WorldWideScience

Sample records for accredited dosimetry calibration

  1. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    Energy Technology Data Exchange (ETDEWEB)

    DeWard, L.A.; Micka, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1993-12-31

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST).

  2. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    DeWard, L.A.; Micka, J.A.

    1993-01-01

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST)

  3. History, organization, and oversight of the accredited dosimetry calibration laboratories by the AAPM

    International Nuclear Information System (INIS)

    Rozenfeld, M.

    1993-01-01

    For more than 20 years, the American Association of Physicists in Medicine (AAPM) has operated an accreditation program for secondary standards laboratories that calibrate radiation measuring instruments. Except for one short period, that program has been able to provide the facilities to satisfy the national need for accurate calibrations of such instruments. That exception, in 1981, due to the combination of the U.S. Nuclear Regulatory Commission (NRC) requiring instrument calibrations by users of cobalt-60 teletherapy units and the withdrawal of one of the three laboratories accredited at that time. However, after successful operation as a Task Group of the Radiation Therapy Committee (RTC) of the AAPM for two decades, a reorganization of this structure is now under serious consideration by the administration of the AAPM

  4. History, organization, and oversight of the accredited dosimetry calibration laboratories by the AAPM

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, M. [St. James Hospital and Health Centers, Chicago Heights, IL (United States)

    1993-12-31

    For more than 20 years, the American Association of Physicists in Medicine (AAPM) has operated an accreditation program for secondary standards laboratories that calibrate radiation measuring instruments. Except for one short period, that program has been able to provide the facilities to satisfy the national need for accurate calibrations of such instruments. That exception, in 1981, due to the combination of the U.S. Nuclear Regulatory Commission (NRC) requiring instrument calibrations by users of cobalt-60 teletherapy units and the withdrawal of one of the three laboratories accredited at that time. However, after successful operation as a Task Group of the Radiation Therapy Committee (RTC) of the AAPM for two decades, a reorganization of this structure is now under serious consideration by the administration of the AAPM.

  5. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  6. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  7. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  8. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1998-01-01

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  9. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Hoefert, M.; Nielsen, M.

    1996-01-01

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  10. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  11. Accreditation ISO/IEC 1705 in dosimetry: Experience and results

    International Nuclear Information System (INIS)

    Martin Garcia, R.; Navarro Bravo, T.

    2013-01-01

    The objective of this work is to present the experience in the process of accreditation of the radiation dosimetry service in which there are trials for the determination of radiation doses due to internal and external exhibitions. Is They describe the aspects that were considered for the design and development of a system of quality and results after its implementation. A review of the benefits accreditation has been reported to the organization is finally made. (Author)

  12. CIEMAT external dosimetry service: ISO/IEC 17025 accreditation and 3 y of operational experience as an accredited laboratory

    International Nuclear Information System (INIS)

    Romero, A.M.; Rodriguez, R.; Lopez, J.L.; Martin, R.; Benavente, J.F.

    2016-01-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. (authors)

  13. The method validation step of biological dosimetry accreditation process

    International Nuclear Information System (INIS)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph.

    2006-01-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was considered as

  14. The method validation step of biological dosimetry accreditation process

    Energy Technology Data Exchange (ETDEWEB)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph. [Institut de Radioprotection et de Surete Nucleaire, LDB, 92 - Fontenay aux Roses (France)

    2006-07-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was

  15. Practice for characterization and performance of a high-dose radiation dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    2003-01-01

    This practice addresses the specific requirements for laboratories engaged in dosimetry calibrations involving ionizing radiation, namely, gamma-radiation, electron beams or X-radiation (bremsstrahlung) beams. It specifically describes the requirements for the characterization and performance criteria to be met by a high-dose radiation dosimetry calibration laboratory. The absorbed-dose range is typically between 10 and 10 5 Gy. This practice addresses criteria for laboratories seeking accreditation for performing high-dose dosimetry calibrations, and is a supplement to the general requirements described in ISO/IEC 17025. By meeting these criteria and those in ISO/IEC 17025, the laboratory may be accredited by a recognized accreditation organization. Adherence to these criteria will help to ensure high standards of performance and instill confidence regarding the competency of the accredited laboratory with respect to the services it offers

  16. Calibration curves for biological dosimetry

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M. . E-mail cgc@nuclear.inin.mx

    2004-01-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of 60 Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  17. Beta calibration and dosimetry at IPEN

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    1983-01-01

    A commercial extrapolation chamber (PTW, Germany) was tested in different beta radiation fields and its properties investigated. Its usefullness for beta radiation calibration and dosimetry was demonstrated. (Author) [pt

  18. Technical guidelines for personnel dosimetry calibrations

    International Nuclear Information System (INIS)

    Roberson, P.L.; Fox, R.A.; Hadley, R.T.; Holbrook, K.L.; Hooker, C.D.; McDonald, J.C.

    1983-01-01

    A base of technical information has been acquire and used to evaluate the calibration, design, and performance of selected personnel systems in use at Department of Energy (DOE) facilites. A technical document was prepared to guide DOE and DOE contractors in selecting and evaluating personnel dosimetry systems and calibration. A parallel effort was initiated to intercompare the adiological calibrations standards used to calibrate DOE personnel dosimeters

  19. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.

    Science.gov (United States)

    Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F

    2016-09-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Health Physics Society program for accreditation of calibration laboratories

    International Nuclear Information System (INIS)

    West, L.; Masse, F.X.; Swinth, K.L.

    1988-01-01

    The Health Physics Society has instituted a new program for accreditation of organizations that calibrate radiation survey instruments. The purpose of the program is to provide radiation protection professionals with an expanded means of direct and indirect access to national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. Secondary accredited laboratories are expected to provide a regional support basis. Tertiary accredited laboratories are expected to operate on a more local basis and provide readily available expertise to end users. The accreditation process is an effort to provide better measurement assurance for surveys of radiation fields. The status of the accreditation program, general criteria, gamma-ray calibration criteria, and x-ray calibration criteria are reviewed

  1. Requirements for the accreditation of a calibration laboratory

    International Nuclear Information System (INIS)

    Palacios, T.A.; Peretti, M.M.

    1993-01-01

    CNEA's activity in calibration is recent but it has a significant development. To assure high quality results, activity must be sustained and improved from day to day. The calibrations laboratory was accredited before Laboratories Qualification Committee, thus adding reliability to its results and making it more competitive when compared to other laboratories not accredited. Among other services given are supervision and follow up of calibrations in laboratories, participation in interlaboratory assays together with other calibration laboratories and assessments on calibration aspects of measuring equipment. (author)

  2. Laboratory Accreditation and the Calibration of Radiologic Measuring Tools

    International Nuclear Information System (INIS)

    Vancsura, P.; Kovago, J.

    1998-01-01

    In this paper is presented that accreditation in our days is a strict requirement for a lab for its results could be accepted on international level. Accreditation itself brings to new requirements, among them some are related to the calibration of the radiological measuring equipment

  3. Extending the accredited low flow liquid calibration range

    NARCIS (Netherlands)

    Platenkamp, Tom; Lötters, Joost Conrad

    2017-01-01

    There is an increasing demand for ISO/IEC 17025:2005 accredited liquid flow calibrations in the range of 1 g/h to 30 kg/h. The accredited Low Flow liquid Calibration Setup [1] (LFCS) at Bronkhorst® covers a flow range of 1 to 200 g/h, leaving a traceability gap in the flow range of 0.2 to 30 kg/h.

  4. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  5. High-dose secondary calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, J.C. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  6. High-dose secondary calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1993-01-01

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program

  7. [Fundamental aspects for accrediting medical equipment calibration laboratories in Colombia].

    Science.gov (United States)

    Llamosa-Rincón, Luis E; López-Isaza, Giovanni A; Villarreal-Castro, Milton F

    2010-02-01

    Analysing the fundamental methodological aspects which should be considered when drawing up calibration procedure for electro-medical equipment, thereby permitting international standard-based accreditation of electro-medical metrology laboratories in Colombia. NTC-ISO-IEC 17025:2005 and GTC-51-based procedures for calibrating electro-medical equipment were implemented and then used as patterns. The mathematical model for determining the estimated uncertainty value when calibrating electro-medical equipment for accreditation by the Electrical Variable Metrology Laboratory's Electro-medical Equipment Calibration Area accredited in compliance with Superintendence of Industry and Commerce Resolution 25771 May 26th 2009 consists of two equations depending on the case; they are: E = (Ai + sigmaAi) - (Ar + sigmaAr + deltaAr1) and E = (Ai + sigmaAi) - (Ar + sigmaA + deltaAr1). The mathematical modelling implemented for measuring uncertainty in the Universidad Tecnológica de Pereira's Electrical Variable Metrology Laboratory (Electro-medical Equipment Calibration Area) will become a good guide for calibration initiated in other laboratories in Colombia and Latin-America.

  8. Establishment of qualities mammography according to the standard IEC-61267 in the laboratory of metrology of ionizing radiation of the National Center of Dosimetry and enlargement of the accreditation by ENAC

    International Nuclear Information System (INIS)

    Roig Petit, F.; Mestre de Juan, V.; Alabau Albors, J.; Palma Copete, J.; Ruiz Rodriguez, J. C.; Pons Mocholi, S.

    2013-01-01

    The extension of the accreditation of the laboratory of the National Center Dosimetry (No. 58/LC10.036) by the national accreditation entity (ENAC), according to the ISO 17025 standard [2], for the standard qualities of mammography by the IEC 61267 comes to meet part of the needs that demand our health care environment in terms of radiation measuring instruments calibration. This work intends to publicize this enlargement commenting on the different phases of the process to get the accreditation. (Author)

  9. Personnel radiation dosimetry laboratory accreditation programme for thermoluminescent dosimeters : a proposal

    International Nuclear Information System (INIS)

    Bhatt, B.C.; Srivastava, J.K.; Iyer, P.S.; Venkatraman, G.

