WorldWideScience

Sample records for accreting millisecond x-ray

  1. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    NARCIS (Netherlands)

    N. Degenaar; A. Patruno; R. Wijnands

    2012-01-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a s

  2. On the connection between accreting X-ray and radio millisecond pulsars

    CERN Document Server

    Tauris, T M

    2012-01-01

    For many years it has been recognized that the terminal stages of mass transfer in a low-mass X-ray binary (LMXB) should cause the magnetosphere of the accreting neutron star to expand, leading to a braking torque acting on the spinning pulsar. After the discovery of radio millisecond pulsars (MSPs) it was therefore somewhat a paradox (e.g. Ruderman et al. 1989) how these pulsars could retain their fast spins following the Roche-lobe decoupling phase, RLDP. Here I present a solution to this so-called "turn-off problem" which was recently found by combining binary stellar evolution models with torque computations (Tauris 2012). The solution is that during the RLDP the spin equilibrium of the pulsar is broken and therefore it remains a fast spinning object. I briefly discuss these findings in view of the two observed spin distributions in the populations of accreting X-ray millisecond pulsars (AXMSPs) and radio MSPs.

  3. New outburst of the accreting millisecond X-ray pulsar NGC 6440 X-2 and discovery of a strong 1 Hz modulation in the light-curve

    NARCIS (Netherlands)

    Patruno, A.; Yang, Y.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Klis, M. Van Der; Watts, A.; Wijnands, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Markwardt, C.; Strohmayer, T.; Heinke, C.

    2010-01-01

    On June 11th, 2010, RXTE/PCA galactic bulge scan observations showed an increase in activity from the globular cluster NGC 6440. Two accreting millisecond X-ray pulsars (AMXPs) and 22 other X-ray binaries are known

  4. The accreting millisecond X-ray pulsar IGR J00291+5934: evidence for a long timescale spin evolution

    NARCIS (Netherlands)

    A. Patruno

    2010-01-01

    Accreting millisecond X-ray pulsars like IGR J00291+5934 are important because they can be used to test theories of pulsar formation and evolution. They give also the possibility of constraining gravitational wave emission theories and the equation of state of ultra-dense matter. Particularly crucia

  5. Quasi-periodic X-ray brightness fluctuations in an accreting millisecond pulsar

    CERN Document Server

    Wijnands, R; Homan, J; Chakraborty, D; Markwardt, C B; Morgan, E H; Wijnands, Rudy; Klis, Michiel van der; Homan, Jeroen; Chakrabarty, Deepto; Markwardt, Craig B.; Morgan, Ed H.

    2003-01-01

    The relativistic plasma flows onto neutron stars that are accreting material from stellar companions can be used to probe strong-field gravity as well as the physical conditions in the supranuclear-density interiors of neutron stars. Plasma inhomogeneities orbiting a few kilometres above the stars are observable as X-ray brightness fluctuations on the millisecond dynamical timescale of the flows. Two frequencies in the kilohertz range dominate these fluctuations: the twin kilohertz quasi-periodic oscillations (kHz QPOs). Competing models for the origins of these oscillations (based on orbital motions) all predict that they should be related to the stellar spin frequency, but tests have been difficult because the spins were not unambiguously known. Here we report the detection of kHz QPOs from a pulsar whose spin frequency is known. Our measurements establish a clear link between kHz QPOs and stellar spin, but one not predicted by any current model. A new approach to understanding kHz QPOs is now required. We ...

  6. The long-term evolution of the accreting millisecond X-ray pulsar Swift J1756.9-2508

    CERN Document Server

    Patruno, Alessandro; Messenger, Chris

    2009-01-01

    We present a timing analysis of the 2009 outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508, and a re-analysis of the 2007 outburst. The source shows a short recurrence time of only ~2 years between outbursts. Thanks to the approximately 2 year long baseline of data, we can constrain the magnetic field of the neutron star to be 0.4x10^8 G < B < 9x10^8 G, which is within the range of typical accreting millisecond pulsars. The 2009 timing analysis allows us to put constraints on the accretion torque: the spin frequency derivative within the outburst has an upper limit of $|\\dot{\

  7. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    Science.gov (United States)

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a ~= 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of sime1 × 1033(D/6.7 kpc)2 erg s-1. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of <~ 2 × 1033 erg s-1 and constrain its temperature to be <~ 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of <~ 34% and <~ 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  8. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    Science.gov (United States)

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  9. Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

    CERN Document Server

    Falanga, M; Poutanen, J; Galloway, D K; Bozzo, E; Goldwurm, A; Hermsen, W; Stella, L

    2012-01-01

    We analyze the spectral and timing properties of IGR J17498-2921 and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kT_e ~ 50 keV, soft seed photons of kT_bb ~ 1 keV, and Thomson optical depth \\taut ~ 1 in a slab geometry. The slab area corresponds to a black body radius of R_bb ~9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 milliseconds up to ~65 keV. The pulsed fraction is consistent with being constant, i.e. energy indepe...

  10. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    CERN Document Server

    Pintore, Fabio; Di Salvo, Tiziana; Del Santo, Melania; Riggio, Alessandro; D'Aì, Antonino; Burderi, Luciano; Scarano, Fabiana; Iaria, Rosario

    2016-01-01

    We analyzed a 115 ks XMM-Newton observation and the stacking of 8 days of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (~2 keV) and an additional hard X-ray emission described by a power-law (photon index ~2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high energy tail is still under debate. In addition, a number of broad (~0.1-0.4 keV) emission features likely associated to reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity ...

  11. The Accreting Millisecond X-ray Pulsar IGR J00291+5934: Evidence for a Long Timescale Spin Evolution

    CERN Document Server

    Patruno, Alessandro

    2010-01-01

    Accreting Millisecond X-ray Pulsars like IGR J00291+5934 are important because it is possible to test theories of pulsar formation and evolution. They give also the possibility to constrain gravitational wave emission theories and the equation of state of ultra dense matter. Particularly crucial to our understanding is the measurement of the long term spin evolution of the accreting neutron star. An open question is whether these accreting pulsars are spinning up during an outburst and spinning down in quiescence as predicted by the recycling scenario. Until now it has been very difficult to measure torques, due to the presence of fluctuations in the pulse phases that compromise their measurements with standard coherent timing techniques. By applying a new method, I am now able to measure a spin up during an outburst and a spin down during quiescence. I ascribe the spin up (Fdot=5.1(3)x10^{-13}\\Hz/s) to accretion torques and the spin down (Fdot=-3.0(8)x10^{-15} Hz/s) to magneto dipole torques, as those observ...

  12. On the Nature of the X-ray Emission from the Accreting Millisecond Pulsar SAX J1808.4-3658

    CERN Document Server

    Poutanen, J; Poutanen, Juri; Gierlinski, Marek

    2003-01-01

    The pulse profiles of the accreting X-ray millisecond pulsar SAX J1808.4-3658 at different energies are studied. The two main emission component, the black body and the Comptonized tail that are clearly identified in the time-averaged spectrum, show strong variability with the first component lagging the second one. The observed variability can be explained if the emission is produced by Comptonization in a hot slab (radiative shock) of Thomson optical depth ~0.3-1 at the neutron star surface. The emission patterns of the black body and the Comptonized radiation are different: a "knife"- and a "fan"-like, respectively. We construct a detailed model of the X-ray production accounting for the Doppler boosting, relativistic aberration and gravitational light bending in the Schwarzschild spacetime. We present also accurate analytical formulae for computations of the light curves from rapidly rotating neutron stars using formalism recently developed by Beloborodov (2002). Our model reproduces well the pulse profil...

  13. Orbital Evolution Measurement of the Accreting Millisecond X-ray Pulsar SAX J1808.4–3658

    Indian Academy of Sciences (India)

    Chetana Jain; Anjan Dutta; Biswajit Paul

    2007-12-01

    We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the four outbursts that occurred in 1998, 2000, 2002 and 2005. Instead of measuring the arrival times of individual pulses or the pulse arrival time delay measurement that is commonly used to determine the orbital parameters of binary pulsars, we have determined the orbital ephemeris during each observation by optimizing the pulse detection against a range of trial ephemeris values. The source exhibits a significant pulse shape variability during the outbursts. The technique used by us does not depend on the pulse profile evolution, and is therefore, different from the standard pulse timing analysis. Using 27 measurements of orbital ephemerides during the four outbursts spread over more than 7 years and more than 31,000 binary orbits, we have derived an accurate value of the orbital period of 7249.156862(5) s (MJD = 50915) and detected an orbital period derivative of (3.14 ± 0.21) × 10-12 s s-1. We have included a table of the 27 mid-eclipse time measurements of this source that will be valuable for further studies of the orbital evolution of the source, especially with ASTROSAT. We point out that the measured rate of orbital period evolution is considerably faster than the most commonly discussed mechanisms of orbital period evolution like mass transfer, mass loss from the companion star and gravitational wave radiation. The present time scale of orbital period change, 73 Myr is therefore likely to be a transient high value of period evolution and similar measurements during subsequent outbursts of SAX J1808.4–3658 will help us to resolve this.

  14. X-ray states of redback millisecond pulsars

    CERN Document Server

    Linares, Manuel

    2014-01-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as "redbacks", constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars, and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback which showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L$_\\mathrm{X}$), between [6-9]$\\times$10$^{32}$ erg s$^{-1}$ (disk-passive state) and [3-5]$\\times$10$^{33}$ erg s$^{-1}$ (disk-active state). This strongly suggests that mode switching $-$which has not been observed in quiescent low-mass X-ray binaries$-$ is universal among redback millisecond pulsars in the disk ...

  15. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  16. Millisecond Oscillations During Thermonuclear X-ray Bursts

    CERN Document Server

    Muno, M P

    2004-01-01

    I review the basic phenomenology and theory of the millisecond brightness oscillations observed during thermonuclear X-ray bursts from 13 of approximately 70 accreting neutron stars in low-mass X-ray binaries. Compelling observations indicate that the oscillations are produced by surface brightness patterns on the rapidly rotating neutron stars. However, it remains to be understood (1) why the brightness patterns producing them persist for up to 15 s during an X-ray burst, whereas the burning should cover the entire surface in less than 1 s, and (2) why the frequencies drift upward by about 5 Hz during the course of the burst. These peculiarities can probably be explained by taking into account the expansion of the surface layers caused by the burning, zonal flows that form due to pressure gradients between the equator and poles, and Rossby-Alfven modes that are excited in the surface ocean. Further progress toward understanding how burning progresses on the surface of the neutron star can be made with a next...

  17. X-ray Counterparts of Millisecond Pulsars in Globular Clusters

    CERN Document Server

    Becker, W; Prinz, T

    2010-01-01

    We have systematically studied the X-ray emission properties of globular cluster millisecond pulsars in order to evaluate their spectral properties and luminosities in a uniform way. Cross-correlating the radio timing positions of the cluster pulsars with the high resolution Chandra images revealed 31 X-ray counterparts identified in nine different globular cluster systems, including those in 47 Tuc. Timing analysis has been performed for all sources corresponding to the temporal resolution available in the archival Chandra data. Making use of unpublished data on M28, M4 and NGC 6752 allowed us to obtain further constraints for the millisecond pulsar counterparts located in these clusters. Counting rate and energy flux upper limits were computed for those 36 pulsars for which no X-ray counterparts could be detected. Comparing the X-ray and radio pulse profiles of PSR J1821-2452 in M28 and the 47 Tuc pulsars PSR J0024-7204D,O,R indicated some correspondence between both wavebands. The X-ray efficiency of the g...

  18. X-ray bounds on the r-mode amplitude in millisecond pulsars

    CERN Document Server

    Schwenzer, Kai; Güver, Tolga; Vurgun, Eda

    2016-01-01

    r-mode astroseismology provides a unique way to study the internal composition of compact stars. Due to their precise timing, recycled millisecond radio pulsars present a particularly promising class of sources. Although their thermal properties are still poorly constrained, X-ray data is very useful for astroseismology since r-modes could strongly heat a star. Using known and new upper bounds on the temperatures and luminosities of several non-accreting millisecond radio pulsars we derive bounds on the r-mode amplitude as low as $\\alpha\\lesssim10^{-8}$ and discuss the impact on scenarios for their internal composition.

  19. X-ray Photoevaporation-starved T Tauri Accretion

    CERN Document Server

    Drake, Jeremy J; Flaccomio, Ettore; Micela, Giusi

    2009-01-01

    X-ray luminosities of accreting T Tauri stars are observed to be systematically lower than those of non-accretors. There is as yet no widely accepted physical explanation for this effect, though it has been suggested that accretion somehow suppresses, disrupts or obscures coronal X-ray activity. Here, we suggest that the opposite might be the case: coronal X-rays modulate the accretion flow. We re-examine the X-ray luminosities of T Tauri stars in the Orion Nebula Cluster and find that not only are accreting stars systematically fainter, but that there is a correlation between mass accretion rate and stellar X-ray luminosity. We use the X-ray heated accretion disk models of Ercolano et al. to show that protoplanetary disk photoevaporative mass loss rates are strongly dependent on stellar X-ray luminosity and sufficiently high to be competitive with accretion rates. X-ray disk heating appears to offer a viable mechanism for modulating the gas accretion flow and could be at least partially responsible for the o...

  20. Why are millisecond pulsar magnetic fields low and how do their X-rays arise?

    Science.gov (United States)

    Webb, Natalie

    2006-10-01

    Binary millisecond pulsars (MSPs) found in the field are thought to be recycled from accreting pulsars. These MSPs have short periods, low spindown rates (Pdot) and consequently low surface magnetic fields (Bs) as Bs is proportional to (Pdot P)^0.5. It is unclear, however, how the MSP surface magnetic field can evolve from the high fields observed in pulsars to the low MSP values. Two models have been proposed to explain this. Also, the origin of the high energy emission is unclear as too few MSP X-ray observations have been made to differentiate between competing models. With these XMM-Newton observations of four MSPs previously unobserved in X-rays, we will discriminate between differing models describing the magnetic field evolution and the high energy emission origin.

  1. Timing and spectral properties of the accreting millisecond pulsar SWIFT J1756.9-2508

    NARCIS (Netherlands)

    M. Linares; R. Wijnands; M. van der Klis; H. Krimm; C.B. Markwardt; D. Chakrabarty

    2008-01-01

    SWIFT J1756.9-2508 is one of the few accreting millisecond pulsars (AMPs) discovered to date. We report here the results of our analysis of its aperiodic X-ray variability, as measured with the Rossi X-Ray Timing Explorer during the 2007 outburst of the source. We detect strong (~35%) flat-topped br

  2. Polarized X-rays from accreting neutron stars

    Science.gov (United States)

    Bhattacharya, Dipankar

    2016-07-01

    Accreting neutron stars span a wide range in X-ray luminosity and magnetic field strength. Accretion may be wind-fed or disk-fed, and the dominant X-ray flux may originate in the disk or a magnetically confined accretion column. In all such systems X-ray polarization may arise due to Compton or Magneto-Compton scattering, and on some occasions polarization of non-thermal emission from jet-like ejection may also be detectable. Spectral and temporal behaviour of the polarized X-rays would carry information regarding the radiation process, as well as of the matter dynamics - and can assist the detection of effects such as the Lense-Thirring precession. This talk will review our current knowledge of the expected X-ray polarization from accreting neutron stars and explore the prospects of detection with upcoming polarimetry missions.

  3. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  4. On the X-ray heated skin of Accretion Disks

    CERN Document Server

    Nayakshin, S

    1999-01-01

    We present a simple analytical formula for the Thomson depth of the X-rayheated skin of accretion disks valid at any radius and for a broad range ofspectral indices of the incident X-rays, accretion rates and black hole masses.We expect that this formula may find useful applications in studies of geometryof the inner part of accretion flows around compact objects, and in severalother astrophysically important problems, such as the recently observed X-ray``Baldwin'' effect (i.e., monotonic decrease of Fe line's equivalent width withthe X-ray luminosity of AGN), the problem of missing Lyman edge in AGN, andline and continuum variability studies in accretion disks around compactobjects. We compute the reflected X-ray spectra for several representativecases and show that for hard X-ray spectra and large ionizing fluxes the skinrepresents a perfect mirror that does not produce any Fe lines or absorptionfeatures. At the same time, for soft X-ray spectra or small ionizing fluxes,the skin produces very strong ionized...

  5. X-ray reflection in oxygen-rich accretion discs of ultracompact X-ray binaries

    DEFF Research Database (Denmark)

    Madej, O. K.; Garcia, Jeronimo; Jonker, P. G.;

    2014-01-01

    . The donor star in these sources is a carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O viii Ly alpha line particularly strong. Modelling the X-ray reflection off a carbon- and oxygen-enriched, hydrogen- and helium-poor disc with models...

  6. Relativistic reflection X-ray spectra of accretion disks

    Institute of Scientific and Technical Information of China (English)

    Khee-Gan Lee; Kinwah Wu; Steven V. Fuerst; Graziella Branduardi-Raymont; Oliver Crowley

    2009-01-01

    We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.

  7. Accretion disk dynamics in X-ray binaries

    Science.gov (United States)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  8. Jets and Accretion Disks in X-ray Binaries

    Science.gov (United States)

    Tomsick, John

    The outflow of material in the form of jets is a common phenomenon in astronomical sources with accretion disks. Even though jets are seen coming from the cores of galaxies, Galactic compact objects in X-ray binaries, and stars as they are forming, we do not understand in detail what accretion disk conditions are necessary to support a relativistic jet. This proposal focuses on multi-wavelength studies of X-ray binaries in order to improve our understanding of the connection between the disk and the jet. Specifically, this proposal includes work on two approved cycle 14 Rossi X-ray Timing Explorer (RXTE) programs, an approved XMM-Newton program, as well as a synthesis study of transient black hole X-ray binaries using archival RXTE and radio data. We plan to use X-ray spectral and timing properties to determine the disk properties during the re-activation of the compact jet (as seen in the radio and infrared) during the decays of black hole transient outbursts, to determine how the inner disk properties change at low mass accretion rates, and to use RXTE along with multi-wavelength observations to constrain the jet properties required for the microquasar Cygnus~X-3 to produce high- energy emission. Due to the ubiquity of jets in astrophysical settings, these science topics are relevant to NASA programs dealing with the origin, structure, evolution, and destiny of the Universe, and especially to understanding phenomena near black holes.

  9. X-Ray Spectroscopy of Accretion Shocks in Young Stars

    Science.gov (United States)

    Brickhouse, Nancy S.

    2011-01-01

    High resolution X-ray spectroscopy of accreting young stars is providing new insights into the physical conditions of the shocked plasma. While young stars exhibit exceedingly active coronae (>10 MK) with highly energetic flares, the relatively low temperature ( 3 MK), high density (>1012 cm-3) accretion shock can only be clearly distinguished at high spectral resolution. The nearby Classical T Tauri star TW Hydrae was the first to show evidence of accretion using 50 ks with the Chandra High Energy Transmission Grating (HETG). More recently a Chandra HETG Large Program (489 ks obtained over the course of one month) on TW Hydrae has found evidence for a new type of coronal structure. In the standard model, the accreting gas shocks near the atmosphere of the star and gently settles onto the surface as it slows down and cools. On TW Hydrae the observed post-shock region is not this predicted settling flow, since its mass is 30 times the mass of material that passes through the shock. Instead the stellar atmosphere must be heated to soft X-ray emitting temperatures. Of the CTTS systems observed with the gratings on Chandra and XMM-Newton not all show the accretion shock signature; however, all of them show excess soft X-ray emission related to accretion. The production of highly charged ions in the proximity of both open and closed magnetic field lines has important implications for coronal heating, winds and jets in the presence of accretion. This work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  10. Quasi-spherical accretion in X-ray pulsars

    CERN Document Server

    Postnov, K; Kochetkova, A; Hjalmarsdotter, L

    2011-01-01

    Quasi-spherical accretion in wind-fed X-ray pulsars is discussed. At X-ray luminosities <4 10^{36} erg/s, a hot convective shell is formed around the neutron star magnetosphere, and subsonic settling accretion regime sets in. In this regime, accretion rate onto neutron star is determined by the ability of plasma to enter magnetosphere via Rayleigh-Taylor instability. A gas-dynamic theory of settling accretion is constructed taking into account anisotropic turbulence. The angular momentum can be transferred through the quasi-static shell via large-scale convective motions initiating turbulence cascade. The angular velocity distribution in the shell is found depending on the turbulent viscosity prescription. Comparison with observations of long-period X-ray wind-fed pulsars shows that an almost iso-angular-momentum distribution is most likely realized in their shells. The theory explains long-term spin-down in wind- fed accreting pulsars (e.g. GX 1+4) and properties of short-term torque-luminosity correlatio...

  11. X-ray reverberation around accreting black holes

    CERN Document Server

    Uttley, P; Fabian, A C; Kara, E; Wilkins, D R

    2014-01-01

    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We cons...

  12. Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the successful launch of Swift satellite, more and more data of early X-ray afterglows from short gamma-ray bursts have been collected. Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed. Especially, in some cases, there is a flat segment in the X-ray afterglow light curve. Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine. We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars. We check this model with the short GRB 060313. Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.

  13. Gravitational Radiation from Accreting Millisecond Pulsars

    CERN Document Server

    Vigelius, Matthias; Melatos, Andrew

    2008-01-01

    It is widely assumed that the observed reduction of the magnetic field of millisecond pulsars can be connected to the accretion phase during which the pulsar is spun up by mass accretion from a companion. A wide variety of reduction mechanisms have been proposed, including the burial of the field by a magnetic mountain, formed when the accreted matter is confined to the poles by the tension of the stellar magnetic field. A magnetic mountain effectively screens the magnetic dipole moment. On the other hand, observational data suggests that accreting neutron stars are sources of gravitational waves, and magnetic mountains are a natural source of a time-dependent quadrupole moment. We show that the emission is sufficiently strong to be detectable by current and next generation long-baseline interferometers. Preliminary results from fully three-dimensional magnetohydrodynamic (MHD) simulations are presented. We find that the initial axisymmetric state relaxes into a nearly axisymmetric configuration via toroidal ...

  14. Swinging between rotation and accretion power in a binary millisecond pulsar

    CERN Document Server

    Papitto, A; Bozzo, E; Rea, N

    2013-01-01

    We present the discovery of IGR J18245-2452, the first millisecond pulsar observed to swing between a rotation-powered, radio pulsar state, and an accretion-powered X-ray pulsar state (Papitto et al. 2013, Nature, 501, 517). This transitional source represents the most convincing proof of the evolutionary link shared by accreting neutron stars in low mass X-ray binaries, and radio millisecond pulsars. It demonstrates that swings between these two states take place on the same time-scales of luminosity variations of X-ray transients, and are therefore most easily interpreted in terms of changes in the rate of mass in-flow. While accreting mass, the X-ray emission of IGR J18245-2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of th...

  15. Settling accretion onto slowly rotating X-ray pulsars

    CERN Document Server

    Shakura, N I; Kochetkova, A Yu; Hjalmarsdotter, L

    2013-01-01

    Quasi-spherical subsonic accretion onto slowly rotating magnetized NS is considered, when the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasi-static shell. The shell mediates the angular momentum transfer to/from the rotating NS magnetosphere by large-scale convective motions, which lead to an almost iso-angular-momentum rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability while taking cooling into account. The settling regime of accretion is possible for moderate X-ray luminosities L <4 10^36 erg/s. At higher luminosities a free-fall gap above the NS magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of spin-up/spin-down rates of wind accreting equilibrium XPSRs with known orbital periods (GX 301-2, Vela X-1), the main dimensionless parameters of the model and be determin...

  16. Revealing accretion onto black holes through X-ray reflection

    Science.gov (United States)

    Plant, D.; Fender, R.; Ponti, G.; Munoz-Darias, T.; Coriat, M.

    2014-07-01

    Understanding the dynamics behind black hole state transitions and the changes they reflect in outbursts has become long-standing problem. The X-ray reflection spectrum describes the interaction between the hard X-ray source (the power-law continuum) and the cool accretion disc it illuminates, and thus permits an indirect view of how the two evolve. We present a systematic analysis of the reflection spectrum throughout three outbursts (500+ RXTE observations) of the black hole binary GX 339-4, representing the largest study applying a self-consistent treatment of reflection to date. Particular attention is payed to the coincident evolution of the power-law and reflection, which can be used to determine the accretion geometry. The hard state is found to be distinctly reflection weak, however the ratio of reflection to power-law gradually increases as the source luminosity rises. In contrast the reflection is found dominate the power-law throughout most of the soft state, with increasing supremacy as the source decays. Using results from archival and AO-12 observations of GX 339-4 with XMM-Newton we reveal the dynamics driving this evolution and the nature of accretion onto black holes in outburst.

  17. Bimodality of Wind-fed Accretion in High Mass X-ray Binaries

    OpenAIRE

    Karino, S.

    2014-01-01

    We study an influence of X-ray photo-ionization from an accreting neutron star in a high mass X-ray binary. Our aim is to unveil a new principle governing X-ray luminosities of X-ray binaries, with a simple analysis of fluid equations simulating line-driven wind flow under influence of X-ray irradiation. In this study, we solve equation of motion of the accretion flow taking into account the line-driven acceleration and X-ray photo-ionization. Under the influence of X-ray irradiation, we find...

  18. Wind accretion in symbiotic X-ray binaries

    CERN Document Server

    Postnov, K; González-Galán, A; Kuulkers, E; Kretschmar, P; Larsson, S; Finger, M H; Kochetkova, A; Lü, G; Yungelson, L

    2011-01-01

    The properties of wind accretion in symbiotic X-ray binaries (SyXBs) consisting of red-giant and magnetized neutron star (NS) are discussed. The spin-up/spin-down torques applied to NS are derived based on a hydrodynamic theory of quasi-spherical accretion onto magnetized NSs. In this model, a settling subsonic accretion proceeds through a hot shell formed around the NS magnetosphere. The accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere.Due to large Reynolds numbers in the shell, the interaction of the rotating magnetosphere with plasma initiates a subsonic turbulence. The convective motions are capable of carrying the angular momentum through the shell. We carry out a population synthesis of SyXBs in the Galaxy with account for the spin evolution of magnetized NS. The Galactic number of SyXBs with bright (M_v<1) low-mass red-giant companion is found to be from \\sim 40 to 120, and their birthrate is \\sim 5\\times 10^{-5}-10^{-4} per year. According to our mode...

  19. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    Science.gov (United States)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray

  20. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    OpenAIRE

    Middleton, M.J.; Walton, D.J.; Fabian, A.; Roberts, T. P.; Heil, L.; Pinto, C.; Anderson, G; Sutton, A.

    2015-01-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or emission and potentially broadened by velocity dispersion could therefore hold the key to understanding much about these enigmatic sources. Here we show for the first time that such residuals are seen i...

  1. A NuSTAR Observation of the Gamma-ray-emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4-112820

    Science.gov (United States)

    Bogdanov, Slavko

    2016-07-01

    I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4-112820, which is associated with the high-energy γ-ray source 3FGL J1544.6-1125. The system is detected up to ˜30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4-112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270-4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4-112820 based on archival optical, ultraviolet, X-ray, and γ-ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.

  2. The low-mass X-ray binary-millisecond radio pulsar birthrate problem revisited

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We investigate the birthrate problem for low-mass X-ray binaries(LMXBs) and millisecond radio pulsars(MRPs) in this paper.We consider intermediate-mass and low-mass X-ray binaries(I/LMXBs) to be the progenitors of MRPs,and calculate their evolutionary response to the cosmic star formation rate(SFR) both semi-analytically and numerically.With a typical value(1 Gyr) of the LMXB lifetime,one may expect comparable birthrates of LMXBs and MRPs,but the calculated number of LMXBs is an order of magnitude higher than that observed in the Galaxy.Instead,we suggest that the birthrate problem could be solved if most MRPs have evolved from faint to rather than bright LMXBs.The former may have a population of-104 in the Galaxy.

  3. X-ray spectra of hot accretion flows

    CERN Document Server

    Niedzwiecki, Andrzej; Stepnik, Agnieszka

    2014-01-01

    We study radiative properties of hot accretion flows in a general relativistic model with an exact treatment of global Comptonization, developed in our recent works. We note a strong dependence of electron temperature on the strength of magnetic field and we clarify that the underlying mechanism involves the change of the flow structure, with more strongly magnetised flows approaching the slab geometry more closely. We find that the model with thermal synchrotron radiation being the main source of seed photons agrees with the spectral index vs Eddington ratio relation observed in black hole transients below 1 per cent of the Eddington luminosity, LEdd, and models with a weak direct heating of electrons (small delta) are more consistent with observations. Models with large delta predict slightly too soft spectra, furthermore, they strongly overpredict electron temperatures at ~0.01 LEdd. The low-luminosity spectra, at <0.001 LEdd, deviate from a power-law shape in the soft X-ray range and we note that the f...

  4. A NuSTAR Observation of the Gamma-Ray-Emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4-112820

    CERN Document Server

    Bogdanov, Slavko

    2015-01-01

    I present a 40 kilosecond Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4-112820, which is associated with the high-energy gamma-ray source 3FGL J1544.6--1125. The system is detected up to ~30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4-112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270-4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosities. I also examine the long-term accretion history of 1RXS J154439.4-112820 based on archival optical, ultraviolet, X-ray, and $\\gamma$-ray light curves covering the past $\\sim$decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that ...

  5. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs

  6. On the dependence of the X-ray continuum variations with luminosity in accreting X-ray pulsars

    CERN Document Server

    Postnov, K A; Klochkov, D; Laplace, E; Lukin, V V; Shakura, N I

    2015-01-01

    Using RXTE/ASM archival data, we investigate the behaviour of the spectral hardness ratio as a function of X-ray luminosity in a sample of six transient X-ray pulsars (EXO 2030+375, GX 304-1, 4U 0115+63, V 0332+63, A 0535+26 and MXB 0656-072). In all sources we find that the spectral hardness ratio defined as $F_{5-12\\mathrm{keV}}/ F_{1.33-3\\mathrm{keV}}$ increases with the ASM flux (1.33--12 keV) at low luminosities and then saturates or even slightly decreases above some critical X-ray luminosity falling into the range $\\sim(3-7)\\times10^{37}$~erg~s$^{-1}$. Two-dimensional structure of accretion columns in the radiation-diffusion limit is calculated for two possible geometries (filled and hollow cylinder) for mass accretion rates $\\dot M$ ranging from $10^{17}$ to 1.2$\\times 10^{18}$~g s$^{-1}$. The observed spectral behaviour in the transient X-ray pulsars with increasing $\\dot M$ can be reproduced by a Compton saturated sidewall emission from optically thick magnetized accretion columns with taking into a...

  7. XMM-Newton observations of two transient millisecond X-ray pulsars in quiescence

    CERN Document Server

    Campana, S; Stella, L; Israel, G L

    2005-01-01

    We report on XMM-Newton observations of two X-ray transient millisecond pulsars (XRTMSPs). We detected XTE J0929-314 with an unabsorbed luminosity of \\~7x10^{31} erg/s. (0.5-10 keV) at a fiducial distance of 10 kpc. The quiescent spectrum is consistent with a simple power law spectrum. The upper limit on the flux from a cooling neutron star atmosphere is about 20% of the total flux. XTE J1807-294 instead was not detected. We can put an upper limit on the source quiescent 0.5-10 keV unabsorbed luminosity <4x10^{31} erg/s at 8 kpc. These observations strenghten the idea that XRTMSPs have quiescent luminosities significantly lower than classical neutron star transients.

  8. On the dependence of the X-ray continuum variations with luminosity in accreting X-ray pulsars

    Science.gov (United States)

    Postnov, K. A.; Gornostaev, M. I.; Klochkov, D.; Laplace, E.; Lukin, V. V.; Shakura, N. I.

    2015-09-01

    Using RXTE/ASM archival data, we investigate the behaviour of the spectral hardness ratio as a function of X-ray luminosity in a sample of six transient X-ray pulsars (EXO 2030+375, GX 304-1, 4U 0115+63, V 0332+63, A 0535+26 and MXB 0656-072). In all sources we find that the spectral hardness ratio defined as F5-12 keV/F1.33-3 keV increases with the ASM flux (1.33-12 keV) at low luminosities and then saturates or even slightly decreases above some critical X-ray luminosity falling into the range ˜(3-7) × 1037 erg s-1. Two-dimensional structure of accretion columns in the radiation-diffusion limit is calculated for two possible geometries (filled and hollow cylinder) for mass accretion rates dot{M} ranging from 1017 to 1.2 × 1018 g s-1. The observed spectral behaviour in the transient X-ray pulsars with increasing dot{M} can be reproduced by a Compton-saturated sidewall emission from optically thick magnetized accretion columns with taking into account the emission reflected from the neutron star atmosphere. At dot{M} above some critical value dot{M}_cr˜ (6-8)× 10^{17} g s-1, the height of the column becomes such that the contribution of the reflected component to the total emission starts decreasing, which leads to the saturation and even slight decrease of the spectral hardness. Hollow-cylinder columns have a smaller height than the filled-cylinder ones, and the contribution of the reflected component in the total emission does not virtually change with dot{M} (and hence the hardness of the continuum monotonically increases) up to higher mass accretion rates than dot{M}_cr for the filled columns.

  9. Low-Mass X-Ray Binaries, Millisecond Radio Pulsars, and the Cosmic Star Formation Rate

    CERN Document Server

    White, N E; White, Nicholas E.; Ghosh, Pranab

    1998-01-01

    We report on the implications of the peak in the cosmic star-formation rate (SFR) at redshift z ~ 1.5 for the resulting population of low-mass X-ray binaries(LMXB) and for that of their descendants, the millisecond radio pulsars (MRP). Since the evolutionary timescales of LMXBs, their progenitors, and their descendants are thought be significant fractions of the time-interval between the SFR peak and the present epoch, there is a lag in the turn-on of the LMXB population, with the peak activity occurring at z ~ 0.5 - 1.0. The peak in the MRP population is delayed further, occurring at z < 0.5. We show that the discrepancy between the birthrate of LMXBs and MRPs, found under the assumption of a stead-state SFR, can be resolved for the population as a whole when the effects of a time-variable SFR are included. A discrepancy may persist for LMXBs with short orbital periods, although a detailed population synthesis will be required to confirm this. Further, since the integrated X-ray luminosity distribution of...

  10. X-ray and $\\gamma$-ray Studies of the Millisecond Pulsar and PossibleX-ray Binary/Radio Pulsar Transition Object PSR J1723-2837

    CERN Document Server

    Bogdanov, Slavko; Crawford, Fronefield; Possenti, Andrea; McLaughlin, Maura A; Freire, Paulo

    2013-01-01

    We present X-ray observations of the ``redback'' eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and $\\gamma$-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a $\\gamma$-ray point source, due to the strong Galactic diffuse emission at i...

  11. Inner edge of accretion disks in low mass X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    李向东; 汪珍如

    1995-01-01

    The magnitude of the inner edge of accretion disks in low mass X-ray binaries is controversial in theoretical considerations and observations. Using the inner boundary conditions of accretion disks the inner disk radius has been calculated by taking into account the effect of feedback radiation and the deviation of disk rotation from Keplerian. Results have been applied to the observations and possible interpretations have been proposed for the X-ray spectra and quasiperiodic oscillations.

  12. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    CERN Document Server

    Shahbaz, T; Nevado, S P; Rodríguez-Gil, P; Casares, J; Dhillon, V S; Marsh, T R; Littlefair, S; Leckngam, A; Poshyachinda, S

    2015-01-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ~20 s with amplitudes of ~0.1-0.5 mag and additional large flare events on time-scales of ~5-60 min with amplitudes ~0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ~250 s and a median ingr...

  13. Evidence of Fast Magnetic Field Evolution in an Accreting Millisecond Pulsar

    CERN Document Server

    Patruno, A

    2012-01-01

    The large majority of neutron stars (NSs) in low mass X-ray binaries (LMXBs) have never shown detectable pulsations despite several decades of intense monitoring. The reason for this remains an unsolved problem that hampers our ability to measure the spin frequency of most accreting NSs. The accreting millisecond X-ray pulsar (AMXP) HETE J1900.1--2455 is an intermittent pulsar that exhibited pulsations at about 377 Hz for the first 2 months and then turned in a non-pulsating source. Understanding why this happened might help to understand why most LMXBs do not pulsate. We present a 7 year long coherent timing analysis of data taken with the Rossi X-ray Timing Explorer. We discover new sporadic pulsations that are detected on a baseline of about 2.5 years. We find that the pulse phases anti-correlate with the X-ray flux as previously discovered in other AMXPs. We place stringent upper limits of 0.05% rms on the pulsed fraction when pulsations are not detected and identify an enigmatic pulse phase drift of ~180...

  14. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, James F.; McClintock, Jeffrey E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Orosz, Jerome A. [Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1221 (United States); Buxton, Michelle M.; Bailyn, Charles D. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); Kara, Erin, E-mail: jsteiner@cfa.harvard.edu [Department of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  15. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    International Nuclear Information System (INIS)

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  16. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Science.gov (United States)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  17. Accretion, Ablation and Propeller Evolution in Close Millisecond Pulsar Binary Systems

    CERN Document Server

    Kiel, P D

    2013-01-01

    A model for the formation and evolution of binary millisecond radio pulsars in systems with low mass companions (< 0.1 Msun) is investigated using a binary population synthesis technique. Taking into account the non conservative evolution of the system due to mass loss from an accretion disk as a result of propeller action and from the companion via ablation by the pulsar, the transition from the accretion powered to rotation powered phase is investigated. It is shown that the operation of the propeller and ablation mechanisms can be responsible for the formation and evolution of black widow millisecond pulsar systems from the low mass X-ray binary phase at an orbital period of ~0.1 day. For a range of population synthesis input parameters, the results reveal that a population of black widow millisecond pulsars characterized by orbital periods as long as ~0.4 days and companion masses as low as ~0.005 Msun can be produced. The orbital periods and minimum companion mass of this radio millisecond pulsar popu...

  18. Seeing to the Event Horizon: Probing Accretion Physics with X-ray Reflection

    Science.gov (United States)

    Wilkins, Dan

    2015-09-01

    Accretion onto supermassive black holes in active galactic nuclei is known to power some of the most luminous objects we see in the Universe, which through their vast energy outputs must have played an important role in shaping the large scale structure of the Universe we see today. Much remains unknown, however, about the fine details of this process; exactly how energy is liberated from accretion flows onto black holes, how the 'corona' that produces the intense X-ray continuum is formed and what governs this process over time. I will outline how the detection of X-rays reflected from the discs of accreting material around black holes by the present generation of large X-ray observatories, shifted in energy and blurred by relativistic effects in the strong gravitational field close to the black hole, has enabled measurements of the inner regions of the accretion flow in unprecedented detail. In particular, exploiting the shift in energy of atomic emission lines by relativistic effects as a function of location on the disc has enabled the measurement of the illumination pattern of the accretion flow by the X-ray continuum from which the geometry of the emitting region can be inferred and how the detection of time lags between the primary and reflected X-rays owing to the additional path the reflected rays must travel between the corona and the disc places further constraints on the nature of the emitting corona. These techniques allow the evolution of the corona that accompanies transitions from high to low X-ray flux to be studied, giving clues to the physical process that forms and powers the intense X-ray source and uncovering evidence for the potential launching of jets. I will discuss the great steps forward in understanding accretion physics that can be made with the Athena X-ray observatory, combining detailed analysis of observations with predictions and models from general relativistic ray tracing simulations. In particular, I will discuss how high

  19. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.;

    2014-01-01

    the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects....

