WorldWideScience

Sample records for accreting millisecond pulsar

  1. Accreting Millisecond Pulsars and Fundamental Physics

    Science.gov (United States)

    Strohmayer, Tod

    2005-01-01

    X-ray emission from the surfaces of rapidly rotating neutron stars encodes information about their global properties as well as physical conditions locally. Detailed modelling of, for example, the energy dependent pulse profiles observed from accreting millisecond pulsars and thermonuclear burst oscillations can be used to derive constraints on the masses and radii of neutron stars. These measurements provide direct information on the properties of the dense matter equation of state of the supranuclear density matter in their interiors. Study of absorption lines created in the surface layers can also provide measurements of masses and radii, and may be able to probe aspects of relativistic gravity, such as frame dragging. I will discuss the results of recent efforts to carry out such measurements and their implications for the properties of dense matter.

  2. Swinging between rotation and accretion power in a binary millisecond pulsar

    NARCIS (Netherlands)

    Papitto, A.; Ferrigno, C.; Bozzo, E.; Rea, N.

    2014-01-01

    We present the discovery of IGR J18245-2452, the first millisecond pulsar observed to swing between a rotation-powered, radio pulsar state, and an accretion-powered X-ray pulsar state [31]. This transitional source represents the most convincing proof of the evolutionary link shared by accreting

  3. Improved methods for modeling pulse shapes of accreting millisecond pulsars

    CERN Document Server

    Leahy, D; Cadeau, C

    2006-01-01

    Raytracing computations for light emitted from the surface of a rapidly rotating neutron star are carried out in order to construct light curves for accreting millisecond pulsars. These calculations are for realistic models of rapidly rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect, comparing the full raytracing computations with simpler approximations currently in use, arises from the oblate shape of the rotating star. Approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, for lower rotation rates acceptable mass and radius values can be obtained using the spherical approximation.

  4. Simulations of the magnetospheres of accreting millisecond pulsars

    CERN Document Server

    Parfrey, Kyle; Beloborodov, Andrei M

    2016-01-01

    Accreting pulsars power relativistic jets, and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field. The total torque experienced by the pulsar comprises spin-up and spin-down contributions from different bundles of magnetic field lines; the spin-down `braking' torque is applied both by closed stellar field lines which enter the disc beyond the corotation radius, and those which are open and not loaded with disc material. The rates of energy and angular momentum extraction on these open field lines have lower bounds in the relativistic, magnetically dominated limit, due to the effective inertia of the electromagnetic field itself. Here we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations, with the pseudospectral PHAEDRA code, treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The m...

  5. On the connection between accreting X-ray and radio millisecond pulsars

    CERN Document Server

    Tauris, T M

    2012-01-01

    For many years it has been recognized that the terminal stages of mass transfer in a low-mass X-ray binary (LMXB) should cause the magnetosphere of the accreting neutron star to expand, leading to a braking torque acting on the spinning pulsar. After the discovery of radio millisecond pulsars (MSPs) it was therefore somewhat a paradox (e.g. Ruderman et al. 1989) how these pulsars could retain their fast spins following the Roche-lobe decoupling phase, RLDP. Here I present a solution to this so-called "turn-off problem" which was recently found by combining binary stellar evolution models with torque computations (Tauris 2012). The solution is that during the RLDP the spin equilibrium of the pulsar is broken and therefore it remains a fast spinning object. I briefly discuss these findings in view of the two observed spin distributions in the populations of accreting X-ray millisecond pulsars (AXMSPs) and radio MSPs.

  6. Simultaneous INTEGRAL and RXTE observations of the accreting millisecond pulsar HETE J1900.1-2455

    NARCIS (Netherlands)

    Falanga, M.; Poutanen, J.; Bonning, E.W.; Kuiper, L.; Bonnet-Bidaud, J.M.; Goldwurm, A.; Hermsen, W.; Stella, L.

    2007-01-01

    Aims.HETE J1900.1-2455 is the seventh known X-ray transient accreting millisecond pulsar and has been in outburst for more than one year. We compared the data on HETE J1900.1-2455 with other similar objects and made an attempt at deriving constraints on the physical processes responsible for a spect

  7. Timing and spectral properties of the accreting millisecond pulsar SWIFT J1756.9-2508

    NARCIS (Netherlands)

    Linares, M.; Wijnands, R.; van der Klis, M.; Krimm, H.; Markwardt, C.B.; Chakrabarty, D.

    2008-01-01

    SWIFT J1756.9-2508 is one of the few accreting millisecond pulsars (AMPs) discovered to date. We report here the results of our analysis of its aperiodic X-ray variability, as measured with the Rossi X-Ray Timing Explorer during the 2007 outburst of the source. We detect strong (~35%) flat-topped

  8. Radio upper limits for the accreting millisecond X-ray pulsar IGR J17511-3057

    NARCIS (Netherlands)

    Miller-Jones, J.C.A.; Russell, D.M.; Migliari, S.

    2009-01-01

    We report on recent radio observations of the newly-detected accreting millisecond X-ray pulsar, IGR J17511-3057 (ATels #2196, #2197, #2198, #2199, #2215, #2216, #2220, #2221). We used the Very Large Array (VLA) to observe the source under observing program AM971. The array was in its relatively com

  9. Accretion, Ablation and Propeller Evolution in Close Millisecond Pulsar Binary Systems

    CERN Document Server

    Kiel, P D

    2013-01-01

    A model for the formation and evolution of binary millisecond radio pulsars in systems with low mass companions (< 0.1 Msun) is investigated using a binary population synthesis technique. Taking into account the non conservative evolution of the system due to mass loss from an accretion disk as a result of propeller action and from the companion via ablation by the pulsar, the transition from the accretion powered to rotation powered phase is investigated. It is shown that the operation of the propeller and ablation mechanisms can be responsible for the formation and evolution of black widow millisecond pulsar systems from the low mass X-ray binary phase at an orbital period of ~0.1 day. For a range of population synthesis input parameters, the results reveal that a population of black widow millisecond pulsars characterized by orbital periods as long as ~0.4 days and companion masses as low as ~0.005 Msun can be produced. The orbital periods and minimum companion mass of this radio millisecond pulsar popu...

  10. Swinging between rotation and accretion power in a millisecond binary pulsar

    CERN Document Server

    Papitto, A; Bozzo, E; Rea, N; Pavan, L; Campana, S; Romano, P; Burderi, L; Di Salvo, T; Riggio, A; Torres, D F; Falanga, M; Hessels, J W T; Burgay, M; Sarkissian, J M; Wieringa, M H; Filipović, M D; Wong, G F

    2013-01-01

    Radio pulsars are neutron stars that emit radiation modulated and powered by the rotation of their magnetic field, and which consequently decelerate (Pacini, 1967). The very fast millisecond spin periods measured in old radio pulsars (Backer et al. 1982) are thought to be the outcome of an earlier X-ray bright phase, during which the neutron star accretes matter and angular momentum from a low mass companion star in a binary system (Alpar et al. 1982; Radhakrishnan & Srinivasan 1982). This evolutionary scenario has been supported by the detection of X-ray millisecond pulsations from several accreting neutron stars in the past fifteen years (Wijnands & van der Klis 1998), as well as by the indirect evidence for the presence of a disk in the past around a millisecond radio pulsar now powered by rotation (Archibald et al. 2009). However, a transition between a rotation-powered and an accretion-powered state was never observed. Here we present the detection of millisecond X-ray pulsations from an accretin...

  11. Radio upper limits for the accreting millisecond X-ray pulsar IGR J17511-3057

    Science.gov (United States)

    Miller-Jones, J. C. A.; Russell, D. M.; Migliari, S.

    2009-10-01

    We report on recent radio observations of the newly-detected accreting millisecond X-ray pulsar, IGR J17511-3057 (ATels #2196, #2197, #2198, #2199, #2215, #2216, #2220, #2221). We used the Very Large Array (VLA) to observe the source under observing program AM971. The array was in its relatively compact 'C' and 'DNC' configurations, and the observations were made at 8.46 GHz. In no case was the source significantly detected.

  12. The accreting millisecond X-ray pulsar IGR J00291+5934: evidence for a long timescale spin evolution

    NARCIS (Netherlands)

    Patruno, A.

    2010-01-01

    Accreting millisecond X-ray pulsars like IGR J00291+5934 are important because they can be used to test theories of pulsar formation and evolution. They give also the possibility of constraining gravitational wave emission theories and the equation of state of ultra-dense matter. Particularly crucia

  13. New outburst of the accreting-millisecond X-ray pulsar NGC 6440 X-2

    Science.gov (United States)

    Altamirano, D.; Patruno, A.; Heinke, C.; Linares, M.; Markwardt, C.; Strohmayer, T.

    2010-03-01

    On Friday 19th, 2010 (19h 13m 26s UT), the RXTE galactic bulge scans detected a flux excess in the direction of the globular cluster NGC 6440. This globular cluster is known to harbor at least 24 X-ray sources (Pooley et al. 2002, ApJ 573, 184), of which two have been identified as accreting-millisecond X-ray pulsars (AMXPs): NGC 6440 X-2 (Altamirano et al. 2010, ApJ, 712, 58) and SAX J1748.9-2021.

  14. SAX J1808.4-3658, an accreting millisecond pulsar shining in gamma rays?

    CERN Document Server

    Wilhelmi, E de Ona; Li, J; Rea, N; Torres, D F; Burderi, L; Di Salvo, T; Iaria, R; Riggio, A; Sanna, A

    2015-01-01

    We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region of 15deg radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6 sigma (Test Statistic TS = 32), with position compatible with that of SAX J1808.4-3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 +- 0.5) x 10-12 erg cm-2 s-1 and the spectrum is well-represented by a power-law function with photon index 2.1 +- 0.1. We searched for significant variation of the flux at the spin frequency of the pulsar and for orbital modulation, taking into account the trials due to the uncertainties in the position, the orbital motion of the pulsar and the intrinsic evolution of the pulsar spin. No significant deviation from a constant flux at any time scale was found, ...

  15. System mass constraints for the accreting millisecond pulsar XTE J1814-338 using Bowen fluorescence

    Science.gov (United States)

    Wang, L.; Steeghs, D.; Casares, J.; Charles, P. A.; Muñoz-Darias, T.; Marsh, T. R.; Hynes, R. I.; O'Brien, K.

    2017-04-01

    We present phase-resolved spectroscopy of the millisecond X-ray pulsar XTE J1814-338 obtained during its 2003 outburst. The spectra are dominated by high-excitation emission lines of He II λ4686, Hβ, and the Bowen blend C III/N III 4630-50 Å. We exploit the proven Bowen fluorescence technique to establish a complete set of dynamical system parameter constraints using bootstrap Doppler tomography, a first for an accreting millisecond X-ray pulsar binary. The reconstructed Doppler map of the N III λ4640 Bowen transition exhibits a statistically significant (>4σ) spot feature at the expected position of the companion star. If this feature is driven by irradiation of the surface of the Roche lobe filling companion, we derive a strict lower limit to the true radial velocity semi-amplitude K2. Combining our donor constraint with the well-constrained orbit of the neutron star leads to a determination of the binary mass ratio: q = 0.123^{+0.012}_{-0.010}. The component masses are not tightly constrained given our lack of knowledge of the binary inclination. We cannot rule out a canonical neutron star mass of 1.4 M⊙ (1.1 M⊙ confidence limits of M2 are consistent with the companion being a significantly bloated, M-type main-sequence star. Our findings, combined with results from studies of the quiescent optical counterpart of XTE J1814-338, suggest the presence of a rotation-powered millisecond pulsar in XTE J1814-338 during an X-ray quiescent state. The companion mass is typical of the so-called redback pulsar binary systems (M2 ˜ 0.2 M⊙).

  16. An evolutionary channel towards the accreting millisecond pulsar SAX J1808.4-3658

    CERN Document Server

    Chen, Wen-Cong

    2016-01-01

    Recent timing analysis reveals that the orbital period of the first discovered accreting millisecond pulsar SAX J1808.4-3658 is increasing at a rate $\\dot{P}_{\\rm orb}=(3.89\\pm0.15)\\times 10^{-12}~\\rm s\\,s^{-1}$, which is at least one order of magnitude higher than the value arising from the conservative mass transfer. An ejection of mass loss rate of $10^{-9}~\\rm M_{\\odot}{\\rm yr}^{-1}$ from the donor star at the inner Lagrangian point during the quiescence state could interpret the observed orbital period derivative. However, it is unknown whether this source can offer such a high mass loss rate. In this work, we attempt to investigate an evolutionary channel towards SAX J1808.4-3658. Once the accretion disk becomes thermally and viscously unstable, the spin-down luminosity of the millisecond pulsar and the X-ray luminosity during outbursts are assumed to evaporate the donor star, and the resulting winds carry away the specific orbital angular momentum at the inner Lagrangian point. Our scenario could yield...

  17. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    Science.gov (United States)

    Shahbaz, T.; Linares, M.; Nevado, S. P.; Rodríguez-Gil, P.; Casares, J.; Dhillon, V. S.; Marsh, T. R.; Littlefair, S.; Leckngam, A.; Poshyachinda, S.

    2015-11-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ˜20 s with amplitudes of ˜0.1-0.5 mag and additional large flare events on time-scales of ˜5-60 min with amplitudes of ˜0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ˜250 s and a median ingress/egress time of ˜20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active' and `passive' luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive- and active-state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.

  18. Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

    NARCIS (Netherlands)

    Falanga, M.; Kuiper, L.; Poutanen, J.; Galloway, D.K.; Bozzo, E.; Goldwurm, A.; Hermsen, W.; Stella, L.

    2012-01-01

    Context. IGR J17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims. We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the phy

  19. Electromagnetic spin down of a transient accreting millisecond pulsar during quiescence

    CERN Document Server

    Melatos, Andrew

    2015-01-01

    The measured spin-down rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate, if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration, through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spin-down formula and calculate the residual accretion rates where the formula is applicable. As a demonstration, we apply the alternative spin-down formula to produce updated magnetic moment estimates for the four objects above. We note that, based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because ...

  20. Direct formation of millisecond pulsars from rotationally delayed accretion-induced collapse of massive white dwarfs

    CERN Document Server

    Freire, Paulo C C

    2013-01-01

    Millisecond pulsars (MSPs) are believed to be old neutron stars, formed via Type Ib/c core-collapse supernovae, which have subsequently been spun up to high rotation rates via accretion from a companion star in a highly circularised low-mass X-ray binary. The recent discoveries of Galactic field binary MSPs in eccentric orbits, and mass functions compatible with that expected for helium white dwarf companions, PSR J2234+06 and PSR J1946+3417, therefore challenge this picture. Here we present a hypothesis for producing this new class of systems, where the MSPs are formed directly from a rotationally-delayed accretion-induced collapse of a super-Chandrasekhar mass white dwarf. We compute the orbital properties of the MSPs formed in such events and demonstrate that our hypothesis can reproduce the observed eccentricities, masses and orbital periods of the white dwarfs, as well as forecasting the pulsar masses and velocities. Finally, we compare this hypothesis to a triple star scenario.

  1. An evolutionary channel towards the accreting millisecond pulsar SAX J1808.4-3658

    Science.gov (United States)

    Chen, Wen-Cong

    2017-02-01

    Recent timing analysis reveals that the orbital period of the first-discovered accreting millisecond pulsar SAX J1808.4-3658 is increasing at a rate dot{P}_orb=(3.89± 0.15)× 10^{-12} s s^{-1}, which is at least one order of magnitude higher than the value arising from the conservative mass transfer. An ejection of mass-loss rate of 10- 9 M⊙ yr- 1 from the donor star at the inner Lagrangian point during the quiescence state could interpret the observed orbital-period derivative. However, it is unknown whether this source can offer such a high mass-loss rate. In this work, we attempt to investigate an evolutionary channel towards SAX J1808.4-3658. Once the accretion disc becomes thermally and viscously unstable, the spin-down luminosity of the millisecond pulsar and the X-ray luminosity during outbursts are assumed to evaporate the donor star, and the resulting winds carry away the specific orbital angular momentum at the inner Lagrangian point. Our scenario could yield the observed orbital period, the orbital-period derivative, and the peak X-ray luminosity during outbursts. Low-mass X-ray binaries with a 1.0 M⊙ donor star, and an orbital period in the range of 0.8-1.5 d, may be the progenitor of SAX J1808.4-3658. Our numerical calculations propose that the current donor-star mass is 0.044 M⊙, which is approximately in agreement with the minimum mass of the donor star. In addition, our scenario can also account for the formation of black widows or the diamond planets like PSR J1719-1438.

  2. Eccentric Binary Millisecond Pulsars

    CERN Document Server

    Freire, Paulo C C

    2009-01-01

    In this paper we review the recent discovery of several millisecond pulsars (MSPs) in eccentric binary systems. Timing these MSPs we were able to estimate (and in one case precisely measure) their masses. These results suggest that, as a class, MSPs have a much wider range of masses (1.3 to > 2 solar masses) than the normal and mildly recycled pulsars found in double neutron star (DNS) systems (1.25 < Mp < 1.44 solar masses). This is very likely to be due to the prolonged accretion episode that is thought to be required to form a MSP. The likely existence of massive MSPs makes them a powerful probe for understanding the behavior of matter at densities larger than that of the atomic nucleus; in particular, the precise measurement of the mass of PSR J1903+0327 ($1.67 +/- 0.01 solar masses) excludes several "soft" equations of state for dense matter.

  3. The long-term evolution of the accreting millisecond X-ray pulsar Swift J1756.9-2508

    CERN Document Server

    Patruno, Alessandro; Messenger, Chris

    2009-01-01

    We present a timing analysis of the 2009 outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508, and a re-analysis of the 2007 outburst. The source shows a short recurrence time of only ~2 years between outbursts. Thanks to the approximately 2 year long baseline of data, we can constrain the magnetic field of the neutron star to be 0.4x10^8 G < B < 9x10^8 G, which is within the range of typical accreting millisecond pulsars. The 2009 timing analysis allows us to put constraints on the accretion torque: the spin frequency derivative within the outburst has an upper limit of $|\\dot{\

  4. The Slow Orbital Evolution of the Accreting Millisecond Pulsar IGR J0029+5934

    CERN Document Server

    Patruno, A

    2016-01-01

    The accreting millisecond pulsars IGR J00291+5934 and SAX J1808.4-3658 are two compact binaries with very similar orbital parameters. The latter has been observed to evolve on a very short timescale of ~70 Myr which is more than an order of magnitude shorter than expected. There is an ongoing debate on the possibility that the pulsar spin-down power ablates the companion generating large amount of mass-loss in the system. It is interesting therefore to study whether IGR J00291+5934 does show a similar behaviour as its twin system SAX J1808.4-3658. In this work we present the first measurement of the orbital period derivative of IGR J00291+5934. By using XMM-Newton data recorded during the 2015 outburst and adding the previous results of the 2004 and 2008 outbursts, we are able to measure a 90% confidence level upper limit for the orbital period derivative of -5x10^-13

  5. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  6. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    CERN Document Server

    Shahbaz, T; Nevado, S P; Rodríguez-Gil, P; Casares, J; Dhillon, V S; Marsh, T R; Littlefair, S; Leckngam, A; Poshyachinda, S

    2015-01-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ~20 s with amplitudes of ~0.1-0.5 mag and additional large flare events on time-scales of ~5-60 min with amplitudes ~0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ~250 s and a median ingr...

  7. The Stochastic X-Ray Variability of the Accreting Millisecond Pulsar MAXI J0911–655

    Science.gov (United States)

    Bult, Peter

    2017-03-01

    In this work, I report on the stochastic X-ray variability of the 340 Hz accreting millisecond pulsar MAXI J0911–655. Analyzing pointed observations of the XMM-Newton and NuSTAR observatories, I find that the source shows broad band-limited stochastic variability in the 0.01{--}10 {Hz} range with a total fractional variability of ∼ 24 % rms in the 0.4{--}3 {keV} energy band that increases to ∼ 40 % rms in the 3–10 keV band. Additionally, a pair of harmonically related quasi-periodic oscillations (QPOs) are discovered. The fundamental frequency of this harmonic pair is observed between frequencies of 62 and 146 mHz. Like the band-limited noise, the amplitudes of the QPOs show a steep increase as a function of energy; this suggests that they share a similar origin, likely the inner accretion flow. Based on their energy dependence and frequency relation with respect to the noise terms, the QPOs are identified as low-frequency oscillations and discussed in terms of the Lense–Thirring precession model.

  8. Orbital evolution of an accreting millisecond pulsar: witnessing the banquet of a hidden black widow?

    Science.gov (United States)

    di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Menna, M. T.

    2008-10-01

    We have performed a timing analysis of all the four X-ray outbursts from the accreting millisecond pulsar SAX J1808.4-3658 observed so far by the Proportional Counter Array on board the Rossi X-ray Timing Explorer. For each of the outbursts, we derived the best-fitting value of the time of ascending node passage. We find that these times follow a parabolic trend, which gives an orbital-period derivative , and a refined estimate of the orbital period, Porb = 7249.156499 +/- 1.8 × 10-5 s (reference epoch T0 = 50914.8099 MJD). This derivative is positive, suggesting a degenerate or fully convective companion star, but is more than one order of magnitude higher than what is expected from secular evolution driven by angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. Using simple considerations on the angular momentum of the system, we propose an explanation of this puzzling result assuming that during X-ray quiescence the source is ejecting matter (and angular momentum) from the inner Lagrangian point. We have also verified that this behaviour is in agreement with a possible secular evolution of the system under the hypothesis of highly non-conservative mass transfer. In this case, we find stringent constraints on the masses of the two components of the binary system and its inclination. The proposed orbital evolution indicates that in this kind of sources the neutron star is capable to efficiently ablate the companion star, suggesting that this kind of objects are part of the population of the so-called black widow pulsars, still visible in X-rays during transient mass-accretion episodes.

  9. A model for the waveform behavior of accreting millisecond pulsars: Nearly aligned magnetic fields and wandering emission regions

    CERN Document Server

    Lamb, Frederick K; Van Wassenhove, Sandor; Chamberlain, Robert T; Lo, Ka Ho; Clare, Alexander; Yu, Wenfei; Miller, M Coleman

    2008-01-01

    Ten accretion-powered millisecond pulsars are now known. We show that many properties of their X-ray oscillations can be understood if the X-ray emitting regions of most are near their spin axes but wander. This is to be expected if their magnetic poles are close to their spin axes, so that accreting gas is channeled there. As the accretion rate and structure of the inner disk vary, gas will be channeled to different locations on the stellar surface, causing the X-ray emitting regions to move with respect to the magnetic field. This model can explain the small amplitudes and nearly sinusoidal waveforms of most of these pulsars and the large, rapid phase variations of several. It may also explain why accretion-powered millisecond pulsars are difficult to detect, why all found so far are transients, and why the oscillations of a few are intermittent. The model can be tested by comparing with observations the correlated waveform changes that it predicts, including changes with accretion rate.

  10. Discovery of a new accreting millisecond X-ray pulsar in the globular cluster NGC 2808

    CERN Document Server

    Sanna, A; Burderi, L; Bozzo, E; Riggio, A; Di Salvo, T; Ferrigno, C; Rea, N; Iaria, R

    2016-01-01

    We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of $\\sim339.97$ Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of $44.3$ minutes and a projected semi-major axis of $\\sim17.6$ lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M$_{\\odot}$, which assumes a neutron star mass of 1.4 M$_{\\odot}$ and a maximum inclination angle of $75^{\\circ}$ (derived from the lack of eclipses and dips in the light-curve of the source). We find that the companion star's Roche-Lobe could either be filled by a hot ($5\\times 10^{6}$ K) pure helium white dwarf with a 0.028 M$_{\\odot}$ mass (implying $i\\simeq58^{\\circ}$) or an old (>5 Gyr) brown dwarf with metallicity abundanc...

  11. Magnetic field structure and torque in accretion discs around millisecond pulsars

    CERN Document Server

    Naso, L; Miller, J C

    2013-01-01

    Millisecond pulsars are rather weakly-magnetized neutron stars which are thought to have been spun up by disc accretion, with magnetic linkage between the star and the disc playing a key role. Their spin history depends sensitively on details of the magnetic field structure, but idealized models from the 1980s and 1990s are still commonly used for calculating the magnetic field components. This paper is the third in a series presenting results from a step-by-step analysis which we are making of the problem, starting with very simple models and then progressively including additional features one at a time, with the aim of gaining new insights into the mechanisms involved. In our first two papers, the magnetic field structure in the disc was calculated for a standard Shakura and Sunyaev model, by solving the magnetic induction equation numerically in the stationary limit within the kinematic approximation; here we consider a more general velocity field in the disc, including backflow. We find that the profiles...

  12. Orbital Evolution of an Accreting Millisecond Pulsar: Witnessing the Banquet of a Hidden Black Widow

    CERN Document Server

    Di Salvo, T; Riggio, A; Papitto, A; Menna, M T

    2007-01-01

    We have performed a timing analysis of all the four X-ray outbursts from the accreting millisecond pulsar SAX J1808.4-3658 observed so far by RXTE. For each of the outbursts we have found the local best orbital solution, keeping fixed to their best fit values the orbital period and the a sin i amplitude, and fitting for the time of ascending node passage. Plotting the best-fit values obtained in this way versus time, we find a highly statistically significant parabolic trend, which gives an orbital period of 7249.156499(9) s and an orbital period derivative of (3.40 \\pm 0.09) x 10^{-12} s/s. This derivative is positive, suggesting a degenerate or fully convective companion star, and is more than one order of magnitude higher than what is expected from angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. We find that the only way to explain this puzzling result is that during X-ray quiescence the source is ejecting matter (and angular momentum) from the ...

  13. Timing of the first eclipsing accretion-powered millisecond X-ray pulsar

    CERN Document Server

    Altamirano, D; Patruno, A; Watts, A; Linares, M; Degenaar, N; Kalamkar, M; van der Klis, M; Rea, N; Casella, P; Padilla, M Armas; Kaur, R; Yang, Y J; Soleri, P; Wijnands, R

    2010-01-01

    We report on the timing analysis of the first eclipsing accretion-powered millisecond X-ray pulsar (AMXP): SWIFT J1749.4-2807. The neutron star rotates at a frequency of ~517.9 Hz and is in a binary system with an orbital period of 8.8 hrs and a projected semi-major axis of ~1.90 lt-s. Based on the mass function and the eclipse half-angle, we constrain the inclination of the system to be between ~76 and ~80 deg. This is to date the tightest constraint on the orbital inclination of any AMXP. We also estimate the mass of the companion to be in the 0.6-0.8 Msun range. As in other AMXPs, the pulse profile shows harmonic content up to the 3rd overtone. However, this is the first AMXP to show a 1st overtone with rms amplitudes between 5 and 25%, which is the strongest ever seen, and which can be more than two times stronger than the fundamental. The fact that SWIFT J1749.4-2807 is an eclipsing system which shows uncommonly strong harmonic content suggests that it might be the best source to date to set constraints ...

  14. Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

    CERN Document Server

    Sanna, A; Riggio, A; Pintore, F; Di Salvo, T; Gambino, A F; Iaria, R; Matranga, M; Scarano, F

    2016-01-01

    We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase-connecting the time of arrivals of the observed pulses, we derived the best-fit orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particular the value of the time of passage from the ascending node, with the orbital solutions reported from the previous outbursts, we estimated for the first time the orbital period derivative corresponding with $\\dot{P}_{orb}=(1.1\\pm0.3)\\times 10^{-10}$ s/s. We note that this value is significant at 3.5 sigma confidence level, ...

  15. Swings between rotation and accretion power in a binary millisecond pulsar

    NARCIS (Netherlands)

    Papitto, A.; Ferrigno, C.; Bozzo, E.; Rea, N.; Pavan, L.; Burderi, L.; Burgay, M.; Campana, S.; Di Salvo, T.; Falanga, M.; Filipović, M.D.; Freire, P.C.C.; Hessels, J.W.T.; Possenti, A.; Ransom, S.M.; Riggio, A.; Romano, P.; Sarkissian, J.M.; Stairs, I.H.; Stella, L.; Torres, D.F.; Wieringa, M.H.; Wong, G.F.

    2013-01-01

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods1, 2, 3. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When

  16. Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

    Science.gov (United States)

    Sanna, A.; Burderi, L.; Riggio, A.; Pintore, F.; Di Salvo, T.; Gambino, A. F.; Iaria, R.; Matranga, M.; Scarano, F.

    2016-06-01

    We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase connecting the time of arrivals of the observed pulses, we derived the best-fitting orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particular the value of the time of passage from the ascending node, with the orbital solutions reported from the previous outbursts, we estimated for the first time the orbital period derivative corresponding with dot{P}_{orb}=(1.1± 0.3)× 10^{-10} s s-1. We note that this value is significant at 3.5σ confidence level, because of significant fluctuations with respect to the parabolic trend and more observations are needed in order to confirm the finding. Assuming the reliability of the result, we suggest that the large value of the orbital-period derivative can be explained as a result of a highly non-conservative mass transfer driven by emission of gravitational waves, which implies the ejection of matter from a region close to the inner Lagrangian point. We also discuss possible alternative explanations.

  17. The Accreting Millisecond X-ray Pulsar IGR J00291+5934: Evidence for a Long Timescale Spin Evolution

    CERN Document Server

    Patruno, Alessandro

    2010-01-01

    Accreting Millisecond X-ray Pulsars like IGR J00291+5934 are important because it is possible to test theories of pulsar formation and evolution. They give also the possibility to constrain gravitational wave emission theories and the equation of state of ultra dense matter. Particularly crucial to our understanding is the measurement of the long term spin evolution of the accreting neutron star. An open question is whether these accreting pulsars are spinning up during an outburst and spinning down in quiescence as predicted by the recycling scenario. Until now it has been very difficult to measure torques, due to the presence of fluctuations in the pulse phases that compromise their measurements with standard coherent timing techniques. By applying a new method, I am now able to measure a spin up during an outburst and a spin down during quiescence. I ascribe the spin up (Fdot=5.1(3)x10^{-13}\\Hz/s) to accretion torques and the spin down (Fdot=-3.0(8)x10^{-15} Hz/s) to magneto dipole torques, as those observ...

  18. Magnetic-driven Orbital Evolution of an Accreting Millisecond Pulsar: Witnessing the Banquet of a Hidden Black Widow

    Science.gov (United States)

    Burderi, L.; di Salvo, T.; Riggio, A.; Papitto, A.; Menna, M. T.

    2009-08-01

    We report here on the orbital evolution of the accreting millisecond pulsar SAX J1808.4-3658. In particular, we find for this source the first estimate of the orbital period derivative in an accreting millisecond pulsar, dot{P}orb = (3.40+/-0.12)×10-12 s/s, and a refined estimate of the orbital period, Porb = 7249.156499+/-(1.2×10-5) s. This derivative is positive and is more than one order of magnitude higher than what is expected from secular evolution driven by angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. In the hypothesis that the measured derivative of the orbital period reflects the secular evolution of the system, we propose a simple explanation of this puzzling result assuming that during X-ray quiescence the source is ejecting matter (and angular momentum) from the inner Lagrangian point. The proposed orbital evolution of the system suggests a degenerate or fully convective companion star and indicates that this kind of sources are capable to efficiently ablate the companion star, and therefore are black widows visible in X-rays during transient mass accretion episodes.

  19. Swinging between rotation and accretion power in a binary millisecond pulsar

    Directory of Open Access Journals (Sweden)

    Papitto A.

    2014-01-01

    While accreting mass, the X-ray emission of IGR J18245–2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of the newly established class of transitional pulsars are also briefly discussed.

  20. A transient I band excess in the optical spectrum of the accreting millisecond pulsar SAX J1808.4-3658

    CERN Document Server

    Greenhill, J G; Coutures, C

    2006-01-01

    The optical counterpart of the transient, millisecond X-ray pulsar SAX J1808.4-3658 was observed in four colours (BVRI) for five weeks during the 2005 June-July outburst. The optical fluxes declined by ~2 magnitudes during the first 16 days and then commenced quasi-periodic secondary outbursts, with time-scales of several days, similar to those seen in 2000 and 2002. The broadband spectra derived from these measurements were generally consistent with emission from an X-ray heated accretion disc. During the first 16 days decline in intensity the spectrum became redder. We suggest that the primary outburst was initiated by a viscosity change driven instability in the inner disc and note the contrast with another accreting millisecond pulsar, XTE J0929-314, for which the spectrum becomes bluer during outburst. Several significant short duration changes in V-I were detected. One occurred at about HJD 2453546 in the early phase of the first secondary outburst and may be due to a mass transfer instability. On the n...

  1. Discovery of a 205.89 Hz accreting-millisecond X-ray pulsar in the globular cluster NGC 6440

    CERN Document Server

    Altamirano, D; Heinke, C; Markwardt, C; Strohmayer, T; Linares, M; Wijnands, R; Van der Klis, M; Swank, J

    2009-01-01

    We report the discovery of the second accreting millisecond X-ray pulsar (AMXP) in the globular cluster NGC 6440. Pulsations with a frequency of 205.89 Hz were detected with the Rossi X-Ray Timing Explorer on August 30th and October 1st, 2009, during the decay of ~4 days outburst of a newly X-ray transient source in NGC 6440. By studying the Doppler shift of the pulsation frequency we find that the system is an ultra-compact binary with an orbital period of 57.3 minutes and a projected semi-major axis of 6.22 light-milliseconds. Based on the mass function, we estimate a lower limit to the mass of the companion to be 0.0067 M_sun (assuming a 1.4 M_sun neutron star). This new pulsar shows the shortest outburst recurrence time among AMXPs (~1 month). If this behaviour does not cease, this AMXP has the potential to be one of the best sources in which to study how the binary system and the neutron star spin evolve. Furthermore, the characteristics of this new source indicates that there might exist a population of...

  2. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    NARCIS (Netherlands)

    N. Degenaar; A. Patruno; R. Wijnands

    2012-01-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a s

  3. New outburst of the accreting millisecond X-ray pulsar NGC 6440 X-2 and discovery of a strong 1 Hz modulation in the light-curve

    NARCIS (Netherlands)

    Patruno, A.; Yang, Y.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; van der Klis, M.; Watts, A.; Wijnands, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Markwardt, C.; Strohmayer, T.; Heinke, C.

    2010-01-01

    On June 11th, 2010, RXTE/PCA galactic bulge scan observations showed an increase in activity from the globular cluster NGC 6440. Two accreting millisecond X-ray pulsars (AMXPs) and 22 other X-ray binaries are known in NGC 6440 (see Pooley et al. 2002, ApJ 573, 184, Altarmirano et al. 2010, ApJL 712,

  4. Studies of orbital parameters and pulse profile of the accreting millisecond pulsar XTE J1807-294

    CERN Document Server

    Kirsch, M G F; Breitfellner, M G; Djavidnia, S; Freyberg, M J; Kendziorra, E; Smith, M J S

    2004-01-01

    The accreting millisecond pulsar XTE J1807-294 was observed by XMM-Newton on March 22, 2003 after its discovery on February 21, 2003 by RXTE. The source was detected in its bright phase with an observed average count rate of 33.3 cts/s in the EPIC-pn camera in the 0.5-10 keV energy band (3.7 mCrab). Using the earlier established best-fit orbital period of 40.0741+/-0.0005 minutes from RXTE observations and considering a circular binary orbit as first approximation, we derived a value of 4.8+/-0.1 lt-ms for the projected orbital radius of the binary system and an epoch of the orbital phase of MJD 52720.67415(16). The barycentric mean spin period of the pulsar was derived as 5.2459427+/-0.0000004 ms. The pulsar's spin-pulse profile showed a prominent (1.5 ms FWHM) pulse, with energy and orbital phase dependence in the amplitude and shape. The measured pulsed fraction in four energy bands was found to be 3.1+/-0.2 % (0.5-3.0 keV), 5.4+/-0.4 % (3.0-6.0 keV), 5.1+/-0.7 % (6.0-10.0 keV) and 3.7+/-0.2 % (0.5-10.0 ke...

  5. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    CERN Document Server

    Tauris, Thomas M; Yoon, Sung-Chul; Langer, Norbert

    2013-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequently be recycled to form MSPs and, if so, how they can observationally be distinguished from pulsars formed via the standard core-collapse SN channel in terms of their masses, spins, orbital periods and space velocities. Numerical calculations with a detailed stellar evolution code were used for the first time to study the combined pre- and post-AIC evolution of close binaries. We investigated the mass transfer onto a massive WD in 240 systems with three different types of non-degenerate donor stars: main-sequence stars,...

  6. Multi-wavelength emissions from the millisecond pulsar binary PSR J1023+0038 during an accretion active state

    CERN Document Server

    Takata, J; Leung, G C K; Kong, A K H; Tam, P H T; Hui, C Y; Wu, E M H; Xing, Y; Cao, Y; Tang, S; Wang, Z; Cheng, K S

    2013-01-01

    Recent observations strongly suggest that the millisecond pulsar binary PSR J1023+0038 has developed an accretion disk since 2013 June. We present the multi-wavelength analysis of PSR J1023+0038, which reveals that 1) its gamma-rays suddenly brightened within a few days in June/July 2013 and has remained at a high gamma-ray state for several months; 2) both UV and X-ray fluxes have increased by roughly an order of magnitude, and 3) the spectral energy distribution has changed significantly after the gamma-ray sudden flux change. Time variabilities associated with UV and X-rays are on the order of 100-500 seconds and 50-100 seconds respectively. Our model suggests that a newly formed accretion disk due to the sudden increase of the stellar wind could explain the changes of all these observed features. The increase of UV is emitted from the disk, and a new component in gamma-rays is produced by inverse Compton scattering between the new UV component and pulsar wind. The increase of X-rays results from the enhan...

  7. Formation of Binary Millisecond Pulsars by Accretion-Induced Collapse of White Dwarfs under Wind-Driven Evolution

    CERN Document Server

    Ablimit, Iminhaji

    2014-01-01

    Accretion-induced collapse of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods ($\\gtrsim 10$ days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822$-$37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled due to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with a He WD companion, with the orbital periods distributed between $\\gtrsim 0.1$ day and $\\lesssim 30$ days, while...

  8. The 2009 outburst of accretion-powered millisecond pulsar IGR J17511-3057 as observed by Swift and RXTE

    Science.gov (United States)

    Ibragimov, Askar; Poutanen, Juri; Kajava, Jari

    Accretion-powered millisecond pulsars (AMPs) are very interesting astrophysical objects. Mat-ter from accretion disk is captured by star's magnetic field and falls along the field lines, creating "hotspots" near magnetic poles of the star. Typical spectrum of an AMP contains a disk emis-sion, blackbody emission of a hotspot and a powerlaw tail, produced by thermal Comptonizaion in accreting shock. Pulse profiles of these sources are modified by relativistic effects and can be used to put geometrical constraints and to understand physical processes near the compact object. IGR J17511-3057 was discovered on September 12, 2009 during the INTEGRAL Galactic Bulge monitoring program. The source has the pulse frequency of 245 Hz. In this work, we study spectral and temporal characheristics of IGR J17511-3057 during the outburst, based on Swift and RXTE data. We analyze its energy spectra in range 0.6-150 keV, phase-resolved spectra, pulse profiles, time lags and discuss physical conditions in the source.

  9. Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17511-3057

    CERN Document Server

    Falanga, M; Poutanen, J; Galloway, D K; Bonning, E W; Bozzo, E; Goldwurm, A; Hermsen, W; Stella, L

    2010-01-01

    IGR J17511-3057 is the second X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about a month from September 13, 2009. The broad-band average spectrum is well described by thermal Comptonization with an electron temperature of kT_e ~ 25 keV, soft seed photons of kT_bb ~ 0.6 keV, and Thomson optical depth \\tau_T ~ 2 in a slab geometry. During the outburst the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth being constant within errors. We fitted the outburst profile with the exponential model, and using the disk instability model we inferred the outer disk radius to be (4.8 - 5.4) \\times 1010 cm. The INTEGRAL and RXTE data reveal the X-ray pulsation at a period of 4.08 milliseconds up to ~ 120 keV. The pulsed fraction is shown to decrease from ~22% at 3 keV to a constant pulsed fraction of ~17-18% between 7-30 keV, and then to decrease again down to ~13% at 60 keV. The nearly sinusoidal pulses show soft lags m...

  10. The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511-3057

    CERN Document Server

    Papitto, A; Di Salvo, T; Burderi, L; D'Aì, A; Iaria, R; Bozzo, E; Menna, M T

    2010-01-01

    We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron temperature, kT_e=51(+6,-4) keV, is rather high, while the optical depth (tau=1.34(+0.03,-0.06)) is moderate. The energy dependence of the pulsed fraction supports the interpretation of the cooler thermal component as coming from the accretion disc, and indicates that the Comptonizing plasma surrounds the hot spots on the NS sur...

  11. Millisecond Pulsars in Close Binaries

    CERN Document Server

    Tauris, Thomas M

    2015-01-01

    In this Habilitationsschrift (Habilitation thesis) I present my research carried out over the last four years at the Argelander Institute for Astronomy (AIfA) and the Max Planck Institute for Radio Astronomy (MPIfR). The thesis summarizes my main findings and has been written to fulfill the requirements for the Habilitation qualification at the University of Bonn. Although my work is mainly focused on the topic of millisecond pulsars (MSPs), there is a fairly broad spread of research areas ranging from the formation of neutron stars (NSs) in various supernova (SN) events, to their evolution, for example, via accretion processes in binary and triple systems, and finally to their possible destruction in merger events. The thesis is organized in the following manner: A general introduction to neutron stars and millisecond pulsars is given in Chapter 1. A selection of key papers published in 2011-2014 are presented in Chapters 2-10, ordered within five main research areas (ultra-stripped SNe in close binaries, ma...

  12. Orbital Evolution Measurement of the Accreting Millisecond X-ray Pulsar SAX J1808.4–3658

    Indian Academy of Sciences (India)

    Chetana Jain; Anjan Dutta; Biswajit Paul

    2007-12-01

    We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the four outbursts that occurred in 1998, 2000, 2002 and 2005. Instead of measuring the arrival times of individual pulses or the pulse arrival time delay measurement that is commonly used to determine the orbital parameters of binary pulsars, we have determined the orbital ephemeris during each observation by optimizing the pulse detection against a range of trial ephemeris values. The source exhibits a significant pulse shape variability during the outbursts. The technique used by us does not depend on the pulse profile evolution, and is therefore, different from the standard pulse timing analysis. Using 27 measurements of orbital ephemerides during the four outbursts spread over more than 7 years and more than 31,000 binary orbits, we have derived an accurate value of the orbital period of 7249.156862(5) s (MJD = 50915) and detected an orbital period derivative of (3.14 ± 0.21) × 10-12 s s-1. We have included a table of the 27 mid-eclipse time measurements of this source that will be valuable for further studies of the orbital evolution of the source, especially with ASTROSAT. We point out that the measured rate of orbital period evolution is considerably faster than the most commonly discussed mechanisms of orbital period evolution like mass transfer, mass loss from the companion star and gravitational wave radiation. The present time scale of orbital period change, 73 Myr is therefore likely to be a transient high value of period evolution and similar measurements during subsequent outbursts of SAX J1808.4–3658 will help us to resolve this.

  13. The aperiodic X-ray variability of the accreting millisecond pulsar SAX J1808.4-3658

    CERN Document Server

    Bult, Peter

    2015-01-01

    We have studied the aperiodic variability of the 401 Hz accreting millisecond X-ray pulsar SAX J1808.4-3658 using the complete data set collected with the Rossi X-ray Timing Explorer over 14 years of observation. The source shows a number of exceptional aperiodic timing phenomena that are observed against a backdrop of timing properties that show consistent trends in all five observed outbursts and closely resemble those of other atoll sources. We performed a detailed study of the enigmatic ~410 Hz QPO, which has only been observed in SAX J1808.4-3658. We find that it appears only when the upper kHz QPO frequency is less than the 401 Hz spin frequency. The difference between the ~410 Hz QPO frequency and the spin frequency follows a similar frequency correlation as the low frequency power spectral components, suggesting that the ~410 Hz QPO is a retrograde beat against the spin frequency of a rotational phenomenon in the 9 Hz range. Comparing this 9 Hz beat feature with the Low-Frequency QPO in SAX J1808.4-36...

  14. Modeling the Energy Dependent Pulse Profiles of the Accreting Millisecond Pulsar SAX J1808.4-3658

    CERN Document Server

    Poutanen, J; Poutanen, Juri; Gierlinski, Marek

    2002-01-01

    The pulse profiles of the accreting X-ray millisecond pulsar SAX J1808.4-3658 at different energies are studied. The two main emission component, a black body and a power-law tail, clearly identified in the time-averaged spectrum, do not vary in phase. We show that the observed variability can be easily explained if the emission patterns of the black body and the Comptonized radiation are different: a "knife" and a "fan"-like, respectively. We suggest that Comptonization in a hot slab (radiative shock) of Thomson optical depth \\~0.3 at the surface of the neutron star may be responsible for the emission. We construct a detailed model of the X-ray production accounting for the Doppler boosting, relativistic aberration and gravitational light bending. The model reproduces well the pulse profiles at different energies simultaneously, corresponding phase lags, as well as the time-averaged spectrum. By fitting the observed pulse profiles we obtain constraints on the neutron star radius (R=7.5+-1.0 km), the inclinat...

  15. On the Nature of the X-ray Emission from the Accreting Millisecond Pulsar SAX J1808.4-3658

    CERN Document Server

    Poutanen, J; Poutanen, Juri; Gierlinski, Marek

    2003-01-01

    The pulse profiles of the accreting X-ray millisecond pulsar SAX J1808.4-3658 at different energies are studied. The two main emission component, the black body and the Comptonized tail that are clearly identified in the time-averaged spectrum, show strong variability with the first component lagging the second one. The observed variability can be explained if the emission is produced by Comptonization in a hot slab (radiative shock) of Thomson optical depth ~0.3-1 at the neutron star surface. The emission patterns of the black body and the Comptonized radiation are different: a "knife"- and a "fan"-like, respectively. We construct a detailed model of the X-ray production accounting for the Doppler boosting, relativistic aberration and gravitational light bending in the Schwarzschild spacetime. We present also accurate analytical formulae for computations of the light curves from rapidly rotating neutron stars using formalism recently developed by Beloborodov (2002). Our model reproduces well the pulse profil...

  16. A Chandra observation of the accretion-driven millisecond X-ray pulsar XTE J0929-314 in quiescence

    CERN Document Server

    Wijnands, R; Heinke, C O; Miller, J M; Lewin, W H G; Wijnands, Rudy; Homan, Jeroen; Heinke, Craig O.; Miller, Jon M.; Lewin, Walter H. G.

    2004-01-01

    We observed the accretion-driven millisecond X-ray pulsar XTE J0929-314 in its quiescent state using Chandra. XTE J0929-314 is the second such source to be observed in quiescence, after SAX J1808.4-3658. We detected 22 source photons (in the energy range 0.3-8 keV) in ~24.4 ksec, resulting in a background-corrected count rate of 9+/-2 x 10^{-4} counts s^{-1}. This small number of photons detected did not allow for a detailed spectral analysis of the quiescent spectrum, but we can demonstrate that the spectrum is harder than simple thermal emission which is usually presumed to arise from a cooling neutron star that has been heated during the outbursts. Assuming a power-law model for the X-ray spectrum, we obtain a power-law index of 2.2+/-0.6 and an unabsorbed X-ray flux of 6.5^{+2.8}_{-2.1} x 10^{-15} ergs s^{-1} cm^{-2} (for the energy range 0.5-10 keV), resulting in a 0.5-10 keV X-ray luminosity of 8+/-3 x 10^{31} (d/10 kpc)^2 ergs s^{-1}, with d the distance toward the source in kpc. No thermal component c...

  17. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    Science.gov (United States)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  18. Millisecond Pulsars, their Evolution and Applications

    Indian Academy of Sciences (India)

    R. N. Manchester

    2017-09-01

    Millisecond pulsars (MSPs) are short-period pulsars that are distinguished from “normal” pulsars, not only by their short period, but also by their very small spin-down rates and high probability of being in a binary system. These properties are consistent with MSPs having a different evolutionary history to normal pulsars, viz., neutron-star formation in an evolving binary system and spin-up due to accretion from the binary companion. Their very stable periods make MSPs nearly ideal probes of a wide variety of astrophysical phenomena. For example, they have been used to detect planets around pulsars, to test the accuracy of gravitational theories, to set limits on the low-frequency gravitational-wave background in the Universe, and to establish pulsar-based timescales that rival the best atomic-clock timescales in long-term stability. MSPs also provide a window into stellar and binary evolution, often suggesting exotic pathways to the observed systems. The X-ray accretion-powered MSPs, and especially those that transition between an accreting X-ray MSP and a non-accreting radio MSP, give important insight into the physics of accretion on to highly magnetized neutron stars.

  19. Millisecond Pulsars, their Evolution and Applications

    Science.gov (United States)

    Manchester, R. N.

    2017-09-01

    Millisecond pulsars (MSPs) are short-period pulsars that are distinguished from "normal" pulsars, not only by their short period, but also by their very small spin-down rates and high probability of being in a binary system. These properties are consistent with MSPs having a different evolutionary history to normal pulsars, viz., neutron-star formation in an evolving binary system and spin-up due to accretion from the binary companion. Their very stable periods make MSPs nearly ideal probes of a wide variety of astrophysical phenomena. For example, they have been used to detect planets around pulsars, to test the accuracy of gravitational theories, to set limits on the low-frequency gravitational-wave background in the Universe, and to establish pulsar-based timescales that rival the best atomic-clock timescales in long-term stability. MSPs also provide a window into stellar and binary evolution, often suggesting exotic pathways to the observed systems. The X-ray accretion-powered MSPs, and especially those that transition between an accreting X-ray MSP and a non-accreting radio MSP, give important insight into the physics of accretion on to highly magnetized neutron stars.

  20. Millisecond pulsars: Timekeepers of the cosmos

    Science.gov (United States)

    Kaspi, Victoria M.

    1995-01-01

    A brief discussion on the characteristics of pulsars is given followed by a review of millisecond pulsar discoveries including the very first, PRS B1937+21, discovered in 1982. Methods of timing millisecond pulsars and the accuracy of millisecond pulsars as clocks are discussed. Possible reasons for the pulse residuals, or differences between the observed and predicted pulse arrival times for millisecond pulsars, are given.

  1. The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

    Science.gov (United States)

    Baglio, M. C.; Campana, S.; D'Avanzo, P.; Papitto, A.; Burderi, L.; Di Salvo, T.; Muñoz-Darias, T.; Rea, N.; Torres, D. F.

    2017-04-01

    We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4 m Gran Telescopio Canarias (GTC) in August 2014. Although the source was in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced in bluer filters (i.e. the g-band). After subtracting the flares, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even when a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars, was detected. We conclude that the observed flaring could be a manifestation of the presence of an accretion disc in the system. The observed light curve variability could be explained by the presence of a superhump, which might be another proof of the formation of an accretion disc. In particular, the disc at the time of our observations was probably preparing the new outburst of the source, which occurred a few months later, in 2015. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  2. Identification of the High-Energy Gamma-Ray Source 3FGL J1544.6-1125 as a Transitional Millisecond Pulsar Binary in an Accreting State

    CERN Document Server

    Bogdanov, Slavko

    2015-01-01

    We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4-112820, the most probable counterpart of the unassociated Fermi LAT source 3FGL J1544.6-1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-ray data exhibit large-amplitude flux variations in the form of fast switching (within ~10 s) between two distinct flux levels that differ by a factor of $\\approx$10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar binaries PSR J1023+0038 and XSS J12270-4859, which are also associated with $\\gamma$-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4-112820 and 3FGL J1544.6-1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto a millisecond pulsar and the $\\gamma$-rays originating from an accretion-driven outflow. 1RXS J154439.4-112820 is only the fourth $\\gamma$-ray emi...

  3. Formation of millisecond pulsars with CO white dwarf companions - II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions

    CERN Document Server

    Tauris, Thomas M; Kramer, Michael

    2012-01-01

    Millisecond pulsars (MSPs) are mainly characterised by their spin periods, B-fields and masses - quantities which are largely affected by previous interactions with a companion star in a binary system. In this paper, we investigate the formation mechanism of MSPs by considering the pulsar recycling process in both intermediate-mass X-ray binaries (IMXBs) and low-mass X-ray binaries (LMXBs). The IMXBs mainly lead to the formation of binary MSPs with a massive carbon-oxygen (CO) or an oxygen-neon-magnesium white dwarf (ONeMg WD) companion, whereas the LMXBs form recycled pulsars with a helium white dwarf (He WD) companion. We discuss the accretion physics leading to the spin-up line in the PPdot-diagram and demonstrate that such a line cannot be uniquely defined. We derive a simple expression for the amount of accreted mass needed for any given pulsar to achieve its equilibrium spin and apply this to explain the observed differences of the spin distributions of recycled pulsars with different types of companion...

  4. Possible twin kHz Quasi Periodic Oscillations in the accreting millisecond X-ray Pulsar IGR J17511-3057

    CERN Document Server

    Kalamkar, Maithili; van der Klis, M

    2011-01-01

    We report on the aperiodic X-ray timing and color behavior of the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057, using all the pointed observations obtained with the Rossi X-ray Timing Explorer Proportional Counter Array since the source's discovery on 2009 September 12. The source can be classified as an atoll source on the basis of the color and timing characteristics. It was in the hard state during the entire outburst. In the beginning and at the end of the outburst, the source exhibited what appear to be twin kHz quasi periodic oscillations (QPOs). The separation \\Delta \

  5. New outburst of the accreting millisecond X-ray pulsar NGC 6440 X-2 and discovery of a strong 1 Hz modulation in the light-curve

    Science.gov (United States)

    Patruno, A.; Yang, Y.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; van der Klis, M.; Watts, A.; Wijnands, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Markwardt, C.; Strohmayer, T.; Heinke, C.

    2010-06-01

    On June 11th, 2010, RXTE/PCA galactic bulge scan observations showed an increase in activity from the globular cluster NGC 6440. Two accreting millisecond X-ray pulsars (AMXPs) and 22 other X-ray binaries are known in NGC 6440 (see Pooley et al. 2002, ApJ 573, 184, Altarmirano et al. 2010, ApJL 712, 58, Altamirano et al. 2008, ApJL 674, 45 and Gavriil et al. 2007, ApJ 669, 22). On June 12th, 2010 (10h 13m 00s UT), a ~10 ks long pointed RXTE observation was performed.

  6. Millisecond Pulsars in 47 Tucanae

    CERN Document Server

    Freire, P C C; Lorimer, D R; Lyne, A G; Manchester, R N; Freire, Paulo C.; Camilo, Fernando; Lorimer, Duncan R.; Lyne, Andrew G.; Manchester, Richard N.