    1993-01-01

    Accreditation for thermoluminescent dosimeters is the process of evaluating a programme intending to use TL personnel dosimeters to measure, report and record dose equivalents received by radiation workers. In order to test the technical competence for conducting personnel dosimetry service as well as to decentralize personnel monitoring service, it has been proposed by Radiological Physics Division (RPhD) to accredit some of the laboratories, in the country. The objectives of this accreditation programme are: (i) to give recognition to competent dosimetry processors, and (ii) to provide periodic evaluation of dosimetry processors, including review of internal quality assurance programme to improve the quality of personnel dosimetry processing. The scientific support for the accreditation programme will be provided by the scientific staff from Radiological Physics Division (RPhD) and Radiation Protection Services Division (RPSD). This paper describes operational and technical requirements for the Personnel Radiation Dosimetry Laboratory Accreditation Programme for Thermoluminescent Dosimeters for Personnel Dosimetry Processors. Besides, many technical documents dealing with the TL Personnel Dosimeter System have been prepared. (author). 5 refs., 2 figs

  10. Implementation of ISO guide 25 in a medical dosimetry secondary standards calibration laboratory

    International Nuclear Information System (INIS)

    DeWerd, L.A.

    1995-01-01

    Currently, there is a great deal of discussion among industry and government agencies about ISO 9000 accreditation. U.S. manufacturers with ISO 9000 accreditation are regarded more favorably by European countries. The principles behind the ISO 9000 accreditation are based on the Total Quality Management (TQM) principles that are being implemented in many U.S. industries. This paper will deal only with the calibration issue. There is a difference in the areas covered by ISO 9000 and ISO Guide 25 documents. ISO 9000, in particular ISO 9001 - ISO 9003, cover the open-quotes calibrationclose quotes of inspection, measuring and test equipment. This equipment is basically used for open-quotes factory calibrationsclose quotes to determine that equipment is performing within manufacturer specifications. ISO Guide 25 is specifically for open-quotes calibration and testing laboratories,close quotes generally laboratories that have painstaking procedures to reduce uncertainties and establish high accuracy of the transfer of calibration. The experience of the University of Wisconsin Accredited Dosimetry Calibration Laboratory in conforming to ISO Guide 25 will be outlined. The entire laboratory staff must become familiar with the process and an individual with direct authority must become the one to maintain the quality of equipment and calibrations in the role of open-quotes quality-assurance manager.close quotes

  11. US Department of Energy Laboratory Accreditation Program for personnel dosimetry systems (DOELAP)

    International Nuclear Information System (INIS)

    Carlson, R.D.; Gesell, T.F.; Kalbeitzer, F.L.; Roberson, P.L.; Jones, K.L.; MacDonald, J.C.; Vallario, E.J.; Pacific Northwest Lab., Richland, WA; USDOE Assistant Secretary for Nuclear Energy, Washington, DC

    1988-01-01

    The US Department of Energy (DOE) Office of Nuclear Safety has developed and initiated the DOE Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems to assure and improve the quality of personnel dosimetry at DOE and DOE contractor facilities. It consists of a performance evaluation program that measures current performance and an applied research program that evaluates and recommends additional or improved test and performance criteria. It also provides guidance to DOE, identifying areas where technological improvements are needed. The two performance evaluation elements in the accreditation process are performance testing and onsite assessment by technical experts. Performance testing evaluates the participant's ability to accurately and reproducibly measure dose equivalent. Tests are conducted in accident level categories for low- and high-energy photons as well as protection level categories for low- and high-energy photons, beta particles, neutrons and mixtures of these

  12. Variable transformation of calibration equations for radiation dosimetry

    International Nuclear Information System (INIS)

    Watanabe, Yoichi

    2005-01-01

    For radiation dosimetry, dosimetric equipment must be calibrated by using known doses. The calibration is done to determine an equation that relates the absorbed dose to a physically measurable quantity. Since the calibration equation is accompanied by unavoidable uncertainties, the doses estimated with such equations suffer from inherent uncertainties. We presented mathematical formulation of the calibration when the calibration relation is either linear or nonlinear. We also derived equations for the uncertainty of the estimated dose as a function of the uncertainties of the parameters in the equations and the measured physical quantity. We showed that a dosimeter with a linear calibration equation with zero dose-offset enables us to perform relative dosimetry without calibration data. Furthermore, a linear equation justifies useful data manipulations such as rescaling the dose and changing the dose-offset for comparing dose distributions. Considering that some dosimeters exhibit linear response with a large dose-offset or often nonlinear response, we proposed variable transformations of the measured physical quantity, namely, linear- and log-transformation methods. The proposed methods were tested with Kodak X-Omat V radiographic film and BANG (registered) polymer gel dosimeter. We demonstrated that the variable transformation methods could lead to linear equations with zero dose-offset and could reduce the uncertainty of the estimated dose

  13. Improving calibration accuracy in gel dosimetry

    International Nuclear Information System (INIS)

    Oldham, M.; McJury, M.; Webb, S.; Baustert, I.B.; Leach, M.O.

    1998-01-01

    A new method of calibrating gel dosimeters (applicable to both Fricke and polyacrylamide gels) is presented which has intrinsically higher accuracy than current methods, and requires less gel. Two test-tubes of gel (inner diameter 2.5 cm, length 20 cm) are irradiated separately with a 10x10cm 2 field end-on in a water bath, such that the characteristic depth-dose curve is recorded in the gel. The calibration is then determined by fitting the depth-dose measured in water, against the measured change in relaxivity with depth in the gel. Increased accuracy is achieved in this simple depth-dose geometry by averaging the relaxivity at each depth. A large number of calibration data points, each with relatively high accuracy, are obtained. Calibration data over the full range of dose (1.6-10 Gy) is obtained by irradiating one test-tube to 10 Gy at dose maximum (D max ), and the other to 4.5 Gy at D max . The new calibration method is compared with a 'standard method' where five identical test-tubes of gel were irradiated to different known doses between 2 and 10 Gy. The percentage uncertainties in the slope and intercept of the calibration fit are found to be lower with the new method by a factor of about 4 and 10 respectively, when compared with the standard method and with published values. The gel was found to respond linearly within the error bars up to doses of 7 Gy, with a slope of 0.233±0.001 s -1 Gy -1 and an intercept of 1.106±0.005 Gy. For higher doses, nonlinear behaviour was observed. (author)

  14. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  15. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  16. Accreditation ISO/IEC 1705 in dosimetry: Experience and results; Acreditacion ISO/IEC 17025 en dosimetria: Experiencia y resultados

    Energy Technology Data Exchange (ETDEWEB)

    Martin Garcia, R.; Navarro Bravo, T.

    2013-07-01

    The objective of this work is to present the experience in the process of accreditation of the radiation dosimetry service in which there are trials for the determination of radiation doses due to internal and external exhibitions. Is They describe the aspects that were considered for the design and development of a system of quality and results after its implementation. A review of the benefits accreditation has been reported to the organization is finally made. (Author)

  17. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico

    International Nuclear Information System (INIS)

    Tovar M, V.M.; Alvarez R, J.T.; Medina O, V.P.; Vergara M, F.; Anaya M, R.; Cejudo A, J.; Salinas L, B.

    2004-01-01

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of c linical dosemeters . In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the dosimetry of the

  18. Quality assurance manual for the Department of Energy laboratory accreditation program for personnel dosimetry systems

    International Nuclear Information System (INIS)

    1987-02-01

    The overall purpose of this document is to establish a uniform approach to quality assurance. This will ensure that uniform, high-quality personnel dosimetry practices are followed by the participating testing laboratories. The document presents guidelines for calibrating and maintaining measurement and test equipment (M and TE), calibrating radiation fields, and subsequently irradiating and handling personnel dosimeters in laboratories involved in the DOE dosimetry systems testing program. Radiation energies for which the test procedures apply are photons with approximately 15 keV to 2 MeV, beta particles above 0.3 MeV, neutrons with approximately 1 keV to 2 MeV. 12 refs., 4 tabs

  19. Accreditation of the Personal Dosimetry internal Service Tecnatom by the National Entity (ENAC); Acreditacion del Servicio de Dosimetria Personal Interna de Tecnatom por la Entidad Nacional de Acreditacion (ENAC)

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, B.; Marchena, P.

    2014-07-01

    The service of personal Dosimetry internal Tecnatom has made the process of adapting its methodology and quality assurance, requirements technical and management will be required to obtain accreditation from the National Accreditation Entity according to ISO / IEC 170251 standard {sup G}eneral Requirements competence of testing and calibration laboratories. To carry out this process, the laboratory has defined quality criteria set out in their test procedures, based on ISO Standards 27048: 2011; ISO 20553: 2005 and ISO 28218: 2010. This paper describes what has been the methodology used to implement the requirements of different ISO test methods of SDPI Tecnatom. (Author)

  20. Calibration methods of plane-parallel ionization chambers used in electron dosimetry; Metodos de calibracao de camaras de ionizacao de placas paralelas para dosimetria de feixes de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Bulla, Roseli Tadeu

    1999-07-01

    The use of linear accelerators in radiotherapy is of great importance in Medicine, and according to international recommendations the electron beam dosimetry has to be performed using plane-parallel ionization chambers, previously calibrated in standard gamma radiation fields at accredited laboratories. In this work, calibration methods of plane-parallel ionization chambers used in dosimetry procedures of high energy electron beams of clinical accelerators were presented, tested and intercompared. The experiments were carried out using gamma radiation beams of {sup 60} Co at the Calibration Laboratory of Clinical Dosemeters at IPEN and electron beams od 4 to 16 MeV at the Radiotherapy Department of Hospital Israelita Albert Einstein, Sao Paulo. A method was chosen to be established at IPEN. Proposals of the calibration procedure, calibration certificate and data sheets are presented. (author)

  1. Establishment of qualities mammography according to the standard IEC-61267 in the laboratory of metrology of ionizing radiation of the National Center of Dosimetry and enlargement of the accreditation by ENAC; Establecimiento de las calidades de mamografia segun la norma IEC-61267 en el laboratorio de metrologia de radiaciones ionizantes del centro nacional de dosimetria (CND) y proceso de ampliacion de su acreditacion por ENAC

    Energy Technology Data Exchange (ETDEWEB)

    Roig Petit, F.; Mestre de Juan, V.; Alabau Albors, J.; Palma Copete, J.; Ruiz Rodriguez, J. C.; Pons Mocholi, S.

    2013-07-01

    The extension of the accreditation of the laboratory of the National Center Dosimetry (No. 58/LC10.036) by the national accreditation entity (ENAC), according to the ISO 17025 standard [2], for the standard qualities of mammography by the IEC 61267 comes to meet part of the needs that demand our health care environment in terms of radiation measuring instruments calibration. This work intends to publicize this enlargement commenting on the different phases of the process to get the accreditation. (Author)

  2. The calibration procedures in the Studsvik standardized personnel dosimetry system

    International Nuclear Information System (INIS)

    Widell, C.O.