  20. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Esposito, Paolo [INAF-IASF Milano, via East Bassini 15, I-20133 Milano (Italy); Crawford III, Fronefield [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Possenti, Andrea [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); McLaughlin, Maura A. [Department of Physics and Astronomy, West Virginia University, 210E Hodges Hall, Morgantown, WV 26506 (United States); Freire, Paulo, E-mail: slavko@astro.columbia.edu [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany)

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  1. X-ray reflection in oxygen-rich accretion discs of ultra-compact X-ray binaries

    CERN Document Server

    Madej, O K; Jonker, P G; Parker, M L; Ross, R; Fabian, A C; Chenevez, J

    2014-01-01

    We present spectroscopic X-ray data of two candidate ultra-compact X-ray binaries: 4U~0614+091 and 4U~1543$-$624. We confirm the presence of a broad O VIII Ly$\\alpha$ reflection line (at $\\approx18\\ \\AA$) using {\\it XMM-Newton} and {\\it Chandra} observations obtained in 2012 and 2013. The donor star in these sources is carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O VIII Ly$\\alpha$ line particularly strong. We also confirm the presence of a strong absorption edge at $\\approx14$ \\AA\\ so far interpreted in the literature as due to absorption by neutral neon in the circumstellar and interstellar medium. However, the abundance required to obtain a good fit to this edge is $\\approx3-4$ times solar, posing a problem for this interpretation. Furthermore, modeling the X-ray reflection off a carbon and oxygen enriched, hydrogen and helium poor disc with models assuming solar composition likely biases several of the best-fit parameters. In order to...

  2. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    CERN Document Server

    Fukumura, Keigo; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-01-01

    We propose a novel theoretical model to describe a physical identity of the soft X-ray excess, ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit (ISCO) around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic (GRMHD) accretion which has implied that the accreting plasma can develop into a standing shock for suitable physical conditions causing the downstream flow to be sufficiently hot due to shock compression. We numerically calculate to examine, for sets of fiducial plasma parameters, a physical nature of fast MHD shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-paramet...

  3. Ultraluminous X-ray sources as super-Eddington accretion disks

    CERN Document Server

    Fabrika, Sergei; Atapin, Kirill

    2016-01-01

    The origin of Ultraluminous X-ray sources (ULXs) in external galaxies whose X-ray luminosities exceed those of the brightest black holes in our Galaxy by hundreds and thousands of times is mysterious. The most popular models for the ULXs involve either intermediate mass black holes (IMBHs) or stellar-mass black holes accreting at super-Eddington rates. Here we review the ULX properties, their X-ray spectra indicate a presence of hot winds in their accretion disks supposing the supercritical accretion. However, the strongest evidences come from optical spectroscopy. The spectra of the ULX counterparts are very similar to that of SS 433, the only known supercritical accretor in our Galaxy.

  4. Patchy Accretion Disks in Ultraluminous X-ray Sources

    CERN Document Server

    Miller, J M; Barret, D; Harrison, F A; Fabian, A C; Webb, N A; Walton, D J; Rana, V

    2014-01-01

    The X-ray spectra of the most extreme ultra-luminous X-ray sources -- those with L > 1 E+40 erg/s -- remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT_e ~ 2 keV) and high optical depths (tau ~ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the p...

  5. A statistical study of the relation between soft X-ray excess and accretion disk

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To study the origin of the soft X-ray excess,we compile a sample of 94 unobscured,radio-quiet QSOs and Seyfert galaxies with available data from GALEX and ROSAT.We find that 50 sources show strong soft X-ray excess and the other 44 show weak/no soft X-ray excess.Systematic analyses of the data indicate that the difference in soft X-rays is mainly but not only resulting from different accretion rates(in units of Eddington rate).The statistical study of the sources with soft X-ray excess shows that the strength of soft X-ray excess weakly and positively correlates with the Eddington ratio and increases with the increase of the strength of UV radiations relative to the X-rays.Provided that the UV emissions are from the thin disk,the correlations imply that the origin of soft X-ray excess is associated with the thin disk,either by means of Comptonization of the disk photons or in some other ways.

  6. An accretion disk swept up by a powerful thermonuclear X-ray burst

    Science.gov (United States)

    Degenaar, Nathalie

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. Swift recently caught a very energetic type-I X-ray burst from the neutron star IGR J17062-6143 that displayed exceptional features. Firstly, the light curve of the 18 minute long X-ray burst tail shows an episode of 10 minutes with wild X-ray intensity fluctuations. Secondly, X-ray spectral analysis revealed a highly significant emission line around 1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. Finally, the detection of significant absorption lines and edges in the Fe-K band are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent emission of the source. The X-ray burst of IGR J17062-6143 shows the first unambiguous detection of atomic features at CCD resolution. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line, and photo-ionization modeling of the Fe-K absorption features each independently point to swept-up gas at a radius of ~1000 km from the neutron star. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  7. X-ray optical depth diagnostics of T Tauri accretion shocks

    CERN Document Server

    Argiroffi, C; Peres, G; Drake, J J; Santiago, J Lopez; Sciortino, S; Stelzer, B

    2009-01-01

    In classical T Tauri stars, X-rays are produced by two plasma components: a hot low-density plasma, with frequent flaring activity, and a high-density lower temperature plasma. The former is coronal plasma related to the stellar magnetic activity. The latter component, never observed in non-accreting stars, could be plasma heated by the shock formed by the accretion process. However its nature is still being debated. Our aim is to probe the soft X-ray emission from the high-density plasma component in classical T Tauri stars to check whether this is plasma heated in the accretion shock or whether it is coronal plasma. High-resolution X-ray spectroscopy allows us to measure individual line fluxes. We analyze X-ray spectra of the classical T Tauri star MP Muscae and TW Hydrae. Our aim is to evaluate line ratios to search for optical depth effects, which are expected in the accretion-driven scenario. We also derive the plasma emission measure distributions EMD, to investigate whether and how the EMD of accreting...

  8. MN Lup: X-rays from a weakly accreting T Tauri star

    CERN Document Server

    Guenther, H M; Robrade, J; Wolk, S J

    2013-01-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L_X/L_bol close to the saturation limit. However, we find high densities (n_e > 3e10 /cm^3) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2e-11 M_sun/yr. Despite the simple Halpha line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption li...

  9. X-Ray Iron Line Constraints on the Inner Accretion Disk and Black Hole Spin

    Science.gov (United States)

    Reynolds, C. S.

    2000-01-01

    The broad iron line, seen in the X-ray spectra of many AGN, is thought to originate from the inner regions of the black hole accretion disk. I will summarize recent developments in using this line to probe the accretion disk structure, as well as the mass and spin of black holes n Seyfert galaxies. In particular, I will present observational evidence suggesting that the inner regions of the accretion disks in low-luminosity AGN (LLAGN) are distinctly different from those in higher-luminosity AGN. This tentative result lends support models of LLAGN based upon advective accretion disks.

  10. Time-dependent X-ray emission from unstable accretion disks around black holes

    Science.gov (United States)

    Mineshige, Shin; Kim, Soon-Wook; Wheeler, J. Craig

    1990-01-01

    The spectral evolution of accretion disks in X-ray binaries containing black holes is studied, based on the disk instability model. The thermal transition of the outer portions of the disk controls the mass flow rate into the inner portions of the disk, thus modulating the soft X-ray flux which is thought to arise from the inner disk. Calculated soft X-ray spectra are consistent with the observations of the X-ray transient A0620 - 00 and especially ASM 2000 + 25, the soft X-ray spectra of which are well fitted by blackbody radiation with a fixed inner edge of the disk, Rin, and with monotonically decreasing temperature at Rin with time. Since the gas pressure is always dominant over the radiation pressure during the decay in these models, a two-temperature region is difficult to create. Instead, it is suggested that hard X-rays are generated in a hot (kT greater than 10 keV) accretion disk corona above the cool (kT less than 1 keV) disk.

  11. Accretion regimes in the X-ray pulsar 4U 1901+03

    CERN Document Server

    Reig, P

    2016-01-01

    The source 4U 1901+03 is a high-mass X-ray pulsar than went into outburst in 2003. Observation performed with the Rossi X-ray Timing Explorer showed spectral and timing variability, including the detection of flares, quasi-periodic oscillations, complex changes in the pulse profiles, and pulse phase dependent spectral variability. We re-analysed the data covering the 2003 X-ray outburst and focused on several aspects of the variability that have not been discussed so far. These are the 10 keV feature and the X-ray spectral states and their association with accretion regimes, including the transit to the propeller state at the end of the outburst. We find that 4U 1901+03 went through three accretion regimes over the course of the X-ray outburst. At the peak of the outburst and for a very short time, the X-ray flux may have overcome the critical limit that marks the formation of a radiative shock at a certain distance above the neutron star surface. Most of the time, however, the source is in the subcritical re...

  12. A new model for the X-ray continuum of the magnetized accreting pulsars

    Science.gov (United States)

    Farinelli, Ruben; Ferrigno, Carlo; Bozzo, Enrico; Becker, Peter A.

    2016-06-01

    Context. Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high-quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models rather than models linked to the physics of accretion. Aims: In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku +NuStar data, together with an advanced version of the compmag model, which provides a physical description of the high-energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. Methods: The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been improved and consolidated during the preparation of this paper. Results: Our analysis shows that the broad-band X-ray continuum of all considered sources can be self-consistently described by the compmag model. The cyclotron absorption features (not included in the model) can be accounted for by using Gaussian components. From the fits of the compmag model to the data we inferred the physical properties of the accretion columns in all sources, finding values reasonably close to those theoretically expected according to our current understanding of accretion in highly magnetized neutron stars. Conclusions: The updated version of the compmag model has been tailored to the physical processes that are known to occur in the columns of highly magnetized accreting neutron stars and it can thus provide a better understanding of the high-energy radiation from these sources. The availability of broad-band high-quality X-ray data, such as those provided by BeppoSAX in

  13. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    OpenAIRE

    Dexter, Jason; Quataert, Eliot

    2012-01-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal state (TD) to the higher variability, non-thermal steep power law state (SPL). The disc component in all states is typically modeled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability, and gravitational microlensing observations of active galactic nucl...

  14. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    CERN Document Server

    Middleton, Matthew J; Fabian, Andrew; Roberts, Timothy P; Heil, Lucy; Pinto, Ciro; Anderson, Gemma; Sutton, Andrew

    2015-01-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or emission and potentially broadened by velocity dispersion could therefore hold the key to understanding much about these enigmatic sources. Here we show for the first time that such residuals are seen in several sources and appear extremely similar in shape, implying a common origin. Via simple arguments we assert that emission from extreme colliding winds, absorption in a shell of material associated with the ULX nebula and thermal plasma emission associated with star formation are all highly unlikely to provide an origin. Whilst CCD spectra lack the energy resolution necessary to directly determine the nature of the features (i.e. formed of a complex of narrow lines or intrinsically broad), studying the evolution of t...

  15. The soft quiescent spectrum of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands

    2011-01-01

    We report on the quiescent X-ray properties of the recently discovered transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5. Using two archival Chandra observations, we demonstrate that the quiescent spectrum of this neutron star low-mass X-ray binary is soft and can be fit to a

  16. MN Lup: X-RAYS FROM A WEAKLY ACCRETING T TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H. M.; Wolk, S. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wolter, U.; Robrade, J., E-mail: hguenther@cfa.harvard.edu [Universitaet Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2013-07-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L{sub X} /L{sub bol} close to the saturation limit. However, we find high densities (n{sub e} > 3 Multiplication-Sign 10{sup 10} cm{sup -3}) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub Sun} yr{sup -1}. Despite the simple H{alpha} line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the H{alpha} line we see a prominence in absorption about 2R{sub *} above the stellar surface-the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  17. Relativistic X-ray Lines from the Inner Accretion Disks Around Black Holes

    CERN Document Server

    Miller, J M

    2007-01-01

    Relativistic X-ray emission lines from the inner accretion disk around black holes are reviewed. Recent observations with the Chandra X-ray Observatory, X-ray Multi-Mirror Mission-Newton, and Suzaku are revealing these lines to be good probes of strong gravitational effects. A number of important observational and theoretical developments are highlighted, including evidence of black hole spin and effects such as gravitational light bending, the detection of relativistic lines in stellar-mass black holes, and evidence of orbital-timescale line flux variability. In addition, the robustness of the relativistic disk lines against absorption, scattering, and continuum effects is discussed. Finally, prospects for improved measures of black hole spin and understanding the spin history of supermassive black holes in the context of black hole-galaxy co-evolution are presented. The best data and most rigorous results strongly suggest that relativistic X-ray disk lines can drive future explorations of General Relativiti...

  18. A new model for the X-ray continuum of the magnetized accreting pulsars

    CERN Document Server

    Farinelli, R; Bozzo, E; Becker, P A

    2016-01-01

    Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high statistical quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models, rather than models linked to the physics of accretion. In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku+NuStar data, together with an advanced version of the compmag model. The latter provides a physical description of the high energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been impr...

  19. Detection of accretion X-rays from QS Vir: cataclysmic or a lot of hot air?

    CERN Document Server

    Matranga, Marco; Kashyap, Vinay; Steeghs, Danny

    2012-01-01

    An XMM-Newton observation of the nearby "pre-cataclysmic" short-period (P_orb = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of Mdot= 1.7\\times10^-13M\\odot/yr. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass loss rate of Mdot ~ 2 \\times 10^-12M\\odot/yr if the accretion efficiency is of the order of 10%. Consideration of likely mass loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We sp...

  20. Magneto-Levitation Accretion in High Mass X-ray Binaries

    Science.gov (United States)

    Pustilnik, Lev; Beskrovnaya, Nina; Ikhsanov, Nazar; Kim, Vitally; Likh, Yuri

    A wind-fed accretion by a neutron star in a High Mass X-ray Binary is discussed. We show that the structure and physical parameters of the accretion flow onto the neutron star strongly depends on the magnetic field strength in the stellar wind of its massive companion. A neutron star accreting material from a magnetized wind is expected to be surrounded by a dense non-Keplerian disk (magnetic slab) in which the material is confined by the magnetic field of the accretion flow itself. The accretion process in this case is governed by anomalous (Bohm) diffusion. We find that spin evolution and equilibrium period of the pulsar within this magneto-levitation accretion scenario are consistent with the observed values.

  1. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    Science.gov (United States)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  2. Probing the Birth of Post-merger Millisecond Magnetars with X-Ray and Gamma-Ray Emission

    Science.gov (United States)

    Wang, Ling-Jun; Dai, Zi-Gao; Liu, Liang-Duan; Wu, Xue-Feng

    2016-05-01

    There is growing evidence that a stable magnetar could be formed from the coalescence of double neutron stars. In previous papers, we investigated the signature of formation of stable millisecond magnetars in radio and optical/ultraviolet bands by assuming that the central rapidly rotating magnetar deposits its rotational energy in the form of a relativistic leptonized wind. We found that the optical transient PTF11agg could be the first evidence for the formation of post-merger millisecond magnetars. To enhance the probability of finding more evidence for the post-merger magnetar formation, it is better to extend the observational channel to other photon energy bands. In this paper, we propose to search the signature of post-merger magnetar formation in X-ray and especially gamma-ray bands. We calculate the synchrotron self-Compton (SSC) emission of the reverse shock powered by post-merger millisecond magnetars. We find that the SSC component peaks at 1 {GeV} in the spectral energy distribution and extends to ≳ 10 {TeV} for typical parameters. These energy bands are quite suitable for Fermi Large Area Telescope and Cherenkov Telescope Array (CTA), which, with their current observational sensitivities, can detect the SSC emission powered by post-merger magnetars up to 1 {Gpc}. NuSTAR, which is sensitive in X-ray bands, can detect the formation of post-merger millisecond magnetars at redshift z˜ 1. Future improvements in the sensitivity of CTA can also allow us to probe the birth of post-merger millisecond magnetars at redshift z˜ 1. However, because of the γ-γ collisions, strong high-energy emission is clearly predicted only for ejecta masses lower than {10}-3 {M}⊙ .

  3. X-ray reflected spectra from accretion disk models.II. Diagnostic tools for X-ray observations

    CERN Document Server

    Garcia, J; Mushotzky, R F

    2011-01-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2-10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe K$\\alpha$ with the ionization parameter. The maximum value of the EW is $\\sim 800$ eV for models with log $\\xi\\sim 1.5$, and decreases monotonically as $\\xi$ increases. For lower values of $\\xi$ the Fe K$\\alpha$ EW decreases to a minimum near log $\\xi\\sim 0.8$. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2-10 keV...

  4. Understanding X-ray reflection as a probe of accreting black holes

    OpenAIRE

    Wilkins, Daniel Richard

    2013-01-01

    The reflection of the X-rays emitted from a corona of energetic particles surrounding an accreting black hole from the accretion disc is investigated in the context of probing the structure of the central regions as well as the physical processes that power some of the brightest objects seen in the Universe. A method is devised to measure the emissivity profile of the accretion disc, that is the reflected flux as a function of radius in the disc. This method exploits the variation in the D...

  5. X-ray Diagnostics of Grain Depletion in Matter Accreting onto T Tauri Stars

    CERN Document Server

    Hartmann, J J D P T L

    2005-01-01

    Recent analysis of high resolution Chandra X-ray spectra has shown that the Ne/O abundance ratio is remarkably constant in stellar coronae. Based on this result, we point out the utility of the Ne/O ratio as a discriminant for accretion-related X-rays from T Tauri stars, and for probing the measure of grain-depletion of the accreting material in the inner disk. We apply the Ne/O diagnostic to the classical T Tauri stars BP Tau and TW Hya--the two stars found to date whose X-ray emission appears to originate, at least in part, from accretion activity. We show that TW Hya appears to be accreting material which is significantly depleted in O relative to Ne. In constrast, BP Tau has an Ne/O abundance ratio consistent with that observed for post-T Tauri stars. We interpret this result in terms of the different ages and evolutionary states of the circumstellar disks of these stars. In the young BP Tau disk (age 0.6 Myr) dust is still present near the disk corotation radius and can be ionized and accreted, re-releas...

  6. An evolutionary channel towards the accreting millisecond pulsar SAX J1808.4-3658

    CERN Document Server

    Chen, Wen-Cong

    2016-01-01

    Recent timing analysis reveals that the orbital period of the first discovered accreting millisecond pulsar SAX J1808.4-3658 is increasing at a rate $\\dot{P}_{\\rm orb}=(3.89\\pm0.15)\\times 10^{-12}~\\rm s\\,s^{-1}$, which is at least one order of magnitude higher than the value arising from the conservative mass transfer. An ejection of mass loss rate of $10^{-9}~\\rm M_{\\odot}{\\rm yr}^{-1}$ from the donor star at the inner Lagrangian point during the quiescence state could interpret the observed orbital period derivative. However, it is unknown whether this source can offer such a high mass loss rate. In this work, we attempt to investigate an evolutionary channel towards SAX J1808.4-3658. Once the accretion disk becomes thermally and viscously unstable, the spin-down luminosity of the millisecond pulsar and the X-ray luminosity during outbursts are assumed to evaporate the donor star, and the resulting winds carry away the specific orbital angular momentum at the inner Lagrangian point. Our scenario could yield...

  7. The quiescent state of the accreting X-ray pulsar SAX J2103.5+4545

    CERN Document Server

    Reig, P; Zezas, A

    2014-01-01

    We present an X-ray timing and spectral analysis of the Be/X-ray binary SAX J2103.5+4545 at a time when the Be star's circumstellar disk had disappeared and thus the main reservoir of material available for accretion had extinguished. In this very low optical state, pulsed X-ray emission was detected at a level of L_X~10^{33} erg/s. This is the lowest luminosity at which pulsations have ever been detected in an accreting pulsar. The derived spin period is 351.13 s, consistent with previous observations. The source continues its overall long-term spin-up, which reduced the spin period by 7.5 s since its discovery in 1997. The X-ray emission is consistent with a purely thermal spectrum, represented by a blackbody with kT=1 keV. We discuss possible scenarios to explain the observed quiescent luminosity and conclude that the most likely mechanism is direct emission resulting from the cooling of the polar caps, heated either during the most recent outburst or via intermittent accretion in quiescence.

  8. Electromagnetic Spindown of a Transient Accreting Millisecond Pulsar During Quiescence

    Science.gov (United States)

    Melatos, A.; Mastrano, A.

    2016-02-01

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  9. GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xuefeng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Hou Shujin [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Lei Weihua, E-mail: xfwu@pmo.ac.cn, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-04-20

    A particularly interesting discovery in observations of GRB 121027A is that of a giant X-ray bump detected by the Swift/X-Ray Telescope. The X-ray afterglow re-brightens sharply at {approx}10{sup 3} s after the trigger by more than two orders of magnitude in less than 200 s. This X-ray bump lasts for more than 10{sup 4} s. It is quite different from typical X-ray flares. In this Letter we propose a fall-back accretion model to interpret this X-ray bump within the context of the collapse of a massive star for a long-duration gamma-ray burst. The required fall-back radius of {approx}3.5 Multiplication-Sign 10{sup 10} cm and mass of {approx}0.9-2.6 M{sub Sun} imply that a significant part of the helium envelope should survive through the mass loss during the last stage of the massive progenitor of GRB 121027A.

  10. Spectral Modeling of the Comptonized Continua of Accreting X-Ray Pulsars: Recent Progress

    Science.gov (United States)

    Wolff, Michael T.; Becker, P. A.; Marcu, D.; Pottschmidt, K.; Wilms, J.; Wood, K. S.

    2014-01-01

    We are undertaking a program to analyze the X-ray spectra of the accretion flows onto strongly magnetic neutron stars in high mass binary systems such as Her X-1, Cen X-3, and LMC X-4. These accreting pulsars typically have X-ray spectra consisting of broad Comptonized cutoff power-laws. Current theory suggests these X-ray spectra result from the impact of the high-velocity magnetically channeled plasma accretion flows onto the surfaces of the neutron stars. The flows have such high energy density that shocks developing in the plasmas can be radiation-dominated. These X-ray pulsars often, but not always, show cyclotron resonant scattering features implying neutron star surface magnetic field strengths above 10^12 G. Over the past few years a number of studies have reported both positive and negative correlations of the cyclotron line energy centroids with X-ray luminosity in a number of pulsars. However, the detailed analysis of the cyclotron line centroids suffers from the lack of a robust model for the Comptonized X-ray continuum upon which the cyclotron lines are superposed. We discuss in this presentation our progress in developing tools for the analysis of the X-ray spectra formed in these systems. The range of parameter conditions presented by the many known real accreting pulsar systems substantially exceeds that of the limited set of pulsars on which the original analytic model of Becker and Wolff (2007) was validated. In the high temperature optically thick plasmas, the processes of bremsstrahlung emission from the hot plasma, black body emission from a thermal mound near the neutron star surface, and cyclotron emission from electrons in the first Landau excited state, all contribute to the total local photon population in the shock structure. We discuss our strategy for numerically accounting for the relative contribution to the full X-ray spectrum made by each of these physical processes. Solving for the integrated spectrum involves numerical

  11. Evidence for Magneto-Levitation Accretion in Long-Period X-ray Pulsars

    CERN Document Server

    Ikhsanov, Nazar; Likh, Yury

    2014-01-01

    Study of observed spin evolution of long-period X-ray pulsars challenges quasi-spherical and Keplerian disk accretion scenarios. It suggests that the magnetospheric radius of the neutron stars is substantially smaller than Alfven radius and the spin-down torque applied to the star from accreting material significantly exceeds the value predicted by the theory. We show that these problems can be avoided if the fossil magnetic field of the accretion flow itself is incorporated into the accretion model. The initially spherical flow in this case decelerates by its own magnetic field and converts into a non-Keplerian disk (magnetic slab) in which the material is confined by its intrinsic magnetic field ("levitates") and slowly moves towards the star on a diffusion timescale. Parameters of pulsars expected within this magneto-levitation accretion scenario are evaluated.

  12. X-ray iron line variability constraints on the inner accretion disk

    CERN Document Server

    Reynolds, C S

    2000-01-01

    After reviewing the basic physics of X-ray reflection in AGN, we present three case studies which illustrate the current state of X-ray reflection studies. For the low-luminosity AGN NGC4258, we find that the iron line is much narrower than is typically found in higher luminosity AGN. We argue that this is evidence for either a truncated cold accretion disk (possibly due to a transition to an advection dominate accretion flow at r ~ 100GM/c^2) or a large r ~ 100GM/c^2 X-ray emitting corona surrounding the accretion disk. We also present results for the higher luminosity Seyfert nuclei in NGC5548 and MCG-6-30-15. In both of these sources, RXTE shows that the iron line equivalent width decreases with increasing luminosity. Furthermore, the iron line equivalent width is found to be anticorrelated with the relative strength of the reflection continuum, contrary to all simple reflection models. It is proposed that continuum-flux correlated changes in the ionization of the accretion disk surface can explain this sp...

  13. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    CERN Document Server

    Bozzo, E; Feldmeier, A; Falanga, M

    2016-01-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the non-stationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total time scale of several hours), the transition of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the non-stationary wind. Th...

  14. Application of a physical continuum model to recent X-ray observations of accreting pulsars

    Science.gov (United States)

    Marcu-Cheatham, Diana Monica; Pottschmidt, Katja; Wolff, Michael Thomas; Becker, Peter A.; Wood, Kent S.; Wilms, Joern; Britton Hemphill, Paul; Gottlieb, Amy; Fuerst, Felix; Schwarm, Fritz-Walter; Ballhausen, Ralf

    2016-04-01

    We present a uniform spectral analysis in the 0.5-50 keV energy range of a sample of accreting pulsars by applying an empirical broad-band continuum cut-off power-law model. We also apply the newly implemented physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435) to a number of high-luminosity sources. The X-ray spectral formation process in this model consists of the Comptonization of bremsstrahlung, cyclotron, and black body photons emitted by the hot, magnetically channeled, accreting plasma near the neutron star surface. This model describes the spectral formation in high-luminosity accreting pulsars, where the dominant deceleration mechanism is via a radiation-dominated radiative shock. The resulting spectra depend on five physical parameters: the mass accretion rate, the radius of the accretion column, the electron temperature and electron scattering cross-sections inside the column, and the magnetic field strength. The empirical model is fitted to Suzaku data of a sample of high-mass X-ray binaries covering a broad luminosity range (0.3-5 x 10 37 erg/s). The physical model is fitted to Suzaku data from luminous sources: LMC X-4, Cen X-3, GX 304-1. We compare the results of the two types of modeling and summarize how they can provide new insight into the process of accretion onto magnetized neutron stars.

  15. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    CERN Document Server

    Wu, Mao-Chun; Yuan, Ye-Fei; Gan, Zhao-Ming

    2016-01-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down onto the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary our results are consistent with the truncated accretion scenari...

  16. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    Science.gov (United States)

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  17. Durability of the accretion disk of millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.C.; Dessler, A.J.

    1985-05-01

    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk. 10 references.

  18. Durability of the accretion disk of millisecond pulsars.

    Science.gov (United States)

    Michel, F C; Dessler, A J

    1985-05-24

    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk. PMID:17797665

  19. Population synthesis of accreting white dwarfs - II. X-ray and UV emission

    Science.gov (United States)

    Chen, Hai-Liang; Woods, T. E.; Yungelson, L. R.; Gilfanov, M.; Han, Zhanwen

    2015-11-01

    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm interstellar medium (ISM). In an earlier paper, we modelled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code BSE, and then following their evolution with a grid of evolutionary tracks computed with MESA. Now we use these results to estimate the soft X-ray (0.3-0.7 keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of supersoft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at ˜1 Gyr and decline by ˜1-3 orders of magnitude by the age of 10 Gyr. For stellar ages of ˜10 Gyr, predictions of our model are consistent with soft X-ray luminosities observed by Chandra in nearby elliptical galaxies and He II 4686 Å/H β line ratio measured in stacked Sloan Digital Sky Survey spectra of retired galaxies, the latter characterizing the strength and hardness of the UV radiation field. However, the soft X-ray luminosity and He II 4686 Å/H β ratio are significantly overpredicted for stellar ages of ≲4-8 Gyr. We discuss various possibilities to resolve this discrepancy and tentatively conclude that it may be resolved by a modification of the typically used criteria of dynamically unstable mass-loss for giant stars.

  20. X-rays from T Tau: A test case for accreting T Tauri stars

    CERN Document Server

    Güdel, M; Mel'nikov, S Y; Audard, M; Telleschi, A; Briggs, K R

    2006-01-01

    We test models for the generation of X-rays in accreting T Tauri stars (TTS), using X-ray data from the classical TTS T Tau. High-resolution spectroscopy from the Reflection Grating Spectrometers on XMM-Newton is used to infer electron densities, element abundances and the thermal structure of the X-ray source. We also discuss the ultraviolet light curve obtained by the Optical Monitor, and complementary ground-based photometry. A high-resolution image from Chandra constrains contributions from the two companions of T Tau N. The X-ray grating spectrum is rich in emission lines, but shows an unusual mixture of features from very hot (~30 MK) and very cool (1-3 MK) plasma, both emitted by similar amounts of emission measure. The cool plasma confirms the picture of a soft excess in the form of an enhanced OVII/OVIII Lya flux ratio, similar to that previously reported for other accreting TTS. Diagnostics from lines formed by this plasma indicate low electron densities (<~ 1E10 cm-3). The Ne/Fe abundance ratio ...

  1. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    CERN Document Server

    Tombesi, Francesco

    2016-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been dir...

  2. X-ray accretion signatures in the close CTTS binary V4046 Sgr

    CERN Document Server

    Günther, H; Schmitt, J H M M; Robrade, J; Ness, J U

    2006-01-01

    We present Chandra HETGS observations of the classical T Tauri star (CTTS) V4046 Sgr. The He-like triplets of O VII, Ne IX, and Si XIII are clearly detected. Similar to the CTTS TW Hya and BP Tau, the forbidden lines of O VII and Ne IX are weak compared to the intercombination line, indicating high plasma densities in the X-ray emitting regions. The Si XIII triplet, however, is within the low-density limit, in agreement with the predictions of the accretion funnel infall model with an additional stellar corona. V4046 Sgr is the first close binary exhibiting these features. Together with previous high-resolution X-ray data on TW Hya and BP Tau, and in contrast to T Tau, now three out of four CTTS show evidence of accretion funnels.

  3. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    Science.gov (United States)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  4. Thermonuclear Burning on the Accreting X-Ray Pulsar GRO J1744-28

    CERN Document Server

    Bildsten, L; Bildsten, Lars; Brown, Edward F.

    1996-01-01

    We investigate the thermal stability of nuclear burning on the accreting X-ray pulsar GRO J1744-28. The neutron star's dipolar magnetic field is 50 years. We also discuss the nature of the binary and point out that a velocity measurement of the stellar companion (most likely a Roche-lobe filling giant with m_K>17) will constrain the neutron star mass.

  5. Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars

    CERN Document Server

    Metzger, Brian D

    2013-01-01

    The coalescence of binary neutron stars (NSs) may in some cases produce a stable massive NS remnant rather than a black hole. Due to the substantial angular momentum from the binary, such a remnant is born rapidly rotating and likely acquires a strong magnetic field (a `millisecond magnetar'). Magnetic spin-down deposits a large fraction of the rotational energy from the magnetar behind the small quantity of mass ejected during the merger. This has the potential for creating a bright transient that could be useful for determining whether a NS or black hole was formed in the merger. We investigate the expected signature of such an event, including for the first time the important impact of electron/positron pairs injected by the millisecond magnetar into the surrounding nebula. These pairs cool via synchrotron and inverse Compton emission, producing a pair cascade and hard X-ray spectrum. A fraction of these X-rays are absorbed by the ejecta walls and re-emitted as thermal radiation, leading to an optical/UV t...

  6. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    OpenAIRE

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. ...

  7. X-ray emission from classical T Tauri stars: Accretion shocks and coronae?

    CERN Document Server

    Guenther, H M; Robrade, J; Liefke, C

    2007-01-01

    Classical T Tauri stars (CTTS) are surrounded by actively accreting disks. According to current models material falls along the magnetic field lines from the disk with more or less free-fall velocity onto the star, where the plasma heats up and generates X-rays. We want to quantitatively explain the observed high energy emission and measure the infall parameters from the data. Absolute flux measurements allow to calculate the filling factor and the mass accretion rate.We use a numerical model of the hot accretion spot and solve the conservation equations. A comparison to data from XMM-Newton and Chandra shows that our model reproduces the main features very well. It yields for TW Hya a filling factor of 0.3% and a mass accretion rate 2e-10 M_sun/yr.

  8. Interference as an origin of the peaked noise in accreting X-ray binaries

    CERN Document Server

    Veledina, Alexandra

    2016-01-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the up-scattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, the humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the fr...

  9. Population synthesis of accreting white dwarfs: II. X-ray and UV emission

    CERN Document Server

    Chen, Hai-Liang; Yungelson, L R; Gilfanov, M; Han, Zhanwen

    2015-01-01

    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm ISM. In an earlier paper we modeled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code \\textsc{BSE}, and then following their evolution with a grid of evolutionary tracks computed with \\textsc{MESA}. Now we use these results to estimate the soft X-ray (0.3-0.7keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of super-soft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at $\\sim 1$ Gyr and decline by $\\sim 1-3$ orders of magnitude by the age of 10 Gyr. For stellar ages of $\\sim$~10 Gyr, predict...

  10. Hard X-ray emitting black hole fed by accretion of low angular momentum matter

    CERN Document Server

    Igumenshchev, I V; Abramowicz, M A; Igumenshchev, Igor V.; Illarionov, Andrei F.; Abramowicz, Marek Artur

    1999-01-01

    Observed spectra of Active Galactic Nuclei (AGN) and luminous X-ray binaries in our Galaxy suggest that both hot (~10^9 K) and cold (~10^6 K) plasma components exist close to the central accreting black hole. Hard X-ray component of the spectra is usually explained by Compton upscattering of optical/UV photons from optically thick cold plasma by hot electrons. Observations also indicate that some of these objects are quite efficient in converting gravitational energy of accretion matter into radiation. Existing theoretical models have difficulties in explaining the two plasma components and high intensity of hard X-rays. Most of the models assume that the hot component emerges from the cold one due to some kind of instability, but no one offers a satisfactory physical explanation for this. Here we propose a solution to these difficulties that reverses what was imagined previously: in our model the hot component forms first and afterward it cools down to form the cold component. In our model, accretion flow ha...

  11. Anisotropy of X-ray bursts from neutron stars with concave accretion disks

    CERN Document Server

    He, Chong-Chong

    2015-01-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is not isotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk and vice versa cause the observed flux to depend on the inclination angle of the disk with respect to the line of sight. This is of special importance for the interpretation of Type I X-ray bursts, which are powered by the thermonuclear burning of matter accreted onto the neutron star. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star equation of state. Previous studies made predictions of the anisotropy factor for the total burst flux, assuming a geometrically flat disk. Recently, detailed observations of two exceptionally long bursts (so-called superbursts) allowed for the first time for the...

  12. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  13. Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars

    Science.gov (United States)

    Metzger, Brian D.; Piro, Anthony L.

    2014-04-01

    The coalescence of binary neutron stars (NSs) may in some cases produce a stable massive NS remnant rather than a black hole. Due to the substantial angular momentum from the binary, such a remnant is born rapidly rotating and likely acquires a strong magnetic field (a `millisecond magnetar'). Magnetic spin-down deposits a large fraction of the rotational energy from the magnetar behind the small quantity of mass ejected during the merger. If the magnetar outflow is indeed trapped behind the ejecta (instead of placing most of its energy into a collimated jet), this has the potential for creating a bright transient that could be useful for determining whether an NS or black hole was formed in the merger. We investigate the expected signature of such an event, including for the first time the important impact of e± pairs injected by the millisecond magnetar into the surrounding nebula. These pairs cool via synchrotron and inverse Compton emission, producing a pair cascade and hard X-ray spectrum. A fraction of these X-rays are absorbed by the ejecta walls and re-emitted as thermal radiation, leading to an optical/UV transient peaking at a luminosity of ˜1043-1044 erg s-1 on a time-scale of several hours to days. This is dimmer than predicted by simpler analytic models because the large optical depth of e± pairs across the nebula suppresses the efficiency with which the magnetar spin-down luminosity is thermalized. Nevertheless, the optical/UV emission is more than two orders of magnitude brighter than a radioactively powered `kilonova'. In some cases, nebular X-rays are sufficiently luminous to re-ionize the ejecta, in which case non-thermal X-rays escape the ejecta unattenuated with a similar peak luminosity and time-scale as the optical radiation. We discuss the implications of our results for the temporally extended X-ray emission that is observed to follow some short gamma-ray bursts (GRBs), including the kilonova candidates GRB 080503 and GRB 130603B.

  14. Exploring the X-ray and gamma-ray properties of the redback millisecond pulsar PSR J1723-2837

    CERN Document Server

    Hui, C Y; Takata, J; Kong, A K H; Cheng, K S; Wu, J H K; Lin, L C C; Wu, E M H

    2013-01-01

    We have investigated the X-ray and $\\gamma$-ray properties of the redback millisecond pulsar PSR J1723-2837 with XMM-Newton, Chandra and Fermi. We have discovered the X-ray orbital modulation of this binary system with the minimum that coincides with the phases of radio eclipse. The X-ray emission is clearly non-thermal in nature which can be well described by a simple power-law with a photon index of $\\sim1.2$. The phase-averaged luminosity is $\\sim9\\times10^{31}$ erg/s in 0.3-10 keV which consumes $\\sim0.2\\%$ of the spin-down power. We have detected the $\\gamma-$ray emission in $0.1-300$ GeV from this system at a significance of $\\sim6\\sigma$ for the first time. The $\\gamma-$rays in this energy range consumes $\\sim2\\%$ of the spin-down power and can be modeled by a power-law with a photon index of $\\sim2.6$. We discuss the high energy properties of the new redback in the context of a intrabinary shock model.