    1999-01-01

    Recent observations of the globular cluster 47 Tuc, made with the Parkes telescope at a wavelength of 20 cm, have resulted in the discovery of nine new millisecond pulsars, all in binary systems. The number of timing solutions available has risen from two to 14. These results will make possible a more detailed study of the cluster dynamics.

  7. The Optical Counterpart to the Accreting Millisecond X-Ray Pulsar SAX J1748.9-2021 in the Globular Cluster NGC 6440

    Science.gov (United States)

    Cadelano, M.; Pallanca, C.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.; Patruno, A.

    2017-07-01

    We used a combination of deep optical and {{H}}α images of the Galactic globular cluster NGC 6440, acquired with the Hubble Space Telescope, to identify the optical counterpart to the accreting millisecond X-ray pulsar SAX J1748.9-2021 during quiescence. A strong {{H}}α emission has been detected from a main-sequence star (hereafter COM-SAX J1748.9-2021) located at only 0.″15 from the nominal position of the X-ray source. The position of the star also agrees with the optical counterpart found by Verbunt et al. during an outburst. We propose this star as the most likely optical counterpart to the binary system. By direct comparison with isochrones, we estimated that COM-SAX J1748.9-2021 has a mass of 0.70{--}0.83 {M}⊙ , a radius of 0.88+/- 0.02 {R}⊙ , and a superficial temperature of 5250 ± 80 K. These parameters, combined with the orbital characteristics of the binary, suggest that the system is observed at a very low inclination angle (˜ 8^\\circ {--}14^\\circ ) and that the star is filling or even overflowing its Roche lobe. This, together with the EW of the {{H}}α emission (˜20 Å), suggests possible ongoing mass transfer. The possible presence of such an ongoing mass transfer during a quiescence state also suggests that the radio pulsar is not active yet and thus this system, despite its similarity with the class of redback millisecond pulsars, is not a transitional millisecond pulsar. Based on observations collected with the NASA/ESA HST (Prop. 12517, 13410), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  8. Type I X-ray bursts and burst oscillations in the accreting millisecond X-ray pulsar IGR J17511-3057

    CERN Document Server

    Altamirano, D; Linares, M; Markwardt, C B; Strohmayer, T; Patruno, A

    2010-01-01

    We report the discovery of burst oscillations at the spin frequency in ten thermonuclear bursts from the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057. The burst oscillation properties are, like those from the AMXPs SAX J1808.4-3658 and XTE J1814-338, anomalous compared to burst oscillations from intermittent pulsars or non-pulsing LMXBs. Like SAX J1808.4-3658 they show frequency drifts in the rising phase rather than the tail. There is also evidence for harmonic content. Where IGR J17511-3057 is unusual compared to the other pulsars is that oscillations are not detected throughout all bursts. As accretion rate drops the bursts get brighter and their rise/decay time scales become shorter, while the oscillation amplitude falls below the detection threshold: first in the burst peak and then also in the rise. None of the bursts from IGR J17511-3057 show evidence for photospheric radius expansion (which might be expected to suppress oscillation amplitude) which allow us to set an upper limit to the di...

  9. Polarization observations of 20 millisecond pulsars

    CERN Document Server

    Yan, Wenming; van Straten, Willem; Reynolds, John; Hobbs, George; Wang, Na; Bailes, Matthew; Bhat, Ramesh; Burke-Spolaor, Sarah; Champion, David; Coles, William; Hotan, Aidan; Khoo, Jonathan; Oslowski, Stefan; Sarkissian, John; Verbiest, Joris; Yardley, Daniel

    2011-01-01

    Polarization profiles are presented for 20 millisecond pulsars that are being observed as part of the Parkes Pulsar Timing Array project. The observations used the Parkes multibeam receiver with a central frequency of 1369 MHz and the Parkes digital filterbank pulsar signal-processing system PDFB2. Because of the large total observing time, the summed polarization profiles have very high signal/noise ratios and show many previously undetected profile features. Thirteen of the 20 pulsars show emission over more than half of the pulse period. Polarization variations across the profiles are complex and the observed position angle variations are generally not in accord with the rotating-vector model for pulsar polarization. Never-the-less, the polarization properties are broadly similar to those of normal (non-millisecond) pulsars, suggesting that the basic radio emission mechanism is the same in both classes of pulsar. The results support the idea that radio emission from millisecond pulsars originates high in t...

  10. Observations of Accreting Pulsars

    Science.gov (United States)

    Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark; Vaughan, Brian A.; Wilson, Colleen A.; Wilson, Robert B.

    1997-01-01

    We summarize 5 years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered five new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A0535+26, GRO J2058+42, 4U 1145-619, and A1118-616), and also measured the accretion torque history during outbursts of six of those transients whose orbital param- eters were also known. We have also continuously measured the pulsed flux and spin frequency for eiaht persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic neutron stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long timescales, which blurs the con- ventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars but are uncorrelated, or even anti- correlated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA/Goddard Space Flight Center.

  11. Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations

    CERN Document Server

    Pletsch, H J; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M -H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hartog, P R den; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Johannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Raino, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Parkinson, P M Saz; Schulz, A; Sgro, C; Silva, E do Couto e; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; 10.1126/science.1229054

    2012-01-01

    Millisecond pulsars (MSPs), old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  12. XMM-Newton Spectroscopy of the Accretion-Driven Millisecond X-ray Pulsar XTE J1751-305 in Outburst

    CERN Document Server

    Miller, J M; Méndez, M; Kendziorra, E; Tiengo, A; Van der Klis, M; Chakraborty, D; Gaensler, B M; Lewin, W H G

    2003-01-01

    We present an analysis of the first high-resolution spectra measured from an accretion-driven millisecond X-ray pulsar in outburst. We observed XTE J1751-305 with XMM-Newton on 2002 April 7 for approximately 35 ks. Using a simple absorbed blackbody plus power-law model, we measure an unabsorbed flux of (6.6 +/- 0.1) * 10^(-10) erg/cm^(2)/s (0.5-10.0 keV). A hard power-law component (Gamma = 1.44 +/- 0.01) contributes 83% of the unabsorbed flux in the 0.5-10.0 keV band, but a blackbody component (kT = 1.05 +/- 0.01 keV) is required. We find no clear evidence for narrow or broad emission or absorption lines in the time-averaged spectra, and the sensitivity of this observation has allowed us to set constraining upper-limits on the strength of important features. The lack of line features is at odds with spectra measured from some other X-ray binaries which share some similarities with XTE J1751-305. We discuss the implications of these findings on the accretion flow geometry in XTE J1751-305 and the geometries i...

  13. On Low Mass X-ray Binaries and Millisecond Pulsar

    CERN Document Server

    Burderi, Luciano

    2013-01-01

    The detection, in 1998, of the first Accreting Millisecond Pulsar, started an exciting season of continuing discoveries in the fashinating field of compact binary systems harbouring a neutron star. Indeed, in these last three lustres, thanks to the extraordinary performances of astronomical detectors, on ground as well as on board of satellites, mainly in the Radio, Optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond Radio Pulsar. The most intriguing phase is certainly the spin-up stage during which, because of the accretion of matter and angular momentum, the neutron star accumulates an extraordinary amount of mechanical rotational energy, up to one percent of its whole rest-mass energy. These millisecond spinning neutron stars are truly extreme physical objects: General and Special Relativity are fully in action, since their surfaces, attaining speeds close to one ...

  14. Stokes tomography of radio pulsar magnetospheres. II. Millisecond pulsars

    CERN Document Server

    Chung, C T Y

    2011-01-01

    The radio polarization characteristics of millisecond pulsars (MSPs) differ significantly from those of non-recycled pulsars. In particular, the position angle (PA) swings of many MSPs deviate from the S-shape predicted by the rotating vector model, even after relativistic aberration is accounted for, indicating that they have non-dipolar magnetic geometries, likely due to a history of accretion. Stokes tomography uses phase portraits of the Stokes parameters as a diagnostic tool to infer a pulsar's magnetic geometry and orientation. This paper applies Stokes tomography to MSPs, generalizing the technique to handle interpulse emission. We present an atlas of look-up tables for the Stokes phase portraits and PA swings of MSPs with current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models. We compare our look-up tables to data from 15 MSPs and find that the Stokes phase portraits for a current-modified dipole approximately match several MSPs whose PA swings ...

  15. Discovery of a soft X-ray 8 mHz QPO from the accreting millisecond pulsar IGR J00291+5934

    CERN Document Server

    Ferrigno, C; Sanna, A; Pintore, F; Papitto, A; Riggio, A; Burderi, L; Di Salvo, T; Iaria, R; D'Aì, A

    2016-01-01

    In this paper, we report on the analysis of the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint NuSTAR and XMM-Newton observation performed during the source outburst in 2015. The light curve of the source was characterized by a flaring-like behavior, with typical rise and decay time scales of ~120 s. The flares are accompanied by a remarkable spectral variability, with the X-ray emission being generally softer at the peak of the flares. A strong quasi periodic oscillation (QPO) is detected at ~8 mHz in the power spectrum of the source and clearly associated with the flaring-like behavior. This feature has the strongest power at soft X-rays (<3 keV). We carried out a dedicated hardness-ratio resolved spectral analysis and a QPO phase-resolved spectral analysis, together with an in-depth study of the source timing properties, to investigate the origin of this behavior. We suggest that the unusual variability of IGR J00291+5934 observed by ...

  16. X-ray states of redback millisecond pulsars

    CERN Document Server

    Linares, Manuel

    2014-01-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as "redbacks", constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars, and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback which showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L$_\\mathrm{X}$), between [6-9]$\\times$10$^{32}$ erg s$^{-1}$ (disk-passive state) and [3-5]$\\times$10$^{33}$ erg s$^{-1}$ (disk-active state). This strongly suggests that mode switching $-$which has not been observed in quiescent low-mass X-ray binaries$-$ is universal among redback millisecond pulsars in the disk ...

  17. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  18. The disturbance of a millisecond pulsar magnetosphere

    CERN Document Server

    Shannon, R M; Kerr, M; Bailes, M; Bhat, N D R; Coles, W A; Dai, S; Dempsey, J; Hobbs, G; Keith, M J; Lasky, P D; Levin, Y; Manchester, R N; Oslowski, S; Ravi, V; Reardon, D J; Rosado, P A; Spiewak, R; van Straten, W; Toomey, L; Wang, J -B; Wen, L; You, X -P; Zhu, X -J

    2016-01-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here we report on a broad-band variation in the pulse profile of the millisecond pulsar J1643-1224. A new component of emission suddenly appears in the pulse profile, decays over 4 months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  19. Discovery of a soft X-ray 8 mHz QPO from the accreting millisecond pulsar IGR J00291+5934

    Science.gov (United States)

    Ferrigno, C.; Bozzo, E.; Sanna, A.; Pintore, F.; Papitto, A.; Riggio, A.; Burderi, L.; Di Salvo, T.; Iaria, R.; D'Aì, A.

    2017-04-01

    We report on the analysis of the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint NuSTAR and XMM-Newton observation performed during the source outburst in 2015. The light curve of the source is characterized by a flaring-like behaviour, with typical rise and decay time-scales of ˜120 s. The flares are accompanied by a remarkable spectral variability, with the X-ray emission being generally softer at the peak of the flares. A strong quasi-periodic oscillation (QPO) is detected at ˜8 mHz in the power spectrum of the source and clearly associated with the flaring-like behaviour. This feature has the strongest power at soft X-rays ( ≲ 3 keV). We carried out a dedicated hardness-ratio-resolved spectral analysis and a QPO phase-resolved spectral analysis, together with an in-depth study of the source-timing properties, to investigate the origin of this behaviour. We suggest that the unusual variability of IGR J00291+5934 observed by XMM-Newton and NuSTAR could be produced by a heartbeat-like mechanism, similar to that observed in black hole X-ray binaries. The possibility that this variability, and the associated QPO, are triggered by phases of quasi-stable nuclear burning, as sustained in the literature for a number of other neutron star binaries displaying a similar behaviour, cannot be solidly tested in the case of IGR J00291+5934 due to the paucity of type I X-ray bursts detected from this source.

  20. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    Science.gov (United States)

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a ~= 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of sime1 × 1033(D/6.7 kpc)2 erg s-1. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of <~ 2 × 1033 erg s-1 and constrain its temperature to be <~ 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of <~ 34% and <~ 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  1. The neutron star transient and millisecond pulsar in M28: from sub-luminous accretion to rotation-powered quiescence

    CERN Document Server

    Linares, Manuel; Heinke, Craig; Wijnands, Rudy; Patruno, Alessandro; Altamirano, Diego; Homan, Jeroen; Bogdanov, Slavko; Pooley, David

    2013-01-01

    The X-ray transient IGR J18245-2452 in the globular cluster M28 contains the first neutron star (NS) seen to switch between rotation-powered and accretion-powered pulsations. We analyse its 2013 March-April 25d-long outburst as observed by Swift, which had a peak bolometric luminosity of ~6% of the Eddington limit (L$_{E}$), and give detailed properties of the thermonuclear burst observed on 2013 April 7. We also present a detailed analysis of new and archival Chandra data, which we use to study quiescent emission from IGR J18245-2452 between 2002 and 2013. Together, these observations cover almost five orders of magnitude in X-ray luminosity (L$_X$, 0.5-10 keV). The Swift spectrum softens during the outburst decay (photon index $\\Gamma$ from 1.3 above L$_X$/L$_{E}$=10$^{-2}$ to ~2.5 at L$_X$/L$_{E}$=10$^{-4}$), similar to other NS and black hole (BH) transients. At even lower luminosities, deep Chandra observations reveal hard ($\\Gamma$=1-1.5), purely non-thermal and highly variable X-ray emission in quiesce...

  2. A LOFAR census of millisecond pulsars

    NARCIS (Netherlands)

    Kondratiev, V.I.; Verbiest, J.P.W.; Hessels, J.W.T.; Bilous, A.V.; Stappers, B.W.; Kramer, M.; Keane, E.F.; Noutsos, A.; Osłowski, S.; Breton, R.P.; Hassall, T.E.; Alexov, A.; Cooper, S.; Falcke, H.; Grießmeier, J.M.; Karastergiou, A.; Kuniyoshi, M.; Pilia, M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.; Bell, M.E.; Broderick, J.W.; Corbel, S.; Eislöffel, J.; Markoff, S.; Rowlinson, A.; Swinbank, J.D.; Wijers, R.A.M.J.; Wijnands, R.; Zarka, P.

    2016-01-01

    We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOw-Frequency ARray (LOFAR) in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at

  3. A LOFAR census of millisecond pulsars

    NARCIS (Netherlands)

    Kondratiev, V.I.; Verbiest, J.P.W.; Hessels, J.W.T.; Bilous, A.V.; Stappers, B.W.; Kramer, M.; Keane, E.F.; Noutsos, A.; Osłowski, S.; Breton, R.P.; Hassall, T.E.; Alexov, A.; Cooper, S.; Falcke, H.; Grießmeier, J.M.; Karastergiou, A.; Kuniyoshi, M.; Pilia, M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.; Bell, M.E.; Broderick, J.W.; Corbel, S.; Eislöffel, J.; Markoff, S.; Rowlinson, A.; Swinbank, J.D.; Wijers, R.A.M.J.; Wijnands, R.; Zarka, P.

    2016-01-01

    We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOw-Frequency ARray (LOFAR) in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at t

  4. The characteristics of millisecond pulsar emission; 2, Polarimetry

    CERN Document Server

    Xilouris, K M; Jessner, A; Von Hoensbroech, A; Lorimer, D; Wielebinski, R; Wolszczan, A; Camilo, F M

    1998-01-01

    We have made polarimetric monitoring observations of millisecond pulsars visible from the northern hemisphere at 1410 MHz. Their emission properties are compared with those of normal pulsars. Although we demonstrated in paper I that millisecond pulsars exhibit the same flux density spectra and similar profile complexity, our results presented here suggest that millisecond pulsar profiles do not comply with the predictions of classification schemes based on ``normal'' pulsars. The frequency development of a large number of millisecond pulsar profiles is abnormal when compared with the development seen for normal pulsars. Moreover, the polarization characteristics suggest that millisecond-pulsar magnetospheres might not simply represent scaled versions of the magnetospheres of normal pulsars, supporting results of paper I. However, phenomena such as mode-changing activity in both intensity and polarization are recognized here for the first time (e.g., J1730--2304). This suggests that while the basic emission me...

  5. An active, asynchronous companion to a redback millisecond pulsar

    CERN Document Server

    van Staden, André

    2016-01-01

    PSR\\,J1723$-$2837 is a "redback" millisecond pulsar (MSP) with a low-mass companion in a 14.8\\,h orbit. The system's properties closely resemble those of "transitional" MSPs that alternate between spin-down and accretion-powered states. In this paper we report on long-term photometry of the 15.5\\,mag companion to the pulsar. We use our data to illustrate that the star experiences sporadic activity which we attribute to starspots. We also find that the companion is not tidally locked and infer $P_{\\rm s}/P_{\\rm b}= 0.9974(7)$ for the ratio between the rotational and orbital periods. We place constraints on various parameters, including the irradiation efficiency and pulsar mass. Finally, we discuss similarities with other redback MSPs and conclude that starspots provide the most likely explanation for the often seen irregular and asymmetric optical lightcurves.

  6. An Active, Asynchronous Companion to a Redback Millisecond Pulsar

    Science.gov (United States)

    van Staden, André D.; Antoniadis, John

    2016-12-01

    PSR J1723-2837 is a “redback” millisecond pulsar (MSP) with a low-mass companion in a 14.8 hr orbit. The system’s properties closely resemble those of “transitional” MSPs that alternate between spin-down and accretion-powered states. In this Letter, we report on long-term photometry of the 15.5 mag companion to the pulsar. We use our data to illustrate that the star experiences sporadic activity, which we attribute to starspots. We also find that the companion is not tidally locked and infer {P}{{s}}/{P}{{b}}=0.9974(7) for the ratio between the rotational and orbital periods. Finally, we place constraints on various parameters, including the irradiation efficiency and pulsar mass. We discuss similarities with other redback MSPs and conclude that starspots may provide the most likely explanation for the often seen irregular and asymmetric optical light curves.

  7. Searching for sub-millisecond pulsars: A theoretical view

    CERN Document Server

    Xu, R

    2006-01-01

    Sub-millisecond pulsars should be triaxial (Jacobi ellipsoids), which may not spin down to super-millisecond periods via gravitation wave radiation during their lifetimes if they are extremely low mass bare strange quark stars. It is addressed that the spindown of sub-millisecond pulsars would be torqued dominantly by gravitational wave radiation (with braking index n ~ 5). The radio luminosity of sub-millisecond pulsars could be high enough to be detected in advanced radio telescopes. Sub-millisecond pulsars, if detected, should be very likely quark stars with low masses and/or small equatorial ellipticities.

  8. The Millisecond Pulsars in NGC 6760

    CERN Document Server

    Freire, P C C; Nice, D J; Ransom, S M; Lorimer, D R; Stairs, I H; Freire, Paulo C. C.; Hessels, Jason W. T.; Nice, David J.; Ransom, Scott M.; Lorimer, Duncan R.; Stairs, Ingrid H.

    2004-01-01

    We present the results of recent Arecibo and Green Bank observations of the globular cluster NGC 6760. Using Arecibo, a phase-coherent timing solution has been obtained for the previously known binary pulsar in this cluster, PSR J1911+0102A. We have also discovered a new millisecond pulsar in NGC 6760, PSR J1911+0101B, an isolated object with a rotational period of 5.38 ms and a dispersion measure DM = 196.7 cm-3 pc. Both pulsars are located within 1.3 core radii of the cluster center and have negative period derivatives. The resulting lower limits for the accelerations of the pulsars are within the range expected given a simple model of the cluster. A search for eclipses in the PSR J1911+0102A binary system using both telescopes yielded negative results. The corresponding limits on the extra gas column density at superior conjunction are consistent with the hypothesis that the observational properties of ultra-low-mass binary pulsars like PSR J1911+0102A are strongly affected by the inclination of the orbita...

  9. A LOFAR census of millisecond pulsars

    Science.gov (United States)

    Kondratiev, V. I.; Verbiest, J. P. W.; Hessels, J. W. T.; Bilous, A. V.; Stappers, B. W.; Kramer, M.; Keane, E. F.; Noutsos, A.; Osłowski, S.; Breton, R. P.; Hassall, T. E.; Alexov, A.; Cooper, S.; Falcke, H.; Grießmeier, J.-M.; Karastergiou, A.; Kuniyoshi, M.; Pilia, M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.; Bell, M. E.; Broderick, J. W.; Corbel, S.; Eislöffel, J.; Markoff, S.; Rowlinson, A.; Swinbank, J. D.; Wijers, R. A. M. J.; Wijnands, R.; Zarka, P.

    2016-01-01

    We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOw-Frequency ARray (LOFAR) in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at these low frequencies, and half of the detected MSPs were observed for the first time atfrequencies below 200 MHz. We present the average pulse profiles of the detected MSPs, their effective pulse widths, and flux densities and compare these with higher observing frequencies. The flux-calibrated, multifrequency LOFAR pulse profiles are publicly available via the European Pulsar Network Database of Pulsar Profiles. We also present average values of dispersion measures (DM) and discuss DM and profile variations. About 35% of the MSPs show strong narrow profiles, another 25% exhibit scattered profiles, and the rest are only weakly detected. A qualitative comparison of the LOFAR MSP profiles with those at higher radio frequencies shows constant separation between profile components. Similarly, the profile widths are consistent with those observed at higher frequencies, unless scattering dominates at the lowest frequencies. This is very different from what is observed for normal pulsars and suggests a compact emission region in the MSP magnetosphere. The amplitude ratio of the profile components, on the other hand, can dramatically change towards low frequencies, often with the trailing component becoming dominant. As previously demonstrated this can be caused by aberration and retardation. This data set enables high-precision studies of pulse profile evolution with frequency, dispersion, Faraday rotation, and scattering in the interstellar medium. Characterising and correcting these systematic effects may improve pulsar-timing precision at higher observing frequencies, where pulsar timing array projects aim to directly detect gravitational waves.

  10. The 2015 outburst of the accreting millisecond pulsar IGR J17511-3057 as seen by INTEGRAL, Swift, and XMM-Newton

    Science.gov (United States)

    Papitto, A.; Bozzo, E.; Sanchez-Fernandez, C.; Romano, P.; Torres, , D. F.; Ferrigno, C.; Kajava, J. J. E.; Kuulkers, E.

    2016-12-01

    We report on INTEGRAL, Swift, and XMM-Newton observations of IGR J17511-3057 performed during the outburst that occurred between March 23 and April 25, 2015. The source reached a peak flux of 0.7(2) × 10-9 erg cm-2 s-1 and decayed to quiescence in approximately a month. The X-ray spectrum was dominated by a power law with photon index between 1.6 and 1.8, which we interpreted as thermal Comptonization in an electron cloud with temperature >20 keV. A broad (σ ≃ 1 keV) emission line was detected at an energy ( keV) compatible with the K-α transition of ionized Fe, suggesting an origin in the inner regions of the accretion disk. The outburst flux and spectral properties shown during this outburst were remarkably similar to those observed during the previous accretion event detected from the source in 2009. Coherent pulsations at the pulsar spin period were detected in the XMM-Newton and INTEGRAL data at a frequency compatible with the value observed in 2009. Assuming that the source spun up during the 2015 outburst at the same rate observed during the previous outburst, we derive a conservative upper limit on the spin-down rate during quiescence of 3.5 × 10-15 Hz s-1. Interpreting this value in terms of electromagnetic spin-down yields an upper limit of 3.6 × 1026 G cm3 to the pulsar magnetic dipole (assuming a magnetic inclination angle of 30°). We also report on the detection of five type-I X-ray bursts (three in the XMM-Newton data, two in the INTEGRAL data), none of which indicated photospheric radius expansion.

  11. A massive millisecond pulsar in an eccentric binary

    Science.gov (United States)

    Barr, E. D.; Freire, P. C. C.; Kramer, M.; Champion, D. J.; Berezina, M.; Bassa, C. G.; Lyne, A. G.; Stappers, B. W.

    2017-02-01

    The recent discovery of a population of eccentric (e ˜ 0.1) millisecond pulsar (MSP) binaries with low-mass white dwarf companions in the Galactic field represents a challenge to evolutionary models that explain MSP formation as recycling: All such models predict that the orbits become highly circularized during a long period of accretion. The members of this new population exhibit remarkably similar properties (orbital periods, eccentricities, companion masses, spin periods), and several models have been put forward that suggest a common formation channel. In this work, we present the results of an extensive timing campaign focusing on one member of this new population, PSR J1946+3417. Through the measurement of both the advance of periastron and the Shapiro delay for this system, we determine the mass of the pulsar, mass of the companion and the inclination of the orbit to be 1.828(22) M⊙, 0.2656(19) M⊙ and 76.4 ± 0.6 degrees, respectively, under the assumption that general relativity is the true description of gravity. Notably, this is the third highest mass measured for any pulsar. Using these masses and the astrometric properties of PSR J1946+3417, we examine three proposed formation channels for eccentric MSP binaries. While our results are consistent with circumbinary disc-driven eccentricity growth or neutron star to strange star phase transition, we rule out rotationally delayed accretion-induced collapse as the mechanism responsible for the configuration of the PSR J1946+3417 system.

  12. The 2015 outburst of the accreting millisecond pulsar IGR J17511-3057 as seen by INTEGRAL, Swift and XMM-Newton

    CERN Document Server

    Papitto, A; Sanchez-Fernandez, C; Romano, P; Torres, D F; Ferrigno, C; Kajava, J J E; Kuulkers, E

    2016-01-01

    We report on INTEGRAL, Swift and XMM-Newton observations of IGR J17511-3057 performed during the outburst that occurred between March 23 and April 25, 2015. The source reached a peak flux of 0.7(2)E-9 erg/cm$^2$/s and decayed to quiescence in approximately a month. The X-ray spectrum was dominated by a power-law with photon index between 1.6 and 1.8, which we interpreted as thermal Comptonization in an electron cloud with temperature > 20 keV . A broad ({\\sigma} ~ 1 keV) emission line was detected at an energy (E = 6.9$^{+0.2}_{-0.3}$ keV) compatible with the K{\\alpha} transition of ionized Fe, suggesting an origin in the inner regions of the accretion disk. The outburst flux and spectral properties shown during this outburst were remarkably similar to those observed during the previous accretion event detected from the source in 2009. Coherent pulsations at the pulsar spin period were detected in the XMM-Newton and INTEGRAL data, at a frequency compatible with the value observed in 2009. Assuming that the so...

  13. Spin Period Evolution of Recycled Pulsar in Accreting Binary

    CERN Document Server

    Wang, J; Zhao, Y H; Kojima, Y; Yin, H X; SOng, L M

    2010-01-01

    We investigate the spin-period evolutions of recycled pulsars in binary accreting systems. Taking both the accretion induced field decay and spin-up into consideration, we calculate their spin-period evolutions influenced by the initial magnetic-field strengths, initial spin-periods and accretion rates, respectively. The results indicate that the minimum spin-period (or maximum spin frequency) of millisecond pulsar (MSP) is independent of the initial conditions and accretion rate when the neutron star (NS) accretes $\\sim> 0.2\\ms$. The accretion torque with the fastness parameter and gravitational wave (GW) radiation torque may be responsible for the formation of the minimum spin-period (maximum spin frequency). The fastest spin frequency (716 Hz) of MSP can be inferred to associate with a critical fastness parameter about $\\omega_{c}=0.55$. Furthermore, the comparisons with the observational data are presented in the field-period ($B-P$) diagram.

  14. Multiwavelength analysis of four millisecond pulsars

    Science.gov (United States)

    Guillemot, L.; Cognard, I.; Johnson, T. J.; Venter, C.; Harding, A. K.

    2011-08-01

    Radio timing observations of millisecond pulsars (MSPs) in support of Fermi LAT observations of the gamma-ray sky enhance the sensitivity of high-energy pulsation searches. With contemporaneous ephemerides we have detected gamma-ray pulsations from PSR B1937+21, the first MSP ever discovered, and B1957+20, the first known black-widow system. The two MSPs share a number of properties: they are energetic and distant compared to other gamma-ray MSPs, and both of them exhibit aligned radio and gamma-ray emission peaks, indicating co-located emission regions in the outer magnetosphere of the pulsars. However, radio observations are also crucial for revealing MSPs in Fermi unassociated sources. In a search for radio pulsations at the position of such unassociated sources, the Nançay Radio Telescope discovered two MSPs, PSRs J2017+0603 and J2302+4442, increasing the sample of known Galactic disk MSPs. Subsequent radio timing observations led to the detection of gamma-ray pulsations from these two MSPs as well. We describe multiwavelength timing and spectral analysis of these four pulsars, and the modeling of their gamma-ray light curves in the context of theoretical models.

  15. Excitation of a nonradial mode in a millisecond X-ray pulsar XTE J1751-305

    CERN Document Server

    Lee, Umin

    2014-01-01

    We discuss candidates for non-radial modes excited in a mass accreting and rapidly rotating neutron star to explain the coherent frequency identified in the light curves of a millisecond X-ray pulsar XTE J1751-305. The spin frequency of the pulsar is $\

  16. X-ray bounds on the r-mode amplitude in millisecond pulsars

    CERN Document Server

    Schwenzer, Kai; Güver, Tolga; Vurgun, Eda

    2016-01-01

    r-mode astroseismology provides a unique way to study the internal composition of compact stars. Due to their precise timing, recycled millisecond radio pulsars present a particularly promising class of sources. Although their thermal properties are still poorly constrained, X-ray data is very useful for astroseismology since r-modes could strongly heat a star. Using known and new upper bounds on the temperatures and luminosities of several non-accreting millisecond radio pulsars we derive bounds on the r-mode amplitude as low as $\\alpha\\lesssim10^{-8}$ and discuss the impact on scenarios for their internal composition.

  17. Coherently dedispersed gated imaging of millisecond pulsars

    CERN Document Server

    Roy, Jayanta

    2013-01-01

    Motivated by the need for rapid localisation of newly discovered faint millisecond pulsars (MSPs) we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with best-fit topocentric rotational model derived from periodicity search in simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localise five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of +-1". Immediate knowledge of such precise position allows the use of sensitive coherent beams of array telescopes for follow-up timing observations, which substantially reduces the use of telescope time (~ 20X for the GMRT). In addition, precise a-priori astrometric position reduces the effect of large covariances in timing fit (with dis...

  18. A decade of timing an accretion-powered millisecond pulsar: The continuing spin down and orbital evolution of SAX J1808.4-3658

    CERN Document Server

    Hartman, J M; Chakraborty, D; Markwardt, C B; Morgan, E H; Van der Klis, M; Wijnands, R

    2009-01-01

    The Rossi X-ray Timing Explorer has observed five outbursts from the transient 2.5 ms accretion-powered pulsar SAX J1808.4-3658 during 1998-2008. We present a pulse timing study of the most recent outburst and compare it with the previous timing solutions. The spin frequency of the source continues to decrease at a rate of (-5.5+/-1.2)x10^-18 Hz/s, which is consistent with the previously determined spin derivative. The spin-down occurs mostly during quiescence, and it is most likely due to the magnetic dipole torque from a B = 1.5x10^8 G dipolar field at the neutron star surface. We also find that the 2 hr binary orbital period is increasing at a rate of (3.80+/-0.06)x10^-12 s/s, also consistent with previous measurements. It remains uncertain whether this orbital change reflects secular evolution or short-term variability.

  19. Multiwavelength analysis of four millisecond pulsars

    CERN Document Server

    Guillemot, Lucas; Johnson, Tyrel J; Venter, Christo; Harding, Alice K

    2015-01-01

    Radio timing observations of millisecond pulsars (MSPs) in support of Fermi LAT observations of the gamma-ray sky enhance the sensitivity of high-energy pulsation searches. With contemporaneous ephemerides we have detected gamma-ray pulsations from PSR B1937+21, the first MSP ever discovered, and B1957+20, the first known black-widow system. The two MSPs share a number of properties: they are energetic and distant compared to other gamma-ray MSPs, and both of them exhibit aligned radio and gamma-ray emission peaks, indicating co-located emission regions in the outer magnetosphere of the pulsars. However, radio observations are also crucial for revealing MSPs in Fermi unassociated sources. In a search for radio pulsations at the position of such unassociated sources, the Nan\\c{c}ay Radio Telescope discovered two MSPs, PSRs J2017+0603 and J2302+4442, increasing the sample of known Galactic disk MSPs. Subsequent radio timing observations led to the detection of gamma-ray pulsations from these two MSPs as well. W...

  20. A LOFAR Census of Millisecond Pulsars

    CERN Document Server

    Kondratiev, V I; Hessels, J W T; Bilous, A V; Stappers, B W; Kramer, M; Keane, E F; Noutsos, A; Osłowski, S; Breton, R P; Hassall, T E; Alexov, A; Cooper, S; Falcke, H; Grießmeier, J -M; Karastergiou, A; Kuniyoshi, M; Pilia, M; Sobey, C; ter Veen, S; Weltevrede, P; Bell, M E; Broderick, J W; Corbel, S; Eislöffel, J; Markoff, S; Rowlinson, A; Swinbank, J D; Wijers, R A M J; Wijnands, R; Zarka, P

    2016-01-01

    We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOFAR in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at these low frequencies, and half of the detected MSPs were observed for the first time at frequencies below 200 MHz. We present the average pulse profiles of the detected MSPs, their effective pulse widths and flux densities, and compare these with higher observing frequencies. The LOFAR pulse profiles will be publicly available via the EPN Database of Pulsar Profiles. We also present average values of dispersion measures (DM) and discuss DM and profile variations. About 35% of the MSPs show strong narrow profiles, another 25% exhibit scattered profiles, and the rest are only weakly detected. A qualitative comparison of the LOFAR MSP profiles with those at higher radio frequencies shows constant separation between profile components. Simi...

  1. Rotation measure variations for 20 millisecond pulsars

    CERN Document Server

    Yan, Wenming; van Straten, Willem; Reynolds, John; Hobbs, George; Wang, Na; Bailes, Matthew; Bhat, Ramesh; Burke-Spolaor, Sarah; Champion, David; Chaudhary, Ankur; Coles, William; Hotan, Aidan; Khoo, Jonathan; Oslowski, Stefan; Sarkissian, John; Yardley, Daniel

    2011-01-01

    We report on variations in the mean position angle of the 20 millisecond pulsars being observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is found that the observed variations are dominated by changes in the Faraday rotation occurring in the Earth's ionosphere. Two ionospheric models are used to correct for the ionospheric contribution and it is found that one based on the International Reference Ionosphere gave the best results. Little or no significant long-term variation in interstellar RM was found with limits typically about 0.1 rad m$^{-2}$ yr$^{-1}$ in absolute value. In a few cases, apparently significant RM variations over timescales of a few 100 days or more were seen. These are unlikely to be due to localised magnetised regions crossing the line of sight since the implied magnetic fields are too high. Most probably they are statistical fluctuations due to random spatial and temporal variations in the interstellar electron density and magnetic field along the line of sight.

  2. Search for Millisecond Pulsars for the Pulsar Timing Array project

    Science.gov (United States)

    Milia, S.

    2012-03-01

    Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the sub­class of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the space­time at the

  3. GMRT Discovery of A Millisecond Pulsar in a Very Eccentric Binary System

    CERN Document Server

    Freire, P C; Ransom, S M; Ishwara-Chandra, C H; Freire, Paulo C.; Gupta, Yashwant; Ransom, Scott M.

    2004-01-01

    We report the discovery of the binary millisecond pulsar J0514-4002A, which is the first known pulsar in the globular cluster NGC 1851 and the first pulsar discovered using the Giant Metrewave Radio Telescope (GMRT). The pulsar has a rotational period of 4.99 ms, an orbital period of 18.8 days, and the most eccentric pulsar orbit yet measured (e = 0.89). The companion has a minimum mass of 0.9 M_sun and its nature is presently unclear. After accreting matter from a low-mass companion star which spun it up to a (few) millisecond spin period, the pulsar eventually exchanged the low-mass star for its more massive present companion. This is exactly the same process that could form a system containing a millisecond pulsar and a black hole; the discovery of NGC 1851A demonstrates that such systems might exist in the Universe, provided that stellar mass black holes exist in globular clusters.

  4. Observations of Binary and Millisecond Pulsars at Xinjiang Astronomical Observatory

    Indian Academy of Sciences (India)

    Jingbo Wang; Na Wang; Jianping Yuan; Zhiyong Liu

    2014-09-01

    We present the first results of radio timing observations of binary and millisecond pulsars in China. We have timed four binary pulsars for 9 years, using Nanshan 25-m radio telescope. The long time span has enabled us to determine their rotation and orbital parameters.

  5. A Massive Millisecond Pulsar in an Eccentric Binary

    CERN Document Server

    Barr, E D; Kramer, M; Champion, D J; Berezina, M; Bassa, C G; Lyne, A G; Stappers, B W

    2016-01-01

    The recent discovery of a population of eccentric (e ~ 0.1) millisecond pulsar (MSP) binaries with low-mass white dwarf companions in the Galactic field represents a challenge to evolutionary models that explain MSP formation as recycling: all such models predict that the orbits become highly circularised during a long period of accretion. The members of this new population exhibit remarkably similar properties (orbital periods, eccentricities, companion masses, spin periods) and several models have been put forward that suggest a common formation channel. In this work we present the results of an extensive timing campaign focusing on one member of this new population, PSR J1946+3417. Through measurement of the both the advance of periastron and Shapiro delay for this system, we determine the mass of the pulsar, companion and the inclination of the orbit to be 1.828(22) Msun, 0.2656(19) Msun and 76.4(6) , under the assumption that general relativity is the true description of gravity. Notably, this is the thi...

  6. Progenitor neutron stars of the lightest and heaviest millisecond pulsars

    CERN Document Server

    Fortin, M; Haensel, P; Zdunik, J L

    2014-01-01

    Recent mass measurements of two binary millisecond pulsars, PSR J1614-2230 and PSR J0751+1807 with a mass M=1.97+/-0.04 Msun and M=1.26+/-0.14 Msun respectively indicate a large span of masses for such objects, and possibly also a broad spectrum of neutron star masses born in core-collapse supernovae. Starting from a zero-age main sequence binary stage, we aim at inferring the masses of the progenitor neutron star of PSR J1614-2230 and PSR J0751+1807 by taking into account the differences in the evolutionary stages preceding their formation. Using simulations for the evolution of binary stars we reconstruct the evolutionary tracks leading to the formation of PSR J1614-2230 and PSR J0751+1807. We analyse in detail the spin evolution due to the accretion of matter from a disk in the medium-mass/low-mass X-ray binary. General relativistic effects and the damping of surface magnetic field associated with accretion are accounted for. We consider two equations of state of dense matter, one for purely nucleonic matt...

  7. Transformation of a star into a planet in a millisecond pulsar binary.

    Science.gov (United States)

    Bailes, M; Bates, S D; Bhalerao, V; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Kulkarni, S R; Levin, L; Lyne, A G; Milia, S; Possenti, A; Spitler, L; Stappers, B; van Straten, W

    2011-09-23

    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction.

  8. The long-term evolution of the spin, pulse shape, and orbit of the accretion-powered millisecond pulsar SAX J1808.4-3658

    CERN Document Server

    Hartman, Jacob M; Chakrabarty, Deepto; Kaplan, David L; Markwardt, Craig B; Morgan, Edward H; Ray, Paul S; van der Klis, Michiel; Wijnands, Rudy

    2007-01-01

    We present a 7 yr timing study of the 2.5 ms X-ray pulsar SAX J1808.4-3658, an X-ray transient with a recurrence time of ~2 yr, using data from the Rossi X-ray Timing Explorer covering 4 transient outbursts (1998-2005). We verify that the 401 Hz pulsation traces the spin frequency fundamental and not a harmonic. Substantial pulse shape variability, both stochastic and systematic, was observed during each outburst. Analysis of the systematic pulse shape changes suggests that, as an outburst dims, the X-ray "hot spot" on the pulsar surface drifts longitudinally and a second hot spot may appear. The overall pulse shape variability limits the ability to measure spin frequency evolution within a given X-ray outburst (and calls previous nudot measurements of this source into question), with typical upper limits of |nudot| < 2.5x10^{-14} Hz/s (2 sigma). However, combining data from all the outbursts shows with high (6 sigma) significance that the pulsar is undergoing long-term spin down at a rate nudot = (-5.6+/-...

  9. On the progenitors of millisecond pulsars by the recycling evolutionary channel

    CERN Document Server

    Liu, Wei-Min

    2011-01-01

    The recycling model suggested that low-mass X-ray binaries (LMXBs) could evolve into binary millisecond pulsars (BMSPs). In this work, we attempt to investigate the progenitor properties of BMSPs formed by the recycling evolutionary channel, and if sub-millisecond pulsars can be produced by this channel. Using Eggleton's stellar evolution code, considering that the dead pulsars can be spun up to a short spin period by the accreting material and angular momentum from the donor star, we have calculated the evolution of close binaries consisting of a neutron star and a low-mass main-sequence donor star, and the spin evolution of NSs. In calculation, some physical process such as the thermal and viscous instability of a accretion disk, propeller effect, and magnetic braking are included. Our calculated results indicate that, all LMXBs with a low-mass donor star of 1.0 - 2.0 $M_\\odot$ and a short orbital period ($\\la 3-4 \\rm d$) can form millisecond pulsars with a spin period less than 10 ms. However, it is diffic...

  10. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    Science.gov (United States)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; Stappers, Ben W.; Cordes, James M.; Hessels, Jason W. T.; Lorimer, Duncan R.; Arzoumanian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Cognard, Ismael; Deneva, Julia S.; Faucher-Giguere, Claude-Andre; Gaensler, Bryan M.; Han, JinLin; Jenet, Fredrick A.; Kasian, Laura

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  11. The Aid of Optical Studies in Understanding Millisecond Pulsar Binaries

    CERN Document Server

    Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus

    2016-01-01

    A large number of new "black widow" and "redback" energetic millisecond pulsars with irradiated stellar companions have been discovered through radio and optical searches of unidentified \\textit{Fermi} sources. Synchrotron emission, from particles accelerated up to several TeV in the intrabinary shock, exhibits modulation at the binary orbital period. Our simulated double-peaked X-ray light curves modulated at the orbital period, produced by relativistic Doppler-boosting along the intrabinary shock, are found to qualitatively match those observed in many sources. In this model, redbacks and transitional pulsar systems where the double-peaked X-ray light curve is observed at inferior conjunction have intrinsically different shock geometry than other millisecond pulsar binaries where the light curve is centered at superior conjunction. We discuss, and advocate, how current and future optical observations may aid in constraining the emission geometry, intrabinary shock and the unknown physics of pulsar winds.

  12. Where do the Progenitors of Millisecond Pulsars come from?

    CERN Document Server

    Taani, Ali; Al-Wardat, Mashhoor; Zhao, Yongheng

    2011-01-01

    Observations of a large population of Millisecond Pulsars (MSPs) show a wide divergence in the orbital periods (from approximately hours to a few months). In the standard view, Low-Mass X-Ray Binaries (LMXBs) are considered as progenitors for some MSPs during the recycling process. We present a systematic study that combines different types of compact objects in binaries such as Cataclysmic Variables (CVs), LMXBs and MSPs. We plot them together in the so called Corbet diagram. Larger and different samples are needed to better constrain the result as a function of the environment and formations. A scale diagram showing the distribution of MSPs for different orbital periods and the aspects for their progenitors relying on Accretion Induced Collapse (AIC) of white dwarfs in binaries. Thus massive CVs (M >1.1M\\odot) can play a vital role on binary evolution, as well as of the physical processes involved in the formation and evolution of neutron stars and their magnetic fields, and could turn into binary MSPs with...

  13. Cosmic-Lab: Optical companions to binary Millisecond Pulsars

    CERN Document Server

    Pallanca, Cristina

    2014-01-01

    Millisecond Pulsars (MSPs) are fast rotating, highly magnetized neutron stars. According to the "canonical recycling scenario", MSPs form in binary systems containing a neutron star which is spun up through mass accretion from the evolving companion. Therefore, the final stage consists of a binary made of a MSP and the core of the deeply peeled companion. In the last years, however an increasing number of systems deviating from these expectations has been discovered, thus strongly indicating that our understanding of MSPs is far to be complete. The identification of the optical companions to binary MSPs is crucial to constrain the formation and evolution of these objects. In dense environments such as Globular Clusters (GCs), it also allows us to get insights on the cluster internal dynamics. By using deep photometric data, acquired both from space and ground-based telescopes, we identified 5 new companions to MSPs. Three of them being located in GCs and two in the Galactic Field. The three new identification...

  14. Statistical Analysis of I Stokes Parameter of Millisecond Pulsars

    CERN Document Server

    Panahi, Hossein; Monadi, Reza

    2016-01-01

    Using Detrended Fluctuation Analysis (DFA) and box counting method, we test spacial correlation and fractality of Polarization Pulse Profiles (PPPs) of 24 millisecond pulsars (MSPs) which were observed in Parkes Pulsar Timing Array (PPTA) project. DFA analysis indicates that MSPs' PPPs are persistent and the results of box counting method confirm the fractality in the majority of PPPs. A Kolmogorov-Smirnov test indicates that isolated MSPs have more complex PPPs than binary ones. Then we apply our analysis on a random sample of normal pulsars. Comparing the results of our analysis on MSPs and normal pulsars shows that MSPs have more complex PPPs which is resulted from smaller angular half-width of the emission cone and more peaks in MSPs PPPs. On the other hand, high values of Hurst exponent in MSPs confirm compact emission regions in these pulsars.

  15. Formation of binary millisecond pulsars with relatively high surface dipole magnetic fields

    CERN Document Server

    Sutantyo, W

    2000-01-01

    We have carried out numerical evolutionary calculations of binary systems to investigate the formation of binary millisecond pulsars (pulsars with white dwarf companions). We apply the ``standard scenario'' in which the binary pulsars are formed from low-mass and intermediate-mass X-ray binaries as well the alternative scenario in which the neutron stars are formed by accretion-induced collapse (AIC) of white dwarfs. The mass transfer processes are carefully followed by taking into account a number of binary interactions. Assuming that the magnetic fields of the neutron stars decay due to the accretion, we calculate the pulsar surface dipole magnetic field strength at the end of the mass transfer as a function of the final orbital period. We find that while the observed data of the majority of pulsars are compatible with the derived relations, we fail to produce binary pulsars with relatively high magnetic fields and short orbital periods (such as PSR B0655+64). We conclude that those systems are most likely ...

  16. Modelling the light curves of Fermi LAT millisecond pulsars

    CERN Document Server

    Venter, C; Harding, AK; Grove, JE

    2014-01-01

    We modelled the radio and gamma-ray light curves of millisecond pulsars using outer gap, two-pole caustic, low-altitude slot gap, and pair-starved polar cap geometric models, combined with a semi-empirical conal radio model. We find that no model fits all cases, with the outer gap and two-pole caustic models providing best fits for comparable numbers of millisecond pulsar light curves. We find a broad distribution of best-fit inclination angles as well as a clustering at large observer angles. The outer gap model furthermore seems to require relatively larger inclination angles, while the two-pole caustic model hints at an inverse trend between inclination angle and pulsar spin-down luminosity.

  17. A glitch in the millisecond pulsar J0613-0200

    CERN Document Server

    McKee, J W; Stappers, B W; Lyne, A G; Caballero, R N; Lentati, L; Desvignes, G; Jessner, A; Jordan, C A; Karuppusamy, R; Kramer, M; Cognard, I; Champion, D J; Graikou, E; Lazarus, P; Osłowski, S; Perrodin, D; Shaifullah, G; Tiburzi, C; Verbiest, J P W

    2016-01-01

    We present evidence for a small glitch in the spin evolution of the millisecond pulsar J0613$-$0200, using the EPTA Data Release 1.0, combined with Jodrell Bank analogue filterbank TOAs recorded with the Lovell telescope and Effelsberg Pulsar Observing System TOAs. A spin frequency step of 0.82(3) nHz and frequency derivative step of ${-1.6(39) \\times 10^{-19}\\,\\text{Hz} \\ \\text{s}^{-1}}$ are measured at the epoch of MJD 50888(30). After PSR B1821$-$24A, this is only the second glitch ever observed in a millisecond pulsar, with a fractional size in frequency of ${\\Delta \

  18. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    CERN Document Server

    Champion, D J; Lazarus, P; Camilo, F; Bassa, C; Kaspi, V M; Nice, D J; Freire, P C C; Stairs, I H; Van Leeuwen, J; Stappers, B W; Cordes, J M; Hessels, J W T; Lorimer, D R; Arzoumanian, Z; Backer, D C; Bhat, N D R; Chatterjee, S; Cognard, I; Deneva, J S; Faucher-Giguere, C -A; Gaensler, B M; Han, J L; Jenet, F A; Kasian, L; Kondratiev, V I; Krämer, M; Lazio, J; McLaughlin, M A; Venkataraman, A; Vlemmings, W

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 ms in a highly eccentric (e = 0.44) 95-day orbit around a solar mass companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster then ejecting it into the Galactic disk or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74+/-0.04 Msun, an unusually high value.

  19. Why are millisecond pulsar magnetic fields low and how do their X-rays arise?

    Science.gov (United States)

    Webb, Natalie

    2006-10-01

    Binary millisecond pulsars (MSPs) found in the field are thought to be recycled from accreting pulsars. These MSPs have short periods, low spindown rates (Pdot) and consequently low surface magnetic fields (Bs) as Bs is proportional to (Pdot P)^0.5. It is unclear, however, how the MSP surface magnetic field can evolve from the high fields observed in pulsars to the low MSP values. Two models have been proposed to explain this. Also, the origin of the high energy emission is unclear as too few MSP X-ray observations have been made to differentiate between competing models. With these XMM-Newton observations of four MSPs previously unobserved in X-rays, we will discriminate between differing models describing the magnetic field evolution and the high energy emission origin.

  20. Discovery of a Redback Millisecond Pulsar Candidate: 3FGL J0212.1+5320

    CERN Document Server

    Li, Kwan-Lok; Hou, Xian; Mao, Jirong; Strader, Jay; Chomiuk, Laura; Tremou, Evangelia

    2016-01-01

    We present a multi-wavelength study of the unidentified Fermi object, 3FGL J0212.1+5320. Within the 95% error ellipse, Chandra detects a bright X-ray source, which has a low-mass optical counterpart (M 64% of the Roche-lobe. Spectroscopic data taken in 2015 from the Lijiang observatory show no evidence of strong emission lines, revealing the accretion is currently inactive (the pulsar state). While the X-ray luminosity and the X-ray-to-gamma-ray flux ratio are both high that are comparable to that of the two known gamma-ray transitional millisecond pulsars, 3FGL J0212.1+5320 could be a promising target to search for future transition to the accretion active state.

  1. X-ray Counterparts of Millisecond Pulsars in Globular Clusters

    CERN Document Server

    Becker, W; Prinz, T

    2010-01-01

    We have systematically studied the X-ray emission properties of globular cluster millisecond pulsars in order to evaluate their spectral properties and luminosities in a uniform way. Cross-correlating the radio timing positions of the cluster pulsars with the high resolution Chandra images revealed 31 X-ray counterparts identified in nine different globular cluster systems, including those in 47 Tuc. Timing analysis has been performed for all sources corresponding to the temporal resolution available in the archival Chandra data. Making use of unpublished data on M28, M4 and NGC 6752 allowed us to obtain further constraints for the millisecond pulsar counterparts located in these clusters. Counting rate and energy flux upper limits were computed for those 36 pulsars for which no X-ray counterparts could be detected. Comparing the X-ray and radio pulse profiles of PSR J1821-2452 in M28 and the 47 Tuc pulsars PSR J0024-7204D,O,R indicated some correspondence between both wavebands. The X-ray efficiency of the g...

  2. Eight New Millisecond Pulsars in NGC 6440 and NGC 6441

    CERN Document Server

    Freire, Paulo C C; Begin, Steve; Stairs, Ingrid H; Hessels, Jason W T; Frey, Lucille H; Camilo, Fernando

    2007-01-01

    Motivated by the recent discovery of 30 new millisecond pulsars in Terzan 5, made using the Green Bank Telescope's S-band receiver and the Pulsar Spigot spectrometer, we have set out to use the same observing system in a systematic search for pulsars in other globular clusters. Here we report on the discovery of five new pulsars in NGC 6440 and three in NGC 6441; each cluster previously had one known pulsar. Using the most recent distance estimates to these clusters, we conclude that there are as many potentially observable pulsars in NGC 6440 and NGC 6441 as in Terzan 5. We present timing solutions for all of the pulsars in these globular clusters. Four of the new discoveries are in binary systems; one of them, PSR J1748-2021B (NGC 6440B), has a wide (P_b = 20.5 d) and eccentric (e = 0.57) orbit. This allowed a measurement of its rate of advance of periastron: 0.00391(18) degrees per year. If due to the effects of general relativity, the total mass of this binary system is 2.92 +/- 0.20 solar masses (1 sigma...

  3. ON DETECTING MILLISECOND PULSARS AT THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Macquart, Jean-Pierre [ICRAR/Curtin University, Curtin Institute of Radio Astronomy, Perth WA 6845 (Australia); Kanekar, Nissim, E-mail: J.Macquart@curtin.edu.au [Swarnajayanti Fellow, National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Ganeshkhind, Pune-411007 (India)

    2015-06-01

    The lack of detected pulsars at the Galactic Center (GC) region is a long-standing mystery. We argue that the high stellar density in the central parsec around the GC is likely to result in a pulsar population dominated by millisecond pulsars (MSPs), similar to the situation in globular cluster environments. Earlier GC pulsar searches have been largely insensitive to such an MSP population, accounting for the lack of pulsar detections. We estimate the best search frequency for such an MSP population with present and upcoming broad-band radio telescopes for two possible scattering scenarios, the “weak-scattering” case suggested by the recent detection of a magnetar close to the GC, and the “strong-scattering” case, with the scattering screen located close to the GC. The optimal search frequencies are ≈8 GHz (weak-scattering) and ≈25 GHz (strong-scattering), for pulsars with periods 1–20 ms, assuming that GC pulsars have a luminosity distribution similar to that those in the rest of the Milky Way. We find that 10–30 hr integrations with the Very Large Array and the Green Bank Telescope would be sufficient to detect MSPs at the GC distance in the weak-scattering case. However, if the strong-scattering case is indeed applicable to the GC, observations with the full Square Kilometre Array would be needed to detect the putative MSP population.