    1978-01-01

    Every large nuclear installation in Sweden reads its own personnel TLDs. In order to supervise this decentralized reading of dose meters, the TLD readers are connected by telephone lines to a central computer for dose registration. This computer is used both for registering the personnel doses and for checking the TLD readers. This checking is performed by the use of pre-irradiated calibration dose meters which are always used when a batch of personnel dose meters are read. The pre-irradiated dose meters are either irradiated using 137 Cs to various doses up to 100mSv(10000mrem) or using a 90 Sr source in a reference dose irradiator to a dose equal to 3mSv(300mrem) from a 137 Cs source. The results from the reading of the pre-irradiated dose meters are processed by the computer and a calibration factor is calculated. The calibration factor is automatically used to calculate the doses to the personnel TLD's. However, if the calibration factor deviates by more than 10% from the previously used factor, this fact is shown to the operator - who then has to decide what calibration factor is going to be used. This calibration and supervisory procedure together with the safety interlocks in the TLD readers has resulted in a very reliable and accurate dosimetry system. (author)

  3. Calibration Laboratory for Medical Physics towards ISO/ IEC 17025 accreditation: Experience and challenges

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Abdul Aziz Ramli; Muhammad Jamal Isa; Sharul Azlan Azizan

    2011-01-01

    Medical Physics Calibration Laboratory is laboratory where placed under Medical Physics Group, Radiation Healthy and Safety Division. This laboratory offers calibration services to their customers that covered doses calibration, tube voltan (kVp), exposure doses, sensitometer and densitometer. After 12 years of operation, it is the right time for this laboratory to upgrade their quality services based on ISO/ IEC 17025. Accreditation scope covered calibration for diagnostic doses only. Starting from 2009, serious effort was done to prepare the quality documents that covered quality manual, quality procedure and work orders. Meanwhile, several series of audit were done by Quality Management Center (QMC), now Innovation Management Center (IMC) with collaboration with Standard Department. This paper works revealed challenges and experience during the process toward ISO/ IEC 17025 accreditation. (author)

  4. Fast film dosimetry calibration method for IMRT treatment plan verification

    International Nuclear Information System (INIS)

    Schwob, N.; Wygoda, A.

    2004-01-01

    Intensity-Modulated Radiation Therapy (IMRT) treatments are delivered dynamically and as so, require routinely performed verification measurements [1]. Radiographic film dosimetry is a well-adapted method for integral measurements of dynamic treatments fields, with some drawbacks related to the known problems of dose calibration of films. Classically, several films are exposed to increasing doses, and a Net Optical Density (N.O.D) vs. dose sensitometric curve (S.C.) is generated. In order to speed up the process, some authors have developed a method based on the irradiation of a single film with a non-uniform pattern of O.D., delivered with a dynamic MLC. However, this curve still needs to be calibrated to dose by the means of measurements in a water phantom. It is recommended to make a new calibration for every series of measurements, in order to avoid the processing quality dependence of the film response. These frequent measurements are very time consuming. We developed a simple method for quick dose calibration of films, including a check of the accuracy of the calibration curve obtained

  5. Calibration Curves for Biological Dosimetry by Fluorescence In situ Hybridisation

    International Nuclear Information System (INIS)

    Stonati, L.; Durante, M.; Gensabella, G.; Gialanella, G.; Grossi, G.F.; Pugliese, M.; Scampoli, P.; Sgura, A.; Testa, A.; Tanzarella, C.

    2001-01-01

    Dose-response curves were measured for the induction of chromosomal aberrations in peripheral blood lymphocytes after acute exposure in vitro to 60 Co γ rays. Blood was obtained from four different healthy donors, and chromosomes were either observed at metaphase, following colcemid accumulation, or prematurely condensed by calyculin A. Cells were analysed in three different Italian laboratories. Chromosomes 1, 2, and 4 were painted, and simple-type interchanges between painted and non-painted chromosomes were scored in cells exposed in the dose range 0.1-3.0 Gy. The chemical-induced premature chromosome condensation method was also used combined with chromosome painting (chromosome 4 only) to determine calibration curves for high dose exposures (up to 20 Gy X rays). Calibration curves described in this paper will be used in our laboratories for biological dosimetry by fluorescence in situ hybridisation. (author)

  6. Accreditation of a system of extremity dosimetry: validation and uncertainty of method; Acreditacion de un sistema de dosimetria de extremidades: validacion e incertidumbre del metodo

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gutierrez, A. M.; Rodriguez Jimenez, R.; Lopez Moyano, J. L.

    2013-07-01

    The authors' goal is to spread the practical experience gained during the accreditation process paying special attention to the process of method validation and estimation uncertainty of the dosimetry system. (Author)

  7. Some methods for calibration and beta radiation dosimetry

    International Nuclear Information System (INIS)

    Caldas, Linda V. Ehlin

    1980-01-01

    The calibration of beta radiation was studied from the point of view of primary and secondary standardization, using extrapolation chambers and examining several effects. The properties of a commercial ionization chamber were investigated, and the possibility of its use in calibration and dosimetry of 90 Sr- 90 Y beta radiation was demonstrated . A secondary standard calibration facility was developed and the results obtained with this facility were compared with those obtained from a primary system directly or indirectly. Nearly energy independent response was obtained in.the range 60 keV to 0,8 MeV with this secondary standard. Two solid state techniques namely thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) were also used for beta dosimetry. Various characteristics like reproducibility, response with dose,energy dependence, etc. were studied for the materials: LiF, CaF 2 ,Li 2 B 4 O 7 , Be O, CaSO 4 and Al 2 O 3 . TL detectors of thickness 0,9 mm underestimate the dose 60 μm thick CaSO 4 :Tm embedded on a thin aluminium plate gave energy independent response behind skin layers of 7 mg/cm 2 . Mixed field of beta, X and gamma radiation was analysed using this detector. Quartz based Be O and graphite based alpha beta-Al 2 O 3 were found to be good beta radiation detectors when the TSEE technique is used. Energy independent CaSO 4 :Tm TL dosimeters were used in international comparison for dose measurements and the results obtained were in agreement with the actual given doses within 10%. The TL detectors were also used for dose rate measurements from glazed painted tiles used in construction industry and a 85 Kr source used in textile and metal industries. Results obtained in the later case were Q compared with those using the secondary standard facility. (author)

  8. Guide for selection and calibration of dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the basis for selecting and calibrating dosimetry systems used to measure absorbed dose in gamma ray or X-ray fields and in electron beams used for radiation processing. It discusses the types of dosimetry systems that may be employed during calibration or on a routine basis as part of quality assurance in commercial radiation processing of products. This guide also discusses interpretation of absorbed dose and briefly outlines measurements of the uncertainties associated with the dosimetry. The details of the calibration of the analytical instrumentation are addressed in individual dosimetry system standard practices. The absorbed-dose range covered is up to 1 MGy (100 Mrad). Source energies covered are from 0.1 to 50 MeV photons and electrons. This guide should be used along with standard practices and guides for specific dosimetry systems and applications covered in other standards. Dosimetry for radiation processing with neutrons or heavy charged particles is not covered in this guide

  9. Radiochromic film calibration for dosimetry in computed tomography tests

    Energy Technology Data Exchange (ETDEWEB)

    Costa, K. C.; Prata M, A. [Federal Center for Technological Education of Minas Gerais, Biomedical Engineering Center, Av. Amazonas 5253, Nova Suica, 30421-169 Belo Horizonte, Minas Gerais (Brazil); Ladino G, A. M. [Federal University of Minas Gerais, Department of Nuclear Engineering, Av. Antonio Carlos 6627, Pampulha, 31270-90 Belo Horizonte, Minas Gerais (Brazil); Costa, K. L., E-mail: apratabhz@gmail.com [University of Itauna, Medicine Department, Rodovia Mg 431 Km 45 s/n, El Dorado, 35680-142 Itauna, Minas Gerais (Brazil)

    2017-10-15

    Radiochromic film applications in dosimetry have become increasingly significant for studies on radiotherapy and diagnostic tests. Due to sensitivity to exposure to ionizing radiation, radiochromic films are commonly used to obtain dose distribution maps. The objective of this study is to obtain the calibration curves of the radiographic film for exposure with X-ray beam in a computerized tomography (CT) scanner to realize measures of typical doses found in radiodiagnosis tests. It was used Gafchromic Xr-AQ2 film, which shows little sensitivity to visible light and a response in the range of 0.1 to 20 Gy for X-ray beam in a tube voltage supply range ranging from 20 kV to 200 kV. In the experiments, a head polymethylmethacrylate (PMMA) phantom, with a cylindrical shape with five openings was used. This phantom was placed in the CT scanner isocenter and radiochromic film strips were placed into two openings. The irradiations were performed in a Toshiba Asteion scanner that allows making acquisitions in helical mode. The central slice of the head phantom was irradiated to obtain the values of air kerma in PMMA measured with a pencil ionization chamber. Thereafter, radiochromic film strips were placed into the central and one peripheral opening and 10 cm long scans of the central region of the phantom were carried out with feed voltage of 120 kV. The strips irradiated with different X-ray tube currents were scanned and processed using the ImageJ software to obtain the intensity values resulting from the absorbed radiation by optical density analysis. The calibration curves were obtained for both region, central and peripheral corresponding to the values of air kerma in PMMA measured with ionization chamber. With the curves in hand, CT experiments with applied beams can use radiochromic films as a dosimetry method and then seek the generation of images with lower dose deposition and higher diagnostic quality. (Author)

  10. Radiochromic film calibration for dosimetry in computed tomography tests

    International Nuclear Information System (INIS)

    Costa, K. C.; Prata M, A.; Ladino G, A. M.; Costa, K. L.