  15. Identification of the High-Energy Gamma-Ray Source 3FGL J1544.6-1125 as a Transitional Millisecond Pulsar Binary in an Accreting State

    CERN Document Server

    Bogdanov, Slavko

    2015-01-01

    We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4-112820, the most probable counterpart of the unassociated Fermi LAT source 3FGL J1544.6-1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-ray data exhibit large-amplitude flux variations in the form of fast switching (within ~10 s) between two distinct flux levels that differ by a factor of $\\approx$10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar binaries PSR J1023+0038 and XSS J12270-4859, which are also associated with $\\gamma$-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4-112820 and 3FGL J1544.6-1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto a millisecond pulsar and the $\\gamma$-rays originating from an accretion-driven outflow. 1RXS J154439.4-112820 is only the fourth $\\gamma$-ray emi...

  16. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    Science.gov (United States)

    Fukumura, Keigo; Hendry, Douglas; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-08-01

    We propose a novel theoretical model to describe the physical identity of the soft X-ray excess that is ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic accretion, which implied that the accreting plasma can develop into a standing shock under suitable physical conditions, causing the downstream flow to be sufficiently hot due to shock compression. We perform numerical calculations to examine, for sets of fiducial plasma parameters, the physical nature of fast magnetohydrodynamic shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-parameter Comptonization model of inclination angle θ obs, disk photon temperature kT in, and downstream electron energy kT e to calculate the predicted spectra in comparison with a 60 ks XMM-Newton/EPIC-pn spectrum of a typical radio-quiet Seyfert 1 active galactic nucleus, Ark 120. Our χ 2-analyses demonstrate that the model is plausible for successfully describing data for both non-spinning and spinning BHs with derived ranges of 61.3 keV ≲ kT e ≲ 144.3 keV, 21.6 eV ≲ kT in ≲ 34.0 eV, and 17.°5 ≲ θ obs ≲ 42.°6, indicating a compact Comptonizing region of three to four gravitational radii that resembles the putative X-ray coronae.

  17. Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

    CERN Document Server

    Sanna, A; Riggio, A; Pintore, F; Di Salvo, T; Gambino, A F; Iaria, R; Matranga, M; Scarano, F

    2016-01-01

    We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase-connecting the time of arrivals of the observed pulses, we derived the best-fit orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particular the value of the time of passage from the ascending node, with the orbital solutions reported from the previous outbursts, we estimated for the first time the orbital period derivative corresponding with $\\dot{P}_{orb}=(1.1\\pm0.3)\\times 10^{-10}$ s/s. We note that this value is significant at 3.5 sigma confidence level, ...

  18. Probing the Birth of Post-merger Millisecond Magnetars by X-ray and Gamma-ray Emission

    CERN Document Server

    Wang, L J; Liu, L D; Wu, X F

    2016-01-01

    There is growing evidence that a stable magnetar could be formed from the coalescence of double neutron stars. In previous papers, we investigated the signature of formation of stable millisecond magnetars in radio and optical/ultraviolet bands by assuming that the central rapidly rotating magnetar deposits its rotational energy in the form of a relativistic leptonized wind. We found that the optical transient PTF11agg could be the first evidence for the formation of post-merger millisecond magnetars. To enhance the probability of finding more evidence for the post-merger magnetar formation, it is better to extend the observational channel to other photon energy bands. In this paper we propose to search the signature of post-merger magnetar formation in X-ray and especially gamma-ray bands. We calculate the SSC emission of the reverse shock powered by post-merger millisecond magnetars. We find that the SSC component peaks at $1\\,{\\rm GeV}$ in the spectral energy distribution and extends to $\\gtrsim 10\\,{\\rm T...

  19. Theory of quasi-spherical accretion in X-ray pulsars

    CERN Document Server

    Shakura, N; Kochetkova, A; Hjalmarsdotter, L

    2011-01-01

    A theoretical model for quasi-spherical subsonic accretion onto slowly rotating magnetized neutron stars is constructed. In this model the accreting matter subsonically settles down onto the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates $\\dot M< \\dot M_*\\simeq 4\\times 10^{16}$ g/s. At higher accretion rates a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative $\\dot \\omega^*$, and $\\partial\\dot\\omega^*/\\partial\\dot M$ near the torque reversal) of X-ray pulsars with known orbital perio...

  20. Quasi-spherical accretion in low-luminosity X-ray pulsars: Theory vs. observations

    CERN Document Server

    Postnov, K; Kochetkova, A; Hjalmarsdotter, L

    2012-01-01

    Quasi-spherical subsonic accretion can be realized in slowly rotating wind-fed X-ray pulsars (XPSRs) at X-ray luminosities <4 10^{36} erg/s. In this regime the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasi-static shell. The shell mediates the angular momentum removal from the rotating NS magnetosphere by shear turbulent viscosity in the boundary layer or via large-scale convective motions. In the last case the differential rotation law in the shell is close to iso-angular-momentum rotation. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities while taking cooling into account. Measurements of spin-up/spin-down rates of quasi-spherically wind accreting XPSRs in equilibrium with known orbital periods (like e.g. GX 301-2 and Vela X-1) enable determination of the main dimensionless parameters of the model and the NS magnetic field. For equilibrium pulsars with indep...

  1. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    Science.gov (United States)

    Dexter, Jason; Quataert, Eliot

    2012-10-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal (TD) state to the higher variability, non-thermal steep power law (SPL) state. The disc component in all states is typically modelled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability and gravitational microlensing observations of active galactic nuclei (AGNs), the supermassive analogues of BHBs. An inhomogeneous disc (ID) model with large (≃0.4 dex) temperature fluctuations in each radial annulus can qualitatively explain all of these AGN observations. The inhomogeneity may be a consequence of instabilities in radiation-dominated discs, and therefore may be present in BHBs as well. We show that ID models can explain many features of the TD and SPL states of BHBs. The observed relationships between spectral hardness, disc fraction and rms variability amplitude in BHBs are reproduced with temperature fluctuations similar to those inferred in AGNs, suggesting a unified picture of luminous accretion discs across orders of magnitude in black hole mass. This picture can be tested with spectral fitting of ID models, X-ray polarization observations and radiation magnetohydrodynamic simulations. If BHB accretion discs are indeed inhomogeneous, only the most disc-dominated states (disc fraction ≳0.95) can be used to robustly infer black hole spin using current continuum fitting methods.

  2. DETECTION OF ACCRETION X-RAYS FROM QS Vir: CATACLYSMIC OR A LOT OF HOT AIR?

    Energy Technology Data Exchange (ETDEWEB)

    Matranga, Marco; Drake, Jeremy J.; Kashyap, Vinay [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Steeghs, Danny, E-mail: mmatranga@cfa.harvard.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-03-10

    An XMM-Newton observation of the nearby 'pre-cataclysmic' short-period (P{sub orb} = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of M-dot = 1.7 Multiplication-Sign 10{sup -13} M{sub sun} yr{sup -1}. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass-loss rate of M-dot {approx}2 Multiplication-Sign 10{sup -12} M{sub sun} yr{sup -1} if the accretion efficiency is of the order of 10%. Consideration of likely mass-loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is L{sub X} = 3 Multiplication-Sign 10{sup 28} erg s{sup -1}, which is consistent with that of rapidly rotating 'saturated' K and M dwarfs.

  3. A Deep Chandra X-Ray Spectrum of the Accreting Young Star TW Hydrae

    Science.gov (United States)

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-02-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature Te , electron density Ne , hydrogen column density NH , relative elemental abundances, and velocities, and reveals its source in three distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that Te = 2.50 ± 0.25 MK and Ne = 3.0 ± 0.2 × 1012 cm-3 in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model predictions for the postshock plasma. This gas is expected to cool radiatively, producing O VII as it flows into an increasingly dense stellar atmosphere. Surprisingly, O VII indicates Ne = 5.7+4.4 -1.2 × 1011 cm-3, 5 times lower than Ne in the accretion shock itself and ~7 times lower than the model prediction. We estimate that the postshock region producing O VII has roughly 300 times larger volume and 30 times more emitting mass than the shock itself. Apparently, the shocked plasma heats the surrounding stellar atmosphere to soft X-ray emitting temperatures and supplies this material to nearby large magnetic structures—which may be closed magnetic loops or open magnetic field leading to mass outflow. Our model explains the soft X-ray excess found in many accreting systems as well as the failure to observe high Ne signatures in some stars. Such accretion-fed coronae may be ubiquitous in the atmospheres of accreting young stars.

  4. Quick scanning monochromator for millisecond in situ and in operando X-ray absorption spectroscopy

    Science.gov (United States)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-09-01

    The design and capabilities of a novel Quick scanning Extended X-ray Absorption Fine Structure (QEXAFS) monochromator are presented. The oscillatory movement of the crystal stage is realized by means of a unique open-loop driving scheme operating a direct drive torque motor. The entire drive mechanics are installed inside of a goniometer located on the atmospheric side of the vacuum chamber. This design allows remote adjustment of the oscillation frequency and spectral range, giving complete control of QEXAFS measurements. It also features a real step-scanning mode, which operates without a control loop to prevent induced vibrations. Equipped with Si(111) and Si(311) crystals on a single stage, it facilitates an energy range from 4.0 keV to 43 keV. Extended X-ray absorption fine structure spectra up to k = 14.4 Å-1 have been acquired within 17 ms and X-ray absorption near edge structure spectra covering more than 200 eV within 10 ms. The achieved data quality is excellent as shown by the presented measurements.

  5. Quick scanning monochromator for millisecond in situ and in operando X-ray absorption spectroscopy.

    Science.gov (United States)

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-09-01

    The design and capabilities of a novel Quick scanning Extended X-ray Absorption Fine Structure (QEXAFS) monochromator are presented. The oscillatory movement of the crystal stage is realized by means of a unique open-loop driving scheme operating a direct drive torque motor. The entire drive mechanics are installed inside of a goniometer located on the atmospheric side of the vacuum chamber. This design allows remote adjustment of the oscillation frequency and spectral range, giving complete control of QEXAFS measurements. It also features a real step-scanning mode, which operates without a control loop to prevent induced vibrations. Equipped with Si(111) and Si(311) crystals on a single stage, it facilitates an energy range from 4.0 keV to 43 keV. Extended X-ray absorption fine structure spectra up to k = 14.4 Å(-1) have been acquired within 17 ms and X-ray absorption near edge structure spectra covering more than 200 eV within 10 ms. The achieved data quality is excellent as shown by the presented measurements. PMID:26429455

  6. Supercritical Accretion Discs in Ultraluminous X-ray Sources and SS 433

    CERN Document Server

    Fabrika, Sergei; Vinokurov, Alexander; Sholukhova, Olga; Shidatsu, Megumi

    2015-01-01

    The black hole mass and accretion rate in Ultraluminous X-ray sources (ULXs) in external galaxies, whose X-ray luminosities exceed those of the brightest black holes in our Galaxy by hundreds and thousands of times$^{1,2}$, is an unsolved problem. Here we report that all ULXs ever spectroscopically observed have about the same optical spectra apparently of WNL type (late nitrogen Wolf-Rayet stars) or LBV (luminous blue variables) in their hot state, which are very scarce stellar objects. We show that the spectra do not originate from WNL/LBV type donors but from very hot winds from the accretion discs with nearly normal hydrogen content, which have similar physical conditions as the stellar winds from these stars. The optical spectra are similar to that of SS 433, the only known supercritical accretor in our Galaxy$^{3}$, although the ULX spectra indicate a higher wind temperature. Our results suggest that ULXs with X-ray luminosities of $\\sim 10^{40}$ erg s$^{-1}$ must constitute a homogeneous class of objec...

  7. An Ultraluminous X-ray Source Powered by An Accreting Neutron Star

    CERN Document Server

    Bachetti, M; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-01-01

    Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 \\times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 \\times 10^{40}$ erg s$^{-1}$. This ...

  8. Nucleic acid fragmentation on the millisecond timescale using a conventional X-ray rotating anode source: application to protein–DNA footprinting

    OpenAIRE

    Henn, Arnon; Halfon, Jacob; Kela, Itai; Orion, Itzhak; Sagi, Irit

    2001-01-01

    Nucleic acid fragmentation (footprinting) by ·OH radicals is used often as a tool to probe nucleic acid structure and nucleic acid–protein interactions. This method has proven valuable because it provides structural information with single base pair resolution. Recent developments in the field introduced the ‘synchrotron X-ray footprinting’ method, which uses a high-flux X-ray source to produce single base pair fragmentation of nucleic acid in tens of milliseconds. We developed a complementar...

  9. Signs of Magnetic Accretion in the X-ray Pulsar Binary GX 301-2

    CERN Document Server

    Ikhsanov, N R

    2012-01-01

    Observations of the cyclotron resonance scattering feature in the X-ray spectrum of GX 301-2 suggest that the surface field of the neutron star is B_CRSF ~ 4 x 10^{12}G. The same value has been derived in modelling the rapid spin-up episodes in terms of the Keplerian disk accretion scenario. However, the spin-down rate observed during the spin-down trends significantly exceeds the value expected in currently used spin-evolution scenarios. This indicates that either the surface field of the star exceeds 50 x B_CRSF, or a currently used accretion scenario is incomplete. We show that the above discrepancy can be avoided if the accreting material is magnetized. The magnetic pressure in the accretion flow increases more rapidly than its ram pressure and, under certain conditions, significantly affects the accretion picture. The spin-down torque applied to the neutron star in this case is larger than that evaluated within a non-magnetized accretion scenario. We find that the observed spin evolution of the pulsar ca...

  10. Direct formation of millisecond pulsars from rotationally delayed accretion-induced collapse of massive white dwarfs

    CERN Document Server

    Freire, Paulo C C

    2013-01-01

    Millisecond pulsars (MSPs) are believed to be old neutron stars, formed via Type Ib/c core-collapse supernovae, which have subsequently been spun up to high rotation rates via accretion from a companion star in a highly circularised low-mass X-ray binary. The recent discoveries of Galactic field binary MSPs in eccentric orbits, and mass functions compatible with that expected for helium white dwarf companions, PSR J2234+06 and PSR J1946+3417, therefore challenge this picture. Here we present a hypothesis for producing this new class of systems, where the MSPs are formed directly from a rotationally-delayed accretion-induced collapse of a super-Chandrasekhar mass white dwarf. We compute the orbital properties of the MSPs formed in such events and demonstrate that our hypothesis can reproduce the observed eccentricities, masses and orbital periods of the white dwarfs, as well as forecasting the pulsar masses and velocities. Finally, we compare this hypothesis to a triple star scenario.

  11. High-Resolution X-Ray Spectroscopy of the Accretion Disk Corona Source 4U 1822-37

    CERN Document Server

    Cottam, J; Kahn, S M; Paerels, F B S; Liedahl, D A; Cottam, Jean; Sako, Masao; Kahn, Steven M.; Paerels, Frits; Liedahl, Duane A.

    2001-01-01

    We present a preliminary analysis of the X-ray spectrum of the accretion disk corona source, 4U 1822-37, obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. We detect discrete emission lines from photoionized iron, silicon, magnesium, neon, and oxygen, as well as a bright iron fluorescence line. Phase-resolved spectroscopy suggests that the recombination emission comes from an X-ray illuminated bulge located at the predicted point of impact between the disk and the accretion stream. The fluorescence emission originates in an extended region on the disk that is illuminated by light scattered from the corona.

  12. Accretion disk signatures in Type I X-ray Bursts: prospects for future missions

    CERN Document Server

    Keek, L; Ballantyne, D R

    2016-01-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will give insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, NICER, Athena, and LOFT. Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and through-put of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes $\\ge 10^{-7.5}$ erg cm$^{-2}$ s$^{-1}$, and also effectively constrain ...

  13. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  14. Timing and Spectroscopy of Accreting X-ray Pulsars: the State of Cyclotron Line Studies

    CERN Document Server

    Heindl, W A; Coburn, W; Staubert, R; Wilms, J; Kreykenbohm, I; Kretschmar, P

    2004-01-01

    A great deal of emphasis on timing in the RXTE era has been on pushing toward higher and higher frequency phenomena, particularly kHz QPOs. However, the large areas of the RXTE pointed instruments provide another capability which is key for the understanding of accreting X-ray pulsars -- the ability to accumulate high quality spectra in a limited observing time. For the accreting X-ray pulsars, with their relatively modest spin frequencies, this translates into an ability to study broad band spectra as a function of pulse phase. This is a critical tool, as pulsar spectra are strong functions of the geometry of the "accretion mound" and the observers' viewing angle to the ~10^12 G magnetic field. In particular, the appearance of "cyclotron lines" is sensitively dependent on the viewing geometry, which must change with the rotation of the star. These spectral features, seen in only a handful of objects, are quite important, as they give us our only direct measure of neutron star magnetic fields. Furthermore, th...

  15. The Effect of X-ray Irradiation on the Time Dependent Behaviour of Accretion Disks with Stochastic Perturbations

    CERN Document Server

    Maqbool, Bari; Iqbal, Naseer; Ahmad, Naveel

    2015-01-01

    The UV emission from X-ray binaries, is more likely to be produced by reprocessing of X-rays by the outer regions of an accretion disk. The structure of the outer disk may be altered due to the presence of X-ray irradiation and we discuss the physical regimes where this may occur and point out certain X-ray binaries where this effect may be important. The long term X-ray variability of these sources is believed to be due to stochastic fluctuations in the outer disk, which propagate inwards giving rise to accretion rate variation in the X-ray producing inner regions. The X-ray variability will induce structural variations in the outer disk which in turn may affect the inner accretion rate. To understand the qualitative behaviour of the disk in such a scenario, we adopt simplistic assumptions that the disk is fully ionised and is not warped. We develop and use a time dependent global hydrodynamical code to study the effect of a sinusoidal accretion rate perturbation introduced at a specific radius. The response...

  16. Testing theories for longterm accretion variability in black hole X-ray binaries

    Science.gov (United States)

    Cambier, Hal J.

    Many X-ray sources are now understood to be "black hole X-ray binaries'' in which a stellar remnant black hole either tidally "squeezes'' gas off a companion star, or pulls in some fraction the companion's wind. This gas can drain inward through a dense, thin disk characterized by thermalized radiation, or a sparse and radiatively-inefficient flow, or some combination of the two. Observations at other energies often provide crucial information, but our primary tools to study accretion, especially closest to the black hole, are X-ray spectra and their time evolution. This evolution includes numerous behaviors spanning orders of magnitude in timescale and luminosity, and also hints at spatial structure since draining is generally faster at smaller radii. This includes variability at time-scales of weeks to months which remains difficult to explain despite an abundance of possible variability mechanisms since direct simulations covering the full spatial and temporal range remain impractical. After reviewing general aspects of accretion, I present both more and less familiar forms of longterm variability. Based on these, I argue the problem involves finding a physical process (or combination) that can generate repeatable yet adjustable cycles in luminosity and evolution of low and high energy spectral components, while letting the ionization instability dominate conventional outbursts. Specific models examined include: disks embedded in, and interacting with, hot, sparse flows, and another instability that quenches viscous-draining of the disk at more fundamental level. Testing these theories, alone and in combination, motivates building a very general and simplified numerical model presented here. I find that two-phase flow models still predict excessive recondensation in LMC X-3 among other problems, while the viscosity-quenching instability may account for rapid drops and slow recoveries in disk accretion rate but also likely requires diffusivity orders of magnitude

  17. X-ray accretion signatures in the close CTTS binary V4046 Sgr

    OpenAIRE

    Günther, H. M.; Liefke, C.; Schmitt, J. H. M. M.; Robrade, J.; Ness, J. -U.

    2006-01-01

    We present Chandra HETGS observations of the classical T Tauri star (CTTS) V4046 Sgr. The He-like triplets of O VII, Ne IX, and Si XIII are clearly detected. Similar to the CTTS TW Hya and BP Tau, the forbidden lines of O VII and Ne IX are weak compared to the intercombination line, indicating high plasma densities in the X-ray emitting regions. The Si XIII triplet, however, is within the low-density limit, in agreement with the predictions of the accretion funnel infall model with an additio...

  18. Hard X-ray Detection and Timing of Accretion-Powered Pulsars with BATSE

    OpenAIRE

    Chakrabarty, Deepto; Prince, Thomas A.

    1996-01-01

    The BATSE all-sky monitor on the Compton Gamma Ray Observatory is a superb tool for the study of accretion-powered pulsars. In the first part of this thesis, I describe its capabilities for hard X-ray observations above 20 keV, present techniques for timing analysis of the BATSE data, and discuss general statistical issues for the detection of pulsed periodic signals in both the time and frequency domains. BATSE’s 1-day pulsed sensitivity in the 20–60 keV ...

  19. The Luminosity and Energy Dependence of Pulse Phase Lags in the Accretion-powered Millisecond Pulsar SAX J1808.4-3658

    CERN Document Server

    Hartman, Jacob M; Chakrabarty, Deepto

    2008-01-01

    Soft phase lags, in which X-ray pulses in lower energy bands arrive later than pulses in higher energy bands, have been observed in nearly all accretion-powered millisecond pulsars, but their origin remains an open question. In a study of the 2.5 ms accretion-powered pulsar SAX J1808.4-3658, we report that the magnitude of these lags is strongly dependent on the accretion rate. During the brightest stage of the outbursts from this source, the lags increase in magnitude as the accretion rate drops; when the outbursts enter their dimmer flaring-tail stage, the relationship reverses. We evaluate this complex dependence in the context of two theoretical models for the lags, one relying on the scattering of photons by the accretion disk and the other invoking a two-component model for the photon emission. In both cases, the turnover suggests that we are observing the source transitioning into the "propeller" accretion regime.

  20. A radiation-hydrodynamic model of accretion columns for ultra-luminous X-ray pulsars

    CERN Document Server

    Kawashima, Tomohisa; Ohsuga, Ken; Ogawa, Takumi

    2016-01-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamic simulation of a super-critical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with density of $10^{-4} {\\rm g}~ {\\rm cm}^{-3}$ above a neutron star and solve the two dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, while gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, thereby a shock being generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as was noted by Basko \\& Sunyaev (1976). The average accretion rate is very high; ${\\dot M}\\sim 10^{2-3} L_{\\rm E}/c^2$ (with $L_{\\rm E}$ being the Eddington luminosity), and s...

  1. Relativistic Accretion Disk Models of High State Black Hole X-ray Binary Spectra

    CERN Document Server

    Davis, S W; Hubeny, I; Turner, N J; Davis, Shane W.; Blaes, Omer M.; Hubeny, Ivan; Turner, Neal J.

    2004-01-01

    We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. We present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk, and explore different vertical dissipation profiles, including some which are motivated by recent radiation MHD simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models which only considered Compton scattering and free-free opacity. It also tends to keep the effective photosphere near the surface, resulting in spectra which are remarkably independent of the stress prescription and vertical dissipation profile, provided little dissipation occurs above the effective photosphere. We provide...

  2. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    CERN Document Server

    Dexter, Jason

    2012-01-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal state (TD) to the higher variability, non-thermal steep power law state (SPL). The disc component in all states is typically modeled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability, and gravitational microlensing observations of active galactic nuclei (AGNs), the supermassive analogs of BHBs. An inhomogeneous disc (ID) model with large (~0.4 dex) temperature fluctuations in each radial annulus can qualitatively explain all of these AGN observations. The inhomogeneity may be a consequence of instabilities in radiation dominated discs, and therefore may be present in BHBs as well. We show that ID models can explain many features of the TD and SPL states of BHBs. The observed relationships between spectral hardness, disc fraction, and rms variability amplitude in BHBs ...

  3. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  4. X-ray variations in the inner accretion flow of Dwarf Novae

    CERN Document Server

    Balman, Solen

    2012-01-01

    We show for five DN systems, SS Cyg, VW Hyi, RU Peg, WW Cet and T Leo that the UV and X-ray power spectra of their time variable light curves are similar in quiescence. All of them show a break in their power spectra, which in the framework of the model of propagating fluctuations indicates inner disk truncation. We derive the inner disk radii for these systems in a range (10-3)$\\times10^{9}$ cm. We analyze the RXTE data of SS Cyg in outburst and compare it with the power spectra, obtained during the period of quiescence. We show that during the outburst the disk moves towards the white dwarf and recedes as the outburst declines. We calculate the correlation between the simultaneous UV and X-ray light curves of the five DN studied in this work, using the XMM-Newton data obtained in the quiescence and find X-ray time lags of 96-181 sec. This can be explained by the travel time of matter from a truncated inner disk to the white dwarf surface. We suggest that, in general, DN may have truncated accretion disks in...

  5. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    Science.gov (United States)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-10-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}˜ 10^{2{-}3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  6. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    Science.gov (United States)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-09-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}}˜ 10^{2-3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  7. The Hard X-ray Spectral Slope as an Accretion-Rate Indicator in Radio-Quiet Active Galactic Nuclei

    OpenAIRE

    Shemmer, Ohad; Brandt, W. N.; Netzer, Hagai; Maiolino, Roberto; Kaspi, Shai

    2006-01-01

    We present new XMM-Newton observations of two luminous and high accretion-rate radio-quiet active galactic nuclei (AGNs) at z~2. Together with archival X-ray and rest-frame optical spectra of three sources with similar properties as well as 25 moderate-luminosity radio-quiet AGNs at z~2 keV) X-ray power-law photon index on the broad H_beta emission-line width and on the accretion rate across ~3 orders of magnitude in AGN luminosity. Provided the accretion rates of the five luminous sources ca...

  8. X-ray variability of SS 433: effects of the supercritical accretion disc

    Science.gov (United States)

    Atapin, Kirill; Fabrika, Sergei; Medvedev, Aleksei; Vinokurov, Alexander

    2015-01-01

    We study a stochastic variability of SS 433 in the 10-4-5 × 10-2 Hz frequency range based on RXTE data, and on simultaneous observations with RXTE and optical telescopes. We find that the cross-correlation functions and power spectra depend drastically on the precession phase of the supercritical accretion disc. When the wind funnel of the disc is maximally open to the observer, a flat part emerges in the power spectrum; a break is observed at the frequency 1.7 × 10-3 Hz, with a power-law index β ≈ 1.67 at higher frequencies. The soft emission forming mostly in the jets lags behind the hard and optical emission. When the observer does not see the funnel and jets (the `edge-on' disc), the power spectrum is described by a single power-law with β ≈ 1.34 and no correlations between X-ray ranges are detected. We investigated two mechanisms to explain the observed variability at the open disc phase: (1) reflection of radiation at the funnel wall (X-rays and optical) and (2) the gas cooling in the jets (X-rays only). The X-ray variability is determined by the contribution of both mechanisms; however, the contribution of the jets is much higher. We found that the funnel size is (2-2.5) × 1012 cm, and the opening angle is ϑf ˜ 50°. X-ray jets may consist of three fractions with different densities: 8 × 1013, 3 × 1013 and 5 × 1011 cm-3, with most of the jet's mass falling within the latter fraction. We suppose that revealed flat part in the power spectrum may be related to an abrupt change in the disc structure and viscous time-scale at the spherization radius, because the accretion disc becomes thick at this radius, h/r ˜ 1. The extent of the flat spectrum depends on the variation of viscosity at the spherization radius.

  9. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    CERN Document Server

    Brickhouse, N S; Dupree, A K; Luna, G J M; Wolk, S

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that T_e = 2.50 +/- 0.25 MK and N_e = 3.0 +/- 0.2 x 10^(12) cm^(-3) in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model pred...

  10. Formation of Binary Millisecond Pulsars by Accretion-Induced Collapse of White Dwarfs under Wind-Driven Evolution

    CERN Document Server

    Ablimit, Iminhaji

    2014-01-01

    Accretion-induced collapse of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods ($\\gtrsim 10$ days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822$-$37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled due to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with a He WD companion, with the orbital periods distributed between $\\gtrsim 0.1$ day and $\\lesssim 30$ days, while...

  11. Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

    Science.gov (United States)

    Sanna, A.; Burderi, L.; Riggio, A.; Pintore, F.; Di Salvo, T.; Gambino, A. F.; Iaria, R.; Matranga, M.; Scarano, F.

    2016-06-01

    We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase connecting the time of arrivals of the observed pulses, we derived the best-fitting orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particular the value of the time of passage from the ascending node, with the orbital solutions reported from the previous outbursts, we estimated for the first time the orbital period derivative corresponding with dot{P}_{orb}=(1.1± 0.3)× 10^{-10} s s-1. We note that this value is significant at 3.5σ confidence level, because of significant fluctuations with respect to the parabolic trend and more observations are needed in order to confirm the finding. Assuming the reliability of the result, we suggest that the large value of the orbital-period derivative can be explained as a result of a highly non-conservative mass transfer driven by emission of gravitational waves, which implies the ejection of matter from a region close to the inner Lagrangian point. We also discuss possible alternative explanations.

  12. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    DEFF Research Database (Denmark)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca A.;

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29...

  13. Soft X-Ray Properties of the Binary Millisecond Pulsar J0437-4715

    Science.gov (United States)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman, L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0.27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2 - 1.5, intervening column density N(sub H) = (5 - 8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1 - 2.4 keV band. We also use a bright EUVE/ROSAT source only 4.2 min. from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = IES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, N(sub H) less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50 - 600 m and temperature (1.0 - 3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4 - 12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma

  14. Detection of a Cool, Accretion-Shock-Generated X-Ray Plasma in EX Lupi During the 2008 Optical Eruption

    Science.gov (United States)

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.; Grosso, Nicholas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for an approx 0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.

  15. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    Science.gov (United States)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  16. Search for a correlation between kHz quasi-periodic oscillation frequencies and accretion-related parameters in the ensemble of neutron star low-mass X-ray binaries

    Science.gov (United States)

    Çatmabacak, Önder; Erkut, M. Hakan; Catmabacak, Onur; Duran, Sivan

    2016-07-01

    The distribution of neutron star sources in the ensemble of low-mass X-ray binaries shows no evidence for a correlation between kHz quasi-periodic oscillation (QPO) frequencies and X-ray luminosity. Sources differing by orders of magnitude in luminosity can exhibit similar range of QPO frequencies. We study the possibility for the existence of a correlation between kHz QPO frequencies and accretion related parameters. The parameters such as the mass accretion rate and the size of the boundary region in the innermost disk are expected to be related to X-ray luminosity. Using the up-to-date data of neutron star low-mass X-ray binaries, we search for a possible correlation between lower kHz QPO frequencies and mass accretion rate through the mass and radius values predicted by different equations of state for the neutron star. The range of mass accretion rate for each source can be estimated if the accretion luminosity is assumed to be represented well by the X-ray luminosity of the source. Although we find no correlation between mass accretion rate and QPO frequencies, the source distribution seems to be in accordance with a correlation between kHz QPO frequencies and the parameter combining the neutron star magnetic field and the mas accretion rate. The model function we employ to descibe the correlation is able to account for the scattering of individual sources around a simple power law. The correlation argues disk-magnetosphere interaction as the origin of these millisecond oscillations.

  17. A cold neutron star in the transient low-mass X-ray binary HETE J1900.1-2455 after 10 years of active accretion

    CERN Document Server

    Degenaar, N; Reynolds, M T; Wijnands, R; Page, D

    2016-01-01

    The neutron star low-mass X-ray binary and intermittent millisecond X-ray pulsar HETE J1900.1-2455 returned to quiescence in late 2015, after a prolonged accretion outburst of ~10 yr. Using a Chandra observation taken ~180 d into quiescence we detect the source at a luminosity of ~4.5E31 (D/4.7 kpc)^2 erg/s (0.5-10 keV). The X-ray spectrum can be described by a neutron star atmosphere model with a temperature of ~54 eV for an observer at infinity. We perform thermal evolution calculations based on the 2016 quiescent data and a <98 eV temperature upper limit inferred from a Swift observation taken during an unusually brief (<2 weeks) quiescent episode in 2007. We find no evidence in the present data that the thermal properties of the crust, such as the heating rate and thermal conductivity, are different than those of non-pulsating neutron stars. Finding this neutron star so cold after its long outburst imposes interesting constraints on the heat capacity of the stellar core; these become even stronger i...

  18. Massive elliptical galaxies in X-rays: the role of late gas accretion

    CERN Document Server

    Pipino, A; Gibson, B K; Matteucci, F; Pipino, Antonio; Kawata, Daisuke; Gibson, Brad K.; Matteucci, Francesca

    2005-01-01

    We present a new chemical evolution model meant to be a first step in the self-consistent study of both optical and X-ray properties of elliptical galaxies. Detailed cooling and heating processes in the interstellar medium are taken into account using a mono-phase one-zone treatment which allows a more reliable modelling of the galactic wind regime with respect to previous work. The model successfully reproduces simultaneously the mass-metallicity, colour-magnitude, the L_X - L_B and the L_X - T relations, as well as the observed trend of the [Mg/Fe] ratio as a function of sigma, by adopting the prescriptions of Pipino & Matteucci (2004) for the gas infall and star formation timescales. We found that a late secondary accretion of gas from the environment plays a fundamental role in driving the L_X - L_B and L_X - T relations and can explain their large observational scatter. The iron discrepancy, namely the too high predicted iron abundance in X-ray haloes of ellipticals compared to observations, still pe...

  19. X-ray variability of SS433: effects of the supercritical accretion disc

    CERN Document Server

    Atapin, Kirill; Medvedev, Aleksei; Vinokurov, Alexander

    2014-01-01

    We study a stochastic variability of SS433 in the $10^{-4} - 5\\times 10^{-2}$ Hz frequency range based on RXTE data, and on simultaneous observations with RXTE and optical telescopes. We find that the cross-correlation functions and power spectra depend drastically on the precession phase of the supercritical accretion disc. When the wind funnel of the disc is maximally open to the observer, a flat part emerges in the power spectrum; a break is observed at the frequency $1.7\\times10^{-3}$ Hz, with a power-law index $\\beta \\approx 1.67$ at higher frequencies. The soft emission forming mostly in the jets, lags behind the hard and optical emission. When the observer does not see the funnel and jets (the `edge-on' disc), the power spectrum is described by a single power-law with $\\beta \\approx 1.34$ and no correlations between X-ray ranges are detected. We investigated two mechanisms to explain the observed variability at the open disc phase, 1) reflection of radiation at the funnel wall (X-rays and optical) and ...

  20. Low-level accretion in neutron-star X-ray binaries

    CERN Document Server

    Wijnands, R; Padilla, M Armas; Altamirano, D; Cavecchi, Y; Linares, M; Bahramian, A; Heinke, C O

    2014-01-01

    We search the literature for reports on the spectral properties of neutron-star low-mass X-ray binaries when they have accretion luminosities between 1E34 and 1E36 ergs/s. We found that in this luminosity range the photon index (obtained from fitting a simple absorbed power-law in the 0.5-10 keV range) increases with decreasing 0.5-10 keV X-ray luminosity (i.e., the spectrum softens). Such behaviour has been reported before for individual sources, but here we demonstrate that very likely most (if not all) neutron-star systems behave in a similar manner and possibly even follow a universal relation. When comparing the neutron-star systems with black-hole systems, it is clear that most black-hole binaries have significantly harder spectra at luminosities of 1E34 - 1E35 erg/s. Despite a limited number of data points, there are indications that these spectral differences also extend to the 1E35 - 1E36 erg/s range. We note, however, that the system in our sample which has the hardest spectra is in fact a neutron-s...

  1. The deepest X-ray view of high-redshift galaxies: constraints on low-rate black-hole accretion

    CERN Document Server

    Vito, Fabio; Vignali, Cristian; Brandt, William N; Comastri, Andrea; Yang, Guang; Lehmer, Bret D; Luo, Bin; Basu-Zych, Antara; Bauer, Franz E; Cappelluti, Nico; Koekemoer, Anton; Mainieri, Vincenzo; Paolillo, Maurizio; Ranalli, Piero; Shemmer, Ohad; Trump, Jonathan; Wang, Junxian; Xue, Yongquan

    2016-01-01

    We exploit the 7 Ms \\textit{Chandra} observations in the \\chandra\\,Deep Field-South (\\mbox{CDF-S}), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at $3.5\\leq z 3.7\\sigma$) X-ray emission from massive galaxies at $z\\approx4$. We also report the detection of massive galaxies at $z\\approx5$ at a $99.7\\%$ confidence level ($2.7\\sigma$), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion onto SMBHs in individually X-ray-undetected galaxies i...

  2. Interpreting the radio/X-ray correlation of black hole sources based on the accretion-jet model

    CERN Document Server

    Xie, Fu-Guo

    2015-01-01

    Two types of correlations between the radio and X-ray luminosities ($L_R$ and $L_X$) of black hole sources has been found. For the traditional type of sources, the correlation can be described by a single power-law. For the other type of sources, while the correlation can still be described by power-law forms, it consists three branches according to the X-ray luminosity, with different power-law indexes. In this paper, we try to explain these correlations in the framework of the coupled accretion-jet model. We attribute the difference between these two types of sources to the difference in the value of viscous parameter $\\alpha$. For the "single power-law" sources, their $\\alpha$ is high; so their accretion is always in the mode of ADAF (advection-dominated accretion flow) for the whole range of X-ray luminosity. For those "hybrid power-law" sources, the value of $\\alpha$ is small so their accretion modes change from ADAF to LHAF (luminous hot accretion flow) to two-phase accretion as the accretion rate incre...

  3. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  4. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    Science.gov (United States)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X-ray

  5. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows II

    CERN Document Server

    Sim, S A; Long, K S; Turner, T J; Reeves, J N

    2010-01-01

    Highly-ionized fast accretion-disk winds have been suggested as an explanation for a variety of observed absorption and emission features in the X-ray spectra of Active Galactic Nuclei. Simple estimates have suggested that these flows may be massive enough to carry away a significant fraction of the accretion energy and could be involved in creating the link between supermassive black holes and their host galaxies. However, testing these hypotheses, and quantifying the outflow signatures, requires high-quality theoretical spectra for comparison with observations. Here we describe extensions of our Monte Carlo radiative transfer code that allow us to generate realistic theoretical spectra for a much wider variety of disk wind models than possible in our previous work. In particular, we have expanded the range of atomic physics simulated by the code so that L- and M-shell ions can now be included. We have also substantially improved our treatment of both ionization and radiative heating such that we are now abl...

  6. Characterising anomalous transport in accretion disks from X-ray observations

    CERN Document Server

    Greenhough, J; Chaty, S; Dendy, R O; Rowlands, G

    2002-01-01

    Whilst direct observations of internal transport in accretion disks are not yet possible, measurement of the energy emitted from accreting astrophysical systems can provide useful information on the physical mechanisms at work. Here we examine the unbroken multi-year time variation of the total X-ray flux from three sources: Cygnus X-1, the microquasar GRS1915+105, and for comparison the nonaccreting Crab nebula. To complement previous analyses, we demonstrate that the application of advanced statistical methods to these observational time-series reveals important contrasts in the nature and scaling properties of the transport processes operating within these sources. We find the Crab signal resembles Gaussian noise; the Cygnus X-1 signal is a leptokurtic random walk whose self-similar properties persist on timescales up to three years; and the GRS1915+105 signal is similar to that from Cygnus X-1, but with self-similarity extending possibly to only a few days. This evidence of self-similarity provides a robu...