  4. Formation of Double Neutron Stars, Millisecond Pulsars and Double Black Holes

    Science.gov (United States)

    van den Heuvel, Edward P. J.

    2017-09-01

    The 1982 model for the formation of Hulse-Taylor binary radio pulsar PSR B1913+16 is described, which since has become the `standard model' for the formation of the double neutron stars, confirmed by the 2003 discovery of the double pulsar system PSR J0737-3039AB. A brief overview is given of the present status of our knowledge of the double neutron stars, of which 15 systems are presently known. The binary-recycling model for the formation of millisecond pulsars is described, as put forward independently by Alpar et al. (1982), Radhakrishnan & Srinivasan (1982) and Fabian et al. (1983). This now is the `standard model' for the formation of these objects, confirmed by the discovery in 1998 of the accreting millisecond X-ray pulsars. It is noticed that the formation process of close double black holes has analogies to that of close double neutron stars, extended to binaries with larger initial component masses, although there are also considerable differences in the physics of the binary evolution at these larger masses.

  5. The implications of a companion enhanced wind on millisecond pulsar production

    Science.gov (United States)

    Smedley, Sarah L.; Tout, Christopher A.; Ferrario, Lilia; Wickramasinghe, Dayal T.

    2016-09-01

    The most frequently seen binary companions to millisecond pulsars (MSPs) are helium white dwarfs (He WDs). The standard rejuvenation mechanism, in which a low- to intermediate-mass companion to a neutron star fills its Roche lobe between central hydrogen exhaustion and core helium ignition, is the most plausible formation mechanism. We have investigated whether the observed population can realistically be formed via this mechanism. We used the Cambridge STARS code to make models of Case B RLOF with Reimers' mass loss from the donor. We find that the range of initial orbital periods required to produce the currently observed range of orbital periods of MSPs is extremely narrow. To reduce this fine tuning, we introduce a companion enhanced wind (CEW) that strips the donor of its envelope more quickly so that systems can detach at shorter periods. Our models indicate that the fine tuning can be significantly reduced if a CEW is active. Because significant mass is lost owing to a CEW we expect some binary pulsars to accrete less than the 0.1 M_{⊙} needed to spin them up to millisecond periods. This can account for mildly recycled pulsars present along the entire Mc-Porb relation. Systems with P_spin > 30 ms are consistent with this but too few of these mildly recycled pulsars have yet been observed to make a significant comparison.

  6. Formation of Double Neutron Stars, Millisecond Pulsars and Double Black Holes

    Indian Academy of Sciences (India)

    Edward P. J. Van Den Heuvel

    2017-09-01

    The 1982 model for the formation of Hulse–Taylor binary radio pulsar PSR B1913+16 is described, which since has become the ‘standard model’ for the formation of the double neutron stars, confirmed by the 2003 discovery of the double pulsar system PSR J0737-3039AB. A brief overview is given of the present status of our knowledge of the double neutron stars, of which 15 systems are presently known. The binary-recycling model for the formation of millisecond pulsars is described, as put forward independently by Alpar et al. (1982), Radhakrishnan & Srinivasan (1982) and Fabian et al. (1983). This now is the ‘standard model’ for the formation of these objects, confirmed by the discovery in 1998 of the accreting millisecond X-ray pulsars. It is noticed that the formation process of close double black holes has analogies to that of close double neutron stars, extended to binaries with larger initial component masses, although there are also considerable differences in the physics of the binary evolution at these larger masses.

  7. XMM-Newton Observations of Four Millisecond Pulsars

    Science.gov (United States)

    Zavlin, Vyacheslav E.

    2005-01-01

    I present an analysis of the XMM-Newton observations of four millisecond pulsars, J0437-4715, J2124-3358, J1024-0719, and J0034-0534. The new data provide strong evidence of thermal emission in the X-ray flux detected from the first three objects. This thermal component is best interpreted as radiation from pulsar polar caps covered with a nonmagnetic hydrogen atmosphere. A nonthermal power-law component, dominating at energies E greater than or equal to 3 keV, can also be present in the detected X-ray emission. For PSR J0437-4715, the timing analysis reveals that the shape and pulsed fraction of the pulsar light curves are energy dependent. This, together with the results obtained from the phase-resolved spectroscopy, supports the two-component (thermal plus nonthermal) interpretation of the pulsar's X-ray radiation. Highly significant pulsations have been found in the X-ray flux of PSRs 52124-3358 and 51024-0719. For PSR 50034-0534, a possible X-ray counterpart of the radio pulsar has been suggested. The inferred properties of the detected thermal emission are compared with predictions of radio pulsar models.

  8. A millisecond pulsar in a stellar triple system

    CERN Document Server

    Ransom, S M; Archibald, A M; Hessels, J W T; Kaplan, D L; van Kerkwijk, M H; Boyles, J; Deller, A T; Chatterjee, S; Schechtman-Rook, A; Berndsen, A; Lynch, R S; Lorimer, D R; Karako-Argaman, C; Kaspi, V M; Kondratiev, V I; McLaughlin, M A; van Leeuwen, J; Rosen, R; Roberts, M S E; Stovall, K

    2014-01-01

    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses, and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, B1620-26 (with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multi-wavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar (1.4378(13) Msun, where Msun is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15) Msun and 0.4101(3) Msun), as well ...

  9. Where Are the R-modes? Chandra Observations of Millisecond Pulsars

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod E.

    2017-08-01

    We present the results of Chandra observations of two non-accreting millisecond pulsars PSRs J1640+2224 (J1640) and J1709+2313(J1709), with low inferred magnetic fields in order to constrain their surface temperatures, obtain limits on the amplitude of unstable r-modes in them and make comparisons with similar limits obtained for a sample of accreting LMXB neutron stars (NSs). We detect both pulsars in the X-ray band for the first time. We found upper limits on the global surface temperature of these pulsars that are ~ 3.3 - 4.7 × 105 K. These sources are several Gyr old. In all standard cooling models NSs cool to surface temperatures less than 104 K in less than 107 yr. While we derived upper limits on the surface temperatures of these sources, they appear to be consistent with the values measured for PSR J0437-4715 and J2124-3358. Taken together these results suggest that the surface temperatures of at least some MSPs are significantly higher, given their ages, than standard cooling models would suggest. For pulsars that are inside the r-mode instability window, r-mode dissipation can provide a potential source of reheating.

  10. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    Science.gov (United States)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; Cognard, I.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Grove, J. E.; Abdo, A. A.; Desvignes, G.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Guillemot, L.; Gwon, C.; Johnston, S.; Harding, A. K.; Thompson, D. J.

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  11. A millisecond pulsar in an extremely wide binary system

    CERN Document Server

    Bassa, C G; Stappers, B W; Tauris, T M; Wevers, T; Jonker, P G; Lentati, L; Verbiest, J P W; Desvignes, G; Graikou, E; Guillemot, L; Freire, P C C; Lazarus, P; Caballero, R N; Champion, D J; Cognard, I; Jessner, A; Jordan, C; Karuppusamy, R; Kramer, M; Lazaridis, K; Lee, K J; Liu, K; Lyne, A G; McKee, J; Oslowski, S; Perrodin, D; Sanidas, S; Shaifullah, G; Smits, R; Theureau, G; Tiburzi, C; Zhu, W W

    2016-01-01

    We report on 22 yrs of radio timing observations of the millisecond pulsar J1024$-$0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869$-$0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, $\\mathrm{[M/H]}=-1.0$, $T_\\mathrm{eff}=4050\\pm50$ K) and that its position, proper motion and distance are consistent with those of PSR J1024$-$0719. We conclude that PSR J1024$-$0719 and 2MASS J10243869$-$0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives, which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main...

  12. EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2015-11-20

    Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that the abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.

  13. ON THE FORMATION OF ECCENTRIC MILLISECOND PULSARS WITH HELIUM WHITE-DWARF COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, John, E-mail: antoniadis@dunlap.utoronto.ca [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada)

    2014-12-20

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10{sup 4}-10{sup 5} yr) disk can result in eccentricities of e ≅ 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  14. On the Formation of Eccentric Millisecond Pulsars with Helium White-dwarf Companions

    Science.gov (United States)

    Antoniadis, John

    2014-12-01

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire & Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (104-105 yr) disk can result in eccentricities of e ~= 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  15. Transformation of a Star into a Planet in a Millisecond Pulsar Binary

    CERN Document Server

    Bailes, M; Bhalerao, V; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Johnsto, S; Keith, M J; Kramer, M; Kulkarni, S R; Levin, L; Lyne, A G; Milia, S; Possenti, A; Spitler, L; Stappers, B; van Straten, W

    2011-01-01

    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7 ms pulsar, was detected in a recent survey with the Parkes 64m radio telescope. We show that it is in a binary system with an orbital period of 2.2 h. Its companion's mass is near that of Jupiter, but its minimum density of 23 g cm$^{-3}$ suggests that it may be an ultra-low mass carbon white dwarf. This system may thus have once been an Ultra Compact Low-Mass X-ray Binary, where the companion narrowly avoided complete destruction.

  16. An X-ray View of Radio Millisecond Pulsars

    CERN Document Server

    Bogdanov, Slavko

    2007-01-01

    In recent years, X-ray observations with Chandra and XMM-Newton have significantly increased our understanding of rotation-powered (radio) millisecond pulsars (MSPs). Deep Chandra studies of several globular clusters have detected X-ray counterparts to a host of MSPs, including 19 in 47 Tuc alone. These surveys have revealed that most MSPs exhibit thermal emission from their heated magnetic polar caps. Realistic models of this thermal X-ray emission have provided important insight into the basic physics of pulsars and neutron stars. In addition, intrabinary shock X-ray radiation observed in ``black-widow'' and peculiar globular cluster ``exchanged'' binary MSPs give interesting insight into MSP winds and relativistic shock. Thus, the X-ray band contains valuable information regarding the basic properties of MSPs that are not accesible by radio timing observations.

  17. Can the inner gap sparking take place in millisecond pulsars?

    Institute of Scientific and Technical Information of China (English)

    Hong-Guang Wang; Guo-Jun Qiao; Ren-Xin Xu

    2003-01-01

    The inner vacuum gap model has become the foundation stone of most theories on pulsar radio emission. The fundamental picture of this model is the sparking, which was conjectured to be induced by magnetic absorption of background gamma photons. However, a question is, can the sparking be triggered in the millisecond pulsars (MSPs) with magnetic fields (B) only about 10s G? We investigate this problem by including the pair production above the inner gap. Under the assumption that the magnetic field is dipolar, our results show the background gamma-ray emission can not be the key factor that triggers the sparking, at least not in MSPs with B ~ 108 G, if the temperature in the polar cap region is only so high as is observed (< 4 × 106 K). Some other mechanisms are required.

  18. Timing the Eccentric Binary Millisecond Pulsar in NGC 1851

    CERN Document Server

    Freire, P C; Gupta, Y; Freire, Paulo C.; Ransom, Scott M.; Gupta, Yashwant

    2007-01-01

    We have used the Green Bank Telescope to observe the millisecond pulsar PSR J0514-4002A on 43 occasions spread over 2 years. This 5-ms pulsar is located in the globular cluster NGC 1851; it belongs to a binary system and has a highly eccentric (e = 0.888) orbit. We have obtained a phase-coherent timing solution for this object, including very precise position, spin and orbital parameters. The pulsar is located 4.6" (about 1.3 core radii) from the center of the cluster, and is likely to lie on its more distant half. The non-detection of eclipses at superior conjunction can be used, given the peculiar geometry of this system, to rule out the possibility of an extended companion. We have measured the rate of advance of periastron for this binary system to be $\\dot{\\omega}$ = 0.01289(4) degrees per year, which if due completely to general relativity, implies a total system mass of 2.453(14) solar masses. Given the known mass function, the pulsar mass has to be 0.96 solar masses, implying that it is a heavy white...

  19. A puzzling millisecond pulsar companion in NGC 6266

    CERN Document Server

    Cocozza, G; Possenti, A; Beccari, G; Lanzoni, B; Ranson, S; Rood, R T; D'Amico, N

    2008-01-01

    We report on the optical identification of the companion to the eclipsing millisecond pulsar PSR J1701$-$3006B in the globular cluster NGC 6266. A relatively bright star with an anomalous red colour and an optical variability ($\\sim$ 0.2 mag) that nicely correlates with the orbital period of the pulsar ($\\sim$ 0.144 days) has been found nearly coincident with the pulsar nominal position. This star is also found to lie within the error box position of an X-ray source detected by Chandra observations, thus supporting the hypothesis that some interaction is occurring between the pulsar wind and the gas streaming off the companion. Although the shape of the optical light curve is suggestive of a tidally deformed star which has nearly completely filled its Roche lobe, the luminosity ($\\sim 1.9 L_\\odot$) and the surface temperature ($\\sim 6000$ K) of the star, deduced from the observed magnitude and colours, would imply a stellar radius significantly larger than the Roche lobe radius. Possible explanations for this...

  20. Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    NARCIS (Netherlands)

    Breton, R.P.; van Kerkwijk, M.H.; Roberts, M.S.E.; Hessels, J.W.T.; Camilo, F.; McLaughlin, M.A.; Ransom, S.M.; Ray, P.S.; Stairs, I.H.

    2013-01-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show

  1. The birth of radio millisecond pulsars and their high-energy signature

    CERN Document Server

    Tam, P H T; Kong, A K H; Takata, J; Leung, G C K; Cheng, K S; Hui, C Y

    2014-01-01

    Millisecond pulsars (MSPs) are thought to born in low-mass X-ray binaries when the neutron star has gained enough angular momentum from the accreting materials of its companion star. It is generally believed that a radio MSP is born when the neutron star stops accreting and enters a rotation-powered state. Exactly what happens during the transition time was poorly understood until a year ago. In the past year, observations have revealed a few objects that not only switched from one state to the other (as predicted in the above picture), but also have swung between the two states within weeks to years. In this work, we present observations of two of these transition objects (PSR J1023+0038 and XSS J12270-4859) and a theoretical framework that tries to explain their high-energy radiation.

  2. Millisecond phenomena in mass accreting neutron stars

    NARCIS (Netherlands)

    van der Klis, M.; Cohen, L.

    2007-01-01

    The past twelve years have seen the discovery, with NASA's Rossi X-ray Timing Explorer (RXTE), of several long-predicted phenomena associated with the accretion of matter onto a neutron star in a binary (double) star system. These phenomena are observed in the strong X-ray emission produced by these

  3. On the formation of eccentric millisecond pulsars with helium white-dwarf companions

    CERN Document Server

    Antoniadis, John

    2014-01-01

    Millisecond pulsars (MSPs) orbiting helium white-dwarfs (WD) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris (2014) recently proposed that these binary MSPs may instead form from the rotationally-delayed accretion-induced collapse of a massive WD. This scenario predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities -- in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10^4-10^5 yrs disk can result to eccentricities of e ~ 0.01-0.15 for orbital per...

  4. Tracking Interstellar Space Weather Toward Timing-Array Millisecond Pulsars

    Science.gov (United States)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; Shannon, R. M.; van Straten, W.; Kaplan, D. L.; Macquart, J.-P.; Kirsten, F.

    2017-01-01

    The recent LIGO detection of milli-Hertz gravitational wave (GW) signals from black-hole merger events has further reinforced the important role of Pulsar timing array (PTA) experiments in the GW astronomy. PTAs exploit the clock-like stability of fast-spinning millisecond pulsars (MSPs) to make a direct detection of ultra-low frequency (nano-Hertz) gravitational waves, and this is a key science objective for the SKA. The science enabled by PTAs is highly complementary to that possible with LIGO-like detectors. PTA efforts of the past few years clearly suggest that interstellar propagation effects on pulsar signals may ultimately limit the detection sensitivity of PTAs if they are not accurately measured and corrected for in timing measurements. Interstellar medium (ISM) effects are much stronger at lower radio frequencies and therefore the MWA presents an exciting and unique opportunity to calibrate interstellar propagation delays. This will potentially lead to enhanced sensitivity and scientific impact of PTA projects. Since our demonstration early this year of our ability to form a coherent (tied-array) beam by re-processing the recorded VCS data (Bhat et al. 2016), we have successfully ported the full processing pipeline on to the Galaxy cluster of Pawsey and also demonstrated the value of high-sensitivity multi-band pulsar observations that are now possible with the MWA. Here we propose further observations of three most promising PTA pulsars that will be nightly objects in the 2017A period. The main science driver is to characterise the nature of the turbulent ISM through high-quality scintillation and dispersion studies including the investigation of chromatic (frequency-dependent) DMs. Success of these efforts will define the breadth and scope of a more ambitious program in the future, bringing in a new science niche for MWA and SKA-low.

  5. Timing of Five PALFA-Discovered Millisecond Pulsars

    CERN Document Server

    Stovall, K; Bogdanov, S; Brazier, A; Camilo, F; Cardoso, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J S; Ferdman, R; Freire, P C C; Hessels, J W T; Jenet, F; Kaplan, D L; Karako-Argaman, C; Kaspi, V M; Knispel, B; Kotulla, R; Lazarus, P; Lee, K J; van Leeuwen, J; Lynch, R; Lyne, A G; Madsen, E; McLaughlin, M A; Patel, C; Ransom, S M; Scholz, P; Siemens, X; Stairs, I H; Stappers, B W; Swiggum, J; Zhu, W W; Venkataraman, A

    2016-01-01

    We report the discovery and timing results for five millisecond pulsars (MSPs) from the Arecibo PALFA survey: PSRs J1906+0055, J1914+0659, J1933+1726, J1938+2516, and J1957+2516. Timing observations of the 5 pulsars were conducted with the Arecibo and Lovell telescopes for time spans ranging from 1.5 to 3.3 yr. All of the MSPs except one (PSR J1914+0659) are in binary systems with low eccentricities. PSR J1957+2516 is likely a redback pulsar, with a ~0.1 $M_\\odot$ companion and possible eclipses that last ~10% of the orbit. The position of PSR J1957+2516 is also coincident with a NIR source. All 5 MSPs are distant (>3.1 kpc) as determined from their dispersion measures, and none of them show evidence of $\\gamma$-ray pulsations in a search of Fermi Gamma-Ray Space Telescope data. These 5 MSPs bring the total number of MSPs discovered by the PALFA survey to 26 and further demonstrate the power of this survey in finding distant, highly dispersed MSPs deep in the Galactic plane.

  6. Timing of five millisecond pulsars discovered in the PALFA survey

    CERN Document Server

    Scholz, P; Lyne, A G; Stappers, B W; Bogdanov, S; Cordes, J M; Crawford, F; Ferdman, R D; Freire, P C C; Hessels, J W T; Lorimer, D R; Stairs, I H; Allen, B; Brazier, A; Camilo, F; Cardoso, R F; Chatterjee, S; Deneva, J S; Jenet, F A; Karako-Argaman, C; Knispel, B; Lazarus, P; Lee, K J; van Leeuwen, J; Lynch, R; Madsen, E C; McLaughlin, M A; Ransom, S M; Siemens, X; Spitler, L G; Stovall, K; Swiggum, J K; Venkataraman, A; Zhu, W W

    2015-01-01

    We present the discovery of five millisecond pulsars (MSPs) from the PALFA Galactic plane survey using Arecibo. Four of these (PSRs J0557+1551, J1850+0244, J1902+0300, and J1943+2210) are binary pulsars whose companions are likely white dwarfs, and one (PSR J1905+0453) is isolated. Phase-coherent timing solutions, ranging from $\\sim$1 to $\\sim$3 years in length, and based on observations from the Jodrell Bank and Arecibo telescopes, provide precise determinations of spin, orbital, and astrometric parameters. All five pulsars have large dispersion measures ($>100$ pc cm$^{-3}$, within the top 20% of all known Galactic field MSPs) and are faint (1.4 GHz flux density < 0.1 mJy, within the faintest 5% of all known Galactic field MSPs), illustrating PALFA's ability to find increasingly faint, distant MSPs in the Galactic plane. In particular, PSR J1850+0244 has a dispersion measure of 540 pc cm$^{-3}$, the highest of all known MSPs. Such distant, faint MSPs are important input for accurately modeling the total ...

  7. TIMING OF FIVE MILLISECOND PULSARS DISCOVERED IN THE PALFA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, P.; Kaspi, V. M.; Ferdman, R. D.; Karako-Argaman, C. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Cordes, J. M.; Brazier, A.; Chatterjee, S. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Freire, P. C. C. [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany); Hessels, J. W. T. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Lorimer, D. R.; Cardoso, R. F. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Allen, B. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Deneva, J. S. [Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Jenet, F. A., E-mail: pscholz@physics.mcgill.ca [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, TX 78520 (United States); and others

    2015-02-20

    We present the discovery of five millisecond pulsars (MSPs) from the PALFA Galactic plane survey using Arecibo. Four of these (PSRs J0557+1551, J1850+0244, J1902+0300, and J1943+2210) are binary pulsars whose companions are likely white dwarfs, and one (PSR J1905+0453) is isolated. Phase-coherent timing solutions, ranging from ∼1 to ∼3 yr in length, and based on observations from the Jodrell Bank and Arecibo telescopes, provide precise determinations of spin, orbital, and astrometric parameters. All five pulsars have large dispersion measures (>100 pc cm{sup –3}, within the top 20% of all known Galactic field MSPs) and are faint (1.4 GHz flux density ≲0.1 mJy, within the faintest 5% of all known Galactic field MSPs), illustrating PALFA's ability to find increasingly faint, distant MSPs in the Galactic plane. In particular, PSR J1850+0244 has a dispersion measure of 540 pc cm{sup –3}, the highest of all known MSPs. Such distant, faint MSPs are important input for accurately modeling the total Galactic MSP population.

  8. A Mid-Infrared Search for the Outer Companion in a Millisecond Pulsar Triple System

    NARCIS (Netherlands)

    D. Kaplan; S. Ransom; I. Stairs; J. Hessels

    2012-01-01

    Only two systems with pulsars and multiple companions are known, but they offer a wealth of information about dynamics, binary evolution, and the pulsars themselves. We have recently discovered a bright new millisecond pulsar in a very exotic stellar system: a hierarchical triple system with a low-m

  9. The Parkes multibeam pulsar survey: VII. Timing of four millisecond pulsars and the underlying spin period distribution of the Galactic millisecond pulsar population

    CERN Document Server

    Lorimer, D R; Manchester, R N; Possenti, A; Lyne, A G; McLaughlin, M A; Kramer, M; Hobbs, G; Stairs, I H; Burgay, M; Eatough, R P; Keith, M J; Faulkner, A J; D'Amico, N; Camilo, F; Corongiu, A; Crawford, F

    2015-01-01

    We present timing observations of four millisecond pulsars discovered in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. PSRs J1552-4937 and J1843-1448 are isolated objects with spin periods of 6.28 and 5.47 ms respectively. PSR J1727-2946 is in a 40-day binary orbit and has a spin period of 27 ms. The 4.43-ms pulsar J1813-2621 is in a circular 8.16-day binary orbit around a low-mass companion star with a minimum companion mass of 0.2 solar masses. Combining these results with detections from five other Parkes multibeam surveys, gives a well-defined sample of 56 pulsars with spin periods below 20 ms. We develop a likelihood analysis to constrain the functional form which best describes the underlying distribution of spin periods for millisecond pulsars. The best results were obtained with a log-normal distribution. A gamma distribution is less favoured, but still compatible with the observations. Uniform, power-law and Gaussian distributions are found to be inconsistent with the data. Galactic...

  10. Long-period thermal oscillations in superfluid millisecond pulsars

    CERN Document Server

    Petrovich, Cristobal

    2010-01-01

    In previous papers, we have shown that, as the rotation of a neutron star slows down, it will be internally heated as a consequence of the progressively changing mix of particles (rotochemical heating). In previously studied cases non-superfluid neutron stars or superfluid stars with only modified Urca reactions), this leads to a quasi-steady state in which the star radiates thermal photons for a long time, possibly accounting for the ultraviolet radiation observed from the millisecond pulsar J0437-4715. For the first time, we explore the phenomenology of rotochemical heating with direct Urca reactions and uniform and isotropic superfluid energy gaps of different sizes. We first do exploratory work by integrating the thermal and chemical evolution equations numerically for different energy gaps, which suggests a rich phenomenology of stable and unstable solutions. In order to understand these, we do a stability analysis around the quasi-steady state, identifying the characteristic times of growing, decaying, ...

  11. Millisecond newly born pulsars as efficient accelerators of electrons

    CERN Document Server

    Osmanov, Z; Machabeli, G; Chkheidze, N

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10^{18}eV for parameters characteristic of a young star.

  12. Rotochemical heating in millisecond pulsars with Cooper pairing

    CERN Document Server

    Petrovich, Cristobal

    2010-01-01

    When a rotating neutron star loses angular momentum, the reduction in the centrifugal force makes it contract. This perturbs each fluid element, raising the local pressure and originating deviations from beta equilibrium that enhance the neutrino emissivity and produce thermal energy. This mechanism is named rotochemical heating and has previously been studied for neutron stars of non-superfluid matter, finding that they reach a quasi-steady state in which the rate that the spin-down modifies the equilibrium concentrations is the same to that of the neutrino reactions restoring the equilibrium. On the other hand, the neutron star interior is believed to contain superfluid nucleons, which affect the thermal evolution of the star by suppressing the neutrino reactions and the specific heat, and opening new Cooper pairing reactions. In this work we describe the thermal effects of Cooper pairing with spatially uniform energy gaps of neutrons and protons on rotochemical heating in millisecond pulsars (MSPs) when on...

  13. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array

    CERN Document Server

    Reardon, D J; Coles, W; Levin, Y; Keith, M J; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Kerr, M; Lasky, P D; Manchester, R N; Osłowski, S; Ravi, V; Shannon, R M; van Straten, W; Toomey, L; Wang, J; Wen, L; You, X P; Zhu, X -J

    2015-01-01

    We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024-0719, J1045-4509, J1600-3053, J1603-7202, and J1730-2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437-4715 and J1909-3744 with $M_p=1.44\\pm0.07$ $M_\\odot$ and $M_p=1.47\\pm0.03$ $M_\\odot$ respectively. The improved orbital period-derivative measurement for PSR J043...

  14. Population synthesis of radio and gamma-ray millisecond pulsars using Markov Chain Monte Carlo techniques

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice

    2016-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  15. Five and a half roads to form a millisecond pulsar

    CERN Document Server

    Tauris, Thomas M

    2011-01-01

    In this review I discuss the characteristics and the formation of all classes of millisecond pulsars (MSPs). The main focus is on the stellar astrophysics of X-ray binaries leading to the production of fully recycled MSPs with white dwarf (WD) or substellar semi-degenerate companions. Depending on the nature of the companion star MSPs are believed to form from either low-mass X-ray binaries (LMXBs) or intermediate-mass X-ray binaries (IMXBs). For each of these two classes of X-ray binaries the evolutionary status of the donor star -- or equivalently, the orbital period -- at the onset of the Roche-lobe overflow (RLO) is the determining factor for the outcome of the mass-transfer phase and thus the nature of the MSP formed. Furthermore, the formation of binary MSPs is discussed in context of the (P,P_dot)-diagram, as well as new interpretations of the Corbet diagram. Finally, I present new models of Case A RLO of IMXBs in order to reproduce the two solar mass pulsar PSR J1614-2230.

  16. Searches for millisecond pulsar candidates among the unidentified Fermi objects

    CERN Document Server

    Hui, C Y; Hu, C P; Lin, L C C; Li, K L; Kong, A K H; Tam, P H T; Takata, J; Cheng, K S; Jin, Ruolan; Yen, T -C; Kim, Chunglee

    2015-01-01

    Here we report the results of searching millisecond pulsar (MSP) candidates from the Fermi LAT second source catalog (2FGL). Seven unassociated $\\gamma-$ray sources in this catalog are identified as promising MSP candidates based on their $\\gamma$-ray properties. Through the X-ray analysis, we have detected possible X-ray counterparts, localized to an arcsecond accuracy. We have systematically estimated their X-ray fluxes and compared with the corresponding $\\gamma$-ray fluxes. The X-ray to $\\gamma$-ray flux ratios for 2FGL J1653.6-0159 and 2FGL J1946.4-5402 are comparable with the typical value for pulsars. For 2FGL J1625.2-0020, 2FGL J1653.6-0159 and 2FGL J1946.4-5402, their candidate X-ray counterparts are bright enough for performing a detailed spectral and temporal analysis to discriminate their thermal/non thermal nature and search for the periodic signal. We have also searched for possible optical/IR counterparts at the X-ray positions. For the optical/IR source coincident with the brightest X-ray obje...

  17. The High Time Resolution Universe Pulsar Survey VIII: The Galactic millisecond pulsar population

    CERN Document Server

    Levin, L; Barsdell, B R; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Champion, D J; Coster, P; D'Amico, N; Jameson, A; Johnston, S; Keith, M J; Kramer, M; Milia, S; Ng, C; Possenti, A; Stappers, B; Thornton, D; van Straten, W

    2013-01-01

    We have used millisecond pulsars (MSPs) from the southern High Time Resolution Universe (HTRU) intermediate latitude survey area to simulate the distribution and total population of MSPs in the Galaxy. Our model makes use of the scale factor method, which estimates the ratio of the total number of MSPs in the Galaxy to the known sample. Using our best fit value for the z-height, z=500 pc, we find an underlying population of MSPs of 8.3(\\pm 4.2)*10^4 sources down to a limiting luminosity of L_min=0.1 mJy kpc^2 and a luminosity distribution with a steep slope of d\\log N/d\\log L = -1.45(\\pm 0.14). However, at the low end of the luminosity distribution, the uncertainties introduced by small number statistics are large. By omitting very low luminosity pulsars, we find a Galactic population above L_min=0.2 mJy kpc^2 of only 3.0(\\pm 0.7)*10^4 MSPs. We have also simulated pulsars with periods shorter than any known MSP, and estimate the maximum number of sub-MSPs in the Galaxy to be 7.8(\\pm 5.0)*10^4 pulsars at L=0.1...

  18. The High Time Resolution Universe Pulsar Survey IV: Discovery and polarimetry of millisecond pulsars

    CERN Document Server

    Keith, M J; Bailes, M; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Jameson, A; Kramer, M; Levin, L; Milia, S; Possenti, A; Stappers, B W; van Straten, W; Parent, D

    2011-01-01

    We present the discovery of six millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) survey for pulsars and fast transients carried out with the Parkes radio telescope. All six are in binary systems with approximately circular orbits and are likely to have white dwarf companions. PSR J1017-7156 has a high flux density and a narrow pulse width, making it ideal for precision timing experiments. PSRs J1446-4701 and J1125-5825 are coincident with gamma-ray sources, and folding the high-energy photons with the radio timing ephemeris shows evidence of pulsed gamma-ray emission. PSR J1502-6752 has a spin period of 26.7 ms, and its low period derivative implies that it is a recycled pulsar. The orbital parameters indicate it has a very low mass function, and therefore a companion mass much lower than usually expected for such a mildly recycled pulsar. In addition we present polarisation profiles for all 12 MSPs discovered in the HTRU survey to date. Similar to previous observations of MSPs, we find ...

  19. Multiwavelength observations of the transitional millisecond pulsar binary XSS J12270-4859

    NARCIS (Netherlands)

    de Martino, D.; Papitto, A.; Belloni, T.; Burgay, M.; De Ona Wilhelmi, E.; Li, J.; Pellizzoni, A.; Possenti, A.; Rea, N.; Torres, D.F.

    2015-01-01

    We present an analysis of X-ray, ultraviolet and optical/near-IR photometric data of the transitional millisecond pulsar binary XSS J12270−4859, obtained at different epochs after the transition to a rotation-powered radio pulsar state. The observations, while confirming the large-amplitude orbital

  20. The NANOGrav Nine-Year Data Set: Excess Noise in Millisecond Pulsar Arrival Times

    CERN Document Server

    Lam, M T; Chatterjee, S; Arzoumanian, Z; Crowter, K; Demorest, P B; Dolch, T; Ellis, J A; Ferdman, R D; Fonseca, E; Gonzalez, M E; Jones, G; Jones, M L; Levin, L; Madison, D R; McLaughlin, M A; Nice, D J; Pennucci, T T; Ransom, S M; Shannon, R M; Siemens, X; Stairs, I H; Stovall, K; Swiggum, J K; Zhu, W W

    2016-01-01

    Gravitational wave astronomy using a pulsar timing array requires high-quality millisecond pulsars, correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for millisecond pulsars observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar and we demonstrate that the excess noise has a red power spectrum for 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and freq...

  1. Profile shape stability and phase jitter analyses of millisecond pulsars

    CERN Document Server

    Liu, K; Lee, K J; Kramer, M; Cordes, J M; Purver, M B

    2011-01-01

    Millisecond pulsars (MSPs) have been studied in detail since their discovery in 1982. The integrated pulse profiles of MSPs appear to be stable, which enables precision monitoring of the pulse times of arrival (TOAs). However, for individual pulses the shape and arrival phase can vary dramatically, which is known as pulse jitter. In this paper, we investigate the stability of integrated pulse profiles for 5 MSPs, and estimate the amount of jitter for PSR J0437-4715. We do not detect intrinsic profile shape variation based on integration times from ~10 to ~100 s with the provided instrumental sensitivity. For PSR J0437-4715 we calculate the jitter parameter to be f_J=0.067+-0.002, and demonstrate that the result is not significantly affected by instrumental TOA uncertainties. Jitter noise is also found to be independent of observing frequency and bandwidth around 1.4 GHz on frequency scales of <100 MHz, which supports the idea that pulses within narrow frequency scale are equally jittered. In addition, we p...

  2. Optical Identification of He White Dwarfs Orbiting Four Millisecond Pulsars in the Globular Cluster 47 Tucanae

    CERN Document Server

    Cadelano, M; Ferraro, F R; Salaris, M; Dalessandro, E; Lanzoni, B; Freire, P C C

    2015-01-01

    We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf cooling sequences, consistent with the cooling tracks of He white dwarfs of mass between 0.15 Msun and 0.20 Msun. For each identified companion, mass, cooling age, temperature and pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded in a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2-sig...

  3. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    CERN Document Server

    Desvignes, G; Lentati, L; Verbiest, J P W; Champion, D J; Stappers, B W; Janssen, G H; Lazarus, P; Osłowski, S; Babak, S; Bassa, C G; Brem, P; Burgay, M; Cognard, I; Gair, J R; Graikou, E; Guillemot, L; Hessels, J W T; Jessner, A; Jordan, C; Karuppusamy, R; Kramer, M; Lassus, A; Lazaridis, K; Lee, K J; Liu, K; Lyne, A G; McKee, J; Mingarelli, C M F; Perrodin, D; Petiteau, A; Possenti, A; Purver, M B; Rosado, P A; Sanidas, S; Sesana, A; Shaifullah, G; Smits, R; Taylor, S R; Theureau, G; Tiburzi, C; van Haasteren, R; Vecchio, A

    2016-01-01

    We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80\\% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 bina...

  4. A Strange Star Scenario for the Formation of Eccentric Millisecond Pulsar/Helium White Dwarf Binaries

    CERN Document Server

    Jiang, Long; Dey, Jishnu; Dey, Mira

    2015-01-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during the binary evolution, as observed in most of the binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are PSRs J2234$+$06, J1946$+$3417 and J1950$+$2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive white dwarfs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from neutron stars to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitati...

  5. Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Allen, B. [Leibniz Universität, Hannover, D-30167 Hannover (Germany); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Freire, P. C. C.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H. [Max-Planck-Institut für Gravitationsphysik, Callinstr. 38, D-30167 Hannover (Germany); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Department of Astronomy and Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Cardoso, F. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Ferdman, R. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T., E-mail: benjamin.knispel@aei.mpg.de [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

    2015-06-10

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  6. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    Science.gov (United States)

    Knispel, B.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Eggenstein, H.-B.; Fehrmann, H.; Ferdman, R.; Hessels, J. W. T.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; van Leeuwen, J.; Lorimer, D. R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Scholz, P.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; Venkataraman, A.; Wharton, R. S.; Zhu, W. W.

    2015-06-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  7. The NANOGrav Eleven-Year Data Set: High-precision timing of 48 Millisecond Pulsars

    Science.gov (United States)

    Nice, David J.; NANOGrav

    2017-01-01

    Gravitational waves from sources such as supermassive black hole binary systems perturb times-of-flight of signals traveling from pulsars to the Earth. The NANOGrav collaboration aims to measure these perturbations in high precision millisecond pulsar timing data and thus to directly detect gravitational waves and characterize the gravitational wave sources. By observing pulsars over time spans of many years, we are most sensitive to gravitational waves at nanohertz frequencies. This work is complimentary to ground based detectors such as LIGO, which are sensitive to gravitational waves with frequencies 10 orders of magnitude higher.In this presentation we describe the NANOGrav eleven-year data set. This includes pulsar time-of-arrival measurements from 48 millisecond pulsars made with the Arecibo Observatory (for pulsars with declinations between -1 and 39 degrees) and the Green Bank Telescope (for other pulsars, with two pulsars overlapping with Arecibo). The data set consists of more than 300,000 pulse time-of-arrival measurements made in nearly 7000 unique observations (a given pulsar observed with a given telescope receiver on a given day). In the best cases, measurement precision is better than 100 nanoseconds, and in nearly all cases it is better than 1 microsecond.All pulsars in our program are observed at intervals of 3 to 4 weeks. Observations use wideband data acquisition systems and are made at two receivers at widely separated frequencies at each epoch, allowing for characterization and mitigation of the effects of interstellar medium on the signal propagation. Observation of a large number of pulsars allows for searches for correlated perturbations among the pulsar signals, which is crucial for achieving high-significance detection of gravitational waves in the face of uncorrelated noise (from gravitational waves and rotation noise) in the individual pulsars. In addition, seven pulsars are observed at weekly intervals. This increases our sensitivity

  8. Discovery of the optical counterparts to four energetic Fermi millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Breton, R. P. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Van Kerkwijk, M. H. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Roberts, M. S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, 550 West, 120th Street, New York, NY 10027 (United States); McLaughlin, M. A. [Department of Physics, White Hall, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ray, P. S. [Space Science Division, Naval Research Laboratory, Code 7655, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Stairs, I. H., E-mail: r.breton@soton.ac.uk [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)

    2013-06-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modeling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of γ-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.

  9. The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches

    CERN Document Server

    Caballero, R N; Lentati, L; Desvignes, G; Champion, D J; Verbiest, J P W; Janssen, G H; Stappers, B W; Kramer, M; Lazarus, P; Possenti, A; Tiburzi, C; Perrodin, D; Osłowski, S; Babak, S; Bassa, C G; Brem, P; Burgay, M; Cognard, I; Gair, J R; Graikou, E; Guillemot, L; Hessels, J W T; Karuppusamy, R; Lassus, A; Liu, K; McKee, J; Mingarelli, C M F; Petiteau, A; Purver, M B; Rosado, P A; Sanidas, S; Sesana, A; Shaifullah, G; Smits, R; Taylor, S R; Theureau, G; van Haasteren, R; Vecchio, A

    2015-01-01

    The sensitivity of Pulsar Timing Arrays to gravitational waves depends critically on the noise present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the pulsar. Intrinsic sources of noise might come from rotational instabilities, for example. Extrinsic sources of noise include contributions from physical processes which are not sufficiently well modelled, for example, dispersion and scattering effects, analysis errors and instrumental instabilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For characterising the low-frequency, stochastic and achromatic noise component, or "timing noise", we employ two methods, based on Bayesian and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of their timing noise parameters and find that the two methods give consistent results. For the remaining 17 MSPs, we place upper limits on the timing noise amplitude at the...

  10. Discovery of millisecond pulsars in radio searches of southern Fermi LAT sources

    CERN Document Server

    Keith, M J; Ray, P S; Ferrara, E C; Parkinson, P M Saz; Celik, O; Belfiore, A; Donato, D; Cheung, C C; Abdo, A A; Camilo, F; Freire, P C C; Guillemot, L; Harding, A K; Kramer, M; Michelson, P F; Ransom, S M; Romani, R W; Smith, D A; Thompson, D J; Weltevrede, P; Wood, K S

    2011-01-01

    Using the Parkes radio telescope we have carried out deep observations of eleven unassociated gamma-ray sources. Periodicity searches of these data have discovered two millisecond pulsars, PSR J1103-5403 (1FGL J1103.9-5355) and PSR J2241-5236 (1FGL J2241.9-5236), and a long period pulsar, PSR J1604-44 (1FGL J1604.7-4443). In addition we searched for but did not detect any radio pulsations from six gammaray pulsars discovered by the Fermi satellite to a level of - 0.04 mJy (for pulsars with a 10% duty cycle). Timing of the millisecond pulsar PSR J1103-5403 has shown that its position is 9' from the centroid of the gamma-ray source. Since these observations were carried out, independent evidence has shown that 1FGL J1103.9-5355 is associated with the flat spectrum radio source PKS 1101-536. It appears certain that the pulsar is not associated with the gamma-ray source, despite the seemingly low probability of a chance detection of a radio millisecond pulsar. We consider that PSR J1604-44 is a chance discovery o...

  11. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  12. Prospects for Neutron Star Equation of State Constraints using "Recycled" Millisecond Pulsars

    CERN Document Server

    Bogdanov, Slavko

    2015-01-01

    Rotation-powered "recycled" millisecond pulsars are a variety of rapidly-spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  13. A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbet, R; Cutini, S; Dermer, C D; Desvignes, G; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hobbs, G; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Manchester, R N; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; McLaughlin, M A; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ransom, S M; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Starck, J L; Striani, E; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Watters, K; Webb, N; Weltevrede, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.

  14. Modulated Gamma-ray emission from compact millisecond pulsar binary systems

    CERN Document Server

    Bednarek, W

    2013-01-01

    A significant amount of the millisecond pulsars has been discovered within binary systems. In several such binary systems the masses of the companion stars have been derived allowing to distinguish two classes of objects, called the Black Widow and the Redback binaries. Pulsars in these binary systems are expected to produce winds which, colliding with stellar winds, create conditions for acceleration of electrons. These electrons should interact with the anisotropic radiation from the companion stars producing gamma-ray emission modulated with the orbital period of the binary system. We consider the interaction of a millisecond pulsar (MSP) wind with a very inhomogeneous stellar wind from the companion star within binary systems of the Black Widow and Redback types. It is expected that the pulsar wind should mix efficiently with the inhomogeneous stellar wind. Electrons accelerated in such mixed, turbulent winds can interact with the magnetic field and also strong radiation from the companion star producing ...

  15. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    NARCIS (Netherlands)

    Knispel, B.; Lyne, A.G.; Stappers, B.W.; Freire, P.C.C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Deneva, J.S.; Eggenstein, H.B.; Fehrmann, H.; Ferdman, R.; Hessels, J.W.T.; Jenet, F.A.; Karako-Argaman, C.; Kaspi, V.M.; van Leeuwen, J.; Lorimer, D.R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M.A.; Patel, C.; Ransom, S.M.; Scholz, P.; Siemens, X.; Spitler, L.G.; Stairs, I.H.; Stovall, K.; Swiggum, J.K.; Venkataraman, A.; Wharton, R.S.; Zhu, W.W.

    2015-01-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a whi

  16. Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    CERN Document Server

    Breton, R P; Roberts, M S E; Hessels, J W T; Camilo, F; McLaughlin, M A; Ransom, S M; Ray, P S; Stairs, I H

    2013-01-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified gamma-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modelling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irra...

  17. An Eccentric Binary Millisecond Pulsar with a Helium White Dwarf Companion in the Galactic field

    Science.gov (United States)

    Antoniadis, John; Kaplan, David L.; Stovall, Kevin; Freire, Paulo C. C.; Deneva, Julia S.; Koester, Detlev; Jenet, Fredrick; Martinez, Jose G.

    2016-10-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the universe is not old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of an LMWD in an eccentric (e = 0.13) orbit around the millisecond pulsar PSR J2234+0511, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature ({T}{{eff}}=8600+/- 190 K), and peculiar systemic velocity relative to the local standard of rest (≃ 31 km s-1). We also place model-independent constraints on the WD radius ({R}{{WD}}={0.024}-0.002+0.004 {R}⊙ ) and surface gravity ({log} g={7.11}-0.16+0.08 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavor a dynamic three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of ˜1.60 M ⊙ for the pulsar progenitor, which is too low for the quark-nova mechanism proposed by Jiang et al., and too high for the scenario of Freire & Tauris, in which a WD collapses into a neutron star via a rotationally delayed accretion-induced collapse. We find that eccentricity pumping via interaction with a circumbinary disk is consistent with our inferred parameters. Finally, we report tentative evidence for pulsations that, if confirmed, would transform the star into an unprecedented laboratory for WD physics.

  18. Limitations in timing precision due to single-pulse shape variability in millisecond pulsars

    CERN Document Server

    Shannon, R M; Dai, S; Bailes, M; Hobbs, G; Manchester, R N; van Straten, W; Raithel, C A; Ravi, V; Toomey, L; Bhat, N D R; Burke-Spolaor, S; Coles, W A; Keith, M J; Kerr, M; Levin, Y; Sarkissian, J M; Wang, J -B; Wen, L; Zhu, X -J

    2014-01-01

    High-sensitivity radio-frequency observations of millisecond pulsars usually show stochastic, broadband, pulse-shape variations intrinsic to the pulsar emission process. These variations induce jitter noise in pulsar timing observations; understanding the properties of this noise is of particular importance for the effort to detect gravitational waves with pulsar timing arrays. We assess the short-term profile and timing stability of 22 millisecond pulsars that are part of the Parkes Pulsar Timing Array sample by examining intra-observation arrival time variability and single-pulse phenomenology. In 7 of the 22 pulsars, in the band centred at approximately 1400MHz, we find that the brightest observations are limited by intrinsic jitter. We find consistent results, either detections or upper limits, for jitter noise in other frequency bands. PSR J1909-3744 shows the lowest levels of jitter noise, which we estimate to contribute $\\sim$10 ns root mean square error to the arrival times for hour-duration observati...

  19. A Chandra X-Ray observation of the binary millisecond pulsar PSR J1023+0038

    NARCIS (Netherlands)

    Bogdanov, S.; Archibald, A.M.; Hessels, J.W.T.; Kaspi, V.M.; Lorimer, D.; McLaughlin, M.A.; Ransom, S.M.; Stairs, I.H.

    2011-01-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5σ) large-amplitude (factor of two to three) orbital variability over the

  20. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  1. The NANOGrav Nine-year Data Set: Astrometric Measurements of 37 Millisecond Pulsars

    CERN Document Server

    Matthews, Allison M; Fonseca, Emmanuel; Arzoumanian, Zaven; Crowter, Kathryn; Demorest, Paul B; Dolch, Timothy; Ellis, Justin A; Ferdman, Robert D; Gonzalez, Marjorie E; Jones, Glenn; Jones, Megan L; Lam, Michael T; Levin, Lina; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; Stovall, Kevin; Swiggum, Joseph K; Zhu, Weiwei

    2015-01-01

    Using the nine-year radio-pulsar timing data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), collected at Arecibo Observatory and the Green Bank Telescope, we have measured the positions, proper motions, and parallaxes for 37 millisecond pulsars. We report eleven significant parallax measurements and distance measurements, and nineteen lower limits on distance. We compare these measurements to distances predicted by the NE2001 interstellar electron density model and find them to be in general agreement. We use measured orbital-decay rates and spin-down rates to confirm two of the parallax distances and to place distance upper limits on other sources; these distance limits agree with the parallax distances with one exception, PSR J1024-0719, which we discuss at length. Using our measurements in combination with other published measurements, we calculate the velocity dispersion of the millisecond pulsar population in Galactocentric coordinates. We find the radial, azimuthal...

  2. A New High-Frequency Search for Galactic Center Millisecond Pulsars using DSS-43

    Science.gov (United States)

    Lemley, Cameron; Prince, Thomas Allen; Majid, Walid A.; Murchikova, Elena

    2016-01-01

    The primary 70-meter Deep Space Network antenna (DSS-43) in Canberra, Australia was equipped with a new high-frequency (18-28 GHz) receiver system in May 2015 for use in a search for Galactic Center (GC) millisecond pulsars. The primary motivation for this search is that a pulsar in the Galactic Center region (especially one that is gravitationally bound to the massive black hole at the GC) would provide unprecedented tests of gravity in the strong-field regime and would offer an entirely new tool for probing the characteristics of the Galactic Center region. Preparation for the GC pulsar search has involved the development of a single-pulse search pipeline that integrates tools from both Fortran and Python as well as the implementation of this pipeline on high performance CPUs. The original version of the search pipeline was developed using Vela Pulsar data from DSS-43, and a more refined version that relies upon chi-squared fitting techniques was ultimately developed using Crab Pulsar data. Future work will involve continued testing of the single-pulse search pipeline using data from the rotating radio transient (RRAT) J1819-1458, the characterization of RRAT pulses using high time resolution data from the new receiver system on DSS-43, and ultimately the analysis of high-frequency data using the existing pipeline to search for millisecond pulsars in the Galactic Center.

  3. Low-Frequency Variability of - for Timing of Millisecond Pulsars

    Science.gov (United States)

    Blandford, R.; Narayan, R.

    Rickett, Coles and Bourgois (1984) have argued that long-term (months to years) variation in pulsar flux is caused by fluctuations in the interstellar electron density on length scales ≡1013-16cm. In this paper the authors show that there should then be correlated fluctuations in the pulse arrival time, pulse width, and angular size. PSR 1937+21 is suitable for detecting some of the new effects. The timing noise and pulse width variation in this pulsar is estimated assuming a power-law spectrum for the electron density fluctuations, normalized using scintillation data.

  4. Detection of polarized quasi-periodic microstructure emission in millisecond pulsars

    CERN Document Server

    De, Kishalay; Sharma, Prateek

    2016-01-01

    Microstructure emission, involving short time scale, often quasi-periodic, intensity fluctuations in subpulse emission, is well known in normal period pulsars. In this letter, we present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), from Giant Metrewave Radio Telescope (GMRT) observations of two MSPs at 325 and 610 MHz. Similar to the characteristics of microstructure observed in normal period pulsars, we find that these features are often highly polarized, and exhibit quasi-periodic behavior on top of broader subpulse emission, with periods of the order of a few $\\mu$s. By measuring their widths and periodicities from single pulse intensity profiles and their autocorrelation functions, we extend the microstructure timescale - rotation period relationship by more than an order of magnitude down to rotation periods $\\sim$ 5 ms, and find it to be consistent with the relationship derived earlier for normal pulsars. The similarity of behavior is remarkable, given ...

  5. Millisecond Pulsar Ages: Implications of Binary Evolution and a Maximum Spin Frequency

    CERN Document Server

    Kiziltan, Bulent

    2009-01-01

    In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. While the generic spin-down age may give realistic estimates for normal pulsars, it can fail for pulsars with very short periods. Details of the spin-up process during the low mass X-ray binary phase pose additional constraints on the period (P) and spin-down rates (Pdot) that may consequently affect the age estimate. Here, we propose a new recipe to estimate millisecond pulsar (MSP) ages that parametrically incorporates constraints arising from binary evolution and limiting physics. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age whilst the standard spin-down age may over- or under-estimate the age of the pulsar by more than a factor of ~10 in the millisecond regime. We use this approach to analyze the population on a broader scale. For instance, in order to understand the d...

  6. Twenty-One Millisecond Pulsars in Terzan 5 Using the Green Bank Telescope

    CERN Document Server

    Ransom, S M; Stairs, I H; Freire, P C C; Camilo, F; Kaspi, V M; Kaplan, D L; Ransom, Scott M.; Hessels, Jason W. T.; Stairs, Ingrid H.; Freire, Paulo C. C.; Camilo, Fernando; Kaspi, Victoria M.; Kaplan, David L.

    2005-01-01

    We have discovered 21 millisecond pulsars (MSPs) in the globular cluster Terzan 5 using the Green Bank Telescope, bringing the total of known MSPs in Terzan 5 to 24. These discoveries confirm fundamental predictions of globular cluster and binary system evolution. Thirteen of the new MSPs are in binaries, of which two show eclipses and two have highly eccentric orbits. The relativistic periastron advance for the two eccentric systems indicates that at least one of these pulsars has a mass >1.68 Msun at 95% confidence. Such large neutron star masses constrain the equation of state of matter at or beyond the nuclear equilibrium density.

  7. The Eccentric Binary Millisecond Pulsar in NGC 1851

    CERN Document Server

    Freire, Paulo C C; Gupta, Yashwant

    2007-01-01

    PSR J0514-4002A is a 5-ms pulsar is located in the globular cluster NGC 1851; it belongs to a highly eccentric (e = 0.888) binary system. It is one of the earliest known examples of a numerous and fast-growing class of eccentric binary MSPs recently discovered in globular clusters. Using the GBT, we have obtained a phase-coherent timing solution for the pulsar, which includes a measurement of the rate of advance of periastron: 0.01289(4) degrees per year, which if due completely to general relativity, implies a total system mass of 2.453(14) solar masses. We also derive m_p 0.96 solar masses. The companion is likely to be a massive white dwarf star.

  8. High-energy observations of the millisecond pulsar PSR J0218+4232

    NARCIS (Netherlands)

    Verbunt, F; Kuiper, L; Belloni, T; Johnston, HM; deBruyn, AG; Hermsen, W; vanderKlis, M

    1996-01-01

    The very luminous millisecond binary radio pulsar PSR J0218+4232 has been detected in soft X-rays, at a luminosity of 8.4 x 10(32)erg s(-1) between 0.1 - 2.4 keV. The EGRET source 2EG J0220+4228 has a position which is consistent with that of PSR J0218+4232. Both the X-ray source and the gamma-ray s

  9. One blind and three targeted searches for (sub)millisecond pulsars

    OpenAIRE

    Davoust, E.; G. Petit; Fayard, T.

    2011-01-01

    We conducted one blind and three targeted searches for millisecond and submillisecond pulsars. The blind search was conducted within 3deg of the Galactic plane and at longitudes between 20 and 110deg. It takes 22073 pointings to cover this region, and 5487 different positions in the sky. The first targeted search was aimed at Galactic globular clusters, the second one at 24 bright polarized and pointlike radiosources with steep spectra, and the third at 65 faint polarized and pointlike radios...