    2017-10-01

    Radiochromic film applications in dosimetry have become increasingly significant for studies on radiotherapy and diagnostic tests. Due to sensitivity to exposure to ionizing radiation, radiochromic films are commonly used to obtain dose distribution maps. The objective of this study is to obtain the calibration curves of the radiographic film for exposure with X-ray beam in a computerized tomography (CT) scanner to realize measures of typical doses found in radiodiagnosis tests. It was used Gafchromic Xr-AQ2 film, which shows little sensitivity to visible light and a response in the range of 0.1 to 20 Gy for X-ray beam in a tube voltage supply range ranging from 20 kV to 200 kV. In the experiments, a head polymethylmethacrylate (PMMA) phantom, with a cylindrical shape with five openings was used. This phantom was placed in the CT scanner isocenter and radiochromic film strips were placed into two openings. The irradiations were performed in a Toshiba Asteion scanner that allows making acquisitions in helical mode. The central slice of the head phantom was irradiated to obtain the values of air kerma in PMMA measured with a pencil ionization chamber. Thereafter, radiochromic film strips were placed into the central and one peripheral opening and 10 cm long scans of the central region of the phantom were carried out with feed voltage of 120 kV. The strips irradiated with different X-ray tube currents were scanned and processed using the ImageJ software to obtain the intensity values resulting from the absorbed radiation by optical density analysis. The calibration curves were obtained for both region, central and peripheral corresponding to the values of air kerma in PMMA measured with ionization chamber. With the curves in hand, CT experiments with applied beams can use radiochromic films as a dosimetry method and then seek the generation of images with lower dose deposition and higher diagnostic quality. (Author)

  11. The U.S. Department of Energy Laboratory Accreditation Program for testing the performance of extremity dosimetry systems: a summary of the program status

    International Nuclear Information System (INIS)

    Cummings, F.M.; Carlson, R.D.; Gesell, T.F.; Loesch, R.M.

    1992-01-01

    In 1986, The U.S. Department of Energy (DOE) implemented a program to test the performance of its personnel whole-body dosimetry systems. This program was the DOE Laboratory Accreditation Program (DOELAP). The program parallels the performance testing program specified in the American National Standard for Dosimetry - Personnel Dosimetry Performance -Criteria for Testing (ANSI N13.11-1983), but also addresses the additional dosimetry needs of DOE facilities. As an extension of the whole-body performance testing program, the DOE is now developing a program to test the performance of personnel extremity dosimetry systems. The draft DOE standard for testing extremity dosimetry systems is much less complex than the whole-body dosimetry standard and reflects the limitations imposed on extremity dosimetry by dosimeter design and irradiation geometry. A pilot performance test session has been conducted to evaluate the proposed performance-testing standard. (author)

  12. Guidelines for the Calibration of Routine Dosimetry Systems for use in Radiation Processing

    DEFF Research Database (Denmark)

    Sharpe, Peter; Miller, Arne

    A set of guidelines has been developed to assist in the calibration of routine dosimetry systems for use in industrial radiation processing plants. Topics covered include the calibration of equipment, the performance of calibration irradiations and the derivation of mathematical functions...

  13. Performance of dichromate dosimetry systems in calibration and dose intercomparison

    International Nuclear Information System (INIS)

    Bof, E.S.; Smolko, E.

    1999-01-01

    This report presents the results of the High Dose Dosimetry Laboratory of Argentina during ten years of international intercomparisons for high dose with the International Dose Assurance Service (IDAS) of the IAEA, using the standard high dose dichromate dosimetry system, and the results of a high dose intercomparison regional exercise in which our Laboratory acted as a reference laboratory, using the standard high dose and low dose dichromate dosimetry system. (author)

  14. Calibration of helical tomotherapy machine using EPR/alanine dosimetry.

    Science.gov (United States)

    Perichon, Nicolas; Garcia, Tristan; François, Pascal; Lourenço, Valérie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-01

    Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10 x 10 cm2 square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40 x 5 cm2 defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) 60Co-gamma-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference 60Co-gamma-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS calculations and alanine measured dose values was then

  15. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

    International Nuclear Information System (INIS)

    Brady, S. L.; Kaufman, R. A.

    2012-01-01

    Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by ∼25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%–7%, 3%–5%, and 2%–4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 ± 1.1 mV cGy −1 versus the CT scatter phantom 29.2 ± 1.0 mV cGy −1 and FIA with x-ray 29.9 ± 1.1 mV cGy −1 methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of ∼3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the

  16. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry.

    Science.gov (United States)

    Brady, S L; Kaufman, R A

    2012-06-01

    The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by ~25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Calibration precision was measured to be better than 5%-7%, 3%-5%, and 2%-4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 ± 1.1 mV cGy(-1) versus the CT scatter phantom 29.2 ± 1.0 mV cGy(-1) and FIA with x-ray 29.9 ± 1.1 mV cGy(-1) methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of ~3000 mV. The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the eventual use for phantom dosimetry, a measurement error ~12

  17. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

    Directory of Open Access Journals (Sweden)

    HosseiniAliabadi S. J.

    2015-06-01

    Full Text Available Background: The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective: A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method: Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result: The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion: This system can be utilized in large scale environmental monitoring with a higher accuracy

  18. Calibration of SSTR neutron dosimetry for TMI-2 applications

    International Nuclear Information System (INIS)

    Gold, R.; Ruddy, F.H.; Roberts, J.H.; Preston, C.C.; Ulseth, J.A.; McElroy, W.N.; Leitz, F.J.; Hayward, B.R.; Schmittroth, F.A.

    1982-01-01

    Application of neutron dosimetry for assessment of fuel distribution throughout the Three Mile Island-2 (TMI-2) reactor-core region and the primary-coolant system is advanced. Neutron dosimetry in the reactor cavity, i.e. the cavity between the pressure vessel and the biological shield, could provide data for the assessment of the core fuel distribution. A more immediate task entails locating and quantifying the amount of fuel debris in the ex-core primary coolant system; in the range of 1 to 1000 kg. Solid-state track-recorder (SSTR) neutron dosimetry is considered for such exploratory scoping experiments at TMI-2. The sensitivity of mica- 235 U (asymptotically thick) SSTR has been ascertained for such environments. It has been demonstrated that the SSTR method has adequate sensitivity to properly respond and detect fuel quantities of the order of 1 kg in the ex-core primary coolant system. 21 figures

  19. Standardization of the calibration of brachytherapy sources at the IAEA dosimetry laboratory

    International Nuclear Information System (INIS)

    Shanta, A.; Andreo, P.

    1996-01-01

    A new service to SSDLs has been initiated at the IAEA Dosimetry Laboratory for providing calibrations of well-type ionisation chambers, used in brachytherapy applications, which are traceable to the International Measurement System. Considering that the most common radionuclide used in the developing countries is 137 Cs, two such sources of the type used for gynaecological intracavitary applications have been purchased by the Agency and calibrated at the National Institute of Standards and Technology (NIST), USA. These 137 Cs reference sources together with a well-type ionization chamber constitute the IAEA brachytherapy dosimetry standard. Based on the recommendations by a group of experts, a method has been developed for transferring calibrations to SSDLs which is described in this paper. The method is based on the acquisition by the SSDLs of sources and equipment similar to those at the IAEA. The well-type chamber is to be calibrated at the IAEA Dosimetry Laboratory, and this will be used at the SSDL to calibrate its own reference sources. These sources can in turn by used to calibrate well-type chambers from hospital users and to calibrate other type of sources by performing measurements in air. In order to standardize the procedures for the two methods and to provide guidance to the SSDLs, measurements have been carried out at the IAEA Dosimetry Laboratory. The reproducibility of the two type of measurements has been found to be better than 0.5%, and the uncertainty of calibrations estimated to be less than 1.5% (one standard deviation). (author). 8 refs, 8 figs, 2 tabs

  20. Dosimetry control for radiation processing - basic requirements and standards

    International Nuclear Information System (INIS)

    Ivanova, M.; Tsrunchev, Ts.

    2004-01-01

    A brief review of the basic international codes and standards for dosimetry control for radiation processing (high doses dosimetry), setting up a dosimetry control for radiation processing and metrology control of the dosimetry system is made. The present state of dosimetry control for food processing and the Bulgarian long experience in food irradiation (three irradiation facilities are operational at these moment) are presented. The absence of neither national standard for high doses nor accredited laboratory for calibration and audit of radiation processing dosimetry systems is also discussed

  1. Dosimetry intercomparisons in European medical device sterilization plants

    DEFF Research Database (Denmark)

    Miller, A.; Sharpe, P.H.G.

    2000-01-01

    Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy of the o...... of the order of +/-5% (1 sigma) for both Co-60 and electron beam plants. (C) 2000 Elsevier Science Ltd. All rights reserved....

  2. Calibration of a tertiary standard in N-ISO qualities for radioprotection and personal dosimetry

    International Nuclear Information System (INIS)

    Rojas, Enrique; Seminario, Lizet

    2013-01-01

    Dosimetric calibration of radiation monitors and personal dosimeters in different radiological quantities are performed in order to obtain accurate measurements, for this reason the SSDL calculates the dosimetry calibration factor and its associated uncertainty, for each range of use. The calibration factor is performed using the known radiation field method and its uncertainty is calculated according to the ISO recommendations. The SSDL calculates the expanded uncertainty (U c ) with a coverage factor that provides a level of not less than 95 % of confidence. (authors).

  3. Cause analysis for unsatisfactory results in proficiency testing activities: a case study of Brazilian calibration laboratories accredited under ISO/IEC 17025:2005⋆

    Directory of Open Access Journals (Sweden)

    Silva M.A.F.

    2013-01-01

    Full Text Available This work presents the results of a survey carried out among Brazilian calibration laboratories accredited under ISO/IEC 17025:2005 with the objective to identify how these laboratories investigate the root causes of unsatisfactory results in proficiency testing. The survey was coordinated by the Brazilian accreditation body, the General Coordination for Accreditation (Cgcre, of the Institute of Metrology, Quality and Technology (Inmetro.

  4. Calibration of a MOSFET detection system for 6-MV in vivo dosimetry

    International Nuclear Information System (INIS)

    Scalchi, Paolo; Francescon, P.