  7. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Directory of Open Access Journals (Sweden)

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  8. Super-Eddington Accretion in the Ultraluminous X-ray Source NGC1313 X-2: An Ephemeral Feast

    CERN Document Server

    Weng, Shan-Shan; Zhao, Hai-Hui

    2013-01-01

    We investigate the X-ray spectrum, variability and the surrounding ionized bubble of NGC1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC1313 X-2 is truncated at a large radius ($\\sim$ 50 times of innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries. In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be over ionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission {\\it Astro-H}. If the NGC1313 X-2 is a massive stellar X-ray binary, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over $\\sim 10^{4}-10^{5}$ yr. The expansion of the surrounding bubble nebula with a velocity of $\\si...

  9. Using the Fundamental Plane of black hole activity to distinguish X-ray processes from weakly accreting black holes

    NARCIS (Netherlands)

    R.M. Plotkin; S. Markoff; B.C. Kelly; E. Körding; S.F. Anderson

    2012-01-01

    The Fundamental Plane of black hole activity is a relation between X-ray luminosity, radio luminosity and black hole mass for hard-state Galactic black holes and their supermassive analogues. The Fundamental Plane suggests that, at low-accretion rates, the physical processes regulating the conversio

  10. THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr: ROTATIONALLY MODULATED X-RAY EMISSION FROM ACCRETION SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Argiroffi, C. [Dipartimento di Fisica, Universita di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Maggio, A.; Damiani, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Montmerle, T. [Institut d' Astrophysique de Paris, 98bis bd Arago, FR-75014 Paris (France); Huenemoerder, D. P. [MIT, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Alecian, E. [Observatoire de Paris, LESIA, 5, place Jules Janssen, F-92195 Meudon Principal Cedex (France); Audard, M. [ISDC Data Center for Astrophysics, University of Geneva, Ch. d' Ecogia 16, CH-1290 Versoix (Switzerland); Bouvier, J. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, F-38041, Grenoble (France); Donati, J.-F. [IRAP-UMR 5277, CNRS and Universite de Toulouse, 14 Av. E. Belin, F-31400 Toulouse (France); Gregory, S. G. [Astronomy Department, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Guedel, M. [Department of Astronomy, University of Vienna, Trkenschanzstrasse 17, A-1180 Vienna (Austria); Hussain, G. A. J. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Kastner, J. H.; Sacco, G. G., E-mail: argi@astropa.unipa.it [Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2012-06-20

    We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n{sub e}{approx} 10{sup 11}-10{sup 12} cm{sup -3}) plasma at temperatures of 3-4 MK. Our multi-wavelength campaign aims to simultaneously constrain the properties of this X-ray-emitting plasma, the large-scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray-grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotations. We find that the emission lines produced by this high-density plasma display periodic flux variations with a measured period, 1.22 {+-} 0.01 d, that is precisely half that of the binary star system (2.42 d). The observed rotational modulation can be explained assuming that the high-density plasma occupies small portions of the stellar surfaces, corotating with the stars, and that the high-density plasma is not azimuthally symmetrically distributed with respect to the rotational axis of each star. These results strongly support models in which high-density, X-ray-emitting CTTS plasma is material heated in accretion shocks, located at the base of accretion flows tied to the system by magnetic field lines.

  11. Impacts of fragmented accretion streams onto Classical T Tauri Stars: UV and X-ray emission lines

    CERN Document Server

    Colombo, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-01-01

    Context. The accretion process in Classical T Tauri Stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams.We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods. We model the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through 2D MHD simulations. We explore different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 {\\AA}) and OVIII (18.97 {\\AA}) line profiles. Results. The impacts of accreting blob...

  12. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    CERN Document Server

    Suková, Petra; Janiuk, Agnieszka

    2015-01-01

    The black hole candidates exhibit fast variability of their X-ray emission on a wide range of timescales. The short, coherent variations, with frequencies above 1 Hz, are referred to as quasi-periodic oscillations, and are generally explained by resonant effects in the black hole accretion flow. The purely stochastic variability that occurs due to turbulent conditions in the plasma, is quantified by the power density spectra and appears practically in all types of sources and their spectral states. The specific kind of quasi-periodic flares is expected, when the global structure of the accretion flow, governed by the nonlinear hydrodynamics, induces fluctuations around a fixed point solution. These conditions, which occur at high accretion rates, lead to the variability in the sense of deterministic chaos. We study the nonlinear behaviour of X-ray sources using the recurrence analysis method. We estimate quantitatively the indications for deterministic chaos, such as the Renyi's entropy, for the observed time...

  13. Dependence of the orbital modulation of X-rays from 4U 1820-303 on the accretion rate

    CERN Document Server

    Zdziarski, A A; Wen, L

    2007-01-01

    We report the discovery, using XTE data, of a dependence of the X-ray orbital modulation depth on the X-ray spectral state in the ultracompact atoll binary 4U 1820-303. This state (measured by us by the position on the X-ray colour-colour diagram) is tightly coupled to the accretion rate, which, in turn, is coupled to the phase of the 170-d superorbital cycle of this source. The modulation depth is much stronger in the high-luminosity, so-called banana, state than in the low-luminosity, island, state. We find the X-ray modulation is independent of energy, which rules out bound-free X-ray absorption in an optically thin medium as the cause of the modulation. We also find a significant dependence of the offset phase of the orbital modulation on the spectral state, which favours the model in which the modulation is caused by scattering in hot gas around a bulge at the disc edge, which both size and the position vary with the accretion rate. Estimates of the source inclination appear to rule out a model in which ...

  14. The accretion-heated crust of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands

    2011-01-01

    We report on a Chandra Director’s Discretionary Time observation of the globular cluster Terzan 5, carried out ∼7 weeks after the cessation of the 2010 outburst of the newly discovered transiently accreting 11-Hz X-ray pulsar. We detect a thermal spectrum that can be fitted with a neutron star atmos

  15. A Possible 55-day X-ray Period of the Ultraluminous Accreting Pulsar M82 X-2

    OpenAIRE

    Kong, A. K. H.; Hu, C. -P.; Lin, L. C. -C.; Li, K. L.; Jin, R.; Liu, C.Y.; Yen, D. C. -C.

    2016-01-01

    We report a possible detection of a 55-day X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-day orbital period, if the 55-day period is real, it will be the superorbital period of the system. We also investigated variabilities of other three nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data and did not find any evidence of periodicities. Furthermore, we re-examined the...

  16. X-ray Signatures of Non-Equilibrium Ionization Effects in Galaxy Cluster Accretion Shock Regions

    CERN Document Server

    Wong, Ka-Wah; Ji, Li

    2010-01-01

    The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the LambdaCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The rat...

  17. X-ray Reflection from Inhomogeneous Accretion Disks: I. Toy Models and Photon Bubbles

    CERN Document Server

    Ballantyne, D R; Blaes, Omer M

    2004-01-01

    Numerical simulations of the interiors of radiation dominated accretion disks show that significant density inhomogeneities can be generated in the gas. Here, we present the first results of our study on X-ray reflection spectra from such heterogeneous density structures. We consider two cases: first, we produce a number of toy models where a sharp increase or decrease in density of variable width is placed at different depths in a uniform slab. Comparing the resulting reflection spectra to those from an unaltered slab shows that the inhomogeneity can affect the emission features, in particular the Fe K and O VIII Lyalpha lines. The magnitude of any differences depends on both the parameters of the density change and the ionizing power of the illuminating radiation, but the inhomogeneity is required to be within ~2 Thomson depths of the surface to cause an effect. However, only relatively small variations in density (on the order of a few) are necessary for significant changes in the reflection features to be...

  18. Stronger Reflection from Black Hole Accretion Disks in Soft X-Ray States

    Science.gov (United States)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely, the Compton power law. We find that reflection is several times more pronounced (˜3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  19. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: a short review

    CERN Document Server

    Ingram, Adam

    2015-01-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  20. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: A short review

    Science.gov (United States)

    Ingram, A. R.

    2016-05-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  1. Effects of a New Triple-alpha Reaction on X-ray Bursts of a Helium Accreting Neutron Star

    CERN Document Server

    Matsuo, Y; Noda, T; Saruwatari, M; Ono, M; Hashimoto, M; Fujimoto, M

    2011-01-01

    The effects of a new triple-$\\alpha$ reaction rate (OKK rate) on the helium flash of a helium accreting neutron star in a binary system have been investigated. Since the ignition points determine the properties of a thermonuclear flash of type I X-ray bursts, we examine the cases of different accretion rates, $dM/dt (\\dot{M})$, of helium from $3\\times10^{-10} M_{\\odot} \\rm yr^{-1}$ to $3\\times10^{-8} M_{\\odot} \\rm yr^{-1}$, which could cover the observed accretion rates. We find that for the cases of low accretion rates, nuclear burnings are ignited at the helium layers of rather low densities. As a consequence, helium deflagration would be triggered for all cases of lower accretion rate than $\\dot{M}\\simeq 3\\times10^{-8} M_{\\odot} \\rm yr^{-1}$. We find that OKK rate could be barely consistent with the available observations of the X-ray bursts on the helium accreting neutron star. However this coincidence is found to depend on the properties of crustal heating and the neutron star model.We suggest that OKK r...

  2. Modeling the Energy Dependent Pulse Profiles of the Accreting Millisecond Pulsar SAX J1808.4-3658

    CERN Document Server

    Poutanen, J; Poutanen, Juri; Gierlinski, Marek

    2002-01-01

    The pulse profiles of the accreting X-ray millisecond pulsar SAX J1808.4-3658 at different energies are studied. The two main emission component, a black body and a power-law tail, clearly identified in the time-averaged spectrum, do not vary in phase. We show that the observed variability can be easily explained if the emission patterns of the black body and the Comptonized radiation are different: a "knife" and a "fan"-like, respectively. We suggest that Comptonization in a hot slab (radiative shock) of Thomson optical depth \\~0.3 at the surface of the neutron star may be responsible for the emission. We construct a detailed model of the X-ray production accounting for the Doppler boosting, relativistic aberration and gravitational light bending. The model reproduces well the pulse profiles at different energies simultaneously, corresponding phase lags, as well as the time-averaged spectrum. By fitting the observed pulse profiles we obtain constraints on the neutron star radius (R=7.5+-1.0 km), the inclinat...

  3. A Possible 55-day X-ray Period of the Ultraluminous Accreting Pulsar M82 X-2

    CERN Document Server

    Kong, A K H; Lin, L C -C; Li, K L; Jin, R; Liu, C Y; Yen, D C -C

    2016-01-01

    We report a possible detection of a 55-day X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-day orbital period, if the 55-day period is real, it will be the superorbital period of the system. We also investigated variabilities of other three nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data and did not find any evidence of periodicities. Furthermore, we re-examined the previously reported 62-day periodicity near the central region of M82 by performing a systematic timing study with all the archival Rossi X-Ray Timing Explorer and Swift data. Using various dynamic timing analysis methods, we confirmed that the 62-day period is not stable, suggesting that it is not the orbital period of M82 X-1 in agreement with previous work.

  4. X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    Directory of Open Access Journals (Sweden)

    Bernardini F.

    2014-01-01

    Full Text Available We conducted the first long-term (60 days, multiwavelength (optical, ultraviolet, and X-ray simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index γ about 0.2–0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT = 59 − 80 eV and a power law (with spectral index Γ = 1.4 − 2.0, with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting down to the NS surface. Moreover, based on the short timescale of the correlation, we also unambiguously demonstrate that the UV emission can not be due to either thermal emission from the stream impact point, or a standard optically thick, geometrically thin disc. The spectral energy distribution shows a small UV emitting region, too hot to arise from the accretion disk, that we identified as a hot spot on the companion star. Therefore, the UV emission is most likely produced by reprocessing from the companion star, indeed the vertical size of the disc is small and can only reprocess a marginal fraction of the X-ray emission. We also found the accretion disc in quiescence to likely be UV faint, with a minimal contribution to the whole UV flux.

  5. Evidence for Accretion High-Resolution X-ray Spectroscopy of the Classical T Tauri Star TW Hydrae

    CERN Document Server

    Kästner, J H; Schulz, N S; Canizares, C R; Weintraub, D A; Kastner, Joel H.; Huenemoerder, David P.; Schulz, Norbert S.; Canizares, Claude R.; Weintraub, David A.

    2002-01-01

    We present high resolution X-ray spectra of the X-ray bright classical T Tauri star, TW Hydrae, covering the wavelength range of 1.5-25 AA. The differential emission measure derived from fluxes of temperature-sensitive emission lines shows a plasma with a sharply peaked temperature distribution, peaking at log T = 6.5. Abundance anomalies are apparent, with iron very deficient relative to oxygen, while neon is enhanced relative to oxygen. Density-sensitive line ratios of Ne IX and O VII indicate densities near log n_e = 13. A flare with rapid (~1 ks) rise time was detected during our 48 ksec observation; however, based on analysis of the emission-line spectrum during quiescent and flaring states, the derived plasma parameters do not appear strongly time-dependent. The inferred plasma temperature distribution and densities are consistent with a model in which the bulk of the X-ray emission from TW Hya is generated via mass accretion from its circumstellar disk. Assuming accretion powers the X-ray emission, our...

  6. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Science.gov (United States)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  7. Long-term Properties of Accretion Disks in X-ray Binaries II. Stability of Radiation-Driven Warping

    CERN Document Server

    Clarkson, W I; Coe, M J; Laycock, S

    2003-01-01

    A significant number of X-ray binaries are now known to exhibit long-term ``superorbital'' periodicities on timescales of $\\sim$ 10 - 100 days. Several physical mechanisms have been proposed that give rise to such periodicities, in particular warping and/or precession of the accretion disk. Recent theoretical work predicts the stability to disk warping of X-ray binaries as a function of the mass ratio, binary radius, viscosity and accretion efficiency, and here we examine the constraints that can be placed on such models by current observations. In paper I we used a dynamic power spectrum (DPS) analysis of long-term X-ray datasets (CGRO, RXTE), focusing on the remarkable, smooth variations in the superorbital period exhibited by SMC X-1. Here we use a similar DPS analysis to investigate the stability of the superorbital periodicities in the neutron star X-ray binaries Cyg X-2, LMC X-4 and Her X-1, and thereby confront stability predictions with observation. We find that the period and nature of superorbital v...

  8. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    OpenAIRE

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2015-01-01

    The black hole candidates exhibit fast variability of their X-ray emission on a wide range of timescales. The short, coherent variations, with frequencies above 1 Hz, are referred to as quasi-periodic oscillations, and are generally explained by resonant effects in the black hole accretion flow. The purely stochastic variability that occurs due to turbulent conditions in the plasma, is quantified by the power density spectra and appears practically in all types of sources and their spectral s...

  9. Contrasting behaviour from two Be/X-ray binary pulsars: insights into differing neutron star accretion modes

    CERN Document Server

    Townsend, L J; Hill, A B; Coe, M J; Corbet, R H D; Bird, A J

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4s and 85.4s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and ...

  10. Observation of enhanced X-ray emission from the CTTS AA Tau during a transit of an accretion funnel

    CERN Document Server

    Grosso, Nicolas; Montmerle, Thierry; Fernández, Matilde; Grankin, Konstantin; Osorio, Maria Rosa Zapatero

    2007-01-01

    AA Tau was observed for about 5h per XMM orbit (2 days) over 8 successive orbits, which covers two optical eclipse periods (8.2 days). The XMM optical/UV monitor simultaneously provided UV photometry with a ~15 min sampling rate. Some V-band photometry was also obtained from the ground during this period in order to determine the dates of the eclipses. Two X-ray and UV measurements were secured close to the center of the eclipse. The UV flux is the highest just before the eclipse starts and the lowest towards the end of it. We model the UV flux variations with a weekly modulation (inner disk eclipse), plus a daily modulation, which suggests a non-steady accretion. No eclipses are detected in X-rays. For one measurement, the X-ray count rate was nearly 50 times stronger than the minimum observed level, and the plasma temperature reached 60 MK, i.e., a factor of 2-3 higher than in the other observations. This X-ray event, observed close to the center of the optical eclipse, is interpreted as an X-ray flare. We ...

  11. A jet emission model to probe the dynamics of accretion and ejection coupling in black hole X-ray binaries

    Science.gov (United States)

    Malzac, Julien

    2016-07-01

    Compact jets are probably the most common form of jets in X-ray binaries and Active Galactic Nuclei. They seem to be present in all sources in the so-called hard X-ray spectral state. They are characterised by a nearly flat Spectral Energy Distribution (SED) extending from the radio to the infrared bands. This emission is usually interpreted as partially self absorbed synchrotron emission from relativistic leptons accelerated in the jet. The observed flat spectral shape requires energy dissipation and acceleration of particules over a wide range of distances along the jet. This distributed energy dissipation is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. I will discuss such an internal shock model in the context of black hole binaries. I will show that internal shocks can produce the observed SEDs and also predict a strong, wavelength dependent, variability that resembles the observed one. The assumed velocity fluctuations of the jet must originate in the accretion flow. The model thus predicts a strong connection between the observable properties of the jet in the radio to IR bands, and the variability of the accretion flow as observed in X-rays. If the model is correct, this offers a unique possibility to probe the dynamics of the coupled accretion and ejection processes leading to the formation of compact jets.

  12. Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines

    Science.gov (United States)

    Colombo, S.; Orlando, S.; Peres, G.; Argiroffi, C.; Reale, F.

    2016-10-01

    Context. The accretion process in classical T Tauri stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV-band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims: We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams. We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods: We modeled the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through two-dimensional (2D) magnetohydrodynamic (MHD) simulations. We explored different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 Å) and O VIII (18.97 Å) line profiles. Results: The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈ 50 km s-1 and the other broader and consisting of subcomponents with redshift to speed in the range 200-400 km s-1. The profiles of O VIII lines appear more symmetric than C IV and are redshifted to speed ≈ 150 km s-1. Conclusions: Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation. Movies are available at http://www.aanda.org

  13. X-ray and optical studies of SAX J1808.4-3658 in quiescence

    NARCIS (Netherlands)

    C.O. Heinke; C.J. Deloye; P.G. Jonker; R. Wijnands; R.E. Taam

    2008-01-01

    We have observed the accreting millisecond X-ray pulsar SAX J1808.4-3658 (1808) in quiescence during two 50 ksec XMM-Newton observations, and acquired near-simultaneous photometry with Gemini South. We find 1808's X-ray spectrum to be hard, describable with an absorbed power-law of photon index 1.7-

  14. SWIFT J1749.4-2807 : X-ray decay, refined position and optical observation

    NARCIS (Netherlands)

    Yang, Y.J.; Russell, D. M.; Wijnands, R.; van der Klis, M.; Altamirano, D.; Patruno, A.; Watts, A.; Armas Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Lewis, F.; Kong, A. K. H.

    2010-01-01

    We analyzed seven, target ID 31686, Swift follow-up observations of the neutron-star X-ray transient Swfit J1749.4-2807 (Wijnands et al. 2009) currently in outburst and which was found to be an accreting millisecond X-ray pulsar (ATel #2565). The observations span from April 11 to April 20.

  15. Testing the "no-hair" property of black holes with X-ray observations of accretion disks

    CERN Document Server

    Moore, Christopher J

    2015-01-01

    Accretion disks around black holes radiate a significant fraction of the rest mass of the accreting material in the form of thermal radiation from within a few gravitational radii of the black hole ($ r \\lesssim 20 G M / c^{2}$). In addition, the accreting matter may also be illuminated by hard X-rays from the surrounding plasma which adds fluorescent transition lines to the emission. This radiation is emitted by matter moving along geodesics in the metric, therefore the strong Doppler and gravitational redshifts observed in the emission encode information about the strong gravitational field around the black hole. In this paper the possibility of using the X-ray emission as a strong field test of General Relativity is explored by calculating the spectra for both the transition line and thermal emission from a thin accretion disk in a series of parametrically deformed Kerr metrics. In addition the possibility of constraining a number of known black hole spacetimes in alternative theories of gravity is conside...

  16. Simulations of the magnetospheres of accreting millisecond pulsars

    CERN Document Server

    Parfrey, Kyle; Beloborodov, Andrei M

    2016-01-01

    Accreting pulsars power relativistic jets, and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field. The total torque experienced by the pulsar comprises spin-up and spin-down contributions from different bundles of magnetic field lines; the spin-down `braking' torque is applied both by closed stellar field lines which enter the disc beyond the corotation radius, and those which are open and not loaded with disc material. The rates of energy and angular momentum extraction on these open field lines have lower bounds in the relativistic, magnetically dominated limit, due to the effective inertia of the electromagnetic field itself. Here we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations, with the pseudospectral PHAEDRA code, treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The m...

  17. Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star

    CERN Document Server

    Farinelli, R; Romano, P; Titarchuk, L

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. To this aim, we have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system tau using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar...

  18. X-ray Variability as a Probe of Advection-Dominated Accretion in Low-Luminosity AGN

    CERN Document Server

    Ptak, A; Mushotzky, R F; Serlemitsos, P J; Griffiths, R

    1998-01-01

    As a class, LINERs and Low-Luminosity AGN tend to show little or no significant short-term variability (i.e., with time-scales less than a day). This is a marked break for the trend of increased variability in Seyfert 1 galaxies with decreased luminosity. We propose that this difference is due to the lower accretion rate in LINERs and LLAGN which is probably causing the accretion flow to be advection-dominated. This results in a larger characteristic size for the X-ray producing region than is the case in ``normal'' AGN. Short-term variability may be caused by a localized instability or occultation events, but we note that such events would likely be accompanied by broad-band spectral changes. Since the ADAF is more compact in a Kerr metric, it is possible that the X-ray emission from ADAFs around rotating blackholes would be more variable than X-ray emission from ADAFs in a Schwarzchild metric. Similar variability arguments also apply to other wavelengths, and accordingly multiwavelength monitoring of LLAGN ...

  19. An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime

    CERN Document Server

    Dovciak, M; Yaqoob, T

    2003-01-01

    Accreting black holes are believed to emit X-rays which then mediate information about strong gravity in the vicinity of the emission region. We report on a set of new routines for the Xspec package for analysing X-ray spectra of black-hole accretion disks. The new computational tool significantly extends the capabilities of the currently available fitting procedures that include the effects of strong gravity, and allows one to systematically explore the constraints on more model parameters than previously possible (for example black-hole angular momentum). Moreover, axial symmetry of the disk intrinsic emissivity is not assumed, although it can be imposed to speed up the computations. The new routines can be used also as a stand-alone and flexible code with the capability of handling time-resolved spectra in the regime of strong gravity. We have used the new code to analyse the mean X-ray spectrum from the long XMM--Newton 2001 campaign of the Seyfert 1 galaxy MCG--6-30-15. Consistent with previous findings,...

  20. Giant outburst from the supergiant fast X-ray transient IGR J17544-2619: accretion from a transient disc?

    CERN Document Server

    Romano, P; Mangano, V; Esposito, P; Israel, G; Tiengo, A; Campana, S; Ducci, L; Ferrigno, C; Kennea, J A

    2015-01-01

    Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries associated with OB supergiant companions and characterised by an X-ray flaring behaviour whose dynamical range reaches 5 orders of magnitude on timescales of a few hundred to thousands of seconds. Current investigations concentrate on finding possible mechanisms to inhibit accretion in SFXTs and explain their unusually low average X-ray luminosity. We present the Swift observations of an exceptionally bright outburst displayed by the SFXT IGR J17544-2619 on 2014 October 10 when the source achieved a peak luminosity of $3\\times10^{38}$ erg s$^{-1}$. This extends the total source dynamic range to $\\gtrsim$10$^6$, the largest (by a factor of 10) recorded so far from an SFXT. Tentative evidence for pulsations at a period of 11.6 s is also reported. We show that these observations challenge, for the first time, the maximum theoretical luminosity achievable by an SFXT and propose that this giant outburst was due to the formation of a transient ac...

  1. Tracing the incidence of X-ray AGN and their distribution of accretion rates across the galaxy population

    Science.gov (United States)

    Aird, James; Coil, Alison; Georgakakis, Antonis; Nandra, Kirpal

    2016-08-01

    X-ray selection provides a powerful method of identifying AGN across a variety of host galaxies and with a wide range of accretion rates. However, careful consideration of the underlying selection biases are vital to reveal the true underlying distribution of accretion rates and determine how the incidence of AGN is related to the properties of the galaxies that host them. I will present new measurements of the distribution of specific accretion rates (scaled relative to the total host galaxy mass, roughly tracing the Eddington ratio) within both star-forming and quiescent galaxy populations. We combine near-infrared selected samples of galaxies from the CANDELS/3D-HST and UltraVISTA surveys with deep Chandra X-ray data and use an advanced Bayesian technique to constrain the underlying distribution of specific accretion rates as a function of stellar mass and redshift. Our results reveal a broad distribution of accretion rates (reflecting long-term variability in the level of AGN fuelling) in both galaxy types. The probability of a star-forming galaxy hosting an AGN (above a fixed specific accretion rate) has a strong stellar mass dependence - revealing an intrinsically higher incidence of AGN in massive star-forming galaxies - and undergoes a stellar-mass-dependent evolution with redshift. The probability of a quiescent galaxy hosting an AGN is generally lower but does not depend on stellar mass and evolves differently with redshift. These results provide vital insights into the relationship between the growth of black hole and the physical properties of their host galaxies.

  2. Short-Term Variability of X-rays from Accreting Neutron Star Vela X-1: II. Monte-Carlo Modeling

    CERN Document Server

    Odaka, Hirokazu; Tanaka, Yasuyuki T; Watanabe, Shin; Takahashi, Tadayuki; Makishima, Kazuo

    2013-01-01

    We develop a Monte Carlo Comptonization model for the X-ray spectrum of accretion-powered pulsars. Simple, spherical, thermal Comptonization models give harder spectra for higher optical depth, while the observational data from Vela X-1 show that the spectra are harder at higher luminosity. This suggests a physical interpretation where the optical depth of the accreting plasma increases with mass accretion rate. We develop a detailed Monte-Carlo model of the accretion flow, including the effects of the strong magnetic field ($\\sim 10^{12}$ G) both in geometrically constraining the flow into an accretion column, and in reducing the cross section. We treat bulk-motion Comptonization of the infalling material as well as thermal Comptonization. These model spectra can match the observed broad-band {\\it Suzaku} data from Vela X-1 over a wide range of mass accretion rates. The model can also explain the so-called "low state", in which the uminosity decreases by an order of magnitude. Here, thermal Comptonization sh...

  3. X-ray Sources in Galactic Globular Clusters

    CERN Document Server

    Heinke, Craig O

    2011-01-01

    I review recent work on X-ray sources in Galactic globular clusters, identified with low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), millisecond pulsars (MSPs) and coronally active binaries by Chandra. Faint transient LMXBs have been identified in several clusters, challenging our understanding of accretion disk instabilities. Spectral fitting of X-rays from quiescent LMXBs offers the potential to constrain the interior structure of neutron stars. The numbers of quiescent LMXBs scale with the dynamical interaction rates of their host clusters, indicating their dynamical formation. Large numbers of CVs have been discovered, including a very faint population in NGC 6397 that may be at or beyond the CV period minimum. Most CVs in dense clusters seem to be formed in dynamical interactions, but there is evidence that some are primordial binaries. Radio millisecond pulsars show thermal X-rays from their polar caps, and often nonthermal X-rays, either from magnetospheric emission, or from a shock betwe...

  4. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Zhang, William W.

    2016-06-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3–79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of {29.3}-1.3+1.1 keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 ± 0.1) × 1012 G. The known pulsation period is now observed at 904.0 ± 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of \\dot{P}=-2× {10}-8 s s‑1 (‑0.6 s per year, or a frequency derivative of \\dot{ν }=3× {10}-14 Hz s‑1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 × 108 cm.

  5. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    CERN Document Server

    Bodaghee, Arash; Fornasini, Francesca A; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Zhang, William W

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P' = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu' = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly i...

  6. MAGNETOHYDRODYNAMIC MODELING OF THE ACCRETION SHOCKS IN CLASSICAL T TAURI STARS: THE ROLE OF LOCAL ABSORPTION IN THE X-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Bonito, R.; Argiroffi, C.; Peres, G. [Dip. di Fisica e Chimica, Università di Palermo, P.zza del Parlamento 1, I-90134 Palermo (Italy); Orlando, S.; Miceli, M.; Ibgui, L. [INAF-Osservatorio Astronomico di Palermo, P.zza del Parlamento 1, I-90134 Palermo (Italy); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Stehle, C., E-mail: sbonito@astropa.unipa.it [LERMA, Observatoire de Paris, Université Pierre et Marie Curie, Ecole Normale Superieure, Universite Cergy-Pontoise, CNRS, F-75014 Paris (France)

    2014-11-10

    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues, we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results, we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare the results with observations. Our model shows that the X-ray fluxes inferred from the emerging spectra are lower than expected because of the complex local absorption by the optically thick material of the chromosphere and of the unperturbed stream. Moreover, our model, including the effects of local absorption, explains in a natural way the apparently puzzling pattern of density versus temperature observed in the X-ray emission from accretion shocks.

  7. Testing the Paradigm that Ultra-Luminous X-Ray Sources as a Class Represent Accreting Intermediate

    Science.gov (United States)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-01-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting Intermediate-Mass Black Holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish a general property of ULXs that the most X-ray luminous objects possess the fattest X-ray spectra (in the Chandra band pass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity > or equals 5x10(exp 39) ergs/s) and is in line with recent models arguing that ULXs are actually stellar-mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs - i.e., the "simple IMBH model" - is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to some large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find (1) that cool disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) that cool disk components extend below the standard ULX luminosity cutoff of 10(exp 39) ergs/s, down to our sample limit of 10(exp 38:3) ergs/s. The fact that cool disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which a strong statistical support was never made.

  8. Comptonization in the accretion column of the X-ray pulsar GX~1+4

    OpenAIRE

    Galloway, D. K.

    2000-01-01

    X-ray observations of the binary pulsar GX 1+4 made using the Rossi X-ray Timing Explorer (RXTE) satellite between February 1996 and May 1997 were analysed to quantify source spectral variation with luminosity. Mean Proportional Counter Array (PCA) spectra over the range 2-40 keV are best fitted with a Comptonization model, with source spectrum temperature T_0 approx 1-1.3 keV, plasma temperature T_e approx 6-10 keV, and optical depth tau approx 2-6. The range of fitted T_0 was consistent wit...

  9. Studies of the Origin of High-frequency Quasi-periodic Oscillations of Mass-accreting Black Holes in X-Ray Binaries with Next-generation X-Ray Telescopes

    Science.gov (United States)

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric

    2016-08-01

    Observations with RXTE (Rossi X-ray Timing Explorer) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT (Large Observatory for X-ray Timing) and polarization signatures with space-borne X-ray polarimeters such as IXPE (Imaging X-ray Polarimetry Explorer), PolSTAR (Polarization Spectroscopic Telescope Array), PRAXyS(Polarimetry of Relativistic X-ray Sources), or XIPE (X-ray Imaging Polarimetry Explorer). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT-type mission.

  10. Quasi-periodic oscillations in accreting magnetic white dwarfs I. Observational constraints in X-ray and optical

    CERN Document Server

    Bonnet-Bidaud, J M; Busschaert, C; Falize, E; Michaut, C

    2015-01-01

    Quasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5-10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 sec resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none sh...

  11. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    Directory of Open Access Journals (Sweden)

    Bachetti Matteo

    2014-01-01

    Full Text Available The NuSTAR hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst. The source is detected between 3 – 79 keV with high statistical significance, and we were able to perform very accurate spectral and timing analysis. The phase-averaged spectrum is consistent with that observed in many other magnetized accreting pulsars. We fail to detect cyclotron resonance scattering features in either phase-averaged nor phase-resolved spectra that would allow us to constrain the pulsar’s magnetic field. We detect a pulse period of ~ 12:29 s in all energy bands. The pulse profile can be modeled with a double Gaussian and shows a strong and smooth hard lag of up to 0.3 cycles in phase, or about 4s between the pulse at ~ 3 and ≳ 30 keV. This is the first report of such a strong lag in high-mass X-ray binary (HMXB pulsars. Previously reported lags have been significantly smaller in phase and restricted to low-energies (E<10 keV. We investigate the possible mechanisms that might produce such lags. We find the most likely explanation for this effect to be a complex beam geometry.

  12. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    Science.gov (United States)

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  13. Revealing accretion onto black holes: X-ray reflection throughout three outbursts of GX 339-4

    CERN Document Server

    Plant, D S; Ponti, G; Muñoz-Darias, T; Coriat, M

    2014-01-01

    Understanding the dynamics behind black hole state transitions and the changes they reflect in outbursts has become long-standing problem. The X-ray reflection spectrum describes the interaction between the hard X-ray source (the power-law continuum) and the cool accretion disc it illuminates, and thus permits an indirect view of how the two evolve. We present a systematic analysis of the reflection spectrum throughout three outbursts (500+ observations) of the black hole binary GX 339-4, representing the largest study applying a self-consistent treatment of reflection to date. Particular attention is payed to the coincident evolution of the power-law and reflection, which can be used to determine the accretion geometry. The hard state is found to be distinctly reflection weak, however the ratio of reflection to power-law gradually increases as the source luminosity rises. In contrast the reflection is found dominate the power-law throughout most of the soft state, with increasing supremacy as the source deca...

  14. X-ray constraints on ionizing photons from accreting black holes at Z~6

    OpenAIRE

    Moustakas, Leonidas A.; Immler, Stefan

    2004-01-01

    Using an X-ray stacking procedure, we provide a robust upper limit to the X-ray luminosity per object of a set of 54 z~5.8 galaxy candidates in the Hubble Ultra Deep Field, which is within the 1 Ms-exposure Chandra Deep Field-South (CDF-S). With an effective total exposure of 44 Ms for the stack, the 3-sigma flux-density limit of 2.1E-17 erg/cm^2/s (soft-band) gives a 3-sigma upper-limit luminosity of L_X = 8E42 erg/s per object at a rest-frame hard energy range of 3-14 keV at z~5.8 for a pho...

  15. The XMM-Newton Bright Survey sample of absorbed quasars: X-ray and accretion properties

    CERN Document Server

    Ballo, L; Della Ceca, R; Caccianiga, A; Vignali, C; Carrera, F J; Corral, A; Mateos, S

    2014-01-01

    Although absorbed quasars are extremely important for our understanding of the energetics of the Universe, the main physical parameters of their central engines are still poorly known. In this work we present and study a complete sample of 14 quasars (QSOs) that are absorbed in the X-rays (column density NH>4x10^21 cm-2 and X-ray luminosity L(2-10 keV)>10^44 ergs/s; XQSO2) belonging to the XMM-Newton Bright Serendipitous Survey (XBS). From the analysis of their ultraviolet-to-mid-infrared spectral energy distribution we can separate the nuclear emission from the host galaxy contribution, obtaining a measurement of the fundamental nuclear parameters, like the mass of the central supermassive black hole and the value of Eddington ratio, lambda_Edd. Comparing the properties of XQSO2s with those previously obtained for the X-ray unabsorbed QSOs in the XBS, we do not find any evidence that the two samples are drawn from different populations. In particular, the two samples span the same range in Eddington ratios, ...

  16. IGRJ17361-4441: a possible new accreting X-ray binary in NGC6388

    CERN Document Server

    Bozzo, E; Stevens, J; Belloni, T M; Rodriguez, J; Hartog, P R den; Papitto, A; Kreykenbohm, I; Fontani, F; Gibaud, L

    2011-01-01

    IGRJ17361-4441 is a newly discovered INTEGRAL hard X-ray transient, located in the globular cluster NGC6388. We report here the results of the X-ray and radio observations performed with Swift, INTEGRAL, RXTE, and the Australia Telescope Compact Array (ATCA) after the discovery of the source on 2011 August 11. In the X-ray domain, IGRJ17361-4441 showed virtually constant flux and spectral parameters up to 18 days from the onset of the outburst. The broad-band (0.5-100 keV) spectrum of the source could be reasonably well described by using an absorbed power-law component with a high energy cut-off (N_H\\simeq0.8x10^(22) cm^(-2), {\\Gamma}\\simeq0.7-1.0, and E_cut\\simeq25 keV) and displayed some evidence of a soft component below \\sim2 keV. No coherent timing features were found in the RXTE data. The ATCA observation did not detect significant radio emission from IGRJ17361-4441, and provided the most stringent upper limit (rms 14.1 {\\mu}Jy at 5.5 GHz) to date on the presence of any radio source close to the NGC638...

  17. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications.

    Science.gov (United States)

    Khalid, S; Caliebe, W; Siddons, P; So, I; Clay, B; Lenhard, T; Hanson, J; Wang, Q; Frenkel, A I; Marinkovic, N; Hould, N; Ginder-Vogel, M; Landrot, G L; Sparks, D L; Ganjoo, A

    2010-01-01

    In order to learn about in situ structural changes in materials at subseconds time scale, we have further refined the techniques of quick extended x-ray absorption fine structure (QEXAFS) and quick x-ray absorption near edge structure (XANES) spectroscopies at beamline X18B at the National Synchrotron Light Source. The channel cut Si (111) monochromator oscillation is driven through a tangential arm at 5 Hz, using a cam, dc motor, pulley, and belt system. The rubber belt between the motor and the cam damps the mechanical noise. EXAFS scan taken in 100 ms is comparable to standard data. The angle and the angular range of the monochromator can be changed to collect a full EXAFS or XANES spectrum in the energy range 4.7-40.0 KeV. The data are recorded in ascending and descending order of energy, on the fly, without any loss of beam time. The QEXAFS mechanical system is outside the vacuum system, and therefore changing the mode of operation from conventional to QEXAFS takes only a few minutes. This instrument allows the acquisition of time resolved data in a variety of systems relevant to electrochemical, photochemical, catalytic, materials, and environmental sciences.

  18. INTEGRAL detects a new outburst from the millisecond X-ray pulsar IGR J17511-3057

    DEFF Research Database (Denmark)

    Bozzo, E.; Kuulkers, E.; Bazzano, A.;

    2015-01-01

    Crab in the 10-20 keV energy band. All uncertainties on the fluxes are quoted at 1 sigma c.l. The IBIS/ISGRI spectrum (effective exposure time 9.1 ks) could be reasonably well described by using a power-law model with photon index 2.3+/-0.4. The 20-100 keV X-ray flux estimated from the spectral fit is 4.5E-10...... ergs/cm^2/s. Further INTEGRAL observations in the direction of the source are already planned for the next days. The INTEGRAL monitoring of the Galactic bulge will also continue in the coming weeks, and the observational results from near real time data will be made available HERE....

  19. Formation of millisecond pulsars with CO white dwarf companions - II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions

    CERN Document Server

    Tauris, Thomas M; Kramer, Michael

    2012-01-01

    Millisecond pulsars (MSPs) are mainly characterised by their spin periods, B-fields and masses - quantities which are largely affected by previous interactions with a companion star in a binary system. In this paper, we investigate the formation mechanism of MSPs by considering the pulsar recycling process in both intermediate-mass X-ray binaries (IMXBs) and low-mass X-ray binaries (LMXBs). The IMXBs mainly lead to the formation of binary MSPs with a massive carbon-oxygen (CO) or an oxygen-neon-magnesium white dwarf (ONeMg WD) companion, whereas the LMXBs form recycled pulsars with a helium white dwarf (He WD) companion. We discuss the accretion physics leading to the spin-up line in the PPdot-diagram and demonstrate that such a line cannot be uniquely defined. We derive a simple expression for the amount of accreted mass needed for any given pulsar to achieve its equilibrium spin and apply this to explain the observed differences of the spin distributions of recycled pulsars with different types of companion...

  20. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    DEFF Research Database (Denmark)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca A.;

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50ks. We present the results of this observation which enabled the discovery of acyclotron resonant scattering feature with a centroid energy of 29.3...

  1. Studies of the Origin of High-Frequency Quasi-Periodic Oscillations of Mass Accreting Black Holes in X-ray Binaries with Next-Generation X-ray Telescopes

    CERN Document Server

    Beheshtipour, Banafsheh; Krawczynski, Henric

    2016-01-01

    Observations with RXTE (Rossi X-ray Timing Explorer) revealed the presence of High Frequency Quasi-Periodic Oscillations (HFQPOs) of the X-ray flux from several accreting stellar mass Black Holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the strong gravity regime. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general relativistic ray-tracing code to investigate X-ray timing-spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment like the LOFT (Large Observatory for X-ray Timing) and polarization signatures with space-borne X-ray polarimeters such as IXPE (Imaging X-ray Polarimetry Explorer), P...

  2. X-ray Insights into the Nature of PHL 1811 Analogs and Weak Emission-line Quasars: Unification with a Geometrically Thick Accretion Disk?

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Hall, P. B.; Wu, Jianfeng; Anderson, S. F.; Garmire, G. P.; Gibson, R. R.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Shemmer, O.; Shen, Yue

    2015-06-01

    We present an X-ray and multiwavelength study of 33 weak emission-line quasars (WLQs) and 18 quasars that are analogs of the extreme WLQ, PHL 1811, at z≈ 0.5-2.9. New Chandra 1.5-9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-ray observations. Significant fractions of these luminous type 1 quasars are distinctly X-ray weak compared to typical quasars, including 16 (48%) of the WLQs and 17 (94%) of the PHL 1811 analogs with average X-ray weakness factors of 17 and 39, respectively. We measure a relatively hard ({Γ }=1.16-0.32+0.37) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption, and spectral analysis of one PHL 1811 analog, J1521+5202, also indicates significant intrinsic X-ray absorption. We compare composite Sloan Digital Sky Survey spectra for the X-ray weak and X-ray normal populations and find several optical-UV tracers of X-ray weakness, e.g., Fe ii rest-frame equivalent width (REW) and relative color. We describe how orientation effects under our previously proposed “shielding-gas” scenario can likely unify the X-ray weak and X-ray normal populations. We suggest that the shielding gas may naturally be understood as a geometrically thick inner accretion disk that shields the broad line region from the ionizing continuum. If WLQs and PHL 1811 analogs have very high Eddington ratios, the inner disk could be significantly puffed up (e.g., a slim disk). Shielding of the broad emission-line region by a geometrically thick disk may have a significant role in setting the broad distributions of C iv REW and blueshift for quasars more generally.

  3. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    Science.gov (United States)

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2016-02-01

    Aims: Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. Methods: We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Rényi's entropy for the observed time series, and we compare them with surrogate data. Results: Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. Conclusions: We test the method and confirm the deterministic nature of

  4. The ultraluminous X-ray source NGC 5643 ULX1 : a large stellar mass black hole accreting at super-Eddington rates?

    OpenAIRE

    Pintore, F.; Zampieri, L.; Sutton, A. D.; Roberts, T. P.; Middleton, M. J.; Gladstone, J. C.

    2016-01-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s−1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ∼10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we...

  5. X-ray variability of SS 433: Evidence for supercritical accretion

    Science.gov (United States)

    Atapin, K. E.; Fabrika, S. N.

    2016-08-01

    We study the X-ray variability of SS 433 based on data from the ASCA observatory and the MAXI and RXTE/ASM monitoring missions. Based on the ASCA data, we have constructed the power spectrum of SS 433 in the frequency range from 10-6 to 0.1 Hz, which confirms the presence of a flat portion in the spectrum at frequencies 3 × 10-5-10-3 Hz. The periodic variability (precession, nutation, eclipses) begins to dominate significantly over the stochastic variability at lower frequencies, which does not allow the stochastic variability to be studied reliably. The model in which the flat portion extends to 9.5 × 10-6 Hz, while a power-law rise with an index of 2.6 occurs below provides the best agreement with the observations. The nutational oscillations of the jets with a period of about three days suggests that the time for the passage of material through the disk is less than this value. At frequencies below 4 × 10-6 Hz, the shape of the power spectrum probably does not reflect the disk structure but is determined by external factors, for example, by a change in the amount of material supplied by the donor. The flat portion can arise from a rapid decrease in the viscous time in the supercritical or radiative disk zones. The flat spectrum is associated with the variability of the X-ray jets that are formed in the supercritical disk region.

  6. Oceanography of Accreting Neutron Stars Non-Radial Oscillations and Periodic X-Ray Variability

    CERN Document Server

    Bildsten, L; Ushomirsky, G; Cutler, C; Bildsten, Lars; Cumming, Andrew; Ushomirsky, Greg; Cutler, Curt

    1997-01-01

    Observations of quasi-periodic oscillations (QPOs) in the luminosity from many accreting neutron stars (NS) have led us to investigate a source of periodicity prevalent in other stars: non-radial oscillations. After summarizing the structure of the atmosphere and ocean of an accreting NS, we discuss the various low l g-modes with frequencies in the 1-100 Hz range. Successful identification of a non-radial mode with an observed frequency would yield new information about the thermal and compositional makeup of the NS, as well as its radius. We close by discussing how rapid rotation changes the g-mode frequencies.

  7. Spin frequency distributions of binary millisecond pulsars

    NARCIS (Netherlands)

    A. Papitto; D.F. Torres; N. Rea; T.M. Tauris

    2014-01-01

    Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a 108−109 yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between

  8. X-Ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Science.gov (United States)

    García, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Eikmann, W.

    2013-05-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Γ of the illuminating radiation, the ionization parameter ξ at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A Fe relative to the solar value. The ranges of the parameters covered are 1.2 law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file (http://hea-www.cfa.harvard.edu/~javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.

  9. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Science.gov (United States)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  10. Variable Hard X-ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10

    CERN Document Server

    Whalen, Thomas J; Reines, Amy E; Greene, Jenny E; Sivakoff, Gregory R; Johnson, Kelsey E; Alexander, David M; Goulding, Andy D

    2015-01-01

    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2-10. Recent observations suggest that this galaxy hosts an actively accreting black hole with mass ~10^6 M_sun. The presence of an AGN in a low-mass starburst galaxy marks a new environment for active galactic nuclei (AGNs), with implications for the processes by which "seed" black holes may form in the early Universe. In this paper, we analyze four epochs of X-ray observations of Henize 2-10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on detailed analysis of the source and background, we find that the hard (2-10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms th...

  11. X-ray Emission from T Tauri Stars and the Role of Accretion: Inferences from the XMM-Newton Extended Survey of the Taurus Molecular Cloud

    CERN Document Server

    Telleschi, A; Briggs, K R; Audard, M; Palla, F

    2006-01-01

    T Tau stars display different X-ray properties depending on whether they are accreting (classical T Tau stars; CTTS) or not (weak-line T Tau stars; WTTS). We use data from the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST) to study differences in X-ray properties between CTTS and WTTS. We perform correlation and regression analysis between X-ray parameters and stellar properties. We confirm the existence of a X-ray luminosity (Lx) vs. mass (M) relation, Lx ~ M^(1.69 +/- 0.11), but this relation is a consequence of X-ray saturation and a mass vs. bolometric luminosity (L*) relation for the TTS with an average age of 2.4 Myr. X-ray saturation indicates Lx = const L*, although the constant is different for the two subsamples: const = 10^(-3.73 +/- 0.05) for CTTS and const = 10^(-3.39 +/- 0.06) for WTTS. Given a similar L* distribution of both samples, the X-ray luminosity function also reflects a real X-ray deficiency in CTTS, by a factor of ~ 2 compared to WTTS. The average electron temperature...

  12. The Accreting Black Hole Swift J1753.5-0127 from Radio to Hard X-Ray

    Science.gov (United States)

    Tomsick, John A.; Rahoui, Farid; Kolehmainen, Mari; Miller-Jones, James; Fürst, Felix; Yamaoka, Kazutaka; Akitaya, Hiroshi; Corbel, Stéphane; Coriat, Mickael; Done, Chris; Gandhi, Poshak; Harrison, Fiona A.; Huang, Kuiyun; Kaaret, Philip; Kalemci, Emrah; Kanda, Yuka; Migliari, Simone; Miller, Jon M.; Moritani, Yuki; Stern, Daniel; Uemura, Makoto; Urata, Yuji

    2015-07-01

    We report on multiwavelength measurements of the accreting black hole Swift J1753.5-0127 in the hard state at low luminosity (L ˜ 2.7 × 1036 erg s-1 assuming a distance of d = 3 kpc) in 2014 April. The radio emission is optically thick synchrotron, presumably from a compact jet. We take advantage of the low extinction (E(B-V)=0.45 from earlier work) and model the near-IR to UV emission with a multitemperature disk model. Assuming a black hole mass of MBH = 5 M⊙ and a system inclination of i = 40°, the fits imply an inner radius for the disk of Rin/Rg > 212d3(MBH/5 M⊙)-1, where Rg is the gravitational radius of the black hole and d3 is the distance to the source in units of 3 kpc. The outer radius is Rout/Rg=90,000 d3(MBH/5 M⊙)-1, which corresponds to 6.6 × 1010 d3 cm, consistent with the expected size of the disk given previous measurements of the size of the companion's Roche lobe. The 0.5-240 keV energy spectrum measured by Swift/X-ray Telescope (XRT), Suzaku (XIS, PIN, and GSO), and Nuclear Spectroscopic Telescope Array is relatively well characterized by an absorbed power law with a photon index of Γ = 1.722 ± 0.003 (90% confidence error), but a significant improvement is seen when a second continuum component is added. Reflection is a possibility, but no iron line is detected, implying a low iron abundance. We are able to fit the entire (radio to 240 keV) spectral energy distribution (SED) with a multitemperature disk component, a Comptonization component, and a broken power law, representing the emission from the compact jet. The broken power law cannot significantly contribute to the soft X-ray emission, and this may be related to why Swift J1753.5-0127 is an outlier in the radio/X-ray correlation. The broken power law (i.e., the jet) might dominate above 20 keV, which would constrain the break frequency to be between 2.4 × 1010 and 3.6 × 1012 Hz. Although the fits to the full SED do not include significant thermal emission in the X-ray band

  13. Electromagnetic spin down of a transient accreting millisecond pulsar during quiescence

    CERN Document Server

    Melatos, Andrew

    2015-01-01

    The measured spin-down rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate, if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration, through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spin-down formula and calculate the residual accretion rates where the formula is applicable. As a demonstration, we apply the alternative spin-down formula to produce updated magnetic moment estimates for the four objects above. We note that, based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because ...

  14. X-ray Variability of SS 433: Evidence for Supercritical Accretion

    CERN Document Server

    Atapin, Kirill

    2016-01-01

    We study the X-ray variability of SS433 based on data from the ASCA observatory and the MAXI and RXTE/ASM monitoring missions. Based on the ASCA data, we have constructed the power spectrum of SS433 in the frequency range from $10^{-6}$ to 0.1 Hz, which confirms the presence of a flat portion (flat-topped noise) in the spectrum at frequencies $3\\times 10^{-5}$ - $10^{-3}$ Hz. The periodic variability (precession, nutation, eclipses) begins to dominate significantly over the stochastic variability at lower frequencies, which does not allow the stochastic variability to be studied reliably. The best agreement with the observations is reached by the model with the flat portion extending to $9.5\\times10^{-6}$ Hz and a power-law spectrum with index of 2.6 below that frequency. The jet nutation with a period of about three days suggests that the time for the passage of material through the disk is less than this value. Therefore, at frequencies below $4\\times10^{-6}$ Hz, the power spectrum probably does not reflect...

  15. X-ray Reflection from Inhomogeneous Accretion Disks: II. Emission Line Variability and Implications for Reverberation Mapping

    CERN Document Server

    Ballantyne, D R; Young, A J

    2004-01-01

    One of the principal scientific objectives of the upcoming Constellation-X mission is to attempt to map the inner regions of accretion disks around black holes in Seyfert galaxies by reverberation mapping of the Fe K fluorescence line. This area of the disk is likely radiation pressure dominated and subject to various dynamical instabilities. Here, we show that density inhomogeneities in the disk atmosphere resulting from the photon bubble instability (PBI) can cause rapid changes in the X-ray reflection features, even when the illuminating flux is constant. Using a simulation of the development of the PBI, we find that, for the disk parameters chosen, the Fe K and O VIII Ly\\alpha lines vary on timescales as short as a few hundredths of an orbital time. In response to the changes in accretion disk structure, the Fe K equivalent width (EW) shows variations as large as ~100 eV. The magnitude and direction (positive or negative) of the changes depends on the ionization state of the atmosphere. The largest change...

  16. X-ray Emissions from Three-dimensional Magnetohydrodynamic Coronal Accretion Flows

    CERN Document Server

    Kawanaka, Norita; Mineshige, Shin

    2008-01-01

    We calculate the radiation spectrum and its time variability of the black hole accretion disk-corona system based on the three-dimensional magnetohydrodynamic simulation. In explaining the spectral properties of active galactic nuclei (AGNs), it is often assumed that they consist of a geometrically thin, optically thick disk and hot, optically thin corona surrounding the thin disk. As for a model of the corona, we adopt the simulation data of three-dimensional, non-radiative MHD accretion flows calculated by Kato and coworkers, while for a thin disk we assume a standard type disk. We perform Monte Carlo radiative transfer simulations in the corona, taking into account the Compton scattering of soft photons from the thin disk by hot thermal electrons and coronal irradiation heating of the thin disk, which emits blackbody radiation. By adjusting the density parameter of the MHD coronal flow, we can produce the emergent spectra which are consistent with those of typical Seyfert galaxies. Moreover, we find rapid ...

  17. Constraints on the inner accretion flow of 4U/MXB 1636-53 (V 801 Arae) from a comparison of X-ray burst and persistent emission

    NARCIS (Netherlands)

    E. Damen; R.A.M.J. Wijers; J. van Paradijs; W. Penninx; T. Oosterbroek; W.H.G. Lewin; F. Jansen

    1990-01-01

    A detailed analysis is presented of the importance of Comptonization in burst and persistent spectra of the low-mass X-ray binary 4U/MXB 1636-53, and from this analysis it is inferred that the inner accretion flow is geometrically thin. It is found that burst spectra of 1636-53 are very nearly Planc

  18. Accretion disk dynamo as the trigger for X-ray binary state transitions

    CERN Document Server

    Begelman, Mitchell C; Reynolds, Christopher S

    2015-01-01

    Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in the presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a "dead zone" where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the sp...

  19. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.;

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more......-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or...... than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20...

  20. The Transient Accreting X-Ray Pulsar XTE J1946+274: Stability of X-Ray Properties at Low Flux and Updated Orbital Solution

    Science.gov (United States)

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Caballero, Isabel; Finger, Mark H.; Jenke, Peter J.; Wilson-Hodge, Colleen A.; Fürst, Felix; Grinberg, Victoria; Hemphill, Paul B.; Kreykenbohm, Ingo; Klochkov, Dmitry; Rothschild, Richard E.; Terada, Yukikatsu; Enoto, Teruaki; Iwakiri, Wataru; Wolff, Michael T.; Becker, Peter A.; Wood, Kent S.; Wilms, Jörn

    2015-12-01

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2-3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi-Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ˜35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (˜5 × 1037 erg s-1) and lowest (˜5 × 1036 erg s-1) observed 3-60 keV luminosities.

  1. Stronger Reflection from Black Hole Accretion Disks in Soft X-ray States

    CERN Document Server

    Steiner, James F; Garcia, Javier A; McClintock, Jeffrey E

    2016-01-01

    We analyze 15,000 spectra of 29 stellar-mass black hole candidates collected over the 16-year mission lifetime of RXTE using a simple phenomenological model. As these black holes vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: The Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely the Compton power law. We find that reflection is several times more pronounced (~3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which ...

  2. AGN Unification, X-Ray Absorbers and Accretion Disk MHD Winds

    Science.gov (United States)

    Kazanas, Demos

    2011-01-01

    We present the 2D photoionization structure of the MHD winds of AGN accretion disks. We focus our attention on a specific subset of winds, those with poloidal currents that lead to density profiles n(r) \\propto 1/r. We employ the code XSTAR to compute the local ionization balance, emissivities and opacity which are then used in the self-consistent transfer of radiation and ionization of a host of ionic species of a large number of elements over then entire poloidal plane. Particular attention is paid to the Absorption Measure Distribution (AMD), namely their hydrogen-equivalent column of these ions per logarithmic 7 interval, dN_H/dlog ? (? = L/n(r)r(sup 2) is the ionization parameter), which provides a measure of the winds' radial density profiles. For the given density profile, AMD is found to be independent of ?, in good agreement with analyses of Chandra and XMM data, suggesting the specific profile as a fundamental AGN property. Furthermore, the ratio of equatorial to polar column densities of these winds is \\simeq 10(exp 4); as such, it is shown they serve as the "torus" necessary for AGN unification with phenomenology consistent with the observations. The same winds are also shown to reproduce the observed columns and velocities of C IV and Fe XXV of SAL QSOs once the proper ionizing spectra and inclination angles are employed.

  3. Nustar and Suzaku X-Ray Spectroscopy Of Ngc 4151: Evidence For Reflection From The Inner Accretion Disk

    DEFF Research Database (Denmark)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.;

    2015-01-01

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN......) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity...... the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact...

  4. Nustar Detection of Hard X-Ray Phase Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Miyasaka, Hiromasa; Bachetti, Matteo; Harrison, Fiona A.;

    2013-01-01

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834-430 during its 2012 outburst-the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV w...

  5. The effects of high density on the X-ray spectrum reflected from accretion discs around black holes

    Science.gov (United States)

    García, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Michael L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jörn

    2016-10-01

    Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter ξ, which is the ratio of the incident flux to the gas density. The density is typically fixed at ne = 1015 cm-3. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for ne ≳ 1017 cm-3 that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies ≲ 2 keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.

  6. X-ray reflected spectra from accretion disk models. III. A complete grid of ionized reflection calculations

    CERN Document Server

    Garcia, J; Reynolds, C S; Kallman, T R; McClintock, J E; Wilms, J; Eikmann, W

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index \\Gamma of the illuminating radiation, the ionization parameter \\xi at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A_{Fe} relative to the solar value. The ranges of the parameters covered are: 1.2 \\leq \\Gamma \\leq 3.4, 1 \\leq \\xi \\leq 10^4, and 0.5 \\leq A_{Fe} \\leq 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compa...

  7. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries

    Science.gov (United States)

    Giménez-García, A.; Shenar, T.; Torrejón, J. M.; Oskinova, L.; Martínez-Núñez, S.; Hamann, W.-R.; Rodes-Roca, J. J.; González-Galán, A.; Alonso-Santiago, J.; González-Fernández, C.; Bernabeu, G.; Sander, A.

    2016-06-01

    orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.

  8. Further constraints on thermal quiescent X-ray emission from SAX J1808.4-3658

    NARCIS (Netherlands)

    C.O. Heinke; P.G. Jonker; R. Wijnands; C.J. Deloye; R.E. Taam

    2009-01-01

    We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power law with photon index 1.74 +

  9. Daily, multiwavelength Swift monitoring of the neutron star low-mass X-ray binary Cen X-4: evidence for accretion and reprocessing during quiescence

    CERN Document Server

    Bernardini, F; Brown, E F; Degenaar, C D'Angelo N; Miller, J M; Reynolds, M; Wijnands, R

    2013-01-01

    The physics of accretion during quiescence in low mass X-ray binaries (LMXBs) is poorly understood, yet there are signs that accretion must be happening. Several LMXBs show variability during quiescence, particularly striking is the case of the nearby neutron star Cen X-4. With the goal of unveiling the real nature of its quiescent variability we conducted the first long-term, multiwavelength simultaneous monitoring of Cen X-4, thanks to 60 observations performed by Swift on a daily basis. During those observations, Cen X-4 is highly variable in all energy bands on timescales from days to months, with the strongest quiescent short-term variability detected in the X-ray band, a factor of 22 drop in only 4 days. The X-ray and the UV and optical emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index 0.2-0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT=59-80 eV) and a power law (spectral index 1.4-2.0). The spectral shape remains...

  10. A FOURIER-TRANSFORMED BREMSSTRAHLUNG FLASH MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS IN ACCRETING BLACK HOLE SOURCES

    International Nuclear Information System (INIS)

    Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resulting Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources

  11. Potential cooling of an accretion-heated neutron star crust in the low-mass X-ray binary 1RXS J180408.9-342058

    CERN Document Server

    Parikh, Aastha S; Degenaar, Nathalie; Ootes, Laura S; Page, Dany; Altamirano, Diego; Cackett, Edward M; Deller, Adam T; Gusinskaia, Nina; Hessels, Jason W T; Homan, Jeroen; Linares, Manuel; Miller, Jon M; Miller-Jones, James C A

    2016-01-01

    We have monitored the transient neutron star low-mass X-ray binary 1RXS J180408.9-342058 in quiescence after the end of its ~4.5 month outburst in 2015. The source has been observed 34 times using Swift and once using XMM-Newton in order to study the cooling of an accretion heated neutron star crust. During both the Swift and the XMM-Newton observations the X-ray spectra were dominated by a thermal component. The thermal evolution showed a gradual decay in the X-ray luminosity from ~18x10^32 to ~4x10^32 (D/5.8 kpc)^2 erg s^{-1} and the inferred neutron star surface temperature (for an observer at infinity) decreased from ~100 to ~72 eV between ~8 to ~379 days after the end of outburst. This can be interpreted as cooling of a neutron star crust that had been heated due to accretion during the preceding outburst. Modeling the observed temperature curve with the thermal evolution code NSCool indicated that the source required ~1.9 MeV per accreted nucleon of shallow heating in addition to the standard deep crust...

  12. X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    NARCIS (Netherlands)

    F. Bernardini; E.M. Cackett; E.F. Brown; C. D'Angelo; N. Degenaar; J.M. Miller; M. Reynolds; R. Wijnands

    2013-01-01

    We conducted the first long-term (60 days), multiwavelength (optical, ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in

  13. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Bachetti, Matteo; Miyasaka, Hiromasa; Harrison, Fiona;

    2014-01-01

    The NuSTAR hard X-ray telescope observed the transient Be/X-ray binary GS 0834􀀀430 during its 2012 outburst. The source is detected between 3 – 79 keV with high statistical significance, and we were able to perform very accurate spectral and timing analysis. The phase-averaged spectrum i...

  14. X-ray Pulsars

    CERN Document Server

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  15. The clustering amplitude of X-ray-selected AGN at z ˜ 0.8: evidence for a negative dependence on accretion luminosity

    Science.gov (United States)

    Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.

    2016-04-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.

  16. Stochastic Resonance of Accretion Disk and the Persistent Low-Frequency Quasi-Periodic Oscillations in Black Hole X-ray Binaries

    Indian Academy of Sciences (India)

    Z. Y. Wang; P. J. Chen; D. X. Wang; L. Y. Zhang

    2013-03-01

    In this paper, we use a Langevin type equation with a damping term and stochastic force to describe the stochastic oscillations on the vertical direction of the accretion disk around a black hole, and calculate the luminosity and power spectral density (PSD) for an oscillating disk. Then we discuss the stochastic resonance (SR) phenomenon in PSD curves for different parameter values of viscosity coefficient, accretion rate, mass of black hole and outer radius of the disk. The results show that our simulated PSD curves of luminosity for disk oscillation have the same profile as the observed PSD of black hole X-ray binaries (BHXBs) in the lowhard state, and the SR of accretion disk oscillation may be an alternative interpretation of the persistent low-frequency quasi-periodic oscillations (LFQPOs).

  17. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    Science.gov (United States)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  18. The influence of accretion geometry on the spectral evolution during thermonuclear (type-I) X-ray bursts

    CERN Document Server

    Kajava, Jari J E; Latvala, Outi-Marja; Pursiainen, Miika; Poutanen, Juri; Suleimanov, Valery F; Revnivtsev, Mikhail G; Kuulkers, Erik; Galloway, Duncan K

    2014-01-01

    Neutron star (NS) masses and radii can be estimated from observations of photospheric radius-expansion X-ray bursts, provided the chemical composition of the photosphere, the spectral colour-correction factors in the observed luminosity range, and the emission area during the bursts are known. By analysing 246 X-ray bursts observed by the Rossi X-ray Timing Explorer from 11 low-mass X-ray binaries, we find a dependence between the persistent spectral properties and the time evolution of the black body normalisation during the bursts. All NS atmosphere models predict that the colour-correction factor decreases in the early cooling phase when the luminosity first drops below the limiting Eddington value, leading to a characteristic pattern of variability in the measured blackbody normalisation. However, the model predictions agree with the observations for most bursts occurring in hard, low-luminosity, 'island' spectral states, but rarely during soft, high-luminosity, 'banana' states. The observed behaviour may...

  19. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  20. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    CERN Document Server

    Pintore, F; Sutton, A D; Roberts, T P; Middleton, M J; Gladstone, J C

    2016-01-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above $10^{40}$ erg s$^{-1}$, typically have energy spectra which can be well described as hard power-laws, and short-term variability in excess of $\\sim10\\%$. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1$-$440939, located in NGC 5643. We report that its high quality EPIC spectra can be better described by a broad, thermal component, such as an advection dominated disc or an optically thick Comptonising corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We ...

  1. NuSTAR observations of the supergiant X-ray pulsar IGR J18027-2016: accretion from the stellar wind and possible cyclotron absorption line

    CERN Document Server

    Lutovinov, A; Postnov, K; Krivonos, R; Molkov, S; Tomsick, J

    2016-01-01

    We report on the first focused hard X-ray view of the absorbed supergiant system IGRJ18027-2016 performed with the NuSTAR observatory. The pulsations are clearly detected with a period of P_{spin}=139.866(1) s and a pulse fraction of about 50-60% at energies from 3 to 80 keV. The source demonstrates an approximately constant X-ray luminosity on a time scale of more than dozen years with an average spin-down rate of dP/dt~6x10^{-10} s/s. This behaviour of the pulsar can be explained in terms of the wind accretion model in the settling regime. The detailed spectral analysis at energies above 10 keV was performed for the first time and revealed a possible cyclotron absorption feature at energy ~23 keV. This energy corresponds to the magnetic field B~3x10^{12} G at the surface of the neutron star, which is typical for X-ray pulsars.

  2. Revealing a Cool Accretion Disk in the Ultraluminous X-ray Source M81 X-9 (Holmberg IX X-1): Evidence for an Intermediate Mass Black Hole

    CERN Document Server

    Miller, J M; Miller, M C

    2003-01-01

    We report the results of an analysis of two XMM-Newton/EPIC-pn spectra of the bright ultraluminous X-ray source M81 X-9 (Holmberg IX X-1), obtained in snapshot observations. Soft thermal emission is clearly revealed in spectra dominated by hard power-law components. Depending on the model used, M81 X-9 was observed at a luminosity of L_X = 1.0-1.6 E+40 erg/s (0.3-10.0 keV). The variability previously observed in this source signals that it is an accreting source which likely harbors a black hole. Remarkably, accretion disk models for the soft thermal emission yield very low inner disk temperatures (kT = 0.17-0.29 keV, including 90 per cent confidence errors and variations between observations and disk models), and improve the fit statistic over any single-component continuum model at the 6 sigma level of confidence. This represents much stronger evidence for a cool disk than prior evidence which combined spectra from different observatories, and the strongest evidence of a cool disk in an ultraluminous X-ray ...

  3. A numerical investigation of wind accretion in persistent Supergiant X-ray Binaries I - Structure of the flow at the orbital scale

    CERN Document Server

    Mellah, I El

    2016-01-01

    Classical Supergiant X-ray Binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 10$^{35}$ to 10$^{37}$ erg/s. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to characterize the structure of the wind at the orbital scale as it accelerates, from the stellar surface to the vicinity of the accretor. Thanks to the parametrization we retained and the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the $\\alpha$-force multiplier which drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rat...

  4. DISCOVERY OF BURST OSCILLATIONS IN THE INTERMITTENT ACCRETION-POWERED MILLISECOND PULSAR HETE J1900.1-2455

    International Nuclear Information System (INIS)

    We report the discovery of burst oscillations from the intermittent accretion-powered millisecond pulsar (AMP) HETE J1900.1-2455, with a frequency ∼1 Hz below the known spin frequency. The burst oscillation properties are far more similar to those of the non-AMPs and Aql X-1 (an intermittent AMP with a far lower duty cycle), than those of the AMPs SAX J1808.4-3658 and XTE J1814-338. We discuss the implications for models of the burst oscillation and intermittency mechanisms.

  5. The neutron star transient and millisecond pulsar in M28: from sub-luminous accretion to rotation-powered quiescence

    CERN Document Server

    Linares, Manuel; Heinke, Craig; Wijnands, Rudy; Patruno, Alessandro; Altamirano, Diego; Homan, Jeroen; Bogdanov, Slavko; Pooley, David

    2013-01-01

    The X-ray transient IGR J18245-2452 in the globular cluster M28 contains the first neutron star (NS) seen to switch between rotation-powered and accretion-powered pulsations. We analyse its 2013 March-April 25d-long outburst as observed by Swift, which had a peak bolometric luminosity of ~6% of the Eddington limit (L$_{E}$), and give detailed properties of the thermonuclear burst observed on 2013 April 7. We also present a detailed analysis of new and archival Chandra data, which we use to study quiescent emission from IGR J18245-2452 between 2002 and 2013. Together, these observations cover almost five orders of magnitude in X-ray luminosity (L$_X$, 0.5-10 keV). The Swift spectrum softens during the outburst decay (photon index $\\Gamma$ from 1.3 above L$_X$/L$_{E}$=10$^{-2}$ to ~2.5 at L$_X$/L$_{E}$=10$^{-4}$), similar to other NS and black hole (BH) transients. At even lower luminosities, deep Chandra observations reveal hard ($\\Gamma$=1-1.5), purely non-thermal and highly variable X-ray emission in quiesce...

  6. Ultraluminous X-ray Sources Powered by Radiatively Efficient Two-Phased Super-Eddington Accretion onto Stellar Mass Black holes

    CERN Document Server

    Socrates, A; Socrates, Aristotle; Davis, Shane W.

    2005-01-01

    The radiation spectra of many of the brightest ultraluminous X-ray sources (ULXs) are dominated by a hard power law component, likely powered by a hot, optically thin corona that Comptonizes soft seed photons emitted from a cool, optically thick black hole accretion disk. Before its dissipation and subsequent conversion into coronal photon power, the randomized gravitational binding energy responsible for powering ULX phenomena must separate from the mass of its origin by a means other than, and quicker than, electron scattering-mediated radiative diffusion. Therefore, the release of accretion power in ULXs is not necessarily subject to Eddington-limited photon trapping, as long as it occurs in a corona. Motivated by these basic considerations, we present a model of ULXs powered by geometrically thin accretion onto stellar mass black holes. We argue that the radiative efficiency of the flow remains high if the corona is magnetized or optically thin and the majority of the accretion power escapes in the form o...

  7. Revealing the Evolving Accretion Disk Corona in AGNs with Multi-Epoch X-ray Spectroscopy: the case of Mrk 335

    Science.gov (United States)

    Ballantyne, David R.; Keek, Laurens

    2016-04-01

    Active galactic nuclei host an accretion disk with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disk has been observed. Reflection produces numerous spectral features, such as the Fe Kα emission line and absorption edge, which allow various properties of the inner accretion disk and corona to be constrained. We perform a multi-epoch spectral analysis of a dozen XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and optimize the fitting procedure to unveil correlations between the Eddington ratio and multiple spectral parameters. We find that the ionization parameter of the accretion disk correlates strongly with the Eddington ratio: the inner disk is more strongly ionized at higher flux. Interestingly, the slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this behaviour as geometrical changes of the corona as a function of the accretion rate. Below ~10% of the Eddington limit, the compact and optically thick corona is located close to the inner disk, whereas at higher accretion rates the corona is likely optically thin and extends vertically further away from the disk surface. Compared to previous work that considered individual spectra, we find that multi-epoch spectroscopy is essential for breaking degeneracies in the spectral fits and for obtaining accurate spectral parameters. Furthermore, we show that this method provides a powerful tool to study coronal evolution. The rich archives of XMM-Newton, Suzaku, and NuSTAR provide the opportunity to extend this investigation to include several other bright AGN, which will reveal whether the behaviour that we found is common or unique to Mrk 335.

  8. The peculiar Galactic center neutron star X-ray binary XMM J174457-2850.3

    CERN Document Server

    Degenaar, N; Reynolds, M T; Miller, J M; Altamirano, D; Kennea, J; Gehrels, N; Haggard, D; Ponti, G

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary / radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ~2 hr and a radiated energy output of ~5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx~5E32 erg/s and exhibits occasional accretion outbursts during which it brightens to Lx~1E35-1E36 erg/s for a few weeks (2-10 keV). However, the source often lingers in between outburst...

  9. A 16 Millisecond X-Ray Pulsar in the Crab-Like SNR N157B Fast Times at 30 Doradus

    CERN Document Server

    Gotthelf, E V; Marshall, F E; Middleditch, J; Wang, Q D

    1998-01-01

    The supernova remnant N157B (30 Dor B, SNR 0539-69.1, NGC 2060), located in the Tarantula Nebula of the Large Magellanic Cloud, has long been considered a possible Crab-like remnant. This hypothesis has been confirmed, quite spectacularly, with the discovery of PSR J0537-6910, the remarkable 16 ms X-ray pulsar in N157B. PSR J0537-6910 is the most rapidly spinning pulsar found to be associated with a supernova remnant. Here we report our discovery and summarize the properties of this pulsar and its supernova remnant.

  10. Evidence for crust cooling in the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; E.F. Brown; R. Wijnands

    2011-01-01

    The temporal heating and subsequent cooling of the crusts of transiently accreting neutron stars carries unique information about their structure and a variety of nuclear reaction processes. We report on a new Chandra Director’s Discretionary Time observation of the globular cluster Terzan 5, aimed

  11. An Integrated Model for the Production of X-Ray Time Lags and Quiescent Spectra from Homogeneous and Inhomogeneous Black Hole Accretion Coronae

    Science.gov (United States)

    Kroon, John J.; Becker, Peter A.

    2016-04-01

    Many accreting black holes manifest time lags during outbursts, in which the hard Fourier component typically lags behind the soft component. Despite decades of observations of this phenomenon, the underlying physical explanation for the time lags has remained elusive, although there are suggestions that Compton reverberation plays an important role. However, the lack of analytical solutions has hindered the interpretation of the available data. In this paper, we investigate the generation of X-ray time lags in Compton scattering coronae using a new mathematical approach based on analysis of the Fourier-transformed transport equation. By solving this equation, we obtain the Fourier transform of the radiation Green’s function, which allows us to calculate the exact dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous coronal clouds. We use the new formalism to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. We show that our model can successfully reproduce both the observed time lags and the time-averaged (quiescent) X-ray spectra for Cyg X-1 and GX 339-04, using a single set of coronal parameters for each source. The time lags are the result of impulsive bremsstrahlung injection occurring near the outer edge of the corona, while the time-averaged spectra are the result of continual distributed injection of soft photons throughout the cloud.

  12. Interpreting the large amplitude X-ray variation of GRS 1915+105 and IGR J17091-3624 as modulations of an accretion disc

    CERN Document Server

    Pahari, Mayukh; Mukherjee, Arunava; Yadav, J S; Pandey, S K

    2013-01-01

    Using the flux resolved spectroscopy for the first time, we analyse the RXTE/PCA data of the black hole X-ray binaries GRS 1915+105 and IGR J17091-3624, when both sources show large amplitude, quasi-regular oscillations in 2.0-60.0 keV X-ray light curves. For different observations, we extract spectra during the peak (spectrally soft) and dip (spectrally hard) intervals of the oscillation, and find that their spectra are phenomenologically complex, requiring at least two distinct spectral components. Besides a thermal Comptonization component, we find that the disc emission is better modelled by an index-free multicolour disc blackbody component (p-free disc model) rather than that from a standard accretion disc. While the peak and dip spectra are complex, remarkably, their difference spectra constructed by treating dip spectra as the background spectra of the peak spectra, can be modelled as a single p-free disc component. Moreover, the variability at different time-scales and energy bands of the peak flux l...

  13. AN INTEGRATED MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS AND QUIESCENT SPECTRA FROM HOMOGENEOUS AND INHOMOGENEOUS BLACK HOLE ACCRETION CORONAE

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States)

    2016-04-20

    Many accreting black holes manifest time lags during outbursts, in which the hard Fourier component typically lags behind the soft component. Despite decades of observations of this phenomenon, the underlying physical explanation for the time lags has remained elusive, although there are suggestions that Compton reverberation plays an important role. However, the lack of analytical solutions has hindered the interpretation of the available data. In this paper, we investigate the generation of X-ray time lags in Compton scattering coronae using a new mathematical approach based on analysis of the Fourier-transformed transport equation. By solving this equation, we obtain the Fourier transform of the radiation Green’s function, which allows us to calculate the exact dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous coronal clouds. We use the new formalism to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. We show that our model can successfully reproduce both the observed time lags and the time-averaged (quiescent) X-ray spectra for Cyg X-1 and GX 339-04, using a single set of coronal parameters for each source. The time lags are the result of impulsive bremsstrahlung injection occurring near the outer edge of the corona, while the time-averaged spectra are the result of continual distributed injection of soft photons throughout the cloud.

  14. An Integrated Model for the Production of X-Ray Time Lags and Quiescent Spectra from Homogeneous and Inhomogeneous Black Hole Accretion Coronae

    CERN Document Server

    Kroon, John J

    2016-01-01

    Many accreting black holes manifest time lags during outbursts, in which the hard Fourier component typically lags behind the soft component. Despite decades of observations of this phenomenon, the underlying physical explanation for the time lags has remained elusive, although there are suggestions that Compton reverberation plays an important role. However, the lack of analytical solutions has hindered the interpretation of the available data. In this paper, we investigate the generation of X-ray time lags in Compton scattering coronae using a new mathematical approach based on analysis of the Fourier-transformed transport equation. By solving this equation, we obtain the Fourier transform of the radiation Green's function, which allows us to calculate the exact dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous coronal clouds. We use the new formalism to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photo...

  15. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel

    CERN Document Server

    Mushtukov, Alexander A; Serber, Alexander V; Suleimanov, Valery F; Poutanen, Juri

    2015-01-01

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so called critical luminosity these variations are established to be connected with the appearance of the high accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity onto the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid ene...

  16. X-ray pulsar rush in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, K.; Tsujimoto, K.; Nishiuchi, Mamiko; Yokogawa, J.; Koyama, K. [Kyoto Univ., Faculty of Science, Kyoto (Japan)

    1999-08-01

    We present recent remarkable topics about discoveries of X-ray pulsars. 1. Pulsations from two Soft Gamma-ray Repeaters: These pulsars have enormously strong magnetic field (B {approx} 10{sup 15} G), thus these are called as 'magnetar', new type of X-ray pulsars. 2. New Crab-like pulsars: These discoveries lead to suggesting universality of Crab-like pulsars. 3. An X-ray bursting millisecond pulsar: This is strong evidence for the recycle theory of generating radio millisecond pulsars. 4. X-ray pulsar rush in the SMC: This indicates the younger star formation history in the SMC. (author)

  17. Probing Accretion in Magnetic Cataclysmic Variables from High Time Resolution Optical Photometry and X-ray Observations from ASTROSAT

    Science.gov (United States)

    Buckley, David; Marsh, Tom; Revnivtsev, Mikhail; Bonnet-Bidaud, Jean-Marc; Mouchet, Martine; Pal Singh, Kulinder; Semena, Andrey; Dhillon, Vik; Breytenbach, Hannes; Irawati, Puji; Potter, Stephen

    2016-07-01

    We present results from an on-going program of high speed CCD photometry of magnetic cataclysmic variables (mCVs) aimed at characterizing their high frequency (˜0.1-10 Hz) optical variability. In particular, we have been actively attempting to detect Quasi-Periodic Oscillations in many Polars, indicative of shock instabilities in their accretion columns. We have used a variety of instruments for this purpose, including the EM-CCD based SHOC camera on the SAAO 1.9-m telescope, SALTICAM and BVIT on SALT and Ultraspec on the TNO 2.5-m telescope. While we have detected QPOs seen before in the systems V834 Cen and VV Pup, we have only found evidence for one new detection, namely for 2MASS J19283247-5001344, an eclipsing polar. This may indicate that QPOs are somewhat of a rarity in Polars. We have also seen evidence for lower frequency QPOs, with characteristic timescales of 10s of seconds to several minutes. In addition, we have been investigating the nature of the breaks in the Power Density Spectra (νF_ν) power law for Intermediate Polars (e.g. EX Hya). This may give clues to the size of the inner radius of the accretion disc, where the magnetosphere begins to dominate the accretion flow. Finally, results of our recent ASTROSAT program on mCVs will be discussed.

  18. X-ray pulsars: a review

    CERN Document Server

    Caballero, I

    2012-01-01

    Accreting X-ray pulsars are among the most luminous objects in the X-ray sky. In highly magnetized neutron stars (B~10^12 G), the flow of matter is dominated by the strong magnetic field. The general properties of accreting X-ray binaries are presented, focusing on the spectral characteristics of the systems. The use of cyclotron lines as a tool to directly measure a neutron star's magnetic field and to test the theory of accretion are discussed. We conclude with the current and future prospects for accreting X-ray binary studies.

  19. Quark-Novae in post-accretion Low-Mass X-ray Binaries: A universal model for short-hard Gamma-Ray Bursts

    CERN Document Server

    Ouyed, Rachid; Jaikumar, Prashanth

    2010-01-01

    We show that several features reminiscent of short-hard GRBs arise naturally when Quark-Novae occur in post-accretion low-mass X-ray binaries with a circumbinary disk. Post-accretion conditions in a neutron star-white dwarf binary are just right for the conversion of the neutron star to a quark star (Quark-Nova). In our model, the subsequent interaction of material from the neutron star's ejected crust with the circumbinary disk explains the duration, variability and near-universal nature of the prompt emission in short-hard GRBs. We also describe a statistical approach to ejecta break-up and collision to obtain the photon spectrum in our model, which turns out remarkably similar to the empirical Band function (Band et al. 1993). We apply the model to the fluence and spectrum of GRB 000727, GRB 000218, and GRB980706A obtaining excellent fits. Extended emission (spectrum and duration) is explained by shock-heating and ablation of the white dwarf by the highly energetic ejecta. Depending on the orbital separati...

  20. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel

    Science.gov (United States)

    Mushtukov, Alexander A.; Tsygankov, Sergey S.; Serber, Alexander V.; Suleimanov, Valery F.; Poutanen, Juri

    2015-12-01

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so-called critical luminosity, these variations are established to be connected with the appearance of the high-accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity on to the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid energy is positively correlated with the luminosity; (ii) the line width is positively correlated with the luminosity as well; (iii) the position and the width of the cyclotron absorption line are variable over the pulse phase; (iv) the line has a more complicated shape than widely used Lorentzian or Gaussian profiles; (v) the phase-resolved cyclotron line centroid energy and the width are negatively and positively correlated with the pulse intensity, respectively. The predictions of the proposed theory are compared with the variations of the cyclotron line parameters in the X-ray pulsar GX 304-1 over a wide range of sub-critical luminosities as seen by the INTEGRAL observatory.

  1. Formation of black widows and redbacks -- two distinct populations of eclipsing binary millisecond pulsars

    CERN Document Server

    Chen, Hai-Liang; Tauris, Thomas M; Han, Zhanwen

    2013-01-01

    Eclipsing binary millisecond pulsars (the so-called black widows and redbacks) can provide important information about accretion history, pulsar irradiation of their companion stars and the evolutionary link between accreting X-ray pulsars and isolated millisecond pulsars. However, the formation of such systems is not well understood, nor the difference in progenitor evolution between the two populations of black widows and redbacks. Whereas both populations have orbital periods between $0.1-1.0\\;{\\rm days}$ their companion masses differ by an order of magnitude. In this paper, we investigate the formation of these systems via evolution of converging low-mass X-ray binaries by employing the MESA stellar evolution code. Our results confirm that one can explain the formation of most of these eclipsing binary millisecond pulsars using this scenario. More notably, we find that the determining factor for producing either black widows or redbacks is the efficiency of the irradiation process, such that the redbacks ...

  2. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun;

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few days to two weeks before the radio disappearan...

  3. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun;

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappear...

  4. On pulsar-driven mass ejection in low-mass X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Lei Fu; Xiang-Dong Li

    2011-01-01

    There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence.We consider the condition for mass ejection by comparing the radiation pressure from a millisecond pulsar,and the gas pressure at the inner Lagrange point or at the surrounding accretion disk.We calculate the critical spin period of the pulsar below which mass ejection is allowed.Combining with the evolution of the mass transfer rate,we present constraints on the orbital periods of the systems.We show that mass ejection could happen in both wide and compact LMXBs.It may be caused by transient accretion due to thermal instability in the accretion disks in the former,and irradiation-driven mass-transfer cycles in the latter.

  5. NuSTAR discovers a cyclotron line and reveals the spinning up of the accreting X-ray pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John; Fornasini, Francesca; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn; Craig, William W.; Hailey, Charles James; Harrison, Fiona; Zhang, William

    2016-04-01

    After several misclassifications, IGR J16393-4643 is now known to be a high-mass X-ray binary consisting of a heavily-absorbed pulsar that is likely paired with a massive and distant B star. It was observed for 50-ks by NuSTAR in the 3--79 keV energy band, complemented by a contemporaneous 2-ks observation with Swift-XRT. These observations enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5±0.1)×1012 G. The known pulsation period is now observed at 904.0±0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of dP/dt = -2×10-8 s s-1 (-0.6 s per year, or a frequency derivative of dν/dt = 3×10-14 Hz s-1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2×108 cm.

  6. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows III: application to a hydrodynamical simulation

    CERN Document Server

    Sim, S A; Miller, L; Long, K S; Turner, T J

    2010-01-01

    We perform multi-dimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disk wind from an active galactic nucleus. The synthetic spectra confirm expectations from parameterized models that a disk wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disk plane but ultimately falls back. We also confirm that the strong Fe Kalpha line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determi...

  7. X-ray Insights into the Nature of PHL 1811 Analogs and Weak Emission-Line Quasars: Unification with a Geometrically Thick Accretion Disk?

    CERN Document Server

    Luo, B; Hall, P B; Wu, Jianfeng; Anderson, S F; Garmire, G P; Gibson, R R; Plotkin, R M; Richards, G T; Schneider, D P; Shemmer, O; Shen, Yue

    2015-01-01

    We present an X-ray and multiwavelength study of 33 weak emission-line quasars (WLQs) and 18 quasars that are analogs of the extreme WLQ, PHL 1811, at z ~ 0.5-2.9. New Chandra 1.5-9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-ray observations. Significant fractions of these luminous type 1 quasars are distinctly X-ray weak compared to typical quasars, including 16 (48%) of the WLQs and 17 (94%) of the PHL 1811 analogs with average X-ray weakness factors of 17 and 39, respectively. We measure a relatively hard ($\\Gamma=1.16_{-0.32}^{+0.37}$) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption, and spectral analysis of one PHL 1811 analog, J1521+5202, also indicates significant intrinsic X-ray absorption. We compare composite SDSS spectra for the X-ray weak and X-ray normal populations and find several optical-UV tracers of X-ray weakness; e.g., Fe II rest-frame equivalent width and relative color. We describe how ...

  8. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in Supergiant Fast X-ray Transient and classical Supergiant X-ray Binaries

    CERN Document Server

    Gimenez-Garcia, A; Torrejon, J M; Oskinova, L; Martinez-Nunez, S; Hamann, W -R; Rodes-Roca, J J; Gonzalez-Galan, A; Alonso-Santiago, J; Gonzalez-Fernandez, C; Bernabeu, G; Sander, A

    2016-01-01

    Classical Supergiant X-ray Binaries (SGXBs) and Supergiant Fast X-ray Transients (SFXTs) are two types of High-mass X-ray Binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors' stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyse the spectra of each star in detail and derive their stellar and wind properties. We compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. We find that the stellar para...

  9. A propeller model for the sub-luminous disk state of the transitional millisecond pulsar PSR J1023+0038

    CERN Document Server

    Papitto, A

    2015-01-01

    The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter, has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk, it emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumption that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk-magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together ...

  10. 低质量X射线双星的长期监测和吸积物理%Monitoring Observations of Low Mass X-ray Binary and Accretion Physics

    Institute of Scientific and Technical Information of China (English)

    闫震

    2011-01-01

    In this thesis, we have performed the multi-wavelength monitoring observations of Galactic low-mass X-ray binaries and studied the X-ray spectral evolution and spectral state transitions in bright X-ray binaries, the properties of transient sources during the outbursts and the evolution of multi-wavelength emission during the outburst and the relation between different wavelengths. The large dynamical range of X-ray luminosity is invaluable for studying the accretion physics, since we can watch the evolution of the system through the full range of accretion rates and follow causal sequences between them. The results of our study improve our understanding of accretion physics, especially in some unresolved problems, such as the key role in determining the X-ray spectral transitions, the relation between jet and X-ray spectral states and the origin of emission in different X-ray spectral states.Firstly, we systematically studied the different spectral states and state transitions in the bright Galactic X-ray binaries during the past more than ten years. We could study the long term evolution in different energy bands by using the soft (2-12 keV) and hard (15-50 keV) X-ray monitoring light curves. The hardnessratio of the two energy band can be used to describe the X-ray spectral evolution and define the spectral states and state transitions. We confirmed that the luminosity of hard-to-soft state transition positively correlates with the peak luminosity of following soft state, and also found positively correlation between the luminosity of hard-to-soft state transition and the rate-of-increase of luminosity. These two empirical correlations indicate that the brightest hard state and the hard-to-soft state transition are determined by the non-stationary accretion which is characterised by the rate-of-increase of mass accretion rate. Both correlations do not show any saturation or cut-off in the high luminosity end, which implies that the brighter outbursts and

  11. A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900

    NARCIS (Netherlands)

    R. Wijnands; N. Degenaar

    2013-01-01

    We report on a series of Swift/X-ray telescope observations, performed between 2012 February and 22 March, during the quiescent state of the neutron-star X-ray binary SAX J1750.8−2900. In these observations, the source was either just detected or undetected, depending on the exposure length (which r

  12. Symbiotic stars in X-rays

    OpenAIRE

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K; Nelson, T.

    2012-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of nine white dwarf symbiotics that were not previously known to be X-ray sources and one that had previously been detected as a supersoft X-ray source. The nine new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbi...

  13. Millisecond X-ray Star Tracker Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CrossTrac Engineering, in cooperation with its subcontractors Dr Suneel Sheikh of ASTER Labs, Inc, and Mr Paul Graven of Cateni, Inc, proposes to develop a next...

  14. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  15. Testing the deep-crustal heating model using quiescent neutron-star very-faint X-ray transients and the possibility of hybrid crusts in accreting neutron stars

    CERN Document Server

    Wijnands, Rudy; Page, Dany

    2012-01-01

    It is assumed that accreting neutron stars (NSs) in LMXBs are heated due to the compression of the existing crust by the accreted matter which gives rise to nuclear reactions in the crust. It has been shown that most of the energy is released deep in the crust by pycnonuclear reactions involving low-Z elements. We discuss if NSs in very-faint X-ray transients (VFXTs; those which have peak X-ray luminosities < 1E36 erg/s) can be used to test this model. Unfortunately we cannot conclusively answer this because of the large uncertainties in our estimates of the accretion rate history of those VFXTs, both the short-term (less than a few tens of thousands of years) and the one throughout their lifetime. The latter is important because it can be so low that the NSs might not have accreted enough matter to become massive enough that enhanced cooling processes become active. Therefore, they could be relatively warm compared to other systems for which such enhanced cooling processed have been inferred. However, the...

  16. Formation and evolution of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  17. The clustering amplitude of X-ray selected AGN at z=0.8: Evidence for a negative dependence on accretion luminosity

    CERN Document Server

    Mountrichas, G; Menzel, M L; Fanidakis, N; Merloni, A; Liu, Z; Salvato, M; Nandra, K

    2016-01-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray selected AGN [$\\rm log\\, L_X (\\rm 2-10\\,keV)= 43.6^{+0.4}_{-0.4}\\,erg/s$] in the redshift interval $z=0.5-1.2$. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIPERS spectroscopic galaxy survey to determine the cross-correlation signal between X-ray selected AGN (total of 318) and galaxies (about 20,\\,000). We model the large scales (2-25\\,Mpc) of the correlation function to infer a mean dark matter halo mass of $\\log M / (M_{\\odot} \\, h^{-1}) = 12.50 ^{+0.22} _{-0.30}$ for the X-ray selected AGN sample. This measurement is about 0.5\\,dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate luminosity X-ray AGN [$L_X (\\rm 2-10\\,keV)\\approx 10^{42} - 10^{43}\\,erg/s$] at similar redshifts. Our analysis also links the mean clustering properties o...

  18. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  19. A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900

    OpenAIRE

    R. Wijnands(Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands); Degenaar, N.

    2013-01-01

    We report on a series of Swift/X-ray telescope observations, performed between 2012 February and 22 March, during the quiescent state of the neutron-star X-ray binary SAX J1750.8−2900. In these observations, the source was either just detected or undetected, depending on the exposure length (which ranged from ∼0.3 to ∼3.8 ks). The upper limits for the non-detections were consistent with the detected luminosities (when fitting a thermal model to the spectrum) of ∼1034 erg s−1 (0.5-10 keV). Thi...

  20. Discovery of a Redback Millisecond Pulsar Candidate: 3FGL J0212.1+5320

    CERN Document Server

    Li, Kwan-Lok; Hou, Xian; Mao, Jirong; Strader, Jay; Chomiuk, Laura; Tremou, Evangelia

    2016-01-01

    We present a multi-wavelength study of the unidentified Fermi object, 3FGL J0212.1+5320. Within the 95% error ellipse, Chandra detects a bright X-ray source, which has a low-mass optical counterpart (M 64% of the Roche-lobe. Spectroscopic data taken in 2015 from the Lijiang observatory show no evidence of strong emission lines, revealing the accretion is currently inactive (the pulsar state). While the X-ray luminosity and the X-ray-to-gamma-ray flux ratio are both high that are comparable to that of the two known gamma-ray transitional millisecond pulsars, 3FGL J0212.1+5320 could be a promising target to search for future transition to the accretion active state.

  1. Meta-stable low-level accretion rate states or neutron star crust cooling in the Be/X-ray transients V0332+53 and 4U 0115+63

    CERN Document Server

    Wijnands, Rudy

    2016-01-01

    The Be/X-ray transients V0332+53 and 4U 0115+63 exhibited giant, type-II outbursts in 2015. Here we present Swift/XRT follow-up observations at the end of those outbursts. Surprisingly, the sources did not decay back to their known quiescent levels but stalled at a (slowly decaying) meta-stable state with luminosities ~10 times that observed in quiescence. The spectra in these states are considerably softer than the outburst spectra and appear to soften in time when the luminosity decreases. The physical mechanism behind these meta-stable states is unclear and they could be due to low-level accretion (either direct accretion onto the neutron stars or on to their magnetospheres) or due to cooling of the accretion-heated neutron star crusts. Based on the spectra, the slowly decreasing luminosities, and the spectral softening, we favour the crust cooling hypothesis but we cannot exclude the accretion scenarios. On top of this meta-stable state, weak accretion events were observed that occurred at periastron pass...

  2. Timing Observations of PSR J1023+0038 During a Low-Mass X-ray Binary State

    CERN Document Server

    Jaodand, Amruta; Hessels, Jason W T; Bogdanov, Slavko; D'Angelo, Caroline R; Patruno, Alessandro; Bassa, Cees; Deller, Adam T

    2016-01-01

    Transitional millisecond pulsars (tMSPs) switch, on roughly multi-year timescales, between rotation-powered radio millisecond pulsar (RMSP) and accretion-powered low-mass X-ray binary (LMXB) states. The tMSPs have raised several questions related to the nature of accretion flow in their LMXB state and the mechanism that causes the state switch. The discovery of coherent X-ray pulsations from PSR J1023+0038 (while in the LMXB state) provides us with the first opportunity to perform timing observations and to compare the neutron star's spin variation during this state to the measured spin-down in the RMSP state. Whereas the X-ray pulsations in the LMXB state likely indicate that some material is accreting onto the neutron star's magnetic polar caps, radio continuum observations indicate the presence of an outflow. The fraction of the inflowing material being ejected is not clear, but it may be much larger than that reaching the neutron star's surface. Timing observations can measure the total torque on the neut...

  3. A new gamma-ray loud, eclipsing low-mass X-ray binary

    CERN Document Server

    Strader, Jay; Chomiuk, Laura; Heinke, Craig O; Udalski, Andrzej; Peacock, Mark; Shishkovsky, Laura; Tremou, Evangelia

    2016-01-01

    We report the discovery of an eclipsing low-mass X-ray binary at the center of the 3FGL error ellipse of the unassociated Fermi/Large Area Telescope gamma-ray source 3FGL J0427.9-6704. Photometry from OGLE and the SMARTS 1.3-m telescope and spectroscopy from the SOAR telescope have allowed us to classify the system as an eclipsing low-mass X-ray binary (P = 8.8 hr) with a main sequence donor and a neutron star accretor. Broad double-peaked H and He emission lines suggest the ongoing presence of an accretion disk. Remarkably, the system shows shows separate sets of absorption lines associated with the accretion disk and the secondary, and we use their radial velocities to find evidence for a massive (~ 1.8-1.9 M_sun) neutron star primary. In addition to a total X-ray eclipse of duration ~ 2200 s observed with NuSTAR, the X-ray light curve also shows properties similar to those observed among known transitional millisecond pulsars: short-term variability, a hard power-law spectrum (photon index ~ 1.7), and a co...

  4. Constraints on the mass and radius of neutron stars from X-ray observations

    OpenAIRE

    Li, Zhaosheng

    2015-01-01

    This article gives a very brief introduction about measuring the mass and radius of neutron star from X-ray observations. The masses and radii of neutron stars can be determined from photospheric radius expansion bursts in low-mass X-ray binaries, X-ray pulse profile modeling in accreting X-ray pulsars, gravitational redshift measurement in low-mass X-ray binaries and thermal X-ray spectral fitting in quiescent low-mass X-ray binaries.

  5. Chest x-ray

    Science.gov (United States)

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  6. X-rays from neutron stars

    International Nuclear Information System (INIS)

    The basic theoretical in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions. (orig.)

  7. Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)

    Science.gov (United States)

    Swank, Jean

    2008-01-01

    Astrophysical X-rays bring information about location, energy, time, and polarization. X-rays from compact objects were seen in the first explorations to vary in time. Eclipses and pulsations have simple explanations that identified the importance of X-ray binaries and magnetic neutron stars in the first decade of X-ray astronomy. The dynamics of accretion onto stellar and supermassive black holes and onto neutron stars with relatively low magnetic fields shows up as more complex variations, quasi-periodic oscillations, noise with characteristic frequency spectra, broad-band changes in the energy spectra. To study these variations, RXTE instruments needed to have large area and operational flexibility to find transient activity and observe when it was present. Proportional counters and Phoswich scintillators provided it in a modest mission that has made textbook level contributions to understanding of compact objects. The first seen, and the brightest known, X-ray binary, Sco X-1 is one of a class of neutron stars with low mass companions. Before RXTE, none of these had been seen to show pulsations, though they were hypothesized to be the precursors of radio pulsars with millisecond periods and low magnetic fields. RXTE's large area led to identifying coherent millisecond pulsars in a subset which are relatively faint transients. It also led to identifying short episodes of pulsation during thermonuclear bursts, in sources where a steady signal is not seen. The X-ray stage verifies the evolution that produces millisecond radio pulsars.Masses and radii of neutron stars are being determined by various techniques, constraining the equation of state of matter at nuclear densities. Accretion should lead to a range of neutron star masses. An early stage of superstrong magnetic field neutron stars is now known to produce X-ray and gamma-ray bursts in crust quakes and magnetic field reconnection releases of energy. Soft Gamma Repeaters, Anomolous X-ray Pulsars, and high

  8. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  9. VLT spectroscopy and non-LTE modeling of the C/O-dominated accretion disks in two ultracompact X-ray binaries

    CERN Document Server

    Werner, K; Hammer, N J; Nagel, T; Rauch, T

    2006-01-01

    We present new medium-resolution high-S/N optical spectra of the ultracompact low-mass X-ray binaries 4U0614+091 and 4U1626-67, taken with the ESO Very Large Telescope. They are pure emission line spectra and the lines are identified as due to C II-IV and O II-III Line identification is corroborated by first results from modeling the disk spectra with detailed non-LTE radiation transfer calculations. Hydrogen and helium lines are lacking in the observed spectra. Our models confirm the deficiency of H and He in the disks. The lack of neon lines suggests an Ne abundance of less than about 10 percent (by mass), however, this result is uncertain due to possible shortcomings in the model atom. These findings suggest that the donor stars are eroded cores of C/O white dwarfs with no excessive neon overabundance. This would contradict earlier claims of Ne enrichment concluded from X-ray observations of circumbinary material, which was explained by crystallization and fractionation of the white dwarf core.

  10. X-ray (image)

    Science.gov (United States)

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  11. Dental x-rays

    Science.gov (United States)

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  12. X-ray apparatus

    International Nuclear Information System (INIS)

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  13. Dental x-rays

    Science.gov (United States)

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film; Digital image ... dentist's office. There are many types of dental x-rays. Some of them are: Bitewing. Shows the crown ...

  14. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  16. X-Ray Imaging

    Science.gov (United States)

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  17. The 2015 outburst of the accreting millisecond pulsar IGR J17511-3057 as seen by INTEGRAL, Swift and XMM-Newton

    CERN Document Server

    Papitto, A; Sanchez-Fernandez, C; Romano, P; Torres, D F; Ferrigno, C; Kajava, J J E; Kuulkers, E

    2016-01-01

    We report on INTEGRAL, Swift and XMM-Newton observations of IGR J17511-3057 performed during the outburst that occurred between March 23 and April 25, 2015. The source reached a peak flux of 0.7(2)E-9 erg/cm$^2$/s and decayed to quiescence in approximately a month. The X-ray spectrum was dominated by a power-law with photon index between 1.6 and 1.8, which we interpreted as thermal Comptonization in an electron cloud with temperature > 20 keV . A broad ({\\sigma} ~ 1 keV) emission line was detected at an energy (E = 6.9$^{+0.2}_{-0.3}$ keV) compatible with the K{\\alpha} transition of ionized Fe, suggesting an origin in the inner regions of the accretion disk. The outburst flux and spectral properties shown during this outburst were remarkably similar to those observed during the previous accretion event detected from the source in 2009. Coherent pulsations at the pulsar spin period were detected in the XMM-Newton and INTEGRAL data, at a frequency compatible with the value observed in 2009. Assuming that the so...

  18. Timing Observations of PSR J1023+0038 During a Low-mass X-Ray Binary State

    Science.gov (United States)

    Jaodand, Amruta; Archibald, Anne M.; Hessels, Jason W. T.; Bogdanov, Slavko; D’Angelo, Caroline R.; Patruno, Alessandro; Bassa, Cees; Deller, Adam T.

    2016-10-01

    Transitional millisecond pulsars (tMSPs) switch, on roughly multi-year timescales, between rotation-powered radio millisecond pulsar (RMSP) and accretion-powered low-mass X-ray binary (LMXB) states. The tMSPs have raised several questions related to the nature of accretion flow in their LMXB state and the mechanism that causes the state switch. The discovery of coherent X-ray pulsations from PSR J1023+0038 (while in the LMXB state) provides us with the first opportunity to perform timing observations and to compare the neutron star’s spin variation during this state to the measured spin-down in the RMSP state. Whereas the X-ray pulsations in the LMXB state likely indicate that some material is accreting onto the neutron star’s magnetic polar caps, radio continuum observations indicate the presence of an outflow. The fraction of the inflowing material being ejected is not clear, but it may be much larger than that reaching the neutron star’s surface. Timing observations can measure the total torque on the neutron star. We have phase-connected nine XMM-Newton observations of PSR J1023+0038 over the last 2.5 years of the LMXB state to establish a precise measurement of spin evolution. We find that the average spin-down rate as an LMXB is 26.8 ± 0.4% faster than the rate (‑2.39 × 10‑15 Hz s‑1) determined during the RMSP state. This shows that negative angular momentum contributions (dipolar magnetic braking, and outflow) exceed positive ones (accreted material), and suggests that the pulsar wind continues to operate at a largely unmodified level. We discuss implications of this tight observational constraint in the context of possible accretion models.

  19. Polarisation modulation in X-ray binaries

    Science.gov (United States)

    Ingram, Adam; Maccarone, Thomas

    2016-07-01

    X-ray polarimetry promises to provide a powerful new lever arm for studying accretion onto black holes with the next generation of X-ray telescopes. I will discuss how polarisation can be used to help constrain the physical origin of quasi-periodic oscillations (QPOs) observed in the X-ray light curves of accreting black holes. QPOs may be signatures of the frame dragging effect: in General Relativity, a spinning black hole twists up the surrounding space-time, causing vertical precession of nearby orbits. In the truncated disc / precessing inner flow model, the entire inner accretion flow precesses as a solid body causing a modulation in the X-ray flux through solid angle and Doppler effects. This model also predicts the observed polarisation of the X-ray signal to vary quasi-periodically. I will summarise our work to model the polarisation signal from a precessing accretion flow, starting with simple assumptions about the emission mechanism but taking General Relativity fully into account. We find that it should be possible to measure the predicted modulation in polarisation degree for a reasonable region of parameter space with a polarimeter capable of detecting ~60 counts per second from a bright black hole binary. I will also show that sensitivity can be greatly improved by correlating the signal with a high count rate reference band signal.

  20. Suzaku X-Ray Observations of the Accreting NGC 4839 Group of Galaxies and the Radio Relic in the Coma Cluster

    CERN Document Server

    Akamatsu, Hiroki; Sato, Takuya; Matsushita, Kyoko; Ishisaki, Yoshitaka; Sarazin, Craig L

    2013-01-01

    Based on Suzaku X-ray observations, we study the hot gas in regions around the NGC 4839 group of galaxies and the radio relic in the outskirts of the Coma cluster. From spectral analysis, the temperature of the gas shows a gradual decline from 5 keV around NGC4839 to about 3.6 keV at the radio relic. Across the relic, the temperature drops steeply by approximately a factor of 2 from 3.6 to 1.5 keV. This temperature drop can be interpreted as a shock with Mach number M = 2.2 pm 0.5. The existence of a shock front suggests that it may be responsible for accelerating the non-thermal electrons. However, if they are accelerated according to the simplest theory of diffusive shock acceleration (DSA) in which test particles are injected from a thermal distribution, the electron spectrum expected from the measured Mach number and shock compression would be steeper than that inferred from the observed, spatially integrated spectrum of the radio relic with index alpha = 1.18, taking into account radiative loss effects. ...

  1. Central compact objects, superslow X-ray pulsars, gamma-ray bursts: do they have anything to do with magnetars?

    CERN Document Server

    Tong, H

    2014-01-01

    Magnetars and many of the magnetar-related objects are summarized together and discussed. It is shown that there is an abuse of language in the use of "magnetar". Anomalous X-ray pulsars and soft gamma-ray repeaters are well-known magnetar candidates. The current so called anti-magnetar (for central compact objects), accreting magnetar (for superslow X-ray pulsars in high mass X-ray binaries), and millisecond magnetar (for the central engine of some gamma-ray bursts), they may not be real magnetars in present understandings. Their observational behaviors are not caused by the magnetic energy. Many of them are just neutron stars with strong surface dipole field. A neutron star plus strong dipole field is not a magnetar. The characteristic parameters of the neutron stars for the central engine of some gamma-ray bursts are atypical from the neutron stars in the Galaxy. Possible signature of magnetic activities in accreting systems are discussed, including repeated bursts and a hard X-ray tail. China's future har...

  2. Probing the MSP prenatal stage: the optical identification of the X-ray burster EXO 1745-248 in Terzan 5

    CERN Document Server

    Ferraro, F R; Lanzoni, B; Cadelano, M; Massari, D; Dalessandro, E; Mucciarelli, A; -,

    2015-01-01

    We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting HST/ACS images acquired in Director's Discretionary Time shortly after (approximately 1 month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that currently brightened by ~3 magnitudes, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the Turn-Off/Sub Giant Branch region of Terzan 5. This supports the scenario that the companion should has recently filled its Roche Lobe. Such a system represents the pre-natal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.

  3. X-Ray Polarimetry

    CERN Document Server

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band soft X-ray polarimeters based on Bragg reflection. Developments in scintillator and solid-state hard X-ray detectors facilitate construction of both modular, large area Compton scattering polarimeters and compact devices suitable for use with focusing X-ray telescopes.

  4. X-ray Variability of AGN and the Flare Model

    OpenAIRE

    Goosmann, R. W.; Czerny, B.; Dumont, A. -M.; Mouchet, M.; Rozanska, A.

    2004-01-01

    Short-term variability of X-ray continuum spectra has been reported for several Active Galactic Nuclei. Significant X-ray flux variations are observed within time scales down to 10^3-10^5 seconds. We discuss short variability time scales in the frame of the X-ray flare model, which assumes the release of a large hard X-ray flux above a small portion of the accretion disk. The resulting observed X-ray spectrum is composed of the primary radiation and of a reprocessed Compton reflection compone...

  5. The Very Local Universe in X-Rays

    Science.gov (United States)

    Ptak, A.

    2011-01-01

    There are many open questions in X-ray observations of the Galactic neighborhood and nearby galaxies, such as the properties of the hot ISM and accreting sources, the X-ray/star-formation rate correlation and how the X-ray luminosity function of starburst galaxies. We discuss how these would be addressed by very wide-area (> 100 sq. deg.) X-ray surveys and upcoming X-ray missions. In particular planned NuStar observations of the Galaxy and nearby galaxies will be highlighted.

  6. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  7. Theory of wind accretion

    OpenAIRE

    Shakura N.I.; Postnov K.A.; Kochetkova A.Yu.; Hjalmarsdotter L.

    2013-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4\\...

  8. Applications of Indirect Imaging techniques in X-ray binaries

    CERN Document Server

    Harlaftis, E T

    2000-01-01

    A review is given on aspects of indirect imaging techniques in X-ray binaries which are used as diagnostics tools for probing the X-ray dominated accretion disc physics. These techniques utilize observed properties such as the emission line profile variability, the time delays between simultaneous optical/X-ray light curves curves, the light curves of eclipsing systems and the pulsed emission from the compact object in order to reconstruct the accretion disc's line emissivity (Doppler tomography), the irradiated disc and heated secondary (echo mapping), the outer disc structure (modified eclipse mapping) and the accreting regions onto the compact object, respectively.

  9. Globular cluster x-ray sources.

    Science.gov (United States)

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  10. Globular cluster x-ray sources

    Science.gov (United States)

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  11. On the lack of X-ray iron line reverberation in MCG-6-30-15 Implications for the black hole mass and accretion disk structure

    CERN Document Server

    Reynolds, C S

    1999-01-01

    We use the method of Press, Rybicki & Hewitt (1992) to search for time lags and time leads between different energy bands of the RXTE data for MCG-6-30-15. We tailor our search in order to probe any reverberation signatures of the fluorescent iron Kalpha line that is thought to arise from the inner regions of the black hole accretion disk. In essence, an optimal reconstruction algorithm is applied to the continuum band (2-4keV) light curve which smoothes out noise and interpolates across the data gaps. The reconstructed continuum band light curve can then be folded through trial transfer functions in an attempt to find lags or leads between the continuum band and the iron line band (5-7keV). We find reduced fractional variability in the line band. The spectral analysis of Lee et al. (1999) reveals this to be due to a combination of an apparently constant iron line flux (at least on timescales of few x 10^4s), and flux correlated changes in the photon index. We also find no evidence for iron line reverbera...

  12. X-ray - skeleton

    Science.gov (United States)

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  13. Extremity x-ray

    Science.gov (United States)

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  14. X-ray interferometers

    International Nuclear Information System (INIS)

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  15. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  18. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  20. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  1. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  2. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    Science.gov (United States)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  3. X-Ray Diffraction.

    Science.gov (United States)

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  4. Medical X-Rays

    Science.gov (United States)

    ... The Conference of Radiation Control Program Directors (CRCPD) publishes Suggested State Regulations for the Control of Radiation , ... eSubmitter Guidance for Industry and Food and Drug Administration Staff - Assembler's Guide to Diagnostic X-Ray Equipment ...

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  7. X-ray studies of the redback system PSR J2129-0429

    Science.gov (United States)

    Noori, Hind Al; Roberts, Mallory; Hessels, Jason; McLaughlin, Maura; Breton, Rene

    2016-04-01

    We present new NuStar data of the redback millisecond pulsar (MSP) system PSR J2129-0429. Redback systems are important when it comes to understanding the evolution of MSPs, in terms of pulsar recycling, as they have been observed to transition between a state of accretion, where emission is in the optical and X-ray regimes, and a state of eclipsed radio pulsation. This system is particularly interesting due to some peculiarities: it has a more massive companion as well as a stronger magnetic field than other redbacks, indicating that the system is in a fairly early stage of recycling. It’s X-ray lightcurve (as obtained from XMM-Newton data) has a very hard power-law component and exhibits an efficiency of a few percent in X-ray. With the NuStar data, the spectrum can be seen to extend to ~30 keV. Additionally, it shows strong orbital variation, about 5 times greater than is typical for other systems, and is also very clearly double peaked. Hints of similar peaks have been observed in the lightcurves of other redback systems, and so this system can help in understanding the intrabinary shock of eclipsing MSPs.

  8. Examining the hard X-ray emission of the redback PSR J2129-0429

    Science.gov (United States)

    Noori, Hind Al; Roberts, Mallory; McLaughlin, Maura; Hessels, Jason; Breton, Rene; 17077031498

    2016-06-01

    We present new NuStar data of the redback millisecond pulsar (MSP) system PSR J2129-0429. Redback systems are important when it comes to understanding the evolution of MSPs, in terms of pulsar recycling, as they have been observed to transition between a state of accretion, where emission is in the optical and X-ray regimes, and a state of eclipsed radio pulsation. This system is particularly interesting due to some peculiarities: it has a more massive companion as well as a stronger magnetic field than other redbacks, indicating that the system is in a fairly early stage of recycling. It’s X-ray lightcurve (as obtained from XMM-Newton data) has a very hard power-law component and exhibits an efficiency of a few percent in X-ray. With the NuStar data, the spectrum can be seen to extend to ~30 keV. Additionally, it shows strong orbital variation, about 5 times greater than is typical for other systems, and is also very clearly double peaked. Hints of similar peaks have been observed in the lightcurves of other redback systems; hence, this system can help in understanding the intrabinary shock of eclipsing MSPs.

  9. Further Constraints on Thermal Quiescent X-ray Emission from SAX J1808.4-3658

    CERN Document Server

    Heinke, C O; Wijnands, R; Deloye, C J; Taam, R E

    2008-01-01

    We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near-simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power-law with photon index 1.74+-0.11 and unabsorbed X-ray luminosity L_X=7.9+-0.7*10^{31} ergs/s, for N_H=1.3*10^{21} cm^{-2}. Fitting all the quiescent XMM-Newton X-ray spectra with a power-law, we constrain any thermally emitting neutron star with a hydrogen atmosphere to have a temperature less than 30 eV and L_{NS}(0.01-10 keV)<6.2*10^{30} ergs/s. A thermal plasma model also gives an acceptable fit to the continuum. Adding a neutron star component to the plasma model produces less stringent constraints on the neutron star; a temperature of 36^{+4}_{-8} eV and L_{NS}(0.01-10 keV)=1.3^{+0.6}_{-0.8}*10^{31} ergs/s. In the framework of the current theory of neutron star heating and cooling, the constraints on the thermal luminosity of 1808 and...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  11. Echoes in X-ray Binaries

    CERN Document Server

    O'Brien, K; Hynes, R; Chen, W; Haswell, C; Still, M

    2002-01-01

    We present a method of analysing the correlated X-ray and optical/UV variability in X-ray binaries, using the observed time delays between the X-ray driving lightcurves and their reprocessed optical echoes. This allows us to determine the distribution of reprocessing sites within the binary. We model the time-delay transfer functions by simulating the distribution of reprocessing regions, using geometrical and binary parameters. We construct best-fit time-delay transfer functions, showing the regions in the binary responsible for the reprocessing of X-rays. We have applied this model to observations of the Soft X-ray Transient, GRO j1655-40. We find the optical variability lags the X-ray variability with a mean time delay of 19.3$pm{2.2}$ seconds. This means that the outer regions of the accretion disc are the dominant reprocessing site in this system. On fitting the data to a simple geometric model, we derive a best-fit disk half-opening angle of 13.5$^{+2.1}_{-2.8}$ degrees, which is similar to that observe...

  12. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.;

    2008-01-01

    exceptional burst events lasting more than ~10 minutes. Half of the dozen so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading......X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in X-ray binaries. As most of the known X-ray bursters are frequently observed by INTEGRAL, an international collaboration have been taking advantage of its instrumentation to specifically monitor the occurrence of...

  13. Optical spectra of the carbon-oxygen accretion discs in the ultra-compact X-ray binaries 4U 0614+09, 4U 1543-624 and 2S 0918-549

    OpenAIRE

    Nelemans, G.; Jonker, P. G.; Marsh, T. R.; Klis, van der, M.

    2004-01-01

    We present optical spectra in the range 4600 -- 8600 A for three low-mass X-ray binaries which have been suggested to belong to the class of ultra-compact X-ray binaries based on their X-ray spectra. Our spectra show no evidence for hydrogen or helium emission lines, as are seen in classical X-ray binaries. The spectrum of 4U~0614+09 does show emission lines which we identify with carbon and oxygen lines of CII, CIII, OII and OIII. While the spectra of 4U 1543-624 and 2S 0918-549 have a lower...

  14. The Fermi-GBM X-ray burst monitor

    Science.gov (United States)

    Linares, M.; Fermi GBM X-ray Burst Collaboration

    2010-12-01

    We discuss the first results of the Fermi-GBM all-sky search for X-ray bursts. The very large field of view and X-ray response of the Fermi-GBM make it a unique instrument to study rare, bright and short-lived X-ray bursts. We are performing a systematic search that exploits such capabilities. We present results on long/intermediate type I X-ray bursts, an unusual kind of thermonuclear bursts from accreting neutron stars, and show how Fermi-GBM is giving for the first time robust measurements of their recurrence time.

  15. Deep radio imaging of 47 Tuc identifies the peculiar X-ray source X9 as a new black hole candidate

    Science.gov (United States)

    Miller-Jones, J. C. A.; Strader, J.; Heinke, C. O.; Maccarone, T. J.; van den Berg, M.; Knigge, C.; Chomiuk, L.; Noyola, E.; Russell, T. D.; Seth, A. C.; Sivakoff, G. R.

    2015-11-01

    We report the detection of steady radio emission from the known X-ray source X9 in the globular cluster 47 Tuc. With a double-peaked C IV emission line in its ultraviolet spectrum providing a clear signature of accretion, this source had been previously classified as a cataclysmic variable. In deep ATCA (Australia Telescope Compact Array) imaging from 2010 and 2013, we identified a steady radio source at both 5.5 and 9.0 GHz, with a radio spectral index (defined as Sν ∝ να) of α = -0.4 ± 0.4. Our measured flux density of 42 ± 4 μJy beam-1 at 5.5 GHz implies a radio luminosity (νLν) of 5.8 × 1027 erg s-1, significantly higher than any previous radio detection of an accreting white dwarf. Transitional millisecond pulsars, which have the highest radio-to-X-ray flux ratios among accreting neutron stars (still a factor of a few below accreting black holes at the same LX), show distinctly different patterns of X-ray and radio variability than X9. When combined with archival X-ray measurements, our radio detection places 47 Tuc X9 very close to the radio/X-ray correlation for accreting black holes, and we explore the possibility that this source is instead a quiescent stellar-mass black hole X-ray binary. The nature of the donor star is uncertain; although the luminosity of the optical counterpart is consistent with a low-mass main-sequence donor star, the mass transfer rate required to produce the high quiescent X-ray luminosity of 1033 erg s-1 suggests the system may instead be ultracompact, with an orbital period of order 25 min. This is the fourth quiescent black hole candidate discovered to date in a Galactic globular cluster, and the only one with a confirmed accretion signature from its optical/ultraviolet spectrum.

  16. X-ray Orbital Modulations in Intermediate Polars

    CERN Document Server

    Parker, T L; Mukai, K

    2005-01-01

    We present an analysis of 30 archival ASCA and RXTE X-ray observations of 16 intermediate polars to investigate the nature of their orbital modulation. We show that X-ray orbital modulation is widespread amongst these systems, but not ubiquitous as indicated by previous studies that included fewer objects. Only seven of the sixteen systems show a clearly statistically significant modulation depth whose amplitude decreases with increasing X-ray energy. Interpreting this as due to photoelectric absorption in material at the edge of an accretion disc would imply that such modulations are visible for all system inclination angles in excess of 60 degrees. However, it is also apparent that the presence of an X-ray orbital modulation can appear and disappear on a timescale of ~years or months in an individual system. This may be evidence for the presence of a precessing, tilted accretion disc, as inferred in some low mass X-ray binaries.

  17. The slowest spinning X-ray pulsar in an extragalactic globular cluster

    CERN Document Server

    Zolotukhin, Ivan; Sartore, Nicola; Chilingarian, Igor; Webb, Natalie A

    2016-01-01

    Neutron stars are thought to be born rapidly rotating and then exhibit a phase of a rotation-powered pulsations as they slow down to 1-10 s periods. The significant population of millisecond pulsars observed in our Galaxy is explained by the recycling concept: during an epoch of accretion from a donor star in a binary system, the neutron star is spun up to millisecond periods. However, only a few pulsars are observed during this recycling process, with relatively high rotational frequencies. Here we report the detection of an X-ray pulsar with $P_{\\rm spin} = 1.20$ s in the globular cluster B091D in the Andromeda galaxy, the slowest pulsar ever found in a globular cluster. This bright (up-to 30% of the Eddington luminosity), high spin-up rate pulsar, persistent over the 12 years of observations, must have started accreting less than 1 Myr ago and has not yet had time to accelerate to hundreds of Hz. The neutron star in this unique wide binary with an orbital period $P_{\\rm orb} = 30.5$ h in a 12 Gyr old, meta...

  18. X-ray astronomy

    International Nuclear Information System (INIS)

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  19. CRL X-RAY TUBE

    OpenAIRE

    Kolchevsky, N. N.; Petrov, P. V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed.

  20. X-ray emission processes in stars

    CERN Document Server

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the HR diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, evolution of X-ray activity with age), to X-ray generating processes (e.g. accretion, jets, magnetically confined winds) that were poorly understood in the pre-Chandra/XMM-Newton era. I discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics no...

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... time! Spotlight Recently posted: Pediatric MRI Intravascular Ultrasound Video: Chest CT Video:Thyroid Ultrasound Video: Head CT ...

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... Pediatric Ultrasound Video: Angioplasty & vascular stenting Video: Arthrography Radiology and You About this Site RadiologyInfo.org is ... radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... Recently posted: Focused Ultrasound for Uterine Fibroids Dementia Video: General Ultrasound Video: Pediatric Nuclear Medicine Radiology and ...

  4. Medical x-ray

    International Nuclear Information System (INIS)

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  5. Pyroelectric x-ray detectors and x-ray pyrometers

    International Nuclear Information System (INIS)

    This paper discusses pyroelectric detectors which are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low energy x-rays. The authors report tests of LiTaO3, Sr.5Ba.5Nb2O6 and LiNbO3 detectors at Nova laser with 1 ns low energy x-rays and at Zapp Z-pinch machine with 100 ns x-rays. The temporal and spectral responses are discussed

  6. Pyroelectric x-ray detectors and x-ray pyrometers

    International Nuclear Information System (INIS)

    Pyroelectric detectors are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low-energy x rays. We report our tests of LiTaO3 detectors at Nova laser with 1-ns low-energy x rays and at Zapp Z-pinch machine with 100-ns x rays. The temporal and spectral responses are discussed

  7. X-ray and optical observations of four polars

    CERN Document Server

    Worpel, H; Granzer, T; Reinsch, K; Schwarz, R; Traulsen, I

    2016-01-01

    We aim to study the temporal and spectral behaviour of four polar CVs from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and to search for a possible excess of soft X-ray photons. We analysed four XMM X-ray observations of three of the sources, two of them discovered in SDSS, one in RASS. The X-ray data were complemented by optical photometry and spectroscopy and, for two sources, archival Swift observations. SDSSJ0328 was X-ray bright in two XMM and two Swift observations, and shows transitions from high and low accretion states over a few months. It has no strong soft excess. We measured the magnetic field strength at the main pole to be 39 MG, the inclination to be 45X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which spends almost all of its time accreting at a low level. Its inclination is less than about 76...

  8. Magnetar-like X-ray bursts from an anomalous X-ray pulsar.

    Science.gov (United States)

    Gavriil, F P; Kaspi, V M; Woods, P M

    2002-09-12

    Anomalous X-ray pulsars (AXPs) are a class of rare X-ray emitting pulsars whose energy source has been perplexing for some 20 years. Unlike other X-ray emitting pulsars, AXPs cannot be powered by rotational energy or by accretion of matter from a binary companion star, hence the designation 'anomalous'. Many of the rotational and radiative properties of the AXPs are strikingly similar to those of another class of exotic objects, the soft-gamma-ray repeaters (SGRs). But the defining property of the SGRs--their low-energy-gamma-ray and X-ray bursts--has not hitherto been observed for AXPs. Soft-gamma-ray repeaters are thought to be 'magnetars', which are young neutron stars whose emission is powered by the decay of an ultra-high magnetic field; the suggestion that AXPs might also be magnetars has been controversial. Here we report two X-ray bursts, with properties similar to those of SGRs, from the direction of the anomalous X-ray pulsar 1E1048.1 - 5937. These events imply a close relationship (perhaps evolutionary) between AXPs and SGRs, with both being magnetars.

  9. Black Holes in Ultra-Luminous X-ray sources: X-ray timing versus spectroscopy

    CERN Document Server

    Caballero-Garcia, M D; Belloni, T M; Wolter, A

    2012-01-01

    Ultra-Luminous X-ray sources are accreting black holes that might represent strong evidence of the Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies but with no firm detection (as a class) so far. We analyze the best X-ray timing and spectral data from the ULX in NGC 5408 provided by XMM-Newton. The main goal is to study the broad-band noise variability of the source. We found an anti-correlation of the fractional root-mean square variability versus the intensity of the source, similar to black-hole binaries during hard states.

  10. X-ray transient AGN and galaxies, and why we need new soft X-ray surveys

    CERN Document Server

    Grupe, D

    2002-01-01

    X-ray transience is the most extreme form of variability observed in AGN or normal non-active galaxies. While factors of 2-3 on timescales of days to years are quite common among AGN, X-ray transients appear only once and vanish from the X-ray sky years later. The ROSAT All-Sky Survey with its sensitivity to energies down to 0.1 keV was the an ideal tool to discover these sources. X-ray transience in AGN or galaxies can be caused by dramatic changes in the accretion rate of the central black hole or by changes of the properties of the accretion disk. So far only a handful of sources are known. In order to estimate how often such an event occurs in a galaxy, a new soft X-ray survey is needed. In these proceedings I describe the currently known X-ray transient AGN and galaxies and will argue for a new soft X-ray survey in order to discover more of these extreme X-ray sources.

  11. X-ray diffraction

    International Nuclear Information System (INIS)

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  12. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive data...... and from our previous proposal for the observation period 2006-2007. Comparing these observations with the current burst theories confirms the relation between bursting regimes and the accretion states of the system....

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ...

  17. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si02. The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air appears black. Until recently, x-ray images were maintained on large film sheets (much ...

  20. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ...

  1. Einstein X-ray observations of M101

    Science.gov (United States)

    Trinchieri, G.; Fabbiano, G.; Romaine, S.

    1990-01-01

    The Einstein X-ray observations of the face-on spiral galaxy M101 are presented. The global X-ray luminosity L(x) of M101 is about 1.2 x 10 to the 40th ergs/s for D = 7.2 Mpc, consistent with the expected X-ray luminosity of normal spiral galaxies of its optical magnitude. The X-ray emission is mostly due to very luminous individual sources, with L(x) greater than 10 to the 38th ergs/s each, most likely very massive accreting binary systems. The data suggest a deficiency of sources in the luminosity range of L(x) from about 10 to the 37th to about 10 to the 38th ergs/s, which would indicate that the luminosity distribution of the X-ray sources in M101 might be different from that of M31 or M33.

  2. X-ray Crystallography Facility

    Science.gov (United States)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  5. Tunable X-ray source

    Science.gov (United States)

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  6. X-ray selected BALQSOs

    CERN Document Server

    Page, M J; Ceballos, M; Corral, A; Ebrero, J; Esquej, P; Krumpe, M; Mateos, S; Rosen, S; Schwope, A; Streblyanska, A; Symeonidis, M; Tedds, J A; Watson, M G

    2016-01-01

    We study a sample of six X-ray selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index alpha=0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, alpha_OX, of the X-ray selected BALQSOs, have a mean value of 1.69 +- 0.05, which is similar to that found for X-ray selected and optically selected non-BAL QSOs of similar ultraviolet luminosity. In contrast, optically-selected BALQSOs typically have much larger alpha_OX and so are characterised as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray sp...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... lies. A drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... that is extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  8. X-Ray Exam: Ankle

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle Print A A A Text Size ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  9. X-Ray Exam: Finger

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Finger KidsHealth > For Parents > X-Ray Exam: Finger Print A A A Text Size ... español Radiografía: dedo What It Is A finger X-ray is a safe and painless test that uses ...

  10. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist Print A A A Text Size ... español Radiografía: muñeca What It Is A wrist X-ray is a safe and painless test that uses ...

  11. X-Ray Exam: Hip

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Hip KidsHealth > For Parents > X-Ray Exam: Hip Print A A A Text Size ... español Radiografía: cadera What It Is A hip X-ray is a safe and painless test that uses ...

  12. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Forearm KidsHealth > For Parents > X-Ray Exam: Forearm Print A A A Text Size ... español Radiografía: brazo What It Is A forearm X-ray is a safe and painless test that uses ...

  13. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Pelvis KidsHealth > For Parents > X-Ray Exam: Pelvis Print A A A Text Size ... español Radiografía: pelvis What It Is A pelvis X-ray is a safe and painless test that uses ...

  14. X-Ray Exam: Foot

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot Print A A A Text Size ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that uses ...

  15. Outbursts in ultracompact X-ray binaries

    CERN Document Server

    Hameury, J -M

    2016-01-01

    Very faint X-ray binaries appear to be transient in many cases with peak luminosities much fainter than that of usual soft X-ray transients, but their nature still remains elusive. We investigate the possibility that this transient behaviour is due to the same thermal/viscous instability which is responsible for outbursts of bright soft X-ray transients, occurring in ultracompact binaries for adequately low mass-transfer rates. More generally, we investigate the observational consequences of this instability when it occurs in ultracompact binaries. We use our code for modelling the thermal-viscous instability of the accretion disc, assumed here to be hydrogen poor. We also take into account the effects of disc X-ray irradiation, and consider the impact of the mass-transfer rate on the outburst brightness. We find that one can reproduce the observed properties of both the very faint and the brighter short transients (peak luminosity, duration, recurrence times), provided that the viscosity parameter in quiesce...

  16. Rotation and X-ray emission from protostars

    OpenAIRE

    Montmerle, Thierry; Grosso, Nicolas; Tsuboi, Yohko; Koyama, Katsuji

    1999-01-01

    The ASCA satellite has recently detected variable hard X-ray emission from two Class I protostars in the rho Oph cloud, YLW15 (IRS43) and WL6, with a characteristic time scale ~20h. In YLW15, the X-ray emission is in the form of quasi-periodic energetic flares, which we explain in terms of strong magnetic shearing and reconnection between the central star and the accretion disk. In WL6, X-ray flaring is rotationally modulated, and appears to be more like the solar-type magnetic activity ubiqu...

  17. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    F. Nagase

    2002-03-01

    Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X-ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary systems (XBPs). First, I will discuss soft excess features observed in the energy spectra of XBPs and propose that it is a common feature for various subclasses of XBPs. Next I will present some recent results of high resolution spectroscopy with ASCA and Chandra.

  18. The birth of radio millisecond pulsars and their high-energy signature

    CERN Document Server

    Tam, P H T; Kong, A K H; Takata, J; Leung, G C K; Cheng, K S; Hui, C Y

    2014-01-01

    Millisecond pulsars (MSPs) are thought to born in low-mass X-ray binaries when the neutron star has gained enough angular momentum from the accreting materials of its companion star. It is generally believed that a radio MSP is born when the neutron star stops accreting and enters a rotation-powered state. Exactly what happens during the transition time was poorly understood until a year ago. In the past year, observations have revealed a few objects that not only switched from one state to the other (as predicted in the above picture), but also have swung between the two states within weeks to years. In this work, we present observations of two of these transition objects (PSR J1023+0038 and XSS J12270-4859) and a theoretical framework that tries to explain their high-energy radiation.

  19. Optical and X-ray Outbursts of Be/X-ray binary system SAX J2103.5+4545

    CERN Document Server

    Kiziloglu, U; Kiziloglu, N; Baykal, A

    2009-01-01

    We present the relations between Halpha equivalent width, optical brightness and X-ray flux of Be/X-ray binary system SAX J2103.5+4545, by analyzing the optical photometric and spectroscopic observations together with the X-ray observations. In the photometric observations PSF photometry were applied using MIDAS and its DAOPHOT package. The reduction and analysis of spectra were done by using MIDAS and its suitable packages. The X-ray outburst of the system occurred just after the optical outburst. The nearly symmetric Halpha emission line profiles observed during the beginning of optical outburst turn into asymmetric profiles with increased EW values during the dissipation of Be disc. Halpha lines changed from emission to absorption during the observation period. The observed double peaked HeI emission lines might come from the accretion disc of neutron star which is temporarily formed at the time of X-ray outburst.

  20. X-ray today

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, U. [Philips Medical Systems, Hamburg (Germany)

    2001-09-01

    The interest attracted by the new imaging modalities tends to overshadow the continuing importance of projection radiography and fluoroscopy. Nevertheless, projection techniques still represent by far the greatest proportion of diagnostic imaging examinations, and play an essential role in the growing number of advanced interventional procedures. This article describes some of the latest developments in X-ray imaging technology, using two products from the Philips range as examples: the Integris Allura cardiovascular system with 3D image reconstruction, and the BV Pulsera: a high-end, multi-functional mobile C-arm system with cardiac capabilities. (orig.)

  1. On the progenitors of millisecond pulsars by the recycling evolutionary channel

    CERN Document Server

    Liu, Wei-Min

    2011-01-01

    The recycling model suggested that low-mass X-ray binaries (LMXBs) could evolve into binary millisecond pulsars (BMSPs). In this work, we attempt to investigate the progenitor properties of BMSPs formed by the recycling evolutionary channel, and if sub-millisecond pulsars can be produced by this channel. Using Eggleton's stellar evolution code, considering that the dead pulsars can be spun up to a short spin period by the accreting material and angular momentum from the donor star, we have calculated the evolution of close binaries consisting of a neutron star and a low-mass main-sequence donor star, and the spin evolution of NSs. In calculation, some physical process such as the thermal and viscous instability of a accretion disk, propeller effect, and magnetic braking are included. Our calculated results indicate that, all LMXBs with a low-mass donor star of 1.0 - 2.0 $M_\\odot$ and a short orbital period ($\\la 3-4 \\rm d$) can form millisecond pulsars with a spin period less than 10 ms. However, it is diffic...

  2. ISO investigates the nature of extremely-red hard X-ray sources responsible for the X-ray background

    CERN Document Server

    Franceschini, A; Césarsky, C J; Elbaz, D; Flores, H; Granato, G L; Franceschini, Alberto; Fadda, Dario; Cesarsky, Catherine; Elbaz, David; Flores, Hector; Granato, Gian Luigi

    2001-01-01

    We analyse very deep X-ray and mid-IR surveys in common areas of the Lockman Hole and the HDF North to study the sources of the X-ray background (XRB) and to test the standard obscured accretion paradigm. We detect with ISO a rich population of X-ray luminous sources with red optical colours, including a fraction identified with Extremely Red Objects (R-K > 5) and galaxies with SEDs typical of normal massive ellipticals or spirals at z ~ 1. The high 0.5-10 keV X-ray luminosities of these objects (1E43-1E45 erg/s) indicate that the ultimate energy source is gravitational accretion, while the X-ray to IR flux ratios and the X-ray spectral hardness show evidence of photoelectric absorption at low X-ray energies. An important hint on the physics comes from the mid-IR data at 6.7 and 15 um, well reproduced by model spectra of completely obscured quasars under standard assumptions and l.o.s. optical depths tau ~ 30-40. Other predictions of the standard XRB picture, like the distributions of intrinsic bolometric lum...

  3. Constraints on Thermal X-ray Radiation from SAX J1808.4-3658 and Implications for Neutron Star Neutrino Emission

    CERN Document Server

    Heinke, C O; Wijnands, R; Taam, R E

    2006-01-01

    Thermal X-ray radiation from neutron star soft X-ray transients in quiescence provides the strongest constraints on the cooling rates of neutron stars, and thus on the interior composition and properties of matter in the cores of neutron stars. We analyze new (2006) and archival (2001) XMM-Newton observations of the accreting millisecond pulsar SAX J1808.4-3658 in quiescence, which provide the most stringent constraints to date. The X-ray spectrum of SAX J1808.4-3658 in the 2006 observation is consistent with a power-law of photon index 1.83\\pm0.16, without requiring the presence of a blackbody-like component from a neutron star atmosphere. Our 2006 observation shows a slightly lower 0.5-10 keV X-ray luminosity, at a level of 68^{+15}_{-13}% that inferred from the 2001 observation. Simultaneous fitting of all available XMM data allows a constraint on the quiescent bolometric (0.01-10 keV) neutron star luminosity of L_{q,bol}<1.1*10^{31} erg/s. This limit excludes some current models of neutrino emission me...

  4. A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859

    CERN Document Server

    Papitto, A; Li, J

    2013-01-01

    XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853. Here, we present the results of the analysis of recent INTEGRAL observations, aimed at assessing the long-term variability of the hard X-ray emission, and thus the stability of the accretion state. We confirm that the source behaves as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS J12270-4859 hosts a neutron star in a propeller state, a state we investigate in detail, developing a theoretical model to reproduce the associated X-ray and gamma-ray properties. This model can be understood as being of a more general nature, representing a viable alternative by which LMXBs can appear as gamma-ray sources. In particular, this may apply to the case of millisecond pulsars performing a transition from a state powered by the rotation of their magnetic field, to a state powered by matter in-fall, such as that recently observed from the transitio...

  5. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    Science.gov (United States)

    Kaaret, P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this proposal is to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. NAG5-9104 is the successor grant to NAG5-8408. Observations using the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAX were performed of 4U1702-429, 4U1735-44, and Cyg X-2. Unfortunately, only a small fraction of the approved observing time was obtained for the first two targets and the data are of limited scientific value. Data analysis has been completed on the observations of Cyg X-2. We discovered a correlation between the frequency of the horizontal branch oscillations (HBO) and a soft, thermal component of the x-ray spectrum likely associated with emission from the accretion disk. This correlation may place constraints on models of the oscillations. A paper based on these results appeared in the Astrophysical Journal.

  6. Ultra Luminous X-ray Sources

    Science.gov (United States)

    Webb, N. A.; Godet, O.

    2015-12-01

    Ultra Luminous X-ray sources (ULXs) are X-ray bright objects that are not coincident with the central nucleus of the host galaxy and which have luminosities that exceed the Eddington limit for a stellar mass black hole, typically L > 3 × 10^{39} erg s^{-1} for a black hole of 20 M_⊙. The nature of these objects is still unclear. However, it is possible that these sources do not form a single class of objects. Many ULXs may house stellar mass black holes accreting at super-Eddington rates, even if the physical mechanism for such high accretion rates is still not understood. Some ULXs may contain intermediate mass black holes (˜1 × 10^{2} - ˜1 × 10^{5} M_⊙). These elusive black holes are thought to be the building blocks of the more massive supermassive black holes, observed at the centre of many galaxies. Other ULXs may not be accreting black holes at all. Recent evidence for the different types of ULXs is presented in this paper.

  7. Spectral Properties of Anomalous X-ray Pulsars

    Institute of Scientific and Technical Information of China (English)

    Ye Lu; Wei Wang; Yong-Heng Zhao

    2003-01-01

    We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate Ω. Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate M. The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing M. A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.

  8. MCP-Optics for X-ray Timing

    International Nuclear Information System (INIS)

    Very lightweight X-ray optics are being developed by ESA and its industrial partners, for a number of X-ray astronomy and planetary missions. These developments could significantly improve the performance of future X-ray timing instrumentation. Based on Micro-Channel Plates (MCPs), the novel optics effectively reduce the mirror thickness by almost two orders of magnitude, and therefore also the mass of the telescope optics. Very large collecting areas become feasible for space implementation, especially as required for X-ray timing observations. Furthermore this technology leads to much reduced detector sizes due to the use of imaging X-ray optics. This dramatically improves the detected signal-to-noise ratios, as well as introducing photon collection areas sufficiently large as to study temporal phenomena on the millisecond time scale. This is particularly important to improve the studies of compact X-ray sources, both for improving the signal:noise ratios in temporal bins so that spectral or fluctuation analyses are improved, and for extending the range of measurements to fainter classes of objects.We present a brief overview of the MCP optics technology, and some basic design rules relevant to such systems. The performance of such optics and some possible mission implementations will be discussed

  9. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  10. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  11. X-ray lithography sources

    International Nuclear Information System (INIS)

    Synchrotron from dipole magnets in electron storage rings has emerged as a useful source of x-rays for lithography. To meet the need for these sources numerous groups around the world have embarked on projects to design and construct storage rings for x-ray lithography. Both conventional electromagnets as well as superconducting (SC) dipoles have been incorporated into the various designs. An overview of the worldwide effort to produce commercial x-ray sources will be presented. To better illustrate the elements involved in these sources a closer examination of the Superconducting X-ray Lithography Source Project (SXLS) at BNL will be presented. 11 refs., 1 fig., 5 tabs

  12. Soft X-ray optics

    CERN Document Server

    Spiller, Eberhard A

    1993-01-01

    This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction.

  13. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  14. X-ray Fluorescence Sectioning

    CERN Document Server

    Cong, Wenxiang

    2012-01-01

    In this paper, we propose an x-ray fluorescence imaging system for elemental analysis. The key idea is what we call "x-ray fluorescence sectioning". Specifically, a slit collimator in front of an x-ray tube is used to shape x-rays into a fan-beam to illuminate a planar section of an object. Then, relevant elements such as gold nanoparticles on the fan-beam plane are excited to generate x-ray fluorescence signals. One or more 2D spectral detectors are placed to face the fan-beam plane and directly measure x-ray fluorescence data. Detector elements are so collimated that each element only sees a unique area element on the fan-beam plane and records the x-ray fluorescence signal accordingly. The measured 2D x-ray fluorescence data can be refined in reference to the attenuation characteristics of the object and the divergence of the beam for accurate elemental mapping. This x-ray fluorescence sectioning system promises fast fluorescence tomographic imaging without a complex inverse procedure. The design can be ad...

  15. Correlated X-ray/Ultraviolet/Optical Variability in NGC 6814

    CERN Document Server

    Troyer, Jon; Cackett, Edward; Bentz, Misty; Goad, Michael; Horne, Keith; Seals, James

    2015-01-01

    We present results of a 3-month combined X-ray/UV/optical monitoring campaign of the Seyfert 1 galaxy NGC 6814. The object was monitored by Swift from June through August 2012 in the X-ray and UV bands and by the Liverpool Telescope from May through July 2012 in B and V. The light curves are variable and significantly correlated between wavebands. Using cross-correlation analysis, we compute the time lag between the X-ray and lower energy bands. These lags are thought to be associated with the light travel time between the central X-ray emitting region and areas further out on the accretion disc. The computed lags support a thermal reprocessing scenario in which X-ray photons heat the disc and are reprocessed into lower energy photons. Additionally, we fit the lightcurves using CREAM, a Markov Chain Monte Carlo code for a standard disc. The best-fitting standard disc model yields unreasonably high super-Eddington accretion rates. Assuming more reasonable accretion rates would result in significantly under-pre...

  16. Radioisotope x-ray analysis

    International Nuclear Information System (INIS)

    Radioisotope x-ray fluorescence and x-ray preferential absorption (XRA) techniques are used extensively for the analysis of materials, covering such diverse applications as analysis of alloys, coal, environmental samples, paper, waste materials, and metalliferous mineral ores and products. Many of these analyses are undertaken in the harsh environment of industrial plants and in the field. Some are continuous on-line analyses of material being processed in industry, where instantaneous analysis information is required for the control of rapidly changing processes. Radioisotope x-ray analysis systems are often tailored to a specific but limited range of applications. They are simpler and often considerably less expensive than analysis systems based on x-ray tubes. These systems are preferred to x-ray tube techniques when simplicity, ruggedness, reliability, and cost of equipment are important; when minimum size, weight, and power consumption are necessary; when a very constant and predictable x-ray output is required; when the use of high-energy x-rays is advantageous; and when short x-ray path lengths are required to minimize the absorption of low-energy x-rays in air. This chapter reviews radioisotope XRF, preferential absorption, and scattering techniques. Some of the basic analysis equations are given. The characteristics of radioisotope sources and x-ray detectors are described, and then the x-ray analytical techniques are presented. The choice of radioisotope technique for a specific application is discussed. This is followed by a summary of applications of these techniques, with a more detailed account given of some of the applications, particularly those of considerable industrial importance. 79 refs., 28 figs., 7 tabs

  17. Very faint X-ray binaries with XMM-Newton

    Science.gov (United States)

    Armas Padilla, M.

    2016-06-01

    A population of very faint X-ray binaries has been discovered in the last years thanks to the improvement in sensitivity and resolution of the new generations of X-ray missions. These systems show anomalously low luminosities, below 10^{36} ergs/sec, challenging our understanding of accretion physics and binary evolution models, and thereby opening new windows for both observational and theoretical work on accretion onto compact objects. XMM-Newton is playing a crucial role in the study of this dim family of objects thanks to its incomparable spectral capabilities at low luminosities. I will review the state-of-the-art of the field and present our XMM results in both black hole and neutron star objects. Finally, I will discuss the possibilities that the new generation of X-ray telescopes offer for this research line.

  18. Observing Galactic Black Hole Sources in Hard X-rays

    CERN Document Server

    Rao, A R

    2013-01-01

    Observations of Galactic black hole sources are traditionally done in the classical X-ray range (2 -- 10 keV) due to sensitivity constraints. Most of the accretion power, however, is radiated above 10 keV and the study of these sources in hard X-rays has the potential to unravel the radiation mechanisms operating at the inner region of the accretion disk, which is believed to be the seat of a myriad of fascinating features like jet emission, high frequency QPO emission etc. I will briefly summarise the long term hard X-ray observational features like spectral state identification, state transitions and hints of polarised emission, and describe the new insights that would be provided by the forthcoming Astrosat satellite, particularly emphasising the contributions expected from the CZT-Imager payload.

  19. Echo Tomography of Reprocessing Sites in X-Ray Binaries

    Science.gov (United States)

    Patterson, Joseph; Haswell, Carole

    1998-01-01

    We discovered correlated rapid variability between the optical/UV and X-ray emission for the first time in a soft X-ray transient, GRO J1655-40. Hubble Space Telescope light curves show features similar to those seen by the Rossi X-ray Timing Explorer, but with a mean delay of up to 10 - 20 s. We interpret the correlation as the result of reprocessing of X-rays into optical and UV emission, with a delay owing to finite light travel time; this assumption enables us to perform echo mapping of the system. The time-delay distribution has a mean of 14.6 +/-1.4 s and a dispersion of 10.5+/-1.9 s at binary phase 0.4. This establishes that the reprocessing region is the accretion disk around the compact star, rather than the mass-donating secondary. These results have been published.

  20. Constraining MHD Disk-Winds with X-ray Absorbers

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ...

  2. X-ray diagnostic equipment

    International Nuclear Information System (INIS)

    An X-ray tube is connected to several different image processing devices in X-ray diagnostic equipment. Only a single organ selector is allocated to it, for which the picture parameters for each image processing device are selected. The choice of the correct combination of picture parameters is made by means of a selector switch. (DG)

  3. X-ray tube arrangement

    International Nuclear Information System (INIS)

    An x-ray tube is described incorporating an elongated target/ anode over which the electron beam is deflected and from which x-rays are emitted. Improved methods of monitoring and controlling the amplitude of the beam deflection are presented. (U.K.)

  4. Understanding X-ray reflection emissivity profiles in AGN: Locating the X-ray source

    CERN Document Server

    Wilkins, D R

    2012-01-01

    The illumination pattern (or emissivity profile) of the accretion disc due to the reflection of X-rays in AGN can be understood in terms of relativistic effects on the rays propagating from a source in a corona surrounding the central black hole, both on their trajectories and on the accretion disc itself. Theoretical emissivity profiles due to isotropic point sources as well as simple extended geometries are computed in general relativistic ray tracing simulations performed on graphics processing units (GPUs). Such simulations assuming only general relativity naturally explain the accretion disc emissivity profiles determined from relativistically broadened emission lines which fall off steeply (with power law indices of between 6 and 8) over the inner regions of the disc, then flattening off to almost a constant before tending to a constant power law of index 3 over the outer disc. Simulations for a variety of source locations, extents and geometries show how the emissivity profiles depend on these properti...

  5. X-ray spectroscopy of NGC 5548

    CERN Document Server

    Kaastra, J S; Raassen, A J J; Van der Meer, R L J; Brinkman, A C; Liedahl, D A; Behar, E; De Rosa, A

    2002-01-01

    We analyze the high-resolution X-ray spectrum of the Seyfert 1 galaxy NGC 5548, for the full 0.1-10 keV band, using improved calibration results of the Chandra-LETGS instrument. The warm absorber consists of at least three ionization components, namely one with a low, medium and high ionization parameter. The X-ray absorbing material, from an outflowing wind, covers the full range of velocity components found from UV absorption lines. The presence of redshifted emission components for the strongest blue-shifted resonance absorption lines indicate that the absorber is located at a distance larger than the edge of the accretion disk. We derive an upper limit to the edge of the accretion disk of 1 light year. Absorption lines from ions of at least ten chemical elements have been detected, and in general for these elements there are no strong deviations from solar abundances. The narrow emission lines from the O VII and Ne IX forbidden and intercombination lines probably originate from much larger distances to th...

  6. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  7. Bright flares in supergiant fast X-ray transients

    Science.gov (United States)

    Shakura, N.; Postnov, K.; Sidoli, L.; Paizis, A.

    2014-08-01

    At steady low-luminosity states, supergiant fast X-ray transients (SFXTs) can be at the stage of quasi-spherical settling accretion on to slowly rotating magnetized neutron stars from the OB-companion winds. At this stage, a hot quasi-static shell is formed above the magnetosphere, the plasma entry rate into magnetosphere is controlled by (inefficient) radiative plasma cooling, and the accretion rate on to the neutron star is suppressed by a factor of ˜30 relative to the Bondi-Hoyle-Littleton value. Changes in the local wind velocity and density due to, e.g. clumps, can only slightly increase the mass accretion rate (a factor of ˜10) bringing the system into the Compton-cooling-dominated regime and led to the production of moderately bright flares (Lx ≲ 1036 erg s-1). To interpret the brightest flares (Lx > 1036 erg s-1) displayed by the SFXTs within the quasi-spherical settling accretion regimes, we propose that a larger increase in the mass accretion rate can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time-scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass of the shell. This view is consistent with the energy released in SFXT bright flares (˜1038-1040 erg), their typical dynamic range (˜100) and with the observed dependence of these characteristics on the average unflaring X-ray luminosity of SFXTs. Thus, the flaring behaviour of SFXTs, as opposed to steady HMXBs, may be primarily related to their low X-ray luminosity allowing sporadic magnetic reconnection to occur during magnetized plasma entry into the magnetosphere.

  8. The INTEGRAL long monitoring of persistent Ultra Compact X-ray Bursters

    OpenAIRE

    Fiocchi, M.; Bazzano, A.; Ubertini, P.; Bird, A. J.; Natalucci, L; Sguera, V.

    2008-01-01

    The combination of compact objects, short period variability and peculiar chemical composition of the Ultra Compact X-ray Binaries make up a very interesting laboratory to study accretion processes and thermonuclear burning on the neutron star surface. The improved large optical telescopes and more sensitive X-ray satellites have increased the number of known Ultra Compact X-ray Binaries allowing their study with unprecedented detail. We analyze the average properties common to all ultra comp...

  9. Formation of redbacks via accretion induced collapse

    CERN Document Server

    Smedley, Sarah L; Ferrario, Lilia; Wickramasinghe, Dayal T

    2014-01-01

    We examine the growing class of binary millisecond pulsars known as redbacks. In these systems the pulsar's companion has a mass between 0.1 and about 0.5 solar masses in an orbital period of less than 1.5 days. All show extended radio eclipses associated with circumbinary material. They do not lie on the period-companion mass relation expected from the canonical intermediate-mass X-ray binary evolution in which the companion filled its Roche lobe as a red giant and has now lost its envelope and cooled as a white dwarf. The redbacks lie closer to, but usually at higher period than, the period-companion mass relation followed by cataclysmic variables and low-mass X-ray binaries. In order to turn on as a pulsar mass accretion on to a neutron star must be sufficiently weak, considerably weaker than expected in systems with low-mass main-sequence companions driven together by magnetic braking or gravitational radiation. If a neutron star is formed by accretion induced collapse of a white dwarf as it approaches th...

  10. X-ray binary systems - Ariel V SSI observations

    International Nuclear Information System (INIS)

    The basis of our current theoretical understanding of galactic x-ray sources is reviewed. Models are outlined involving close binary systems containing a compact object accreting mass which has been lost from the nondegenerate star by a variety of mechanisms. The present status of galactic x-ray astronomy is discussed, with emphasis on the links between established observational categories and the characteristics of the proposed models. Observational results, consisting primarily of extended x-ray light curves derived from analysis of Ariel V SSI data are presented for two main classes of galactic x-ray source: (i) high-mass x-ray binaries containing an early-type giant or supergiant star; (ii) low-mass x-ray binaries in which the nondegenerate star is a late-type dwarf. For the high-mass binaries emphasis is placed on the determination and improvement of the orbital parameters; for the low-mass binaries, where a less complete picture is available, the discussion centres on the type of system involved, taking into account the optical observations of the source. Finally, the properties of two further categories - the sources in the galactic bulge and those associated with dwarf novae - are discussed as examples of rather different types of galactic x-ray emitter. In the case of the galactic bulge sources current observations have not led so far to a clear picture of the nature of the systems involved, indeed their binary membership is not established. X-ray emission from dwarf novae and related objects is a relatively recent discovery and represents the opening up of a new field of galactic x-ray astronomy. (author)

  11. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  12. Intermediate-mass black holes and ultraluminous X-ray sources in the Cartwheel ring galaxy

    NARCIS (Netherlands)

    Mapelli, M.; Moore, B.; Giordano, L.; Mayer, L.; Colpi, M.; Ripamonti, E.; Callegari, S.

    2008-01-01

    Chandra and XMM-Newton observations of the Cartwheel galaxy show similar to 17 bright X-ray sources (greater than or similar to 5 x 10(38) erg s(-1)), all within the gas-rich outer ring. We explore the hypothesis that these X-ray sources are powered by intermediate-mass black holes (IMBHs) accreting

  13. Polarization effects in radiation from compact X-ray sources

    International Nuclear Information System (INIS)

    A theory of polarization of X rays emitted by magnetized neutron stars, white dwarfs and black hole accretion disks is presented and predictions are compared with polarimetric data. Polarization occurs in accreting neutron stars and white dwarfs in binary systems as plasma travels along magnetic field lines formed between the companions. Movement parallel to the field produces circular polarization, transverse propagation yields linear polarization and elliptical polarization arises from other angles. The actual mechanism is alterations in the absorption coefficients of magnetized plasma, changes introduced by available bremsstrahlung and electron scattering processes. Thomson scattering is an origin of X ray polarization in black hole and neutron star accretion disks, with the type of polarization being dependent on the radiation density near the boundary, the presence of Faraday rotation and the geometry of the disk magnetic field. Polarimetric data on 10 stellar objects are presented as supportive evidence for the theory. 14 references

  14. X-ray diffraction apparatus

    International Nuclear Information System (INIS)

    The invention provides an x-ray diffraction apparatus permitting the rotation of the divergence sit in conjunction with the rotation of the x-ray irradiated specimen, whereby the dimensions of the x-ray irradiated portion of the specimen remain substantially constant during the rotation of the specimen. In a preferred embodiment, the divergence slit is connected to a structural element linked with a second structural element connected to the specimen such that the divergence slit rotates at a lower angular speed than the specimen

  15. Symbiotic stars in X-rays III: Suzaku observations

    CERN Document Server

    Nuñez, N E; Mukai, K; Sokoloski, J L; Luna, G J M

    2016-01-01

    We describe the X-ray emission as observed with Suzaku from five symbiotic stars that we selected for deep Suzaku observations after their initial detection with ROSAT, ASCA and Swift. We find that the X-ray spectra of all five sources can be adequately fit with absorbed, optically thin thermal plasma models, with either single- or multi-temperature plasmas. These models are compatible with the X-ray emission originating in the boundary layer between an accretion disk and a white dwarf. The high plasma temperatures of kT$~>3$ keV for all five targets were greater than expected for colliding winds. Based on these high temperatures, as well as previous measurements of UV variability and UV luminosity, and the large amplitude of X-ray flickering in 4 Dra, we conclude that all five sources are accretion-powered through predominantly optically thick boundary layers. Our X-ray data allow us to observe a small, optically thin portion of the emission from these boundary layers. Given the time between previous observa...

  16. Symbiotic stars in X-rays III: long term variability

    CERN Document Server

    Nuñez, N E; Mukai, K; Sokoloski, J L; Luna, G J M

    2015-01-01

    We study the X-ray emission from five symbiotic stars observed with Suzaku. These objects were selected for deeper observations with Suzaku after their first detection with ROSAT and Swift. We found that the X-ray spectra can be adequately fit with absorbed optically thin thermal plasma models, either single or multi-temperature. Such a model is compatible with the X-ray emission being originated in the innermost region of the accretion disk, i.e. a boundary layer. Based on the large flickering amplitude (only detected in 4 Dra), the high plasma temperature and previous measurements of UV variability and luminosity, we conclude that all five sources are accretion-powered through predominantly opticall thick boundary layer. Given the time lapse between previous and these observations, we were able to study the long term variability of their X-ray emission and found that the intrinsic X-ray flux and the intervening absorption column can vary by factors of three or more. However, it is still elusive the location...

  17. Origin of the X-ray disc-reflection steep radial emissivity

    OpenAIRE

    Svoboda, Jiří; Dovčiak, Michal; Goosmann, René W.; Jethwa, Prashin; Karas, Vladimír; Miniutti, Giovanni; Guainazzi, Matteo

    2012-01-01

    X-ray reflection off the accretion disc surrounding a black hole, together with the associated broad iron K$\\alpha$ line, has been widely used to constrain the innermost accretion-flow geometry and black hole spin. Some recent measurements have revealed steep reflection emissivity profiles in a number of active galactic nuclei and X-ray binaries. We explore the physically motivated conditions that give rise to the observed steep disc-reflection emissivity profiles. We perform a set of simulat...

  18. X-ray and optical observations of four polars

    Science.gov (United States)

    Worpel, H.; Schwope, A. D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I.

    2016-08-01

    Aims: We investigate the temporal and spectral behaviour of four polar cataclysmic variables from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and search for a possible excess of soft X-ray photons. Methods: We obtained and analysed four XMM-Newton X-ray observations of three of the sources, two of them discovered with the SDSS and one in the RASS. The X-ray data were complemented by optical photometric and spectroscopic observations and, for two sources, archival Swift observations. Results: SDSSJ032855.00+052254.2 was X-ray bright in two XMM-Newton and two Swift observations, and shows transitions from high and low accretion states on a timescale of a few months. The source shows no significant soft excess. We measured the magnetic field strength at the main accreting pole to be 39 MG and the inclination to be 45° ≤ i ≤ 77°, and we refined the long-term ephemeris. SDSSJ133309.20+143706.9 was X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which seems to spend almost all of its time accreting at a low level. Its inclination is less than about 76°. 1RXSJ173006.4+033813 was X-ray bright in the XMM-Newton observation. Its spectrum contained a modest soft blackbody component, not luminous enough to be considered a significant soft excess. We inferred a magnetic field strength at the main accreting pole of 20 to 25 MG, and that the inclination is less than 77° and probably less than 63°. V808 Aur, also known as CSS081231:J071126+440405, was X-ray faint in the Swift observation, but there is nonetheless strong evidence for bright and faint phases in X-rays and perhaps in UV. Residual X-ray flux from the faint phase is difficult to explain by thermal emission from the white dwarf surface, or by accretion onto the second pole. We present a revised distance estimate of 250 pc. Conclusions: The three systems we were able to study in detail

  19. Duodenal X-ray diagnostics

    International Nuclear Information System (INIS)

    The publication provides an overview of duodenal X-ray diagnostics with the aid of barium meals in 1362 patients. The introducing paragraphs deal with the topographic anatomy of the region and the methodics of X-ray investigation. The chapter entitled ''processes at the duodenum itself'' describes mainly ulcers, diverticula, congenital anomalies, tumors and inflammations. The neighbourhood processes comprise in the first place diseases having their origin at the pancreas and bile ducts. As a conclusion, endoscopic rectograde cholangio-pancreaticography and percutaneous transhepatic cholangiography are pointed out as advanced X-ray investigation methods. In the annex of X-ray images some of the described phenomena are shown in exemplary manner. (orig./MG)

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... like a photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. top of page What does ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  3. X-ray microtomographic scanners

    Energy Technology Data Exchange (ETDEWEB)

    Syryamkin, V. I., E-mail: klestov-simon@mail.ru; Klestov, S. A., E-mail: klestov-simon@mail.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ... in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... can be taken to the patient in a hospital bed or the emergency room. The x-ray ... and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the patient in a hospital bed or the emergency room. The x-ray tube is connected to ... equipment is relatively inexpensive and widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... or in bones. top of page How should I prepare? Most bone x-rays require no special ... to 10 minutes. top of page What will I experience during and after the procedure? A bone ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the body absorb the x-rays in varying degrees. Dense bone absorbs much of the radiation while ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  9. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... during x-ray examinations to use the lowest radiation dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review and update the technique standards ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... technologist, an individual specially trained to perform radiology examinations, positions the patient on the x-ray table ... bone is forming), for comparison purposes. When the examination is complete, you may be asked to wait ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  13. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  15. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  16. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  17. Electromechanical x-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  18. Einstein x-ray observations of cataclysmic variables

    International Nuclear Information System (INIS)

    Observations with the imaging x-ray detectors on the Einstein Observatory have led to a large increase in the number of low luminosity x-ray sources known to be associated with cataclysmic variable stars (CVs). The high sensitivity of the Einstein instrumentation has permitted study of their short timescale variability and spectra. The data are adding significantly to our knowledge of the accretion process in cataclysmic variables and forcing some revision in our ideas concerning the origin of the optical variability in these stars

  19. X-ray diagnostic apparatus

    International Nuclear Information System (INIS)

    A falling load type X-ray diagnostic apparatus comprises a low voltage power source, AC-DC converting means connected to the low voltage power source so as to apply a rectified low DC voltage, chopping means connected to the AC-DC converting means and chopping said DC voltage into a low AC voltage, high voltage applying means for transforming said low AC voltage into a high AC voltage, said high AC voltage being applied as a tube voltage to an X-ray tube from which X-rays are irradiated toward an object to be examined, means for controlling a filament heating power of the X-ray tube, programming means for supplying a control signal to said filament heating control means so as to reduce the emission current of said X-ray tube during the irradiation, and chopper control means for controlling the chopping ratio of said chopping means by evaluating said rectified DC voltage with a preset tube voltage generated in said programming means, said programming means compensating said tube voltage by receiving said control signal in such a manner that said tube voltage is maintained substantially constant during the irradiation by varying said preset tube voltage so as to control the chopping ratio based upon the reduction of the filament heating power for the X-ray tube

  20. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60Co. The RBE of 200 kVp X rays relative to 60Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  1. Center for X-Ray Optics, 1992

    International Nuclear Information System (INIS)

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors

  2. Short-living Supermassive Magnetar Model for the Early X-ray Flares Following Short GRBs

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong Gao; Yi-Zhong Fan

    2006-01-01

    We suggest a short-lived supermassive magnetar model to account for the X-ray flares following short γ-ray bursts. In this model the central engine of the short γ-ray bursts is a supermassive millisecond magnetar, formed in coalescence of double neutron stars. The X-ray flares are powered by the dipole radiation of the magnetar. When the magnetar has lost a significant part of its angular momentum, it collapses to a black hole and the X-ray flares cease abruptly.

  3. Characterization of New Hard X-ray Cataclysmic Variables

    Science.gov (United States)

    Bernardini, F.; deMartino, D.; Falanga, M.; Mukai, K.; Matt, G.; Bonnet-Bidaud, J.-M.; Masetti, N.; Mouchet, M.

    2012-01-01

    Aims. We aim at characterizing a sample of nine new hard X-ray selected Cataclysmic Variable (CVs), to unambiguously identify them as magnetic systems of the Intermediate Polar (IP) type. Methods. We performed detailed timing and spectral analysis by using X-ray, and simultaneous UV and optical data collected by XMM-Newton, complemented with hard X-ray data provided by INTEGRAL and Swift. The pulse arrival time were used to estimate the orbital periods. The broad band X-ray spectra were fitted using composite models consisting of different absorbing columns and emission components. Results. Strong X-ray pulses at the White Dwarf (WD) spin period are detected and found to decrease with energy. Most sources are spin-dominated systems in the X-rays, though four are beat dominated at optical wavelengths. We estimated the orbital period in all system (except for IGR J16500-3307), providing the first estimate for IGRJ08390-4833, IGRJ18308-1232, and IGR J18173-2509. All X-ray spectra are multi-temperature. V2069 Cyg and RX J0636+3535 poses a soft X-ray optically thick component at kT approx. 80 eV. An intense K (sub alpha) Fe line at 6.4 keV is detected in all sources. An absorption edge at 0.76 keV from OVII is detected in IGR J08390-4833. The WD masses and lower limits to the accretion rates are also estimated. Conclusions. We found all sources to be IPs. IGR J08390-4833, V2069 Cyg, and IGR J16500-3307 are pure disc accretors, while IGR J18308-1232, IGR J1509-6649, IGR J17195-4100, and RX J0636+3535 display a disc-overflow accretion mode. All sources show a temperature gradient in the post-shock regions and a highly absorbed emission from material located in the pre-shock flow which is also responsible for the X-ray pulsations. Reflection at the WD surface is likely the origin of the fluorescent iron line. There is an increasing evidence for the presence of a warm absorber in IPs, a feature that needs future exploration. The addition of two systems to the subgroup of

  4. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    International Nuclear Information System (INIS)

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849−400910, 1E 1547.0−5408, SGR 1806−20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ∼200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. (paper)

  5. Massive stellar X-ray sources in the Galactic center

    Science.gov (United States)

    Mauerhan, Jon Christian

    2008-06-01

    The purpose of this thesis is to discover unidentified members of the massive stellar population in the Galactic center, using a novel selection technique: the identification of infrared counterparts to hard X-ray sources. This method provides a means of distinguishing a subset of hot, massive stars from the more numerous cool giants that dominate the stellar population of the central Galaxy, providing potential beacons toward undiscovered regions of massive star formation, and the remains of tidally-disrupted stellar clusters. Hard-X-ray selection also highlights exotic species of massive star, including Wolf-Rayet (WR) binaries with colliding supersonic winds, and wind-accreting neutron stars and black holes in high-mass X-ray binaries (HMXBs). Massive stars were sought in the central 300 pc of the Galaxy by cross- correlating X-ray and IR point-source catalogs. Approximately 1% of the 6067 Chandra X-ray sources near the Galactic center have near-infrared matches with K s consistent with thermal emission from plasma at temperatures above 2 keV, not a ubiquitous feature of single massive stars. The X-ray data are consistent with models of strong WR/O winds colliding with the surfaces of binary companions, but are also consistent with known, low-luminosity HMXBs. Future experiments are discussed, aimed at unambiguously determining the masses of the stellar components, and surveying the environments of confirmed massive stellar X-ray sources for additional massive stars. The overall rarity of hard X-ray-emitting massive stars among stellar populations suggests the presence of a massive stellar population, comparable in size to that within the known stellar clusters in the Galactic center.

  6. What can NuSTAR do for X-ray bursts?

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Tomsick, John; Chakrabarty, Deepto;

    2012-01-01

    Unstable thermonuclear burning on the surface of accreting neutron stars is commonly observed as type I X-ray bursts. The flux released during some strong bursts can temporarily exceed the Eddington limit, driving the neutron star photosphere to such large radii that heavy-element ashes of nuclear...... of NuSTAR in hard X-rays will make it possible to study the behavi our of the accretion emission during the bursts, which is an important parameter to constrain the properties of the X-ray burst emission and thermonuclear burning....

  7. What can NuSTAR do for X-ray bursts?

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Tomsick, J.; Chakrabarty, D.;

    Unstable thermonuclear burning on the surface of accreting neutron stars is commonly observed as type I X-ray bursts. The flux released during some strong bursts can temporarily exceed the Eddington limit, driving the neutron star photosphere to such large radii that heavy-element ashes of nuclear...... of NuSTAR in hard X-rays will make it possible to study the behavior of the accretion emission during the bursts, which is an important parameter to constrain the properties of the X-ray burst emission and thermonuclear burning....

  8. A Two-Temperature Supernova Fallback Disk Model for Anomalous X-ray Pulsars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10-6 - 10-5 M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.

  9. The Search for Type 1 X-ray Bursts with Fermi/GBM

    Science.gov (United States)

    Jenke, Peter; Linares, M.; Connaughton, V.; Camero-Arranz, A.; Finger, M. H.; WIlson-Hodge, C. A.; Van Der Horst, A.; Fermi GBM X-ray Burst Collaboration

    2012-01-01

    We discuss the first results of the Fermi-GBM all-sky search for X-ray bursts. The very large field of view and X-ray response of the Fermi-GBM make it a unique instrument to study rare, bright and short-lived X-ray bursts. We are performing a systematic search that exploits such capabilities. We present results on long/intermediate type I X-ray bursts, an unusual kind of thermonuclear bursts from accreting neutron stars, and show how Fermi-GBM is giving, for the first time, robust measurements of their recurrence time.

  10. Combined X-Ray and mm-Wave Observations of Radio Quiet Active Galaxies

    Science.gov (United States)

    Behar, E.

    2016-06-01

    A connection between the X-ray and radio sources in radio quiet active galaxies (AGNs) will be demonstrated. High radio frequency, i.e., mm-wave observations are promising probes of the X-ray emitting inner regions of the accretion disks in radio quiet AGNs. An argument for simultaneous observations in X-rays and in mm waves will be made, in order to promote these as one of the future science goals of X-ray and AGN astronomy in the next decade. Preliminary results from an exploratory campaign with several space and ground based telescopes will be presented.

  11. X-ray irradiation of the winds in binaries with massive components

    OpenAIRE

    Krticka, Jiri; Kubat, Jiri; Krtickova, Iva

    2015-01-01

    Binaries with hot massive components are strong X-ray sources. Besides the intrinsic X-ray emission of individual binary members originating in their winds, X-ray emission stems from the accretion on the compact companion or from wind collision. Since hot star winds are driven by the light absorption in the lines of heavier elements, wind acceleration is sensitive to the ionization state. Therefore, the over-ionization induced by external X-ray source strongly influences the winds of individu...

  12. Prospects for Neutron Star Equation of State Constraints using "Recycled" Millisecond Pulsars

    CERN Document Server

    Bogdanov, Slavko

    2015-01-01

    Rotation-powered "recycled" millisecond pulsars are a variety of rapidly-spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  13. Deterministic Chaos in the X-ray Sources

    Science.gov (United States)

    Grzedzielski, M.; Sukova, P.; Janiuk, A.

    2015-12-01

    Hardly any of the observed black hole accretion disks in X-ray binaries and active galaxies shows constant flux. When the local stochastic variations of the disk occur at specific regions where a resonant behaviour takes place, there appear the quasi-periodic oscillations (QPOs). If the global structure of the flow and its non-linear hydrodynamics affects the fluctuations, the variability is chaotic in the sense of deterministic chaos. Our aim is to solve a problem of the stochastic versus deterministic nature of the black hole binary variabilities. We use both observational and analytic methods. We use the recurrence analysis and we study the occurence of long diagonal lines in the recurrence plot of observed data series and compare it to the surrogate series. We analyze here the data of two X-ray binaries - XTE J1550-564 and GX 339-4 observed by Rossi X-ray Timing Explorer. In these sources, the non-linear variability is expected because of the global conditions (such as the mean accretion rate) leading to the possible instability of an accretion disk. The thermal-viscous instability and fluctuations around the fixed-point solution occurs at high accretion rate, when the radiation pressure gives dominant contribution to the stress tensor.

  14. X-ray irradiation of the winds in binaries with massive components

    CERN Document Server

    Krticka, Jiri; Krtickova, Iva

    2015-01-01

    Binaries with hot massive components are strong X-ray sources. Besides the intrinsic X-ray emission of individual binary members originating in their winds, X-ray emission stems from the accretion on the compact companion or from wind collision. Since hot star winds are driven by the light absorption in the lines of heavier elements, wind acceleration is sensitive to the ionization state. Therefore, the over-ionization induced by external X-ray source strongly influences the winds of individual components. We studied the effect of external X-ray irradiation on hot star winds. We used our kinetic equilibrium (NLTE) wind models to estimate the influence of external X-ray ionization for different X-ray luminosities and source distances. The models are calculated for parameters typical of O stars. The influence of X-rays is given by the X-ray luminosity, by the optical depth between a given point and the X-ray source, and by a distance to the X-ray source. Therefore, the results can be interpreted in the diagrams...

  15. Hunting for Intrinsically X-ray Weak Quasars: The Case of PHL 1811 Analogs

    Science.gov (United States)

    Brandt, William

    2009-09-01

    A central dogma of X-ray astronomy is that luminous X-ray emission is a universal property of efficiently accreting supermassive black holes. One interesting challenge to this idea has come from the quasar PHL 1811 which appears to be intrinsically X-ray weak and also has distinctive emission-line properties. We propose to observe a sample of eight SDSS quasars, selected to have similar UV emission-line properties to that of PHL 1811, to test if they are also X-ray weak. Our analyses of the currently available X-ray data appear to support this hypothesis but do not provide a proper test. Our results will have implications for the nature of accretion-disk coronae, emission-line formation, and AGN selection.

  16. Next Generation X-ray Polarimeter

    Science.gov (United States)

    Hill-Kittle, Joe

    The emission regions of many types of X-ray sources are small and cannot be spatially resolved without interferometry techniques that haven't yet been developed. In order to understand the emission mechanisms and emission geometry, alternate measurement techniques are required. Most microphysical processes that affect X-rays, including scattering and magnetic emission processes are imprinted as polarization signatures. X-ray polarization also reveals exotic physical processes occurring in regions of very strong gravitational and magnetic fields. Observations of X-ray polarization will provide a measurement of the geometrical distribution of gas and magnetic fields without foreground depolarization that affects longer wavelengths (e.g. Faraday rotation in the radio). Emission from accretion disks has an inclination-dependent polarization. The polarization signature is modified by extreme gravitational forces, which bend light, essentially changing the contribution of each part of the disk to the integrated total intensity seen by distant observers. Because gravity has the largest effect on the innermost parts of the disk (which are the hottest, and thus contributes to more high energy photons), the energy dependent polarization is diagnostic of disk inclination, black hole mass and spin. Increasing the sensitive energy band will make these measurements possible. X-ray polarimetry will also enable the study of the origin of cosmic rays in the universe, the nature of black holes, the role of black holes in the evolution of galaxies, and the interaction of matter with the highest physically possible magnetic fields. These objectives address NASA's strategic interest in the origin, structure, and evolution of the universe. We propose a two-year effort to develop the Next Generation X-ray Polarimeter (NGXP) that will have more than ten times the sensitivity of the current state of the art. NGXP will make possible game changing measurements of classes of astrophysical

  17. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  18. X-ray echo spectroscopy

    CERN Document Server

    Shvyd'ko, Yuri

    2015-01-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1--0.02-meV ultra-high-resolution IXS applications (resolving power $> 10^8$) with broadband $\\simeq$~5--13~meV dispersing systems are introduced featuring more than $10^3$ signal e...

  19. X-ray Echo Spectroscopy.

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  20. The Herbig Ae Star HD 163296 in X-Rays

    Science.gov (United States)

    Swartz, Douglas A.; Drake, Jeremy J.; Elsner, Ronald F.; Ghosh, Kajal K.; Grady, Carol A.; Wassell, Edward

    2004-01-01

    Chandra X-ray imaging spectroscopy of the nearby Herbig Ae star HD 163296 at 100 AU angular resolution is reported. A point-like, soft (kT approximately 0.5 approximately kev), emission-line source is detected at the location of the star with an X-ray luminosity of 4.0e29 erg/s. In addition, faint emission along the direction of a previously-detected Ly-alpha-emitting jet and Herbig-Haro outflow may be present. The relatively low luminosity, lack of a hard spectral component, and absence of strong X-ray variability in HD 163296 can be explained as originating from optically-thin shock-heated gas accreting onto the stellar surface along magnetic field lines. This would require a (dipole) magnetic field strength at the surface of HD 163296 of at least approximately 100 approximately G and perhaps as high as several kG.

  1. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Intra-oral X-ray apparatus which reduces the number of exposures necessary to obtain panoramic dental radiographs is described in detail. It comprises an electron gun, a tubular target carrier projecting from the gun along the beam axis and carrying at its distal end a target surrounded by a shield of X-ray opaque material. This shield extends forward and laterally of the target and has surfaces which define a wedge or cone-shaped radiation pattern delimited vertically by the root tips of the patient's teeth. A film holder is located externally of the patient's mouth. A disposable member can fit on the target carrier to depress the patient's tongue out of the radiation pattern and to further shield the roof of the mouth. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  2. X-Ray Probes of Cosmic Star-Formation History

    Science.gov (United States)

    Ghosh, Pranab; White, Nicholas E.

    2001-01-01

    In a previous paper we point out that the X-ray luminosity L(sub x) of a galaxy is driven by the evolution of its X-ray binary population and that the profile of L(sub x) with redshift can both serve as a diagnostic probe of the Star Formation Rate (SFR) profile and constrain evolutionary models for X-ray binaries. We update our previous work using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on L(sub x)-evolution are beginning to probe the SFR profile of bright spirals and the early results are consistent with predictions based on current SFR models. Using these new SFR profiles the resolution of the "birthrate problem" of lowmass X-ray binaries (LMXBs) and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We also discuss the possible impact of the variations in the SFR profile of individual galaxies.

  3. Highlights and Discoveries from the Chandra X-ray Observatory

    CERN Document Server

    Tananbaum, H; Tucker, W; Wilkes, B; Edmonds, P

    2014-01-01

    Within 40 years of the detection of the first extrasolar X-ray source in 1962,NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding ...

  4. Pre-nova X-ray observations of V2491 Cyg (Nova Cyg 2008b)

    CERN Document Server

    Ibarra, A; Osborne, J P; Page, K; Ness, J U; Saxton, R D; Baumgartner, W; Beckmann, V; Bode, M F; Hernanz, M; Mukai, K; Orio, M; Sala, G; Starrfield, S; Wynn, G A

    2009-01-01

    Classical novae are phenomena caused by explosive hydrogen burning on an accreting white dwarf. So far, only one classical nova has been identified in X-rays before the actual optical outburst occurred (V2487 Oph). The recently discovered nova, V2491 Cyg, is one of the fastest (He/N) novae observed so far. Using archival ROSAT, XMM-Newton and Swift data, we show that V2491 Cyg was a persistent X-ray source during its quiescent time before the optical outburst. We present the X-ray spectral characteristics and derive X-ray fluxes. The pre-outburst X-ray emission is variable, and at least in one observation it shows a very soft X-ray source.

  5. X-ray imaging: Perovskites target X-ray detection

    Science.gov (United States)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  6. Long-term soft X-ray characterization of Supergiant Fast X-ray Transients: the cumulative luminosity distributions

    CERN Document Server

    Bozzo, E; Ducci, L; Bernardini, F; Falanga, M

    2014-01-01

    We constructed the cumulative luminosity distributions of most supergiant fast X-ray transients (SFXTs) and the classical supergiant X-ray binary (SgXB) IGR J18027-2016 by taking advantage of the long term monitoring of these sources carried out with Swift/XRT (0.3-10 keV). Classical SgXBs are characterized by cumulative distributions with a single knee around $\\sim$10$^{36}$-10$^{37}$ erg/s, while all SFXTs are found to be significantly sub-luminous and the main knee in their distributions is shifted at lower luminosities ($$15 keV), we show that a soft X-ray monitoring is required to reconstruct the entire profile of the SFXT cumulative luminosity distributions. The difference between the cumulative luminosity distributions of classical SgXBs and SFXTs is interpreted in terms of different wind accretion modes.

  7. Strongly absorbed quiescent X-ray emission from the X-ray transient XTE J0421+56

    CERN Document Server

    Boirin, L; Lumb, D H; Orlandini, M; Schartel, N

    2002-01-01

    We have observed the soft X-ray transient XTE J0421+56 in quiescence with XMM-Newton. The observed spectrum is highly unusual being dominated by a broad feature at 6.5 keV and can be modeled by a strongly absorbed continuum. The spectra of X-ray transients observed so far are normally modeled using Advection Dominated Accretion Flow models, black-bodies, power-laws, or by the thermal emission from a neutron star surface. The strongly absorbed X-ray emission of XTE J0421+56 could result from the compact object being embedded within the dense circumstellar wind emitted from the supergiant B[e] companion star.

  8. Ultrafast outflows in ultraluminous X-ray sources

    CERN Document Server

    Pinto, Ciro; Middleton, Matthew; Walton, Dom

    2016-01-01

    Ultraluminous X-ray sources (ULXs) are bright extragalactic sources with X-ray luminosities above 10^39 erg/s powered by accretion onto compact objects. According to the first studies performed with XMM-Newton ULXs seemed to be excellent candidates to host intermediate-mass black holes (10^2-4 solar masses). However, in the last years the interpretation of super-Eddington accretion onto stellar-mass black holes or neutron stars for most ULXs has gained a strong consensus. One critical missing piece to confirm the super-Eddington scenario was the direct detection of the massive, radiatively-driven winds expected as atomic emission/absorption lines in ULX spectra. The first evidence for winds was found as residuals in the soft X-ray spectra of ULXs. Most recently we have been able to resolve these residuals into rest-frame emission and blueshifted (~0.2c) absorption lines arising from highly ionized gas in the deep high-resolution XMM-Newton spectra of two ultraluminous X-ray sources. The compact object is ther...

  9. The physics of black hole x ray novae

    Science.gov (United States)

    Wheeler, J. C.; Kim, S.-W.; Moscoso, M. D.; Mineshige, S.

    1994-01-01

    X-ray transients that are established or plausible black hole candidates have been discovered at a rate of about one per year in the galaxy for the last five years. There are now well over a dozen black hole candidates, most being in the category of X-ray novae with low-mass companions. There may be hundreds of such transient systems in the galaxy yet to be discovered. Classic black hole candidates like Cygnus X-1 with massive companions are in the minority, and their census in the galaxy and magellanic clouds is likely to be complete. The black hole X-ray novae (BHXN) do not represent only the most common environment in which to discover black holes. Their time dependence gives a major new probe with which to study the physics of accretion into black holes. The BHXN show both a soft X-ray flux from an optically thick disk and a hard power law tail that is reminiscent of AGN spectra. The result may be new insight into the classical systems like Cyg X-1 and LMC X-1 that show similar power law tails, but also to accretion into supermassive black holes and AGN.

  10. The Herbig Ae star HD 163296 in X-rays

    CERN Document Server

    Swartz, D A; Elsner, R F; Ghosh, K K; Grady, C A; Wassell, E; Woodgate, B E; Kimble, R A; Swartz, Douglas A.; Drake, Jeremy J.; Elsner, Ronald F.; Ghosh, Kajal K.; Grady, Carol A.; Wassell, Edward; Woodgate, Bruce E.; Kimble, Randy A.

    2005-01-01

    Chandra X-ray imaging spectroscopy of the nearby Herbig Ae star HD 163296 at 100 AU angular resolution is reported. A point-like, soft (kT~0.5 keV), emission-line source is detected at the location of the star with an X-ray luminosity of 4.0e29 erg/s. In addition, faint emission along the direction of a previously-detected Ly-alpha-emitting jet and Herbig-Haro outflow may be present. The relatively low luminosity, lack of a hard spectral component, and absence of strong X-ray variability in HD 163296 can be explained as originating from optically-thin shock-heated gas accreting onto the stellar surface along magnetic field lines. This would require a (dipole) magnetic field strength at the surface of HD 163296 of at least ~100 G and perhaps as high as several kG. HD 163296 joins the T Tauri star TW Hya in being the only examples known to date of pre-main-sequence stars whose quiescent X-ray emission appears to be completely dominated by accretion.

  11. Relativistic Effects on Reflection X-ray Spectra of AGN

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Khee-Gan; /University Coll. London; Fuerst, Steven V.; /KIPAC, Menlo Park; Brandwardi-Raymond, Graziella; Wu, Kinwah; Crowley, Oliver; /University Coll. London

    2007-01-05

    We have calculated the reflection component of the X-ray spectra of active galactic nuclei (AGN) and shown that they can be significantly modified by the relativistic motion of the accretion flow and various gravitational effects of the central black hole. The absorption edges in the reflection spectra suffer severe energy shifts and smearing. The degree of distortion depends on the system parameters, and the dependence is stronger for some parameters such as the inner radius of the accretion disk and the disk viewing inclination angles. The relativistic effects are significant and are observable. Improper treatment of the reflection component of the X-ray continuum in spectral fittings will give rise to spurious line-like features, which will mimic the fluorescent emission lines and mask the relativistic signatures of the lines.

  12. The NuSTAR X-ray Spectrum of Hercules X-1: A Radiation-Dominated Radiative Shock

    CERN Document Server

    Wolff, Michael T; Gottlieb, Amy M; Fürst, Felix; Hemphill, Paul B; Marcu-Cheatham, Diana M; Pottschmidt, Katja; Schwarm, Fritz-Walter; Wilms, Jörn; Wood, Kent S

    2016-01-01

    We report new spectral modeling of the accreting X-ray pulsar Hercules X- 1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker & Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase averaged 4 to 78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main- on phase of the Her X-1 35-day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.

  13. Surprise Discovery of an X-Ray Jet

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    Accreting, supermassive black holes that reside at galactic centers can power enormous jets, bright enough to be observed from vast distances away. The recent discovery of such a jet in X-ray wavelengths, without an apparent radio counterpart, has interesting implications for our understanding of how these distant behemoths shine.An Excess of X-RaysQuasar B3 0727+409 was serendipitously discovered to host an X-ray jet when a group of scientists, led by Aurora Simionescu (Institute of Space and Astronautical Sciences of the Japan Aerospace Exploration Agency), was examining Chandra observations of another object.The Chandra data reveal bright, compact, extended emission from the core of quasar B3 0727+409, with a projected length of ~100 kpc. There also appears to be further X-ray emission at a distance of ~280 kpc, which Simionescu and collaborators speculate may be the terminal hotspot of the jet.The quasar is located at a redshift of z=2.5 which makes this jet one of only a few high-redshift X-ray jets known to date. But what makes it especially intriguing is that, though the authors searched through both recent and archival radio observations of the quasar, the only radio counterpart they could find was a small feature close to the quasar core (which may be a knot in the jet). Unlike what is typical of quasar jets, there was no significant additional radio emission coinciding with the rest of the X-ray jet.Making Jets ShineX-ray-to-radio flux ratio vs. redshift, for X-ray quasar jets detected with Chandra. B3 0727+409 is shown in red (with and without the radio knot). The curves represent inverse-Compton scattering models with different magnetic field strengths. [Simionescu et al. 2016]What does this mean? To answer this, we must consider one of the outstanding questions about quasar jets: what radiation processes dominate their emission? One process possibly contributing to the X-ray emission is inverse-Compton scattering of low-energy cosmic microwave

  14. The origin of the hard X-ray tail in neutron-star X-ray binaries

    Science.gov (United States)

    Reig, P.; Kylafis, N.

    2016-06-01

    Context. Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exponential cutoff is observed in most systems. Aims: We have developed a jet model that explains many spectral and timing properties of black-hole binaries in the states where a jet is present. Our goal is to investigate whether our jet model can reproduce the hard tail, with the correct range of photon index and the absence of a high-energy cutoff, in neutron-star X-ray binaries. Methods: We performed Monte Carlo simulations of the Compton upscattering of soft, accretion-disk or boundary layer photons in the jet and computed the emergent energy spectra, as well as the time lag of hard photons with respect to softer ones as a function of Fourier frequency. We fit the energy spectra with a power law modified by an exponential cutoff at high energy. Results: We demonstrate that our jet model naturally explains the observed power-law distribution with photon index in the range 1.8-3. With an appropriate choice of the parameters, the cutoff expected from Comptonization is shifted to energies above ~300 keV, producing a pure power law without any evidence for a rollover, in agreement with the observations. Conclusions: Our results reinforce the idea that the link between the outflow (jet) and inflow (disk) in X-ray binaries does not depend on the nature of the compact object, but on the process of accretion. Furthermore, we address the differences between jets in black-hole and neutron-star X-ray binaries and predict that the break frequency in the spectral energy distribution of neutron-star X-ray binaries, as a class, will be lower than that of black-hole binaries.

  15. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  16. Recent results from the Japanese X-ray astronomy satellites

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y.

    1986-01-01

    Observations of neutron stars and their environments, and the emission and absorption of iron, obtained with the Hakucho and Tenma satellites, are examined. The characteristics of X-ray bursts, neutron stars, and accretion disks, in particular spectra, color and effective temperatures, blackbody temperature and radius, the emissivity factor, and the Eddington limit luminosity, are discussed. Consideration is given to the rapid burster discovered by Lewin et al. (1976) and potential blackhole sources. 43 references.

  17. The Large Observatory For x-ray Timing

    OpenAIRE

    Feroci, M.; den Herder, J. W.; Bozzo, E.; D. Barret(IRAP, Toulouse, France); Brandt, S; Hernanz, M.; van der Klis, M; Pohl, M; Santangelo, A; Stella, L.; Watts, A; J. Wilms; Zane, S.; Ahangarianabhari, M; Albertus, C.

    2014-01-01

    © 2014 SPIE. The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranucl...

  18. The interplay between X-ray photoevaporation and planet formation

    OpenAIRE

    Rosotti, Giovanni P.; Ercolano, Barbara; Owen, James. E.; Armitage, Philip J.

    2013-01-01

    We assess the potential of planet formation instigating the early formation of a photoevaporation driven gap, up to radii larger than typical for photoevaporation alone. For our investigation we make use of hydrodynamics models of photoevaporating discs with a giant planet embedded. We find that, by reducing the mass accretion flow onto the star, discs that form giant planets will be dispersed at earlier times than discs without planets by X-ray photoevaporation. By clearing the portion of th...

  19. A Soft X-Ray Lag Detected in Centaurus A

    CERN Document Server

    Tachibana, Yutaro; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2015-01-01

    We performed time lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2--4 keV, 4--10 keV, and 10--20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a time scale of days by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method in a flare episode. A peak in the DCF and the ZDCF was observed at a soft lag of $\\sim 5$ days in 2--4 keV versus 4--10 keV and in 4--10 keV versus 10--20 keV, and $\\sim 10$ days in 2--4 keV versus 10--20 keV. We found it difficult to explain the observed X-ray variation with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags reflect the different cooling times of the relativistic electrons in these three energy bands. Alternatively, if the X-ray variation was produced in a corona surrounding or along the inner part of the accretion disk, we can explain ...

  20. Ultraluminous X-ray sources - three exciting years

    Science.gov (United States)

    Bachetti, M.

    2015-09-01

    Ultraluminous X-ray sources are off-nuclear extragalactic sources with (apparent) luminosities exceeding the Eddington limit for a stellar-mass black hole. This naturally suggests an association with the elusive class of intermediate-mass black holes, or with super-Eddington accreting black holes. As it turns out, this peculiar class of sources is actually a variegated zoo, including both classes of accreting black holes mentioned above and, rather unexpectedly, neutron stars. In this talk I will overview the astrophysical properties of these objects, and give an update on the many breakthroughs appeared in the literature in the last three years.