  10. A SHAPIRO DELAY DETECTION IN THE BINARY SYSTEM HOSTING THE MILLISECOND PULSAR PSR J1910-5959A

    Energy Technology Data Exchange (ETDEWEB)

    Corongiu, A.; Burgay, M.; Possenti, A.; D' Amico, N. [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, 550 West, 120th Street, New York, NY 10027 (United States); Lyne, A. G.; Kramer, M. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Manchester, R. N.; Johnston, S. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Sarkissian, J. M. [Australia Telescope National Facility, CSIRO, Parkes Observatory, P.O. Box 276, Parkes, NSW 2870 (Australia); Bailes, M.; Van Straten, W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218 Hawthorn, VIC 3122 (Australia)

    2012-12-01

    PSR J1910-5959A is a binary pulsar with a helium white dwarf (HeWD) companion located about 6 arcmin from the center of the globular cluster NGC 6752. Based on 12 years of observations at the Parkes radio telescope, the relativistic Shapiro delay has been detected in this system. We obtain a companion mass M{sub C} = 0.180 {+-} 0.018 M {sub Sun} (1{sigma}) implying that the pulsar mass lies in the range 1.1 M {sub Sun} {<=} M{sub P} {<=} 1.5 M {sub Sun }. We compare our results with previous optical determinations of the companion mass and examine prospects for using this new measurement for calibrating the mass-radius relation for HeWDs and for investigating their evolution in a pulsar binary system. Finally, we examine the set of binary systems hosting a millisecond pulsar and a low-mass HeWD for which the mass of both stars has been measured. We confirm that the correlation between the companion mass and the orbital period predicted by Tauris and Savonije reproduces the observed values but find that the predicted M{sub P} -P{sub B} correlation overestimates the neutron star mass by about 0.5 M {sub Sun} in the orbital period range covered by the observations. Moreover, a few systems do not obey the observed M{sub P} -P{sub B} correlation. We discuss these results in the framework of the mechanisms that inhibit the accretion of matter by a neutron star during its evolution in a low-mass X-ray binary.

  11. Observations and modeling of the companions of short period binary millisecond pulsars: evidence for high-mass neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Joshua; Halpern, Jules [Department of Astronomy, Columbia University, Mail Code 5246, 550 West 120th Street, New York, NY 10027 (United States)

    2014-10-01

    We present observations of fields containing eight recently discovered binary millisecond pulsars using the telescopes at MDM Observatory. Optical counterparts to four of these systems are detected, one of which, PSR J2214+3000, is a novel detection. Additionally, we present the fully phase-resolved B, V, and R light curves of the optical counterparts to two objects, PSR J1810+1744 and PSR J2215+5135 for which we employ model fitting using the eclipsing light curve (ELC) model of Orosz and Hauschildt to measure the unknown system parameters. For PSR J1810+1744, we find that the system parameters cannot be fit even assuming that 100% of the spin-down luminosity of the pulsar is irradiating the secondary, and so radial velocity measurements of this object will be required for the complete solution. However, PSR J2215+5135 exhibits light curves that are extremely well constrained using the ELC model and we find that the mass of the neutron star is constrained by these and the radio observations to be M {sub NS} > 1.75 M {sub ☉} at the 3σ level. We also find a discrepancy between the model temperature and the measured colors of this object, which we interpret as possible evidence for an additional high-temperature source such as a quiescent disk. Given this and the fact that PSR J2215+5135 contains a relatively high mass companion (M {sub c} > 0.1 M {sub ☉}), we propose that similar to the binary pulsar systems PSR J1023+0038 and IGR J18245–2452, the pulsar may transition between accretion- and rotation-powered modes.

  12. Discovery of two millisecond pulsars in Fermi sources with the Nancay Radio Telescope

    CERN Document Server

    Cognard, I; Johnson, T J; Smith, D A; Venter, C; Harding, A K; Wolff, M T; Cheung, C C; Donato, D; Abdo, A A; Ballet, J; Camilo, F; Desvignes, G; Dumora, D; Ferrara, E C; Freire, P C C; Grove, J E; Keith, M; Kramer, M; Lyne, A G; Michelson, P F; Parent, D; Ransom, S M; Ray, P S; Romani, R W; Parkinson, P M Saz; Stappers, B W; Theureau, G; Thompson, D J; Weltevrede, P; Wood, K S

    2011-01-01

    We report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of \\emph{Fermi Large Area Telescope} sources with no previously known counterparts, using the Nan\\c{c}ay radio telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated \\emph{Fermi} sources in which they were found. The gamma-ray light curves and spectral properties are similar to those of previously-detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR ...

  13. Rotochemical Heating in Millisecond Pulsars. Formalism and Non-superfluid case

    CERN Document Server

    Fern'andez, R; Fern\\'andez, Rodrigo; Reisenegger, Andreas

    2005-01-01

    Rotochemical heating originates in a departure from beta equilibrium due to spin-down compression in a rotating neutron star. The main consequence is that the star eventually arrives at a quasi-equilibrium state, in which the thermal photon luminosity depends only on the current value of the spin-down power, which is directly measurable. Only in millisecond pulsars the spin-down power remains high long enough for this state to be reached with a substantial luminosity. We report an extensive study of the effect of this heating mechanism on the thermal evolution of millisecond pulsars, developing a general formalism in the slow-rotation approximation of general relativity that takes the spatial structure of the star fully into account, and using a sample of realistic equations of state to solve the non-superfluid case numerically. We show that nearly all observed millisecond pulsars are very likely to be in the quasi-equilibrium state. Our predicted quasi-equilibrium temperatures for PSR J0437-4715 are only 20%...

  14. PSR J1723-2837: An Eclipsing Binary Radio Millisecond Pulsar

    CERN Document Server

    Crawford, F; Stairs, I H; Kaplan, D L; McLaughlin, M A; Freire, P C C; Burgay, M; Camilo, F; D'Amico, N; Faulkner, A; Kramer, M; Lorimer, D R; Manchester, R N; Possenti, A; Steeghs, D

    2013-01-01

    We present a study of PSR J1723-2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ~15% during the pulsar's orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsar's (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the star's association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 +/- 0.5, corresponding to a companion mass range of 0.4 to 0.7 Msun and an orbital inclination angle range of between 30 and ...

  15. Self consistent modeling of accretion columns in accretion powered pulsars

    Science.gov (United States)

    Falkner, Sebastian; Schwarm, Fritz-Walter; Wolff, Michael Thomas; Becker, Peter A.; Wilms, Joern

    2016-04-01

    We combine three physical models to self-consistently derive the observed flux and pulse profiles of neutron stars' accretion columns. From the thermal and bulk Comptonization model by Becker & Wolff (2006) we obtain seed photon continua produced in the dense inner regions of the accretion column. In a thin outer layer these seed continua are imprinted with cyclotron resonant scattering features calculated using Monte Carlo simulations. The observed phase and energy dependent flux corresponding to these emission profiles is then calculated, taking relativistic light bending into account. We present simulated pulse profiles and the predicted dependency of the observable X-ray spectrum as a function of pulse phase.

  16. New Neighbours: Modelling the Growing Population of gamma-ray Millisecond Pulsars

    Science.gov (United States)

    Venter, C.; Harding, A. K.; Johnson, T. J.

    2010-01-01

    The Fermi Large Area Telescope, in collaboration with several groups from the radio community. have had marvelous success at uncovering new gamma-ray millisecond pulsars (MSPs). In fact, MSPs now make up a sizable fraction of the total number of known gamma-ray pulsars. The MSP population is characterized by a variety of pulse profile shapes, peak separations, and radio-to-gamma phase lags, with some members exhibiting nearly phase-aligned radio and gamma-ray light curves (LCs). The MSPs' short spin periods underline the importance of including special relativistic effects in LC calculations, even for emission originating from near the stellar surface. We present results on modelling and classification of MSP LCs using standard pulsar model geometries.

  17. IDENTIFICATION OF THE OPTICAL COUNTERPART OF FERMI BLACK WIDOW MILLISECOND PULSAR PSR J1544+4937

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Sumin; Phinney, E. Sterl; Prince, Thomas A.; Bellm, Eric; Cao, Yi; Perley, Daniel A. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Breton, Rene P. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Bildsten, Lars [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Kong, Albert K. H.; Yen, T.-C. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Sesar, Branimir [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Wolf, William M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-08-10

    We report the optical identification of the companion to the Fermi black widow millisecond pulsar PSR J1544+4937. We find a highly variable source on Keck Low Resolution Imaging Spectrometer images at the nominal pulsar position, with 2 mag variations over orbital period in the B, g, R, and I bands. The nearly achromatic light curves are difficult to explain with a simply irradiated hemisphere model, and suggest that the optical emission is dominated by a nearly isothermal hot patch on the surface of the companion facing the pulsar. We roughly constrain the distance to PSR J1544+4937 to be between 2 and 5 kpc. A more reliable distance measurement is needed in order to constrain the composition of the companion.

  18. Identification of the Optical Counterpart of Fermi Black Widow Millisecond Pulsar PSR J1544+4937

    CERN Document Server

    Tang, Sumin; Phinney, Sterl; Prince, Thomas A; Breton, Rene; Bellm, Eric; Bildsten, Lars; Cao, Yi; Kong, A K H; Perley, Daniel A; Sesar, Branimir; Wolf, William M; Yen, T -C

    2014-01-01

    We report the optical identification of the companion to the {\\it Fermi} black widow millisecond pulsar PSR J1544+4937. We find a highly variable source on Keck LRIS images at the nominal pulsar position, with 2 magnitude variations over orbital period in the B, g, R, and I bands. The nearly achromatic light curves are difficult to explain with a simply irradiated hemisphere model, and suggest that the optical emission is dominated by a nearly isothermal hot patch on the surface of the companion facing the pulsar. We roughly constrain the distance to PSR J1544+4937 to be between 2 and 5 kpc. A more reliable distance measurement is needed in order to constrain the composition of the companion.

  19. A Millisecond Pulsar Discovery in a Survey of Unidentified Fermi γ-Ray Sources with LOFAR

    Science.gov (United States)

    Pleunis, Z.; Bassa, C. G.; Hessels, J. W. T.; Kondratiev, V. I.; Camilo, F.; Cognard, I.; Grießmeier, J.-M.; Stappers, B. W.; van Amesfoort, A. S.; Sanidas, S.

    2017-09-01

    Using LOFAR, we have performed a very-low-frequency (115‑155 MHz) radio survey for millisecond pulsars (MSPs). The survey targeted 52 unidentified Fermi γ-ray sources. Employing a combination of coherent and incoherent dedispersion, we have mitigated the dispersive effects of the interstellar medium while maintaining sensitivity to fast-spinning pulsars. Toward 3FGL J1553.1+5437 we have found PSR J1552+5437, the first MSP to be discovered (through its pulsations) at a radio frequency surveys using higher observing frequencies. Detecting such steep spectrum sources is important for mapping the population of MSPs down to the shortest spin periods, understanding their emission in comparison to slow pulsars, and quantifying the prospects for future surveys with low-frequency radio telescopes like SKA-Low and its precursors.

  20. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    CERN Document Server

    Tendulkar, Shriharsh P; An, Hongjun; Kaspi, Victoria M; Archibald, Anne M; Bassa, Cees; Bellm, Eric; Bogdanov, Slavko; Harrison, Fiona A; Hessels, Jason W T; Janssen, Gemma H; Lyne, Andrew G; Patruno, Alessandro; Stappers, Benjamin; Stern, Daniel; Tomsick, John A; Boggs, Steven E; Chakrabarty, Deepto; Christensen, Finn E; Craig, William W; Hailey, Charles A; Zhang, William

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Gamma=1.17 +/-0.08 (at 90% confidence) with a 3-79 keV luminosity of 7.4+/-0.4 x 10^32 erg/s. Significant orbital modulation was observed with a modulation fraction of 36+/-10%. During the October 19-21 observation, the spectrum is described by a softer power law (Gamma=1.66+/-0.06) with an average luminosity of 5.8+/-0.2 x 10^33 erg/s and a peak luminosity of ~1.2 x 10^34 erg/s observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multi-wavelength observations and show the hard X-ray power law extending to 79 keV without a spectra...

  1. "Hiccup" accretion in the swinging pulsar IGR J18245-2452

    CERN Document Server

    Ferrigno, C; Papitto, A; Rea, N; Pavan, L; Campana, S; Wieringa, M; Filipovic, M; Falanga, M

    2013-01-01

    IGR J18245-2452 is the fifteenth discovered accreting millisecond X-ray pulsar and the first source of this class showing direct evidence for transition between accretion and rotational powered emission states. These "swings" provided the strongest confirmation of the pulsar recycling scenario available so far. During the two XMM-Newton observations that were carried out while the source was in outburst in April 2013, IGR J18245-2452 displayed a unique and peculiar variability of its X-ray emission. In this work, we report on a detailed analysis of the XMM- Newton data and focus in particular on the timing and spectral variability of the source. IGR J18245-2452 continuously switches between lower and higher intensity states, with typical variations in flux up to a factor of about 100 in time scales as short as few seconds. These variations in the source intensity are sometimes associated to a dramatic spectral hardening, during which the power-law photon index of the source changes from Gamma=1.7 to Gamma=0.7...

  2. High-Precision Timing of 5 Millisecond Pulsars: Space Velocities, Binary Evolution and Equivalence Principles

    CERN Document Server

    Gonzalez, M E; Ferdman, R D; Freire, P C C; Nice, D J; Demorest, P B; Ransom, S M; Kramer, M; Camilo, F; Hobbs, G; Manchester, R N; Lyne, A G

    2011-01-01

    We present high-precision timing of five millisecond pulsars (MSPs) carried out for more than seven years; four pulsars are in binary systems and one is isolated. We are able to measure the pulsars' proper motions and derive an estimate for their space velocities. The measured two-dimensional velocities are in the range 70-210 km/s, consistent with those measured for other MSPs. We also use all the available proper motion information for isolated and binary MSPs to update the known velocity distribution for these populations. As found by earlier works, we find that the velocity distribution of binary and isolated MSPs are indistinguishable with the current data. Four of the pulsars in our observing program are highly recycled with low-mass white dwarf companions and we are able to derive accurate binary parameters for these systems. For three of these binary systems we are able to place initial constraints on the pulsar masses with best-fit values in the range 1.0-1.6 M_sun. The implications of the results pr...

  3. Chandra X-ray Observations of 12 Millisecond Pulsars in the Globular Cluster M28

    CERN Document Server

    Bogdanov, Slavko; Servillat, Mathieu; Heinke, Craig O; Grindlay, Jonathan E; Stairs, Ingrid H; Ransom, Scott M; Freire, Paulo C C; Bégin, Steve; Becker, Werner

    2011-01-01

    We present a Chandra X-ray Observatory investigation of the millisecond pulsars (MSPs) in the globular cluster M28 (NGC 6626). In what is one of the deepest X-ray observations of a globular cluster, we firmly detect seven and possibly detect two of the twelve known M28 pulsars. With the exception of PSRs B1821-24 and J1824-2452H, the detected pulsars have relatively soft spectra, with X-ray luminosities 10^30-31 ergs s^-1 (0.3-8 keV),similar to most "recycled" pulsars in 47 Tucanae and the field of the Galaxy, implying thermal emission from the pulsar magnetic polar caps. We present the most detailed X-ray spectrum to date of the energetic PSR B1821-24. It is well described by a purely non-thermal spectrum with spectral photon index 1.23 and luminosity 1.4x10^33Theta(D/5.5 kpc)^2 ergs s^-1 (0.3-8 keV), where Theta is the fraction of the sky covered by the X-ray emission beam(s). We find no evidence for the previously reported line emission feature around 3.3 keV, most likely as a consequence of improvements i...

  4. Detection of Polarized Quasi-periodic Microstructure Emission in Millisecond Pulsars

    Science.gov (United States)

    De, Kishalay; Gupta, Yashwant; Sharma, Prateek

    2016-12-01

    Microstructure emission, involving short timescale, often quasi-periodic, intensity fluctuations in subpulse emission, is well known in normal period pulsars. In this Letter, we present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), from Giant Metrewave Radio Telescope observations of two MSPs at 325 and 610 MHz. Similar to the characteristics of microstructure observed in normal period pulsars, we find that these features are often highly polarized and exhibit quasi-periodic behavior on top of broader subpulse emission, with periods of the order of a few μs. By measuring their widths and periodicities from single pulse intensity profiles and their autocorrelation functions, we extend the microstructure timescale-rotation period relationship by more than an order of magnitude down to rotation periods ˜5 ms, and find it to be consistent with the relationship derived earlier for normal pulsars. The similarity of behavior is remarkable, given the significantly different physical properties of MSPs and normal period pulsars, and rules out several previous speculations about the possible different characteristics of microstructure in MSP radio emission. We discuss the possible reasons for the non-detection of these features in previous high time resolution MSP studies along with the physical implications of our results, both in terms of a geometric beam sweeping model and temporal modulation model for micropulse production.

  5. The gamma-ray millisecond pulsar deathline, revisited - New velocity and distance measurements

    CERN Document Server

    Guillemot, L; Laffon, H; Janssen, G H; Cognard, I; Theureau, G; Desvignes, G; Ferrara, E C; Ray, P S

    2016-01-01

    Millisecond pulsars (MSPs) represent nearly half of the more than 160 currently known $\\gamma$-ray pulsars detected by the Large Area Telescope on the \\textit{Fermi} satellite, and a third of all known MSPs are seen in $\\gamma$ rays. The least energetic $\\gamma$-ray MSPs enable us to probe the so-called deathline for high-energy emission, i.e., the spin-down luminosity limit under which pulsars (PSRs) cease to produce detectable high-energy radiation. Characterizing the MSP luminosity distribution helps to determine their contribution to the Galactic diffuse $\\gamma$-ray emission. We made use of the high-quality pulsar timing data recorded at the Nan\\c{c}ay Radio Telescope over several years to characterize the properties of a selection of MSPs. For one of the pulsars, the dataset was complemented with Westerbork Synthesis Radio Telescope observations. The rotation ephemerides derived from this analysis were also used to search the LAT data for new $\\gamma$-ray MSPs. For the MSPs considered in this study, we ...

  6. Power-law Magnetic Field Decay and Constant Core Temperatures of Magnetars, Normal and Millisecond Pulsars

    CERN Document Server

    Xie, Yi

    2011-01-01

    The observed correlations, between the characteristic ages and dipole surface magnetic field strengths of all pulsars, can be well explained by magnetic field decay with core temperatures of $~2\\times10^{8}$ K, $\\sim2\\times10^{7}$ K, and $\\sim10^{5}$ K, for magnetars, normal radio pulsars, and millisecond pulsars, respectively; assuming that their characteristic ages are about two orders of magnitude larger than their true ages, the required core temperatures may be reduced by about a factor of 10. The magnetic decay follows a power-law and is dominated by the solenoidal component of the ambipolar diffusion mode. In this model, all NSs are assumed to have the same initial magnetic field strength, but different core temperature which do not change as the magnetic field decays. This suggests that the key distinguishing property between magnetars and normal pulsars is that magnetars were born much hotter than normal pulsars, and thus have much longer magnetic field decay time scales, resulting in higher surface ...

  7. Properties and Evolution of the Redback Millisecond Pulsar Binary PSR J2129-0429

    CERN Document Server

    Bellm, Eric C; Breton, Rene P; Phinney, E Sterl; Bhalerao, Varun B; Camilo, Fernando; Dahal, Sumit; Djorgovski, S G; Drake, Andrew J; Hessels, J W T; Laher, Russ R; Levitan, David B; Lewis, Fraser; Mahabal, Ashish A; Ofek, Eran O; Prince, Thomas A; Ransom, Scott M; Roberts, Mallory S E; Russell, David M; Sesar, Branimir; Surace, Jason A; Tang, Sumin

    2015-01-01

    PSR J2129-0429 is a "redback" eclipsing millisecond pulsar binary with an unusually long 15.2 hour orbit. It was discovered by the Green Bank Telescope in a targeted search of unidentified Fermi gamma-ray sources. The pulsar companion is optically bright (mean $m_R = 16.6$ mag), allowing us to construct the longest baseline photometric dataset available for such a system. We present ten years of archival and new photometry of the companion from LINEAR, CRTS, PTF, the Palomar 60-inch, and LCOGT. Radial velocity spectroscopy using the Double-Beam Spectrograph on the Palomar 200-inch indicates that the pulsar is massive: $1.74\\pm0.18 M_\\odot$. The G-type pulsar companion has mass $0.44\\pm0.04 M_\\odot$, one of the heaviest known redback companions. It is currently 95\\% Roche-lobe filling and only mildly irradiated by the pulsar. We identify a clear 13.1 mmag yr$^{-1}$ secular decline in the mean magnitude of the companion as well as smaller-scale variations in the optical lightcurve shape. This behavior may indic...

  8. The High Time Resolution Universe Survey II: Discovery of 5 Millisecond Pulsars

    CERN Document Server

    Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Jameson, A; Johnston, S; Keith, M J; Kramer, M; Levin, L; Lyne, A; Milia, S; Possenti, A; Stappers, B; van Straten, W

    2011-01-01

    We present the discovery of 5 millisecond pulsars found in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) Survey. The pulsars have rotational periods from ~2.3 to ~7.5 ms, and all are in binary systems with orbital periods ranging from ~0.3 to ~150 d. In four of these systems, the most likely companion is a white dwarf, with minimum masses of ~0.2 Solar Masses. The other pulsar, J1731-1847, has a very low mass companion and exhibits eclipses, and is thus a member of the "black widow" class of pulsar binaries. These eclipses have been observed in bands centred near frequencies of 700, 1400 and 3000 MHz, from which measurements have been made of the electron density in the eclipse region. These measurements have been used to examine some possible eclipse mechanisms. The eclipse and other properties of this source are used to perform a comparison with the other known eclipsing and "black widow" pulsars. These new discoveries occupy a short-period and high-dispersion measure (DM) re...

  9. Four Highly Dispersed Millisecond Pulsars Discovered in the Arecibo PALFA Galactic Plane Survey

    CERN Document Server

    Crawford, F; Lyne, A G; Stappers, B W; Nice, D J; Stairs, I H; Lazarus, P; Hessels, J W T; Freire, P C C; Allen, B; Bhat, N D R; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Cognard, I; Cordes, J M; Deneva, J S; Desvignes, G; Jenet, F A; Kaspi, V M; Knispel, B; Kramer, M; van Leeuwen, J; Lorimer, D R; Lynch, R; McLaughlin, M A; Ransom, S M; Scholz, P; Siemens, X; Venkataraman, A

    2012-01-01

    We present the discovery and phase-coherent timing of four highly dispersed millisecond pulsars (MSPs) from the Arecibo PALFA Galactic plane survey: PSRs J1844+0115, J1850+0124, J1900+0308, and J1944+2236. Three of the four pulsars are in binary systems with low-mass companions, which are most likely white dwarfs, and which have orbital periods on the order of days. The fourth pulsar is isolated. All four pulsars have large dispersion measures (DM > 100 pc cm-3), are distant (> 3.4 kpc), faint at 1.4 GHz (< 0.2 mJy), and are fully recycled (with spin periods P between 3.5 and 4.9 ms). The three binaries also have very small orbital eccentricities, as expected for tidally circularized, fully recycled systems with low-mass companions. These four pulsars have DM/P ratios that are among the highest values for field MSPs in the Galaxy. These discoveries bring the total number of confirmed MSPs from the PALFA survey to fifteen. The discovery of these MSPs illustrates the power of PALFA for finding weak, distant ...

  10. FOUR HIGHLY DISPERSED MILLISECOND PULSARS DISCOVERED IN THE ARECIBO PALFA GALACTIC PLANE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Stovall, K. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Lazarus, P. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Freire, P. C. C.; Champion, D. J.; Desvignes, G. [Max-Planck-Institut fuer Radioastronomie, auf dem Huegel 69, D-53121 Bonn (Germany); Allen, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Bhat, N. D. R.; Camilo, F. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace, LPC2E, CNRS et Universite d' Orleans, and Station de radioastronomie de Nancay, Observatoire de Paris, F-18330 Nancay (France); Deneva, J. S., E-mail: fcrawfor@fandm.edu [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); and others

    2012-09-20

    We present the discovery and phase-coherent timing of four highly dispersed millisecond pulsars (MSPs) from the Arecibo PALFA Galactic plane survey: PSRs J1844+0115, J1850+0124, J1900+0308, and J1944+2236. Three of the four pulsars are in binary systems with low-mass companions, which are most likely white dwarfs, and which have orbital periods on the order of days. The fourth pulsar is isolated. All four pulsars have large dispersion measures (DM >100 pc cm{sup -3}), are distant ({approx}> 3.4 kpc), faint at 1.4 GHz ({approx}< 0.2 mJy), and are fully recycled (with spin periods P between 3.5 and 4.9 ms). The three binaries also have very small orbital eccentricities, as expected for tidally circularized, fully recycled systems with low-mass companions. These four pulsars have DM/P ratios that are among the highest values for field MSPs in the Galaxy. These discoveries bring the total number of confirmed MSPs from the PALFA survey to 15. The discovery of these MSPs illustrates the power of PALFA for finding weak, distant MSPs at low-Galactic latitudes. This is important for accurate estimates of the Galactic MSP population and for the number of MSPs that the Square Kilometer Array can be expected to detect.

  11. Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope

    Science.gov (United States)

    Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.; hide

    2012-01-01

    We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.

  12. PSR J1723–2837: AN ECLIPSING BINARY RADIO MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Fronefield [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Lyne, Andrew G. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Stairs, Ingrid H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Kaplan, David L. [Physics Department, University of Wisconsin - Milwaukee, Milwaukee, WI 53211 (United States); McLaughlin, Maura A.; Lorimer, Duncan R. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Freire, Paulo C. C.; Kramer, Michael [Max-Planck-Institut für Radioastronomie, auf dem Huegel 69, D-53121 Bonn (Germany); Burgay, Marta; D' Amico, Nichi; Possenti, Andrea [INAF - Osservatorio Astronomico di Cagliari, Poggio dei Pini, I-09012 Capoterra (Italy); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Faulkner, Andrew [Cavendish Laboratory, University of Cambridge, J. J. Thompson Avenue, Cambridge, CB3 0HE (United Kingdom); Manchester, Richard N. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Steeghs, Danny, E-mail: fcrawfor@fandm.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2013-10-10

    We present a study of PSR J1723–2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ∼15% during the pulsar's orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsar's (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the star's association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 ± 0.5, corresponding to a companion mass range of 0.4 to 0.7 M{sub ☉} and an orbital inclination angle range of between 30° and 41°, assuming a pulsar mass range of 1.4-2.0 M{sub ☉}. Spectroscopy indicates a spectral type of G for the companion and an inferred Roche-lobe-filling distance that is consistent with the distance estimated from radio dispersion. The features of PSR J1723–2837 indicate that it is likely a 'redback' system. Unlike the five other Galactic redbacks discovered to date, PSR J1723–2837 has not been detected as a γ-ray source with Fermi. This may be due to an intrinsic spin-down luminosity that is much smaller than the measured value if the unmeasured contribution from proper motion is large.

  13. PSR J1723-2837: An Eclipsing Binary Radio Millisecond Pulsar

    Science.gov (United States)

    Crawford, Fronefield; Lyne, Andrew G.; Stairs, Ingrid H.; Kaplan, David L.; McLaughlin, Maura A.; Freire, Paulo C. C.; Burgay, Marta; Camilo, Fernando; D'Amico, Nichi; Faulkner, Andrew; Kramer, Michael; Lorimer, Duncan R.; Manchester, Richard N.; Possenti, Andrea; Steeghs, Danny

    2013-10-01

    We present a study of PSR J1723-2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ~15% during the pulsar's orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsar's (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the star's association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 ± 0.5, corresponding to a companion mass range of 0.4 to 0.7 M ⊙ and an orbital inclination angle range of between 30° and 41°, assuming a pulsar mass range of 1.4-2.0 M ⊙. Spectroscopy indicates a spectral type of G for the companion and an inferred Roche-lobe-filling distance that is consistent with the distance estimated from radio dispersion. The features of PSR J1723-2837 indicate that it is likely a "redback" system. Unlike the five other Galactic redbacks discovered to date, PSR J1723-2837 has not been detected as a γ-ray source with Fermi. This may be due to an intrinsic spin-down luminosity that is much smaller than the measured value if the unmeasured contribution from proper motion is large.

  14. A parallax distance and mass estimate for the transitional millisecond pulsar system J1023+0038

    CERN Document Server

    Deller, A T; Brisken, W F; Chatterjee, S; Janssen, G H; Kaspi, V M; Lorimer, D; Lyne, A G; McLaughlin, M A; Ransom, S; Stairs, I H; Stappers, B

    2012-01-01

    The recently discovered transitional millisecond pulsar system J1023+0038 exposes a crucial evolutionary phase of recycled neutron stars for multiwavelength study. The system, comprising the neutron star itself, its stellar companion, and the surrounding medium, is visible across the electromagnetic spectrum from the radio to X-ray/gamma-ray regimes and offers insight into the recycling phase of millisecond pulsar evolution. Here, we report on multiple-epoch astrometric observations with the Very Long Baseline Array (VLBA) which give a system parallax of 0.731 +/- 0.022 milliarcseconds (mas) and a proper motion of 17.98 +/- 0.05 mas/yr. By combining our results with previous optical observations, we are able to use the parallax distance of 1368+42-39 pc to estimate the mass of the pulsar as 1.71 +/- 0.16 solar masses, and we are also able to measure the 3D space velocity of the system as 126 +/- 5 km/s. Despite the precise nature of the VLBA measurements, the remaining ~3% distance uncertainty dominates the 0...

  15. A CHANDRA OBSERVATION OF THE BURSTING MILLISECOND X-RAY PULSAR IGR J17511-3057

    Energy Technology Data Exchange (ETDEWEB)

    Paizis, A. [Istituto Nazionale di Astrofisica, INAF-IASF, Via Bassini 15, 20133 Milano (Italy); Nowak, M. A. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Rodriguez, J.; Chaty, S. [Astrophysique, Instrumentation et Modelisation (AIM, UMR-E 9005 CEA/DSM-CNRS-Universite Paris Diderot) Irfu/Service d' Astrophysique, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Wilms, J. [Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universitaet Erlangen-Nuernberg, Sternwartstr. 7, 96049 Bamberg (Germany); Del Santo, M.; Ubertini, P., E-mail: ada@iasf-milano.inaf.it, E-mail: mnowak@space.mit.edu [IAPS, INAF, Via Fosso del Cavaliere 100, 00133 Rome (Italy)

    2012-08-10

    IGR J17511-3057 is a low-mass X-ray binary hosting a neutron star and is one of the few accreting millisecond X-ray pulsars with X-ray bursts. We report on a 20 ks Chandra grating observation of IGR J17511-3057, performed on 2009 September 22. We determine the most accurate X-ray position of IGR J17511-3057, {alpha}{sub J2000} = 17{sup h}51{sup m}08.{sup s}66, {delta}{sub J2000} = -30 Degree-Sign 57'41.''0 (90% uncertainty of 0.''6). During the observation, a {approx}54 s long type-I X-ray burst is detected. The persistent (non-burst) emission has an absorbed 0.5-8 keV luminosity of 1.7 Multiplication-Sign 10{sup 36} erg s{sup -1} (at 6.9 kpc) and can be well described by a thermal Comptonization model of soft, {approx}0.6 keV, seed photons upscattered by a hot corona. The type-I X-ray burst spectrum, with average luminosity over the 54 s duration L{sub 0.5-8{sub keV}} = 1.6 Multiplication-Sign 10{sup 37} erg s{sup -1}, can be well described by a blackbody with kT{sub bb} {approx} 1.6 keV and R{sub bb} {approx} 5 km. While an evolution in temperature of the blackbody can be appreciated throughout the burst (average peak kT{sub bb} = 2.5{sup +0.8}{sub -0.4} keV to tail kT{sub bb} = 1.3{sup +0.2}{sub -0.1} keV), the relative emitting surface shows no evolution. The overall persistent and type-I burst properties observed during the Chandra observation are consistent with what was previously reported during the 2009 outburst of IGR J17511-3057.

  16. PSR J1024-0719: A Millisecond Pulsar in an Unusual Long-Period Orbit

    CERN Document Server

    Kaplan, D L; Nice, D J; Irrgang, A; Heber, U; Arzoumanian, Z; Beklen, E; Crowter, K; DeCesar, M E; Demorest, P B; Dolch, T; Lynch, R S; McLaughlin, M A; Miller, A A; Ng, C; Pennucci, T T; Ellis, J A; Ferdman, R D; Ferrara, E C; Fonseca, E; Gentile, P A; Jones, G; Jones, M L; Kreuzer, S; Lam, M T; Levin, L; Lorimer, D R; Prince, T A; Ransom, S M; Ray, P S; Spiewak, R; Stairs, I H; Stovall, K; Swiggum, J; Zhu, W

    2016-01-01

    PSR J1024$-$0719 is a millisecond pulsar that was long thought to be isolated. However, puzzling results concerning its velocity, distance, and low rotational period derivative have led to reexamination of its properties. We present updated radio timing observations along with new and archival optical data that show PSR J1024$-$0719 is most likely in a long period (2$-$20 kyr) binary system with a low-mass ($\\approx 0.4\\,M_\\odot$) low-metallicity ($Z \\approx -0.9\\,$ dex) main sequence star. Such a system can explain most of the anomalous properties of this pulsar. We suggest that this system formed through a dynamical exchange in a globular cluster that ejected it into a halo orbit, consistent with the low observed metallicity for the stellar companion. Further astrometric and radio timing observations such as measurement of the third period derivative could strongly constrain the range of orbital parameters.

  17. A Likely Millisecond Pulsar Binary Counterpart for Fermi Source 2FGL J2039.6-5620

    Science.gov (United States)

    Romani, Roger W.

    2015-10-01

    We have identified an optical/X-ray binary with an orbital period of Pb = 5.47 hr as the likely counterpart of the Fermi source 2FGL J2039.6-5620. GROND, SOAR, and DES observations provide an accurate orbital period and allow us to compare to the light curve of an archival XMM exposure. Like many short-period optical/X-ray binaries associated with Large Area Telescope sources, this may be an interacting (black widow/redback) millisecond pulsar binary. The X-ray light curve is consistent with the emission associated with an intrabinary shock. The optical light curve shows evidence of companion heating, but has a peculiar asymmetric double peak. The nature of this optical structure is not yet clear; additional optical studies and, in particular, detection of an orbital modulation in a γ-ray pulsar are needed to elucidate the nature of this peculiar source.

  18. Rotochemical heating of millisecond and classical pulsars with anisotropic and density-dependent superfluid gap models

    CERN Document Server

    González-Jiménez, Nicolás; Reisenegger, Andreas

    2014-01-01

    When a rotating neutron star loses angular momentum, the progressive reduction of the centrifugal force makes it contract. This perturbs each fluid element, raising the local pressure and originating deviations from beta equilibrium, inducing reactions that release heat (rotochemical heating). This effect has previously been studied by Fern\\'andez & Reisenegger (2005) for non-superfluid neutron stars and by Petrovich & Reisenegger (2010) for superfluid millisecond pulsars. Both studies found that pulsars reach a quasi-steady state in which the compression driving the matter out of beta equilibrium is balanced by the reactions trying to restore the equilibrium. We extend previous studies by considering the effect of density-dependence and anisotropy of the superfluid energy gaps, for the case in which the dominant reactions are the modified Urca processes, the protons are non-superconducting, and the neutron superfluidity is parametrized by models proposed in the literature. By comparing our prediction...

  19. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Straten, W., E-mail: vanstraten.willem@gmail.com [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia)

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  20. A Study of Multi-frequency Polarization Pulse Profiles of Millisecond Pulsars

    CERN Document Server

    Dai, S; Manchester, R N; Kerr, M; Shannon, R M; van Straten, W; Mata, A; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Coles, W A; Johnston, S; Keith, M J; Levin, Y; Oslowski, S; Reardon, D; Ravi, V; Sarkissian, J M; Tiburzi, C; Toomey, L; Wang, H G; Wang, J -B; Wen, L; Xu, R X; Yan, W M; Zhu, X -J

    2015-01-01

    We present high signal-to-noise ratio, multi-frequency polarization pulse profiles for 24 millisecond pulsars that are being observed as part of the Parkes Pulsar Timing Array (PPTA) project. The pulsars are observed in three bands, centred close to 730, 1400 and 3100 MHz, using a dual-band 10 cm/50 cm receiver and the central beam of the 20 cm multibeam receiver. Observations spanning approximately six years have been carefully calibrated and summed to produce high S/N profiles. This allows us to study the individual profile components and in particular how they evolve with frequency. We also identify previously undetected profile features. For many pulsars we show that pulsed emission extends across almost the entire pulse profile. The pulse component widths and component separations follow a complex evolution with frequency; in some cases these parameters increase and in other cases they decrease with increasing frequency. The evolution with frequency of the polarization properties of the profile is also n...

  1. Probing millisecond pulsar emission geometry using light curves from the Fermi Large Area Telescope

    CERN Document Server

    Venter, C; Guillemot, L

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of B-field lines, in the geometric context of polar cap (PC), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by TPC and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We...

  2. Parkes radio searches of Fermi gamma-ray sources and millisecond pulsar discoveries

    CERN Document Server

    Camilo, F; Ray, P S; Ransom, S M; Sarkissian, J; Cromartie, H T; Johnston, S; Reynolds, J E; Wolff, M T; Freire, P C C; Bhattacharyya, B; Ferrara, E C; Keith, M; Michelson, P F; Parkinson, P M Saz; Wood, K S

    2015-01-01

    In a search with the Parkes radio telescope of 56 unidentified Fermi-LAT gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported in Kerr et al. (2012). We did not detect radio pulsations from another six pulsars now known in these sources. We describe the completed survey, which included multiple observations of many targets done to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. We present timing solutions and polarimetry for five of the MSPs, and gamma-ray pulsations for PSR J1903-7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are in >1 d circular orbits with 0.2-0.3 Msun presumed white dwarf companions. PSR J0955-6150, in a 24 d orbit with a ~0.25 Msun companion but eccentricity of 0.11, belongs to a recentl...

  3. Prospects for neutron star equation of state constraints using ''recycled'' millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia University, Columbia Astrophysics Laboratory, New York, NY (United States)

    2016-02-15

    ''Recycled'' millisecond pulsars are a variety of rapidly spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission. (orig.)

  4. Pulse intensity modulation and the timing stability of millisecond pulsars: A case study of PSR J1713+0747

    CERN Document Server

    Shannon, Ryan M

    2012-01-01

    Most millisecond pulsars, like essentially all other radio pulsars, show timing errors well in excess of what is expected from additive radiometer noise alone. We show that changes in amplitude, shape and pulse phase for the millisecond pulsar J1713+0747 cause this excess error. These changes appear to be uncorrelated from one pulse period to the next. The resulting time of arrival variations are correlated across a wide frequency range and are observed with different backend processors on different days, confirming that they are intrinsic in origin and not an instrumental effect or caused by strongly frequency dependent interstellar scattering. Centroids of single pulses show an rms phase variation \\approx 40 microsec, which dominates the timing error and is the same phase jitter phenomenon long known in slower spinning, canonical pulsars. We show that the amplitude modulations of single pulses are modestly correlated with their arrival time fluctuations. We also demonstrate that single-pulse variations are ...

  5. The High Time Resolution Universe Pulsar Survey - VII: discovery of five millisecond pulsars and the different luminosity properties of binary and isolated recycled pulsars

    CERN Document Server

    Burgay, M; Bates, S D; Bhat, N D R; Burke-Spolaor, S; Champion, D J; Coster, P; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Levin, L; Lyne, A G; Milia, S; Ng, C; Possenti, A; Stappers, B W; Thornton, D; Tiburzi, C; van Straten, W; Bassa, C G

    2013-01-01

    This paper presents the discovery and timing parameters for five millisecond pulsars (MSPs), four in binary systems with probable white dwarf companions and one isolated, found in ongoing processing of the High Time Resolution Universe Pulsar Survey (HTRU). We also present high quality polarimetric data on four of them. These further discoveries confirm the high potential of our survey in finding pulsars with very short spin periods. At least two of these five MSPs are excellent candidates to be included in the Pulsar Timing Array projects. Thanks to the wealth of MSP discoveries in the HTRU survey, we revisit the question of whether the luminosity distributions of isolated and binary MSPs are different. Using the Cordes and Lazio distance model and our new and catalogue flux density measurements, we find that 41 of the 42 most luminous MSPs in the Galactic disk are in binaries and a statistical analysis suggests that the luminosity functions differ with 99.9% significance. We conclude that the formation proc...

  6. PSR J1738+0333: The First Millisecond Pulsar + Pulsating White Dwarf Binary

    CERN Document Server

    Kilic, Mukremin; Gianninas, A; Brown, Warren R

    2014-01-01

    We report the discovery of the first millisecond pulsar with a pulsating white dwarf companion. Following the recent discoveries of pulsations in extremely low-mass (ELM, <0.3 Msol) white dwarfs (WDs), we targeted ELM WD companions to two millisecond pulsars with high-speed Gemini photometry. We find significant optical variability in PSR J1738+0333 with periods between roughly 1790-3060 s, consistent in timescale with theoretical and empirical observations of pulsations in 0.17 Msol He-core ELM WDs. We additionally put stringent limits on a lack of variability in PSR J1909-3744, showing this ELM WD is not variable to <0.1 per cent amplitude. Thanks to the accurate distance and radius estimates from radio timing measurements, PSR J1738+0333 becomes a benchmark for low-mass, pulsating WDs. Future, more extensive time-series photometry of this system offers an unprecedented opportunity to constrain the physical parameters (including the cooling age) and interior structure of this ELM WD, and in turn, the ...

  7. Discovery of near-ultraviolet counterparts to millisecond pulsars in the globular cluster 47 Tucanae

    CERN Document Server

    Rivera-Sandoval, L E; Heinke, C O; Cohn, H N; Lugger, P M; Freire, P; Anderson, J; Serenelli, A M; Althaus, L G; Cool, A M; Grindlay, J E; Edmonds, P D; Wijnands, R; Ivanova, N

    2015-01-01

    We report the discovery of the likely white dwarf companions to radio millisecond pulsars 47 Tuc Q and 47 Tuc S in the globular cluster 47 Tucanae. These blue stars were found in near-ultraviolet images from the Hubble Space Telescope for which we derived accurate absolute astrometry, and are located at positions consistent with the radio coordinates to within 0.016 arcsec (0.2sigma). We present near-ultraviolet and optical colours for the previously identified companion to millisecond pulsar 47 Tuc U, and we unambiguously confirm the tentative prior identifications of the optical counterparts to 47 Tuc T and 47 Tuc Y. For the latter, we present its radio-timing solution for the first time. We find that all five near-ultraviolet counterparts have U300-B390 colours that are consistent with He white dwarf cooling models for masses ~0.16-0.3 Msun and cooling ages within ~0.1-6 Gyr. The Ha-R625 colours of 47 Tuc U and 47 Tuc T indicate the presence of a strong Ha absorption line, as expected for white dwarfs with...

  8. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    Science.gov (United States)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  9. Model of two-stream non-radial accretion for binary X-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Lipunov, V.M. (Sternberg Astronomical Inst., Moscow (USSR))

    1982-03-01

    The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered.

  10. Multi-wavelength observations of the transitional millisecond pulsar binary XSSJ12270-4859

    CERN Document Server

    de Martino, Domitilla; Belloni, Tomaso; Burgay, Marta; Wilhelmi, Emma De Ona; Li, J; Pellizzoni, Alberto; Possenti, Andrea; Rea, Nanda; Torres, Diego F

    2015-01-01

    We present an analysis of X-ray, Ultraviolet and optical/near-IR photometric data of the transitional millisecond pulsar binary XSSJ12270-4859, obtained at different epochs after the transition to a rotation-powered radio pulsar state. The observations, while confirming the large-amplitude orbital modulation found in previous studies after the state change, also reveal an energy dependence of the amplitudes as well as variations on time scale of months. The amplitude variations are anti-correlated in the X-ray and the UV/optical bands. The average X-ray spectrum is described by a power law with \\Gamma index of 1.07(8) without requiring an additional thermal component. The power law index \\Gamma varies from 1.2 to 1.0 between superior and inferior conjunction of the neutron star. We interpret the observed X-ray behaviour in terms of synchrotron radiation emitted in an extended intrabinary shock, located between the pulsar and the donor star, which is eclipsed due to the companion orbital motion. The G5 type do...

  11. Two Millisecond Pulsars Discovered by the PALFA Survey and a Shapiro Delay Measurement

    CERN Document Server

    Deneva, J S; Cordes, J M; Lyne, A G; Ransom, S M; Cognard, I; Camilo, F; Nice, D J; Stairs, I H; Allen, B; Bhat, N D R; Bogdanov, S; Brazier, A; Champion, D J; Chatterjee, S; Crawford, F; Desvignes, G; Hessels, J W T; Jenet, F A; Kaspi, V M; Knispel, B; Kramer, M; Lazarus, P; van Leeuwen, J; Lorimer, D R; Lynch, R S; McLaughlin, M A; Scholz, P; Siemens, X; Stappers, B W; Stovall, K; Venkataraman, A

    2012-01-01

    We present two millisecond pulsar discoveries from the PALFA survey of the Galactic plane with the Arecibo telescope. PSR J1955+2527 is an isolated pulsar with a period of 4.87 ms, and PSR J1949+3106 has a period of 13.14 ms and is in a 1.9-day binary system with a massive companion. Their timing solutions, based on 4 years of timing measurements with the Arecibo, Green Bank, Nan\\c{c}ay and Jodrell Bank telescopes, allow precise determination of spin and astrometric parameters, including precise determinations of their proper motions. For PSR J1949+3106, we can clearly detect the Shapiro delay. From this we measure the pulsar mass to be 1.47(+0.43/-0.31) solar masses, the companion mass to be 0.85(+0.14/-0.11) solar masses and the orbital inclination to be i = 79.9(+1.6/-1.9) degrees, where uncertainties correspond to +/- 1-\\sigma\\ confidence levels. With continued timing, we expect to also be able to detect the advance of periastron for the J1949+3106 system. This effect, combined with the Shapiro delay, wil...

  12. The identification of the optical companion to the binary millisecond pulsar J0610-2100 in the Galactic field

    OpenAIRE

    C. Pallanca(University of Bologna); Mignani, R. P.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B; Possenti, A; Burgay, M; Sabbi, E.

    2012-01-01

    We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary pulsar PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Telescope in the Galactic plane. We found a faint star (V~26.7) nearly coincident (\\delta r ~0".28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best seei...

  13. Search for Pulsations from a Nearby Millisecond Pulsar and Wasilewski 49: Mirror for a Hidden Seyfert 1 Nucleus

    Science.gov (United States)

    Halpern, Jules P.

    1999-03-01

    Five studies are reported in this final report. The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 1019 CM-2 which facilitates soft X-ray observations. Halpern reported a possible ROSAT Position Sensitive Proportional Counter (PSPC) detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+,5307 in a 23 ksec observation with the ROSAT High Resolution Imager (HRI). A point source is detected within 3" of the radio position. Its count rate of 1.6 +/- 0.3 x 10-3 s-1 corresponds to an unabsorbed 0. 1-2.4 keV flux of 6.4 x 10-14 ergs cm-2 s-1, similar to that reported previously. This counts-to-flux conversion is valid for NH = 5 x 1019 cm-2, and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 1030 ergs s-1 is 5 X 10-4 of the pulsar's spin-down power dot-E, and similar to that of the nearest millisecond pulsar J0437-4715, which is nearly a twin of J1012+5307 in P dot-E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as is favored for PSR J0437-4715, rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821-24. A further test of this interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If found, such modulation will be further evidence that surface reheating by the impact

  14. Discovery of the Optical/Ultraviolet/Gamma-ray Counterpart to the Eclipsing Millisecond Pulsar J1816+4510

    CERN Document Server

    Kaplan, D L; Ransom, S M; Roberts, M S E; Kotulla, R; Archibald, A M; Biwer, C M; Boyles, J; Dartez, L; Day, D F; Ford, A J; Garcia, A; Hessels, J W T; Jenet, F A; Karako, C; Kaspi, V M; Kondratiev, V I; Lorimer, D R; Lynch, R S; McLaughlin, M A; Rohr, M D W; Siemens, X; Stairs, I H; van Leeuwen, J

    2012-01-01

    The energetic, eclipsing millisecond pulsar J1816+4510 was recently discovered in a low-frequency radio survey with the Green Bank Telescope. With an orbital period of 8.7 hr and minimum companion mass of 0.16 Msun it appears to belong to an increasingly important class of pulsars that are ablating their low-mass companions. We report the discovery of the gamma-ray counterpart to this pulsar, and present a likely optical/ultraviolet counterpart as well. Using the radio ephemeris we detect pulsations in the unclassified gamma-ray source 2FGL J1816.5+4511, implying an efficiency of ~25% in converting the pulsar's spin-down luminosity into gamma-rays and adding PSR J1816+4510 to the large number of millisecond pulsars detected by Fermi. The likely optical/UV counterpart was identified through position coincidence (15,000 K it would be among the brightest and hottest of low-mass pulsar companions, and appears qualitatively different from other eclipsing pulsar systems. In particular, current data suggest that it ...

  15. The optical companion to the binary millisecond pulsar J1824-2452H in the globular cluster M28

    CERN Document Server

    Pallanca, C; Ferraro, F R; Lanzoni, B; Rood, R T; Possenti, A; D'Amico, N; Freire, P C; Stairs, I; Ransom, S M; Begin, S

    2010-01-01

    We report on the optical identification of the companion star to the eclipsing millisecond pulsar PSR J1824-2452H in the galactic globular cluster M28 (NGC 6626). This star is at only 0.2" from the nominal position of the pulsar and it shows optical variability (~ 0.25 mag) that nicely correlates with the pulsar orbital period. It is located on the blue side of the cluster main sequence, ~1.5 mag fainter than the turn-off point. The observed light curve shows two distinct and asymmetric minima, suggesting that the companion star is suffering tidal distortion from the pulsar. This discovery increases the number of non-degenerate MSP companions optically identified so far in globular clusters (4 out of 7), suggesting that these systems could be a common outcome of the pulsar recycling process, at least in dense environments where they can be originated by exchange interactions.

  16. A 350-MHz GBT Survey of 50 Faint Fermi Gamma-ray Sources for Radio Millisecond Pulsars

    CERN Document Server

    Hessels, Jason W T; McLaughlin, Maura A; Ray, Paul S; Bangale, Priyadarshini; Ransom, Scott M; Kerr, Matthew; Camilo, Fernando; DeCesar, Megan E

    2015-01-01

    We have used the Green Bank Telescope at 350MHz to search 50 faint, unidentified Fermi Gamma-ray sources for radio pulsations. So far, these searches have resulted in the discovery of 10 millisecond pulsars, which are plausible counterparts to these unidentified Fermi sources. Here we briefly describe this survey and the characteristics of the newly discovered MSPs.

  17. Five new millisecond pulsars from a radio survey of 14 unidentified Fermi-LAT gamma-ray sources

    NARCIS (Netherlands)

    M. Kerr; F. Camilo; T.J. Johnson; E.C. Ferrara; L. Guillemot; A.K. Harding; J. Hessels; S. Johnston; M. Keith; M. Kramer; S.M. Ransom; P.S. Ray; J.E. Reynolds; J. Sarkissian; K.S. Wood

    2012-01-01

    We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Fermi Large Area Telescope sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephem

  18. High energy emission from the nebula around the Black Widow binary system containing millisecond pulsar B1957+20

    CERN Document Server

    Bednarek, W

    2013-01-01

    The features of pulsed $\\gamma$-ray emission from classical and millisecond pulsars indicate that the high energy radiation processes in their inner magnetospheres occur in a similar way. In the last decade several TeV $\\gamma$-ray nebulae have been discovered around classical pulsars. The above facts suggest that $\\gamma$-rays should be produced also in the surroundings of millisecond pulsars. We discuss a model for the bow shock nebula around the well known Black Widow binary system containing the millisecond pulsar B1957+20. This model predicts the existence of a synchrotron X-ray and inverse Compton $\\gamma$-ray nebula around this system. We want to find out whether $\\gamma$-ray emission from the nebula around B1957+20 could be detected by the future and present Cherenkov telescopes. Using the Monte Carlo method we followed the propagation of relativistic electrons in the vicinity of the pulsar. We calculated the very high energy radiation produced by them in the synchrotron process and the inverse Compto...

  19. Probing Pulsar Emission on Short Timescales: Rotating Radio Transients, Cyclic Spectroscopy, and Single-Pulse Studies of Millisecond Pulsars

    Science.gov (United States)

    Palliyaguru, Nipuni Tharaka

    Rotating radio transients (RRATs) are neutron stars are that characterized by the emission of strong sporadic bursts. We have analysed the long- and short-term time dependence of the pulse arrival times and the pulse detection rates for eight RRAT sources from the Parkes Multi-beam Pulsar Survey (PMPS). We find significant periodicities in the individual pulse arrival times from six RRATs. These periodicities range from ˜30 minutes to 2100 days and from one to 16 independent (i.e. non-harmonically related) periodicities are detected for each RRAT. In addition, we find that pulse emission is a random process on short (hour-long) time scales but that most of the objects exhibit longer term (months-years) non-random behaviour. We find that PSRs J1819--1458 and J1317--5759 emit more doublets (two consecutive pulses) and triplets (three consecutive pulses) than is expected in random pulse distributions. No evidence for such an excess is found for the other RRATs. There are several different models for RRAT emission depending on both extrinsic and intrinsic factors which are consistent with these properties. Light travel time changes due to gravitational waves may be detected within the next decade through precision timing of an array of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups routinely correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a phase change in the signal that results in pulse broadening and arrival time delays. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover pulse broadening functions (PBFs), such as those that would be introduced

  20. The low-mass X-ray binary-millisecond radio pulsar birthrate problem revisited

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We investigate the birthrate problem for low-mass X-ray binaries(LMXBs) and millisecond radio pulsars(MRPs) in this paper.We consider intermediate-mass and low-mass X-ray binaries(I/LMXBs) to be the progenitors of MRPs,and calculate their evolutionary response to the cosmic star formation rate(SFR) both semi-analytically and numerically.With a typical value(1 Gyr) of the LMXB lifetime,one may expect comparable birthrates of LMXBs and MRPs,but the calculated number of LMXBs is an order of magnitude higher than that observed in the Galaxy.Instead,we suggest that the birthrate problem could be solved if most MRPs have evolved from faint to rather than bright LMXBs.The former may have a population of-104 in the Galaxy.

  1. An Update on the Timing of the Millisecond Pulsar in a Triple System

    Science.gov (United States)

    Ransom, Scott M.; Archibald, Anne; Stairs, Ingrid H.; Hessels, Jason; Lorimer, Duncan; Lynch, Ryan S.