    1998-01-01

    Purpose: Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. Methods and Materials: MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. Results: The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm 2 . In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 deg. to 90 deg. , the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom

  5. IAEA workshop/seminar on calibration procedures in dosimetry, Quito, 6-24 October 1986

    International Nuclear Information System (INIS)

    1987-01-01

    The International Atomic Energy Agency in co-operation with the Ecuadorian Atomic Energy Commission organized a workshop and seminar on calibration procedures in dosimetry at the SSDL Quito, 6 to 24 October 1986. All calibration laboratories in the Latin American region were invited to participate. The purpose of the workshop were calibration exercises with therapy-level and protection-level secondary standards at various calibration qualities, discussions on progress made in the different SSDLs in the region and delivering lectures on pertinent subjects. A total of 15 Secondary Standards (10 therapy-level and 5 protection-level) were brought along by the participants and 35 calibration comparisons were performed with those having a valid calibration factor. Thirty-three determinations of calibration factors were performed for secondary standards not having had a calibration before. Twelve different calibration qualities were available (Cobalt-60 and X-rays) and Agency's Secondary Standards traceable to BIPM were the reference standards. The participants were divided into two working groups, each one week and each group into two sub-groups. Both irradiation bunkers were used simultaneously. The one houses the teletherapy Cobalt-60 unit and the protection-level Cobalt-60 irradiator, the other one the constant potential X-ray machine with maximum generating potential of 320 KV and suitable for both therapy-level as well as protection-level calibrations. Due to the heavy workload and limited time available some nightshifts were required to accomplish the requested calibration comparisons

  6. Accreditation and training on internal dosimetry in a laboratory network in Brazil: an increasing demand.

    Science.gov (United States)

    Dantas, B M; Dantas, A L A; Acar, M E D; Cardoso, J C S; Julião, L M Q C; Lima, M F; Taddei, M H T; Arine, D R; Alonso, T; Ramos, M A P; Fajgelj, A

    2011-03-01

    In recent years, Brazilian Nuclear Programme has been reviewed and updated by government authorities in face of the demand for energy supply and its associated environmental constraints. The immediate impact of new national programmes and projects in nuclear field is the increase in the number of exposed personnel and the consequent need for reliable dosimetry services in the country. Several Technical Documents related to internal dosimetry have been released by the International Atomic Energy Agency and International Commission on Radiological Protection. However, standard bioassay procedures and methodologies for bioassay data interpretation are still under discussion and, in some cases, both in routine and emergency internal monitoring, procedures can vary from one laboratory to another and responses may differ markedly among Dosimetry Laboratories. Thus, it may be difficult to interpret and use bioassay data generated from different laboratories of a network. The main goal of this work is to implement a National Network of Laboratories aimed to provide reliable internal monitoring services in Brazil. The establishment of harmonised in vivo and in vitro radioanalytical techniques, dose assessment methods and the implementation of the ISO/IEC 17025 requirements will result in the recognition of technical competence of the network.

  7. Validating dose rate calibration of radiotherapy photon beams through IAEA/WHO postal audit dosimetry service

    International Nuclear Information System (INIS)

    Jangda, A.Q.; Hussein, S.

    2012-01-01

    In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility. (author)

  8. Validating dose rate calibration of radiotherapy photon beams through IAEA/WHO postal audit dosimetry service.

    Science.gov (United States)

    Jangda, Abdul Qadir; Hussein, Sherali

    2012-05-01

    In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility.

  9. Calibration of a He accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    The helium accumulation fluence monitor (HAFM) has been developed for a fast reactor dosimetry. The HAFM measurement system was calibrated using He gas and He implanted samples and the measurement accuracy was confirmed to be less than 5%. Based on the preliminary irradiation test in JOYO, the measured He in the {sup 10}B type HAFM agreed well with the calculated values using the JENDL-3.2 library. (author)

  10. On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction

    International Nuclear Information System (INIS)

    Crop, F; Thierens, H; Rompaye, B Van; Paelinck, L; Vakaet, L; Wagter, C De

    2008-01-01

    The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry

  11. Inter-Laboratory Comparison for Calibration of Relative Humidity Devices Among Accredited Laboratories in Malaysia

    Science.gov (United States)

    Hussain, F.; Khairuddin, S.; Othman, H.

    2017-01-01

    An inter-laboratory comparison in relative humidity measurements among accredited laboratories has been coordinated by the National Metrology Institute of Malaysia. It was carried out to determine the performance of the participating laboratories. The objective of the comparison was to acknowledge the participating laboratories competencies and to verify the level of accuracies declared in their scope of accreditation, in accordance with the MS ISO/IEC 17025 accreditation. The measurement parameter involved was relative humidity for the range of 30-90 %rh at a nominal temperature of 50°C. Eight accredited laboratories participated in the inter-laboratory comparison. Two units of artifacts have been circulated among the participants as the transfer standards.

  12. A round-robin gamma stereotactic radiosurgery dosimetry interinstitution comparison of calibration protocols

    Energy Technology Data Exchange (ETDEWEB)

    Drzymala, R. E., E-mail: drzymala@wustl.edu [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Alvarez, P. E. [Imaging and Radiation Oncology Core Houston, UT MD Anderson Cancer Center, Houston, Texas 77030 (United States); Bednarz, G. [Radiation Oncology Department, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15232 (United States); Bourland, J. D. [Department of Radiation Oncology, Wake Forest University, Winston-Salem, North Carolina 27157 (United States); DeWerd, L. A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Ma, L. [Department of Radiation Oncology, University California San Francisco, San Francisco, California 94143 (United States); Meltsner, S. G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Neyman, G. [Department of Radiation Oncology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195 (United States); Novotny, J. [Medical Physics Department, Hospital Na Homolce, Prague 15030 (Czech Republic); Petti, P. L. [Gamma Knife Center, Washington Hospital Healthcare System, Fremont, California 94538 (United States); Rivard, M. J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Shiu, A. S. [Department of Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Goetsch, S. J. [San Diego Medical Physics, Inc., La Jolla, California 92037 (United States)

    2015-11-15

    Purpose: Absorbed dose calibration for gamma stereotactic radiosurgery is challenging due to the unique geometric conditions, dosimetry characteristics, and nonstandard field size of these devices. Members of the American Association of Physicists in Medicine (AAPM) Task Group 178 on Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance have participated in a round-robin exchange of calibrated measurement instrumentation and phantoms exploring two approved and two proposed calibration protocols or formalisms on ten gamma radiosurgery units. The objectives of this study were to benchmark and compare new formalisms to existing calibration methods, while maintaining traceability to U.S. primary dosimetry calibration laboratory standards. Methods: Nine institutions made measurements using ten gamma stereotactic radiosurgery units in three different 160 mm diameter spherical phantoms [acrylonitrile butadiene styrene (ABS) plastic, Solid Water, and liquid water] and in air using a positioning jig. Two calibrated miniature ionization chambers and one calibrated electrometer were circulated for all measurements. Reference dose-rates at the phantom center were determined using the well-established AAPM TG-21 or TG-51 dose calibration protocols and using two proposed dose calibration protocols/formalisms: an in-air protocol and a formalism proposed by the International Atomic Energy Agency (IAEA) working group for small and nonstandard radiation fields. Each institution’s results were normalized to the dose-rate determined at that institution using the TG-21 protocol in the ABS phantom. Results: Percentages of dose-rates within 1.5% of the reference dose-rate (TG-21 + ABS phantom) for the eight chamber-protocol-phantom combinations were the following: 88% for TG-21, 70% for TG-51, 93% for the new IAEA nonstandard-field formalism, and 65% for the new in-air protocol. Averages and standard deviations for dose-rates over all measurements relative to the TG-21 + ABS

  13. Establishment of a new calibration method of pencil ionization chamber for dosimetry in computed tomography

    International Nuclear Information System (INIS)

    Dias, Daniel Menezes

    2010-01-01

    Pencil ionization chambers are used for beam dosimetry in computed tomography equipment (CT). In this study, a new calibration methodology was established, in order to make the Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares (LCI) suitable to international metrological standards, dealing with specific procedures for calibration of these chambers used in CT. Firstly, the setup for the new RQT radiation qualities was mounted, in agreement with IEC61267 from the International Electrotechnical Commission (IEC). After the establishment of these radiation qualities, a specific calibration methodology for pencil ionization chambers was set, according to Technical Report Series No. 457, from the International Atomic Energy Agency (IAEA), which describes particularities of the procedure to be followed by the Secondary Standard Dosimetry Laboratories (SSDL's), concerning to collimation and positioning related to the radiation beam. Initially, PPV (kV) measurements and the determination of copper additional filtrations were carried out, measuring the half value layers (HVL) recommended by the IEC 61267 standard, after that the RQT 8, RQT 9 and RQT 10 radiation quality references were established. For additional filters, aluminum and copper of high purity (around 99.9%) were used. RQT's in thickness of copper filters equivalent to the set 'RQR (Al) + Additional Filtration (Cu)' was directly found by an alternative methodology used to determine additional filtrations, which is a good option when RQR's have not the possibility of be setting up. With the establishment of this new methodology for the ionization pencil chambers calibration, the LCI is ready to calibrate these instruments according to the most recent international standards. Therefore, an improvement in calibration traceability, as well as in metrological services offered by IPEN to all Brazil is achieved. (author)

  14. Test of an albedo neutron dosimetry system: TLD calibration and readout procedure, neutron calibration, dosimetry properties, routine application

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1988-03-01

    The two-component albedo dosemeter in use consists of an universal boron-loaded plastic encapsulation, the beta and albedo neutron windows of which are adopted to the corresponding TLD system of the manufacturers Alnor, Harshaw, Panasonic and Vinten. Beside the TLD detectors the capsule may contain also track etch detectors. Within a BMU project the system was investigated by four governmental measurement services in the FRG with respect to its qualification for personnel monitoring with emphasis in the readout and calibration procedures for the TLD system, the evaluation technique for the estimation of the photon and neutron dose equivalent in routine monitoring and the calibration of the personnel dosemeter in stray neutron fields. The test has shown the readiness of the system to act in the application areas of nuclear power reactors and linacs behind heavy shieldings, in the fuel element cycle, use of fissile materials, criticality, use of radionuclide sources, high energy particle accelerators. The uncertainty due to energy dependence was found to be within a factor of 2 for a single application area. In the case of irradiations from the front half space the dose equivalent H'(10) is indicated sufficiently independent of the direction of the radiation incidence. After completion of the test the albedo dosemeter became the official neutron personnel dosemeter in the FRG. It allows the separate estimation of the dose equivalent of hard beta radiation, photon radiation and neutrons. (orig./HP) [de

  15. Personal dosimetry service of TECNATOM: measurement system and methodology of calibration

    International Nuclear Information System (INIS)

    Marchena, Paloma; Bravo, Borja

    2008-01-01

    Full text: The implementation of a new integrated and practical working tool called ALEDIN within the Personal Dosimetry Service (PDS) of TECNATOM, have harmonized the methodology for the counting acquisition, detector calibration and data analysis using a friendly Windows (registered mark) environment. The knowledge of this methodology, due to the fact that is the final product of a R and D project, will help the users and the Regulatory Body for a better understanding of the internal activity measurement in individuals, allowing a more precise error identification and correction, and improving the whole process of the internal dosimetry. The development and implementation of a new calibration system of the whole body counters using NaI (Tl) detectors and the utilization of a new humanoid anthropometric phantom, BOMAB type, with a uniform radioactive source distributions, allow a better energy and activity calibration for different counting geometries covering a wide range of gamma spectra from low energies, less than 100 keV to about 2000 keV for the high energies spectra. This new calibration methodology implied the development of an improved system for the determination of the isotopic activity. This new system has been integrated in a Windows (registered mark) environment, applicable for counting acquisition and data analysis in the whole body counters WBC in cross connection with the INDAC software, which allow the interpretation of the measured activity as committed effective dose following all the new ICRP recommendations and dosimetric models for internal dose and bioassay measurements. (author)

  16. Influence of different types of phantoms on the calibration of dosemeters for eye lens dosimetry

    International Nuclear Information System (INIS)

    Yoshitomi, H.; Kowatari, M.

    2016-01-01

    Both a cylinder and a slab phantom have been recommended to be used as calibration phantoms for eye lens dosimetry in the International Atomic Energy Agency TECDOC. This study describes investigations on the influence of the type of phantom on the calibration of dosemeters. In order to fulfil the purpose, backscatter radiation from practically used water-filled phantoms was evaluated by calculations and experiments. For photons, the calculations showed that the cylinder phantom had 10 % lower backscattered effect at maximum than a slab phantom, and simulated well the backscattered effect of the human head or neck to within ±10 %. The irradiation results of non-filtered optically stimulated luminescence and radio-photoluminescence glass dosemeters indicated that the differences of the calibration factors between the two types of phantoms were up to 20 and 10 %, respectively, reflecting the response to backscattered photons. For electrons, no difference was found between the two types of phantoms. (authors)

  17. Optimization of SPECT calibration for quantification of images applied to dosimetry with iodine-131

    International Nuclear Information System (INIS)

    Carvalho, Samira Marques de

    2018-01-01

    SPECT systems calibration plays an essential role in the accuracy of the quantification of images. In this work, in its first stage, an optimized SPECT calibration method was proposed for 131 I studies, considering the partial volume effect (PVE) and the position of the calibration source. In the second stage, the study aimed to investigate the impact of count density and reconstruction parameters on the determination of the calibration factor and the quantification of the image in dosimetry studies, considering the reality of clinical practice in Brazil. In the final step, the study aimed evaluating the influence of several factors in the calibration for absorbed dose calculation using Monte Carlo simulations (MC) GATE code. Calibration was performed by determining a calibration curve (sensitivity versus volume) obtained by applying different thresholds. Then, the calibration factors were determined with an exponential function adjustment. Images were performed with high and low counts densities for several source positions within the simulator. To validate the calibration method, the calibration factors were used for absolute quantification of the total reference activities. The images were reconstructed adopting two approaches of different parameters, usually used in patient images. The methodology developed for the calibration of the tomographic system was easier and faster to implement than other procedures suggested to improve the accuracy of the results. The study also revealed the influence of the location of the calibration source, demonstrating better precision in the absolute quantification considering the location of the target region during the calibration of the system. The study applied in the Brazilian thyroid protocol suggests the revision of the calibration of the SPECT system, including different positions for the reference source, besides acquisitions considering the Signal to Noise Ratio (SNR) of the images. Finally, the doses obtained with the

  18. Experimental comparison among the laboratories accredited within the framework of the European Co-operation for Accreditation on the calibration of a radiation protection dosimeters in the terms of the quantity air Kerma

    International Nuclear Information System (INIS)

    Bovi, M.; Toni, M.P.; Tricomi, G.

    2002-01-01

    The European co-operation for Accreditation (EA) formalises the collaboration of the Accreditation Bodies of the Member States of the European Union and the European Free Trade Association covering all conformity assessment activities. This collaboration is based on a Memorandum of Understanding dated the 27 November 1997 and aims at developing and maintain Multilateral Agreements (MLAs) within EA and with non-members accreditation bodies. MLAs Signatories guarantee uniformity of accreditation by continuous and rigorous evaluation. Based on mutual confidence, the MLAs recognise the equivalence of the accreditation systems administered by EA Members and of certificates and reports issued by bodies accredited under these systems. A basic element of the program to establish and maintain mutual confidence among calibration services is the participation of the accredited laboratories in experimental interlaboratory comparisons (ILC) organised by EA members or other international organisations. The aim of these ILC is to verify the technical equivalence of calibration services within the EA. The ILC which it is dealt with in the present work was recently carried out over a period of two years, ending in May 2002. It interested the laboratories accredited in the ionising radiation field for calibration of dosimeters at radiation protection levels in terms of the quantity air kerma (K air ) due to 6 0C o and 1 37C s gamma radiation. The ILC was planned by the EA expert group on Ionising radiation and radioactivity and approved by the EA General Assembly in December 1999 with the title Calibration of a Radiation Protection Dosimeter under the code IR3. The need of this comparison also resulted from an inquiry carried out in 1998 by the expert group among the different Accreditation Bodies members of EA and associated to EA. The organization of the ILC was carried out according to the EA rules by the Italian Accreditation Body in the ionising radiation field, the SIT

  19. Calibration of activation detectors in a monoenergetic neutron beam. Contribution to criticality dosimetry

    International Nuclear Information System (INIS)

    Massoutie, Martine.

    1981-05-01

    Activation detectors have been calibrated for critical dosimetry applications. Measurements are made using a monoenergetic neutron flux. 14 MeV neutrons obtained par (D-T) reaction are produced by 150 kV accelerator. Neutron flux determined by different methods leads us to obtain an accuracy better than 6%. The present dosimetric system (Activation Neutron Spectrometer - SNAC) gives few informations in the (10 keV - 2 MeV) energetic range. The system has been improved and modified so that SNAC detectors must be read out by gamma spectrometer [fr

  20. A method for automating calibration and records management for instrumentation and dosimetry

    International Nuclear Information System (INIS)

    O'Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr.

    1993-01-01

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation

  1. Calibration curves for biological dosimetry; Curvas de calibracion para dosimetria biologica

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail cgc@nuclear.inin.mx

    2004-07-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of {sup 60} Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  2. A method for automating calibration and records management for instrumentation and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr. [Atlan-Tech, Inc., Roswell, GA (United States)

    1993-12-31

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation.

  3. A suitability study of the fission product phantom and the bottle manikin absorption phantom for calibration of in vivo bioassay equipment for the DOELAP accreditation testing program

    International Nuclear Information System (INIS)

    Olsen, P.C.; Lynch, T.P.

    1991-08-01

    Pacific Northwest laboratory (PNL) conducted an intercomparison study of the Fission Product phantom and the bottle manikin absorption (BOMAB) phantom for the US Department of Energy (DOE) to determine the consistency of calibration response of the two phantoms and their suitability for certification and use under a planned bioassay laboratory accreditation program. The study was initiated to determine calibration factors for both types of phantoms and to evaluate the suitability of their use in DOE Laboratory Accreditation Program (DOELAP) round-robin testing. The BOMAB was found to be more appropriate for the DOELAP testing program. 9 refs., 9 figs., 9 tabs

  4. Establishing and maintaining a measurement uncertainty programme at the RPII dosimetry and calibration service

    International Nuclear Information System (INIS)

    Spain, D.; Currivan, L.; Fitzgerald, H.; Pollard, D.

    2005-01-01

    Full text: At the Dosimetry and Calibration Service of the Radiological Protection Institute of Ireland (RPII) approximately 70,000 thermoluminescent dosemeters (TLDs) are issued each year to monitor occupationally exposed workers in Ireland. In addition the service offers a calibration service for radiation survey meters, contamination monitors and electronic personal dosemeters. In order to meet the requirements of ISO/IEC 17025, it is necessary to quantify the uncertainty of measurement using well defined concepts and to maintain an up to date estimate. In this work it is shown how the measurement uncertainty in the Dosimetry and Calibration Service has been estimated. When estimating the uncertainty of measurement, all uncertainty components which are of importance in the given situation are taken into account. The combined uncertainty of the system is determined by considering a number of systematic and random errors. The analysis will include assumptions made and these have been documented and justified. Components of uncertainty were determined in accordance with such documents as IEC 61066, Guide to Expression of Uncertainty in Measurement, and the National Physical Laboratory Measurement Good Practice Guide No. 11, as appropriate. Results of intercomparisons are also presented, which adds confidence to the uncertainty estimate. Although a great deal of work is involved is estimating uncertainty in both laboratories it is felt that a reasonable estimate of measurement uncertainty has been achieved given the available information. Furthermore, in keeping with the laboratory's commitment to continuous improvement, it is necessary to evaluate periodically the measurement uncertainties associated with the relevant procedures and a programme for the future is outlined. (author)

  5. Development of a calibration protocol for quantitative imaging for molecular radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Wevrett, J.; Fenwick, A.; Scuffham, J.; Nisbet, A.

    2017-01-01

    Within the field of molecular radiotherapy, there is a significant need for standardisation in dosimetry, in both quantitative imaging and dosimetry calculations. Currently, there are a wide range of techniques used by different clinical centres and as a result there is no means to compare patient doses between centres. To help address this need, a 3 year project was funded by the European Metrology Research Programme, and a number of clinical centres were involved in the project. One of the required outcomes of the project was to develop a calibration protocol for three dimensional quantitative imaging of volumes of interest. Two radionuclides were selected as being of particular interest: iodine-131 ( 131 I, used to treat thyroid disorders) and lutetium-177 ( 177 Lu, used to treat neuroendocrine tumours). A small volume of activity within a scatter medium (water), representing a lesion within a patient body, was chosen as the calibration method. To ensure ease of use in clinical centres, an “off-the-shelf” solution was proposed – to avoid the need for in-house manufacturing. The BIODEX elliptical Jaszczak phantom and 16 ml fillable sphere were selected. The protocol was developed for use on SPECT/CT gamma cameras only, where the CT dataset would be used to correct the imaging data for attenuation of the emitted photons within the phantom. The protocol corrects for scatter of emitted photons using the triple energy window correction technique utilised by most clinical systems. A number of clinical systems were tested in the development of this protocol, covering the major manufacturers of gamma camera generally used in Europe. Initial imaging was performed with 131 I and 177 Lu at a number of clinical centres, but due to time constraints in the project, some acquisitions were performed with 177 Lu only. The protocol is relatively simplistic, and does not account for the effects of dead-time in high activity patients, the presence of background activity

  6. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  7. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  8. Secondary calibration laboratory for dosimetry in levels of therapy at the University of Santiago

    International Nuclear Information System (INIS)

    Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Pazos Alvarez, A.

    2011-01-01

    A basic inherent benefits provided by the existence of a traceability chain radiation in any application, add the legal requirement for hospitals as pointed to by the RO. 1566/1998, which sets quality standards in radiotherapy. The decree attributed to hospital specialists radio physics in article 10 the responsibility for determining the acceptance and initial reference state of radiation generating equipment for therapeutic purposes, and the establishment and implementation of quality control programs associated and technical and physical aspects of radiation dosimetry. Different international organizations such as ICRU and IAEA recommendations on maintaining the accuracy of the dose delivered to patients in general, should be placed at least 5% considering the whole chain irradiation. In order to achieve this purpose it is necessary to establish programs of quality control and calibration dosimetric regular basis. The protocol of the IAEA TRS398 recommended dose calibration in water because it is a quantity of interest closest to clinical use and allows a relative uncertainty in the calibration environment reduced to 1%.. (Author)

  9. A new form of the calibration curve in radiochromic dosimetry. Properties and results

    Energy Technology Data Exchange (ETDEWEB)

    Tamponi, Matteo, E-mail: mtamponi@aslsassari.it; Bona, Rossana; Poggiu, Angela; Marini, Piergiorgio [Medical Physics Unit, ASL Sassari, Via Enrico de Nicola, Sassari 07100 (Italy)

    2016-07-15

    Purpose: This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. Methods: The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer–Lambert law and a simple modeling of the film. The new calibration curve has been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. Results: The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. Conclusions: The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the

  10. A new form of the calibration curve in radiochromic dosimetry. Properties and results

    International Nuclear Information System (INIS)

    Tamponi, Matteo; Bona, Rossana; Poggiu, Angela; Marini, Piergiorgio

    2016-01-01

    Purpose: This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. Methods: The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer–Lambert law and a simple modeling of the film. The new calibration curve has been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. Results: The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. Conclusions: The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the

  11. Development and calibration of a routine dosimetry system for radiation processing

    International Nuclear Information System (INIS)

    Ferreira, Danilo Cardenuto

    2013-01-01

    The development and calibration of a routine dosimetry system based on commercial, low cost photodiode (SFH 206) are presented in this work. The dosimeter probe was designed to operate unbiased in the direct current mode. The radiations were performed with Cobalt-60 Panoramic Irradiator facility in the dose-rate range of 8.1 Gy/h - 125 Gy/h. The photocurrents generated in the device, in each dose-rate, were registered with a digital electrometer and stored during the exposure time. The current response of the diode was measured as a function of the time in steps from 1 Gy up to 200 Gy with accumulated dose up to 15 kGy. In this range, the dose-response of the diode, given by the charge as function of dose, was linear with correlation coefficient better than 0.998. These results were compared with those obtained using Gafchromic film dosimetry often used in routine. To monitor possible gamma radiation effects produced on the diode, the current and charge sensitivities were measured as a function of the absorbed dose. For doses up to 15 kGy, it was not observed any radiation damage what confirms the reproducibility of the diode response better than 3 %. Finally, due to the small experimental errors ( 5% ) and good spatial resolution of the diode it was possible to measure the transit dose due to the movement of the Cobalt-60 radioactive source as well the dose rate mapping in the Panoramic Irradiator. (author)

  12. Calibration curves for biological dosimetry by drug-induced prematurely condensed chromosomes in human lymphocytes

    International Nuclear Information System (INIS)

    Kang, C. M.; Chung, H. C.; Cho, C. K.

    2002-01-01

    To develop the cytogenetic tool to detect chromosome damages after high dose exposure with 60 Coγ- rays, dose-response curves were measured for induction of prematurely condensed chromosomes (PCC) in peripheral lymphocytes. Blood was obtained from 10 different healthy donors, and given okadaic acid (OA) 500nM in cultured lymphocytes 1h after radiation exposure. Cells were analyzed by the frequencies of OA-induced PCC rings because it is difficult to obtain mitotic chromosomes using a conventional chromosome aberration (CA). PCC-rings were scored in cells exposed in the dose range of 0.2-16Gy. The frequency of the cells with PCC and the dose-response relationship for the yield of PCC rings were examined in the irradiated lymphocytes. The yield of PCC-rings increased with dose dependent-manner up to 16Gy. The observed dose-effect relationship for the percentage of cells with PCC-rings was calculated by linear-quadratic model. This technique can be applied to biological dosimetry of radiation exposures involving whole body irradiation to allow damaged chromosomes to be detected with great sensitivity. Detection of okadaic acid-induced PCC rings is a useful method up to 16Gy or more doses in estimating the absorbed doses of victims after high dose exposure. Calibration curves described in this paper will be used in our laboratory for biological dosimetry by PCC-ring after a high dose exposure

  13. CABAS: A freely available PC program for fitting calibration curves in chromosome aberration dosimetry

    International Nuclear Information System (INIS)

    Deperas, J.; Szluiska, M.; Deperas-Kaminska, M.; Edwards, A.; Lloyd, D.; Lindholm, C.; Romm, H.; Roy, L.; Moss, R.; Morand, J.; Wojcik, A.

    2007-01-01

    The aim of biological dosimetry is to estimate the dose and the associated uncertainty to which an accident victim was exposed. This process requires the use of the maximum-likelihood method for fitting a calibration curve, a procedure that is not implemented in most statistical computer programs. Several laboratories have produced their own programs, but these are frequently not user-friendly and not available to outside users. We developed a software for fitting a linear-quadratic dose-response relationship by the method of maximum-likelihood and for estimating a dose from the number of aberrations observed. The program called as CABAS consists of the main curve-fitting and dose estimating module and modules for calculating the dose in cases of partial body exposure, for estimating the minimum number of cells necessary to detect a given dose of radiation and for calculating the dose in the case of a protracted exposure. (authors)

  14. Status of radiation dosimetry in Germany using ionization chamber calibrated in terms of absorbed dose to water

    International Nuclear Information System (INIS)

    Hohlfeld, Klaus; Roos, Martin

    1995-01-01

    In 1984 the PTB as PSDL and the DIN Standard Committee on Radiology (NAR) in close co-operation decided that in Germany the measured absorbed dose to water in a water phantom should replace exposure in the dosimetry for radiation therapy. The PTB has established primary standards of water absorbed dose in the whole range of photon and electron radiation, and international comparisons at the BIPM and with other PSDLs proved agreement within 0.5%. Secondary standards are calibrated in a water phantom under reference conditions in a Co-60 gamma radiation beam at the PTB. Thus, the calibration factor in terms of water absorbed dose, N W , is transferred to the manufacturers of dosimeters, the German Calibration Service and the dosimetry laboratories of the verification authorities. The Verification Law subjects each ionization dosimeter used in the treatment of patients with external photon radiation beams under a type-test at PTB and under a verification procedure, where the calibration factor, N W , must be shown to be within given limits. The absorbed dose determination at the users' level follows the foralism prescribed in the Standard DIN 6800-2 (1995) 'Procedures for Absorbed Dose Determination in Radiology by the Ionization Method'. The concept of this DIN Standard uses exclusively one quantity from the primary standard to the user's instrument eliminating uncertainties and sources of mistakes associated with the conversion of a calibration factor. The concept is simple and clear and covers the whole range of photon and electron radiation. As a means of quality assurance in basic dosimetry the PTB runs a calibration service, up to now on a voluntary basis, which allows the user to compare his dosimetry system against PTB standards using mailed Fricke ampoules, with water absorbed dose as measured and used

  15. The calibration method for personal dosimetry system in photon and neutron radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Trousil, J; Plichta, J [CSOD, Prague (Czech Republic); Nikodemova, D [SOD, Bratislava (Slovakia)

    1996-12-31

    The type testing of dosimetry system was performed with standard photon radiation fields within the energy range 15 keV to 1.25 MeV and electron radiation fields within the range 0.2 MeV to 3 MeV. For type testing of neutron dosimeters {sup 252}Cf and {sup 241}Am-Be radionuclide neutron sources was used, as well as a 14 MeV neutron generator. The neutron sources moderated by various moderating and absorbing materials was also used. The routine calibration of individual photon dosemeters was carried out using a {sup 137}Cs calibration source in the air kerma quality in the dose range 0.2 mGy to 6 Gy. The type testing of neutron dosemeters was performed in collaboration with Nueherberg laboratory on neutron generator with neutron energies -.57; 1.0;; 5.3 and 15.1 MeV. The fading and angular dependence testing was also included in the tests of both dosemeter systems. (J.K.).

  16. Dose levels of the occupational radiation exposures in Poland based on results from the accredited dosimetry service at the IFJ PAN, Krakow.

    Science.gov (United States)

    Budzanowski, Maciej; Kopeć, Renata; Obryk, Barbara; Olko, Paweł

    2011-03-01

    Individual dosimetry service based on thermoluminescence (TLD) detectors has started its activity at the Institute of Nuclear Physics (IFJ) in Krakow in 1965. In 2002, the new Laboratory of Individual and Environment Dosimetry (Polish acronym LADIS) was established and underwent the accreditation according to the EN-PN-ISO/IEC 17025 standard. Nowadays, the service is based on the worldwide known standard thermoluminescent detectors MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P), developed at IFJ, processed in automatic thermoluminescent DOSACUS or RE2000 (Rados Oy, Finland) readers. Laboratory provides individual monitoring in terms of personal dose equivalent H(p)(10) and H(p)(0.07) in photon and neutron fields, over the range from 0.1 mSv to 1 Sv, and environmental dosimetry in terms of air kerma K(a) over the range from 30 μGy to 1 Gy and also ambient dose equivalent H*(10) over the range from 30 μSv to 1 Sv. Dosimetric service is currently performed for ca. 3200 institutions from Poland and abroad, monitored on quarterly and monthly basis. The goal of this paper is to identify the main activities leading to the highest radiation exposures in Poland. The paper presents the results of statistical evaluation of ∼ 100,000 quarterly H(p)(10) and K(a) measurements performed between 2002 and 2009. Sixty-five per cent up to 90 % of all individual doses in Poland are on the level of natural radiation background. The dose levels between 0.1 and 5 mSv per quarter are the most frequent in nuclear medicine, veterinary and industrial radiography sectors.

  17. Principles for the design and calibration of radiation protection dosemeters for operational and protection quantities for eye lens dosimetry

    International Nuclear Information System (INIS)

    Bordy, J. M.; Gualdrini, G.; Daures, J.; Mariotti, F.

    2011-01-01

    The work package two of the ORAMED project-Collaborative Project (2008-2011) supported by the European Commission within its seventh Framework Programme-is devoted to the study of the eye lens dosimetry. A first approach is to implement the use of H p (3) by providing new sets of conversion coefficients and well suited calibration and type test procedures. This approach is presented in other papers in the proceedings of this conference. Taking into account that the eye lens is an organ close to the surface of the body, another approach would be to directly estimate the absorbed dose to the eye lens, D lens,est through a special calibration procedure although this quantity is not directly measurable. This paper is a methodological paper that tries to identify the critical aspects of a dosimetry in terms of D lens . (authors)

  18. SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, E [Gainesville, FL (United States); Flampouri, S [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Lipnharski, I [University of Florida, Gainesville, FL (United States); Bolch, W [University Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMs using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and out

  19. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  20. THE CHALLENGE OF CIEMAT INTERNAL DOSIMETRY SERVICE FOR ACCREDITATION ACCORDING TO ISO/IEC 17025 STANDARD, FOR IN VIVO AND IN VITRO MONITORING AND DOSE ASSESSMENT OF INTERNAL EXPOSURES.

    Science.gov (United States)

    Lopez, M A; Martin, R; Hernandez, C; Navarro, J F; Navarro, T; Perez, B; Sierra, I

    2016-09-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    2004-03-01

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192 Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  2. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  3. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-15

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, gamma) process in Na sup 2 sup 3 , giving rise to Na sup 2 sup 4 , which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na sup 2 sup 4 , is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na sup 2 sup 3 in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na sup 2 sup 4 /Na sup 2 sup 3 in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R sub B reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzmann transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given

  4. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-01

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, {gamma}) process in Na{sup 23}, giving rise to Na{sup 24}, which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na{sup 24}, is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na{sup 23} in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na{sup 24}/Na{sup 23} in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R{sub B} reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzman transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given. A summary of the 4{pi

  5. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    Science.gov (United States)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  6. Poster - 16: Time-resolved diode dosimetry for in vivo proton therapy range verification: calibration through numerical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald [McGill University, Harvard University, Massachusetts General Hospital, McGill University, Massachusetts General Hospital, Massachusetts General Hospital (United States)

    2016-08-15

    Purpose: A method to refine the implementation of an in vivo, adaptive proton therapy range verification methodology was investigated. Simulation experiments and in-phantom measurements were compared to validate the calibration procedure of a time-resolved diode dosimetry technique. Methods: A silicon diode array system has been developed and experimentally tested in phantom for passively scattered proton beam range verification by correlating properties of the detector signal to the water equivalent path length (WEPL). The implementation of this system requires a set of calibration measurements to establish a beam-specific diode response to WEPL fit for the selected ‘scout’ beam in a solid water phantom. This process is both tedious, as it necessitates a separate set of measurements for every ‘scout’ beam that may be appropriate to the clinical case, as well as inconvenient due to limited access to the clinical beamline. The diode response to WEPL relationship for a given ‘scout’ beam may be determined within a simulation environment, facilitating the applicability of this dosimetry technique. Measurements for three ‘scout’ beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). Results: Detector response in water equivalent plastic was successfully validated against simulation for spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) with adjusted R{sup 2} of 0.998. Conclusion: Feasibility has been shown for performing calibration of detector response for a given ‘scout’ beam through simulation for the time resolved diode dosimetry technique.

  7. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, J. [Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and Instituto de Física Corpuscular (UV-CSIC), Paterna 46980 (Spain); García-Martínez, T. [Radiation Oncology Department, Hospital La Ribera, Alzira 46600 (Spain); Niatsetski, Y.; Nauta, G.; Schuurman, J. [Elekta Brachytherapy, Veenendaal 3905 TH (Netherlands); Ouhib, Z. [Radiation Oncology Department, Lynn Regional Cancer Center, Boca Raton Community Hospital, Boca Raton, Florida 33486 (United States); Ballester, F. [Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Perez-Calatayud, J. [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain and Department of Radiotherapy, Clínica Benidorm, Benidorm 03501 (Spain)

    2015-08-15

    Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate of the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%–2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers

  8. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  9. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish [U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Minniti, Ronaldo [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Parry, Marie I. [Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889 (United States); Skopec, Marlene [National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892 (United States)

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  10. The DOE Laboratory Accreditation Program 8 years later

    International Nuclear Information System (INIS)

    Cummings, R.; Kershisnik, R.; Taylor, T.; Grothaus, G.; Loesch, R.M.

    1994-01-01

    The DOE Laboratory Accreditation Program was implemented in 1986. Currently, the program is conducting its seventeenth performance testing session for whole body personnel dosimeters. All but two DOE laboratories have gained accreditation for their whole body personnel dosimetry systems. Several test situations which were anticipated in the early stages of DOELAP have not materialized. In addition, the testing standard for whole body personnel dosimetry systems is under review and revision. In the near future, the accreditation programs for extremity dosimetry and bioassay will be implemented. This presentation summarizes the status and anticipated direction of the DOE whole body and extremity dosimetry and bioassay laboratory accreditation program

  11. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  12. Calibration of semiconductors diodes for in vivo dosimetry in total body irradiation treatments; Calibracao de diodos semicondutores para dosimetria in vivo em tratamentos de irradiacao de corpo inteiro

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernanda F.; Costa, Alessandro M.; Ghilardi Netto, Thomaz, E-mail: ferretti.oliveira@gmail.com [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias e Letras. Departamento de Fisica; Amaral, Leonardo L. [Universidade de Sao Paulo (HCFMRP/USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2012-08-15

    This paper presents the results of in vivo dosimetry with p-type semiconductors diodes, EDP-15 (Scanditronix Wellhoefer) of two patients who underwent total body irradiation treatments, at Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto University of Sao Paulo (HCFMRP-USP). The diodes were well calibrated and the calibration factors were determined with the aid of a reference ionization chamber (FC065, IBA dosimetry, sensitive volume of 0.65 cm{sup 3}).The calibration was performed in a Total Body Irradiation (TBI) setup, using solid water phantoms. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings (half of the lateral thickness). The response difference between diode readings and the prescribed dose for both treatments was below 4%. This difference is in agreement as recommended by International Commission on Radiation Units (ICRU), which is {+-}5%. (author)

  13. The challenge of Ciemat internal dosimetry service for accreditation according to ISO/IEC 17025 standard, for in vivo and in vitro monitoring and dose assessment of internal exposures

    International Nuclear Information System (INIS)

    Lopez, M.A.; Martin, R.; Hernandez, C.; Navarro, J.F.; Navarro, T.; Perez, B.; Sierra, I.

    2016-01-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. CIEMAT Internal Dosimetry Service (IDS) has developed and implemented a quality system based on ISO/IEC 17025 to ensure compliance with the general requirements of this reference standard. The development of documentary support according to this quality system permitted to standardise the systematic activities performed within the whole body counter and in vitro bioassay laboratories as well as the procedures carried out by qualified staff in charge of internal dose assessment. There was no previous experience in the accreditation of other internal dosimetry services in Spain. Then, requirements from the national regulatory body (Nuclear Safety Council, CSN) and national accreditation entity (ENAC) have been considered. The main concerns were to guarantee the traceability in the whole process and to avoid possible charge of interpretation or subjectivity in the methodology of dose assessment due to intakes of radionuclides when calculating from monitoring data. All the related international standards dealing with internal dosimetry were taken into account: ISO 28218 'Performance criteria for radiobioassay', ISO 27048 'Dose Assessment for the

  14. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  15. Calibration of a whole body counter and 'In Vivo' measurements for internal dosimetry evaluation in Chile, two years experience

    International Nuclear Information System (INIS)

    Pinones O, Osvaldo; Sanhueza M, Sylvia

    2008-01-01

    In Chile the internal Dosimetry evaluation have been doing for more than 20 years ago by 'in vitro' measurements, however the 'in vivo' measurements just have available for 2 years due to the installation, calibration and completion of a Whole Body Counter. The Whole Body Counter of the CCHEN, corresponds to the shielded room type (4.2 x 3.3 x 2.0 m), is located in the second subterranean of the North Wing of the building of Laboratories of the La Reina Nuclear Center in Santiago City, (3 meters under the ground). It is composed by 12 cm thickness walls of concrete, then successive layers of 2 mm of thickness with: lead, cadmium and copper, 1 cm of acrylic and finally 2 mm of wood. The measurement system is composed by: 2 detectors of NaI (Tl) of 8 x 3 inches (BICRON) that operate to 800 volts (+) and allow the detection of gamma emitters of high energy (>100 keV). It has the possibility of measurement fixes (thyroid) and route (whole body) using for it a pneumatic system that allows the displacement of the detectors on a central axis. It has two positions of location of the detectors, one of 90 degrees with respect to the central axis when the system is in rest or entrance retirement of patient and one of 45 degrees approximately when the measurement is made. For the calibration, two simulators were used: Thyroid simulator from the IRD (Brazil), and Whole Body, BOMAB simulator ( 133 Ba, 137 Cs and 60 Co) from the IAEA. 10 measurements of 300 seconds each one per geometry and different detector-patient distances were done: 20.0; 25.0; 30.0; 37.7 and 101.1 cm (considering high level incorporations). For the analysis of spectrum, software 'Genie 2000' and for the calculation of dose, program 'AIDE' obtained through ARCAL RLA/9/049 'Harmonization of Procedures of Internal Dosimetry', were used. To date, 300 measurements have been made and the results were used for the evaluation of the internal Dosimetry of the Professional Exposed Workers (PEW), but also to improve

  16. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Guerra P, F.; Heeren de O, A. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos