio frequencies between 1.4 and 1.7 GigaHertz. Chatterjee, Vlemmings and Brisken worked with Joseph Lazio of the Naval Research Laboratory, James Cordes of Cornell University, Miller Goss of NRAO, Stephen Thorsett of the University of California, Santa Cruz, Edward Fomalont of NRAO, Andrew Lyne and Michael Kramer, both of Jodrell Bank Observatory. The scientists presented their findings in the September 1 issue of the Astrophysical Journal Letters. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    International Nuclear Information System (INIS)

    Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van; Ransom, Scott; Stairs, Ingrid; Straten, Willem van; Weisberg, Joel M.

    2017-01-01

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  16. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, Joanna M.; Mitra, Dipanjan [Physics Department, University of Vermont, Burlington, VT 05405 (United States); Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Ransom, Scott [National Radio Astronomy Observatory, Charlottesville, VA 29201 (United States); Stairs, Ingrid [Physics Department, University of British Columbia, V6T 1Z4, BC (Canada); Straten, Willem van [Institute for Radio Astronomy and Space Research, Auckland University of Technology, Auckland 1142 (New Zealand); Weisberg, Joel M., E-mail: Joanna.Rankin@uvm.edu [Physics and Astronomy Department, Carleton College, Northfield, MN 55057 (United States)

    2017-08-10

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  17. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  18. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1981-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the galactic plane due to high space velocities imparted to the pulsars at birth. The evidence for this model is described and the various factors involved in estimating the total galactic population and the galactic birthrate of pulsars are discussed. The various estimates of the galactic population which cluster around 5 x 10 5 are seen to be critically dependent upon the cut-off at low luminosities and upon the value of the mean electron density within 500 pc of the Earth. Estimates of the lifetimes of pulsars are available from both the characteristic ages and proper motion measurements and both give values of about 5 million years. The implied birthrate of one in every 10 years is barely compatible with most estimates of the galactic supernova rate. (Auth.)

  19. Timing Noise Analysis of NANOGrav Pulsars

    OpenAIRE

    Perrodin, Delphine; Jenet, Fredrick; Lommen, Andrea; Finn, Lee; Demorest, Paul; Ferdman, Robert; Gonzalez, Marjorie; Nice, David; Ransom, Scott; Stairs, Ingrid

    2013-01-01

    We analyze timing noise from five years of Arecibo and Green Bank observations of the seventeen millisecond pulsars of the North-American Nanohertz Observatory for Gravitational Waves (NANOGrav) pulsar timing array. The weighted autocovariance of the timing residuals was computed for each pulsar and compared against two possible models for the underlying noise process. The first model includes red noise and predicts the autocovariance to be a decaying exponential as a function of time lag. Th...

  20. A curious case of the accretion-powered X-ray pulsar GX 1+4

    DEFF Research Database (Denmark)

    Jaisawal, Gaurava K.; Naik, Sachindra; Gupta, Shivangi

    2018-01-01

    We present detailed spectral and timing studies using a NuSTAR observation of GX 1+4 in 2015 October during an intermediate-intensity state. The measured spin period of 176.778 s is found to be one of the highest values since its discovery. In contrast to a broad sinusoidal-like pulse profile......, a peculiar sharp peak is observed in profiles below ∼25 keV. The profiles at higher energies are found to be significantly phase shifted compared to the soft X-ray profiles. Broad-band energy spectra of GX 1+4, obtained from NuSTAR and Swift observations, are described with various continuum models. Among...

  1. VHE gamma-rays from radio pulsars and cataclysmic variables

    International Nuclear Information System (INIS)

    De Jager, O.C.; Brink, C.; Meintjies, P.J.; Nel, H.I.; North, A.R.; Raubenheimer, B.C.; Van der Walt, D.J.

    1990-01-01

    We present the results of observations (above 1 TeV) of radio pulsars and cataclysmic variables with the Potchefstroom air Cerenkov facility. We were able to confirm our previous detection of PSR 1509-58 and the final significance is 1.7x10 -5 . A DC enhancement at the 10 -3 significance level was seen from the L 4 Lagrange position in the PSR 1957+20 system. This result was confirmed by COS-B data. We were also able to detect the 5.4 ms pulsar PSR 1855+09 at a marginal significance level of 5%. However, the best and longest observation indicates non-uniformity at the 0.005 significance level. The TeV light curve resembles the radio light curve. The latter is also reminiscent of other millisecond pulsar observed above 1 TeV. The intermediate polar AEAQR (P = 33.08s) shows a period shift which is consistent with recent model predictions. However, the present significance of this results does not allow an unambiguous claim. (orig.)

  2. THE PECULIAR PULSAR POPULATION OF THE CENTRAL PARSEC

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; O' Leary, Ryan M., E-mail: jdexter@berkeley.edu, E-mail: oleary@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-03-01

    Pulsars orbiting the Galactic center black hole, Sgr A*, would be potential probes of its mass, distance, and spin, and may even be used to test general relativity. Despite predictions of large populations of both ordinary and millisecond pulsars in the Galactic center, none have been detected within 25 pc by deep radio surveys. One explanation has been that hyperstrong temporal scattering prevents pulsar detections, but the recent discovery of radio pulsations from a highly magnetized neutron star (magnetar) within 0.1 pc shows that the temporal scattering is much weaker than predicted. We argue that an intrinsic deficit in the ordinary pulsar population is the most likely reason for the lack of detections to date: a ''missing pulsar problem'' in the Galactic center. In contrast, we show that the discovery of a single magnetar implies efficient magnetar formation in the region. If the massive stars in the central parsec form magnetars rather than ordinary pulsars, their short lifetimes could explain the missing pulsars. Efficient magnetar formation could be caused by strongly magnetized progenitors, or could be further evidence of a top-heavy initial mass function. Furthermore, current high-frequency surveys should already be able to detect bright millisecond pulsars, given the measured degree of temporal scattering.

  3. Solar neutrinos and solar accretion of interstellar matter

    International Nuclear Information System (INIS)

    Newman, M.J.; Talbot, R.J. Jr.

    1976-01-01

    It is argued that if the Hoyle-Lyttleton mass accretion rate applies (Proc. Camb. Phil. Soc., Math. Phys. Sci. 35: 405 (1939)) the accretion of interstellar matter by the Sun is sufficient to enhance the surface heavy element abundances. This will also apply to other solar-type stars. The enhancement may be sufficient to allow the construction of consistent solar models with an interior heavy element abundance significantly lower than the observed surface abundance. This state of affairs lowers the predicted solar neutrino flux. It has been suggested that a similar enhancement of surface abundances might occur due to accretion of 'planetesimals' left over after formation of the solar system, and both processes may occur, thereby increasing the effect. The simple accretion model of Hoyle and Lyttleton is discussed mathematically. A crucial question to be answered by future research, however, is whether or not accretion on to the solar surface actually occurs. One of the most obvious obstacles is the outward flowing solar wind, and this is discussed. It appears that the outward flow can be reversed to an inward flow for certain interstellar cloud densities. (U.K.)

  4. Spectral State Evolution of 4U 1820-30: the Stability of the Spectral Index of Comptonization Tail

    Science.gov (United States)

    Titarchuk, Lev G.; Seifina, Elena; Frontera, Filippo

    2013-01-01

    We analyze the X-ray spectra and their timing properties of the compact Xray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996 - 2009), the source were approximately approximately 75% of its time in the soft state making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a composition of a thermal (blackbody) component, a Comptonization component (COMPTB) and a Gaussian-line component. Thus using this spectral analysis we find that the photon power-law index Gamma of the Comptonization component is almost unchangeable (Gamma approximately 2) while the electron temperature kTe changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of COMPTB component (which is proportional to mass accretion rate ?M) increases by factor 8 when kTe decreases from 21 keV to 2.9 keV. Before this index stability effect was also found analyzing X-ray data for Z-source GX 340+0 and for atolls, 4U 1728-34, GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand in a black hole binary G monotonically increases with ?Mand ultimately its value saturates at large ?M.

  5. Plerions and pulsar-powered nebulae

    OpenAIRE

    Gaensler, Bryan

    2000-01-01

    In this brief review, I discuss recent developments in the study of pulsar-powered nebulae ("plerions"). The large volume of data which has been acquired in recent years reveals a diverse range of observational properties, demonstrating how differing environmental and pulsar properties manifest themselves in the resulting nebulae.

  6. Pilot pulsar surveys with LOFAR

    NARCIS (Netherlands)

    Coenen, T.

    2013-01-01

    We are performing two complementary pilot pulsar surveys as part of LOFAR commissioning. The LOFAR Pilot Pulsar Survey (LPPS) is a shallow all-sky survey using an incoherent combination of LOFAR stations. The LOFAR Tied-Array Survey (LOTAS) is a deeper pilot survey using 19 simultaneous tied-array

  7. Pulsar glitch dynamics

    Science.gov (United States)

    Morley, P. D.

    2018-01-01

    We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.

  8. A Bayesian Classifier for X-Ray Pulsars Recognition

    Directory of Open Access Journals (Sweden)

    Hao Liang

    2016-01-01

    Full Text Available Recognition for X-ray pulsars is important for the problem of spacecraft’s attitude determination by X-ray Pulsar Navigation (XPNAV. By using the nonhomogeneous Poisson model of the received photons and the minimum recognition error criterion, a classifier based on the Bayesian theorem is proposed. For X-ray pulsars recognition with unknown Doppler frequency and initial phase, the features of every X-ray pulsar are extracted and the unknown parameters are estimated using the Maximum Likelihood (ML method. Besides that, a method to recognize unknown X-ray pulsars or X-ray disturbances is proposed. Simulation results certificate the validity of the proposed Bayesian classifier.

  9. Magnetic Pair Creation Transparency in Pulsars

    Science.gov (United States)

    Story, Sarah; Baring, M. G.

    2013-04-01

    The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.

  10. Gamma rays from pulsar outer gaps

    International Nuclear Information System (INIS)

    Chiang, J.; Romani, R.W.; Cheng Ho

    1993-01-01

    We describe a gamma ray pulsar code which computes the high energy photon emissivities from vacuum gaps in the outer magnetosphere, after the model outlined by Cheng, Ho and Ruderman (1986) and Ho (1989). Pair-production due to photon-photon interactions and radiation processes including curvature, synchrotron and inverse Compton processes are computed with an iterative scheme which converges to self-consistent photon and particle distributions for a sampling of locations in the outer magnetosphere. We follow the photons from these distributions as they propagate through the pulsar magnetosphere toward a distant observer. We include the effects of relativistic aberration, time-of-flight delays and reabsorption by photon-photon pair-production to determine an intensity map of the high energy pulsar emission on the sky. Using data from radio and optical observations to constrain the geometry of the magnetosphere as well as the possible observer viewing angles, we derive light curves and phase dependent spectra which can be directly compared to data from the Compton Observatory. Observations for Crab, Vela and the recently identified gamma ray pulsars Geminga, PSR1706-44 aNd PSR 1509-58 will provide important tests of our model calculations, help us to improve our picture of the relevant physics at work in pulsar magnetospheres and allow us to comment on the implications for future pulsar discoveries

  11. Giant Pulse Studies of Ordinary and Recycled Pulsars with NICER

    Science.gov (United States)

    Lewandowska, Natalia; Arzoumanian, Zaven; Gendreau, Keith C.; Enoto, Teruaki; Harding, Alice; Lommen, Andrea; Ray, Paul S.; Deneva, Julia; Kerr, Matthew; Ransom, Scott M.; NICER Team

    2018-01-01

    Radio Giant Pulses are one of the earliest discovered form of anomalous single pulse emission from pulsars. Known for their non-periodical occurrence, restriction to certain phase ranges, power-law intensity distributions, pulse widths ranging from microseconds to nanoseconds and very high brightness temperatures, they stand out as an individual form of pulsar radio emission.Discovered originally in the case of the Crab pulsar, several other pulsars have been observed to emit radio giant pulses, the most promising being the recycled pulsar PSR B1937+21 and also the Vela pulsar.Although radio giant pulses are apparently the result of a coherent emission mechanism, recent studies of the Crab pulsar led to the discovery of an additional incoherent component at optical wavelengths. No such component has been identified for recycled pulsars, or Vela yet.To provide constraints on possible emission regions in their magnetospheres and to search for differences between giant pulses from ordinary and recycled pulsars, we present the progress of the correlation study of PSR B1937+21 and the Vela pulsar carried out with NICER and several radio observatories.

  12. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, M V; Kudyakov, V Ya; Komarov, V E; Salyulev, A B [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1979-02-01

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10/sup -4/ T-(1.67-10/sup -4/T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10/sup -4/T-(0.71x10/sup -4/T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed.

  13. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.; Komarov, V.E.; Salyulev, A.B.

    1979-01-01

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10 -4 T-(1.67-10 -4 T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10 -4 T-(0.71x10 -4 T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed

  14. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    Science.gov (United States)

    Cordova, F. A.; Middleditch, J.; Hjellming, R. M.; Mason, K. O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62 percent) and circular (19 percent) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18 percent + or - 6 percent, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar.

  15. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    International Nuclear Information System (INIS)

    Cordova, F.A.; Middleditch, J.; Hjellming, R.M.; Mason, K.O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62%) and circular (19%) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18% + or - 6%, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar. 46 refs

  16. Nonlinear temporal modulation of pulsar radioemission

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1984-01-01

    A nonlinear theory is discussed for self-modulation of pulsar radio pulses. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron-positron plasma. The nonlinearities arising from wave intensity induced relativistic particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary wave forms may account for the formation of pulsar microstructures. (Author) [pt

  17. The High Energy X-ray Spectrum of 4U1700-37 Observed from OSO-8

    Science.gov (United States)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Maurer, G. S.; Orwig, L. E.

    1979-01-01

    The most intense hard X-ray source in the confused region in Scorpius is identified as 4U1700-37. The 3.4-day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photon-number spectrum from 20 to 150 keV is well represented by a single power law with a photo-number spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 96.8-min X-ray modulation previously reported at lower energies. Despite the difficulties in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with theories of the evolution and physical properties of neutron stars, the observed properties of 4U1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  18. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, G; Burke-Spolaor, S; Champion, D [Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710 (Australia); Archibald, A [Department of Physics, McGill University, Montreal, PQ, H3A 2T8 (Canada); Arzoumanian, Z [CRESST/USRA, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Backer, D [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Bailes, M; Bhat, N D R [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn VIC 3122 (Australia); Burgay, M [Universita di Cagliari, Dipartimento di Fisica, SP Monserrato-Sestu km 0.7, 09042 Monserrato (Canada) (Italy); Cognard, I; Desvignes, G; Ferdman, R D [Station de Radioastronomie de Nanay, Observatoire de Paris, 18330 Nancay (France); Coles, W [Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA (United States); Cordes, J [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Demorest, P [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Finn, L [Center for Gravitational Wave Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Freire, P [Max-Planck-Institut fuer Radioastronomie, Auf Dem Huegel 69, 53121, Bonn (Germany); Gonzalez, M [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hessels, J [Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Hotan, A, E-mail: george.hobbs@csiro.a [Department of Imaging and Applied Physics, Curtin University, Bentley, WA (Australia)

    2010-04-21

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (approx 10{sup -9}-10{sup -8} Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.

  19. MULTIWAVELENGTH OBSERVATIONS OF THE REDBACK MILLISECOND PULSAR J1048+2339

    Energy Technology Data Exchange (ETDEWEB)

    Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Ray, P. S.; Wood, K.; Wolff, M. T. [Naval Research Laboratory, Washington, DC 20375 (United States); Camilo, F.; Halpern, J. P. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Cromartie, H. T. [University of Virginia, Charlottesville, VA 22904 (United States); Ferrara, E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kerr, M. [CSIRO Astronomy and Space Science, Marsfield NSW 2122 (Australia); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Chambers, K. C.; Magnier, E. A. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2016-06-01

    We report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi -Large Area Telescope source 3FGL J1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6 hr binary and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 M {sub ⊙}, and we have identified a V ∼ 20 variable optical counterpart in data from several surveys. The phasing of its ∼1 mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companion’s magnetic field channeling the pulsar wind to specific locations on its surface. We also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radio ephemeris.

  20. Handbook of pulsar astronomy

    CERN Document Server

    Lorimer, Duncan

    2005-01-01

    Radio pulsars are rapidly rotating highly magnetized neutron stars. Studies of these fascinating objects have provided applications in solid-state physics, general relativity, galactic astronomy, astrometry, planetary physics and even cosmology. Most of these applications and much of what we know about neutron stars are derived from single-dish radio observations using state-of-the-art receivers and data acquisition systems. This comprehensive 2004 book is a unique resource that brings together the key observational techniques, background information and a review of results, including the discovery of a double pulsar system. Useful software tools are provided which can be used to analyse example data, made available on a related website. This work will be of great value not only to graduate students but also to researchers wishing to carry out and interpret a wide variety of radio pulsar observations.

  1. Star-formation functions and the genetics of pulsar origin

    International Nuclear Information System (INIS)

    Guseinov, O.K.; Kasumov, F.K.; Yusifov, I.M.

    1982-01-01

    The star-formation function and the genetics of pulsar origin are discussed. It is shown that the progenitors of pulsars are main-sequence stars with masses of >5M/sub sun/ for almost all the kinds of initial mass functions discussed in the literature. Pulsars are genetically connected with supernova outbursts (mainly of type II). The probability of pulsar formation as a result of ''quiet collapse'' is extremely low. Thus, the hypothesis that pulsars are formed from objects of the extreme planar component of the Galaxy is confirmed on more complete and statistically uniform material

  2. A Search for Pulsar Companions to OB Runaway Stars

    Science.gov (United States)

    Kaspi, V. M.

    1995-01-01

    We have searched for radio pulsar companions to 40 nearby OB runaway stars. Observations were made at 474 and 770 MHz with the NRAO 140 ft telescope. The survey was sensitive to long- period pulsars with flux densities of 1 mJy or more. One previously unknown pulsar was discovered, PSRJ2044+4614, while observing towards target O star BD+45,3260. Follow-up timing observations of the pulsar measured its position to high precision, revealing a 9' separation between the pulsar and the target star, unequivocally indicating they are not associated.

  3. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    Science.gov (United States)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  4. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  5. Clocks in the sky the story of pulsars

    CERN Document Server

    McNamara, Geoff

    2008-01-01

    Pulsars are rapidly spinning neutron stars, the collapsed cores of once massive stars that ended their lives as supernova explosions. Pulsar rotation rates can reach incredible speeds, up to hundreds of times per second. This title explores the history, subsequent discovery and contemporary research into pulsar astronomy.

  6. COHERENT NETWORK ANALYSIS FOR CONTINUOUS GRAVITATIONAL WAVE SIGNALS IN A PULSAR TIMING ARRAY: PULSAR PHASES AS EXTRINSIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [MOE Key Laboratory of Fundamental Physical Quantities Measurements, School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei Province 430074 (China); Mohanty, Soumya D.; Jenet, Fredrick A., E-mail: ywang12@hust.edu.cn [Department of Physics, University of Texas Rio Grande Valley, 1 West University Boulevard, Brownsville, TX 78520 (United States)

    2015-12-20

    Supermassive black hole binaries are one of the primary targets of gravitational wave (GW) searches using pulsar timing arrays (PTAs). GW signals from such systems are well represented by parameterized models, allowing the standard Generalized Likelihood Ratio Test (GLRT) to be used for their detection and estimation. However, there is a dichotomy in how the GLRT can be implemented for PTAs: there are two possible ways in which one can split the set of signal parameters for semi-analytical and numerical extremization. The straightforward extension of the method used for continuous signals in ground-based GW searches, where the so-called pulsar phase parameters are maximized numerically, was addressed in an earlier paper. In this paper, we report the first study of the performance of the second approach where the pulsar phases are maximized semi-analytically. This approach is scalable since the number of parameters left over for numerical optimization does not depend on the size of the PTA. Our results show that for the same array size (9 pulsars), the new method performs somewhat worse in parameter estimation, but not in detection, than the previous method where the pulsar phases were maximized numerically. The origin of the performance discrepancy is likely to be in the ill-posedness that is intrinsic to any network analysis method. However, the scalability of the new method allows the ill-posedness to be mitigated by simply adding more pulsars to the array. This is shown explicitly by taking a larger array of pulsars.

  7. Polarized curvature radiation in pulsar magnetosphere

    Science.gov (United States)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  8. Localizing New Pulsars with Intensity Mapping

    Science.gov (United States)

    Swiggum, Joe; Gentile, Peter

    2018-01-01

    Although low-frequency, single dish pulsar surveys provide an efficient means of searching large regions of sky quickly, the localization of new discoveries is poor. For example, discoveries from 350 MHz surveys using the Green Bank Telescope (GBT) have position uncertainties up to the FWHM of the telescope's "beam" on the sky, over half a degree! Before finding a coherent timing solution (requires 8-12 months of dedicated timing observations) a "gridding" method is usually employed to improve localization of new pulsars, whereby a grid of higher frequency beam positions is used to tile the initial error region. This method often requires over an hour of observing time to achieve arcminute-precision localization (provided the pulsar is detectable at higher frequencies).Here, we describe another method that uses the same observing frequency as the discovery observation and scans over Right Ascension and Declination directions around the nominal position. A Gaussian beam model is fit to folded pulse profile intensities as a function of time/position to provide improved localization. Using five test cases, we show that intensity mapping localization at 350 MHz with the GBT yields pulsar positions to 1 arcminute precision, facilitating high-frequency follow-up and higher significance detections for future pulsar timing. This method is also well suited to be directly implemented in future low-frequency drift scan pulsar surveys (e.g. with the Five hundred meter Aperture Spherical Telescope; FAST).

  9. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  10. Spectra of short-period pulsars according to the hypothesis of the two types of pulsars

    International Nuclear Information System (INIS)

    Malov, I.F.

    1985-01-01

    The lack of low-frequency turnovers in the spectra of PSR 0531+21 and 1937+21 may be expl ned if the generation of radio emission in these pulsars occurs near the light cylinder. Differences of high frequency cut-offs and spectral inoices for long-period pulsars and short-period ones are discussed

  11. PSRPOPPy: an open-source package for pulsar population simulations

    Science.gov (United States)

    Bates, S. D.; Lorimer, D. R.; Rane, A.; Swiggum, J.

    2014-04-01

    We have produced a new software package for the simulation of pulsar populations, PSRPOPPY, based on the PSRPOP package. The codebase has been re-written in Python (save for some external libraries, which remain in their native Fortran), utilizing the object-oriented features of the language, and improving the modularity of the code. Pre-written scripts are provided for running the simulations in `standard' modes of operation, but the code is flexible enough to support the writing of personalised scripts. The modular structure also makes the addition of experimental features (such as new models for period or luminosity distributions) more straightforward than with the previous code. We also discuss potential additions to the modelling capabilities of the software. Finally, we demonstrate some potential applications of the code; first, using results of surveys at different observing frequencies, we find pulsar spectral indices are best fitted by a normal distribution with mean -1.4 and standard deviation 1.0. Secondly, we model pulsar spin evolution to calculate the best fit for a relationship between a pulsar's luminosity and spin parameters. We used the code to replicate the analysis of Faucher-Giguère & Kaspi, and have subsequently optimized their power-law dependence of radio luminosity, L, with period, P, and period derivative, Ṗ. We find that the underlying population is best described by L ∝ P-1.39±0.09 Ṗ0.48±0.04 and is very similar to that found for γ-ray pulsars by Perera et al. Using this relationship, we generate a model population and examine the age-luminosity relation for the entire pulsar population, which may be measurable after future large-scale surveys with the Square Kilometre Array.

  12. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  13. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  14. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  15. Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar

    Science.gov (United States)

    Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.; hide

    2012-01-01

    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.

  16. Nuclear limits on gravitational waves from elliptically deformed pulsars

    International Nuclear Information System (INIS)

    Krastev, Plamen G.; Li Baoan; Worley, Aaron

    2008-01-01

    Gravitational radiation is a fundamental prediction of General Relativity. Elliptically deformed pulsars are among the possible sources emitting gravitational waves (GWs) with a strain-amplitude dependent upon the star's quadrupole moment, rotational frequency, and distance from the detector. We show that the gravitational wave strain amplitude h 0 depends strongly on the equation of state of neutron-rich stellar matter. Applying an equation of state with symmetry energy constrained by recent nuclear laboratory data, we set an upper limit on the strain-amplitude of GWs produced by elliptically deformed pulsars. Depending on details of the EOS, for several millisecond pulsars at distances 0.18 kpc to 0.35 kpc from Earth, the maximalh 0 is found to be in the range of ∼[0.4-1.5]x10 -24 . This prediction serves as the first direct nuclear constraint on the gravitational radiation. Its implications are discussed

  17. Galactic distribution and genesis of pulsars

    International Nuclear Information System (INIS)

    Guseinov, O.H.; Kasumov, F.K.

    1981-01-01

    The radial distribution of pulsars in the Galaxy have been calculated by the authors using the available electron density figure for each pulsar. Also the luminosity function, the evolution of luminosity with age and the birth rate were determined. (Auth.)

  18. Predicting Pulsar Scintillation from Refractive Plasma Sheets

    Science.gov (United States)

    Simard, Dana; Pen, Ue-Li

    2018-05-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  19. Pulsar era

    Energy Technology Data Exchange (ETDEWEB)

    Hewish, A

    1986-12-01

    The discovery of pulsars in 1967 initiated one of the most effervescent phases of astronomy since World War II and opened up a number of important new fields of research. In looking back at the history of this event it is useful to focus on three aspects. These are the prehistory because it reveals a fascinating relationship between theory and observation concerning an entirely new phenomenon - the neutron star; the discovery itself, which was totally unexpected, to see if anything can be learned which might have a bearing on serendipitous discoveries in the future. For example, would pulsars have been found if the sky survey had been recorded digitally and analysed by a computer; the astronomical impact of the discovery as seen eighteen years after the initial excitement.

  20. Spectral and Temporal Properties of the Ultra-Luminous X-Ray Pulsar in M82 from 15 Years of Chandra Observations and Analysis of the Pulsed Emission Using NuSTAR

    Science.gov (United States)

    Brightman, Murray; Harrison, Fiona; Walton, Dominic J.; Fuerst, Felis; Zezas, Andreas; Bachetti, Matteo; Grefenstette, Brian; Ptak, Andrew; Tendulkar, Shriharsh; Yukita, Mihoko

    2016-01-01

    The recent discovery by Bachetti et al. of a pulsar in M82 that can reach luminosities of up to 10(exp 40) erg s(exp -1), a factor of approximately 100 times the Eddington luminosity for a 1.4 solar mass compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.58 keV X-ray emission from this source from 15 years of Chandra observations. We analyze 19 ACIS observations where the point-spread function (PSF) of the pulsar is not contaminated by nearby sources. We fit the Chandra spectra of the pulsar with a power-law model and a disk blackbody model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where four observations have a pile-up fraction of 10, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (LX greater than 10(exp 39) erg s(exp -1) is equal to gamma 1.33 +/-.0.15. For the disk blackbody model, the average temperature is T(sub in) 3.24 +/- 0.65 keV, the spectral shape being consistent with other luminous X-ray pulsars. We also investigated the inclusion of a soft excess component and spectral break, finding that the spectra are also consistent with these features common to luminous X-ray pulsars. In addition, we present spectral analysis from NuSTAR over the 3-50 keV range where we have isolated the pulsed component. We find that the pulsed emission in this band is best fit by a power-law with a high-energy cutoff, where gamma is equal to 0.6 +/- 0.3 and E(sub C) is equal to 14(exp +5) (sub -3)) keV. While the pulsar has previously been identified as a transient, we find from our longer-baseline study that it has been remarkably active over the 15-year period, where for 9

  1. THE QUASI-ROCHE LOBE OVERFLOW STATE IN THE EVOLUTION OF CLOSE BINARY SYSTEMS CONTAINING A RADIO PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G.; De Vito, M. A. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2015-01-01

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.

  2. Arecibo pulsar survey using ALFA. III. Precursor survey and population synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Swiggum, J. K.; Lorimer, D. R.; McLaughlin, M. A.; Bates, S. D.; Senty, T. R. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Champion, D. J.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Hessels, J. W. T. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Ellis, J.; Allen, B. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee WI 53211 (United States); Bhat, N. D. R. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); and others

    2014-06-01

    The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo (32° ≲ ℓ ≲ 77° and 168° ≲ ℓ ≲ 214°) close to the Galactic plane (|b| ≲ 5°) for pulsars. The PALFA survey is sensitive to sources fainter and more distant than have previously been seen because of Arecibo's unrivaled sensitivity. In this paper we detail a precursor survey of this region with PALFA, which observed a subset of the full region (slightly more restrictive in ℓ and |b| ≲ 1°) and detected 45 pulsars. Detections included 1 known millisecond pulsar and 11 previously unknown, long-period pulsars. In the surveyed part of the sky that overlaps with the Parkes Multibeam Pulsar Survey (36° ≲ ℓ ≲ 50°), PALFA is probing deeper than the Parkes survey, with four discoveries in this region. For both Galactic millisecond and normal pulsar populations, we compare the survey's detections with simulations to model these populations and, in particular, to estimate the number of observable pulsars in the Galaxy. We place 95% confidence intervals of 82,000 to 143,000 on the number of detectable normal pulsars and 9000 to 100,000 on the number of detectable millisecond pulsars in the Galactic disk. These are consistent with previous estimates. Given the most likely population size in each case (107,000 and 15,000 for normal and millisecond pulsars, respectively), we extend survey detection simulations to predict that, when complete, the full PALFA survey should have detected 1000{sub −230}{sup +330} normal pulsars and 30{sub −20}{sup +200} millisecond pulsars. Identical estimation techniques predict that 490{sub −115}{sup +160} normal pulsars and 12{sub −5}{sup +70} millisecond pulsars would be detected by the beginning of 2014; at the time, the PALFA survey had detected 283 normal pulsars and 31 millisecond pulsars, respectively. We attribute the deficiency in normal pulsar

  3. Black Hole Mass Determination In the X-Ray Binary 4U 1630-47: Scaling of Spectral and Variability Characteristics

    Science.gov (United States)

    Seifina, Elena; Titarchuk, Lev; Shaposhnikov, Nikolai

    2014-01-01

    We present the results of a comprehensive investigation on the evolution of spectral and timing properties of the Galactic black hole candidate 4U 1630-47 during its spectral transitions. In particular, we show how a scaling of the correlation of the photon index of the Comptonized spectral component gamma with low-frequency quasi-periodic oscillations (QPOs), ?(sub L), and mass accretion rate, M, can be applied to the black hole mass and the inclination angle estimates.We analyze the transition episodes observed with the Rossi X-Ray Timing Explorer and BeppoSAX satellites.We find that the broadband X-ray energy spectra of 4U 1630-47 during all spectral states can be modeled by a combination of a thermal component, a Comptonized component, and a red-skewed iron-line component. We also establish that gamma monotonically increases during transition from the low-hard state to the high-soft state and then saturates for high mass accretion rates. The index saturation levels vary for different transition episodes. Correlations of gamma versus ?(sub L) also show saturation at gamma (is) approximately 3. Gamma -M and gamma -?(sub L) correlations with their index saturation revealed in 4U 1630-47 are similar to those established in a number of other black hole candidates and can be considered as an observational evidence for the presence of a black hole in these sources. The scaling technique, which relies on XTE J1550-564, GRO 1655-40, and H1743-322 as reference sources, allows us to evaluate a black hole mass in 4U 1630-47 yielding M(sub BH) (is) approximately 10 +/- 0.1 solar masses and to constrain the inclination angle of i (is) approximately less than 70 deg.

  4. Searching for millisecond pulsars: surveys, techniques and prospects

    International Nuclear Information System (INIS)

    Stovall, K; Lorimer, D R; Lynch, R S

    2013-01-01

    Searches for millisecond pulsars (which we here loosely define as those with periods < 20 ms) in the galactic field have undergone a renaissance in the past five years. New or recently refurbished radio telescopes utilizing cooled receivers and state-of-the art digital data acquisition systems are carrying out surveys of the entire sky at a variety of radio frequencies. Targeted searches for millisecond pulsars in point sources identified by the Fermi Gamma-ray Space Telescope have proved phenomenally successful, with over 50 discoveries in the past five years. The current sample of millisecond pulsars now numbers almost 200 and, for the first time in 25 years, now outnumbers their counterparts in galactic globular clusters. While many of these searches are motivated to find pulsars which form part of pulsar timing arrays, a wide variety of interesting systems are now being found. Following a brief overview of the millisecond pulsar phenomenon, we describe these searches and present some of the highlights of the new discoveries in the past decade. We conclude with predictions and prospects for ongoing and future surveys. (paper)

  5. The Binary Pulsar: Gravity Waves Exist.

    Science.gov (United States)

    Will, Clifford

    1987-01-01

    Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)

  6. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  7. The fate of accreting white dwarfs: type I supernovae vs. collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi

    1986-01-01

    The fate of accreting white dwarfs is examined with respect to thermonuclear explosion or collapse. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy 1986. Effects of accretion and the fate of white dwarfs, models for type 1a and 1b supernovae, collapse induced by carbon deflagration at high density, and fate of double white dwarfs, are all discussed. (U.K.)

  8. A NICER View of the Accretion Disk in GX 339-4

    Science.gov (United States)

    Steiner, James Francis; Bulbul, Esra; Cackett, Ed; Fabian, Andy; Gendreau, Keith C.; Neilsen, Joseph; Ranga Reddy Pasham, Dheeraj; Remillard, Ron; Uttley, Phil; Wood, Kent S.

    2018-01-01

    The poster-child black hole transient GX 339-4 has gone into outburst once again. With no pileup, low-background, and high fidelity in the soft X-ray bandpass, NICER is uniquely positioned to detect emergent thermal disk emission from an optically thick accretion flow approaching the innermost-stable circular orbit. We present NICER's results on the 2017 outburst, and detail its implications for the disk-truncation controversy. We also investigate the X-ray state evolution, as seen in NICER's spectral range of 0.2 to 12 keV.

  9. Limits on the speed of gravitational waves from pulsar timing

    International Nuclear Information System (INIS)

    Baskaran, D.; Polnarev, A. G.; Pshirkov, M. S.; Postnov, K. A.

    2008-01-01

    In this work, analyzing the propagation of electromagnetic waves in the field of gravitational waves, we show the presence and significance of the so-called surfing effect for pulsar timing measurements. It is shown that, due to the transverse nature of gravitational waves, the surfing effect leads to enormous pulsar timing residuals if the speed of gravitational waves is smaller than the speed of light. This fact allows one to place significant constraints on parameter ε, which characterizes the relative deviation of the speed of gravitational waves from the speed of light. We show that the existing constraints from pulsar timing measurements already place stringent limits on ε and consequently on the mass of the graviton m g . The limits on m g -24 are 2 orders of magnitude stronger than the current constraints from Solar System tests. The current constraints also allow one to rule out massive gravitons as possible candidates for cold dark matter in the galactic halo. In the near future, the gravitational wave background from extragalactic super massive black hole binaries, along with the expected submicrosecond pulsar timing accuracy, will allow one to achieve constraints of ε < or approx. 0.4% and possibly stronger.

  10. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    International Nuclear Information System (INIS)

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-01-01

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7σ single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  11. Axion mass limits from pulsar x rays

    International Nuclear Information System (INIS)

    Morris, D.E.

    1984-12-01

    Axions thermally emitted by a neutron star would be converted into x rays in the strong magnetic field surrounding the star. An improvement in the observational upper limit of pulsed x rays from the Vela pulsar (PSR 0833-45) by a factor of 12 would constrain the axion mass M/sub a/ -3 eV if the core is non-superfluid and at temperature T/sub c/ greater than or equal to 2 x 10 8 K. If the core is superfluid throughout, an improvement factor of 240 would be needed to provide the same constraint on the axion mass, while in the absence of superfluidity, an improvement factor of 200 could constrain M/sub a/ -4 eV. A search for modulated hard x rays from PSR 1509-58 or other young pulsars at presently attainable sensitivities may enable the setting of an upper limit for the axion mass. Observation of hard x rays from a very young hot pulsar with T/sub c/ greater than or equal to 7 x 10 8 K could set a firm bound on the axion mass, since neutron superfluidity is not expected above this temperature. The remaining axion mass range 6 x 10 -4 eV > M/sub a/ > 10 -5 eV (the cosmological lower bound) can be covered by an improved Sikivie type laboratory cavity detector for relic axions constituting the galactic halo. 48 refs

  12. The High Time Resolution Universe Pulsar Survey - XIII. PSR J1757-1854, the most accelerated binary pulsar

    Science.gov (United States)

    Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.; Karuppusamy, R.; Keith, M. J.; Levin, L.; Lorimer, D. R.; Lyne, A. G.; McLaughlin, M. A.; Ng, C.; Petroff, E.; Possenti, A.; Ridolfi, A.; Stappers, B. W.; van Straten, W.; Tauris, T. M.; Tiburzi, C.; Wex, N.

    2018-03-01

    We report the discovery of PSR J1757-1854, a 21.5-ms pulsar in a highly-eccentric, 4.4-h orbit with a neutron star (NS) companion. PSR J1757-1854 exhibits some of the most extreme relativistic parameters of any known pulsar, including the strongest relativistic effects due to gravitational-wave damping, with a merger time of 76 Myr. Following a 1.6-yr timing campaign, we have measured five post-Keplerian parameters, yielding the two component masses (mp = 1.3384(9) M⊙ and mc = 1.3946(9) M⊙) plus three tests of general relativity, which the theory passes. The larger mass of the NS companion provides important clues regarding the binary formation of PSR J1757-1854. With simulations suggesting 3-σ measurements of both the contribution of Lense-Thirring precession to the rate of change of the semimajor axis and the relativistic deformation of the orbit within ˜7-9 yr, PSR J1757-1854 stands out as a unique laboratory for new tests of gravitational theories.

  13. Detecting dark matter with imploding pulsars in the galactic center.

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  14. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    International Nuclear Information System (INIS)

    Cordes, J. M.; Jenet, F. A.

    2012-01-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  15. Detecting Gravitational Wave Memory with Pulsar Timing

    Science.gov (United States)

    Cordes, J. M.; Jenet, F. A.

    2012-06-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  16. Radio emission region exposed: courtesy of the double pulsar

    Science.gov (United States)

    Lomiashvili, David; Lyutikov, Maxim

    2014-06-01

    The double pulsar system PSR J0737-3039A/B offers exceptional possibilities for detailed probes of the structure of the pulsar magnetosphere, pulsar winds and relativistic reconnection. We numerically model the distortions of the magnetosphere of pulsar B by the magnetized wind from pulsar A, including effects of magnetic reconnection and of the geodetic precession. Geodetic precession leads to secular evolution of the geometric parameters and effectively allows a 3D view of the magnetosphere. Using the two complimentary models of pulsar B's magnetosphere, adapted from the Earth's magnetosphere models by Tsyganenko (ideal pressure confinement) and Dungey (highly resistive limit), we determine the precise location and shape of the coherent radio emission generation region within pulsar B's magnetosphere. We successfully reproduce orbital variations and secular evolution of the profile of B, as well as subpulse drift (due to reconnection between the magnetospheric and wind magnetic fields), and determine the location and the shape of the emission region. The emission region is located at about 3750 stellar radii and has a horseshoe-like shape, which is centred on the polar magnetic field lines. The best-fitting angular parameters of the emission region indicate that radio emission is generated on the field lines which, according to the theoretical models, originate close to the poles and carry the maximum current. We resolved all but one degeneracy in pulsar B's geometry. When considered together, the results of the two models converge and can explain why the modulation of B's radio emission at A's period is observed only within a certain orbital phase region. Our results imply that the wind of pulsar A has a striped structure only 1000 light-cylinder radii away. We discuss the implications of these results for pulsar magnetospheric models, mechanisms of coherent radio emission generation and reconnection rates in relativistic plasma.

  17. The First Continuous Optical Monitoring of the Transitional Millisecond Pulsar PSR J1023+0038 with Kepler

    Science.gov (United States)

    Papitto, A.; Rea, N.; Coti Zelati, F.; de Martino, D.; Scaringi, S.; Campana, S.; de Ońa Wilhelmi, E.; Knigge, C.; Serenelli, A.; Stella, L.; Torres, D. F.; D’Avanzo, P.; Israel, G. L.

    2018-05-01

    We report on the first continuous, 80-day optical monitoring of the transitional millisecond pulsar PSR J1023+0038 carried out in mid 2017 with Kepler in the K2 configuration, when an X-ray subluminous accretion disk was present in the binary. Flares lasting from minutes to 14 hr were observed for 15.6% of the time, which is a larger fraction than previously reported on the basis of X-ray and past optical observations, and more frequently when the companion was at superior conjunction of the orbit. A sinusoidal modulation at the binary orbital period was also present with an amplitude of ≃16%, which varied by a few percent over timescales of days, and with a maximum that took place 890 ± 85 s earlier than the superior conjunction of the donor. We interpret this phenomena in terms of reprocessing of the X-ray emission by an asymmetrically heated companion star surface and/or a non-axisymmetric outflow possibly launched close to the inner Lagrangian point. Furthermore, the non-flaring average emission varied by up to ≈40% over a timescale of days in the absence of correspondingly large variations of the irradiating X-ray flux. The latter suggests that the observed changes in the average optical luminosity might be due to variations of the geometry, size, and/or mass accretion rate in the outer regions of the accretion disk.

  18. Southern hemisphere searches for short period pulsars

    International Nuclear Information System (INIS)

    Manchester, R.N.

    1984-01-01

    Two searches of the southern sky for short period pulsars are briefly described. The first, made using the 64-m telescope at Parkes, is sensitive to pulsars with periods greater than about 10 ms and the second, made using the Molonglo radio telescope, has sensitivity down to periods of about 1.5 ms. Four pulsars were found in the Parkes survey and none in the Molonglo survey, although analysis of the latter is as yet incomplete. 10 references, 1 figure, 2 tables

  19. Pulsar-driven Jets In Sne, Grbs, Lmxbs, Ss 433, And The Universe

    Science.gov (United States)

    Middleditch, John

    2011-05-01

    The model of pulsar emission through superluminally induced polarization currents, (SLIP), predicts that pulsations produced by such currents at many light cylinder radii by a rotating, magnetized body, will drive pulsations close to the axis of rotation. In SN 1987A, the possible Rosetta Stone for 99% of SNe, GRBs, ms pulsars, and SS 433, such highly collimated (>1 in 10,000) 2.14 ms pulsations, and the similarly collimated jets of particles which they drove, including 1e-6 solar masses with velocities 0.95 c, were responsible for its very early light curve (days 3-20), its "Mystery Spot," observed slightly later (0.5 to 0.3 c, at days 30-50 and after), and still later, in less collimated form, its bipolarity. The axially driven pulsations enforce a toroidal geometry onto all early SNRs, rendering even SNe Ia unsuitable as standard candles. The numbers for Sco X-1's jet are identical, while those for SS 433 are lower (0.26 c), because of the absence of velocity "boosting" via collisions of heavy elements with lighter ones, due to the nearly pure hydrogen content of the supercritical accretion. SLIP also drives positrons from SNe to high energies, possibly accounting for the excess seen by PAMELA at scores of GeV, and predicts that almost all pulsars with very sharp single pulses have been detected because the Earth is in a favored direction where their fluxes diminish only as 1/distance, and this has been verified in the laboratory as well as for the Parkes Multibeam Survey. SLIP also predicts that GRB afterglows will be 100% pulsed at 500 Hz in their proper frame. Finally, SLIP jets from SNe of the first stars may allow galaxies to form without the need for dark matter. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.

  20. PINT, A Modern Software Package for Pulsar Timing

    Science.gov (United States)

    Luo, Jing; Ransom, Scott M.; Demorest, Paul; Ray, Paul S.; Stovall, Kevin; Jenet, Fredrick; Ellis, Justin; van Haasteren, Rutger; Bachetti, Matteo; NANOGrav PINT developer team

    2018-01-01

    Pulsar timing, first developed decades ago, has provided an extremely wide range of knowledge about our universe. It has been responsible for many important discoveries, such as the discovery of the first exoplanet and the orbital period decay of double neutron star systems. Currently pulsar timing is the leading technique for detecting low frequency (about 10^-9 Hertz) gravitational waves (GW) using an array of pulsars as the detectors. To achieve this goal, high precision pulsar timing data, at about nanoseconds level, is required. Most high precision pulsar timing data are analyzed using the widely adopted software TEMPO/TEMPO2. But for a robust and believable GW detection, it is important to have independent software that can cross-check the result. In this poster we present the new generation pulsar timing software PINT. This package will provide a robust system to cross check high-precision timing results, completely independent of TEMPO and TEMPO2. In addition, PINT is designed to be a package that is easy to extend and modify, through use of flexible code architecture and a modern programming language, Python, with modern technology and libraries.

  1. Development of Pulsar Detection Methods for a Galactic Center Search

    Science.gov (United States)

    Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami

    2018-01-01

    Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.

  2. Gamma-Ray Pulsars: Beaming Evolution, Statistics, and Unidentified EGRET Sources

    Science.gov (United States)

    Yadigaroglu, I.-A.; Romani, Roger W.

    1995-08-01

    We compute the variation of the beaming fraction with the efficiency of high-energy γ-ray production in the outer gap pulsar model of Romani and Yadigaroglu. This allows us to correct the fluxes observed for pulsars in the EGRET band and to derive a simple estimate of the variation of efficiency with age. Integration of this model over the population of young neutron stars gives the expected number of γ-ray pulsars along with their distributions in age and distance. This model also shows that many of the unidentified EGRET plane sources should be pulsars and predicts the γ-ray fluxes of known radio pulsars. The contribution of unresolved pulsars to the background flux in the EGRET band is found to be ˜5%.

  3. X-Ray and Optical Study of the Gamma-ray Source 3FGL J0838.8–2829: Identification of a Candidate Millisecond Pulsar Binary and an Asynchronous Polar

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, Jules P.; Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States); Thorstensen, John R., E-mail: jules@astro.columbia.edu [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755-3528 (United States)

    2017-04-01

    We observed the field of the Fermi source 3FGL J0838.8−2829 in optical and X-rays, initially motivated by the cataclysmic variable (CV) 1RXS J083842.1−282723 that lies within its error circle. Several X-ray sources first classified as CVs have turned out to be γ -ray emitting millisecond pulsars (MSPs). We find that 1RXS J083842.1−282723 is in fact an unusual CV, a stream-fed asynchronous polar in which accretion switches between magnetic poles (that are ≈120° apart) when the accretion rate is at minimum. High-amplitude X-ray modulation at periods of 94.8 ± 0.4 minutes and 14.7 ± 1.2 hr are seen. The former appears to be the spin period, while the latter is inferred to be one-third of the beat period between the spin and the orbit, implying an orbital period of 98.3 ± 0.5 minutes. We also measure an optical emission-line spectroscopic period of 98.413 ± 0.004 minutes, which is consistent with the orbital period inferred from the X-rays. In any case, this system is unlikely to be the γ -ray source. Instead, we find a fainter variable X-ray and optical source, XMMU J083850.38−282756.8, that is modulated on a timescale of hours in addition to exhibiting occasional sharp flares. It resembles the black widow or redback pulsars that have been discovered as counterparts of Fermi sources, with the optical modulation due to heating of the photosphere of a low-mass companion star by, in this case, an as-yet undetected MSP. We propose XMMU J083850.38−282756.8 as the MSP counterpart of 3FGL J0838.8−2829.

  4. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY. I. SURVEY OBSERVATIONS AND THE DISCOVERY OF 13 PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Boyles, J.; Lorimer, D. R.; McLaughlin, M. A.; Cardoso, R. F. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Lynch, R. S.; Kaspi, V. M.; Archibald, A.; Karako-Argaman, C. [Department of Physics, McGill University, 3600 University St., Montreal, Quebec, H3A 2T8 (Canada); Ransom, S. M. [National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA 22901 (United States); Stairs, I. H.; Berndsen, A.; Cherry, A.; McPhee, C. A. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Hessels, J. W. T.; Kondratiev, V. I.; Van Leeuwen, J. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Epstein, C. R. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Pennucci, T. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Roberts, M. S. E. [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Stovall, K., E-mail: jason.boyles@wku.edu [Center for Advanced Radio Astronomy and Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)

    2013-02-15

    Over the summer of 2007, we obtained 1191 hr of 'drift-scan' pulsar search observations with the Green Bank Telescope at a radio frequency of 350 MHz. Here we describe the survey setup, search procedure, and the discovery and follow-up timing of 13 pulsars. Among the new discoveries, one (PSR J1623-0841) was discovered only through its single pulses, two (PSRs J1327-0755 and J1737-0814) are millisecond pulsars, and another (PSR J2222-0137) is a mildly recycled pulsar. PSR J1327-0755 is a 2.7 ms pulsar at a dispersion measure (DM) of 27.9 pc cm{sup -3} in an 8.7 day orbit with a minimum companion mass of 0.22 M {sub Sun }. PSR J1737-0814 is a 4.2 ms pulsar at a DM of 55.3 pc cm{sup -3} in a 79.3 day orbit with a minimum companion mass of 0.06 M {sub Sun }. PSR J2222-0137 is a 32.8 ms pulsar at a very low DM of 3.27 pc cm{sup -3} in a 2.4 day orbit with a minimum companion mass of 1.11 M {sub Sun }. It is most likely a white-dwarf-neutron-star system or an unusual low-eccentricity double neutron star system. Ten other pulsars discovered in this survey are reported in the companion paper Lynch et al.

  5. Pulsars Magnetospheres

    Science.gov (United States)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  6. Interaction of a pulsar with interstellar matter

    Science.gov (United States)

    Istomin, Ya. N.

    1994-03-01

    An increase of the rate of spin-down dot-P and emergence of a Magnus force acting on the star is connected with the appearance of a dense hydrogen plasma in the region of light surface. These effects are proportional to the permittivity epsilon = 1 + c2/(VA)2, where vA is the Alfven velocity in the vicinity of the light cylinder. During its lifetime, a pulsar can change the direction of its proper velocity and leave the Galactic plane. For the pulsar PSR 1757-24 located in the nebula G5.4-1.2, it is shown that due to the changing value of dot-P its characteristic age increases up to 7.5 x 104 years and the proper velocity decreases in magnitude to the order of 400km/s.

  7. On the Spectral Shape of Non-recycled γ-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Chung-Yue Hui

    2016-06-01

    Full Text Available More than 100 γ−ray pulsars have been discovered by the Fermi Gamma-ray Space Telescope. With a significantly enlarged sample size, it is possible to compare the properties of different classes. Radio-quiet (RQ γ−ray pulsars form a distinct population, and various studies have shown that the properties of the RQ population can be intrinsically different from those of radio-loud (RL pulsars. Utilizing these differences, it is possible to further classify the pulsar-like unidentified γ−ray sources into sub-groups. In this study, we suggest the possibility of distinguishing RQ/RL pulsars by their spectral shape. We compute the probabilities of a pulsar to be RQ or RL for a given spectral curvature. This can provide a key to the estimation of the intrinsic fraction of radio-quietness in the γ−ray pulsar population, which can place a tight constraint on the emission geometry.

  8. The pulsar contribution to the diffuse galactic gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.; Kanbach, G.; Hunter, S.D.

    1997-01-01

    There is active interest in the extent to which unresolved gamma-ray pulsars contribute to the Galactic diffuse emission, and in whether unresolved gamma-ray pulsars could be responsible for the excess of diffuse Galactic emission above 1 GeV that has been observed by EGRET. The diffuse gamma......-ray intensity due to unresolved pulsars is directly linked to the number of objects that should be observed in the EGRET data. We can therefore use our knowledge of the unidentified EGRET sources to constrain model parameters like the pulsar birthrate and their beaming angle. This analysis is based only...... on the properties of the six pulsars that have been identified in the EGRET data and is independent of choice of a pulsar emission model. We find that pulsars contribute very little to the diffuse emission at lower energies, whereas above 1 GeV they can account for 18% of the observed intensity in selected regions...

  9. Is the apparent dichotomy between bursting activity of magnetars and radio pulsars real ?

    International Nuclear Information System (INIS)

    Pons, J A; Perna, R

    2012-01-01

    Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) are a class of young neutron stars (NSs) characterized by high X-ray quiescent luminosities, short X-ray bursts, and giant flares (for SGRs). They are believed to be magnetars, i.e. NSs with magnetic fields ∼ 10 14 – 10 15 G. The discovery of magnetar-like X-ray bursts from the young pulsar PSR J1846-0258 [1], with an inferred surface dipolar magnetic field of B p = 4.9 × 10 13 G, lower than the traditionally considered magnetar range, and, more recently, by the discovery of SGR 0418+5729 with an even lower B p = 7.5 × 10 12 G [2], well within the range of the rotation powered pulsars which do not display any bursting behaviour, has raised the obvious question: why some 'high-B' pulsars (PSR J1119-6127 and PSR J1814-1744, with B ∼ 4 – 5 × 10 13 G) do not display any burst, while at least one case of 'low-B' NSs (SGR 0418+5729) does, if the magnetic field is their driving force ?

  10. An algorithm for determining the rotation count of pulsars

    Science.gov (United States)

    Freire, Paulo C. C.; Ridolfi, Alessandro

    2018-06-01

    We present here a simple, systematic method for determining the correct global rotation count of a radio pulsar; an essential step for the derivation of an accurate phase-coherent ephemeris. We then build on this method by developing a new algorithm for determining the global rotational count for pulsars with sparse timing data sets. This makes it possible to obtain phase-coherent ephemerides for pulsars for which this has been impossible until now. As an example, we do this for PSR J0024-7205aa, an extremely faint Millisecond pulsar (MSP) recently discovered in the globular cluster 47 Tucanae. This algorithm has the potential to significantly reduce the number of observations and the amount of telescope time needed to follow up on new pulsar discoveries.

  11. Detectability of rotation-powered pulsars in future hard X-ray surveys

    International Nuclear Information System (INIS)

    Wang Wei

    2009-01-01

    Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10 33 -10 37 erg s -1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of L X ∝ L sd 1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100 keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of L X ∝ L sd 1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the L X - L sd relations: L X ∝ L sd 1.31 and L X ∝ L sd 1.5 . More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.

  12. Accreting CO material onto ONe white dwarfs towards accretion-induced collapse

    Science.gov (United States)

    Wu, Cheng-Yuan; Wang, Bo

    2018-03-01

    The final outcomes of accreting ONe white dwarfs (ONe WDs) have been studied for several decades, but there are still some issues that are not resolved. Recently, some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper, we aim to investigate whether ONe WDs can experience accretion-induced collapse (AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we simulate the long-term evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process, leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However, the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electron-capture induced collapse rather than thermonuclear explosion.

  13. POPULATION SYNTHESIS OF YOUNG ISOLATED NEUTRON STARS: THE EFFECT OF FALLBACK DISK ACCRETION AND MAGNETIC FIELD EVOLUTION

    International Nuclear Information System (INIS)

    Fu, Lei; Li, Xiang-Dong

    2013-01-01

    The spin evolution of isolated neutron stars (NSs) is dominated by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out a Monte Carlo simulation of the evolution of young NSs, and show that most of the pulsars have braking indices ranging from –1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range

  14. A QUANTITATIVE TEST OF THE NO-HAIR THEOREM WITH Sgr A* USING STARS, PULSARS, AND THE EVENT HORIZON TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Psaltis, Dimitrios [Astronomy Department, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Wex, Norbert; Kramer, Michael [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)

    2016-02-20

    The black hole in the center of the Milky Way, Sgr A*, has the largest mass-to-distance ratio among all known black holes in the universe. This property makes Sgr A* the optimal target for testing the gravitational no-hair theorem. In the near future, major developments in instrumentation will provide the tools for high-precision studies of its spacetime via observations of relativistic effects in stellar orbits, in the timing of pulsars, and in horizon-scale images of its accretion flow. We explore here the prospect of measuring the properties of the black hole spacetime using all of these three types of observations. We show that the correlated uncertainties in the measurements of the black hole spin and quadrupole moment using the orbits of stars and pulsars are nearly orthogonal to those obtained from measuring the shape and size of the shadow the black hole casts on the surrounding emission. Combining these three types of observations will therefore allow us to assess and quantify systematic biases and uncertainties in each measurement and lead to a highly accurate, quantitative test of the gravitational no-hair theorem.

  15. A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A., E-mail: ester.aliu.fuste@gmail.com, E-mail: gtrichards@gatech.edu, E-mail: masha.chernyakova@dcu.ie, E-mail: malloryr@gmail.com [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2016-11-10

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259–63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼2 G before the disappearance of the radio pulsar and greater than ∼10 G afterward.

  16. Meter-wavelength VLBI. III. Pulsars

    International Nuclear Information System (INIS)

    Vandenberg, N.R.; Clark, T.A.; Clark, W.C.; Erickson, W.C.; Resch, G.M.; Broderick, J.J.

    1976-01-01

    The results and analysis of observations of pulsars, especially the Crab Nebula pulsar, taken during a series of meter-wavelength very long baseline interferometry (VLBI) experiments are discussed. Based on a crude 144 MHz visibility curve which is consistent with a Gaussian brightness distribution, the measured visibilities at 196, 111, and 74 MHz were interpreted to yield apparent angular diameters (at half-power) of 0 .03 +- 0 .01, 0 .07 +- 0 .01, and 0 .18 +- 0 .01, respectively. These sizes scale approximately as wavelength-squared, and the 74 MHz size agrees with recent observations using interplanetary scintillation techniques.The VLBI-measured total flux densities lie on the extrapolation from higher frequencies of the pulsing flux densities. Variations in the total flux density up to 25 percent were observed. A lack of fine structure other than the pulsar in the nebula is indicated by our simple visibility curves. The pulse shapes observed with the interferometer are similar to single-dish measurements at 196 MHz but reveal a steady, nonpulsing component at 111 MHz. The ratio of pulsing to total power was approximately equal to one-half but varied with time. No pulsing power was detected at 74 MHz. It was found that four strong, low-dispersion pulsars were only slightly resolved

  17. Gamma-ray pulsars: Emission zones and viewing geometries

    Science.gov (United States)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  18. Probing the properties of the pulsar wind via studying the dispersive effects in the pulses from the pulsar companion in a double neutron-star binary system

    Science.gov (United States)

    Yi, Shu-Xu; Cheng, K.-S.

    2017-12-01

    The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.

  19. Population Studies of Radio and Gamma-Ray Pulsars

    Science.gov (United States)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  20. Electrodynamic coupling between pulsars and surrounding nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolny, M [Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. per il Plasma nello Spazio; L' Aquila Univ. (Italy). Istituto di Fisica); Ferrari, A [Cambridge Univ. (UK). Inst. of Astronomy; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Istituto di Fisica)

    1976-02-01

    In this work a study is presented of collective plasma processes by which pulsars can energetically support young supernova remnants. We show that many of the observed features of the Crab Nebula can be adequately interpreted in terms of a parametric interaction between the low-frequency electromagnetic wave emitted by the pulsar in the oblique rotator model and a relativistic wind of charged particle leaking from the pulsar's inner magnetosphere. In particular we show that there is a relativistic parametric resonant coupling of the strong wave with electrostatic and electromagnetic modes.

  1. GAMMA-RAY SIGNAL FROM THE PULSAR WIND IN THE BINARY PULSAR SYSTEM PSR B1259-63/LS 2883

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [National Research Nuclear University-MEPHI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-12-01

    Binary pulsar systems emit potentially detectable components of gamma-ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper, we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10{sup 3} or larger than 10{sup 5}. The higher luminosity of the optical star also has two important implications: (1) attenuation of gamma rays due to photon-photon pair production and (2) Compton drag of the unshocked wind. While the first effect has an impact on the light curve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.

  2. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  3. Pulsar kicks from a dark-matter sterile neutrino

    International Nuclear Information System (INIS)

    Fuller, George M.; Kusenko, Alexander; Mocioiu, Irina; Pascoli, Silvia

    2003-01-01

    We show that a sterile neutrino with a mass in the 1-20 keV range and a small mixing with the electron neutrino can simultaneously explain the origin of the pulsar motions and the dark matter in the Universe. An asymmetric neutrino emission from a hot nascent neutron star can be the explanation of the observed pulsar velocities. In addition to the pulsar kick mechanism based on resonant neutrino transitions, we point out a new possibility: an asymmetric off-resonant emission of sterile neutrinos. The two cases correspond to different values of the masses and mixing angles. In both cases we identify the ranges of parameters consistent with the pulsar kick, as well as cosmological constraints

  4. PEACE I all-comers registry: patency evaluation after implantation of the 4-French Pulsar-18 self-expanding nitinol stent in femoropopliteal lesions.

    Science.gov (United States)

    Lichtenberg, Michael; Kolks, Oliver; Hailer, Birgit; Stahlhoff, Wilhelm-Friedrich; Tiefenbacher, Christiane; Nolte-Ernsting, Claus; Arjumand, Jawed; Wittenberg, Guenther

    2014-06-01

    To evaluate the 1-year patency of the 4-F Pulsar-18 self-expanding nitinol stent for treatment of femoropopliteal occlusive disease in a national, prospective, multicenter, all-comers registry. Between January and June 2012, the German PEACE I all-comers prospective registry enrolled 148 patients with symptomatic femoropopliteal lesions (Rutherford category 2-5) undergoing recanalization and implantation of the Pulsar-18 SE nitinol stent at 6 clinical centers. Thirty patients did not have the 12-month follow-up visit (18 declined reevaluation, 5 withdrew consent, and 7 died), leaving 118 patients (64 men; mean 71.9±9.6 age years) for the 1-year evaluation. The average lesion length was 111.5±71.4 mm, and 38 of the 118 lesions were classified as TASC II D. More than half the lesions (67, 56.7%) were chronic total occlusions (CTO). The popliteal segment was involved in 22 (18.7%) lesions. The mean stented length was 122.7±64.5 mm. Routine follow-up included duplex ultrasound at 6 and 12 months. Outcome measures were primary patency and no clinically driven target lesion revascularization (TLR) within 12 months. The overall primary patency rates after 6 and 12 months were 87.4% and 79.5%, respectively; in the popliteal segments, the rate was 71.4% after 12 months. The overall freedom from TLR was 93.2% after 6 months and 81% after 12 months. Ankle-brachial index, pain-free walking distance, and Rutherford category all improved significantly (pPulsar-18 self-expanding nitinol stent in femoropopliteal lesions averaging 111.5 mm long showed promising primary patency and freedom from TLR after 6 and 12 months. Diabetes had no negative impact on patency. Primary patency in the popliteal segments was acceptable at 12 months.

  5. Navigation in space by X-ray pulsars

    CERN Document Server

    Emadzadeh, Amir Abbas

    2011-01-01

    This book covers modeling of X-ray pulsar signals and explains how X-ray pulsar signals can be used to solve the relative navigation problem. It formulates the problem, proposes a recursive solution and analyzes different aspects of the navigation system.

  6. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    Science.gov (United States)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  7. The VELA-X-Pulsar Wind Nebula Revisited with Four Years of Fermi Large Area Telescope Observations

    Science.gov (United States)

    Grondin, M. -H.; Romani, R. W.; Lemoine-Goumard, M.; Guillemot, L.; Harding, Alice K.; Reposeur, T.

    2013-01-01

    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2deg × 3deg south of the pulsar and observed in the radio, X-ray, and very high energy ?-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.

  8. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    NARCIS (Netherlands)

    Lee, K.J.; Stovall, K.; Jenet, F.A.; Martinez, J.; Dartez, L.P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C.M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E.D.; Bhat, N.D.R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D.J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R.D.; Freire, P.; Hessels, J.W.T.; Karuppusamy, R.; Kaspi, V.M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W.W.

    2013-01-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars.

  9. A multiwavelength study of SXP 1062, the long-period X-ray pulsar associated with a supernova remnant

    Science.gov (United States)

    González-Galán, A.; Oskinova, L. M.; Popov, S. B.; Haberl, F.; Kühnel, M.; Gallagher, J.; Schurch, M. P. E.; Guerrero, M. A.

    2018-04-01

    SXP 1062 is a Be X-ray binary (BeXB) located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127-7332. In this work we present a multiwavelength view on SXP 1062 in different luminosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (Swift telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in BeXBs at periastron passage of the neutron star (NS). To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM-Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multiwavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the NS is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time.

  10. ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE

    International Nuclear Information System (INIS)

    Petrova, S. A.

    2013-01-01

    The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.

  11. MHD Interaction of Pulsar Wind Nebulae with SNRs and the ISM

    OpenAIRE

    van der Swaluw, Eric

    2005-01-01

    In the late 1960s the discovery of the Crab pulsar in its associated supernova remnant, launched a new field in supernova remnant research: the study of pulsar-driven or plerionic supernova remnants. In these type of remnants, the relativistic wind emitted by the pulsar, blows a pulsar wind nebula into the interior of its supernova remnant. Now, more then forty years after the discovery of the Crab pulsar, there are more then fifty plerionic supernova remnants known, due to the ever-increasin...

  12. Neutron Stars and the Discovery of Pulsars.

    Science.gov (United States)

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  13. Pulsar perimetry in the diagnosis of early glaucoma.

    Science.gov (United States)

    Zeppieri, Marco; Brusini, Paolo; Parisi, Lucia; Johnson, Chris A; Sampaolesi, Roberto; Salvetat, Maria Letizia

    2010-01-01

    To assess the ability of Pulsar perimetry (Pulsar) in detecting early glaucomatous visual field (VF) damage in comparison with Frequency Doubling Technology (FDT), Scanning Laser Polarimetry (SLP, GDx VCC), and Heidelberg Retina Tomography (HRT). Prospective observational cross-sectional case study. This multicenter study included: 87 ocular hypertensives (OHT); 67 glaucomatous optic neuropathy (GON) patients; 75 primary open-angle glaucoma (POAG) patients; and 90 normals. All patients underwent standard automated perimetry (SAP) HFA 30-2, Pulsar T30W, FDT N-30, HRT II, and GDx VCC. Area under Receiver Operating Characteristic Curves (AROCs) for discriminating between healthy and glaucomatous eyes and agreement among instruments were determined. The best parameters for Pulsar, FDT, HRT, and GDx were, respectively: loss variance square root; no. of areas with PPulsar (AROC, 0.90) appeared comparable with FDT (0.89) and significantly better than HRT (0.82) and GDx (0.79). For GON, Pulsar ability (0.74) was higher than GDx (0.69) and lower than FDT (0.80) and HRT (0.83). The agreement among instruments ranged from 0.12 to 0.56. Pulsar test duration was significantly shorter than SAP and FDT (PPulsar T30W test is a rapid and easy perimetric method, showing higher sensitivity than SAP in detecting early glaucomatous VF loss. Its diagnostic ability is good for detecting early perimetric POAG eyes and fair for GON eyes. Pulsar performance was comparable with FDT, HRT, and GDx, even if the agreement between instruments was poor to fair. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Discovery of the optical counterparts to four energetic Fermi millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Breton, R. P. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Van Kerkwijk, M. H. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Roberts, M. S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, 550 West, 120th Street, New York, NY 10027 (United States); McLaughlin, M. A. [Department of Physics, White Hall, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ray, P. S. [Space Science Division, Naval Research Laboratory, Code 7655, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Stairs, I. H., E-mail: r.breton@soton.ac.uk [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)

    2013-06-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modeling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of γ-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.

  15. Discovery of a young, 267 millisecond pulsar in the supernova remnant W44

    Science.gov (United States)

    Wolszczan, A.; Cordes, J. M.; Dewey, R. J.

    1991-01-01

    This paper reports the discovery of a 267 msec pulsar, PSR 1853 + 01, in the SNR W44 (G34.7 - 0.4), located south of the W44, well within its radio shell and at the outher edge of the X-ray emission region which fills the SNR interior. The PSR 1853 + 01 is separated only 20 arcmin from the PSR 1854 + 00 pulsar discovered by Mohanty (1983). Results of timing observatons of PSR 1853 + 01 are presented, and a possible relationship between the two objects is examined. It is suggested that the two pulsars may have a common origin in a binary system disrupted by the explosion that produced W44.

  16. A glitch in the Crab pulsar (PSR B0531+21)

    Science.gov (United States)

    Shaw, Benjamin; Lyne, Andrew; Bassa, Cees; Breton, Rene; Jordan, Christine; Keith, Michael; Mickaliger, Mitchell B.; Stappers, Benjamin; Weltevrede, Patrick

    2018-05-01

    We have detected a glitch in the Crab pulsar, B0531+21, on 2018-04-29. The Crab pulsar is regularly monitored with the 42-ft and Lovell telescopes at the Jodrell Bank Observatory as part of the pulsar timing programme.

  17. Thermal and x-ray studies on Tl2U(MoO4)3 and Tl4U(MoO4)4

    International Nuclear Information System (INIS)

    Dahale, N.D.; Keskar, Meera; Kulkarni, N.K.; Singh Mudher, K.D.

    2006-01-01

    In the quaternary Tl-U(IV)-Mo-O system, two new compounds namely Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 were prepared and characterized by powder X-ray diffraction and thermal methods. These compounds were prepared by solid state reactions of Tl 2 MoO 4 , UMoO 5 and MoO 3 in the required stoichiometric ratio at 500 deg C in evacuated sealed quartz ampoule. The XRD data of Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 were indexed on orthorhombic cell. TG curves of Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 did not show any weight change up to 700 deg C in an inert atmosphere. During heating in an inert atmosphere, Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 showed endothermic Dta peaks due to melting of the compounds at 519 and 565 deg C, respectively. (author)

  18. The High Time Resolution Universe surveys for pulsars and fast transients

    Science.gov (United States)

    Keith, Michael J.

    2013-03-01

    The High Time Resolution Universe survey for pulsars and transients is the first truly all-sky pulsar survey, taking place at the Parkes Radio Telescope in Australia and the Effelsberg Radio Telescope in Germany. Utilising multibeam receivers with custom built all-digital recorders the survey targets the fastest millisecond pulsars and radio transients on timescales of 64 μs to a few seconds. The new multibeam digital filter-bank system at has a factor of eight improvement in frequency resolution over previous Parkes multibeam surveys, allowing us to probe further into the Galactic plane for short duration signals. The survey is split into low, mid and high Galactic latitude regions. The mid-latitude portion of the southern hemisphere survey is now completed, discovering 107 previously unknown pulsars, including 26 millisecond pulsars. To date, the total number of discoveries in the combined survey is 135 and 29 MSPs These discoveries include the first magnetar to be discovered by it's radio emission, unusual low-mass binaries, gamma-ray pulsars and pulsars suitable for pulsar timing array experiments.

  19. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    International Nuclear Information System (INIS)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E.

    2017-01-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  20. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    Energy Technology Data Exchange (ETDEWEB)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E., E-mail: innocent.eya@unn.edu.ng, E-mail: innocent.eya@gmail.com [Department of Physics and Astronomy, University of Nigeria, Nsukka, Enugu State (Nigeria)

    2017-05-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  1. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Drake, Jeremy J.; Plucinsky, Paul P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Haberl, Frank [Max-Planck-Institut für extraterrestrische Physik, Giessenbach straße, D-85748 Garching (Germany); Sasaki, Manami [Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg (Germany); Laycock, Silas, E-mail: jaesub@head.cfa.harvard.edu [Department of Physics, University of Massachusetts Lowell, MA 01854 (United States)

    2017-09-20

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} erg s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).

  2. Observations of one young and three middle-aged γ-ray pulsars with the Gran Telescopio Canarias

    Science.gov (United States)

    Mignani, R. P.; Testa, V.; Rea, N.; Marelli, M.; Salvetti, D.; Torres, D. F.; De Oña Wilhelmi, E.

    2018-04-01

    We used the 10.4m Gran Telescopio Canarias to search for the optical counterparts to four isolated γ-ray pulsars, all detected in the X-rays by either XMM-Newton or Chandra but not yet in the optical. Three of them are middle-aged pulsars - PSR J1846+0919 (0.36 Myr), PSR J2055+2539 (1.2 Myr), PSR J2043+2740 (1.2 Myr) - and one, PSR J1907+0602, is a young pulsar (19.5 kyr). For both PSR J1907+0602 and PSR J2055+2539 we found one object close to the pulsar position. However, in both cases such an object cannot be a viable candidate counterpart to the pulsar. For PSR J1907+0602, because it would imply an anomalously red spectrum for the pulsar and for PSR J2055+2539 because the pulsar would be unrealistically bright (r' = 20.34 ± 0.04) for the assumed distance and interstellar extinction. For PSR J1846+0919, we found no object sufficiently close to the expected position to claim a possible association, whereas for PSR J2043+2740 we confirm our previous findings that the object nearest to the pulsar position is an unrelated field star. We used our brightness limits (g' ≈ 27), the first obtained with a large-aperture telescope for both PSR J1846+0919 and PSR J2055+2539, to constrain the optical emission properties of these pulsars and investigate the presence of spectral turnovers at low energies in their multi-wavelength spectra.

  3. SEARCH FOR VERY HIGH ENERGY GAMMA-RAY EMISSION FROM PULSAR-PULSAR WIND NEBULA SYSTEMS WITH THE MAGIC TELESCOPE

    International Nuclear Information System (INIS)

    Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Bose, D.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla

    2010-01-01

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  4. Precision Timing of PSR J0437-4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton's Gravitational Constant

    Science.gov (United States)

    Verbiest, J. P. W.; Bailes, M.; van Straten, W.; Hobbs, G. B.; Edwards, R. T.; Manchester, R. N.; Bhat, N. D. R.; Sarkissian, J. M.; Jacoby, B. A.; Kulkarni, S. R.

    2008-05-01

    Analysis of 10 years of high-precision timing data on the millisecond pulsar PSR J0437-4715 has resulted in a model-independent kinematic distance based on an apparent orbital period derivative, dot Pb , determined at the 1.5% level of precision (Dk = 157.0 +/- 2.4 pc), making it one of the most accurate stellar distance estimates published to date. The discrepancy between this measurement and a previously published parallax distance estimate is attributed to errors in the DE200 solar system ephemerides. The precise measurement of dot Pb allows a limit on the variation of Newton's gravitational constant, |Ġ/G| <= 23 × 10-12 yr-1. We also constrain any anomalous acceleration along the line of sight to the pulsar to |a⊙/c| <= 1.5 × 10-18 s-1 at 95% confidence, and derive a pulsar mass, mpsr = 1.76 +/- 0.20 M⊙, one of the highest estimates so far obtained.

  5. Listening in on Baby - Monitoring the Youngest Known Pulsar

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type SNR Kes 75. Based on its spin-down rate and X-ray spectrum, PSR J1846-0258 is likely the youngest known rotation-powered pulsar. Compared to the Crab pulsar, however, its period, spin-down rate, and X-ray conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR~J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of timing glitches. Furthermore, an X- ray ephemeris contemporal with GLAST is critical to detecting the pulsar at higher energies.

  6. Monitoring Baby - Listening in on the Youngest Known Pulsar

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type supernova remnant Kes 75. Based on its spin-down rate and X- ray spectrum, PSR J1846-0258 is likely the youngest known rotation- powered pulsar. Compared to the Crab pulsar, however, its period, spin- down rate, and spin-down to X-ray luminosity conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of glitches. This pulsar provides important insight into the evolution of the youngest NS-SNR systems.

  7. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    Science.gov (United States)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  8. Pulsar Wind Bubble Blowout from a Supernova

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Chevalier, Roger A., E-mail: blondin@ncsu.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2017-08-20

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell is subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.

  9. Two possible approaches to form sub-millisecond pulsars

    OpenAIRE

    Du, Yuanjie; Xu, R. X.; Qiao, G. J.; Han, J. L.

    2008-01-01

    Pulsars have been recognized as normal neutron stars or quark stars. Sub-millisecond pulsars, if detected, would play an essential and important role in distinguishing quark stars from neutron stars. A key question is how sub-millisecond pulsars could form. Both sub-Keplerian (for neutron and quark stars) and super-Keplerian cases (only for quark stars, which are bound additionally by strong interaction) have been discussed in this paper in order to investigate possible ways of forming sub-mi...

  10. High precision pulsar timing and spin frequency second derivatives

    Science.gov (United States)

    Liu, X. J.; Bassa, C. G.; Stappers, B. W.

    2018-05-01

    We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.

  11. THE GALACTIC POPULATION OF YOUNG γ-RAY PULSARS

    International Nuclear Information System (INIS)

    Watters, Kyle P.; Romani, Roger W.

    2011-01-01

    We have simulated a Galactic population of young pulsars and compared with the Fermi LAT sample, constraining the birth properties, beaming and evolution of these spin-powered objects. Using quantitative tests of agreement with the distributions of observed spin and pulse properties, we find that short birth periods P 0 ∼ 50 ms and γ-ray beams arising in the outer magnetosphere, dominated by a single pole, are strongly preferred. The modeled relative numbers of radio-detected and radio-quiet objects agrees well with the data. Although the sample is local, extrapolation to the full Galaxy implies a γ-ray pulsar birthrate 1/(59 yr). This is shown to be in good agreement with the estimated Galactic core collapse rate and with the local density of OB star progenitors. We give predictions for the numbers of expected young pulsar detections if Fermi LAT observations continue 10 years. In contrast to the potentially significant contribution of unresolved millisecond pulsars, we find that young pulsars should contribute little to the Galactic γ-ray background.

  12. A fast pulsar candidate in the globular cluster M28

    International Nuclear Information System (INIS)

    Mahoney, M.J.; Erickson, W.C.

    1985-01-01

    Recent work on radio sources in globular clusters, using the very large Array telescope at 1,465 MHz, revealed a source within the core of M28. Observations of this source at 30.9 and 57.5 MHz have also been carried out, by the authors, using the Clark lake TPT synthesis telescope. The observations show that the source has a spectral index of -2.44. Only pulsars have well-documented spectra which are as steep as this. (U.K.)

  13. Relativistic jets from accreting black holes

    International Nuclear Information System (INIS)

    Coriat, Mickael

    2010-01-01

    Matter ejection processes, more commonly called jets, are among the most ubiquitous phenomena of the universe at ail scales of size and energy and are inseparable from accretion process. This intimate link, still poorly understood, is the main focus of this thesis. Through multi-wavelength observations of X-ray binary Systems hosting a black hole, I will try to bring new constraints on the physics of relativistic jets and the accretion - ejection coupling. We strive first to compare the simultaneous infrared, optical and X-ray emissions of the binary GX 339-4 over a period of five years. We study the nature of the central accretion flow, one of the least understood emission components of X-ray binaries, both in its geometry and in term of the physical processes that take place. This component is fundamental since it is could be the jets launching area or be highly connected to it. Then we focus on the infrared emission of the jets to investigate the physical conditions close to the jets base. We finally study the influence of irradiation of the outer accretion disc by the central X-ray source. Then, we present the results of a long-term radio and X-ray study of the micro-quasar H1743- 322. This System belongs to a population of accreting black holes that display, for a given X-ray luminosity, a radio emission fainter than expected. We make several assumptions about the physical origin of this phenomenon and show in particular that these sources could have a radiatively efficient central accretion flow. We finally explore the phases of return to the hard state of GX 339-4. We follow the re-emergence of the compact jets emission and try to bring new constraints on the physics of jet formation. (author) [fr

  14. Pulsar Emission Spectrum

    OpenAIRE

    Gruzinov, Andrei

    2013-01-01

    Emission spectrum is calculated for a weak axisymmetric pulsar. Also calculated are the observed spectrum, efficiency, and the observed efficiency. The underlying flow of electrons and positrons turns out to be curiously intricate.

  15. High-Energy Emission from Rotation-Powered Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2007-01-01

    Thirty-five years after the discovery of rotation-powered pulsars, we still do not understand their pulsed emission at any wavelength. In the last few years there have been some fundamental developments in acceleration and emission models. I will review both the basic physics of the models as well as the latest developments in understanding the high-energy emission of rotation-powered pulsars. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately two new gamma-ray telescopes, AGILE and GLAST, with launches expected this year will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  16. Binary and Millisecond Pulsars at the New Millennium

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2001-01-01

    Full Text Available We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.

  17. STRONG FIELD EFFECTS ON PULSAR ARRIVAL TIMES: GENERAL ORIENTATIONS

    International Nuclear Information System (INIS)

    Wang Yan; Creighton, Teviet; Price, Richard H.; Jenet, Frederick A.

    2009-01-01

    A pulsar beam passing close to a black hole can provide a probe of very strong gravitational fields even if the pulsar itself is not in a strong field region. In the case that the spin of the hole can be ignored, we have previously shown that all strong field effects on the beam can be understood in terms of two 'universal' functions: F(φ in ) and T(φ in ) of the angle of beam emission φ in ; these functions are universal in that they depend only on a single parameter, the pulsar/black hole distance from which the beam is emitted. Here we apply this formalism to general pulsar-hole-observer geometries, with arbitrary alignment of the pulsar spin axis and arbitrary pulsar beam direction and angular width. We show that the analysis of the observational problem has two distinct elements: (1) the computation of the location and trajectory of an observer-dependent 'keyhole' direction of emission in which a signal can be received by the observer; and (2) the determination of an annulus that represents the set of directions containing beam energy. Examples of each are given along with an example of a specific observational scenario.

  18. The Crab pulsar at VHE

    Directory of Open Access Journals (Sweden)

    Zanin Roberta

    2017-01-01

    Full Text Available The last six years have witnessed major revisions of our knowledge about the Crab Pulsar. The consensus scenario for the origin of the high-energy pulsed emission has been challenged with the discovery of a very-high-energy power law tail extending up to ~400 GeV, above the expected spectral cut off at a few GeV. Now, new measurements obtained by the MAGIC collaboration extend the energy spectrum of the Crab Pulsar even further, on the TeV regime. Above ~400 GeV the pulsed emission comes mainly from the interpulse, which becomes more prominent with energy due to a harder spectral index. These findings require γ -ray production via inverse Compton scattering close to or beyond the light cylinder radius by an underlying particle population with Lorentz factors greater than 5 × 106. We will present those new results and discuss the implications in our current knowledge concerning pulsar environments.

  19. Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors

    Science.gov (United States)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita

    2017-06-01

    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

  20. The pulsar era

    International Nuclear Information System (INIS)

    Hewish, A.

    1986-01-01

    The discovery of pulsars in 1967 initiated one of the most effervescent phases of astronomy since World War II and opened up a number of important new fields of research. In looking back at the history of this event it is useful to focus on three aspects. These are the prehistory because it reveals a fascinating relationship between theory and observation concerning an entirely new phenomenon - the neutron star; the discovery itself, which was totally unexpected, to see if anything can be learned which might have a bearing on serendipitous discoveries in the future. For example, would pulsars have been found if the sky survey had been recorded digitally and analysed by a computer; the astronomical impact of the discovery as seen eighteen years after the initial excitement. (author)

  1. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-01-01

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars

  2. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-05-15

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars.

  3. Pulsar timing arrays: the promise of gravitational wave detection.

    Science.gov (United States)

    Lommen, Andrea N

    2015-12-01

    We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves.

  4. X-Rays from the Nearby Solitary Millisecond Pulsar PSR J0030+0451 - the Final ROSAT Observations

    CERN Document Server

    Becker, W; Bäcker, A N; Lommen, D; Becker, Werner; Tr"umper, Joachim; Backer, Andrea N.Lommen & Donald C.

    2000-01-01

    We report on X-ray observations of the solitary 4.8 ms pulsar PSR J0030+0451. The pulsar was one of the last targets observed in DEC-98 by the ROSAT PSPC. X-ray pulses are detected on a $4.5\\sigma$ level and make the source the $11^{th}$ millisecond pulsar detected in the X-ray domain. The pulsed fraction is found to be $69\\pm18%$. The X-ray pulse profile is characterized by two narrow peaks which match the gross pulse profile observed at 1.4 GHz. Assuming a Crab-like spectrum the X-ray flux is in the range $f_x= 2-3\\times 10^{-13}$ erg s$^{-1}$ cm$^{-2} $ ($0.1-2.4$ keV), implying an X-ray efficiency of $L_x/\\dot{E}\\sim 0.5-5 \\times 10^{-3} (d/0.23 {kpc})^2$.

  5. COBRA: a Bayesian approach to pulsar searching

    Science.gov (United States)

    Lentati, L.; Champion, D. J.; Kramer, M.; Barr, E.; Torne, P.

    2018-02-01

    We introduce COBRA, a GPU-accelerated Bayesian analysis package for performing pulsar searching, that uses candidates from traditional search techniques to set the prior used for the periodicity of the source, and performs a blind search in all remaining parameters. COBRA incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries, and exploits pulse phase information to combine search epochs coherently, over time, frequency or across multiple telescopes. We demonstrate the efficacy of our approach in a series of simulations that challenge typical search techniques, including highly aliased signals, and relativistic binary systems. In the most extreme case, we simulate an 8 h observation containing 24 orbits of a pulsar in a binary with a 30 M⊙ companion. Even in this scenario we show that we can build up from an initial low-significance candidate, to fully recovering the signal. We also apply the method to survey data of three pulsars from the globular cluster 47Tuc: PSRs J0024-7204D, J0023-7203J and J0024-7204R. This final pulsar is in a 1.6 h binary, the shortest of any pulsar in 47Tuc, and additionally shows significant scintillation. By allowing the amplitude of the source to vary as a function of time, however, we show that we are able to obtain optimal combinations of such noisy data. We also demonstrate the ability of COBRA to perform high-precision pulsar timing directly on the single pulse survey data, and obtain a 95 per cent upper limit on the eccentricity of PSR J0024-7204R of εb < 0.0007.

  6. He stars and He-accreting CO white dwarfs

    International Nuclear Information System (INIS)

    Limongi, M.; Tornambe, A.

    1991-01-01

    He star models in the mass range 0.4-1.0 solar mass have been evolved until the red giant phase or, depending on their mass, until crystallization on the white-dwarf cooling sequence. Some of the degenerate structures obtained in these computations have been successively accreted at various He accretion rates in order to better define the fate of the accreting dwarf versus its mass and accretion rate for a fixed degeneracy level of the accreting dwarf. He stars have been further induced to transfer mass to a degenerate companion through Roche lobe overflow, in conditions of large gravitational wave radiation by the system. CO dwarfs in binary systems with He stars are found to experience a thermal behavior whose effects are such to locate the structure on the verge of obtaining a strong SN-like explosive event. 22 refs

  7. Highly Accreting Quasars at High Redshift

    Science.gov (United States)

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  8. Crustal entrainment and pulsar glitches.

    Science.gov (United States)

    Chamel, N

    2013-01-04

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum.

  9. Monitoring Baby - Listening in on the Youngest Known Pulsar (XTEAO11)

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR~J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type supernova remnant Kes~75. Based on its spin-down rate and X- ray spectrum, PSR~J1846-0258 is likely the youngest known rotation- powered pulsar. Compared to the Crab pulsar, however, its period, spin- down rate, and spin-down to X-ray luminosity conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign to measure the pulsar's braking index, characterize its timing noise, and search for evidence of timing glitches. This pulsar provides important insight into the evolution of the youngest NS-SNR systems.

  10. TIMING OF 29 PULSARS DISCOVERED IN THE PALFA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophys., School of Phys. and Astr., Univ. of Manchester, Manch., M13 9PL (United Kingdom); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia Univ., New York, NY 10027 (United States); Ferdman, R. D.; Kaspi, V. M.; Lynch, R. [Dept. of Physics and McGill Space Institute, McGill Univ., Montreal, QC H3A 2T8 (Canada); Freire, P. C. C.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Knispel, B.; Allen, B. [Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Dept. of Astronomy, Cornell Univ., Ithaca, NY 14853 (United States); Camilo, F. [SKA South Africa, Pinelands, 7405 (South Africa); Cardoso, F. [Physics Dept., Univ. of Wisconsin—Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211 (United States); Crawford, F. [Dept. of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, J. W. T.; Leeuwen, J. van [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Jenet, F. A. [Center for Gravitational Wave Astronomy, Univ. Texas—Brownsville, TX 78520 (United States); and others

    2017-01-10

    We report on the discovery and timing observations of 29 distant long-period pulsars found in the ongoing Arecibo L-band Feed Array pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over several years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associated with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5−0.5, while J1925+1720 is coincident with a high-energy Fermi γ -ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199 day binary orbit with a companion having a minimum mass of 0.33 M {sub ⊙}. Several of the sources exhibit timing noise, and two, PSRs J0611+1436 and J1907+0631, have both suffered large glitches, but with very different post-glitch rotation properties. In particular, the rotational period of PSR J0611+1436 will not recover to its pre-glitch value for about 12 years, a far greater recovery timescale than seen following any other large glitches.

  11. The evolution of accretion in young stellar objects: Strong accretors at 3-10 Myr

    Energy Technology Data Exchange (ETDEWEB)

    Ingleby, Laura; Calvet, Nuria; Hartmann, Lee; Miller, Jon; McClure, Melissa [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Hernández, Jesus; Briceno, Cesar [Centro de Investigaciones de Astronomía (CIDA), Mérida, 5101-A (Venezuela, Bolivarian Republic of); Espaillat, Catherine, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: cce@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2014-07-20

    While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected at ages of up to 10 Myr. We analyze a sample of these old accretors, identified by having a significant U band excess and infrared emission from a circumstellar disk. Objects were selected from the ∼3 Myr σ Ori, 4-6 Myr Orion OB1b, and 7-10 Myr Orion OB1a star forming associations. We use high-resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations obtained with the Magellan Echellette and, in a few cases, the SWIFT Ultraviolet and Optical Telescope to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ∼10{sup –8} M{sub ☉} yr{sup –1}. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales unless the initial disk mass is very high, a situation that is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206.

  12. The LOFAR pilot surveys for pulsars and fast radio transient

    NARCIS (Netherlands)

    Coenen, T.; van Leeuwen, J.; Hessels, J.W.T.; et al., [Unknown; Alexov, A.; van der Horst, A.; Law, C.; Rowlinson, A.; Swinbank, J.

    2014-01-01

    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a

  13. The LOFAR pilot surveys for pulsars and fast radio transients

    NARCIS (Netherlands)

    Coenen, T.J.; van Leeuwen, J.; Hessels, J.W.T.; Stappers, B.W.; Kondratiev, V.I.; Alexov, A.; Breton, R.P.; Bilous, A.; Cooper, S.; Falcke, H.; Fallows, R.A.; Gajjar, V.; Griessmeier, J.M.; Hassall, T.E.; Bentum, Marinus Jan

    2014-01-01

    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a

  14. Optical pulsar in the Large Magellanic Cloud remnant 0540-69.3

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.

    1984-01-01

    We have detected pulsed optical emission from the Large Magellanic Cloud (LMC) X-ray pulsar PSR 0540-693 (Seward et al. 1984). The pulsed emission has a time averaged magnitude of approximately 22.7. The X-ray pulsar was discovered in the LMC remnant, 0540-69.3 as a pulse repetition period of approx. 50 milliseconds (ms) in Einstein Obsrvatory data (Seward et al. 1984). Earlier, Clark et al. (1982) had noted that this remnant resembles the Crab Nebula because of the X-ray power law spectrum, and suggested that the nebular emission was synchrotron radiation powered by a central pulsar. After the announcement of X-ray pulsed emission, Chanan et al. (1984) measured the broad optical band properties of the nebula and found evidence for synchrotron emission. They reported that the 4.5 arc second continuum emission remnant has only a tenth the luminosity of the Crab Nebula. We have recorded broad-band optical time-series data at 1 ms intervals with the 4-m and 1.5-m Cerro Tololo telescopes and have found strong pulsations, employing the usual Fourier transform methods. A summary of the observations, including magnitudes, barycentric frequencies and times of arrival is given

  15. An x-ray nebula associated with the millisecond pulsar B1957+20.

    Science.gov (United States)

    Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G

    2003-02-28

    We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.

  16. Mid-UV studies of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states

    Science.gov (United States)

    Rivera Sandoval, L. E.; Hernández Santisteban, J. V.; Degenaar, N.; Wijnands, R.; Knigge, C.; Miller, J. M.; Reynolds, M.; Altamirano, D.; van den Berg, M.; Hill, A.

    2018-05-01

    We report mid-UV (MUV) observations taken with Hubble Space Telescope (HST)/WFC3, Swift/UVOT, and GALEX/NUV of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states. Both systems were detected in our images and showed MUV variability. At similar orbital phases, the MUV luminosities of both pulsars are comparable. This suggests that the emission processes involved in both objects are similar. We estimated limits on the mass ratio, companion's temperature, inclination, and distance to XSS J12270-4859 by using a Markov Chain Monte Carlo algorithm to fit published folded optical light curves. Using the resulting parameters, we modelled MUV light curves in our HST filters. The resulting models failed to fit our MUV observations. Fixing the mass ratio of XSS J12270-4859 to the value reported in other studies, we obtained a distance of ˜3.2 kpc. This is larger than the one derived from dispersion measure (˜1.4 kpc). Assuming a uniform prior for the mass ratio, the distance is similar to that from radio measurements. However, it requires an undermassive companion (˜0.01M⊙). We conclude that a direct heating model alone cannot fully explain the observations in optical and MUV. Therefore, an additional radiation source is needed. The source could be an intrabinary shock which contributes to the MUV flux and likely to the optical one as well. During the radio pulsar state, the MUV orbital variations of PSR J1023+0038 detected with GALEX, suggest the presence of an asymmetric intrabinary shock.

  17. The Vela pulsar with an active fallback disk

    Energy Technology Data Exchange (ETDEWEB)

    Özsükan, Gökçe; Ekşi, K. Yavuz [Faculty of Science and Letters, Department of Physics, İstanbul Technical University, Maslak 34469, İstanbul (Turkey); Hambaryan, Valeri; Neuhäuser, Ralph; Hohle, Markus M.; Ginski, Christian [Astrophysikalisches Institut und Universitäts-Sternwarte, Universität Jena, Schillergäßchen 2-3, 07745 Jena (Germany); Werner, Klaus, E-mail: eksi@itu.edu.tr [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany)

    2014-11-20

    Fallback disks are expected to form around young neutron stars. The presence of these disks can be revealed by their blackbody spectrum in the infrared, optical, and UV bands. We present a re-reduction of the archival optical and infrared data of the Vela pulsar, together with the existing infrared and UV spectrum of Vela, and model their unpulsed components with the blackbody spectrum of a supernova debris disk. We invoke the quiescent disk solution of Sunyaev and Shakura for the description of the disk in the propeller stage and find the inner radius of the disk to be inside the light cylinder radius. We perform a high-resolution X-ray analysis with XMM-Newton and find a narrow absorption feature at 0.57 keV that can be interpreted as the K {sub α} line of He-like oxygen (O VII). The strength of the line indicates an element over-abundance in our line of sight exceeding the amounts that would be expected from interstellar medium. The spectral feature may originate from the pulsar wind nebula and may be partly caused by the reprocessed X-ray radiation by the fallback disk. We discuss the lower-than-three braking index of Vela as partially due to the contribution of the propeller torques. Our results suggest that the pulsar mechanism can work simultaneously with the propeller processes and that the debris disks can survive the radiation pressure for at least ∼10{sup 4} yr. As Vela is a relatively close object, and a prototypical pulsar, the presence of a disk, if confirmed, may indicate the ubiquity of debris disks around young neutron stars.

  18. Hard X-ray detection of the black hole candidates 4U 1630-47 and IGR J17091-3624 up to 200 keV with INTEGRAL

    DEFF Research Database (Denmark)

    Bodaghee, A.; Kuulkers, E.; Tomsick, J. A.

    2012-01-01

    During monitoring observations of the Norma and Inner Perseus Arms (rev. 1209: 2012 Sept. 6 from 18:18:23 to 22:00:21 UTC), INTEGRAL-ISGRI revealed that the accreting black hole candidates 4U 1630-47 and IGR J17091-3624 have brightened in the hard X-rays. Mosaic images consisting of 12.6 ks worth...

  19. Formation of primordial supermassive stars by rapid mass accretion

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Takashi; Yoshida, Naoki [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan); Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Inayoshi, Kohei; Omukai, Kazuyuki, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp, E-mail: hosokwtk@gmail.com [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  20. PSR J1740-3052: a pulsar with a massive companion

    Science.gov (United States)

    Stairs, I. H.; Manchester, R. N.; Lyne, A. G.; Kaspi, V. M.; Camilo, F.; Bell, J. F.; D'Amico, N.; Kramer, M.; Crawford, F.; Morris, D. J.; Possenti, A.; McKay, N. P. F.; Lumsden, S. L.; Tacconi-Garman, L. E.; Cannon, R. D.; Hambly, N. C.; Wood, P. R.

    2001-08-01

    We report on the discovery of a binary pulsar, PSR J1740-3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11Msolar. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045-7319.

  1. RADIO TRANSIENTS FROM THE ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L.; Kulkarni, S. R., E-mail: piro@caltech.edu [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-01-10

    It has long been expected that in some scenarios when a white dwarf (WD) grows to the Chandrasekhar limit, it can undergo an accretion-induced collapse (AIC) to form a rapidly rotating neutron star. Nevertheless, the detection of such events has so far evaded discovery, likely because the optical, supernova-like emission is expected to be dim and short-lived. Here we propose a novel signature of AIC: a transient radio source lasting for a few months. Rapid rotation along with flux freezing and dynamo action can grow the WD's magnetic field to magnetar strengths during collapse. The spin-down of this newly born magnetar generates a pulsar wind nebula (PWN) within the {approx}10{sup -3}-10{sup -1} M{sub Sun} of ejecta surrounding it. Our calculations show that synchrotron emission from the PWN may be detectable in the radio, even if the magnetar has a rather modest magnetic field of {approx}2 Multiplication-Sign 10{sup 14} G and an initial spin period of {approx}10 ms. An all-sky survey with a detection limit of 1 mJy at 1.4 GHz would see {approx}4(f/10{sup -2}) above threshold at any given time, where f is the ratio of the AIC rate to Type Ia supernova rate. A similar scenario may result from binary neutron stars if some mergers produce massive neutron stars rather than black holes. We conclude with a discussion of the detectability of these types of transient radio sources in an era of facilities with high mapping speeds.

  2. Short-term X-ray variability of the globular cluster source 4U 1820 - 30 (NGC 6624)

    Science.gov (United States)

    Stella, L.; Kahn, S. M.; Grindlay, J. E.

    1984-01-01

    Analytical techniques for improved identification of the temporal and spectral variability properties of globular cluster and galactic bulge X-ray sources are described in terms of their application to a large set of observations of the source 4U 1820 - 30 in the globular cluster NGC 6624. The autocorrelation function, cross-correlations, time skewness function, erratic periodicities, and pulse trains are examined. The results are discussed in terms of current models with particular emphasis on recent accretion disk models. It is concluded that the analyzed observations provide the first evidence for shot-noise variability in a globular cluster X-ray source.

  3. A high-frequency survey of the southern Galactic plane for pulsars

    Science.gov (United States)

    Johnston, Simon; Lyne, A. G.; Manchester, R. N.; Kniffen, D. A.; D'Amico, N.; Lim, J.; Ashworth, M.

    1992-01-01

    Results of an HF survey designed to detect young, distant, and short-period pulsars are presented. The survey detected a total of 100 pulsars, 46 of which were previously unknown. The periods of the newly discovered pulsars range between 47 ms and 2.5 ms. One of the new discoveries, PSR 1259-63, is a member of a long-period binary system. At least three of the pulsars have ages less than 30,000 yr, bringing the total number of such pulsars to 12. The majority of the new discoveries are distant objects with high dispersion measures, which are difficult to detect at low frequencies. This demonstrates that the survey has reduced the severe selection effects of pulse scattering, high Galactic background temperature, and dispersion broadening, which hamper the detection of such pulsars at low radio frequencies. The pulsar distribution in the southern Galaxy is found to extend much further from the Galactic center than that in the north, probably due to two prominent spiral arms in the southern Galaxy.

  4. Gamma-Ray Pulsar Light Curves as Probes of Magnetospheric Structure

    Science.gov (United States)

    Harding, A. K.

    2016-01-01

    The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modeling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.

  5. 16 yr of RXTE monitoring of five anomalous X-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Rim; Kaspi, Victoria M., E-mail: rim@physics.mcgill.ca, E-mail: vkaspi@physics.mcgill.ca [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada)

    2014-03-20

    We present a summary of the long-term evolution of various properties of the five non-transient anomalous X-ray pulsars (AXPs) 1E 1841–045, RXS J170849.0–400910, 1E 2259+586, 4U 0142+61, and 1E 1048.1–5937, regularly monitored with RXTE from 1996 to 2012. We focus on three properties of these sources: the evolution of the timing, pulsed flux, and pulse profile. We report several new timing anomalies and radiative events, including a putative anti-glitch seen in 1E 2259+586 in 2009, and a second epoch of very large spin-down rate fluctuations in 1E 1048.1–5937 following a large flux outburst. We compile the properties of the 11 glitches and 4 glitch candidates observed from these 5 AXPs between 1996 and 2012. Overall, these monitoring observations reveal several apparent patterns in the behavior of this sample of AXPs: large radiative changes in AXPs (including long-lived flux enhancements, short bursts, and pulse profile changes) are rare, occurring typically only every few years per source; large radiative changes are almost always accompanied by some form of timing anomaly, usually a spin-up glitch; only 20%-30% of timing anomalies are accompanied by any form of radiative change. We find that AXP radiative behavior at the times of radiatively loud glitches is sufficiently similar to suggest common physical origins. The similarity in glitch properties when comparing radiatively loud and radiatively silent glitches in AXPs suggests a common physical origin in the stellar interior. Finally, the overall similarity of AXP and radio pulsar glitches suggests a common physical origin for both phenomena.

  6. TRACING THE LOWEST PROPELLER LINE IN MAGELLANIC HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Dimitris M.; Laycock, Silas G. T.; Yang, Jun; Fingerman, Samuel, E-mail: dimitris_christodoulou@uml.edu, E-mail: silas_laycock@uml.edu, E-mail: jun_yang@uml.edu, E-mail: fingerman.samuel@gmail.com [Lowell Center for Space Science and Technology, 600 Suffolk Street, Lowell, MA 01854 (United States)

    2016-09-20

    We have combined the published observations of high-mass X-ray binary (HMXB) pulsars in the Magellanic Clouds with a new processing of the complete archival data sets from the XMM-Newton and Chandra observatories in an attempt to trace the lowest propeller line below which accretion to polar caps is inhibited by the centrifugal force and the pulsations from the most weakly magnetized pulsars cease. Previously published data reveal that some of the faster-spinning pulsars with spin periods of P {sub S} < 12 s, detected at relatively low X-ray luminosities L {sub X} , appear to define such a line in the P {sub S} – L {sub X} diagram, characterized by a magnetic moment of μ = 3 × 10{sup 29} G cm{sup 3}. This value implies the presence of surface magnetic fields of B ≥ 3 × 10{sup 11} G in the compact objects of this class. Only a few quiescent HMXBs are found below the propeller line: LXP4.40 and SXP4.78, for which XMM-Newton and Chandra null detections respectively placed firm upper limits on their X-ray fluxes in deep quiescence; and A0538-66, for which many sub-Eddington detections have never measured any pulsations. On the other hand, the data from the XMM-Newton and Chandra archives show clearly that, during routine observation cycles, several sources have been detected below the propeller line in extremely faint, nonpulsating states that can be understood as the result of weak magnetospheric emission when accretion to the poles is centrifugally stalled or severely diminished. We also pay attention to the anomalous X-ray pulsar CXOU J010043.1-721134 that was reported in HMXB surveys. Its pulsations and locations near and above the propeller line indicate that this pulsar could be accreting from a fossil disk.

  7. The low-mass stellar population in the young cluster Tr 37. Disk evolution, accretion, and environment

    Science.gov (United States)

    Sicilia-Aguilar, Aurora; Kim, Jinyoung Serena; Sobolev, Andrej; Getman, Konstantin; Henning, Thomas; Fang, Min

    2013-11-01

    Aims: We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr 37. With a well-studied solar-type population, Tr 37 is a benchmark for disk evolution. Methods: We used low-resolution spectroscopy to identify and classify 141 members (78 new ones) and 64 probable members, mostly M-type stars. Hα emission provides information about accretion. Optical, 2MASS, Spitzer, and WISE data are used to trace the spectral energy distributions (SEDs) and search for disks. We construct radiative transfer models to explore the structures of full-disks, pre-transition, transition, and dust-depleted disks. Results: Including the new members and the known solar-type stars, we confirm that a substantial fraction (~2/5) of disks show signs of evolution, either as radial dust evolution (transition/pre-transition disks) or as a more global evolution (with low small-dust masses, dust settling, and weak/absent accretion signatures). Accretion is strongly dependent on the SED type. About half of the transition objects are consistent with no accretion, and dust-depleted disks have weak (or undetectable) accretion signatures, especially among M-type stars. Conclusions: The analysis of accretion and disk structure suggests a parallel evolution of dust and gas. We find several distinct classes of evolved disks, based on SED type and accretion status, pointing to different disk dispersal mechanisms and probably different evolutionary paths. Dust depletion and opening of inner holes appear to be independent processes: most transition disks are not dust-depleted, and most dust-depleted disks do not require inner holes. The differences in disk structure between M-type and solar-type stars in Tr 37 (4 Myr old) are not as remarkable as in the young, sparse, Coronet cluster (1-2 Myr old), suggesting that other factors, like the environment/interactions in each cluster, are likely to play an important role in the disk evolution and dispersal. Finally, we

  8. The gravitational-wave discovery space of pulsar timing arrays

    Science.gov (United States)

    Cutler, Curt; Burke-Spolaor, Sarah; Vallisneri, Michele; Lazio, Joseph; Majid, Walid

    2014-02-01

    Recent years have seen a burgeoning interest in using pulsar timing arrays (PTAs) as gravitational-wave (GW) detectors. To date, that interest has focused mainly on three particularly promising source types: supermassive black hole binaries, cosmic strings, and the stochastic background from early-Universe phase transitions. In this paper, by contrast, our aim is to investigate the PTA potential for discovering unanticipated sources. We derive significant constraints on the available discovery space based solely on energetic and statistical considerations: we show that a PTA detection of GWs at frequencies above ˜10-5 Hz would either be an extraordinary coincidence or violate "cherished beliefs;" we show that for PTAs GW memory can be more detectable than direct GWs, and that, as we consider events at ever higher redshift, the memory effect increasingly dominates an event's total signal-to-noise ratio. The paper includes also a simple analysis of the effects of pulsar red noise in PTA searches, and a demonstration that the effects of periodic GWs in the ˜10-7-10-4.5 Hz band would not be degenerate with small errors in standard pulsar parameters (except in a few narrow bands).

  9. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  10. Gravitational waves from pulsars in the context of magnetic ellipticity

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A. [Instituto Nacional de Pesquisas Espaciais, Divisao de Astrofisica, Sao Jose dos Campos, SP (Brazil)

    2017-05-15

    In one of our previous articles we have considered the role of a time dependent magnetic ellipticity on the pulsars' braking indices and on the putative gravitational waves these objects can emit. Since only nine of more than 2000 known pulsars have accurately measured braking indices, it is of interest to extend this study to all known pulsars, in particular as regards gravitational wave generation. To do so, as shown in our previous article, we need to know some pulsars' observable quantities such as: periods and their time derivatives, and estimated distances to the Earth. Moreover, we also need to know the pulsars' masses and radii, for which we are adopting current fiducial values. Our results show that the gravitational wave amplitude is at best h ∝ 10{sup -28}. This leads to a pessimistic prospect for the detection of gravitational waves generated by these pulsars, even for Advanced LIGO and Advanced Virgo, and the planned Einstein Telescope, if the ellipticity has a magnetic origin. (orig.)

  11. Gravitational waves from pulsars in the context of magnetic ellipticity

    International Nuclear Information System (INIS)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A.

    2017-01-01

    In one of our previous articles we have considered the role of a time dependent magnetic ellipticity on the pulsars' braking indices and on the putative gravitational waves these objects can emit. Since only nine of more than 2000 known pulsars have accurately measured braking indices, it is of interest to extend this study to all known pulsars, in particular as regards gravitational wave generation. To do so, as shown in our previous article, we need to know some pulsars' observable quantities such as: periods and their time derivatives, and estimated distances to the Earth. Moreover, we also need to know the pulsars' masses and radii, for which we are adopting current fiducial values. Our results show that the gravitational wave amplitude is at best h ∝ 10 -28 . This leads to a pessimistic prospect for the detection of gravitational waves generated by these pulsars, even for Advanced LIGO and Advanced Virgo, and the planned Einstein Telescope, if the ellipticity has a magnetic origin. (orig.)

  12. Correlated Radial Velocity and X-Ray Variations in HD 154791/4U 1700+24

    Science.gov (United States)

    Galloway, Duncan K.; Sokoloski, J. L.; Kenyon, Scott J.

    2002-12-01

    We present evidence for approximately 400 day variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported ~400 day variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fitted with an eccentric orbit with period 404+/-3 days, amplitude K=0.75+/-0.12kms-1, and eccentricity e=0.26+/-0.15. There are also indications of variations on longer timescales >~2000 days. We have reexamined all available All-Sky Monitor (ASM) data following an unusually large X-ray outburst in 1997-1998 and confirm that the 1 day averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400+/-20 days. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108+/-0.012 ASM counts s-1 (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 days after the time of periastron, according to the eccentric orbital fit. If the 400 day oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.

  13. Pulsars and cosmic rays in the dense supernova shells

    International Nuclear Information System (INIS)

    Berezinsky, V.S.; Prilutsky, O.F.

    1977-01-01

    Cosmic rays (c.r.) injected by a young pulsar in the dense supernova shell are considered. The maintenance of the Galactic c.r. pool by pulsar production is shown to have a difficulty: adiabatic energy losses of c.r. in the expanding shell demand a high initial c.r. luminosity of pulsar, which results in too high flux of γ-radiation produced through π 0 -decays (in excess over diffuse γ-ray background). (author)

  14. Planets around pulsars - Implications for planetary formation

    Science.gov (United States)

    Bodenheimer, Peter

    1993-01-01

    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  15. Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope

    Science.gov (United States)

    Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.; hide

    2012-01-01

    We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 micro s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.

  16. Observations of Pulsars with the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Parent, D.

    2009-11-01

    The Large Area Telescope (LAT) on Fermi, launched on 2008 June 11, is a space telescope to explore the high energy γ-ray universe. The instrument covers the energy range from 20 MeV to 300 GeV with greatly improved sensitivity and ability to localize γ-ray point sources. It detects γ-rays through conversion to electron-positron pairs and measurement of their direction in a tracker and their energy in a calorimeter. This thesis presents the γ-ray light curves and the phase-resolved spectral measurements of radio-loud gamma-ray pulsars detected by the LAT. The measurement of pulsar spectral parameters (i.e. integrated flux, spectral index, and energy cut-off) depends on the instrument response functions (IRFs). A method developed for the on-orbit validation of the effective area is presented using the Vela pulsar. The cut efficiencies between the real data and the simulated data are compared at each stage of the background rejection. The results are then propagated to the IRFs, allowing the systematic uncertainties of the spectral parameters to be estimated. The last part of this thesis presents the discoveries, using both the LAT observations and the radio and X ephemeris, of new individual γ-ray pulsars such as PSR J0205+6449, and the Vela-like pulsars J2229+6114 and J1048-5832. Timing and spectral analysis are investigated in order to constrain the γ-ray emission model. In addition, we discuss the properties of a large population of γ-ray pulsars detected by the LAT, including normal pulsars, and millisecond pulsars. (author)

  17. Testing General Relativity with Pulsar Timing

    Directory of Open Access Journals (Sweden)

    Stairs Ingrid H.

    2003-01-01

    Full Text Available Pulsars of very different types, including isolated objects and binaries (with short- and long-period orbits, and white-dwarf and neutron-star companions provide the means to test both the predictions of general relativity and the viability of alternate theories of gravity. This article presents an overview of pulsars, then discusses the current status of and future prospects for tests of equivalence-principle violations and strong-field gravitational experiments.

  18. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  19. Frequency-dependent Dispersion Measures and Implications for Pulsar Timing

    Science.gov (United States)

    Cordes, J. M.; Shannon, R. M.; Stinebring, D. R.

    2016-01-01

    The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency2). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ˜ 4 × 10-5 pc cm-3 for pulsars at ˜1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm-3 but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

  20. Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Pimenov, A.B.; Sokolov, V.A. [Moscow State University, Physics Department, Moscow (Russian Federation); Denisova, I.P. [Moscow Aviation Institute (National Research University), Moscow (Russian Federation)

    2016-11-15

    In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed. (orig.)

  1. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  2. The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview

    Science.gov (United States)

    Keane, E. F.; Barr, E. D.; Jameson, A.; Morello, V.; Caleb, M.; Bhandari, S.; Petroff, E.; Possenti, A.; Burgay, M.; Tiburzi, C.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C.; Jankowski, F.; Johnston, S.; Kramer, M.; Levin, L.; Ng, C.; van Straten, W.; Krishnan, V. Venkatraman

    2018-01-01

    We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.

  3. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    Science.gov (United States)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  4. Pulsar glitches in a strangeon star model

    Science.gov (United States)

    Lai, X. Y.; Yun, C. A.; Lu, J. G.; Lü, G. L.; Wang, Z. J.; Xu, R. X.

    2018-05-01

    Pulsar-like compact stars provide us a unique laboratory to explore properties of dense matter at supra-nuclear densities. One of the models for pulsar-like stars is that they are totally composed of "strangeons", and in this paper, we studied the pulsar glitches in a strangeon star model. Strangeon stars would be solidified during cooling, and the solid stars would be natural to have glitches as the result of starquakes. Based on the starquake model established before, we proposed that when the starquake occurs, the inner motion of the star which changes the moment of inertia and has impact on the glitch sizes, is divided into plastic flow and elastic motion. The plastic flow which is induced in the fractured part of the outer layer, would move tangentially to redistribute the matter of the star and would be hard to recover. The elastic motion, on the other hand, changes its shape and would recover significantly. Under this scenario, we could understand the behaviors of glitches without significant energy releasing, including the Crab and the Vela pulsars, in an uniform model. We derive the recovery coefficient as a function of glitch size, as well as the time interval between two successive glitches as the function of the released stress. Our results show consistency with observational data under reasonable ranges of parameters. The implications on the oblateness of the Crab and the Vela pulsars are discussed.

  5. On The Origin Of Hyper-Fast Pulsars

    Science.gov (United States)

    Gvaramadze, V. V.

    2006-08-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 gave the highest (transverse) velocity (~1100 km/s) ever measured for a neutron star (Chatterjee et al. 2005). The spin-down characteristics of PSR B1508+55 (typical of non-recycled pulsars) imply that the high velocity of this pulsar cannot be solely due to disruption of a tight massive binary system. A possible way to account for the high velocity of PSR B1508+55 is to assume that at least a part of this velocity is due to a natal or post-natal kick (Chatterjee et al. 2005). We propose an alternative explanation for the origin of hyper-fast pulsars. We suggest that PSR B1508+55 could be the remnant of a (symmetric) supernova explosion of the helium core of a massive star expelled at high velocity from the dense core of a young massive stellar cluster by an intermediate-mass (binary) black hole. The maximum peculiar velocity of the helium core is limited by the parabolic velocity on its surface and could be as large as ~2000 km/s. Thus, one can account not only for the high velocity measured for PSR B1508+55, but also for the even higher velocity of ~1600 km/s inferred for the pulsar PSR B2224+65 (Guitar; Chatterjee & Cordes 2004) on the basis of its proper motion and the dispersion measure distance estimate.

  6. Spinning up black holes with super-critical accretion flows

    Czech Academy of Sciences Publication Activity Database

    Sądowski, A.; Bursa, Michal; Abramowicz, M. A.; Kluzniak, W.; Lasota, J.-P.; Moderski, R.; Safarzadeh, M.

    2011-01-01

    Roč. 532, August (2011), A41/1-A41/11 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole physics * accretion * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  7. Accretion from an inhomogeneous medium

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.; Koo, M. de; Savonije, G.J.

    1986-01-01

    The problem of accretion by a compact object from an inhomogeneous medium is studied in the general γnot=1 case. The mass accretion rate is found to decrease with increasing γ. The rate of accretion of angular momentum is found to be significantly lower than the rate at which angular momentum is deposited into the Bondi-Hoyle, symmetrical, accretion cylinder. The consequences of the results are studied for the cases of neutron stars accreting from the winds of early-type companions and white dwarfs and main-sequence stars accreting from winds of cool giants. (author)

  8. Gravitational waves from pulsars with measured braking index

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A. [Instituto Nacional de Pesquisas Espaciais, Divisao de Astrofisica, Sao Jose dos Campos, SP (Brazil)

    2016-09-15

    We study the putative emission of gravitational waves (GWs) in particular for pulsars with measured braking index. We show that the appropriate combination of both GW emission and magnetic dipole brakes can naturally explain the measured braking index, when the surface magnetic field and the angle between the magnetic dipole and rotation axes are time dependent. Then we discuss the detectability of these very pulsars by aLIGO and the Einstein Telescope. We call attention to the realistic possibility that aLIGO can detect the GWs generated by at least some of these pulsars, such as Vela, for example. (orig.)

  9. Optimal Frequency Ranges for Sub-Microsecond Precision Pulsar Timing

    Science.gov (United States)

    Lam, Michael Timothy; McLaughlin, Maura; Cordes, James; Chatterjee, Shami; Lazio, Joseph

    2018-01-01

    Precision pulsar timing requires optimization against measurement errors and astrophysical variance from the neutron stars themselves and the interstellar medium. We investigate optimization of arrival time precision as a function of radio frequency and bandwidth. We find that increases in bandwidth that reduce the contribution from receiver noise are countered by the strong chromatic dependence of interstellar effects and intrinsic pulse-profile evolution. The resulting optimal frequency range is therefore telescope and pulsar dependent. We demonstrate the results for five pulsars included in current pulsar timing arrays and determine that they are not optimally observed at current center frequencies. We also find that arrival-time precision can be improved by increases in total bandwidth. Wideband receivers centered at high frequencies can reduce required overall integration times and provide significant improvements in arrival time uncertainty by a factor of $\\sim$$\\sqrt{2}$ in most cases, assuming a fixed integration time. We also discuss how timing programs can be extended to pulsars with larger dispersion measures through the use of higher-frequency observations.

  10. The Emerging Population of Pulsar Wind Nebulae in Hard X-rays

    Science.gov (United States)

    Mattana, F.; Götz, D.; Terrier, R.; Renaud, M.; Falanga, M.

    2009-05-01

    The hard X-ray synchrotron emission from Pulsar Wind Nebulae probes energetic particles, closely related to the pulsar injection power at the present time. INTEGRAL has disclosed the yet poorly known population of hard X-ray pulsar/PWN systems. We summarize the properties of the class, with emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32), and highlight some prospects for the study of Pulsar Wind Nebulae with the Simbol-X mission.

  11. Characterizing the nature of subpulse drifting in pulsars

    Science.gov (United States)

    Basu, Rahul; Mitra, Dipanjan

    2018-04-01

    We report a detailed study of subpulse drifting in four long-period pulsars. These pulsars were observed in the Meterwavelength Single-pulse Polarimetric Emission Survey and the presence of phase-modulated subpulse drifting was reported in each case. We carried out longer duration and more sensitive observations lasting 7000-12 000 periods in the frequency range 306-339 MHz. The drifting features were characterized in great detail, including the phase variations across the pulse window. For two pulsars, J0820-1350 and J1720-2933, the phases changed steadily across the pulse window. The pulsar J1034-3224 has five components. The leading component was very weak and was barely detectable in our single-pulse observations. The four trailing components showed subpulse drifting. The phase variations changed in alternate components with a reversal in the sign of the gradient. This phenomenon is known as bi-drifting. The pulsar J1555-3134 showed two distinct peak frequencies of comparable strengths in the fluctuation spectrum. The two peaks did not appear to be harmonically related and were most likely a result of different physical processes. Additionally, the long observations enabled us to explore the temporal variations of the drifting features. The subpulse drifting was largely constant with time but small fluctuations around a mean value were seen.

  12. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.

  13. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  14. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  15. Pulsars as the sources of high energy cosmic ray positrons

    International Nuclear Information System (INIS)

    Hooper, Dan; Blasi, Pasquale; Serpico, Pasquale Dario

    2009-01-01

    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons

  16. Second Generation Dutch Pulsar Machine - PuMa-II

    NARCIS (Netherlands)

    Karuppusamy, Ramesh; Stappers, Ben; Slump, Cornelis H.; van der Klis, Michiel

    2004-01-01

    The Second Generation Pulsar Machine (PuMa- II) is under development for the Westerbork Synthesis Radio Telescope. This is a summary of th e system design and architecture. We show that state of the art pulsar research is possible with commercially available hardware components. This approach

  17. Coherent amplification and pulsar phenomena

    International Nuclear Information System (INIS)

    Casperson, L.W.

    1977-01-01

    A modification of the rotating-star model has been developed to interpret the periodic energy bursts from pulsars. This new configuration involves theta-directed oscillation modes in the stellar atmosphere or magnetosphere, and most aspects of the typical pulse characteristics are well accounted for. Gain is provided by resonant interactions with particles trapped in the stellar magnetic field. The most significant feature is the fact that highly directional beaming of the output energy results as a natural consequence of coherence between the radiation fields emerging from various locations about the pulsar; and a localized radiation origin is not required. (Auth.)

  18. On the nature of pulsars

    International Nuclear Information System (INIS)

    Radhakrishnan, V.

    1982-01-01

    Although neutron stars were predicted nearly half a century ago, their radiations have been received and studied for just over a decade. Called pulsars because of the pulsating nature of their signals, they exhibit a wide variety of periodic phenomena in their radio emission. This article begins with a historical introduction followed by a short review of their main characteristics. The major models proposed to explain these properties are then outlined. Finally, some very recent developments which promise to throw new light on the mechanism of pulsars and their relationship to supernova remnants are briefly described and discussed. (author)

  19. Pulsar scintillation patterns and strangelets

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-García, M. Ángeles, E-mail: mperezga@usal.es [Department of Fundamental Physics and IUFFyM, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: silk@iap.fr [Institut d' Astrophysique, UMR 7095, CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, 75014 Paris (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Pen, Ue-Li, E-mail: pen@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 0N M5S 3H8 (Canada)

    2013-12-18

    We propose that interstellar extreme scattering events, usually observed as pulsar scintillations, may be caused by a coherent agent rather than the usually assumed turbulence of H{sub 2} clouds. We find that the penetration of a flux of ionizing, positively charged strangelets or quark nuggets into a dense interstellar hydrogen cloud may produce ionization trails. Depending on the specific nature and energy of the incoming droplets, diffusive propagation or even capture in the cloud are possible. As a result, enhanced electron densities may form and constitute a lens-like scattering screen for radio pulsars and possibly for quasars.

  20. Possible relation between pulsar rotation and evolution of magnetic inclination

    Science.gov (United States)

    Tian, Jun

    2018-05-01

    The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.