    2017-01-01

    The millisecond pulsar J0337+1715, in a hierarchical triple system with two white dwarfs, is providing continued high-precision timing and a unique new test of general relativity. Our relativistic timing model of the system, based on accurate three-body gravitational integrations, has provided high-precision orbital inclinations and masses of all three stars, and we have begun to measure secular changes in the inner orbit. Limits on predicted systematic variations of the shape of the inner orbit based on our fantastic timing data, primarily now from Arecibo and the GBT, are providing the best-ever test of the Strong Equivalence Principle (SEP). This test will have important implications for basic physics since general relativity is the only known workable theory of gravity where the SEP must hold.

  2. XMM-Newton observations of two transient millisecond X-ray pulsars in quiescence

    CERN Document Server

    Campana, S; Stella, L; Israel, G L

    2005-01-01

    We report on XMM-Newton observations of two X-ray transient millisecond pulsars (XRTMSPs). We detected XTE J0929-314 with an unabsorbed luminosity of \\~7x10^{31} erg/s. (0.5-10 keV) at a fiducial distance of 10 kpc. The quiescent spectrum is consistent with a simple power law spectrum. The upper limit on the flux from a cooling neutron star atmosphere is about 20% of the total flux. XTE J1807-294 instead was not detected. We can put an upper limit on the source quiescent 0.5-10 keV unabsorbed luminosity <4x10^{31} erg/s at 8 kpc. These observations strenghten the idea that XRTMSPs have quiescent luminosities significantly lower than classical neutron star transients.

  3. Exploring the intrabinary shock from the redback millisecond pulsar PSR J2129-0429

    CERN Document Server

    Hui, C Y; Park, S M; Takata, J; Li, K L; Tam, P H T; Lin, L C C; Kong, A K H; Cheng, K S; Kim, Chunglee

    2015-01-01

    We have investigated the intrabinary shock emission from the redback millisecond pulsar PSR J2129-0429 with XMM-Newton and Fermi. Orbital modulation in X-ray and UV can be clearly seen. Its X-ray modulation has a double-peak structure with a dip in between. The observed X-rays are non-thermal dominant which can be modeled by a power-law with a photon index of ~1.2. Intrabinary shock can be the origin of the observed X-rays. The UV light curve is resulted from the ellipsoidal modulation of the companion. Modeling the UV light curve prefers a large viewing angle. The heating effect of the UV light curve is found to be negligible which suggests the high energy radiation beam of PSR J2129-0429 does not direct toward its companion. On the other hand, no significant orbital modulation can be found in gamma-ray which suggests the majority of the gamma-rays come from the pulsar.

  4. SIX NEW MILLISECOND PULSARS FROM ARECIBO SEARCHES OF FERMI GAMMA-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Cromartie, H. T. [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kerr, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping, NSW 1710 (Australia); Deneva, J. S.; Ray, P. S.; Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Ransom, S. M. [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Ferrara, E. C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Michelson, P. F., E-mail: thankful@virginia.edu [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2016-03-01

    We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) four year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-white dwarf binary with an 83 day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo's large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.

  5. Chandra X-Ray Observations of Nineteen Millisecond Pulsars in the Globular Cluster 47 Tucanae

    CERN Document Server

    Bogdanov, S; Heinke, C O; Camilo, F; Freire, P C C; Becker, W; Bogdanov, Slavko; Grindlay, Jonathan E.; Heinke, Craig O.; Camilo, Fernando; Freire, Paulo C. C.; Becker, Werner

    2006-01-01

    We present spectral and long-timescale variability analyses of \\textit{Chandra} ACIS-S observations of the 19 millisecond pulsars (MSPs) with precisely known positions in the globular cluster 47 Tucanae. The X-ray emission of the majority of these MSPs is well described by a thermal (blackbody or neutron star hydrogen atmosphere) spectrum with a temperature $T_{\\rm eff}\\sim(1-3)\\times10^6$ K, emission radius $R_{\\rm eff}\\sim0.1-3$ km, and luminosity $L_{X}\\sim10^{30-31}$ ergs s$^{-1}$. For several MSPs, there is indication that a second thermal component is required, similar to what is seen in some nearby field MSPs. The radio-eclipsing binary MSPs 47 Tuc J, O, and W show a significant non-thermal component, with photon index $\\Gamma\\sim 1-1.5$, which may originate in an shock formed due to interaction between the relativistic pulsar wind and matter from the stellar companion. We re-examine the X-ray--spindown luminosity relation ($L_{X}-\\dot{E}$) and find that due to the large uncertainties in both parameter...

  6. RADIO DETECTION OF THE FERMI-LAT BLIND SEARCH MILLISECOND PULSAR J1311-3430

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P. S.; Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Ransom, S. M. [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Cheung, C. C. [National Academy of Sciences, Washington, DC 20001 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, I-40129 Bologna (Italy); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orleans Cedex 02 (France); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bhattacharyya, B. [Inter-University Centre for Astronomy and Astrophysics, Pune 411 007 (India); Roy, J. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Romani, R. W.; Kerr, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ferrara, E. C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guillemot, L.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Johnston, S.; Keith, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping NSW 1710 (Australia); Pletsch, H. J. [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, D-30167 Hannover (Germany); Saz Parkinson, P. M., E-mail: Paul.Ray@nrl.navy.mil [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

    2013-01-20

    We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of {approx}4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm{sup -3} provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  7. A Highly Eccentric 3.9-Millisecond Binary Pulsar in the Globular Cluster NGC 6652

    CERN Document Server

    DeCesar, Megan E; Kaplan, David L; Ray, Paul S; Geller, Aaron M

    2015-01-01

    We present the Robert C. Byrd Green Bank Telescope discovery of the highly eccentric binary millisecond pulsar PSR J1835$-$3259A in the Fermi Large Area Telescope-detected globular cluster NGC 6652. Timing over one orbit yields the pulse period 3.89 ms, orbital period 9.25 d, eccentricity $\\sim 0.95$, and an unusually high companion mass of $0.74\\,M_{\\odot}$ assuming a $1.4\\,M_{\\odot}$ pulsar. We caution that the lack of data near periastron prevents a precise measurement of the eccentricity, and that further timing is necessary to constrain this and the other orbital parameters. From tidal considerations, we find that the companion must be a compact object. This system likely formed through an exchange encounter in the dense cluster environment. Our initial timing results predict the measurements of at least two post-Keplerian parameters with long-term phase-connected timing: the rate of periastron advance $\\dot{\\omega} \\sim 0.1^{\\circ}\\,$yr$^{-1}$, requiring 1 yr of phase connection; and the Einstein delay ...

  8. Constraints on the Emission Geometries and Spin Evolution of Gamma-ray Millisecond Pulsars

    CERN Document Server

    Johnson, T J; Harding, A K; Guillemot, L; Smith, D A; Kramer, M; Celik, O; Hartog, P R den; Ferrara, E C; Hou, X; Lande, J; Ray, P S

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Cl...

  9. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    Science.gov (United States)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; Guillemot, L.; Johnston, S.; Keith, M.; Kerr, M.; Kramer, M.; Pletsch, H. J.; Parkinson, P. M. Saz

    2013-01-01

    We report the detection of radio emission from PSR J1311.3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for less than 10% of approximately 4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nan cay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311.3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm(exp -3) provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  10. Formation of the planet around the millisecond pulsar J1719-1438

    CERN Document Server

    van Haaften, L M; Voss, R; Jonker, P G

    2012-01-01

    Context. Recently the discovery of PSR J1719-1438, a 5.8 ms pulsar with a companion in a 2.2 hr orbit, was reported. The combination of this orbital period and the very low mass function is unique. The discoverers, Bailes et al., proposed an ultracompact X-ray binary (UCXB) as the progenitor system. However, the standard UCXB scenario would not produce this system as the time required to reach this orbital period exceeds the current estimate of the age of the Universe. The detached state of the system aggravates the problem. Aims. We want to understand the evolutionary history of PSR J1719-1438, and determine under which circumstances it could have evolved from an UCXB. Methods. We model UCXB evolution varying the donor size and investigate the effect of a wind mass loss from the donor, and compare the results with the observed characteristics of PSR J1719-1438. Results. An UCXB can reach a 2.2 hr orbit within the age of the Universe, provided that 1) the millisecond pulsar can significantly heat and expand t...

  11. Formation of the planet orbiting the millisecond pulsar J1719-1438

    CERN Document Server

    van Haaften, L M; Voss, R; Jonker, P G

    2012-01-01

    In 2011, Bailes et al. reported on the discovery of a detached companion in a 131 minute orbit around PSR J1719-1438, a 173 Hz millisecond pulsar. The combination of the very low mass function and such a short orbital period is unique. The discoverers suggested that the progenitor system could be an ultracompact X-ray binary (UCXB), which is a binary with a sub-hour orbital period in which a (semi-)degenerate donor fills its Roche lobe and transfers mass to a neutron star. The standard gravitational-wave driven UCXB scenario, however, cannot produce a system like PSR J1719-1438 as it would take longer than the age of the Universe to reach an orbital period of 131 min. We investigate two modifications to the standard UCXB evolution that may resolve this discrepancy. The first involves significant heating and bloating of the donor by pulsar irradiation, and in the second modification the system loses orbital angular momentum via a fast stellar wind from the irradiated donor, additional to the losses via the usu...

  12. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    CERN Document Server

    Knispel, B; Stappers, B W; Freire, P C C; Lazarus, P; Allen, B; Aulbert, C; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Cardoso, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J S; Eggenstein, H -B; Fehrmann, H; Ferdman, R; Hessels, J W T; Jenet, F A; Karako-Argaman, C; Kaspi, V M; van Leeuwen, J; Lorimer, D R; Lynch, R; Machenschalk, B; Madsen, E; McLaughlin, M A; Patel, C; Ransom, S M; Scholz, P; Siemens, X; Spitler, L G; Stairs, I H; Stovall, K; Swiggum, J K; Venkataraman, A; Wharton, R S; Zhu, W W

    2015-01-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 ($P=4.3$ ms) in a binary system with an eccentric ($e=0.08$) orbit in Pulsar ALFA survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 $M_\\odot$ and is most likely a white dwarf. Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities $e < 0.001$. However, four recently discovered binary MSPs have orbits with larger eccentricities ($0.03 < e < 0.4$); PSR J1950+2414 is only the fifth such system to be discovered. The upper limits for the the intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities of these systems are not compatible with the predictions of the standard recycling scenario: som...

  13. X-ray and $\\gamma$-ray Studies of the Millisecond Pulsar and PossibleX-ray Binary/Radio Pulsar Transition Object PSR J1723-2837

    CERN Document Server

    Bogdanov, Slavko; Crawford, Fronefield; Possenti, Andrea; McLaughlin, Maura A; Freire, Paulo

    2013-01-01

    We present X-ray observations of the ``redback'' eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and $\\gamma$-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a $\\gamma$-ray point source, due to the strong Galactic diffuse emission at i...

  14. The accretion flow to the intermittent accreting ms pulsar, HETE J1900.1-2455, as observed by XMM-Newton and RXTE

    CERN Document Server

    Papitto, A; Di Salvo, T; Egron, E; Bozzo, E; Burderi, L; Iaria, R; Riggio, A; Menna, M T

    2012-01-01

    We present a study of the accretion flow to the intermittent accreting millisecond pulsar, HETE J1900.1-2455, based on observations performed simultaneously by XMM-Newton and RXTE. The 0.33-50 keV spectrum is described by the sum of a hard Comptonized component originated in an optically thin {\\tau}~1 corona, a soft kTin~0.2 keV component interpreted as accretion disc emission, and of disc reflection of the hard component. Two emission features are detected at energies of 0.98(1) and 6.58(7) keV, respectively. The latter is identified as K{\\alpha} transition of Fe XXIII-XXV. A simultaneous detection in EPIC-pn, EPIC-MOS2, and RGS spectra favours an astrophysical origin also for the former, which has an energy compatible with Fe-L{\\alpha} and helium-like Ne-K{\\alpha} transitions. Broadness of the two features suggests a common origin, resulting from reflection in an accretion disc with inclination of (30+4{\\deg}), and extending down to Rin=25(+16,-11) gravitational radii from the compact object. However, the s...

  15. NuSTAR observations of the state transition of millisecond pulsar binary PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Tendulkar, Shriharsh P.; Bellm, Eric; Harrison, Fiona A. [California Institute of Technology, 1200 E California Blvd, MC 249-17, Pasadena, CA 91125 (United States); Yang, Chengwei; An, Hongjun; Kaspi, Victoria M. [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada); Archibald, Anne M.; Bassa, Cees; Hessels, Jason W. T.; Janssen, Gemma H. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Lyne, Andrew G.; Stappers, Benjamin [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Patruno, Alessandro [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Chakrabarty, Deepto [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Christensen, Finn E., E-mail: spt@astro.caltech.edu [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); and others

    2014-08-20

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Γ=1.17{sub −0.07}{sup +0.08} (at 90% confidence) with a 3-79 keV luminosity of 7.4 ± 0.4 × 10{sup 32} erg s{sup –1}. Significant orbital modulation was observed with a modulation fraction of 36% ± 10%. During the October 19-21 observation, the spectrum is described by a softer power law (Γ=1.66{sub −0.05}{sup +0.06}) with an average luminosity of 5.8 ± 0.2 × 10{sup 33} erg s{sup –1} and a peak luminosity of ≈1.2 × 10{sup 34} erg s{sup –1} observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multiwavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp-edged, flat-bottomed dips are observed with widths between 30 and 1000 s and ingress and egress timescales of 30-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824–2452I and XSS J1227.0–4859 and discuss possible interpretations based on the transitions in the inner disk.

  16. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K.; Çelik, Ö.; Ferrara, E. C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guillemot, L. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orléans Cedex 02 (France); Smith, D. A.; Hou, X. [Centre d' Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Kramer, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Den Hartog, P. R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Lande, J. [Twitter Inc., 1355 Market Street 900, San Francisco, CA 94103 (United States); Ray, P. S., E-mail: tyrel.j.johnson@gmail.com, E-mail: Christo.Venter@nwu.ac.za, E-mail: ahardingx@yahoo.com [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  17. A millisecond pulsar candidate in a 21-h orbit: 3FGL J0212.1+5320

    Science.gov (United States)

    Linares, Manuel; Miles-Páez, Paulo; Rodríguez-Gil, Pablo; Shahbaz, Tariq; Casares, Jorge; Fariña, Cecilia; Karjalainen, Raine

    2017-03-01

    We present the discovery of a variable optical counterpart to the unidentified gamma-ray source 3FGL J0212.1+5320 and argue that this is a new compact binary millisecond pulsar (MSP) candidate. We show 3FGL J0212.1+5320 hosts a semidetached binary with a 0.869 55 ± 0.000 15 d orbital period and an F6-type companion star at an estimated distance of D = 1.1 ± 0.2 kpc, with a radial velocity curve semi-amplitude K2 = 214.1 ± 5.0 km s-1 and a projected rotational velocity of V sin (i) = 73.2 ± 1.6 km s-1. We find a hard X-ray source at the same location with a 0.5-10 keV luminosity LX = 2.6 × 1032 (D/1.1 kpc)2 erg s-1, which strengthens the MSP identification. Our results imply a mass ratio q = M2/M1 = 0.26^{+0.02}_{-0.03} if the companion star fills its Roche lobe, and q ≳ 0.26 in any case. This classifies 3FGL J0212.1+5320 as a 'redback' binary MSP; if its MSP nature is confirmed, this will be the brightest compact binary MSP in the optical band (r″ ≃ 14.3 mag) and will have the longest orbital period among Galactic field systems (nearly 21 h). Based on the light curve peak-to-peak amplitude (Δr = 0.19 mag), we further suggest that the orbital inclination is high and the putative pulsar mass is close to canonical (M1 ≃ 1.3-1.6 M⊙). Finally, we discuss the lack of heating signatures and asymmetric optical light curves in the context of other redback MSPs.

  18. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    Science.gov (United States)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  19. High-energy emission from the nebula around the Black Widow binary system containing millisecond pulsar B1957+20

    Science.gov (United States)

    Bednarek, W.; Sitarek, J.

    2013-02-01

    Context. The features of pulsed γ-ray emission from classical and millisecond pulsars indicate that the high energy radiation processes in their inner magnetospheres occur in a similar way. In the past decade several TeV γ-ray nebulae have been discovered around classical pulsars. The above facts suggest that γ-rays should be produced also in the surroundings of millisecond pulsars. Aims: We discuss a model for the bow shock nebula around the well known Black Widow binary system containing the millisecond pulsar B1957+20. This model predicts the existence of a synchrotron X-ray and inverse Compton γ-ray nebula around this system. We want to find out whether γ-ray emission from the nebula around B1957+20 could be detected by the future and present Cherenkov telescopes. Methods: Using the Monte Carlo method we followed the propagation of relativistic electrons in the vicinity of the pulsar. We calculated the very high energy radiation produced by them in the synchrotron process and the inverse Compton scattering of the microwave background radiation and of the infrared radiation from the galactic disk. We also computed the X-ray emission produced by the electrons in the synchrotron process. Results: We show that the hard X-ray tail emission observed from the vicinity of B1957+20 can be explained by our model. Moreover, we predict that the TeV γ-ray emission produced by the electrons in the inverse Compton process should be detectable by the future Cherenkov Telescope Array and possibly by the long term observations with the present Cherenkov arrays such as MAGIC and VERITAS. The γ-ray emission from B1957+20 is expected to be extended, inhomogeneous, and shifted from the present location of the binary system by a distance comparable to the radius of the nebula.

  20. The identification of the optical companion to the binary millisecond pulsar J0610-2100 in the Galactic field

    CERN Document Server

    Pallanca, C; Dalessandro, E; Ferraro, F R; Lanzoni, B; Possenti, A; Burgay, M; Sabbi, E

    2012-01-01

    We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary pulsar PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Telescope in the Galactic plane. We found a faint star (V~26.7) nearly coincident (\\delta r ~0".28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best seeing conditions), thus indicating that it is variable. Although our observations do not sample the entire orbital period (P=0.28 d) of the pulsar, we found that the optical modulation of the variable star nicely correlates with the pulsar orbital period and describes a well defined peak (R~25.6) at \\Phi=0.75, suggesting a modulation due to the pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is a heavily ablated very low mass star (~ 0.02Msun) that completely filled its Roche Lobe.

  1. SCINTILLATION ARCS IN LOW-FREQUENCY OBSERVATIONS OF THE TIMING-ARRAY MILLISECOND PULSAR PSR J0437–4715

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; McSweeney, S. J.; Tingay, S. J. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia)

    2016-02-10

    Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz reveal a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.

  2. Constraining the Bulk Properties of Dense Matter by Measuring Millisecond Pulsar Masses - A White Paper for the Astronomy and Astrophysics Decadal Survey, CFP Panel

    CERN Document Server

    Freire, Paulo C; Lattimer, James; Stairs, Ingrid; Arzoumanian, Zaven; Cordes, James; Deneva, Julia

    2009-01-01

    More than four decades after the discovery of pulsars, the composition of matter at their cores is still a mystery. This white paper summarizes how recent high-precision measurements of millisecond pulsar masses have introduced new experimental constraints on the properties of super-dense matter, and how continued timing of intriguing new objects, coupled with radio telescope surveys to discover more pulsars, might introduce significantly more stringent constraints.

  3. Observation of the black widow B1957+20 millisecond pulsar binary system with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; De Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Gozzini, S. R.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; MAGIC Collaboration; Cognard, I.; Guillemot, L.

    2017-10-01

    B1957+20 is a millisecond pulsar located in a black-widow-type compact binary system with a low-mass stellar companion. The interaction of the pulsar wind with the companion star wind and/or the interstellar plasma is expected to create plausible conditions for acceleration of electrons to TeV energies and subsequent production of very high-energy γ-rays in the inverse Compton process. We performed extensive observations with the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) telescopes of B1957+20. We interpret results in the framework of a few different models, namely emission from the vicinity of the millisecond pulsar, the interaction of the pulsar and stellar companion wind region or bow shock nebula. No significant steady very high-energy γ-ray emission was found. We derived a 95 per cent confidence level upper limit of 3.0 × 10-12 cm-2 s-1 on the average γ-ray emission from the binary system above 200 GeV. The upper limits obtained with the MAGIC constrain, for the first time, different models of the high-energy emission in B1957+20. In particular, in the inner mixed wind nebula model with mono-energetic injection of electrons, the acceleration efficiency of electrons is constrained to be below ˜2-10 per cent of the pulsar spin-down power. For the pulsar emission, the obtained upper limits for each emission peak are well above the exponential cut-off fits to the Fermi-LAT data, extrapolated to energies above 50 GeV. The MAGIC upper limits can rule out a simple power-law tail extension through the sub-TeV energy range for the main peak seen at radio frequencies.

  4. Estimating the GeV Emission of Millisecond Pulsars in Dwarf Spheroidal Galaxies

    CERN Document Server

    Winter, Miles; Bechtol, Keith; Vandenbroucke, Justin

    2016-01-01

    We estimate the conventional astrophysical emission intrinsic to dwarf spheroidal satellite galaxies (dSphs) of the Milky Way, focusing on millisecond pulsars (MSPs), and evaluate the potential for confusion with dark matter (DM) annihilation signatures at GeV energies. In low-density stellar environments, such as dSphs, the abundance of MSPs is expected to be proportional to stellar mass. Accordingly, we construct the $\\gamma$-ray luminosity function of MSPs in the Milky Way disk, where $>90$ individual MSPs have been detected with the $\\textit{Fermi}$ Large Area Telescope (LAT), and scale this luminosity function to the stellar masses of 30 dSphs to estimate the cumulative emission from their MSP populations. We predict that MSPs in the highest stellar mass dSphs, Fornax and Sculptor, produce a $\\gamma$-ray flux $>500$ MeV of $\\sim10^{-11}$~ph~cm$^{-2}$~s$^{-1}$, which is a factor $\\sim10$ below the current LAT sensitivity at high Galactic latitudes. The MSP emission in ultra-faint dSphs, including targets ...

  5. Millisecond Pulsars as Probes of Mass Segregation in the Galactic Center

    CERN Document Server

    Chaname, J; Chaname, Julio; Gould, Andrew

    2002-01-01

    We propose a simple test for the existence of a cluster of black hole remnants around Sgr A* that is based on a small sample of any type of Galactic Center objects, provided they are substantially less massive than the black holes and constitute part of an old (> 1 Gyr) population. The test relies on the fact that, under the presence of such a cluster of heavy remnants and because of energy equipartition, lower mass objects would be expelled from the central regions and settle into a distribution very different than the cusp expected to be induced by the supermassive black hole alone. We show that with a sample of just 50 objects and using only their angular positions on the sky relative to Sgr A* it is possible to clearly differentiate between a distribution consistent with the presence of the cluster of black holes and a power-law cusp distribution. We argue that millisecond pulsars might currently be the best candidate to perform this test, because of the large uncertainties involved in the age determinati...

  6. An eccentric binary millisecond pulsar with a helium white dwarf companion in the Galactic Field

    CERN Document Server

    Antoniadis, John; Stovall, Kevin; Freire, Paulo C; Deneva, Julia S; Koester, Detlev; Jenet, Frederick; Martinez, Jose

    2016-01-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the Universe is not yet old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant host systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of a LMWD in an eccentric (e=0.13) orbit with a millisecond pulsar, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature T_eff = 8600 +/- 190 K) and 3D systemic velocity (179.5 km\\s). We also place model-independent constraints on the WD radius (R_WD = 0.024+/- 0.004/0.002 R_sun) and surface gravity (log g = 7.11 +/- 0.08/0.16 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavour a three-body formation channel. In the case of the high eccentricity being the result of a spontaneou...

  7. High-fidelity radio astronomical polarimetry using a millisecond pulsar as a polarized reference source

    CERN Document Server

    van Straten, W

    2012-01-01

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long time scales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semi-major axis, the precession of periastron, and the Shapiro delay; it al...

  8. A millisecond pulsar candidate in a 21-hr orbit: 3FGL J0212.1+5320

    CERN Document Server

    Linares, Manuel; Rodríguez-Gil, Pablo; Shahbaz, Tariq; Casares, Jorge; Fariña, Cecilia; Karjalainen, Raine

    2016-01-01

    We present the discovery of a variable optical counterpart to the unidentified gamma-ray source 3FGL J0212.1+5320, and argue this is a new compact binary millisecond pulsar (MSP) candidate. We show 3FGL J0212.1+5320 hosts a semi-detached binary with a 0.86955$\\pm$0.00015 d orbital period and a F6-type companion star at an estimated distance of D=1.1$\\pm$0.2 kpc, with a radial velocity curve semi-amplitude K$_2$=214.1$\\pm$5.0 km s$^{-1}$ and a projected rotational velocity of Vsin(i)=73.2$\\pm$1.6 km s$^{-1}$. We find a hard X-ray source at the same location with a 0.5$-$10 keV luminosity L$_\\mathrm{X}$=2.6$\\times$10$^{32}$ (D/1.1 kpc)$^2$ erg s$^{-1}$, which strengthens the MSP identification. Our results imply a mass ratio q=M$_2$/M$_1$=0.26$^{+0.02}_{-0.03}$ if the companion star fills its Roche lobe, and q$\\gtrsim$0.23 in any case. This classifies 3FGL J0212.1+5320 as a "redback" binary MSP; if its MSP nature is confirmed, this will be the brightest compact binary MSP in the optical band (r'$\\simeq$14.3 mag...

  9. Low-Mass X-Ray Binaries, Millisecond Radio Pulsars, and the Cosmic Star Formation Rate

    CERN Document Server

    White, N E; White, Nicholas E.; Ghosh, Pranab

    1998-01-01

    We report on the implications of the peak in the cosmic star-formation rate (SFR) at redshift z ~ 1.5 for the resulting population of low-mass X-ray binaries(LMXB) and for that of their descendants, the millisecond radio pulsars (MRP). Since the evolutionary timescales of LMXBs, their progenitors, and their descendants are thought be significant fractions of the time-interval between the SFR peak and the present epoch, there is a lag in the turn-on of the LMXB population, with the peak activity occurring at z ~ 0.5 - 1.0. The peak in the MRP population is delayed further, occurring at z < 0.5. We show that the discrepancy between the birthrate of LMXBs and MRPs, found under the assumption of a stead-state SFR, can be resolved for the population as a whole when the effects of a time-variable SFR are included. A discrepancy may persist for LMXBs with short orbital periods, although a detailed population synthesis will be required to confirm this. Further, since the integrated X-ray luminosity distribution of...

  10. Discovery of an ultracompact gamma-ray millisecond pulsar binary candidate

    CERN Document Server

    Kong, A K H; Hui, C Y; Tam, P H T; Hu, C P; Takata, J; Lin, L C C; Cheng, K S; Yen, T -C; Park, S M; Kim, C L

    2014-01-01

    We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observation, we have identified an X-ray and optical counterpart of 2FGL J1653.6-0159. The source exhibits a periodic modulation of 74.93 min in optical and possibly also in X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 74.93 min. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black widow/redback type gamma-ray millisecond pulsar (MSP). The optical and X-ray lightcurve profile shows that the companion is mildly heated by the high-energy emission and the X-rays are from intrabinary shock. Although no radio pulsation has been detected yet, we estimated that the spin period of the MSP is ~2 ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.

  11. The millisecond pulsar mass distribution: Evidence for bimodality and constraints on the maximum neutron star mass

    CERN Document Server

    Antoniadis, John; Ozel, Feryal; Barr, Ewan; Champion, David J; Freire, Paulo C C

    2016-01-01

    The mass function of neutron stars (NSs) contains information about the late evolution of massive stars, the supernova explosion mechanism, and the equation-of-state of cold, nuclear matter beyond the nuclear saturation density. A number of recent NS mass measurements in binary millisecond pulsar (MSP) systems increase the fraction of massive NSs (with $M > 1.8$ M$_{\\odot}$) to $\\sim 20\\% $ of the observed population. In light of these results, we employ a Bayesian framework to revisit the MSP mass distribution. We find that a single Gaussian model does not sufficiently describe the observed population. We test alternative empirical models and infer that the MSP mass distribution is strongly asymmetric. The diversity in spin and orbital properties of high-mass NSs suggests that this is most likely not a result of the recycling process, but rather reflects differences in the NS birth masses. The asymmetry is best accounted for by a bimodal distribution with a low mass component centred at $1.393_{-0.029}^{+0.0...

  12. Evidence for Magneto-Levitation Accretion in Long-Period X-ray Pulsars

    CERN Document Server

    Ikhsanov, Nazar; Likh, Yury

    2014-01-01

    Study of observed spin evolution of long-period X-ray pulsars challenges quasi-spherical and Keplerian disk accretion scenarios. It suggests that the magnetospheric radius of the neutron stars is substantially smaller than Alfven radius and the spin-down torque applied to the star from accreting material significantly exceeds the value predicted by the theory. We show that these problems can be avoided if the fossil magnetic field of the accretion flow itself is incorporated into the accretion model. The initially spherical flow in this case decelerates by its own magnetic field and converts into a non-Keplerian disk (magnetic slab) in which the material is confined by its intrinsic magnetic field ("levitates") and slowly moves towards the star on a diffusion timescale. Parameters of pulsars expected within this magneto-levitation accretion scenario are evaluated.

  13. The Identification of the Optical Companion to the Binary Millisecond Pulsar J0610-2100 in the Galactic Field

    Science.gov (United States)

    Pallanca, C.; Mignani, R. P.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.; Possenti, A.; Burgay, M.; Sabbi, E.

    2012-08-01

    We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Space Telescope in the Galactic plane. We found a faint star (V ~ 26.7) nearly coincident (δr ~ 0farcs28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best-seeing conditions), thus indicating that it is variable. Although our observations do not sample the entire orbital period (P = 0.28 days) of the pulsar, we found that the optical modulation of the variable star nicely correlates with the pulsar orbital period and describes a well-defined peak (R ~ 25.6) at Φ = 0.75, suggesting a modulation due to the pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is a heavily ablated very low mass star (≈0.02 M ⊙) that completely filled its Roche lobe.

  14. A 24-Hour Global Campaign To Assess Precision Timing of the Millisecond Pulsar J1713+0747

    CERN Document Server

    Dolch, T; Cordes, J M; Chatterjee, S; Bassa, C; Bhattacharyya, B; Champion, D J; Cognard, I; Crowter, K; Demorest, P B; Hessels, J W T; Janssen, G H; Jenet, F A; Jones, G; Jordan, C; Karuppusamy, R; Keith, M; Kondratiev, V I; Kramer, M; Lazarus, P; Lazio, T J W; Lee, K J; McLaughlin, M A; Roy, J; Shannon, R M; Stairs, I H; Stovall, K; Verbiest, J P W; Madison, D R; Palliyaguru, N; Perrodin, D; Ransom, S M; Stappers, B W; Zhu, W W; Dai, S; Desvignes, G; Guillemot, L; Liu, K; Lyne, A G; Perera, B B P; Petroff, E; Rankin, J M; Smits, R

    2014-01-01

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky, and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array collaboration undertook a 24-hour global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1 - 24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nancay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized root-N improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the S/N of single pulses exceeds unity, as measured using the eight telescopes that ob...

  15. A 24 hr global campaign to assess precision timing of the millisecond pulsar J1713+0747

    Energy Technology Data Exchange (ETDEWEB)

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Bassa, C.; Hessels, J. W. T.; Janssen, G.; Kondratiev, V. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Bhattacharyya, B.; Jordan, C.; Keith, M. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Champion, D. J.; Karuppusamy, R.; Kramer, M.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace, LPC2E UMR 6115 CNRS, F-45071 Orléans Cedex 02, and Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay (France); Crowter, K. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, P. B. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Jenet, F. A. [Center for Advanced Radio Astronomy, University of Texas, Rio Grande Valley, Brownsville, TX 78520 (United States); Jones, G., E-mail: tdolch@astro.cornell.edu [Columbia Astrophysics Laboratory, Columbia University, NY 10027 (United States); and others

    2014-10-10

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized √N improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  16. Radio emission from Sgr A*: pulsar transits through the accretion disc

    Science.gov (United States)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ∼ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ∼ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  17. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Esposito, Paolo [INAF-IASF Milano, via East Bassini 15, I-20133 Milano (Italy); Crawford III, Fronefield [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Possenti, Andrea [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); McLaughlin, Maura A. [Department of Physics and Astronomy, West Virginia University, 210E Hodges Hall, Morgantown, WV 26506 (United States); Freire, Paulo, E-mail: slavko@astro.columbia.edu [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany)

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  18. The NANOGrav Nine-year Data Set: Observations, Arrival Time Measurements, and Analysis of 37 Millisecond Pulsars

    CERN Document Server

    Arzoumanian, Z; Burke-Spolaor, S; Chamberlin, S; Chatterjee, S; Christy, B; Cordes, J M; Cornish, N; Crowter, K; Demorest, P B; Dolch, T; Ellis, J A; Ferdman, R D; Fonseca, E; Garver-Daniels, N; Gonzalez, M E; Jenet, F A; Jones, G; Jones, M; Kaspi, V M; Koop, M; Lazio, T J W; Lam, M T; Levin, L; Lommen, A N; Lorimer, D R; Luo, J; Lynch, R S; Madison, D; McLaughlin, M A; McWilliams, S T; Nice, D J; Palliyaguru, N; Pennucci, T T; Ransom, S M; Siemens, X; Stairs, I H; Stinebring, D R; Stovall, K; Swiggum, J K; Vallisneri, M; van Haasteren, R; Wang, Y; Zhu, W

    2015-01-01

    We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for time-correlated "red" signals in 10 of the pulsars. Subsequent papers in this series will present further analysis of this data set aimed at detecting o...

  19. A LIKELY MILLISECOND PULSAR BINARY COUNTERPART FOR FERMI SOURCE 2FGL J2039.6–5620

    Energy Technology Data Exchange (ETDEWEB)

    Romani, Roger W., E-mail: rwr@astro.stanford.edu [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States)

    2015-10-20

    We have identified an optical/X-ray binary with an orbital period of P{sub b} = 5.47 hr as the likely counterpart of the Fermi source 2FGL J2039.6−5620. GROND, SOAR, and DES observations provide an accurate orbital period and allow us to compare to the light curve of an archival XMM exposure. Like many short-period optical/X-ray binaries associated with Large Area Telescope sources, this may be an interacting (black widow/redback) millisecond pulsar binary. The X-ray light curve is consistent with the emission associated with an intrabinary shock. The optical light curve shows evidence of companion heating, but has a peculiar asymmetric double peak. The nature of this optical structure is not yet clear; additional optical studies and, in particular, detection of an orbital modulation in a γ-ray pulsar are needed to elucidate the nature of this peculiar source.

  20. Optical counterparts of two Fermi millisecond pulsars: PSR J1301+0833 and PSR J1628–3205

    Energy Technology Data Exchange (ETDEWEB)

    Li, Miao; Halpern, Jules P. [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Thorstensen, John R., E-mail: miao@astro.columbia.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)

    2014-11-10

    Using the 1.3 m and 2.4 m Telescopes of the MDM Observatory, we identified the close companions of two eclipsing millisecond radio pulsars that were discovered by the Green Bank Telescope in searches of Fermi Gamma-ray Space Telescope sources, and measured their light curves. PSR J1301+0833 is a black widow pulsar in a 6.5 hr orbit whose companion star is strongly heated on the side facing the pulsar. It varies from R = 21.8 to R > 24 around the orbit. PSR J1628–3205 is a 'redback', a nearly Roche-lobe-filling system in a 5.0 hr orbit whose optical modulation in the range 19.0 < R < 19.4 is dominated by strong ellipsoidal variations, indicating a large orbital inclination angle. PSR J1628–3205 also shows evidence for a long-term variation of about 0.2 mag, and an asymmetric temperature distribution possibly due to either off-center heating by the pulsar wind, or large starspots. Modeling of its light curve restricts the inclination angle to i > 55°, the mass of the companion to 0.16 < M{sub c} < 0.30 M {sub ☉}, and the effective temperature to 3560 < T {sub eff} < 4670 K. As is the case for several redbacks, the companion of PSR J1628–3205 is less dense and hotter than a main-sequence star of the same mass.

  1. A Shapiro delay detection in the binary system hosting the millisecond pulsar PSR J1910-5959A

    CERN Document Server

    Corongiu, A; Possenti, A; Camilo, F; D'Amico, N; Lyne, A G; Manchester, R N; Sarkissian, J M; Bailes, M; Johnston, S; Kramer, M; van Straten, W

    2012-01-01

    PSR J1910-5959A is a binary pulsar with a helium white dwarf companion located about 6 arcmin from the center of the globular cluster NGC6752. Based on 12 years of observations at the Parkes radio telescope, the relativistic Shapiro delay has been detected in this system. We obtain a companion mass Mc = 0.180+/-0.018Msun (1sigma) implying that the pulsar mass lies in the range 1.1Msun <= Mp <= 1.5Msun. We compare our results with previous optical determinations of the companion mass, and examine prospects for using this new measurement for calibrating the mass-radius relation for helium white dwarfs and for investigating their evolution in a pulsar binary system. Finally we examine the set of binary systems hosting a millisecond pulsar and a low mass helium white dwarf for which the mass of both stars has been measured. We confirm that the correlation between the companion mass and the orbital period predicted by Tauris & Savonije reproduces the observed values but find that the predicted Mp - Pb co...

  2. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M. /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, M.; /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2011-11-17

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  3. Millisecond and Binary Pulsars as Nature's Frequency Standards; 3, Fourier Analysis and Spectral Sensitivity of Timing Observations to Low-Frequency Noise

    CERN Document Server

    Kopeikin, S M; Kopeikin, Sergei M.; Potapov, Vladimir A.

    1998-01-01

    Millisecond and binary pulsars are the most stable natural frequency standards which admits to introduce modified versions of universal and ephemeris time scales based correspondingly on the intrinsic rotation of pulsar and on its orbital motion around barycenter of a binary system. Measured stability of these time scales depends on numerous physical phenomena which affect rotational and orbital motion of the pulsar and observer on the Earth, perturb propagation of electromagnetic pulses from pulsar to the observer and bring about random fluctuations in the rate of atomic clock used as a primary time reference in timing observations. On the long time intervals the main reason for the instability of the pulsar time scales is the presence of correlated, low-frequency timing noise in residuals of times of arrivals (TOA) of pulses from the pulsar which has both astrophysical and geophysical origin. Hence, the timing noise can carry out the important physical information about interstellar medium, interior structu...

  4. Looking into the Theory of Pulsar Accretion: Cen X-3 and XTE J1946+274

    CERN Document Server

    Marcu, Diana M; Gottlieb, Amy M; Wolff, Michael T; Becker, Peter A; Wilms, Joern; Ferrigno, Carlo; Wood, Kent S

    2015-01-01

    This is an overview of pulsar accretion modeling. The physics of pulsar accretion, i.e., the process of plasma flow onto the neutron star surface, can be constrained from the spectral properties of the X-ray source. We discuss a new implementation of the physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435). The model incorporates Comptonized blackbody, bremsstrahlung, and cyclotron emission. We discuss preliminary results of applying the new tool to the test cases of Suzaku data of Cen X-3 and XTE J1946+274. Cen X-3 is a persistent accreting pulsar with an O-star companion observed during a bright period. XTE J1946+274 is a transient accreting pulsar with a Be companion observed during a dim period. Both sources show spectra that are well described with an empirical Fermi Dirac cutoff power law model. We extend the spectral analysis by making the first steps towards a physical description of Cen X-3 and XTE J1946+274.

  5. Ionization Break-Out from Millisecond Pulsar Wind Nebulae: an X-ray Probe of the Origin of Superluminous Supernovae

    CERN Document Server

    Metzger, Brian D; Hascoet, Romain; Beloborodov, Andrei M

    2013-01-01

    Magnetic spin-down of a millisecond neutron star has been proposed as the power source of hydrogen-poor "superluminous" supernovae (SLSNe-I). However, producing an unambiguous test that can distinguish this model from alternatives, such as circumstellar interaction, has proven challenging. After the supernova explosion, the pulsar wind inflates a hot cavity behind the expanding stellar ejecta: the nascent millisecond pulsar wind nebula. Electron/positron pairs injected by the wind cool through inverse Compton scattering and synchrotron emission, producing a pair cascade and hard X-ray spectrum inside the nebula. These X-rays ionize the inner exposed side of the ejecta, driving an ionization front that propagates outwards with time. Under some conditions this front can breach the ejecta surface within months after the optical supernova peak, allowing ~0.1-1 keV photons to escape the nebula unattenuated with a characteristic luminosity L_X ~ 1e43-1e45 erg/s. This "ionization break-out" may explain the luminous ...

  6. The High Time Resolution Universe Pulsar Survey X: Discovery of four millisecond pulsars and updated timing solutions of a further 12

    CERN Document Server

    Ng, C; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Champion, D J; Coster, P; Johnston, S; Keith, M J; Kramer, M; Levin, L; Petroff, E; Possenti, A; Stappers, B W; van Straten, W; Thornton, D; Tiburzi, C; Bassa, C G; Freire, P C C; Guillemot, L; Lyne, A G; Tauris, T M; Shannon, R M; Wex, N

    2014-01-01

    We report on the discovery of four millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) pulsar survey being conducted at the Parkes 64-m radio telescope. All four MSPs are in binary systems and are likely to have white dwarf companions. In addition, we present updated timing solutions for 12 previously published HTRU MSPs, revealing new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017-7156. We discuss the case of PSR J1801-3210, which shows no significant period derivative after four years of timing data. Our best-fit solution shows a period derivative of the order of $10^{-23}$, an extremely small number compared to that of a typical MSP. However, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic period derivative is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801-3210 in the strong equivale...

  7. Hubble Space Telescope Detection of the Millisecond Pulsar J2124-3358 and its Far-ultraviolet Bow Shock Nebula

    Science.gov (United States)

    Rangelov, B.; Pavlov, G. G.; Kargaltsev, O.; Reisenegger, A.; Guillot, S.; van Kerkwijk, M. H.; Reyes, C.

    2017-02-01

    We observed the nearby millisecond pulsar J2124–3358 with the Hubble Space Telescope in broad far-UV (FUV) and optical filters. The pulsar is detected in both bands with fluxes F(1250–2000 Å) = (2.5 ± 0.3) × 10‑16 erg s‑1 cm‑2 and F(3800–6000 Å) = (6.4 ± 0.4) × 10‑17 erg s‑1 cm‑2, which corresponds to luminosities of ≈5.8 × 1027 and 1.4 × 1027 erg s‑1, for d = 410 pc and E(B ‑ V) = 0.03. The optical-FUV spectrum can be described by a power-law model, {f}ν \\propto {ν }α , with slope α = 0.18–0.48 for a conservative range of color excess, E(B ‑ V) = 0.01–0.08. Since a spectral flux rising with frequency is unusual for pulsar magnetospheric emission in this frequency range, it is possible that the spectrum is predominantly magnetospheric (power law with α neutron star surface in the FUV. For a neutron star radius of 12 km, the surface temperature would be between 0.5 × 105 and 2.1 × 105 K for α ranging from ‑1 to 0, E(B ‑ V) = 0.01–0.08, and d = 340–500 pc. In addition to the pulsar, the FUV images reveal extended emission that is spatially coincident with the known Hα bow shock, making PSR J2124–3358 the second pulsar (after PSR J0437‑4715) with a bow shock detected in the FUV.

  8. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  9. A Search for Gamma-ray Emission from Wind-Wind Interactions in Black Widow and Redback Millisecond Pulsars

    Science.gov (United States)

    Johnson, Tyrel J.; Ray, Paul S.; Camilo, Fernando M.; Roberts, Mallory S. E.; Fermi Large Area Telescope Collaboration

    2015-01-01

    Recent radio surveys, particularly those targeting unassociated Fermi Large Area Telescope (LAT) sources with pulsar-like characteristics, have greatly increased the number of known millisecond pulsars (MSPs) in binary systems with short orbital periods (less than a day) and low-mass companions (of order 0.2 Solar masses for redbacks and less than 0.08 Solar masses for black widows). These systems are likely laboratories for studying wind-wind interactions, and we here describe a search for unpulsed gamma-ray emission, possibly arising from these interactions, in the off-peak intervals. We will also search the off-peak and phase-averaged data for evidence of modulation at the orbital periods, correcting for exposure variations, and stack the off-peak intervals in the event that the emission is below threshold in any given source. Studying this emission will allow us to better understand the pulsar wind and how these systems evolve. Portions of this research performed at the US Naval Research Laboratory are sponsored by NASA DPR S-15633-Y and Fermi GO proposal 061103.

  10. The Nearest Millisecond Pulsar Revisited with XMM-Newton: Improved Mass-Radius Constraints for PSR J0437-4715

    CERN Document Server

    Bogdanov, Slavko

    2012-01-01

    I present an analysis of the deepest X-ray exposure of a radio millisecond pulsar (MSP) to date, an X-ray Multi Mirror-Newton European Photon Imaging Camera spectroscopic and timing observation of the nearest known MSP, PSR J0437--4715. The timing data clearly reveal a secondary broad X-ray pulse offset from the main pulse by $\\sim$0.55 in rotational phase. In the context of a model of surface thermal emission from the hot polar caps of the neutron star, this can be plausibly explained by a magnetic dipole field that is significantly displaced from the stellar center. Such an offset, if commonplace in MSPs, has important implications for studies of the pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic ray positrons. The continuum emission shows evidence for at least three thermal components, with the hottest radiation most likely originating from the hot magnetic polar caps and the cooler emission from the bulk of the surface. I present pulse phase-resolved X-ray spectrosco...

  11. Scintillation arcs in low-frequency observations of the timing-array millisecond pulsar J0437-4715

    CERN Document Server

    Bhat, N D R; Tremblay, S E; McSweeney, S J; Tingay, S J

    2015-01-01

    Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar J0437-4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs, akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz reveal a similar parabolic feature, with a curvature that scales approximately as the square of the observing wavelength ($\\lambda^2$) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437-4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected l...

  12. Timing, polarimetry and physics of the bright, nearby millisecond pulsar PSR J0437-4715 - a single-pulse perspective

    CERN Document Server

    Osłowski, S; Bailes, M; Jameson, A; Hobbs, G

    2014-01-01

    Single pulses from radio pulsars contain a wealth of information about emission and propagation in the magnetosphere and insight into their timing properties. It was recently demonstrated that single-pulse emission is responsible for limiting the timing stability of the brightest of millisecond pulsars. We report on an analysis of more than a million single-pulses from PSR J0437-4715 and present various statistical properties such as the signal-to-noise ratio (S/N) distribution, timing and polarimetry of average profiles integrated from subpulses with chosen S/N cut-offs, modulation properties of the emission, phase-resolved statistics of the S/N, and two dimensional spherical histograms of the polarization vector orientation. The last of these indicates the presence of orthogonally polarised modes (OPMs). Combined with the dependence of the polarisation fraction on the S/N and polarimetry of the brightest pulses, the existence of OPMs constrains pulsar emission mechanisms and models for the plasma physics in...

  13. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    Science.gov (United States)

    Laycock, Silas; Yang, Jun; Christodoulou, Dimitris; Coe, Malcolm; Cappallo, Rigel; Zezas, Andreas; Ho, Wynn C. G.; Hong, JaeSub; Fingerman, Samuel; Drake, Jeremy J.; Kretschmar, Peter; Antoniou, Vallia

    2017-08-01

    We present our multi-satellite library of X-ray Pulsar observations to the community, and highlight recent science results. Available at www.xraypulsars.space the library provides a range of high-level data products, including: activity histories, pulse-profiles, phased event files, and a unique pulse-profile modeling interface. The initial release (v1.0) contains some 15 years of RXTE-PCA, Chandra ACIS-I, and XMM-PN observations of the Small Magellanic Cloud, creating a valuable record of pulsar behavior. Our library is intended to enable new progress on fundamental NS parameters and accretion physics. The major motivations are (1) Assemble a large homogeneous sample to enable population statistics. This has so far been used to map the propeller transition, and explore the role of retrograde and pro-grade accretion disks. (2) Obtain pulse-profiles for the same pulsars on many different occasions, at different luminosities and states in order to break model degeneracies. This effort has led to preliminary measurements of the offsets between magnetic and spin axes. With the addition of other satellites, and Galactic pulsars, the library will cover the entire available range of luminosity, variability timescales and accretion regimes.

  14. Application of a physical continuum model to recent X-ray observations of accreting pulsars

    Science.gov (United States)

    Marcu-Cheatham, Diana Monica; Pottschmidt, Katja; Wolff, Michael Thomas; Becker, Peter A.; Wood, Kent S.; Wilms, Joern; Britton Hemphill, Paul; Gottlieb, Amy; Fuerst, Felix; Schwarm, Fritz-Walter; Ballhausen, Ralf

    2016-04-01

    We present a uniform spectral analysis in the 0.5-50 keV energy range of a sample of accreting pulsars by applying an empirical broad-band continuum cut-off power-law model. We also apply the newly implemented physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435) to a number of high-luminosity sources. The X-ray spectral formation process in this model consists of the Comptonization of bremsstrahlung, cyclotron, and black body photons emitted by the hot, magnetically channeled, accreting plasma near the neutron star surface. This model describes the spectral formation in high-luminosity accreting pulsars, where the dominant deceleration mechanism is via a radiation-dominated radiative shock. The resulting spectra depend on five physical parameters: the mass accretion rate, the radius of the accretion column, the electron temperature and electron scattering cross-sections inside the column, and the magnetic field strength. The empirical model is fitted to Suzaku data of a sample of high-mass X-ray binaries covering a broad luminosity range (0.3-5 x 10 37 erg/s). The physical model is fitted to Suzaku data from luminous sources: LMC X-4, Cen X-3, GX 304-1. We compare the results of the two types of modeling and summarize how they can provide new insight into the process of accretion onto magnetized neutron stars.

  15. A new model for the X-ray continuum of the magnetized accreting pulsars

    CERN Document Server

    Farinelli, R; Bozzo, E; Becker, P A

    2016-01-01

    Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high statistical quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models, rather than models linked to the physics of accretion. In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku+NuStar data, together with an advanced version of the compmag model. The latter provides a physical description of the high energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been impr...

  16. Discovery of a millisecond pulsar in the 5.4 day binary 3FGL J1417.5-4402: observing the late phase of pulsar recycling

    CERN Document Server

    Camilo, F; Ransom, S M; Halpern, J P; Bogdanov, S; Kerr, M; Ray, P S; Cordes, J M; Sarkissian, J; Barr, E D; Ferrara, E C

    2016-01-01

    In a search of the unidentified Fermi gamma-ray source 3FGL J1417.5-4402 with the Parkes radio telescope, we discovered PSR J1417-4402, a 2.66 ms pulsar having the same 5.4 day orbital period as the optical and X-ray binary identified by Strader et al. The existence of radio pulsations implies that the neutron star is currently not accreting. Substantial outflows from the companion render the radio pulsar undetectable for more than half of the orbit, and may contribute to the observed Halpha emission. Our initial pulsar observations, together with the optically inferred orbit and inclination, imply a mass ratio of 0.171+/-0.002, a companion mass of M_2=0.33+/-0.03 Msun, and a neutron star mass in the range 1.77

  17. Millisecond Pulsars in the Galactic Bulge? An Extended Discussion on the Wavelet Analysis of the Fermi-LAT data

    Science.gov (United States)

    Bartels, Richard; Weniger, Christoph

    2017-01-01

    A clear excess in the Fermi-LAT data is present at energies around a few GeV. The spectrum of this so-called 'GeV excess' is remarkably similar to the expected annihilation signal of WIMP dark matter. However, a large bulge population of millisecond pulsars living below the Fermi-LAT detection threshold could also explain the excess spectrum. In a recent work we optimized the search for sub-threshold sources, by applying a wavelet transform to the Fermi-LAT gamma-ray data. In the Inner-Galaxy the wavelet signal is significantly enhanced, providing supportive evidence for the point source interpretation of the excess. In these proceedings we will extent our previous work with a spectral analysis and elaborate on the potential contamination from substructures in the gas.

  18. Non-thermal emissions from accreting X-ray binary pulsars

    Science.gov (United States)

    Zhang, Jian-Fu; Jin, Hui; Dong, Ai-Jun

    2014-03-01

    We study non-thermal emissions from cascade processes in accreting X-ray binary pulsars. In the framework of the magnetospheric gap model, we consider three photon fields, which are respectively from the polar cap of a pulsar, its surrounding accretion disk and a massive companion star with a circumstellar disk, to shield the gap. The gap-accelerated ultra-relativistic electrons emit high-energy photons via curvature radiation and an inverse Compton scattering process, in which part of these high-energy photons absorbed by interactions with the surrounding photon fields can facilitate the following electromagnetic cascades. We first carry out numerical calculations of the cascade processes in order to obtain the predicted emission spectra. As an example, we subsequently apply this model to reproduce observations of LS I +61° 303. We find that the results can fit observations ranging from hard X-ray to γ-ray bands. In particular, they can explain the spectral cutoff feature at a few GeV. Finally, we suggest that the emissions detected by the Fermi Large Area Telescope from X-ray binary pulsars originate in the magnetosphere region of the pulsar.

  19. Thermonuclear Burning on the Accreting X-Ray Pulsar GRO J1744-28

    CERN Document Server

    Bildsten, L; Bildsten, Lars; Brown, Edward F.

    1996-01-01

    We investigate the thermal stability of nuclear burning on the accreting X-ray pulsar GRO J1744-28. The neutron star's dipolar magnetic field is 50 years. We also discuss the nature of the binary and point out that a velocity measurement of the stellar companion (most likely a Roche-lobe filling giant with m_K>17) will constrain the neutron star mass.

  20. Timing and Spectroscopy of Accreting X-ray Pulsars: the State of Cyclotron Line Studies

    CERN Document Server

    Heindl, W A; Coburn, W; Staubert, R; Wilms, J; Kreykenbohm, I; Kretschmar, P

    2004-01-01

    A great deal of emphasis on timing in the RXTE era has been on pushing toward higher and higher frequency phenomena, particularly kHz QPOs. However, the large areas of the RXTE pointed instruments provide another capability which is key for the understanding of accreting X-ray pulsars -- the ability to accumulate high quality spectra in a limited observing time. For the accreting X-ray pulsars, with their relatively modest spin frequencies, this translates into an ability to study broad band spectra as a function of pulse phase. This is a critical tool, as pulsar spectra are strong functions of the geometry of the "accretion mound" and the observers' viewing angle to the ~10^12 G magnetic field. In particular, the appearance of "cyclotron lines" is sensitively dependent on the viewing geometry, which must change with the rotation of the star. These spectral features, seen in only a handful of objects, are quite important, as they give us our only direct measure of neutron star magnetic fields. Furthermore, th...

  1. Modeling the Effect of Kick Velocity during the Accretion Induced Collapse of White Dwarfs on Binary Pulsars

    Science.gov (United States)

    Taani, Ali

    2016-07-01

    The kick velocity which arises during the binary interaction plays an important role in disruption or surviving the binary systems. This paper attempts to draw an evolutionary connection of the long-period (Porb ≥ 2 d) millisecond pulsars (MSPs) with orbits of low eccentricity (e ≤ 0.2). We propose that a kick velocity caused by dynamical effects of asymmetric collapse imparted to the companion star through an accretion induced collapse (AIC) of white dwarfs-that become unstable once they approach the Chandrasekhar limit-can account for the differences in their orbital period distributions. Furthermore, in some cases, an appropriate kick can disrupt the binary system and result in the birth of isolated MSPs. Otherwise, the binary survives and an eccentric binary MSP is formed. In this case only the binding energy equivalent (0.2M⊙) of mass is lost and the system remains intact in a symmetric collapse. Consequently, the AIC decreases the mass of the neutron star and increases the orbital period leading to orbit circularization. We present the results of our model and discuss the possible implications for the binary MSPs in galactic disk and globular clusters.

  2. Discovery of the INTEGRAL X/Gamma-ray transient IGR J00291+5934: a Comptonised accreting ms pulsar ?

    CERN Document Server

    Shaw, S E; Rodríguez, J; Ubertini, P; Capitanio, F; Ebisawa, K; Eckert, D; Courvoisier, Thierry L; Produit, N; Walter, R; Falanga, M

    2005-01-01

    We report the discovery of a high-energy transient with the IBIS/ISGRI detector on board the INTEGRAL observatory. The source, namely IGR J00291+5934, was first detected on 2nd December 2004 in the routine monitoring of the IBIS/ISGRI 20--60 keV images. The observations were conducted during Galactic Plane Scans, which are a key part of the INTEGRAL Core Programme observations. After verifying the basic source behaviour, the discovery was announced on 3rd December. The transient shows a hard Comptonised spectrum, with peak energy release at about 20 keV and a total luminosity of ~ 0.9E36 erg/s in the 5--100 keV range, assuming a distance of 3 kpc. Following the INTEGRAL announcement of the discovery of IGR J00291+5934, a number of observations were made by other instruments. We summarise the results of those observations and, together with the INTEGRAL data, identifiy IGR J00291+5934 as the 6th member of a class of accreting X-ray millisecond pulsars.

  3. The NANOGrav Nine-year Data Set: Mass and Geometric Measurements of Binary Millisecond Pulsars

    Science.gov (United States)

    Fonseca, Emmanuel; Pennucci, Timothy T.; Ellis, Justin A.; Stairs, Ingrid H.; Nice, David J.; Ransom, Scott M.; Demorest, Paul B.; Arzoumanian, Zaven; Crowter, Kathryn; Dolch, Timothy; Ferdman, Robert D.; Gonzalez, Marjorie E.; Jones, Glenn; Jones, Megan L.; Lam, Michael T.; Levin, Lina; McLaughlin, Maura A.; Stovall, Kevin; Swiggum, Joseph K.; Zhu, Weiwei

    2016-12-01

    We analyze 24 binary radio pulsars in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) nine-year data set. We make 14 significant measurements of the Shapiro delay, including new detections in four pulsar-binary systems (PSRs J0613-0200, J2017+0603, J2302+4442, and J2317+1439), and derive estimates of the binary-component masses and orbital inclination for these MSP-binary systems. We find a wide range of binary pulsar masses, with values as low as {m}{{p}}={1.18}-0.09+0.10 {M}⊙ for PSR J1918-0642 and as high as {m}{{p}}={1.928}-0.017+0.017 {M}⊙ for PSR J1614-2230 (both 68.3% credibility). We make an improved measurement of the Shapiro timing delay in the PSR J1918-0642 and J2043+1711 systems, measuring the pulsar mass in the latter system to be {m}{{p}}={1.41}-0.18+0.21 {M}⊙ (68.3% credibility) for the first time. We measure secular variations of one or more orbital elements in many systems, and use these measurements to further constrain our estimates of the pulsar and companion masses whenever possible. In particular, we used the observed Shapiro delay and periastron advance due to relativistic gravity in the PSR J1903+0327 system to derive a pulsar mass of {m}{{p}}={1.65}-0.02+0.02 {M}⊙ (68.3% credibility). We discuss the implications that our mass measurements have on the overall neutron-star mass distribution, and on the “mass/orbital-period” correlation due to extended mass transfer.

  4. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Arzoumanian, Zaven [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Brazier, Adam; Chatterjee, Shami; Cordes, James M.; Dolch, Timothy [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Burke-Spolaor, Sarah; Demorest, Paul B. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Chamberlin, Sydney [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States); Christy, Brian [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Cornish, Neil [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Crowter, Kathryn; Fonseca, Emmanuel; Gonzalez, Marjorie E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Ellis, Justin A. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena CA 91109 (United States); Ferdman, Robert D.; Kaspi, Victoria M. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); Garver-Daniels, Nathan; Jones, Megan L. [Department of Physics, West Virginia University, P.O. Box 6315, Morgantown, WV 26505 (United States); Jenet, Fredrick A. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Jones, Glenn, E-mail: pdemores@nrao.edu [Department of Physics, Columbia University, 550 W. 120th St. New York, NY 10027 (United States); Collaboration: NANOGrav Collaboration; and others

    2015-11-01

    We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or “red,” timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals.

  5. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: a case for Caustic Radio Emission?

    CERN Document Server

    Guillemot, L; Venter, C; Kerr, M; Pancrazi, B; Livingstone, M; Janssen, G H; Jaroenjittichai, P; Kramer, M; Cognard, I; Stappers, B W; Harding, A K; Camilo, F; Espinoza, C M; Freire, P C C; Gargano, F; Grove, J E; Johnston, S; Michelson, P F; Noutsos, A; Parent, D; Ransom, S M; Ray, P S; Shannon, R; Smith, D A; Theureau, G; Thorsett, S E; Webb, N

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the \\emph{Fermi} Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nan\\c{c}ay radio telescopes. In addition, we analyzed archival \\emph{RXTE} and \\emph{XMM-Newton} X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ($\\sim 4\\sigma$) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions...

  6. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.; Theureau, G.; Thorsett, S. E.; Webb, N.

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nançay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (~4σ) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.

  7. New millisecond pulsars detected by the Fermi Large Area Telescope and the radio/gamma-ray connection

    CERN Document Server

    Espinoza, C M; Celik, O; Weltevrede, P; Stappers, B W; Smith, D A; Kerr, M; Zavlin, V E; Cognard, I; Eatough, R P; Freire, P C C; Janssen, G H; Camilo, F; Desvignes, G; Hewitt, J W; Hou, X; Johnston, S; Keith, M; Kramer, M; Lyne, A; Manchester, R N; Ransom, S M; Ray, P S; Shannon, R; Theureau, G; Webb, N

    2012-01-01

    We report on the discovery of gamma-ray pulsations from five millisecond pulsars (MSPs) using the Fermi Large Area Telescope (LAT) and timing ephemerides provided by various radio observatories. We also present confirmation of the gamma-ray pulsations from a sixth source, PSR J2051-0827. Five of these six MSPs are in binary systems: PSRs J1713+0747, J1741+1351, J1600-3053 and the two black widow binary pulsars PSRs J0610-2100 and 2051-0827. The only isolated MSP is the nearby PSR J1024-0719, which is also known to emit X-rays. We present X-ray observations in the direction of PSRs J1600-3053 and J2051-0827. While the latter is firmly detected, we an only give upper limits for the X-ray flux of the former. There are no dedicated X-ray observations available for the other 3 objects. The MSPs mentioned above, together with most of the MSPs detected by Fermi, are used to put together a sample of 30 gamma-ray MSPs which is used to study the morphology and phase connection of radio and gamma-ray pulse profiles. We ...

  8. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  9. Multiwavelength Observations of the Redback Millisecond Pulsar J1048+2339

    CERN Document Server

    Deneva, J S; Camilo, F; Halpern, J P; Wood, K; Cromartie, H T; Ferrara, E; Kerr, M; Ransom, S M; Wolff, M T; Chambers, K C; Magnier, E A

    2016-01-01

    We report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi-LAT source 3FGLJ1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6-hour binary, and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 solar masses, and we have identified a $V \\sim 20$ variable optical counterpart in data from several surveys. The phasing of its $\\sim 1$~mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companion's magnetic field channeling the pulsar wind to specific locations on its surface. We also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radi...

  10. The NANOGrav Nine-year Data Set: Mass and Geometric Measurements of Binary Millisecond Pulsars

    CERN Document Server

    Fonseca, Emmanuel; Ellis, Justin A; Stairs, Ingrid H; Nice, David J; Ransom, Scott M; Demorest, Paul B; Arzoumanian, Zaven; Crowter, Kathryn; Dolch, Timothy; Ferdman, Robert D; Gonzalez, Marjorie E; Jones, Glenn; Jones, Megan L; Lam, Michael T; Levin, Lina; McLaughlin, Maura A; Stovall, Kevin; Swiggum, Joseph K; Zhu, Weiwei

    2016-01-01

    We analyse 24 binary radio pulsars in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) nine-year data set. We made fourteen significant measurements of Shapiro delay, including new detections in four pulsar-binary systems (PSRs J0613$-$0200, J2017+0603, J2302+4442, and J2317+1439), and derive estimates of the binary-component masses and orbital inclination for these MSP-binary systems. We find a wide range of binary pulsar masses, with values as low as $m_{\\rm p} = 1.18^{+0.10}_{-0.09}\\text{ M}_{\\odot}$ for PSR J1918$-$0642 and as high as $m_{\\rm p} = 1.928^{+0.017}_{-0.017}\\text{ M}_{\\odot}$ for PSR J1614$-$2230 (both 68.3\\% confidence). We make an improved measurement of the Shapiro timing delay in the PSR J1918$-$0642 and J2043+1711 systems, measuring the pulsar mass in the latter system to be $m_{\\rm p} = 1.41^{+0.21}_{-0.18}\\text{ M}_{\\odot}$ (68.3\\% confidence) for the first time. We measure secular variations of one or more orbital elements in many systems, and use these meas...

  11. Can the anomalous X-ray pulsars be powered by accretion?

    CERN Document Server

    Li, X D

    1999-01-01

    The nature of the 5-12 s "anomalous" X-ray pulsars remains a mystery. Among the models that have been proposed to explain the properties of AXPs, the most likely ones are: (1) isolated accreting neutron stars evolved from the Thorne-\\.{Z}ytkow objects due to complete spiral-in during the common envelope evolution of high-mass X-ray binaries, and (2) magnetars, which are neutron stars with ultra-high ($\\sim 10^{14}-10^{15}$ G) surface magnetic fields. We have critically examined the predicted change of neutron star's spin in the accretion model, and found that it is unable to account for the steady spin-down observed in AXPs. A simple analysis also shows that any accretion disk around an isolated neutron star has extremely limited lifetime. A more promising explanation for such objects is the magnetar model.

  12. ULX-1 in NGC5907: how bright can an accreting pulsar shine?

    CERN Document Server

    Israel, G L; Stella, L; Esposito, P; Casella, P; De Luca, A; Marelli, M; Papitto, A; Perri, M; Puccetti, S; Castillo, G A Rodriguez; Salvetti, D; Tiengo, A; Zampieri, L; D'Agostino, D; Greiner, J; Haberl, F; Novara, G; Salvaterra, R; Turolla, R; Watson, M; Wilms, J; Wolter, A

    2016-01-01

    Non-nuclear ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any source in our Galaxy. ULXs are usually modeled as stellar-mass black holes accreting at very high rates or intermediate-mass black-holes. We have discovered that ULX-1 in NGC 5907 is an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 s in 2003 to 1.13 s in 2014. With an isotropic peak luminosity of ~500 times the Eddington limit for a NS at 17.1 Mpc, it is the most luminous and distant x-ray pulsar ever detected. Standard accretion models fail to explain its luminosity, even assuming beamed emission. We show that a strong multipolar magnetic field, similar to that of magnetars, can describe its properties. These findings suggest that other extreme ULXs might harbor NSs.

  13. ASTRO-H White Paper - Accreting Pulsars, Magnetars, and Related Sources

    CERN Document Server

    Kitamoto, S; Safi-Harb, S; Pottschmidt, K; Ferrigno, C; Chernyakova, M; Hayashi, T; Hell, N; Kaneko, K; Khangulyan, D; Kohmura, T; Krimm, H; Makishima, K; Nakano, T; Odaka, H; Ohno, M; Sasano, M; Sugita, S; Terada, Y; Yasuda, T; Yuasa, T

    2014-01-01

    As the endpoints of massive star evolution, neutron stars are enigmatic celestial objects characterized by extremely dense and exotic nuclear matter, magnetospheres with positrons (antimatter), rapid rotation and ultra-strong magnetic fields. Such an extreme environment has provided an accessible astrophysical laboratory to study physics under conditions unattainable on Earth and to tackle a range of fundamental questions related to: the aftermath of stellar evolution and the powerful explosions of massive stars, the equation of state and physics of some of the most exotic and magnetic stars in the Universe, the workings of the most powerful particle accelerators in our Galaxy and beyond, and the sources of gravitational waves that are yet to be detected. Recent observations revealed a great diversity of neutron stars, including ultra-strongly magnetized pulsars, referred to as "magnetars", and unusual types of accreting X-ray pulsars. In this white paper, we highlight the prospects of the upcoming X-ray miss...

  14. VizieR Online Data Catalog: ATNF Pulsar Catalogue (Manchester+, 2005)

    Science.gov (United States)

    Manchester, R. N.; Hobbs, G. B.; Teoh, A.; Hobbs, M.

    2016-05-01

    The catalogue is a compilation of the principal observed parameters of pulsars, including positions, timing parameters, pulse widths, flux densities, proper motions, distances, and dispersion, rotation, and scattering measures. It also lists the orbital elements of binary pulsars, and some commonly used parameters derived from the basic measurements. The catalogue includes all published rotation-powered pulsars, including those detected only at high energies. It also includes Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) for which coherent pulsations have been detected. However, it excludes accretion-powered pulsars such as Her X-1 and the recently discovered X-ray millisecond pulsars. (2 data files).

  15. A radiation-hydrodynamic model of accretion columns for ultra-luminous X-ray pulsars

    CERN Document Server

    Kawashima, Tomohisa; Ohsuga, Ken; Ogawa, Takumi

    2016-01-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamic simulation of a super-critical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with density of $10^{-4} {\\rm g}~ {\\rm cm}^{-3}$ above a neutron star and solve the two dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, while gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, thereby a shock being generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as was noted by Basko \\& Sunyaev (1976). The average accretion rate is very high; ${\\dot M}\\sim 10^{2-3} L_{\\rm E}/c^2$ (with $L_{\\rm E}$ being the Eddington luminosity), and s...

  16. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    Science.gov (United States)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  17. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    Science.gov (United States)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-10-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}˜ 10^{2{-}3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  18. Exploring the X-ray and gamma-ray properties of the redback millisecond pulsar PSR J1723-2837

    CERN Document Server

    Hui, C Y; Takata, J; Kong, A K H; Cheng, K S; Wu, J H K; Lin, L C C; Wu, E M H

    2013-01-01

    We have investigated the X-ray and $\\gamma$-ray properties of the redback millisecond pulsar PSR J1723-2837 with XMM-Newton, Chandra and Fermi. We have discovered the X-ray orbital modulation of this binary system with the minimum that coincides with the phases of radio eclipse. The X-ray emission is clearly non-thermal in nature which can be well described by a simple power-law with a photon index of $\\sim1.2$. The phase-averaged luminosity is $\\sim9\\times10^{31}$ erg/s in 0.3-10 keV which consumes $\\sim0.2\\%$ of the spin-down power. We have detected the $\\gamma-$ray emission in $0.1-300$ GeV from this system at a significance of $\\sim6\\sigma$ for the first time. The $\\gamma-$rays in this energy range consumes $\\sim2\\%$ of the spin-down power and can be modeled by a power-law with a photon index of $\\sim2.6$. We discuss the high energy properties of the new redback in the context of a intrabinary shock model.

  19. Five New Millisecond Pulsars from a Radio Survey of 14 Unidentified Fermi-LAT Gamma-Ray Sources

    Science.gov (United States)

    Kerr, M.; Camilo, F.; Johnson, T. J.; Ferrara, E. C.; Guillemot, L.; Harding, A. K.; Hessels, J.; Johnson, S.; Keith, M.; Kramer, M.; Ransom, S. M.; Ray, P. S.; Reynolds, J. E.; Sarkissian, J.; Wood, K. S.

    2012-01-01

    We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Ferm;'LAT sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR JOl01-6422 (P=2.57ms, DH=12pc/cubic cm ), we have detected gamma-ray pulsations and measured its proper motion. Its gamma-ray spectrum (a power law of Gamma = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and gamma-ray light curves challenge simple geometric models of emission. The high success rate of this survey -- enabled by selecting gamma-ray sources based on their detailed spectral characteristics -- and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.

  20. FIVE NEW MILLISECOND PULSARS FROM A RADIO SURVEY OF 14 UNIDENTIFIED FERMI-LAT GAMMA-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, T. J. [National Academy of Sciences, Washington, DC 20001 (United States); Ferrara, E. C.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guillemot, L.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Hessels, J. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Johnston, S.; Keith, M.; Reynolds, J. E. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping, NSW 1710 (Australia); Ransom, S. M. [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Ray, P. S.; Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Sarkissian, J., E-mail: kerrm@stanford.edu, E-mail: fernando@astro.columbia.edu, E-mail: tyrel.j.johnson@gmail.com [CSIRO Parkes Observatory, Parkes, NSW 2870 (Australia)

    2012-03-20

    We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Fermi Large Area Telescope sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR J0101-6422 (P = 2.57 ms, DM = 12 pc cm{sup -3}), we have detected {gamma}-ray pulsations and measured its proper motion. Its {gamma}-ray spectrum (a power law of {Gamma} = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and {gamma}-ray light curves challenge simple geometric models of emission. The high success rate of this survey-enabled by selecting {gamma}-ray sources based on their detailed spectral characteristics-and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.

  1. Radio detection prospects for a bulge population of millisecond pulsars as suggested by Fermi LAT observations of the inner Galaxy

    CERN Document Server

    Calore, Francesca; Donato, Fiorenza; Hessels, Jason W T; Weniger, Christoph

    2015-01-01

    Analogously to globular clusters, the dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis found support in the analysis of gamma rays from the inner Galaxy seen by the Large Area Telescope (LAT) aboard the Fermi satellite, which revealed a possible excess of diffuse GeV photons in the inner 15 deg about the Galactic center (Fermi GeV excess). The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution that strongly peaks towards the Galactic center. In order to fully establish the MSP interpretation, it is essential to find corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsation from individual bulge MSPs. Based on globular cluster observations and the gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previ...

  2. Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, Daryl; Heinke, Craig; Hooper, Dan; Linden, Tim

    2017-05-01

    If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up to $\\sim$4-23% of the observed gamma-ray excess is likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected $\\sim$$10^3$ LMXBs from within a $10^{\\circ}$ radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.

  3. The accretion-heated crust of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands

    2011-01-01

    We report on a Chandra Director’s Discretionary Time observation of the globular cluster Terzan 5, carried out ∼7 weeks after the cessation of the 2010 outburst of the newly discovered transiently accreting 11-Hz X-ray pulsar. We detect a thermal spectrum that can be fitted with a neutron star atmos

  4. The Orbital Period of the Accreting Pulsar GX1+4

    CERN Document Server

    Pereira, M G; Jablonski, F J; Pereira, Marildo G.; Braga, Joao; Jablonski, Francisco J.

    1999-01-01

    We report strong evidence for a ~304-day periodicity in the spin history of the accretion-powered pulsar GX1+4 that is most probably associated with the orbital period of the system. We have used data from the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory to show a clear periodic modulation of the pulsar frequency from 1991 to date, in excellent agreement with the ephemeris proposed by Cutler, Dennis & Dolan (1986). Our results indicate that the orbital period of GX1+4 is 303.8 +- 1.1 days, making it the widest known low-mass X-ray binary system by more than one order of magnitude and putting this long-standing question to rest. A likely scenario for this system is an elliptical orbit in which the neutron star decreases its spin-down rate (or even exhibits a momentary spin-up behavior) at periastron passages due to the higher torque exerted by the accretion disk onto the magnetosphere of the neutron star. These results are not inconsistent with both the X-ray pulsed flux light...

  5. Fermi Study of gamma-ray Millisecond Pulsars: the Spectral Shape and Pulsed 25--200 GeV Emission from J0614-3329

    CERN Document Server

    Xing, Yi

    2016-01-01

    We report our analysis of the Fermi Large Area Telescope data for 39 millisecond pulsars (MSPs) listed in the second $\\gamma$-ray pulsar catalog. Spectra of the pulsars are obtained. We fit the spectra with a function of a power law with exponential cutoff, and find the best-fit parameters of photon index $\\Gamma = 1.54^{+0.10}_{-0.11}$ and cutoff energy $E_{c} = 3.70^{+0.95}_{-0.70}$ GeV. This spectral shape, which includes the intrinsic differences in the spectra of the MSPs, can be used for finding candidate MSPs and unidentified types of sources detected by Fermi at high Galactic latitudes. In one of the MSPs PSR J0614-3329, we find significant pulsed emission upto 200 GeV. The result has thus added this MSP to the group of the Crab and Vela pulsars that have been detected with >50 GeV pulsed emission. Comparing the $\\gamma$-ray spectrum of PSR J0614-3329 with those of the Crab and Vela pulsars, we discuss possible emission mechanisms for the very high-energy component.

  6. MULTI-WAVELENGTH OBSERVATIONS OF 3FGL J2039.6–5618: A CANDIDATE REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, D.; Mignani, R. P.; Luca, A. De; Belfiore, A.; Marelli, M.; Pizzocaro, D. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133, Milano (Italy); Delvaux, C.; Greiner, J.; Becker, W. [Max-Planck Institut für Extraterrestrische Physik, Giessenbachstrasse 1, D-85741 Garching bei München (Germany); Pallanca, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6-2, I-40127, Bologna (Italy); Breeveld, A. A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom)

    2015-12-01

    We present multi-wavelength observations of the unassociated γ-ray source 3FGL J2039.6−5618 detected by the Fermi Large Area Telescope. The source γ-ray properties suggest that it is a pulsar, most likely a millisecond pulsar, for which neither radio nor γ-ray pulsations have been detected. We observed 3FGL J2039.6−5618 with XMM-Newton and discovered several candidate X-ray counterparts within/close to the γ-ray error box. The brightest of these X-ray sources is variable with a period of 0.2245 ± 0.0081 days. Its X-ray spectrum can be described by a power law with photon index Γ{sub X} = 1.36 ± 0.09, and hydrogen column density N{sub H} < 4 × 10{sup 20} cm{sup −2}, which gives an unabsorbed 0.3–10 keV X-ray flux of 1.02 × 10{sup −13} erg cm{sup −2} s{sup −1}. Observations with the Gamma-Ray Burst Optical/Near-Infrared Detector discovered an optical counterpart to this X-ray source, with a time-averaged magnitude g′ ∼ 19.5. The counterpart features a flux modulation with a period of 0.22748 ± 0.00043 days that coincides, within the errors, with that of the X-ray source, confirming the association based on the positional coincidence. We interpret the observed X-ray/optical periodicity as the orbital period of a close binary system where one of the two members is a neutron star. The light curve profile of the companion star, which has two asymmetric peaks, suggests that the optical emission comes from two regions with different temperatures on its tidally distorted surface. Based upon its X-ray and optical properties, we consider this source as the most likely X-ray counterpart to 3FGL J2039.6−5618, which we propose to be a new redback system.

  7. The soft quiescent spectrum of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands

    2011-01-01

    We report on the quiescent X-ray properties of the recently discovered transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5. Using two archival Chandra observations, we demonstrate that the quiescent spectrum of this neutron star low-mass X-ray binary is soft and can be fit to a

  8. The quiescent state of the accreting X-ray pulsar SAX J2103.5+4545

    CERN Document Server

    Reig, P; Zezas, A

    2014-01-01

    We present an X-ray timing and spectral analysis of the Be/X-ray binary SAX J2103.5+4545 at a time when the Be star's circumstellar disk had disappeared and thus the main reservoir of material available for accretion had extinguished. In this very low optical state, pulsed X-ray emission was detected at a level of L_X~10^{33} erg/s. This is the lowest luminosity at which pulsations have ever been detected in an accreting pulsar. The derived spin period is 351.13 s, consistent with previous observations. The source continues its overall long-term spin-up, which reduced the spin period by 7.5 s since its discovery in 1997. The X-ray emission is consistent with a purely thermal spectrum, represented by a blackbody with kT=1 keV. We discuss possible scenarios to explain the observed quiescent luminosity and conclude that the most likely mechanism is direct emission resulting from the cooling of the polar caps, heated either during the most recent outburst or via intermittent accretion in quiescence.

  9. A Search for Rapidly Spinning Pulsars and Fast Transients in Unidentified Radio Sources with the NRAO 43-Meter Telescope

    CERN Document Server

    Schmidt, Deborah; Langston, Glen; Gilpin, Claire

    2013-01-01

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey (NVSS) catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g. sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a differe...

  10. Using observations of millisecond pulsars to measure mass and radius of neutron stars and implications for equation of state of matter at high density

    CERN Document Server

    Leahy, Denis

    2010-01-01

    Millisecond pulsars are rapidly rotating neutron stars where general relativity plays a strong role in the propagation of light from the neutron star to observer. The observed X-ray pulse shapes carry information on the mass, radius and surface shape of the neutron star. Comparison of theoretical calculations of pulse shapes with observed pulse shapes can give useful constraints on neutron star properties. Then comparison with calculated properties giving an assumed equation of state (EOS) can confirm or rule out the assumed EOS.

  11. Ordinary X-rays from Three Extraordinary Millisecond Pulsars: XMM-Newton Observations of PSRs J0337+1715, J0636+5129, and J0645+5158

    CERN Document Server

    Spiewak, Renée; Archibald, Anne; Gentile, Peter; Hessels, Jason; Lorimer, Duncan; Lynch, Ryan; McLaughlin, Maura; Ransom, Scott; Stairs, Ingrid; Stovall, Kevin

    2016-01-01

    We present the first X-ray observations of three recently discovered millisecond pulsars (MSPs) with interesting characteristics: PSR J0337+1715, PSR J0636+5129, and PSR J0645+5158. PSR J0337+1715 is a fast-spinning, bright, and so-far unique MSP in a hierarchical triple system with two white dwarf (WD) companions. PSR J0636+5129 is a MSP in a very tight 96-min orbit with a low-mass, 8 $M_J$ companion. PSR J0645+5158 is a nearby, isolated MSP with a very small duty cycle (1-2%), which has led to its inclusion in high-precision pulsar timing programs. Using data from XMM-Newton, we have analyzed X-ray spectroscopy for these three objects, as well as optical/ultraviolet photometry for PSR J0337+1715. The X-ray data for each are largely consistent with expectations for most MSPs with regards to the ratios of thermal and non-thermal emission. We discuss the implications of these data on the pulsar population, and prospects for future observations of these pulsars.

  12. Accretion regimes in the X-ray pulsar 4U 1901+03

    CERN Document Server

    Reig, P

    2016-01-01

    The source 4U 1901+03 is a high-mass X-ray pulsar than went into outburst in 2003. Observation performed with the Rossi X-ray Timing Explorer showed spectral and timing variability, including the detection of flares, quasi-periodic oscillations, complex changes in the pulse profiles, and pulse phase dependent spectral variability. We re-analysed the data covering the 2003 X-ray outburst and focused on several aspects of the variability that have not been discussed so far. These are the 10 keV feature and the X-ray spectral states and their association with accretion regimes, including the transit to the propeller state at the end of the outburst. We find that 4U 1901+03 went through three accretion regimes over the course of the X-ray outburst. At the peak of the outburst and for a very short time, the X-ray flux may have overcome the critical limit that marks the formation of a radiative shock at a certain distance above the neutron star surface. Most of the time, however, the source is in the subcritical re...

  13. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    Science.gov (United States)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.

  14. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  15. BeppoSAX observations of the accretion-powered X-ray pulsar SMC X-1

    CERN Document Server

    Naik, S

    2004-01-01

    We present here results obtained from three BeppoSAX observations of the accretion-powered X-ray pulsar SMC X-1 carried out during the declining phases of its 40--60 days long super-orbital period. Timing analysis of the data clearly shows a continuing spin-up of the neutron star. Energy-resolved timing analysis shows that the pulse-profile of SMC X-1 is single peaked at energies less than 1.0 keV whereas an additional peak, the amplitude of which increases with energy within the MECS range, is present at higher energies. Broad-band pulse-phase-averaged spectroscopy of the BeppoSAX data, which is done for the first time since its discovery, shows that the energy spectrum in the 0.1--80 keV energy band has three components, a soft excess that can be modeled as a thermal black-body, a hard power-law component with a high-energy exponential cutoff and a narrow and weak iron emission line at 6.4 keV. Pulse-phase resolved spectroscopy indicates a pulsating nature of the soft spectral component, as seen in a few ot...

  16. Low-frequency QPO from the 11 Hz accreting pulsar in Terzan 5: not frame dragging

    CERN Document Server

    Altamirano, D; van der Klis, M; Wijnands, R; Linares, M; Homan, J

    2012-01-01

    We report on 6 RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broad band noise. Using well known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations (HBO), which were previously suggested to be due to Lense-Thirring precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO can not be explained by frame dragging. By extension, this casts doubt on the Lense-Thirring precession model for other low-frequency QPOs in neutron-star and perhaps even black-hole systems.

  17. Using Long-term Millisecond Pulsar Timing to Obtain Physical Characteristics of the Bulge Globular Cluster Terzan 5

    Science.gov (United States)

    Prager, Brian J.; Ransom, Scott M.; Freire, Paulo C. C.; Hessels, Jason W. T.; Stairs, Ingrid H.; Arras, Phil; Cadelano, Mario

    2017-08-01

    Over the past decade, the discovery of three unique stellar populations and a large number of confirmed pulsars within the globular cluster Terzan 5 has raised questions over its classification. Using the long-term radio pulsar timing of 36 ms pulsars in the cluster core, we provide new measurements of key physical properties of the system. As Terzan 5 is located within the galactic bulge, stellar crowding and reddening make optical and near-infrared observations difficult. Pulsar accelerations, however, allow us to study the intrinsic characteristics of the cluster independent of reddening and stellar crowding and probe the mass density profile without needing to quantify the mass-to-light ratio. Relating the spin and orbital periods of each pulsar to the acceleration predicted by a King model, we find a core density of {1.58}-0.13+0.13 × 106 {M}⊙ pc-3, a core radius of {0.16}-0.01+0.01 pc, a pulsar density profile of n\\propto {r}-{3.14-0.53+0.52}, and a total mass of {M}{{T}}({R}\\perp < 1.0 pc) ≃ 3.0 × 105 {M}⊙ , assuming a cluster distance of 5.9 kpc. Using this information, we argue against Terzan 5 being a disrupted dwarf galaxy and discuss the possibility of it being a fragment of the Milky Way’s proto-bulge. We also discuss whether low-mass pulsars were formed via electron-capture supernovae or exist in a core full of heavy white dwarfs and hard binaries. Finally, we provide an upper limit for the mass of a possible black hole at the core of the cluster of {M}{BH}≃ 3× {10}4 {M}⊙ .

  18. Contrasting behaviour from two Be/X-ray binary pulsars: insights into differing neutron star accretion modes

    CERN Document Server

    Townsend, L J; Hill, A B; Coe, M J; Corbet, R H D; Bird, A J

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4s and 85.4s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and ...

  19. Different twins in the millisecond pulsar recycling scenario: optical polarimetry of PSR J1023+0038 and XSS J12270-4859

    CERN Document Server

    Baglio, M C; Campana, S; Zelati, F Coti; Covino, S; Russell, D M

    2016-01-01

    We present the first optical polarimetric study of the two transitional pulsars PSR J1023+0038 and XSS J12270-4859. This work is focused on the search for intrinsical linear polarisation (LP) in the optical emission from the two systems. We carried out multiband optical and NIR photo-polarimetry of the two systems using the ESO NTT at La Silla (Chile), equipped with the EFOSC2 and the SOFI instruments. XSS J12270-4859 was observed during its radio-pulsar state; we did not detect LP in all bands, with 3 sigma upper limits of, e.g., 1.4% in the R-band. We built the NIR-optical averaged spectral energy distribution (SED) of the system, that could be well described by an irradiated black body with radius $R_{*} = 0.33\\pm0.03\\,R_{\\odot}$ and albedo $\\eta=0.32\\pm0.05$, without the need of further components (thus excluding the visible presence of an extended accretion disc and/or of relativistic jets). The case was different for PSR J1023+0038, that was in its accretion phase during our campaign. We measured a LP o...

  20. New H.E.S.S. diffuse emission from the Galactic center: a combination of heavy dark matter and millisecond pulsars?

    CERN Document Server

    Lacroix, Thomas; Moulin, Emmanuel; Boehm, Celine

    2016-01-01

    In this letter, we show that the newly detected H.E.S.S. gamma-ray diffuse emission from the Galactic center below 0.45 deg can be accounted for by inverse Compton emission from millisecond pulsars and heavy (~ 100 TeV) dark matter annihilating to electrons or muons with a thermal or sub-thermal cross-section, provided that the dark matter density profile features a supermassive black hole-induced spike on sub-pc scales. We discuss the impact of the interstellar radiation field, magnetic field and diffusion set-up on the spectral and spatial morphology of the resulting emission. For well-motivated parameters, we show that the DM-induced emission reproduces the spatial morphology of the H.E.S.S. signal above ~ 10 TeV, while we obtain a more extended component from pulsars at lower energies, which could be used as a prediction for future H.E.S.S. observations.

  1. Luminosity-dependent spectral and timing properties of the accreting pulsar GX 304-1 measured with INTEGRAL

    CERN Document Server

    Malacaria, Christian; Santangelo, Andrea; Staubert, Rüdiger

    2015-01-01

    Context: Be/X-ray binaries show outbursts with peak luminosities up to a few times $10^{37}\\,$erg/s, during which they can be observed and studied in detail. Most (if not all) Be/X-ray binaries harbour accreting pulsars, whose X-ray spectra in many cases contain cyclotron resonant scattering features related to the magnetic field of the sources. Spectral variations as a function of luminosity and of the rotational phase of the neutron star are observed in many accreting pulsars. Aims: We explore X-ray spectral and timing properties of the Be/X-ray binary GX 304-1 during an outburst episode. Specifically, we investigate the behavior of the cyclotron resonant scattering feature, the continuum spectral parameters, the pulse period, and the energy- and luminosity-resolved pulse profiles. We combine the luminosity-resolved spectral and timing analysis to probe the accretion geometry and the beaming patterns of the rotating neutron star. Methods: We analyze the INTEGRAL data from the two JEM-X modules, ISGRI and SP...

  2. On the dependence of the X-ray continuum variations with luminosity in accreting X-ray pulsars

    CERN Document Server

    Postnov, K A; Klochkov, D; Laplace, E; Lukin, V V; Shakura, N I

    2015-01-01

    Using RXTE/ASM archival data, we investigate the behaviour of the spectral hardness ratio as a function of X-ray luminosity in a sample of six transient X-ray pulsars (EXO 2030+375, GX 304-1, 4U 0115+63, V 0332+63, A 0535+26 and MXB 0656-072). In all sources we find that the spectral hardness ratio defined as $F_{5-12\\mathrm{keV}}/ F_{1.33-3\\mathrm{keV}}$ increases with the ASM flux (1.33--12 keV) at low luminosities and then saturates or even slightly decreases above some critical X-ray luminosity falling into the range $\\sim(3-7)\\times10^{37}$~erg~s$^{-1}$. Two-dimensional structure of accretion columns in the radiation-diffusion limit is calculated for two possible geometries (filled and hollow cylinder) for mass accretion rates $\\dot M$ ranging from $10^{17}$ to 1.2$\\times 10^{18}$~g s$^{-1}$. The observed spectral behaviour in the transient X-ray pulsars with increasing $\\dot M$ can be reproduced by a Compton saturated sidewall emission from optically thick magnetized accretion columns with taking into a...

  3. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  4. The 2015 outburst of the accretion-powered pulsar IGR J00291+5934: INTEGRAL and Swift observations

    Science.gov (United States)

    De Falco, V.; Kuiper, L.; Bozzo, E.; Galloway, D. K.; Poutanen, J.; Ferrigno, C.; Stella, L.; Falanga, M.

    2017-03-01

    The pulsar IGR J00291+5934 is the fastest-known accretion-powered X-ray pulsar, discovered during a transient outburst in 2004. In this paper, we report on INTEGRAL and Swift observations during the 2015 outburst, which lasts for 25 d. The source has not been observed in outburst since 2008, suggesting that the long-term accretion rate has decreased by a factor of two since discovery. The averaged broad-band (0.1-250 keV) persistent spectrum in 2015 is well described by a thermal Comptonization model with a column density of NH ≈ 4 × 1021 cm-2, a plasma temperature of kTe ≈ 50 keV, and a Thomson optical depth of τT ≈ 1. Pulsations at the known spin period of the source are detected in the INTEGRAL data up to the 150 keV energy band. We also report on the discovery of the first thermonuclear burst observed from IGR J00291+5934, which lasts around 7 min and occurs at a persistent emission level corresponding to roughly 1.6% of the Eddington accretion rate. The properties of the burst suggest it is powered primarily by helium ignited at a depth of yign ≈ 1.5 × 109 g cm-2 following the exhaustion by steady burning of the accreted hydrogen. The Swift/BAT data from the first 20 s of the burst provide indications of a photospheric radius expansion phase. Assuming this is the case, we infer a source distance of d = 4.2 ± 0.5 kpc.

  5. Constraining the Relative Inclinations of the Planets B and C of the Millisecond Pulsar PSR B1257+12

    Indian Academy of Sciences (India)

    Lorenzo Iorio

    2010-09-01

    We investigate on the relative inclination of the planets B and C orbiting the pulsar PSR B1257+12. First, we show that the third Kepler’s law does represent an adequate model for the orbital periods of the planets, because other Newtonian and Einsteinian corrections are orders of magnitude smaller than the accuracy in measuring B/C. Then, on the basis of available timing data, we determine the ratio sin C/ sin B = 0.92 ± 0.05 of the orbital inclinations B and C independently of the pulsar’s mass . It turns out that coplanarity of the orbits of B and C would imply a violation of the equivalence principle. Adopting a pulsar mass range 1 ≲ ≲ 3, in solar masses (supported by present-day theoretical and observational bounds for pulsar’s masses), both face-on and edge-on orbital configurations for the orbits of the two planets are ruled out; the acceptable inclinations for B span the range 36 deg ≲ B ≲ 66 deg, with a corresponding relative inclination range 6 deg ≲ (C − B) ≲ 13 deg.

  6. A Radio Pulsar/X-ray Binary Link

    CERN Document Server

    Archibald, Anne M; Ransom, Scott M; Kaspi, Victoria M; Kondratiev, Vladislav I; Lorimer, Duncan R; McLaughlin, Maura A; Boyles, Jason; Hessels, Jason W T; Lynch, Ryan; van Leeuwen, Joeri; Roberts, Mallory S E; Jenet, Frederick; Champion, David J; Rosen, Rachel; Barlow, Brad N; Dunlap, Bart H; Remillard, Ronald A

    2009-01-01

    Radio pulsars with millisecond spin periods are thought to have been spun up by transfer of matter and angular momentum from a low-mass companion star during an X-ray-emitting phase. The spin periods of the neutron stars in several such low-mass X-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the last decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.

  7. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun

    2014-01-01

    disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Gamma = 1.17(-0.07)(+0.08) (at 90% confidence) with a 3-79 keV luminosity of 7.4 +/- 0.4 x 10(32) erg s(-1). Significant orbital modulation was observed with a modulation fraction of 36% +/- 10......-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips...... and state changes in the similar transition systems PSR J1824-2452I and XSS J1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk....

  8. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun

    2014-01-01

    of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Gamma=1.17 +/-0.08 (at 90% confidence) with a 3-79 keV luminosity of 7.4+/-0.4 x 10^32 erg/s. Significant orbital modulation was observed with a modulation fraction of 36+/-10%. During the October 19....... Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824-2452I and XSS J......1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk....

  9. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    CERN Document Server

    Bodaghee, Arash; Fornasini, Francesca A; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Zhang, William W

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P' = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu' = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly i...

  10. The 2015 outburst of the accretion-powered pulsar IGR J00291+5934: INTEGRAL and Swift observations

    CERN Document Server

    De Falco, V; Bozzo, E; Galloway, D K; Poutanen, J; Ferrigno, C; Stella, L; Falanga, M

    2016-01-01

    IGR J00291+5934 is the fastest-known accretion-powered X-ray pulsar, discovered during a transient outburst in 2004. In this paper, we report on Integral and Swift observations during the 2015 outburst, which lasts for $\\sim25$ d. The source has not been observed in outburst since 2008, suggesting that the long-term accretion rate has decreased by a factor of two since discovery. The averaged broad-band (0.1 - 250 keV) persistent spectrum in 2015 is well described by a thermal Comptonization model with a column density of $N_{\\rm H} \\approx4\\times10^{21}$ cm$^{-2}$, a plasma temperature of $kT_{\\rm e} \\approx50$ keV, and a Thomson optical depth of $\\tau_{\\rm T}\\approx1$. Pulsations at the known spin period of the source are detected in the Integral data up to the $\\sim150$ keV energy band. We also report on the discovery of the first thermonuclear burst observed from IGR J00291+5934, which lasts around 7 min and occurs at a persistent emission level corresponding to roughly $1.6\\%$ of the Eddington accretion ...

  11. The Ages, Speeds and Offspring of Pulsars

    Science.gov (United States)

    Hansen, Bradley Miles Stougaard

    1996-01-01

    We investigate the cooling of low mass white dwarfs with helium cores. We construct a detailed numerical model using the most modern input physics, including our own calculations of low temperature hydrogen opacities. We use our models to constrain the ages of binary millisecond pulsars from the optical observations of their white dwarf companions. We use this to place limits on the initial spin periods, magnetic field decay times and accretion histories of the millisecond pulsars. Our models can also be used along with observations of spectroscopic gravities and radial velocities to place interesting constraints on the neutron star equation of state. We provide grids of temperature and luminosity as a function of age for various white dwarf masses and surface compositions to facilitate future analyses. We have investigated the effect of the pulsar wind on the atmospheric composition of binary companions. The spallation of atmospheric helium to hydrogen increases the cooling age of the white dwarf. We find that all white dwarf companions in binaries with orbital period censored data using survival statistics, we arrive at an estimate of the characteristic pulsar birth velocity ~300 km.s ^{-1}, 2/3 that of Lyne & Lorimer. We also show that the older pulsar population shows the effects of the asymmetric drift, indicating that it must be dynamically old.

  12. A Possible 55-day X-ray Period of the Ultraluminous Accreting Pulsar M82 X-2

    CERN Document Server

    Kong, A K H; Lin, L C -C; Li, K L; Jin, R; Liu, C Y; Yen, D C -C

    2016-01-01

    We report a possible detection of a 55-day X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-day orbital period, if the 55-day period is real, it will be the superorbital period of the system. We also investigated variabilities of other three nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data and did not find any evidence of periodicities. Furthermore, we re-examined the previously reported 62-day periodicity near the central region of M82 by performing a systematic timing study with all the archival Rossi X-Ray Timing Explorer and Swift data. Using various dynamic timing analysis methods, we confirmed that the 62-day period is not stable, suggesting that it is not the orbital period of M82 X-1 in agreement with previous work.

  13. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    Directory of Open Access Journals (Sweden)

    Bachetti Matteo

    2014-01-01

    Full Text Available The NuSTAR hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst. The source is detected between 3 – 79 keV with high statistical significance, and we were able to perform very accurate spectral and timing analysis. The phase-averaged spectrum is consistent with that observed in many other magnetized accreting pulsars. We fail to detect cyclotron resonance scattering features in either phase-averaged nor phase-resolved spectra that would allow us to constrain the pulsar’s magnetic field. We detect a pulse period of ~ 12:29 s in all energy bands. The pulse profile can be modeled with a double Gaussian and shows a strong and smooth hard lag of up to 0.3 cycles in phase, or about 4s between the pulse at ~ 3 and ≳ 30 keV. This is the first report of such a strong lag in high-mass X-ray binary (HMXB pulsars. Previously reported lags have been significantly smaller in phase and restricted to low-energies (E<10 keV. We investigate the possible mechanisms that might produce such lags. We find the most likely explanation for this effect to be a complex beam geometry.

  14. Fermi pulsar revolution

    CERN Document Server

    Caraveo, Patrizia A

    2010-01-01

    2009 has been an extraordinary year for gamma-ray pulsar astronomy and 2010 promises to be equally good. Not only have we registered an extraordinary increase in the number of pulsars detected in gamma rays, but we have also witnessed the birth of new sub-families: first of all, the radio-quiet gamma pulsars and later an ever growing number of millisecond pulsars, a real surprise. We started with a sample of 7 gamma-ray emitting neutron stars (6 radio pulsars and Geminga) and now the Fermi-LAT harvest encompasses 24 "Geminga-like" new gamma-ray pulsars, a dozen millisecond pulsars and about thirty radio pulsars. Moreover, radio searches targeted to LAT unidentified sources yielded 18 new radio millisecond pulsars, several of which have been already detected also in gamma rays. Thus, currently the family of gamma-ray emitting neutron stars seems to be evenly divided between classical radio pulsars, millisecond pulsars and radio quiet neutron stars.

  15. Modeling of Disk-Star Interaction: Different Regimes of Accretion and Variability

    CERN Document Server

    Romanova, Marina M; Long, Min; Lovelace, Richard V E

    2008-01-01

    The appearance and time variability of accreting millisecond X-ray pulsars (hereafter AMXPs, e.g. Wijnands & van der Klis 1998) depends strongly on the accretion rate, the effective viscosity and the effective magnetic diffusivity of the disk-magnetosphere boundary. The accretion rate is the main parameter which determines the location of the magnetospheric radius of the star for a given stellar magnetic field. We introduce a classification of accreting neutron stars as a function of the accretion rate and show the corresponding stages obtained from our global 3D magnetohydrodynamic (MHD) simulations and from our axisymmetric MHD simulations. We discuss the expected variability features in each stage of accretion, both periodic and quasi-periodic (QPOs). We conclude that the periodicity may be suppressed at both very high and very low accretion rates. In addition the periodicity may disappear when ordered funnel flow accretion is replaced by disordered accretion through the interchange instability.

  16. X-ray pulsar rush in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, K.; Tsujimoto, K.; Nishiuchi, Mamiko; Yokogawa, J.; Koyama, K. [Kyoto Univ., Faculty of Science, Kyoto (Japan)

    1999-08-01

    We present recent remarkable topics about discoveries of X-ray pulsars. 1. Pulsations from two Soft Gamma-ray Repeaters: These pulsars have enormously strong magnetic field (B {approx} 10{sup 15} G), thus these are called as 'magnetar', new type of X-ray pulsars. 2. New Crab-like pulsars: These discoveries lead to suggesting universality of Crab-like pulsars. 3. An X-ray bursting millisecond pulsar: This is strong evidence for the recycle theory of generating radio millisecond pulsars. 4. X-ray pulsar rush in the SMC: This indicates the younger star formation history in the SMC. (author)

  17. Different twins in the millisecond pulsar recycling scenario: Optical polarimetry of PSR J1023+0038 and XSS J12270-4859

    Science.gov (United States)

    Baglio, M. C.; D'Avanzo, P.; Campana, S.; Coti Zelati, F.; Covino, S.; Russell, D. M.

    2016-06-01

    We present the first optical polarimetric study of the two transitional pulsars PSR J1023+0038 and XSS J12270-4859. This work is focused on the search for intrinsically linearly polarised optical emission from the two systems. To this aim, we carried out multiband optical (BVRi) and near-infrared (NIR; JHK) photo-polarimetric observations of the two systems using the ESO New Technology Telescope (NTT) at La Silla (Chile), equipped with the EFOSC2 and the SOFI instruments. The system XSS J12270-4859 was observed during its radio-pulsar state; we did not detect a significant degree of polarisation in any of the bands, with 3σ upper limits, for example, of 1.4% in the R-band. We built the NIR-optical averaged spectral energy distribution (SED) of the system, which could be described well by an irradiated black body with radius R∗ = 0.33 ± 0.03 R⊙ and albedo η = 0.32 ± 0.05, without the need for further components. Thus, we excluded the visible presence of an extended accretion disc and/or of relativistic jets. The case was different for PSR J1023+0038, which was in its accretion phase during our campaign. We measured a linear polarisation of 1.09 ± 0.27% and 0.90 ± 0.17% in the V and R bands, respectively. The phase-resolved polarimetric curve of the source in the R band reveals a hint of a sinusoidal modulation at the source 4.75 h orbital period, peaked at the same orbital phase as the light curve. The measured optical polarisation of PSR J1023+0038 could, in principle, be interpreted as electron scattering with free electrons, which can be found in the accretion disc of the system or even in the hot corona that sorrounds the disc itself, or as synchrotron emission from a jet of relativistic particles or an outflow. However, the NIR-optical SED of the system built from our dataset did not suggest the presence of a jet. We conclude that the optical linear polarisation observed for PSR J1023+0038 is possibly due to Thomson scattering with electrons in the

  18. NuSTAR Hard X-ray Observations of the Energetic Millisecond Pulsars PSR B1821-24, PSR B1937+21, and PSR J0218+4232

    Science.gov (United States)

    Gotthelf, Eric V.; Bogdanov, Slavko

    2017-08-01

    We present NuSTAR hard X-ray timing and spectroscopy of the three exceptionally energetic rotation-powered millisecond pulsars PSRs B1821-24, B1937+21, and J0218+4232. By correcting for frequency and phase drifts of the NuSTAR on-board clock we are able to recover the intrinsic hard X-ray pulse profiles of all three pulsars with a resolution down to up to ~50 keV, ~20 keV, and ~25 keV, for the three pulsars, respectively. We conduct phase-resolved spectroscopy in the 0.5 - 79 keV range for all three objects, obtaining the best yet measurements of the broad-band spectral shape and high-energy pulsed emission to date. We find extensions of the same power-law continua seen at lower energies, with no conclusive evidence for a spectral turnover or break. Extrapolation of the X-ray power-law spectrum to higher energies reveals that a turnover in the 100 keV to 100 MeV range is required to accommodate the high energy gamma-ray emission observed with Fermi LAT, similar to the broad-band spectral energy distribution observed for the Crab pulsar.

  19. On pulsar-driven mass ejection in low-mass X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Lei Fu; Xiang-Dong Li

    2011-01-01

    There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence.We consider the condition for mass ejection by comparing the radiation pressure from a millisecond pulsar,and the gas pressure at the inner Lagrange point or at the surrounding accretion disk.We calculate the critical spin period of the pulsar below which mass ejection is allowed.Combining with the evolution of the mass transfer rate,we present constraints on the orbital periods of the systems.We show that mass ejection could happen in both wide and compact LMXBs.It may be caused by transient accretion due to thermal instability in the accretion disks in the former,and irradiation-driven mass-transfer cycles in the latter.

  20. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    DEFF Research Database (Denmark)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca A.;

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50ks. We present the results of this observation which enabled the discovery of acyclotron resonant scattering feature with a centroid energy of 29.3...

  1. Pulsars in Globular Clusters with the SKA

    CERN Document Server

    Hessels, J W T; Bailes, M; Bassa, C G; Freire, P C C; Lorimer, D R; Lynch, R; Ransom, S M; Stairs, I H

    2015-01-01

    Globular clusters are highly efficient radio pulsar factories. These pulsars can be used as precision probes of the clusters' structure, gas content, magnetic field, and formation history; some of them are also highly interesting in their own right because they probe exotic stellar evolution scenarios as well as the physics of dense matter, accretion, and gravity. Deep searches with SKA1-MID and SKA1-LOW will plausibly double to triple the known population. Such searches will only require one to a few tied-array beams, and can be done during early commissioning of the telescope - before an all-sky pulsar survey using hundreds to thousands of tied-array beams is feasible. With SKA2 it will be possible to observe most of the active radio pulsars within a large fraction of the Galactic globular clusters, an estimated population of 600 - 3700 observable pulsars (those beamed towards us). This rivals the total population of millisecond pulsars that can be found in the Galactic field; fully characterizing it will p...

  2. Implications of burst oscillations from the slowly rotating accreting pulsar IGR 17480-2446 in the globular cluster Terzan 5

    CERN Document Server

    Cavecchi, Y; Haskell, B; Watts, A L; Levin, Y; Linares, M; Altamirano, D; Wijnands, R; van der Klis, M

    2011-01-01

    The recently-discovered accreting X-ray pulsar IGR 17480-2446 spins at a frequency of ~11 Hz. In this Letter we show that Type I X-ray bursts from this source display oscillations at the same frequency as the stellar spin. IGR 17480-2446 is the first secure case of a slowly rotating neutron star which shows Type I burst oscillations; all other sources featuring such oscillations spin at frequencies of hundreds of Hertz. This means that we can test burst oscillation models in a completely different regime. We explore the origin of Type I burst oscillations in IGR 17480-2446 and conclude that they are not caused by global modes in the neutron star ocean. We also show that the Coriolis force would not be able to confine an oscillation-producing hot spot on the stellar surface. The most likely scenario is that the burst oscillations are produced by a hot spot confined by hydromagnetic stresses.

  3. LOW-FREQUENCY QUASI-PERIODIC OSCILLATION FROM THE 11 Hz ACCRETING PULSAR IN TERZAN 5: NOT FRAME DRAGGING

    Energy Technology Data Exchange (ETDEWEB)

    Altamirano, D.; Van der Klis, M.; Wijnands, R. [Astronomical Institute, ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Ingram, A. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Linares, M.; Homan, J., E-mail: d.altamirano@uva.nl [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States)

    2012-11-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  4. Millisecond and Binary Pulsars as Nature's Frequency Standards; 2, Effects of Low-Frequency Timing Noise on Residuals and Measured Parameters

    CERN Document Server

    Kopeikin, S M

    1998-01-01

    Pulsars are the most stable natural frequency standards. They can be applied to a number of principal problems of modern astronomy and time-keeping metrology. The full exploration of pulsar properties requires obtaining unbiased estimates of the spin and orbital parameters. These estimates depend essentially on the random noise component being revealed in the residuals of time of arrivals (TOA). In the present paper, the influence of low-frequency ("red") timing noise with spectral indices from 1 to 6 on TOA residuals, variances, and covariances of estimates of measured parameters of single and binary pulsars are studied. In order to determine their functional dependence on time, an analytic technique of processing of observational data in time domain is developed which takes into account both stationary and non-stationary components of noise. Our analysis includes a simplified timing model of a binary pulsar in a circular orbit and procedure of estimation of pulsar parameters and residuals under the influenc...

  5. IGR J17252-3616: an accreting pulsar observed by INTEGRAL and XMM-Newton

    CERN Document Server

    Heras, J A Z; Walter, R; Bodaghee, A; Bélanger, G; Courvoisier, T; Shaw, S E; Stephen, J B

    2005-01-01

    The discovery of the X-ray source IGR J17252-3616 by INTEGRAL was reported on 9 February 2004. Regular monitoring by INTEGRAL shows that IGR J17252-3616 is a persistent hard X-ray source with an average count rate of 0.96 counts/s (~6.4 mCrab) in the 20-60 keV energy band. A follow-up observation with XMM-Newton, which was performed on 21 March 21 2004, showed that the source is located at R.A.(2000.0)=17h25m11.4 and Dec.=-36degr16'58.6" with an uncertainty of 4". The only infra-red counterpart to be found within the XMM-Newton error circle was 2MASS J17251139-3616575, which has a Ks-band magnitude of 10.7 and is located 1" away from the XMM-Newton position. The analysis of the combined INTEGRAL and XMM-Newton observations shows that the source is a binary X-ray pulsar with a spin period of 413.7 s and an orbital period of 9.72 days. The spectrum can be fitted with a flat power law plus an energy cut off (Gamma~0.02,Ecut~8.2 keV) or a Comptonized model (kTe~5.5 keV, tau~7.8). The spectrum also indicates a lar...

  6. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Langston, Glen [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  7. Gamma-ray binaries: pulsars in disguise ?

    CERN Document Server

    Dubus, G

    2006-01-01

    LS 5039 and LSI +61 303 are unique amongst high-mass X-ray binaries (HMXB) for their spatially-resolved radio emission and their counterpart at >GeV gamma-ray energies, canonically attributed to non-thermal particles in an accretion-powered relativistic jet. The only other HMXB known to emit very high energy (VHE) gamma-rays, PSR B1259-63, harbours a non-accreting millisecond pulsar. I investigate whether the interaction of the relativistic wind from a young pulsar with the wind from its stellar companion, as in PSR B1259-63, constitutes a viable scenario to explain the observations of LS 5039 and LSI +61 303. Emission would arise from the shocked pulsar wind material, which then flows away to large distances in a comet-shape tail, reproducing on a smaller scale what is observed in isolated, high motion pulsars interacting with the ISM. Simple expectations for the SED are derived and are shown to depend on few input parameters. Detailed modelling of the particle evolution is compared to the observations from ...

  8. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel

    CERN Document Server

    Mushtukov, Alexander A; Serber, Alexander V; Suleimanov, Valery F; Poutanen, Juri

    2015-01-01

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so called critical luminosity these variations are established to be connected with the appearance of the high accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity onto the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid ene...

  9. Recycling Pulsars: spins, masses and ages

    CERN Document Server

    Tauris, T M; Langer, N

    2012-01-01

    Although the first millisecond pulsars (MSPs) were discovered 30 years ago we still do not understand all details of their formation process. Here, we present new results from Tauris, Langer & Kramer (2012) on the recycling scenario leading to radio MSPs with helium or carbon-oxygen white dwarf companions via evolution of low- and intermediate mass X-ray binaries (LMXBs, IMXBs). We discuss the location of the spin-up line in the (P,Pdot)-diagram and estimate the amount of accreted mass needed to obtain a given spin period and compare with observations. Finally, we constrain the true ages of observed recycled pulsars via calculated isochrones in the (P,Pdot)-diagram.

  10. The slowest spinning X-ray pulsar in an extragalactic globular cluster

    CERN Document Server

    Zolotukhin, Ivan; Sartore, Nicola; Chilingarian, Igor; Webb, Natalie A

    2016-01-01

    Neutron stars are thought to be born rapidly rotating and then exhibit a phase of a rotation-powered pulsations as they slow down to 1-10 s periods. The significant population of millisecond pulsars observed in our Galaxy is explained by the recycling concept: during an epoch of accretion from a donor star in a binary system, the neutron star is spun up to millisecond periods. However, only a few pulsars are observed during this recycling process, with relatively high rotational frequencies. Here we report the detection of an X-ray pulsar with $P_{\\rm spin} = 1.20$ s in the globular cluster B091D in the Andromeda galaxy, the slowest pulsar ever found in a globular cluster. This bright (up-to 30% of the Eddington luminosity), high spin-up rate pulsar, persistent over the 12 years of observations, must have started accreting less than 1 Myr ago and has not yet had time to accelerate to hundreds of Hz. The neutron star in this unique wide binary with an orbital period $P_{\\rm orb} = 30.5$ h in a 12 Gyr old, meta...

  11. Mapping the QCD Phase Transition with Accreting Compact Stars

    CERN Document Server

    Blaschke, David; Grigorian, Hovik

    2008-01-01

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ``phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the Omega-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a change in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond X-ray pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the Omega-M plane, which may be viewed as the AMXP analog of th...

  12. Interplanetary spacecraft navigation using pulsars

    CERN Document Server

    Deng, X P; You, X P; Li, M T; Keith, M J; Shannon, R M; Coles, W; Manchester, R N; Zheng, J H; Yu, X Z; Gao, D; Wu, X; Chen, D

    2013-01-01

    We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.

  13. X-RAY AND NEAR-INFRARED OBSERVATIONS OF THE OBSCURED ACCRETING PULSAR IGR J18179-1621

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, M. A. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Paizis, A. [Istituto Nazionale di Astrofisica, INAF-IASF, Via Bassini 15, I-20133 Milano (Italy); Rodriguez, J.; Chaty, S. [AIM-Astrophysique, Instrumentation et Modelisation (UMR-E 9005 CEA/DSM-CNRS-Universite Paris Diderot) Irfu/Service d' Astrophysique, Centre de Saclay FR-91191 Gif-sur-Yvette Cedex (France); Santo, M. Del; Ubertini, P. [Istituto Nazionale di Astrofisica, INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Grinberg, V.; Wilms, J. [Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universitaet Erlangen-Nuernberg, Sternwartstr. 7, D-96049 Bamberg (Germany); Chini, R., E-mail: mnowak@space.mit.edu, E-mail: ada@iasf-milano.inaf.it [Astronomisches Institut, Ruhr-Universitaet Bochum, Universitaetsstrasse 150, D-44780 Bochum (Germany)

    2012-10-01

    IGR J18179-1621 is an obscured accreting X-ray pulsar discovered by INTEGRAL on 2012 February 29. We report on our 20 ks Chandra-High Energy Transmission Gratings Spectrometer observation of the source performed on 2012 March 17, on two short contemporaneous Swift observations, and on our two near-infrared (K{sub s} , H{sub n} , and J{sub n} ) observations performed on 2012 March 13 and 26. We determine the most accurate X-ray position of IGR J18179-1621, {alpha}{sub J2000} = 18{sup h}17{sup m}52.{sup s}18, {delta}{sub J2000} = -16 Degree-Sign 21'31.''68 (90% uncertainty of 0.''6). A strong periodic variability at 11.82 s is clearly detected in the Chandra data, confirming the pulsating nature of the source, with the light-curve softening at the pulse peak. The quasi-simultaneous Chandra-Swift spectra of IGR J18179-1621 can be well fit by a heavily absorbed hard power law (N{sub H} = 2.2 {+-} 0.3 Multiplication-Sign 10{sup 23} cm{sup -2} and photon index {Gamma} = 0.4 {+-} 0.1) with an average absorbed 2-8 keV flux of 1.4 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1}. At the Chandra-based position, a source is detected in our near-infrared (NIR) maps with K{sub s} 13.14 {+-} 0.04 mag, H{sub n} = 16 {+-} 0.1 mag, and no J{sub n} -band counterpart down to {approx}18 mag. The NIR source, compatible with 2MASS J18175218-1621316, shows no variability between 2012 March 13 and 26. Searches of the UKIDSS database show similar NIR flux levels at epochs six months prior to and after a 2007 February 11 archival Chandra observation where the source's X-ray flux was at least 87 times fainter. In many ways IGR J18179-1621 is unusual: its combination of a several week long outburst (without evidence of repeated outbursts in the historical record), high absorption column (a large fraction of which is likely local to the system), and 11.82 s period does not fit neatly into existing X-ray binary categories.

  14. GBM Accreting Pulsar Histories

    Data.gov (United States)

    National Aeronautics and Space Administration — For each source we plot the history of pulse frequency and pulsed flux measured using the Fermi Gamma-Ray Burst Monitor (GBM) NaI detectors. For these measurements...

  15. Pulsars and Gravity

    CERN Document Server

    Manchester, R N

    2015-01-01

    Pulsars are wonderful gravitational probes. Their tiny size and stellar mass give their rotation periods a stablility comparable to that of atomic frequency standards. This is especially true of the rapidly rotating "millisecond pulsars" (MSPs). Many of these rapidly rotating pulsars are in orbit with another star, allowing pulsar timing to probe relativistic perturbations to the orbital motion. Pulsars have provided the most stringent tests of theories of relativistic gravitation, especially in the strong-field regime, and have shown that Einstein's general theory of relativity is an accurate description of the observed motions. Many other gravitational theories are effectively ruled out or at least severely constrained by these results. MSPs can also be used to form a "Pulsar Timing Array" (PTA). PTAs are Galactic-scale interferometers that have the potential to directly detect nanohertz gravitational waves from astrophysical sources. Orbiting super-massive black holes in the cores of distant galaxies are t...

  16. The timing behaviour of radio pulsars

    CERN Document Server

    Hobbs, G

    2009-01-01

    The purpose of this review paper is to summarise the pulsar timing method, to provide an overview of recent research into the spin-down of pulsars over decadal timescales and to highlight the science that can be achieved using high-precision timing of millisecond pulsars.

  17. Current Flows in Pulsar Magnetospheres

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The global structure of .current flows in pulsar magnetosphere is investigated, with rough calculations of the circuit elements. It is emphasized that the potential of the critical field lines (the field lines that intersect the null surface at the light cylinder radius) should be the same as that of interstellar medium, and that pulsars whose rotation axes and magnetic dipole axes are parallel should be positively charged, in order to close the pulsar's current flows. The statistical relation between the radio luminosity and pulsar's electric charge (or the spindown power) may hint that the millisecond pulsars could be low-mass bare strange stars.

  18. Populations and evolution of radio pulsars

    Institute of Scientific and Technical Information of China (English)

    李向东; 汪珍如

    1996-01-01

    A new physical parameter Q=log(We/P2/3) is defined as a criterion for judging whether a radio pulsar is a normal pulsar or a recycled pulsar originating from accreting binary systems.Based on the definition,the observational characteristics and the evolution of the two groups of pulsars are discussed.

  19. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel

    Science.gov (United States)

    Mushtukov, Alexander A.; Tsygankov, Sergey S.; Serber, Alexander V.; Suleimanov, Valery F.; Poutanen, Juri

    2015-12-01

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so-called critical luminosity, these variations are established to be connected with the appearance of the high-accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity on to the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid energy is positively correlated with the luminosity; (ii) the line width is positively correlated with the luminosity as well; (iii) the position and the width of the cyclotron absorption line are variable over the pulse phase; (iv) the line has a more complicated shape than widely used Lorentzian or Gaussian profiles; (v) the phase-resolved cyclotron line centroid energy and the width are negatively and positively correlated with the pulse intensity, respectively. The predictions of the proposed theory are compared with the variations of the cyclotron line parameters in the X-ray pulsar GX 304-1 over a wide range of sub-critical luminosities as seen by the INTEGRAL observatory.

  20. Nustar Detection of Hard X-Ray Phase Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Miyasaka, Hiromasa; Bachetti, Matteo; Harrison, Fiona A.;

    2013-01-01

    -mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam...

  1. NuSTAR observations of the supergiant X-ray pulsar IGR J18027-2016: accretion from the stellar wind and possible cyclotron absorption line

    CERN Document Server

    Lutovinov, A; Postnov, K; Krivonos, R; Molkov, S; Tomsick, J

    2016-01-01

    We report on the first focused hard X-ray view of the absorbed supergiant system IGRJ18027-2016 performed with the NuSTAR observatory. The pulsations are clearly detected with a period of P_{spin}=139.866(1) s and a pulse fraction of about 50-60% at energies from 3 to 80 keV. The source demonstrates an approximately constant X-ray luminosity on a time scale of more than dozen years with an average spin-down rate of dP/dt~6x10^{-10} s/s. This behaviour of the pulsar can be explained in terms of the wind accretion model in the settling regime. The detailed spectral analysis at energies above 10 keV was performed for the first time and revealed a possible cyclotron absorption feature at energy ~23 keV. This energy corresponds to the magnetic field B~3x10^{12} G at the surface of the neutron star, which is typical for X-ray pulsars.

  2. Gamma rays from Galactic pulsars

    OpenAIRE

    2014-01-01

    Gamma rays from young pulsars and milli-second pulsars are expected to contribute to the diffuse gamma-ray emission measured by the {\\it Fermi} Large Area Telescope (LAT) at high latitudes. We derive the contribution of the pulsars undetected counterpart by using information from radio to gamma rays and we show that they explain only a small fraction of the isotropic diffuse gamma-ray background.

  3. Formation of redbacks via accretion induced collapse

    CERN Document Server

    Smedley, Sarah L; Ferrario, Lilia; Wickramasinghe, Dayal T

    2014-01-01

    We examine the growing class of binary millisecond pulsars known as redbacks. In these systems the pulsar's companion has a mass between 0.1 and about 0.5 solar masses in an orbital period of less than 1.5 days. All show extended radio eclipses associated with circumbinary material. They do not lie on the period-companion mass relation expected from the canonical intermediate-mass X-ray binary evolution in which the companion filled its Roche lobe as a red giant and has now lost its envelope and cooled as a white dwarf. The redbacks lie closer to, but usually at higher period than, the period-companion mass relation followed by cataclysmic variables and low-mass X-ray binaries. In order to turn on as a pulsar mass accretion on to a neutron star must be sufficiently weak, considerably weaker than expected in systems with low-mass main-sequence companions driven together by magnetic braking or gravitational radiation. If a neutron star is formed by accretion induced collapse of a white dwarf as it approaches th...

  4. Regimes of Pulsar Pair Formation and Particle Energetics

    CERN Document Server

    Harding, A K; Muslimov, A G; Harding, Alice K.; Zhang, Alexander G. Muslimov & Bing

    2002-01-01

    We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond pulsar population. We also find that two-ph...

  5. The Pulsar Population in Globular Clusters and in the Galaxy

    CERN Document Server

    Freire, Paulo C C

    2012-01-01

    In this paper, I review some of the basic properties of the pulsar population in globular clusters (GCs) and compare it with the the Galactic disk population. The neutron stars (NSs) in GCs were likely formed - and appear to continue forming - in highly symmetric supernovae (SNe), likely from accretion-induced collapse (AIC). I review the many pulsar finds and discuss some particularly well populated GCs and why they are so. I then discuss some particularly interesting objects, like millisecond pulsars (MSPs) with eccentric orbits, which were heavily perturbed by passing stars. Some of these systems, like NGC 1851A and NGC 6544B, are almost certainly the result of exchange interactions, i.e., they are witnesses to the very same processes that created the large population of MSPs in the first place. I also review briefly the problem posed by the presence of young pulsars in GCs (with a special emphasis on a sub-class of young pulsars, the super-energetic MSPs), which suggest continuing formation of NSs in low-...

  6. "Missing Link" Revealing Fast-Spinning Pulsar Mysteries

    Science.gov (United States)

    2009-05-01

    Astronomers have discovered a unique double-star system that represents a "missing link" stage in what they believe is the birth process of the most rapidly-spinning stars in the Universe -- millisecond pulsars. "We've thought for some time that we knew how these pulsars get 'spun up' to rotate so swiftly, and this system looks like it's showing us the process in action," said Anne Archibald, of McGill University in Montreal, Canada. Pulsar and Companion Neutron star with accretion disk (left) drawing material from companion star (right). CREDIT:Bill Saxton, NRAO/AUI/NSF Animations of this system and its evolution. Pulsars are superdense neutron stars, the remnants left after massive stars have exploded as supernovae. Their powerful magnetic fields generate lighthouse-like beams of light and radio waves that sweep around as the star rotates. Most rotate a few to tens of times a second, slowing down over thousands of years. However, some, dubbed millisecond pulsars, rotate hundreds of times a second. Astronomers believe the fast rotation is caused by a companion star dumping material onto the neutron star and spinning it up. The material from the companion would form a flat, spinning disk around the neutron star, and during this period, the radio waves characteristic of a pulsar would not be seen coming from the system. As the amount of matter falling onto the neutron star decreased and stopped, the radio waves could emerge, and the object would be recognized as a pulsar. This sequence of events is apparently what happened with a binary-star system some 4000 light-years from Earth. The millisecond pulsar in this system, called J1023, was discovered by the National Science Foundation's (NSF) Robert C. Byrd Green Bank Telescope (GBT) in West Virginia in 2007 in a survey led by astronomers at West Virginia University and the National Radio Astronomy Observatory (NRAO). The astronomers then found that the object had been detected by NSF's Very Large Array (VLA) radio

  7. Ejector and propeller spin-down: how might a superluminous supernova millisecond magnetar become the 6.67 h pulsar in RCW 103

    Science.gov (United States)

    Ho, Wynn C. G.; Andersson, Nils

    2017-01-01

    The X-ray source 1E 161348-5055 in the supernova remnant RCW 103 recently exhibited X-ray activity typical of magnetars, i.e. neutron stars with magnetic fields ≳ 1014-1015 G. However, 1E 161348-5055 has an observed period of 6.67 h, in contrast to magnetars which have a spin period of seconds. Here we describe a simple model which can explain the spin evolution of 1E 161348-5055, as well as other magnetars, from an initial period of milliseconds that would be required for dynamo generation of magnetar-strength magnetic fields. We propose that the key difference between 1E 161348-5055 and other magnetars is the persistence of a remnant disc of small total mass. This disc caused 1E 161348-5055 to undergo ejector and propeller phases in its life, during which strong torques caused a rapid increase of its spin period. By matching its observed spin period and ≈1-3 kyr age, we find that 1E 161348-5055 has the (slightly) highest magnetic field of all known magnetars, with B ˜ 5 × 1015 G, and that its disc had a mass of ˜1024 g, comparable to that of the asteroid Ceres.

  8. Ejector and propeller spin-down: How might a superluminous supernova millisecond magnetar become the 6.67 hr pulsar in RCW103

    CERN Document Server

    Ho, Wynn C G

    2016-01-01

    The X-ray source 1E 161348-5055 in the supernova remnant RCW 103 recently exhibited X-ray activity typical of magnetars, i.e., neutron stars with magnetic fields > 10^14-10^15 G. However, 1E 161348-5055 has an observed period of 6.67 hr, in contrast to magnetars which have a spin period of seconds. Here we describe a simple model which can explain the spin evolution of 1E 161348-5055, as well as other magnetars, from an initial period of milliseconds that would be required for dynamo generation of magnetar-strength magnetic fields. We propose that the key difference between 1E 161348-5055 and other magnetars is the persistence of a remnant disk of small total mass. This disk caused 1E 161348-5055 to undergo ejector and propeller phases in its life, during which strong torques caused a rapid increase of its spin period. By matching its observed spin period and ~1-3 kyr age, we find that 1E 161348-5055 has the (slightly) highest magnetic field of all known magnetars, with B~5x10^15 G, and that its disk had a ma...

  9. The inner disc radius in the propeller phase and accretion-propeller transition of neutron stars

    Science.gov (United States)

    Ertan, Ünal

    2017-04-01

    We have investigated the critical conditions required for a steady propeller effect for magnetized neutron stars with optically thick, geometrically thin accretion discs. We have shown through simple analytical calculations that a steady-state propeller mechanism cannot be sustained at an inner disc radius where the viscous and magnetic stresses are balanced. The radius calculated by equating these stresses is usually found to be close to the conventional Alfvén radius for spherical accretion, rA. Our results show that: (1) a steady propeller phase can be established with a maximum inner disc radius that is at least ∼15 times smaller than rA depending on the mass-flow rate of the disc, rotational period and strength of the magnetic dipole field of the star, (2) the critical accretion rate corresponding to the accretion-propeller transition is orders of magnitude lower than the rate estimated by equating rA to the co-rotation radius. Our results are consistent with the properties of the transitional millisecond pulsars that show transitions between the accretion powered X-ray pulsar and the rotational powered radio-pulsar states.

  10. Evidence for crust cooling in the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; E.F. Brown; R. Wijnands

    2011-01-01

    The temporal heating and subsequent cooling of the crusts of transiently accreting neutron stars carries unique information about their structure and a variety of nuclear reaction processes. We report on a new Chandra Director’s Discretionary Time observation of the globular cluster Terzan 5, aimed

  11. Critical condition for the propeller effect in systems with magnetized neutron stars accreting from geometrically thin accretion disks

    Science.gov (United States)

    Ertan, Unal

    2016-07-01

    The inner disk radius around a magnetized neutron star in the spin-down phase is usually assumed to be close to the radius at which the viscous and magnetic stresses are balanced. With different assumptions, this radius is estimated to be very close the Alfven radius. Furthermore, it is commonly assumed that the propeller mechanism can expel the matter from the system when this radius is found to be greater than the co-rotation radius. In the present work, we have shown with simple analytical calculations from the first principles that a steady-state propeller mechanism cannot be established at the radius where the viscous and the magnetic torques are balanced. We have found that a steady-state propeller phase can be built up with an inner disk radius that is at least ~10 - 30 times smaller than the Alfven radius depending on the current mass-flow rate of the disk, the field strength and the rotational period of the source. This result also indicates that the critical accretion rate for the accretion-propeller transition is orders of magnitude smaller than the rate found by equating the Alfven and the co-rotation radii. Our results are consistent with the properties of recently discovered transitional millisecond pulsars which show transitions between the rotational powered radio pulsar and the accretion powered X-ray pulsar states.

  12. Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk

    Indian Academy of Sciences (India)

    Chetana Jain; Biswajit Paul; Kaustubh Joshi; Anjan Dutta; Harsha Raichur

    2007-12-01

    We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626-67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3 upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20 lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb–Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.

  13. Extended Corbet Diagram of HMXBs,LMXBs and radio pulsar binaries

    Institute of Scientific and Technical Information of China (English)

    ALI; Esamdin

    2010-01-01

    The evolutionary scenario of neutron star binaries is still an essential enigma in both stellar astrophysics and high energy astrophysics.In order to explore the scenario,we include the accumulation of data on the orbits and spins of compact binaries in multi-wavelength ranging from radio to X-ray,such as radio pulsar binaries,HMXBs,and LMXBs,filling them into the so called "Corbet Diagram" which initially investigated the period of orbit(Porb)~the period of spin(Pspin) correlation of HMXBs.We find that the evolutionary scenario comes more clearly and makes strong confirmation of the connection between LMXBs and radio pulsar binaries,predicted by the recycle process.However,the origins of radio pulsar binaries sre still unknown.Accretion Induced Collapse(AIP) process may be a mechanism which can explain the origin of the binary millisecond pulsars with relatively longer orbital periods.A correlation of P1/3orb~P-1spin of LMXBs and radio pulsar binaries may exist.

  14. Spectral analysis of X-ray pulsars with the INTEGRAL observatory

    CERN Document Server

    Filippova, E V; Lutovinov, A A; Sunyaev, R A

    2006-01-01

    We studied spectra for 34 accretion-powered X-ray and one millisecond pulsars that were within the field of view of the INTEGRAL observatory over two years (December 2002 - January 2005) of its in-orbit operation and that were detected by its instruments at a statistically significant level (>8 sigma in the energy range 18-60 keV). There are seven recently discovered objects of this class among the pulsars studied: 2RXP J130159.6-635806, IGR/AX J16320-4751, IGR J16358-4726, AX J163904-4642, IGR J16465-4507, SAX/IGR J18027-2017 and AX J1841.0-0535. We analyze the evolution of spectral parameters as a function of the intensity of the sources and compare these with the results of previous studies.

  15. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Directory of Open Access Journals (Sweden)

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  16. X-ray Pulsars

    CERN Document Server

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  17. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  18. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  19. Testing Gravity with Pulsars in the SKA Era

    CERN Document Server

    Shao, Lijing; Antoniadis, John; Deller, Adam T; Freire, Paulo C C; Hessels, Jason W T; Janssen, Gemma H; Kramer, Michael; Kunz, Jutta; Lämmerzahl, Claus; Perlick, Volker; Possenti, Andrea; Ransom, Scott; Stappers, Benjamin W; van Straten, Willem

    2015-01-01

    The Square Kilometre Array (SKA) will use pulsars to enable precise measurements of strong gravity effects in pulsar systems, which yield tests of gravitational theories that cannot be carried out anywhere else. The Galactic census of pulsars will discover dozens of relativistic pulsar systems, possibly including pulsar -- black hole binaries which can be used to test the "cosmic censorship conjecture" and the "no-hair theorem". Also, the SKA's remarkable sensitivity will vastly improve the timing precision of millisecond pulsars, allowing probes of potential deviations from general relativity (GR). Aspects of gravitation to be explored include tests of strong equivalence principles, gravitational dipole radiation, extra field components of gravitation, gravitomagnetism, and spacetime symmetries.

  20. Circular Polarization in Pulsar Integrated Profiles: Updates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We update the systematic studies of circular polarization in integrated pulse profiles by Han et al. Data of circular polarization profiles are compiled. Sense reversals can occur in core or cone components, or near the intersection between components. The correlation between the sense of circular polarization and the sense of position angle variation for conal-double pulsars is confirmed with a much large database. Circular polarization of some pulsars has clear changes with frequency.Circular polarization of millisecond pulsars is marginally different from that of normal pulsars.

  1. Radio Searches for Pulsars and Short-Duration Transients

    CERN Document Server

    McLaughlin, Maura

    2011-01-01

    I discuss methods and current software packages for radio searches for pulsars and short-duration transients. I then describe the properties of the current pulsar population and the status of and predictions for ongoing and future surveys. The presently observed pulsar population numbers around 2000 and is expected to roughly double over the next five years, with the number of millisecond pulsars expected to more than triple. Finally, I discuss individual objects discovered in the Green Bank Telescope 350-MHz Drift-Scan Survey and the Arecibo Pulsar ALFA Survey.

  2. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    NARCIS (Netherlands)

    Noutsos, A.; Sobey, C.; Kondratiev, V.I.; Weltevrede, P.; Verbiest, J.P.W.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R.P.; Bilous, A.V.; Cooper, S.; Falcke, H.; Grießmeier, J.M.; Hassall, T.E.; Hessels, J.W.T.; Keane, E.F.; Osłowski, S.; Pilia, M.; Serylak, M.; Stappers, B.W.; ter Veen, S.; van Leeuwen, J.; Zagkouris, K.; Anderson, K.; Bähren, L.; Bell, M.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Garsden, H.; Jonker, P.; Law, C.; Markoff, S.; Masters, J.; Miller-Jones, J.; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, B.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.; Wijnands, R.; Wise, M.; Zarka, P.; van der Horst, A.

    2015-01-01

    Aims. We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from t

  3. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    NARCIS (Netherlands)

    Noutsos, A.; Sobey, C.; Kondratiev, V.I.; Weltevrede, P.; Verbiest, J.P.W.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R.P.; Bilous, A.V.; Cooper, S.; Falcke, H.; Griessmeier, J.-M.; Hassall, T.E.; Hessels, J.W.T.; Keane, E.F.; Oslowski, S.; Pilia, M.; Serylak, M.; Stappers, B.W.; Veen, S. ter; Leeuwen, J. van; Zagkouris, K.; Anderson, K.; Baehren, L.; Bell, M.E.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eisloeffel, J.; Fender, R.P.; Garsden, H.; Jonker, P.; Law, C.J.; Markoff, S.; Masters, J.; Miller-Jones, J.C.A.; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, L.H.A.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.A.M.J.; Wijnands, R.; Wise, M.W.; Zarka, P.; Horst, A. van der

    2015-01-01

    Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from t

  4. Gravitational wave detection and data analysis for pulsar timing arrays

    NARCIS (Netherlands)

    Haasteren, Rutger van

    2011-01-01

    Long-term precise timing of Galactic millisecond pulsars holds great promise for measuring long-period (months-to-years) astrophysical gravitational waves. In this work we develop a Bayesian data analysis method for projects called pulsar timing arrays; projects aimed to detect these gravitational w

  5. Imprints of relic gravitational waves on pulsar timing

    CERN Document Server

    Tong, Ming-Lei; Zhao, Cheng-Shi; Gao, Feng; Yan, Bao-Rong; Yang, Ting-Gao; Gao, Yu-Ping

    2015-01-01

    Relic gravitational waves (RGWs) , a background originated during inflation, would give imprints on the pulsar timing residuals. This makes RGWs be one of important sources for detection using the method of pulsar timing. In this paper, we discuss the effects of RGWs on the single pulsar timing, and give quantitively the timing residuals caused by RGWs with different model parameters. In principle, if the RGWs are strong enough today, they can be detected by timing a single millisecond pulsar with high precision after the intrinsic red noise in pulsar timing residuals were understood, even though observing simultaneously multiple millisecond pulsars is a more powerful technique in extracting gravitational wave signals. We corrected the normalization of RGWs using observations of the cosmic microwave background (CMB), which leads to the amplitudes of RGWs being reduced by two orders of magnitude or so compared to our previous works. We made new constraints on RGWs using the recent observations from the Parkes ...

  6. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  7. Detecting nanohertz gravitational waves with pulsar timing arrays

    CERN Document Server

    Zhu, Xing-Jiang; Hobbs, George; Manchester, Richard N; Shannon, Ryan M

    2015-01-01

    Complementary to ground-based laser interferometers, pulsar timing array experiments are being carried out to search for nanohertz gravitational waves. Using the world's most powerful radio telescopes, three major international collaborations have collected $\\sim$10-year high precision timing data for tens of millisecond pulsars. In this paper we give an overview on pulsar timing experiments, gravitational wave detection in the nanohertz regime, and recent results obtained by various timing array projects.

  8. The hunt for new pulsars with the Green Bank Telescope

    CERN Document Server

    Lynch, Ryan S; Banaszak, Shawn; Becker, Alison; Berndsen, Aaron; Biwer, Chris; Boyles, Jason; Cardoso, Rogerio F; Cherry, Angus; Dartez, Louis P; Day, David; Epstein, Courtney R; Flanigan, Joe; Ford, Anthony; Garcia, Alejandro; Hessels, Jason W T; Jenet, Fredrick A; Kaplan, David L; Karako-Argaman, Chen; Kaspi, Victoria M; Kondratiev, Vladislav I; Lorimer, Duncan R; Lunsford, Grady; Martinez, Jose; McLaughlin, Maura A; McPhee, Christie A; Pennucci, Tim; Ransom, Scott M; Roberts, Mallory S E; Rohr, Matt; Siemens, Xavi; Stairs, Ingrid H; Stovall, Kevin; van Leeuwen, Joeri; Walker, Arielle; Wells, Brad

    2013-01-01

    The Green Bank Telescope (GBT) is the largest fully steerable radio telescope in the world and is one of our greatest tools for discovering and studying radio pulsars. Over the last decade, the GBT has successfully found over 100 new pulsars through large-area surveys. Here I discuss the two most recent---the GBT 350 MHz Drift-scan survey and the Green Bank North Celestial Cap survey. The primary science goal of both surveys is to find interesting individual pulsars, including young pulsars, rotating radio transients, exotic binary systems, and especially bright millisecond pulsars (MSPs) suitable for inclusion in Pulsar Timing Arrays, which are trying to directly detect gravitational waves. These two surveys have combined to discover 85 pulsars to date, among which are 14 MSPs and many unique and fascinating systems. I present highlights from these surveys and discuss future plans. I also discuss recent results from targeted GBT pulsar searches of globular clusters and Fermi sources.

  9. Arecibo Pulsar and Transient Surveys Using ALFA

    Science.gov (United States)

    Cordes, J. M.

    2008-02-01

    A large scale survey for pulsars and transients is being conducted at the Arecibo Observatory using the Arecibo L-band Feed Array (ALFA). Data acquisition so far has been with correlation spectrometers that analyze a 0.1 GHz bandwidth at 1.4 GHz. The 256 frequency channels limit dispersion smearing to 1.2 ms at DMmax = 103 pc cm-3 while the sampling interval of 64 μs equals the dispersion smearing at DM~54 pc cm-3, providing high sensitivity to millisecond pulsars with standard periods out to implied distances of several kpc at low Galactic latitudes. In early 2008, we will use a new set of polyphase filter bank systems that provide the same time and frequency resolutions but over ALFA's full 0.3 GHz bandwidth. Currently the survey covers sky positions within 5° of the Galactic plane that are reachable with Arecibo. Preliminary results are given for some of the discoveries made so far, which include millisecond pulsars, a relativistic binary pulsar, a likely counterpart of a Compton GRO/EGRET gamma-ray source, and transient pulsars (including `RRATs''). We discuss the methodology of the survey, which includes archival of raw survey data at the Cornell Center for Advanced Computing and processing at distributed sites. The survey and follow up observations, which include timing observations, multiwavelength searches for orbital companions in the case of binary pulsars, etc. are organized through the Pulsar-ALFA (PALFA) Consortium. We expect the Galactic plane survey to continue until at least 2010, most likely involving multiple passes on each sky position to optimize detection of variable sources. The ALFA system will also be used to survey intermediate Galactic latitudes for millisecond pulsars, relativistic binaries with large systemic velocities, and runaway pulsars that will escape the Galaxy.

  10. Interior matter estimates of the X-ray pulsar in SAX J1808.4-3658 from mass-radius and rotation measurements

    CERN Document Server

    Pan, Nana; Zheng, Xiaoping

    2008-01-01

    To constrain the equation of state of super-nuclear density matter and probe the interior composition of the X-ray pulsar in SAX J1808.4-3658. In our estimation, we consider both its persistent 2.49 ms X-ray pulsations discovered by Wijnands and van der Klis from using the Rossi X-ray Timing Explorer, which is interpreted to come from an accreting-powered millisecond X-ray pulsar in the low mass X-ray binaries, and the corresponding mass-radius data analyzed of the light curves of SAX J1808.4-3685 during its 1998 and 2005 outbursts by Leahy et al. from assuming a hot spot model where the X-rays are originated from the surface of the neutron star.

  11. A digital pulsar backend based on FPGA

    Science.gov (United States)

    Luo, Jin-Tao; Chen, Lan; Han, Jin-Lin; Esamdin, Ali; Wu, Ya-Jun; Li, Zhi-Xuan; Hao, Long-Fei; Zhang, Xiu-Zhong

    2017-01-01

    A digital pulsar backend based on a Field Programmable Gate Array (FPGA) is developed. It is designed for incoherent de-dispersion of pulsar observations and has a maximum bandwidth of 512 MHz. The channel bandwidth is fixed to 1 MHz, and the highest time resolution is 10 {{μ }} s. Testing observations were carried out using the Urumqi 25-m telescope administered by Xinjiang Astronomical Observatory and the Kunming 40-m telescope administered by Yunnan Observatories, targeting PSR J0332+5434 in the L band and PSR J0437–4715 in the S band, respectively. The successful observation of PSR J0437–4715 demonstrates its ability to observe millisecond pulsars.

  12. Dark matter vs. Pulsars: Catching the impostor

    CERN Document Server

    Mirabal, N

    2013-01-01

    Evidence of excess GeV emission nearly coinciding with the Galactic Centre has been interpreted as a possible signature of annihilating dark matter. In this paper, we argue that it seems too early to discard pulsars as a viable explanation for the observed excess. On the heels of the recently released Second Fermi LAT Pulsar Catalogue (2FPC), it is still possible that a population of hard (Gamma < 1) millisecond pulsars (MSPs) either endemic to the innermost region or part of a larger nascent collection of hard MSPs that appears to be emerging in the 2FPC could explain the GeV excess near the Galactic Centre.

  13. Searching for Pulsars with the SKA

    Science.gov (United States)

    Ransom, Scott

    2007-12-01

    One of the SKA Key Science Projects involves "strong field tests of gravity using pulsars and black holes". However, we currently don't know of any pulsar - black hole binaries! Another component of this key science project involves the detection of nano-Hertz gravitational waves using an ensemble of many tens or hundreds of very high-precision millisecond pulsars, many of which are also, as yet, unknown. It is clear that some of the first major pulsar projects conducted with early phases of the SKA will involve large-area surveys. Given the likely nature of the mid-frequency-range SKA (i.e. large numbers of small dishes), such surveys will be incredibly challenging, and will require extremely large data and computational rates. However, the technical issues are likely surmountable, and the resulting surveys will find thousands of new pulsars, many of which will be useful for these and other basic physics tests.

  14. Stability of pulsar rotational and orbital periods

    CERN Document Server

    Kopeikin, Sergei

    2009-01-01

    Millisecond and binary pulsars are the most stable astronomical standards of frequency. They can be applied to solving a number of problems in astronomy and time-keeping metrology including the search for a stochastic gravitational wave background in the early universe, testing general relativity, and establishing a new time-scale. The full exploration of pulsar properties requires that proper unbiased estimates of spin and orbital parameters of the pulsar be obtained. These estimates depend essentially on the random noise components present in pulsar timing residuals. The instrumental white noise has predictable statistical properties and makes no harm for interpretation of timing observations, while the astrophysical/geophysical low-frequency noise corrupts them, thus, reducing the quality of tests of general relativity and decreasing the stability of the pulsar time scale.

  15. Pulsar Magnetospheres and Pulsar Winds

    CERN Document Server

    Beskin, Vasily S

    2016-01-01

    Surprisingly, the chronology of nearly 50 years of the pulsar magnetosphere and pulsar wind research is quite similar to the history of our civilization. Using this analogy, I have tried to outline the main results obtained in this field. In addition to my talk, the possibility of particle acceleration due to different processes in the pulsar magnetosphere is discussed in more detail.

  16. Arecibo pulsar survey using ALFA. III. Precursor survey and population synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Swiggum, J. K.; Lorimer, D. R.; McLaughlin, M. A.; Bates, S. D.; Senty, T. R. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Champion, D. J.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Hessels, J. W. T. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Ellis, J.; Allen, B. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee WI 53211 (United States); Bhat, N. D. R. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); and others

    2014-06-01

    The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo (32° ≲ ℓ ≲ 77° and 168° ≲ ℓ ≲ 214°) close to the Galactic plane (|b| ≲ 5°) for pulsars. The PALFA survey is sensitive to sources fainter and more distant than have previously been seen because of Arecibo's unrivaled sensitivity. In this paper we detail a precursor survey of this region with PALFA, which observed a subset of the full region (slightly more restrictive in ℓ and |b| ≲ 1°) and detected 45 pulsars. Detections included 1 known millisecond pulsar and 11 previously unknown, long-period pulsars. In the surveyed part of the sky that overlaps with the Parkes Multibeam Pulsar Survey (36° ≲ ℓ ≲ 50°), PALFA is probing deeper than the Parkes survey, with four discoveries in this region. For both Galactic millisecond and normal pulsar populations, we compare the survey's detections with simulations to model these populations and, in particular, to estimate the number of observable pulsars in the Galaxy. We place 95% confidence intervals of 82,000 to 143,000 on the number of detectable normal pulsars and 9000 to 100,000 on the number of detectable millisecond pulsars in the Galactic disk. These are consistent with previous estimates. Given the most likely population size in each case (107,000 and 15,000 for normal and millisecond pulsars, respectively), we extend survey detection simulations to predict that, when complete, the full PALFA survey should have detected 1000{sub −230}{sup +330} normal pulsars and 30{sub −20}{sup +200} millisecond pulsars. Identical estimation techniques predict that 490{sub −115}{sup +160} normal pulsars and 12{sub −5}{sup +70} millisecond pulsars would be detected by the beginning of 2014; at the time, the PALFA survey had detected 283 normal pulsars and 31 millisecond pulsars, respectively. We attribute the deficiency in normal pulsar

  17. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Kim, H.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Eatough, R. P.; Keane, E. F.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Anderson, D. [University of California at Berkeley, Berkeley, CA 94720 (United States); Crawford, F.; Rastawicki, D. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Hammer, D.; Papa, M. A.; Siemens, X. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Miller, R. B. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Sarkissian, J., E-mail: benjamin.knispel@aei.mpg.de [CSIRO Parkes Observatory, Parkes, NSW 2870 (Australia); and others

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  18. Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

    Science.gov (United States)

    Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.

    2013-09-01

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  19. Pulsar observations with European telescopes for testing gravity and detecting gravitational waves

    CERN Document Server

    Perrodin, D; Janssen, G H; Karuppusamy, R; Kramer, M; Lee, K; Liu, K; McKee, J; Purver, M; Sanidas, S; Smits, R; Stappers, B W; Zhu, W; Concu, R; Melis, A; Burgay, M; Casu, S; Corongiu, A; Egron, E; Iacolina, N; Pellizzoni, A; Pilia, M; Trois, A

    2016-01-01

    A background of nanohertz gravitational waves from supermassive black hole binaries could soon be detected by pulsar timing arrays, which measure the times-of-arrival of radio pulses from millisecond pulsars with very high precision. The European Pulsar Timing Array uses five large European radio telescopes to monitor high-precision millisecond pulsars, imposing in this way strong constraints on a gravitational wave background. To achieve the necessary precision needed to detect gravitational waves, the Large European Array for Pulsars (LEAP) performs simultaneous observations of pulsars with all five telescopes, which allows us to coherently add the radio pulses, maximize the signal-to-noise of pulsar signals and increase the precision of times-of-arrival. We report on the progress made and results obtained by the LEAP collaboration, and in particular on the addition of the Sardinia Radio Telescope to the LEAP observations during its scientific validation phase. In addition, we discuss how LEAP can be used t...

  20. The Future of Pulsar Timing Arrays

    Science.gov (United States)

    Stappers, B. W.

    Significant advances have been made in the sensitivity of pulsar timing arrays for the detection of gravitational waves in the last decade. This presentation looked forward to consider where the development of pulsar timing arrays might go as we head towards the Square Kilometre Array (SKA) and then beyond. I reviewed where progress needs to be made in terms of sensitivity to gravitational waves, including improvements to existing observing approaches and new telescopes such as MeerKAT and FAST and techniques like LEAP. The dramatic increase in the number of millisecond pulsars is presented and how that might affect progress towards a first detection is discussed. Developments in analytic techniques were also discussed, including the removal of interstellar medium effects, red noise and pulse profile variations. A summary of how the SKA can contribute through an increased millisecond pulsar population and pulsar timing sensitivity was presented. With the likelihood that the SKA will implement some form of Key Science Project approach, some ideas of how will this affect how the International Pulsar Timing Array effort and how it might evolve into a KSP were discussed.

  1. Detecting pulsars in the Galactic Centre

    Science.gov (United States)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (i.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  2. Observing peculiar γ-ray pulsars with AGILE

    Science.gov (United States)

    Pilia, M.; Pellizzoni, A.

    2011-08-01

    The AGILE γ-ray satellite provides large sky exposure levels (>=109 cm2 s per year on the Galactic Plane) with sensitivity peaking at E ~100 MeV where the bulk of pulsar energy output is typically released. Its ~1 μs absolute time tagging capability makes it perfectly suited for the study of γ-ray pulsars. AGILE collected a large number of γ-ray photons from EGRET pulsars (>=40,000 pulsed counts for Vela) in two years of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves, γ-ray emission from pulsar glitches and Pulsar Wind Nebulae. AGILE detected about 20 nearby and energetic pulsars with good confidence through timing and/or spatial analysis. Among the newcomers we find pulsars with very high rotational energy losses, such as the remarkable PSR B1509-58 with a magnetic field in excess of 1013 Gauss, and PSR J2229+6114 providing a reliable identification for the previously unidentified EGRET source 3EG2227+6122. Moreover, the powerful millisecond pulsar B1821-24, in the globular cluster M28, is detected during a fraction of the observations.

  3. THE TIMING OF NINE GLOBULAR CLUSTER PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Ryan S. [Physics Department, McGill University, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Freire, Paulo C. C. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Ransom, Scott M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-4325 (United States); Jacoby, Bryan A., E-mail: rlynch@physics.mcgill.ca, E-mail: pfreire@mpifr-bonn.mpg.de, E-mail: sransom@nrao.edu, E-mail: bryan.jacoby@gmail.com [Aerospace Corporation, 15049 Conference Center Drive, Chantilly, VA 20151-3824 (United States)

    2012-02-01

    We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters (GCs) M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with other authors, except for PSR J1701-3006B in M62. Gas in this system is probably responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called 'black widow' class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that one of the pulsars in NGC 6624 is indeed a member of the rare class of non-recycled pulsars found in GCs. We have also measured the orbital precession and Shapiro delay for a relativistic binary in NGC 6544. If we assume that the orbital precession can be described entirely by general relativity, which is likely, we are able to measure the total system mass (2.57190(73) M{sub Sun }) and companion mass (1.2064(20) M{sub Sun }), from which we derive the orbital inclination (sin i = 0.9956(14)) and the pulsar mass (1.3655(21) M{sub Sun }), the most precise such measurement ever obtained for a millisecond pulsar. The companion is the most massive known around a fully recycled pulsar.

  4. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    CERN Document Server

    Noutsos, A; Kondratiev, V I; Weltevrede, P; Verbiest, J P W; Karastergiou, A; Kramer, M; Kuniyoshi, M; Alexov, A; Breton, R P; Bilous, A V; Cooper, S; Falcke, H; Grießmeier, J -M; Hassall, T E; Hessels, J W T; Keane, E F; Osłowski, S; Pilia, M; Serylak, M; Stappers, B W; ter Veen, S; van Leeuwen, J; Zagkouris, K; Anderson, K; Bähren, L; Bell, M; Broderick, J; Carbone, D; Cendes, Y; Coenen, T; Corbel, S; Eislöffel, J; Fender, R; Garsden, H; Jonker, P; Law, C; Marko, S; Masters, J; Miller-Jones, J; Molenaar, G; Osten, R; Pietka, M; Rol, E; Rowlinson, A; Scheers, B; Spreeuw, H; Staley, T; Stewart, A; Swinbank, J; Wijers, R; Wijnands, R; Wise, M; Zarka, P; van der Horst, A

    2015-01-01

    We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from the propagation of polarised emission in the pulsar magnetosphere and the interstellar medium. The predictions of magnetospheric birefringence in pulsars have been tested using spectra of the pulse width and fractional polarisation from multifrequency data. The derived spectra offer only partial support for the expected effects of birefringence on the polarisation properties, with only about half of our sample being consistent with the model's predictions. It is noted that for some pulsars these measurements are contaminated by the effects of interstellar scattering. For a number of pulsars in our sample, we have observed significant variations in the amount of Faraday rotation as a function of pulse phase, which is possi...

  5. THE TRANSIENT ACCRETING X-RAY PULSAR XTE J1946+274: STABILITY OF X-RAY PROPERTIES AT LOW FLUX AND UPDATED ORBITAL SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja [CRESST and Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Kreykenbohm, Ingo [Dr. Karl Remeis-Observatory and ECAP, University Erlangen-Nuremberg, Sternwartstr. 7, Bamberg (Germany); Caballero, Isabel [Laboratoire AIM, CEA/IRFU, CNRS/INSU, Université Paris Diderot, CEA DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Finger, Mark H. [Universities Space Research Association, National Space Science and Technology Center, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Jenke, Peter J. [University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Wilson-Hodge, Colleen A. [Astrophysics Office, ZP 12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Grinberg, Victoria [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Hemphill, Paul B.; Rothschild, Richard E. [University of California, San Diego, Center for Astrophysics and Space Sciences, 9500 Gilman Drive, La Jolla, CA 92093-0424 (United States); Klochkov, Dmitry [Institut für Astronomie und Astrophysik, Universität Tübingen (IAAT), Sand 1, Tübingen (Germany); Terada, Yukikatsu [Graduate School of Science and Engineering, Saitama University, 255 Simo-Ohkubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); and others

    2015-12-10

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2–3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi–Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ∼35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (∼5 × 10{sup 37} erg s{sup −1}) and lowest (∼5 × 10{sup 36} erg s{sup −1}) observed 3–60 keV luminosities.

  6. X射线脉冲星导航可用目标源研究%Research on X-ray Pulsar Navigation Sources

    Institute of Scientific and Technical Information of China (English)

    赵成仕; 陈鼎; 蔡宏兵; 南仁东

    2011-01-01

    脉冲星具有自转非常稳定的特性,在空间自主导航中有重要的应用前景.选择和研究一组适合于脉冲星导航使用的候选目标源非常重要,决定脉冲星导航精度的主要因素有:导航目标源X射线流量强度、目标源的位置精度和旋转参数精度.对可用于导航的一些X射线源进行了讨论研究,并对最适合做导航研究的转动能驱动的X射线脉冲星进行统计分析.%Pulsars have very high rotational stability, which allow them to be applied for autonomous navigation in space. Selecting a set of X-ray pulsar sources for autonomous navigation is a very important work. X-ray pulsar flux density, position and rotational parameter precision are very important to navigation. This paper describes the assembled X-ray pulsar navigation sources catalogue in detail, X-ray pulsar can be grouped in three different families according to the powering source: accretion-powered pulsars(APSRs), rotation-powered pulsars(RPSRs) and anomalous X-ray pulsars(AXPs). By analyzing their characteristics, APSRs and AXPs are not suitable candidates. RPSRs possess the most advantageous characteristics for navigation. We gather all RPSRs into one collective set. Totally, 34 RPSRs have been detected with the X-ray pulse profiles, including 10 millisecond pulsars, which could form the basis of navigation system. In addition, 32 other sources have only been detected with X-ray radiation, which may need high sensitivity X-ray detector to detect the pulse profiles. Then, we provide briefly discussion on the RPSRs, including their properties at radio and X-ray band, which allows the analysis of each source for its potential as a candidate for navigation purpose. Finally, we present a set of pulsars which may be suitable for China X-ray navigation experiment in the future.

  7. Ion-proton pulsars

    Science.gov (United States)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  8. Ion-proton pulsars

    CERN Document Server

    Jones, P B

    2016-01-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  9. Central compact objects, superslow X-ray pulsars, gamma-ray bursts: do they have anything to do with magnetars?

    CERN Document Server

    Tong, H

    2014-01-01

    Magnetars and many of the magnetar-related objects are summarized together and discussed. It is shown that there is an abuse of language in the use of "magnetar". Anomalous X-ray pulsars and soft gamma-ray repeaters are well-known magnetar candidates. The current so called anti-magnetar (for central compact objects), accreting magnetar (for superslow X-ray pulsars in high mass X-ray binaries), and millisecond magnetar (for the central engine of some gamma-ray bursts), they may not be real magnetars in present understandings. Their observational behaviors are not caused by the magnetic energy. Many of them are just neutron stars with strong surface dipole field. A neutron star plus strong dipole field is not a magnetar. The characteristic parameters of the neutron stars for the central engine of some gamma-ray bursts are atypical from the neutron stars in the Galaxy. Possible signature of magnetic activities in accreting systems are discussed, including repeated bursts and a hard X-ray tail. China's future har...

  10. Detecting pulsars in the Galactic centre

    CERN Document Server

    Rajwade, Kaustubh; Anderson, Loren

    2016-01-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic centre (GC) region, which we define to be within a projected distance of 1~pc from Sgr~A*. This null result is surprising given that several independent lines of evidence predict a sizeable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multi-path scattering to be the two main sources of flux mitigation. We demonstrate the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (i.e. those beaming towards us) to be up to 50 canonical pulsars and 1430 millisecond pulsars. We find ...

  11. THE PECULIAR PULSAR POPULATION OF THE CENTRAL PARSEC

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; O' Leary, Ryan M., E-mail: jdexter@berkeley.edu, E-mail: oleary@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-03-01

    Pulsars orbiting the Galactic center black hole, Sgr A*, would be potential probes of its mass, distance, and spin, and may even be used to test general relativity. Despite predictions of large populations of both ordinary and millisecond pulsars in the Galactic center, none have been detected within 25 pc by deep radio surveys. One explanation has been that hyperstrong temporal scattering prevents pulsar detections, but the recent discovery of radio pulsations from a highly magnetized neutron star (magnetar) within 0.1 pc shows that the temporal scattering is much weaker than predicted. We argue that an intrinsic deficit in the ordinary pulsar population is the most likely reason for the lack of detections to date: a ''missing pulsar problem'' in the Galactic center. In contrast, we show that the discovery of a single magnetar implies efficient magnetar formation in the region. If the massive stars in the central parsec form magnetars rather than ordinary pulsars, their short lifetimes could explain the missing pulsars. Efficient magnetar formation could be caused by strongly magnetized progenitors, or could be further evidence of a top-heavy initial mass function. Furthermore, current high-frequency surveys should already be able to detect bright millisecond pulsars, given the measured degree of temporal scattering.

  12. Detecting dark matter with imploding pulsars in the galactic center.

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  13. X-Ray Observations of Black Widow Pulsars

    NARCIS (Netherlands)

    Gentile, P.A.; Roberts, M.S.E.; McLaughlin, M.A.; Camilo, F.; Hessels, J.W.T.; Kerr, M.; Ransom, S.M.; Ray, P.S.; Stairs, I.H.

    2014-01-01

    We describe the first X-ray observations of five short orbital period (PB < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124-3653, J1810+1744, and J2256-1024—are "black-widow" pulsars, with degenerate companions of mass Lt0.1 M ☉, three of which exhibit

  14. Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

    CERN Document Server

    Knispel, B; Kim, H; Keane, E F; Allen, B; Anderson, D; Aulbert, C; Bock, O; Crawford, F; Eggenstein, H -B; Fehrmann, H; Hammer, D; Kramer, M; Lyne, A G; Machenschalk, B; Miller, R B; Papa, M A; Rastawicki, D; Sarkissian, J; Siemens, X; Stappers, B W

    2013-01-01

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of approximately 17 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about one PFlop/s. We discovered 24 new pulsars in our search, of which 18 were isolated pulsars, and six were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (420 pc cm^{-3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2531 li...

  15. Radio Searches of Fermi LAT Sources and Blind Search Pulsars: The Fermi Pulsar Search Consortium

    CERN Document Server

    Ray, P S; Parent, D; Bhattacharya, D; Bhattacharyya, B; Camilo, F; Cognard, I; Theureau, G; Ferrara, E C; Harding, A K; Thompson, D J; Freire, P C C; Guillemot, L; Gupta, Y; Roy, J; Hessels, J W T; Johnston, S; Keith, M; Shannon, R; Kerr, M; Michelson, P F; Romani, R W; Kramer, M; McLaughlin, M A; Ransom, S M; Roberts, M S E; Parkinson, P M Saz; Ziegler, M; Smith, D A; Stappers, B W; Weltevrede, P; Wood, K S

    2012-01-01

    We present a summary of the Fermi Pulsar Search Consortium (PSC), an international collaboration of radio astronomers and members of the Large Area Telescope (LAT) collaboration, whose goal is to organize radio follow-up observations of Fermi pulsars and pulsar candidates among the LAT gamma-ray source population. The PSC includes pulsar observers with expertise using the world's largest radio telescopes that together cover the full sky. We have performed very deep observations of all 35 pulsars discovered in blind frequency searches of the LAT data, resulting in the discovery of radio pulsations from four of them. We have also searched over 300 LAT gamma-ray sources that do not have strong associations with known gamma-ray emitting source classes and have pulsar-like spectra and variability characteristics. These searches have led to the discovery of a total of 43 new radio millisecond pulsars (MSPs) and four normal pulsars. These discoveries greatly increase the known population of MSPs in the Galactic disk...

  16. Binary system delays and timing noise in searches for gravitational waves from known pulsars

    CERN Document Server

    Pitkin, Matthew

    2007-01-01

    The majority of fast millisecond pulsars are in binary systems, so that any periodic signal they emit is modulated by both Doppler and relativistic effects. Here we show how well-established binary models can be used to account for these effects in searches for gravitational waves from known pulsars within binary systems. We also show how the effect of timing noise, with particular reference to the Crab pulsar, can be compensated for by using regularly updated timing ephemerides.

  17. Boundary between stable and unstable regimes of accretion. Ordered and chaotic unstable regimes

    Science.gov (United States)

    Blinova, A. A.; Romanova, M. M.; Lovelace, R. V. E.

    2016-07-01

    We present a new study of the Rayleigh-Taylor unstable regime of accretion on to rotating magnetized stars in a set of high grid resolution three-dimensional magnetohydrodynamic simulations performed in low-viscosity discs. We find that the boundary between the stable and unstable regimes is determined almost entirely by the fastness parameter ωs = Ω⋆/ΩK(rm), where Ω⋆ is the angular velocity of the star and ΩK(rm) is the angular velocity of the Keplerian disc at the disc-magnetosphere boundary r = rm. We found that accretion is unstable if ωs ≲ 0.6. Accretion through instabilities is present in stars with different magnetospheric sizes. However, only in stars with relatively small magnetospheres, rm/R⋆ ≲ 7, do the unstable tongues produce chaotic hotspots on the stellar surface and irregular light curves. At even smaller values of the fastness parameter, ωs ≲ 0.45, multiple irregular tongues merge, forming one or two ordered unstable tongues that rotate with the angular frequency of the inner disc. This transition occurs in stars with even smaller magnetospheres, rm/R⋆ ≲ 4.2. Most of our simulations were performed at a small tilt of the dipole magnetosphere, Θ = 5°, and a small viscosity parameter α = 0.02. Test simulations at higher α values show that many more cases become unstable, and the light curves become even more irregular. Test simulations at larger tilts of the dipole Θ show that instability is present, however, accretion in two funnel streams dominates if Θ ≳ 15°. The results of these simulations can be applied to accreting magnetized stars with relatively small magnetospheres: Classical T Tauri stars, accreting millisecond X-ray pulsars, and cataclysmic variables.

  18. Pulsar searches in nearby dwarf spheroidal galaxies

    Science.gov (United States)

    Rubio-Herrera, Eduardo; Maccarone, Thomas

    2013-03-01

    We have been undertaking a comprehensive survey for pulsars and fast radio transients in the dwarf spheroidal satellite galaxies of the Milky Way using the Green Bank Radio Telescope operating at a central frequency of 350 MHz. Our search pipeline allows the detection of periodical signals and single dispersed pulses and it is optimized to search for millisecond radio pulsars. Here we present preliminary results of the searches we have conducted in the Ursa Minoris, Draco and Leo I dwarf spheroidal satellite galaxies. Our searches have revealed no periodic signals but a few unconfirmed millisecond single pulses at various dispersion measures, possibly related to neutron stars. Detecting neutron stars in these systems can potentially help to test the existence of haloes of dark matter surrounding these systems as predicted by Dehnen & King (2006).

  19. The Feasibility of Using Black Widow Pulsars in Pulsar Timing Arrays for Gravitational Wave Detection

    CERN Document Server

    Bochenek, Christopher; Demorest, Paul

    2015-01-01

    In the past five years, approximately one third of the 65 pulsars discovered by radio observations of Fermi unassociated sources are black widow pulsars (BWPs). BWPs are binary millisecond pulsars with companion masses ranging from 0.01-0.1 solar masses which often exhibit radio eclipses. The bloated companions in BWP systems exert small torques on the system causing the orbit to change on small but measurable time scales. Because adding parameters to a timing model reduces sensitivity to a gravitational wave (GW) signal, the need to fit many orbital frequency derivatives to the timing data is potentially problematic for using BWPs to detect GWs with pulsar timing arrays. Using simulated data with up to four orbital frequency derivatives, we show that fitting for orbital frequency derivatives absorbs less than 5% of the low frequency spectrum expected from a stochastic gravitational wave background signal. Furthermore, this result does not change with orbital period. Therefore, we suggest that if timing syste...

  20. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  1. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  2. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  3. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    Science.gov (United States)

    Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.

    2013-07-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.

  4. Star Cluster Buzzing With Pulsars

    Science.gov (United States)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is

  5. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  6. The Parkes Pulsar Timing Array Project

    CERN Document Server

    Manchester, R N; Bailes, M; Coles, W A; van Straten, W; Keith, M J; Shannon, R M; Bhat, N D R; Brown, A; Burke-Spolaor, S G; Champion, D J; Chaudhary, A; Edwards, R T; Hampson, G; Hotan, A W; Jameson, A; Jenet, F A; Kesteven, M J; Khoo, J; Kocz, J; Maciesiak, K; Oslowski, S; Ravi, V; Reynolds, J R; Sarkissian, J M; Verbiest, J P W; Wen, Z L; Wilson, W E; Yardley, D; Yan, W M; You, X P

    2012-01-01

    A "pulsar timing array" (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of "global" phenomena such as a background of gravitational waves or instabilities in atomic timescales that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 millisecond pulsars is being observed at three radio-frequency bands, 50cm (~700 MHz), 20cm (~1400 MHz) and 10cm (~3100 MHz), with observations at intervals of 2 - 3 weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For...

  7. Gravitational Radiation from Compact Binary Pulsars

    CERN Document Server

    Antoniadis, John

    2014-01-01

    An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems - if modeled properly - provide an unparalleled test ground for physically motivated alternatives to GR that deviate significantly in the strong-field regime. Recent improvements in observational techniques and advances in our understanding of WD interiors have enabled a series of precise mass measurements in such systems. These masses, combined with high-precision radio timing of the pulsars, result to stringent constraints on the radiative properties of gravity, qualitatively very different from what was available in the past.

  8. Advection of magnetic flux by accretion disks around neutron stars

    Science.gov (United States)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self

  9. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    discovered in 1982. For reference, the fastest speeds of common kitchen blenders are 250-500 Hz. The scientists say the object's fast rotation speed means that it cannot be any larger than about 20 miles across. According to Hessels, "If it were any larger, material from the surface would be flung into orbit around the star." The scientists' calculation assumed that the neutron star contains less than two times the mass of the Sun, an assumption that is consistent with the masses of all known neutron stars. The spinning pulsar has a companion star that orbits it once every 26 hours. The companion passes in front of the pulsar, eclipsing the pulsar about 40 percent of the time. The long eclipse period, probably due to bloating of the companion, makes it difficult for the astronomers to learn details of the orbital configuration that would allow them to precisely measure the masses of the pulsar and its companion. "If we could pin down these masses more precisely, we could then get a better limit on the size of the pulsar. That, in turn, would then give us a better figure for the true density inside the neutron star," explained Ingrid Stairs, an assistant professor at the University of British Columbia and another collaborator on the work. Competing theoretical models for the types and distributions of elementary particles inside neutron stars make widely different predictions about the pressure and density of such an object. "We want observational data that shows which models fit the reality of nature," Hessels said. If the scientists can't use PSR J1748-2446ad to do that, they are hopeful some of its near neighbors will yield the data they seek. Using the GBT, the astronomers so far have found 30 new fast "millisecond pulsars" in the cluster Terzan 5, making 33 pulsars known in the cluster in total. This is the largest number of such pulsars ever found in a single globular cluster. Dense globular clusters of stars are excellent places to find fast-rotating millisecond

  10. Constraint on the internal structure of a neutron star from Vela pulsar glitches

    CERN Document Server

    Chamel, N

    2016-01-01

    Pulsars are spinning extremely rapidly with periods as short as about $1.4$ milliseconds and delays of a few milliseconds per year at most, thus providing the most accurate clocks in the Universe. Nevertheless, sudden spin ups have been detected in some pulsars like the emblematic Vela pulsar. These abrupt changes in the pulsar's rotation period have long been thought to be the manifestation of a neutron superfluid permeating the inner crust of neutron stars. However, the neutron superfluid has been recently found to be so strongly coupled to the crust that it does not carry enough angular momentum to explain the Vela data. We explore the extent to which pulsar-timing observations can be reconciled with the standard glitch theory considering the lack of knowledge of the dense-matter equation of state.

  11. The pulsar planet production process

    Science.gov (United States)

    Phinney, E. S.; Hansen, B. M. S.

    1993-01-01

    Most plausible scenarios for the formation of planets around pulsars end with a disk of gas around the pulsar. The supplicant author then points to the solar system to bolster faith in the miraculous transfiguration of gas into planets. We here investigate this process of transfiguration. We derive analytic sequences of quasi-static disks which give good approximations to exact solutions of the disk diffusion equation with realistic opacity tables. These allow quick and efficient surveys of parameter space. We discuss the outward transfer of mass in accretion disks and the resulting timescale constraints, the effects of illumination by the central source on the disk and dust within it, and the effects of the widely different elemental compositions of the disks in the various scenarios, and their extensions to globular clusters. We point out where significant uncertainties exist in the appropriate grain opacities, and in the effect of illumination and winds from the neutron star.

  12. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    Science.gov (United States)

    Harding, Alice K.

    2007-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST), due to launch in November 2007, will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered pulsars. As the only presently known galactic GeV source class; pulsars will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma-ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all unidentified EGRET sources, to possibly uncover more radio-quiet Geminga-like pulsars.

  13. Discovery of Two New Pulsars in 47 Tucanae (NGC 104)

    CERN Document Server

    Pan, Zhichen; Li, Di; Ridolfi, Alessandro; Wang, Pei; Freire, Paulo

    2016-01-01

    We report the discovery of two new millisecond pulsars (PSRs J0024$-$7204aa and J0024$-$7204ab) in the globular cluster 47\\,Tucanae (NGC 104). Our results bring the total number of pulsars in 47\\,Tucanae to 25. These pulsars were discovered by reprocessing archival observations from the Parkes radio telescope. We reprocessed the data using a standard search procedure based on the PRESTO software package as well as using a new method in which we incoherently added the power spectra corresponding to $\\sim$1100\\,hr of observations. The newly discovered PSR~J0024$-$7204aa, has a pulse frequency of $\\rm \\sim$541\\,Hz (corresponding to a $\\rm \\sim$1.84 ms period), which is higher than any other pulsars currently known in the cluster and ranks 12$^{\\rm{th}}$ amongst all the currently known pulsars. The dispersion measure of this pulsar, 24.941(7)\\,cm$^{-3}$ pc, is the highest in the cluster. The second discovered pulsar, PSR~J0024$-$7204ab, is an isolated pulsar with a pulse frequency of $\\rm \\sim$270\\,Hz (correspond...

  14. Six New Recycled Globular Cluster Pulsars Discovered with the Green Bank Telescope

    CERN Document Server

    Lynch, Ryan S; Freire, Paulo C C; Stairs, Ingrid H

    2011-01-01

    We have completed sensitive searches for new pulsars in seven globular clusters using the Robert C. Byrd Green Bank Telescope, and have discovered six new recycled pulsars (four in NGC 6517 and two in M22), five of which are true millisecond pulsars with P < 10 ms. We report full timing solutions for all six new pulsars. One of the millisecond pulsars appears to have a very low mass companion, and is likely a new "black widow". A second binary pulsar is in a long-period, mildly eccentric orbit. Two lines of reasoning imply that this system is only a few hundred million years old, indicating recent pulsar recycling. An isolated pulsar in NGC 6517 that lies about 20 core radii from the cluster center appears to have been ejected from the core by interacting with a massive binary. Finally, we use the observed period derivatives of three pulsars to set lower limits on the mass-to-light ratios in their host clusters.

  15. A Search for Very High Energy Gamma Rays from the Missing Link Binary Pulsar J1023+0038 with VERITAS

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Biteau, J.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortin, P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Grube, J.; Gyuk, G.; Hütten, M.; Håkansson, N.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Lang, M. J.; Loo, A.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Pandel, D.; Park, N.; Pelassa, V.; Petrashyk, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Vincent, S.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; Chernyakova, M.; Roberts, M. S. E.

    2016-11-01

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259-63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ˜2 G before the disappearance of the radio pulsar and greater than ˜10 G afterward.

  16. The High Time Resolution Universe Pulsar Survey I: System configuration and initial discoveries

    CERN Document Server

    Keith, M J; van Straten, W; Bailes, M; Johnston, S; Kramer, M; Possenti, A; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Levin, L; Milia, S; Stappers, B W

    2010-01-01

    We have embarked on a survey for pulsars and fast transients using the 13-beam Multibeam receiver on the Parkes radio telescope. Installation of a digital backend allows us to record 400 MHz of bandwidth for each beam, split into 1024 channels and sampled every 64 us. Limits of the receiver package restrict us to a 340 MHz observing band centred at 1352 MHz. The factor of eight improvement in frequency resolution over previous multibeam surveys allows us to probe deeper into the Galactic plane for short duration signals such as the pulses from millisecond pulsars. We plan to survey the entire southern sky in 42641 pointings, split into low, mid and high Galactic latitude regions, with integration times of 4200, 540 and 270 s respectively. Simulations suggest that we will discover 400 pulsars, of which 75 will be millisecond pulsars. With ~30% of the mid-latitude survey complete, we have re-detected 223 previously known pulsars and discovered 27 pulsars, 5 of which are millisecond pulsars. The newly discovered...

  17. Intrinsic Instrumental Polarization and High-Precision Pulsar Timing

    CERN Document Server

    Foster, Griffin; Paulin, Remi; Carozzi, Tobia; Johnston, Simon; van Straten, Willem

    2015-01-01

    Radio telescopes are used to accurately measure the time of arrival (ToA) of radio pulses in pulsar timing experiments that target mostly millisecond pulsars (MSPs) due to their high rotational stability. This allows for detailed study of MSPs and forms the basis of experiments to detect gravitational waves. Apart from intrinsic and propagation effects, such as pulse-to-pulse jitter and dispersion variations in the interstellar medium, timing precision is limited in part by the following: polarization purity of the telescope's orthogonally polarized receptors, the signal-to-noise ratio (S/N) of the pulsar profile, and the polarization fidelity of the system. Using simulations, we present how fundamental limitations in recovering the true polarization reduce the precision of ToA measurements. Any real system will respond differently to each source observed depending on the unique pulsar polarization profile. Using the profiles of known MSPs we quantify the limits of observing system specifications that yield s...

  18. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    Science.gov (United States)

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects.

  19. Pulsars at Parkes

    CERN Document Server

    Manchester, R N

    2012-01-01

    The first pulsar observations were made at Parkes on March 8, 1968, just 13 days after the publication of the discovery paper by Hewish and Bell. Since then, Parkes has become the world's most successful pulsar search machine, discovering nearly two thirds of the known pulsars, among them many highly significant objects. It has also led the world in pulsar polarisation and timing studies. In this talk I will review the highlights of pulsar work at Parkes from those 1968 observations to about 2006 when the Parkes Multibeam Pulsar Survey was essentially completed and the Parkes Pulsar Timing Array project was established.

  20. Enabling pulsar and fast transient searches using coherent dedispersion

    Science.gov (United States)

    Bassa, C. G.; Pleunis, Z.; Hessels, J. W. T.

    2017-01-01

    We present an implementation of the coherent dedispersion algorithm capable of dedispersing high-time-resolution radio observations to many different dispersion measures (DMs). This approach allows the removal of the dispersive effects of the interstellar medium and enables searches for pulsed emission from pulsars and other millisecond-duration transients at low observing frequencies and/or high DMs where time broadening of the signal due to dispersive smearing would otherwise severely reduce the sensitivity. The implementation, called cdmt, for coherent dispersion measure trials, exploits the parallel processing capability of general-purpose graphics processing units to accelerate the computations. We describe the coherent dedispersion algorithm and detail how cdmt implements the algorithm to efficiently compute many coherent DM trials. We apply the concept of a semi-coherent dedispersion search, where coherently dedispersed trials at coarsely separated DMs are subsequently incoherently dedispersed at finer steps in DM. The software is used in an ongoing LOFAR pilot survey to test the feasibility of performing semi-coherent dedispersion searches for millisecond pulsars at 135 MHz. This pilot survey has led to the discovery of a radio millisecond pulsar-the first at these low frequencies. This is the first time that such a broad and comprehensive search in DM-space has been done using coherent dedispersion, and we argue that future low-frequency pulsar searches using this approach are both scientifically compelling and feasible. Finally, we compare the performance of cdmt with other available alternatives.

  1. Millisecond Oxidation of Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Scott Han

    2011-09-30

    This project was undertaken in response to the Department of Energy's call to research and develop technologies 'that will reduce energy consumption, enhance economic competitiveness, and reduce environmental impacts of the domestic chemical industry.' The current technology at the time for producing 140 billion pounds per year of propylene from naphtha and Liquified Petroleum Gas (LPG) relied on energy- and capital-intensive steam crackers and Fluidized Catalytic Cracking (FCC) units. The propylene is isolated from the product stream in a costly separation step and subsequently converted to acrylic acid and other derivatives in separate production facilities. This project proposed a Short Contact Time Reactor (SCTR)-based catalytic oxydehydrogenation process that could convert propane to propylene and acrylic acid in a cost-effective and energy-efficient fashion. Full implementation of this technology could lead to sizeable energy, economic and environmental benefits for the U. S. chemical industry by providing up to 45 trillion BTUs/year, cost savings of $1.8 billion/year and a combined 35 million pounds/year reduction in environmental pollutants such as COx, NOx, and SOx. Midway through the project term, the program directive changed, which approval from the DOE and its review panel, from direct propane oxidation to acrylic acid at millisecond contact times to a two-step process for making acrylic acid from propane. The first step was the primary focus, namely the conversion of propane to propylene in high yields assisted by the presence of CO2. The product stream from step one was then to be fed directly into a commercially practiced propylene-to-acrylic acid tandem reactor system.

  2. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    Science.gov (United States)

    Ray, Alak; Loeb, Abraham

    2017-02-01

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The short temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.

  3. X-ray observations and the search for Fermi-LAT gamma-ray pulsars

    CERN Document Server

    Parkinson, P M Saz; Caraveo, P; De Luca, A; Marelli, M

    2013-01-01

    The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $\\gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, thus improving the sensitivity of pulsar blind searches with the LAT. I discuss our ongoing program of Swift, XMM-Newton, and Chandra observations of LAT unassociated sources in the context of our blind searches for gamma-ray pulsars.

  4. Reverse Shock Emission Driven By Post-Merger Millisecond Magnetar Winds: Effects of the Magnetization Parameter

    CERN Document Server

    Liu, L D; Dai, Z G

    2016-01-01

    The study of short-duration gamma-ray bursts provides growing evidence that a good fraction of double neutron star mergers lead to the formation of stable millisecond magnetars. The launch of Poynting flux by the millisecond magnetars could leave distinct electromagnetic signatures that reveal the energy dissipation processes in the magnetar wind. In previous studies (Wang & Dai 2013b; Wang et al. 2015), we assume that the magnetar wind becomes completely lepton-dominated so that electrons/positrons in the magnetar wind are accelerated by a diffusive shock. However, theoretical modeling of pulsar wind nebulae shows that in many cases the magnetic field energy in the pulsar wind may be strong enough to suppress diffusive shock acceleration. In this paper, we investigate the reverse shock emission as well as the forward shock emission with an arbitrary magnetization parameter $\\sigma$ of a magnetar wind. We find that the reverse shock emission strongly depends on $\\sigma$, and in particular, $\\sigma \\sim 0....

  5. Towards Robust Gravitational Wave Detection with Pulsar Timing Arrays

    CERN Document Server

    Cornish, Neil J

    2015-01-01

    Precision timing of highly stable milli-second pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the...

  6. Towards robust detection of gravitational waves by pulsar timing

    Science.gov (United States)

    Cornish, Neil J.; Sampson, Laura

    2016-01-01

    Precision timing of highly stable milli-second pulsars is a promising technique for detecting very low frequency sources of gravitational waves. In any one pulsar, the gravitational wave signal appears as an additional source of timing noise, and it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources, or in the limit where there are many pulsars in the array, the waves produce a unique tensor correlation pattern that depends only on the angular separation of each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when there are a finite number of signals and pulsars, which breaks the statistical isotropy of the timing array and of the gravitational wave sky. We also study the use of "sky-scrambles'' to break the signal correlations in the data as a way to increase confidence in a detection.

  7. Pulsar timing noise and the minimum observation time to detect gravitational waves with pulsar timing arrays

    CERN Document Server

    Lasky, Paul D; Ravi, Vikram; Hobbs, George

    2015-01-01

    The sensitivity of pulsar timing arrays to gravitational waves is, at some level, limited by timing noise. Red timing noise - the stochastic wandering of pulse arrival times with a red spectrum - is prevalent in slow-spinning pulsars and has been identified in many millisecond pulsars. Phenomenological models of timing noise, such as from superfluid turbulence, suggest that the timing noise spectrum plateaus below some critical frequency, $f_c$, potentially aiding the hunt for gravitational waves. We examine this effect for individual pulsars by calculating minimum observation times, $T_{\\rm min}(f_c)$, over which the gravitational wave signal becomes larger than the timing noise plateau. We do this in two ways: 1) in a model-independent manner, and 2) by using the superfluid turbulence model for timing noise as an example to illustrate how neutron star parameters can be constrained. We show that the superfluid turbulence model can reproduce the data qualitatively from a number of pulsars observed as part of ...

  8. Bayesian inference for pulsar timing models

    CERN Document Server

    Vigeland, Sarah J

    2013-01-01

    The extremely regular, periodic radio emission from millisecond pulsars make them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse time of arrivals are fit to complicated timing models that describe numerous effects such as the astrometry of the source, the evolution of the pulsar's spin, the presence of a binary companion, and the propagation of the pulses through the interstellar medium. In this paper, we discuss the benefits of using Bayesian inference to obtain these timing solutions. These include the validation of linearized least-squares model fits when they are correct, and the proper characterization of parameter uncertainties when they are not; the incorporation of prior parameter information and of models of correlated noise; and the Bayesian comparison of alternative timing models. We describe our computational setup, which combines the timing models of tempo2 with the nested-sampling integ...

  9. The Gamma-Ray Pulsar Population of Globular Clusters: Implications for the GeV Excess

    CERN Document Server

    Hooper, Dan

    2016-01-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their l...

  10. Magnetized accretion

    Science.gov (United States)

    Heyvaerts, J.

    This lecture reviews in simple terms the general subject of large scale magnetic field coupling to plasma flows in the vicinity of accreting compact stars. The relevant astrophysical phenomenology is summarized. Disk interaction with the magnetosphere of accreting stars is first discussed, in particular the structure of the magnetopause, its stability and plasma ejection in so-called propeller systems. The physics of accretion/ejection is then considered. Acceleration and focusing mechanisms of jets from accretion disks around compact stars or black holes and the question of the self-consistency of accretion and ejection are described. By contrast, small scale MHD turbulence in disks is not discussed, neither are accretion columns near the polar caps of neutron stars or white dwarfs. The reader is only assumed to have some basic knowledge of astrophysics and of fluid mechanics and electromagnetism.

  11. Pulsars at the Center of the Galaxy

    Science.gov (United States)

    Majid, Walid

    2016-07-01

    Over the past few years, a number of groups using data from NASA's space-borne Fermi LAT instrument have identified excess gamma-ray flux toward the inner 1º of the Galactic Center (GC), with an even larger significant excess within 0.2º degrees. At present there are two leading candidates for this excess: dark matter annihilation and a population of unresolved millisecond pulsars (MSPs). We are currently developing dedicated instrumentation to carry out a sensitive search for the pulsars in this region of the galaxy using a newly developed front end and receiver on a Deep Space Network large diameter antenna in Australia. In this presentation, we will provide an overview of the challenges encountered with pulsar searches at the GC region and a summary of previous and ongoing efforts to survey this region with radio telescopes. We will also provide preliminary results from our recent observations of the GC region at 2 and 8 GHz and will conclude with prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  12. Pulsar population synthesis using palfa detections and pulsar search collaboratory discoveries including a wide DNS system and a nearby MSP

    Science.gov (United States)

    Swiggum, Joseph Karl

    Using the ensemble of detections from pulsar surveys, we can learn about the sizes and characteristics of underlying populations. In this thesis, I analyze results from the Pulsar Arecibo L-band Feed Array (PALFA) precursor and Green Bank Telescope 350 MHz Drift Scan surveys; I examine survey sensitivity to see how detections can inform pulsar population models, I look at new ways of including young scientists -- high school students -- in the discovery process and I present timing solutions for students' discoveries (including a nearby millisecond pulsar and a pulsar in a wide-orbit double neutron star system). The PALFA survey is on-going and uses the ALFA 7-beam receiver at 1400 MHz to search both inner and outer Galactic sectors visible from Arecibo (32° ?£? 77° and 168° ?£? 214°) close to the Galactic plane (|b| ? 5°) for pulsars. The PALFA precursor survey observed a subset of this region, (|b| ? 1°) and detected 45 pulsars, including one known millisecond pulsar (MSP) and 11 previously unknown, long-period (normal) pulsars. I assess the sensitivity of the PALFA precursor survey and use the number of normal pulsar and MSP detections to infer the size of each underlying Galactic population. Based on 44 normal pulsar detections and one MSP, we constrain each population size to 107,000+36,000-25,000 and 15,000 +85,000-6,000 respectively with 95% confidence. Based on these constraints, we predict yields for the full PALFA survey and find a deficiency in normal pulsar detections, possibly due to radio frequency interference and/or scintillation, neither of which are currently accounted for in population simulations. The GBT 350 MHz Drift Scan survey collected data in the summer of 2007 while the GBT was stationary, undergoing track replacement. Results discussed here come from ~20% of the survey data, which were processed and donated to the Pulsar Search Collaboratory (PSC). The PSC is a joint outreach program between WVU and NRAO, involving high school

  13. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    V appeared.Hong and collaborators were then left with the task of piecing together this strange behavior into a picture of what was happening with this binary system.The authors proposed model for SXP 214. Here the binary has a ~30-day orbit tilted at 15 to the circumstellar disk. The pulsar passes through the circumstellar disk of its companion once per orbit. The interval marked A (orange line) is suggested as the period of time corresponding to the Chandra observations in this study: just as the neutron star is emerging from the disk after passing through it. [Hong et al. 2016]Passing Through a DiskIn the model the authors propose, the pulsar is on a ~30-day eccentric orbit that takes it through the circumstellar disk of its companion once per orbit.In this picture, the authors Chandra detections must have been made just as the pulsar was emerging from the circumstellar disk. The disk had initially hidden the soft X-ray emission from the pulsar, but as the pulsar emerged, that component became brighter, causing both the overall rise in X-ray counts and the shift in the spectrum to lower energies.Since the pulsars accretion is fueled by material picked up as it passes through the circumstellar disk, the accretion from a recent passage through the disk likely also caused the observed spin-up to the shorter period.If the authors model is correct, this series of observations of the pulsar as it emerges from the disk provides a rare opportunity to examine what happens to X-ray emission during this passage. More observations of this intriguing system can help us learn about the properties of the disk and the emission geometry of the neutron star surface.CitationJaeSub Hong et al 2016 ApJ 826 4. doi:10.3847/0004-637X/826/1/4

  14. PulsarPlane: a feasibility study for millisecond radio pulsar navigation

    NARCIS (Netherlands)

    Buist, Peter; Hesselink, Henk; Gibbs, Alex; Keuning, Michel; Gaubitch, Nikolay; Noroozi, Arash; Verhoeven, Chris; Heusdens, Richard; Fernandes, Jorge; Kabakchiev, Hristo; Bentum, Mark; Kestilä, Antti

    2014-01-01

    Stars have been used -in what is called celestial navigation- since thousands of years by mankind. Celestial navigation was used extensively in aviation until the 1960s, and in marine navigation until recently. It has been investigated for agriculture applications, utilized for military aircraft and

  15. Disc-jet coupling in low-luminosity accreting neutron stars

    Science.gov (United States)

    Tudor, V.; Miller-Jones, J. C. A.; Patruno, A.; D'Angelo, C. R.; Jonker, P. G.; Russell, D. M.; Russell, T. D.; Bernardini, F.; Lewis, F.; Deller, A. T.; Hessels, J. W. T.; Migliari, S.; Plotkin, R. M.; Soria, R.; Wijnands, R.

    2017-09-01

    In outburst, neutron star X-ray binaries produce less powerful jets than black holes at a given X-ray luminosity. This has made them more difficult to study as they fade towards quiescence. To explore whether neutron stars power jets at low accretion rates (LX ≲ 1036 erg s-1), we investigate the radio and X-ray properties of three accreting millisecond X-ray pulsars (IGR J17511-3057, SAX J1808.4-3658 and IGR J00291+5934) during their outbursts in 2015, and of the non-pulsing neutron star Cen X-4 in quiescence (2015) and in outburst (1979). We did not detect the radio counterpart of IGR J17511-3057 in outburst or of Cen X-4 in quiescence, but did detect IGR J00291+5934 and SAX J1808.4-3658, showing that at least some neutron stars launch jets at low accretion rates. While the radio and X-ray emission in IGR J00291+5934 seem to be tightly correlated, the relationship in SAX J1808.4-3658 is more complicated. We find that SAX J1808.4-3658 produces jets during the reflaring tail, and we explore a toy model to ascertain whether the radio emission could be attributed to the onset of a strong propeller. The lack of a universal radio/X-ray correlation, with different behaviours in different neutron star systems (with various radio/X-ray correlations; some being radio faint and others not), points at distinct disc-jet interactions in individual sources, while always being fainter in the radio band than black holes at the same X-ray luminosity.

  16. Searches for gravitational waves from known pulsars with S5 LIGO data

    CERN Document Server

    Abbott, B P; Acernese, F; Adhikari, R; Ajith, P; Allen, B; Allen, G; Alshourbagy, M; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Armandula, H; Armor, P; Arun, K G; Aso, Y; Aston, S; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, C; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauer, Th S; Behnke, B; Beker, M; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birindelli, S; Biswas, R; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Boccara, C; Bodiya, T P; Bogue, L; Bondu, F; Bonelli, L; Bork, R; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Broeck, C Van Den; Brooks, A F; Brown, D A; Brummit, A; Brunet, G; Budzynski, R; Bulik, T; Bullington, A; Bulten, H J; Buonanno, A; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Carbognani, F; Cardenas, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cokelaer, T; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Coulon, J -P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Dattilo, V; Daudert, B; Davier, M; Davies, G; Daw, E J; Day, R; De Rosa, R; DeBra, D; Degallaix, J; del Prete, M; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drago, M; Drever, R W P; Dueck, J; Duke, I; Dumas, J -C; Dwyer, J G; Echols, C; Edgar, M; Effler, A; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Fournier, J -D; Franc, J; Franzen, A; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Gammaitoni, L; Garofoli, J A; Garufi, F; Gemme, G; Genin, E; Gennai, A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Goda, K; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Granata, M; Granata, V; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grimaldi, F; Grosso, R; Grote, H; Grünewald, S; Günther, M; Guidi, G; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G D; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Hoyland, D; Huet, D; Hughey, B; Huttner, S H; Ingram, D R; Isogai, T; Ito, M; Ivanov, A; Jaranowski, P; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; de la Jordana, L Sancho; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Ya; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kowalska, I; Kozak, D; Krishnan, B; Królak, A; Kumar, R; Kwee, P; La Penna, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lei, H; Lei, M; Leindecker, N; Leonor, I; Leroy, N; Letendre, N; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Longo, M; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; MacInnis, M; Mackowski, J -M; Mageswaran, M; Mailand, K; Majorana, E; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D J A; McKenzie, K; Mehmet, M; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Menzinger, F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minelli, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Moscatelli, V; Mossavi, K; Mours, B; MowLowry, C; Müller, G; Muhammad, D; Mühlen, H zur; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pagliaroli, G; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameshwaraiah, V; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Pichot, M; Piergiovanni, F; Pierro, V; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Prato, M; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radkins, H; Raffai, P; Raics, Z; Rainer, N; Rakhmanov, M; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Rehbein, H; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Rivera, B; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosinska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Russell, P; Ryan, K; Sakata, S; Salemi, F; Sandberg, V; Sannibale, V; Santamaría, L; Saraf, S; Sarin, P; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Van der Sluys, M V; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, A; Stein, L C; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, K -X; Sung, M; Sutton, P J; Swinkels, B; Szokoly, G P; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Terenzi, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Ugolini, D; Ulmen, J; Urbanek, K; Vahlbruch, H; Vajente, G; Vallisneri, M; Brand, J F J van den; van der Putten, S; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; van Veggel, A A; Veitch, J; Veitch, P; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J -Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, R L; Was, M; Weidner, A; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yvert, M; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J; Bégin, S; Corongiu, A; D'Amico, N; Freire, P C C; Hessels, J; Hobbs, G B; Krämer, M; Lyne, A G; Manchester, R N; Marshall, F E; Middleditch, J; Possenti, A; Ransom, S M; Stairs, I H; Stappers, B

    2009-01-01

    We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. Our best (lowest) upper limit on gravitational wave amplitude is 2.3x10^-26 for J1603-7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0x10^-8 for J2124-3358. Of the recycled millisecond pulsars several of the measured upper limits are only about an order of magnitude above their spin-down limits. For the young pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit, and for the X-ray pulsar J0537-6910 we ...

  17. Arecibo Pulsar Survey Using ALFA. III. Precursor Survey and Population Synthesis

    CERN Document Server

    Swiggum, J K; McLaughlin, M A; Bates, S D; Champion, D J; Ransom, S M; Lazarus, P; Brazier, A; Hessels, J W T; Nice, D J; Ellis, J; Senty, T R; Allen, B; Bhat, N D R; Bogdanov, S; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J S; Freire, P C C; Jenet, F A; Karako-Argaman, C; Kaspi, V M; Knispel, B; Lee, K J; Van Leeuwen, J; Lynch, R; Lyne, A G; Scholz, P; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Venkataraman, A; Zhu, W W

    2014-01-01

    The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo ($32^{\\circ}\\lesssim \\ell \\lesssim 77^{\\circ}$ and $168^{\\circ}\\lesssim \\ell \\lesssim 214^{\\circ}$) close to the Galactic plane ($|b|\\lesssim5^{\\circ}$) for pulsars. In this paper we detail a precursor survey of this region with PALFA, which observed a subset of the full region (slightly more restrictive in $\\ell$ and $|b|\\lesssim1^{\\circ}$) and detected 45 pulsars. For both Galactic millisecond and normal pulsar populations, we compare the survey's detections with simulations to model these populations and, in particular, to estimate the number of observable pulsars in the Galaxy. We place 95\\% confidence intervals of 82,000 to 143,000 on the number of detectable normal pulsars and 9,000 to 100,000 on the number of detectable millisecond pulsars in the Galactic disk. These are consistent with previous estimates. Given the most likely population size in each ca...

  18. High signal-to-noise ratio observations and the ultimate limits of precision pulsar timing

    CERN Document Server

    Oslowski, Stefan; Hobbs, George; Bailes, Matthew; Demorest, Paul

    2011-01-01

    We demonstrate that the sensitivity of high-precision pulsar timing experiments will be ultimately limited by the broadband intensity modulation that is intrinsic to the pulsar's stochastic radio signal. That is, as the peak flux of the pulsar approaches that of the system equivalent flux density, neither greater antenna gain nor increased instrumental bandwidth will improve timing precision. These conclusions proceed from an analysis of the covariance matrix used to characterise residual pulse profile fluctuations following the template matching procedure for arrival time estimation. We perform such an analysis on 25 hours of high-precision timing observations of the closest and brightest millisecond pulsar, PSR J0437-4715. In these data, the standard deviation of the post-fit arrival time residuals is approximately four times greater than that predicted by considering the system equivalent flux density, mean pulsar flux and the effective width of the pulsed emission. We develop a technique based on principa...

  19. Black Widow Pulsar radiation hydrodynamics simulation using Castro: Methodology

    Science.gov (United States)

    Barrios Sazo, Maria; Zingale, Michael; Zhang, Weiqun

    2017-01-01

    A black widow pulsar (BWP) is a millisecond pulsar in a tight binary system with a low mass star. The fast rotating pulsar emits intense radiation, which injects energy and ablates the companion star. Observation of the ablation is seen as pulsar eclipses caused by a larger object than the companion star Roche lobe. This phenomenon is attributed to a cloud surrounding the evaporating star. We will present the methodology for modeling the interaction between the radiation coming from the pulsar and the companion star using the radiation hydrodynamics code Castro. Castro is an adaptive mesh refinement (AMR) code that solves the compressible hydrodynamic equations for astrophysical flows with simultaneous refinement in space and time. The code also includes self-gravity, nuclear reactions and radiation. We are employing the gray-radiation solver, which uses a mixed-frame formulation of radiation hydrodynamics under the flux-limited diffusion approximation. In our setup, we are modeling the companion star with the radiation field as a boundary condition, coming from one side of the domain. In addition to a model setup in 2-d axisymmetry, we also have a 3-d setup, which is more physical given the nature of the system considering the companion is facing the pulsar on one side. We discuss the progress of our calculations, first results, and future work.The work at Stony Brook was supported by DOE/Office of Nuclear Physics grant DE-FG02-87ER40317

  20. High energy signatures of quasi-spherical accretion onto rotating, magnetized neutron star in the ejector-accretor intermediate state

    CERN Document Server

    Bednarek, W

    2015-01-01

    We consider a simple scenario for the accretion of matter onto a neutron star in order to understand processes in the inner pulsar magnetosphere during the transition stage between different accretion modes. A simple quasi-spherical accretion process onto rotating, magnetized compact object is analyzed in order to search for the radiative signatures which could appear during transition between ejecting and accreting modes. It is argued that different accretion modes can be present in a single neutron star along different magnetic field lines for specific range of parameters characterising the pulsar (rotational period, surface magnetic field strength) and the density of surrounding medium. The radiation processes characteristic for the ejecting pulsar, i.e. curvature and synchrotron radiation produced by primary electrons in the pulsar outer gap, are expected to be modified by the presence of additional thermal radiation from the neutron star surface. We predict that during the transition from the pure ejecto...

  1. Observations of transients and pulsars with LOFAR international stations

    CERN Document Server

    Serylak, Maciej; Williams, Chris; Armour, Wes

    2012-01-01

    The LOw FRequency ARray - LOFAR is a new radio telescope that is moving the science of radio pulsars and transients into a new phase. Its design places emphasis on digital hardware and flexible software instead of mechanical solutions. LOFAR observes at radio frequencies between 10 and 240 MHz where radio pulsars and many transients are expected to be brightest. Radio frequency signals emitted from these objects allow us to study the intrinsic pulsar emission and phenomena such as propagation effects through the interstellar medium. The design of LOFAR allows independent use of its stations to conduct observations of known bright objects, or wide field monitoring of transient events. One such combined software/hardware solution is called the Advanced Radio Transient Event Monitor and Identification System (ARTEMIS). It is a backend for both targeted observations and real-time searches for millisecond radio transients which uses Graphical Processing Unit (GPU) technology to remove interstellar dispersion and d...

  2. Scattering of pulsar radio emission by the interstellar plasma

    CERN Document Server

    Coles, W A; Gao, J J; Hobbs, G; Verbiest, J P W

    2010-01-01

    We present simulations of scattering phenomena which are important in pulsar observations, but which are analytically intractable. The simulation code, which has also been used for solar wind and atmospheric scattering problems, is available from the authors. These simulations reveal an unexpectedly important role of dispersion in combination with refraction. We demonstrate the effect of analyzing observations which are shorter than the refractive scale. We examine time-of-arrival fluctuations in detail: showing their correlation with intensity and dispersion measure; providing a heuristic model from which one can estimate their contribution to pulsar timing observations; and showing that much of the effect can be corrected making use of measured intensity and dispersion. Finally, we analyze observations of the millisecond pulsar J0437$-$4715, made with the Parkes radio telescope, that show timing fluctuations which are correlated with intensity. We demonstrate that these timing fluctuations can be corrected,...

  3. Binary pulsar with a very small mass function

    Science.gov (United States)

    Dewey, R. J.; Maguire, C. M.; Rawley, L. A.; Stokes, G. H.; Taylor, J. H.

    1986-08-01

    Radiotelescope pulse-arrival-time (PAT) data of PSR1831-00, primarily at 390 MHz, were collected to characterize the evolution of the binary pulsars. The data were used to calculate, the right ascension and declination, pulsar and orbital periods, dispersion measure, semi-major axis, eccentricity, and time of periastron. The orbital period and semi-major axis are used to calculate the mass function. Comparisons are made with other binary and millisecond pulsars, noting the high degree of similarity with the other objects. The limitations imposed on the evolution of the objects by the observed physical characteristics lead to two possible evolutionary models: mass transfer after or during the formation of the neutron star, or no mass transfer. The first model would have required a contact phase during evolution of the primary. The second model posits a three solar mass primary which was also in contact during its evolution and which went to supernova.

  4. Detecting gravitational waves from the galactic center with Pulsar Timing

    CERN Document Server

    Ray, Alak; Zwart, Simon Portegies

    2014-01-01

    Black holes orbiting the Super Massive Black Hole (SMBH) Sgr A* in the Milky-way galaxy center (GC) generate gravitational waves. The spectrum, due to stars and black holes, is continuous below 40 nHz while individual BHs within about 200 AU of the central SMBH stick out in the spectrum at higher frequencies. The GWs can be detected by timing radio pulsars within a few parsecs of this region. Future observations with the Square Kilometer Array of such pulsars with sufficient timing accuracy may be sensitive to signals from intermediate mass BHs (IMBH) in a 3 year observation baseline. The recent detection of radio pulsations from the magnetar SGR J1745-29 very near the GC opens up the possibilities of detecting millisecond pulsars (which can be used as probes of the GWs) through lines of sight with only moderate pulse and angular broadening due to scattering.

  5. What flashes of pulsars can teach us about their interior

    CERN Document Server

    Alford, Mark G

    2013-01-01

    The cores of compact stars reach the highest densities in nature and therefore could consist of novel phases of matter. They can be probed seismologically via mechanical oscillation modes. One example is unstable r-modes which, if not efficiently damped, emit gravitational waves that would quickly spin down a millisecond pulsar. The damping is determined by microscopic properties of the dense interior. We demonstrate via a detailed analysis of the pulsar evolution how precise pulsar timing data can constrain the star's composition. We find that interacting quark matter is consistent with both the observed radio and x-ray data, whereas for ordinary nuclear matter some additional enhanced damping mechanism will be required.

  6. Particle Emission-dependent Timing Noise of Pulsars?

    CERN Document Server

    Liu, Xiongwei; Xu, Renxin; Qiao, Guojun

    2010-01-01

    Though pulsars spin regularly, the differences between the observed and predicted ToA (time of arrival), known as "timing noise", can still reach a few milliseconds or more. We try to understand the noise in this paper. As proposed by Xu & Qiao in 2001, both dipole radiation and particle emission would result in pulsar braking. Accordingly, possible fluctuation of particle current flow is suggested here to contribute significant ToA variation of pulsars. We find that the particle emission fluctuation could lead to timing noise which can't be eliminated in timing process, and that a longer period fluctuation would arouse a stronger noise. The simulated timing noise profile and amplitude are in accord with the observed timing behaviors on the timescale of years.

  7. Probing the origin of Pulsar wind with a Black widow pulsar 2FGL J2339.6-0532

    Science.gov (United States)

    Yatsu, Yoichi; Shibata, Shinpei; Kawai, Nobuyuki; Kataoka, Jun; Saito, Yoshihiko

    Multi-wavelength observations of a black widow binary system 2FGL2339.6-0532 are presented. Black widow pulsars are believed to be in the intermediate stage between LMXB and isolated millisecond pulsars(MSPs). In a typical black widow system, the recycled MSP is evaporating up its companion star by the powerful pulsar wind. Fermi gamma-ray source 2FGL2339.6-0532 is recently categorized as an black widow pulsar. It possesses a K-star companion orbiting at a period of 4.63 h that corresponds to an orbit radius of about 10(11) cm for a standard NS mass. Our optical observations utilizing OISTER show clear sinusoidal light curves at various wavelength covering Ks B band. Phase resolved SED precisely constrained the size of the companion star and temperature. X-ray spectra taken with Suzaku revealed steady soft X-ray excess below 1 keV energy range that may be originated in blackbody emission from the neutron surface. While In hard X-ray energy band the X-ray light curve shows double peak modulation synchronized with the orbital motion indicating that the hard X-ray may be from the surface of the companion star. To explain the hard X-ray behavior we examined a simple geometry and estimated the physical state of the pulsar wind at immediate vicinity of the light cylinder of the pulsar.

  8. The effect of small inter-pulsar distance variations in stochastic gravitational wave background searches with Pulsar Timing Arrays

    CERN Document Server

    Mingarelli, Chiara M F

    2014-01-01

    One of the primary objectives for Pulsar Timing Arrays (PTAs) is to detect a stochastic background generated by the incoherent superposition of gravitational waves (GWs), in particular from the cosmic population of supermassive black hole binaries. Current stochastic background searches assume that pulsars in a PTA are separated from each other and the Earth by many GW wavelengths. As more millisecond pulsars are discovered and added to PTAs, some may be separated by only a few radiation wavelengths or less, resulting in correlated GW phase changes between close pulsars in the array. Here we investigate how PTA overlap reduction functions (ORFs), up to quadrupole order, are affected by these additional correlated phase changes, and how they are in turn affected by relaxing the assumption that all pulsars are equidistant from the solar system barycenter. We find that in the low frequency GW background limit of $f\\sim10^{-9}$~Hz, and for pulsars at varying distances from the Earth, that these additional correla...

  9. The High Time Resolution Universe Pulsar Survey XII : Galactic plane acceleration search and the discovery of 60 pulsars

    CERN Document Server

    Ng, C; Bailes, M; Barr, E D; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Flynn, C M L; Jameson, A; Johnston, S; Keith, M J; Kramer, M; Levin, L; Petroff, E; Possenti, A; Stappers, B W; van Straten, W; Tiburzi, C; Eatough, R P; Lyne, A G

    2015-01-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ~0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have re-detected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD)...

  10. Bow-shock pulsar-wind nebulae passing through density discontinuities

    Science.gov (United States)

    Yoon, Doosoo; Heinz, Sebastian

    2017-01-01

    Bow-shock pulsar-wind nebulae are a subset of pulsar-wind nebulae that form when the pulsar has high velocity due to the natal kick during the supernova explosion. The interaction between the relativistic wind from the fast-moving pulsar and the interstellar medium produces a bow-shock and a trail, which are detectable in Hα emission. Among such bow-shock pulsar-wind nebulae, the Guitar Nebula stands out for its peculiar morphology, which consists of a prominent bow-shock head and a series of bubbles further behind. We present a scenario in which multiple bubbles can be produced when the pulsar encounters a series of density discontinuities in the ISM. We tested the scenario using 2D and 3D hydrodynamic simulations. The shape of the Guitar Nebula can be reproduced if the pulsar traversed a region of declining low density. We also show that if a pulsar encounters an inclined density discontinuity, it produces an asymmetric bow-shock head, consistent with observations of the bow-shock of the millisecond pulsar J2124-3358.

  11. The Green Bank Telescope 350 MHz Drift-scan Survey II: Data Analysis and the Timing of 10 New Pulsars, Including a Relativistic Binary

    CERN Document Server

    Lynch, Ryan S; Ransom, Scott M; Stairs, Ingrid H; Lorimer, Duncan R; McLaughlin, Maura A; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Archibald, Anne M; Berndsen, Aaron; Cardoso, Rogerio F; Cherry, Angus; Karako-Argaman, Chen; van Leeuwen, Joeri; McPhee, Christie A; Pennucci, Tim; Roberts, Mallory S E

    2012-01-01

    We have completed a 350 MHz drift scan survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered ~10300 square degrees and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, seven of which are recycled pulsars. A companion paper by Boyles et al. (2012) describes the survey strategy, sky coverage, and instrumental set-up, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, and follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources---two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.

  12. Towards robust gravitational wave detection with pulsar timing arrays

    Science.gov (United States)

    Cornish, Neil J.; Sampson, Laura

    2016-05-01

    Precision timing of highly stable millisecond pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the standard tensor-correlation analysis to be remarkably robust, with a mild impact on detectability compared to the isotropic limit. Only when there are very few sources and very few pulsars does the standard analysis begin to fail. Having established that the tensor correlations are a robust signature for detection, we study the use of "sky scrambles" to break the correlations as a way to increase confidence in a detection. This approach is analogous to the use of "time slides" in the analysis of data from ground-based interferometric detectors.

  13. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  14. Pulsar Magnetospheres: Beyond the Flat Spacetime Dipole

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2016-12-01

    Most studies of the pulsar magnetosphere have assumed a pure magnetic dipole in flat spacetime. However, recent work suggests that the effects of general relativity are in fact of vital importance and that realistic pulsar magnetic fields will have a significant nondipolar component. We introduce a general analytical method for studying the axisymmetric force-free magnetosphere of a slowly rotating star of arbitrary magnetic field, mass, radius, and moment of inertia, including all the effects of general relativity. We confirm that spacelike current is generically present in the polar caps (suggesting a pair production region), irrespective of the stellar magnetic field. We show that general relativity introduces a ∼ 60 % correction to the formula for the dipolar component of the surface magnetic field inferred from spindown. Finally, we show that the location and shape of the polar caps can be modified dramatically by even modestly strong higher moments. This can affect emission processes occurring near the star and may help explain the modified beam characteristics of millisecond pulsars.

  15. Accreting Neutron Stars in Low-Mass X-Ray Binary Systems

    CERN Document Server

    Lamb, Frederick K

    2007-01-01

    Using the Rossi X-ray Timing Explorer (RossiXTE), astronomers have discovered that disk-accreting neutron stars with weak magnetic fields produce three distinct types of high-frequency X-ray oscillations. These oscillations are powered by release of the binding energy of matter falling into the strong gravitational field of the star or by the sudden nuclear burning of matter that has accumulated in the outermost layers of the star. The frequencies of the oscillations reflect the orbital frequencies of gas deep in the gravitational field of the star and/or the spin frequency of the star. These oscillations can therefore be used to explore fundamental physics, such as strong-field gravity and the properties of matter under extreme conditions, and important astrophysical questions, such as the formation and evolution of millisecond pulsars. Observations using RossiXTE have shown that some two dozen neutron stars in low-mass X-ray binary systems have the spin rates and magnetic fields required to become milliseco...

  16. Are pulsars born with a hidden magnetic field?

    CERN Document Server

    Torres-Forné, Alejandro; Pons, José A; Font, José A

    2015-01-01

    The observation of several neutron stars in the center of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the proto-neutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris onto the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper we study under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting, conducting fluid. For this purpose, we consider a spherically symmetric calculation in general relativity to estimate the balance between the incoming accretion flow and the magnetosphere. Our study analyse...

  17. Pulsar Ephemerides for Timing LAT Pulsars

    Data.gov (United States)

    National Aeronautics and Space Administration — Timing pulsars with the LAT requires the use of an ephemeris that covers the time period being analyzed. Below are several resources to provide this useful input to...

  18. The Arecibo 430-MHz Intermediate Galactic Latitude Survey: Discovery of Nine Radio Pulsars

    CERN Document Server

    Navarro, J; Freire, P C; Navarro, Jose; Anderson, Stuart; Freire, Paulo C.

    2003-01-01

    We have used the Arecibo Radio Telescope to search for millisecond pulsars in two intermediate Galactic latitude regions (7 deg < | b | < 20 deg) accessible to this telescope. For these latitudes the useful millisecond pulsar search volume achieved by Arecibo's 430-MHz beam is predicted to be maximal. Searching a total of 130 square degrees, we have discovered nine new pulsars and detected four previously known objects. We compare the results of this survey with those of other 430-MHz surveys carried out at Arecibo and of an intermediate latitude survey made at Parkes that included part of our search area; the latter independently found two of the nine pulsars we have discovered. At least six of our discoveries are isolated pulsars with ages between 5 and 300 Myr; one of these, PSR J1819+1305, exhibits very marked and periodic nulling. We have also found a recycled pulsar, PSR J2016+1948. With a rotational period of 65 ms, this is a member of a binary system with a 635-day orbital period. We discuss som...

  19. Searches for Gravitational Waves from Known Pulsars with Science Run 5 LIGO Data

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Acernese, F.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Alshourbagy, M.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, C.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birindelli, S.; Biswas, R.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Boccara, C.; Bodiya, T. P.; Bogue, L.; Bondu, F.; Bonelli, L.; Bork, R.; Boschi, V.; Bose, S.; Bosi, L.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Van Den Broeck, C.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Budzyński, R.; Bulik, T.; Bullington, A.; Bulten, H. J.; Buonanno, A.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Carbognani, F.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cokelaer, T.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Corda, C.; Cornish, N.; Corsi, A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dari, A.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drago, M.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franzen, A.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Granata, M.; Granata, V.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Guidi, G.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Huet, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Jaranowski, P.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Sancho de la Jordana, L.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krishnan, B.; Królak, A.; Kumar, R.; Kwee, P.; La Penna, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Leroy, N.; Letendre, N.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mackowski, J.-M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.

    2010-04-01

    We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of 7 below the spin-down limit. This limits the power radiated via gravitational waves to be less than ~2% of the available spin-down power. For the X-ray pulsar J0537 - 6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars, several of the measured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3 × 10-26 for J1603 - 7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0 × 10-8 for J2124 - 3358.

  20. Retrograde accretion discs in high-mass Be/X-ray binaries

    Science.gov (United States)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2017-09-01

    We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.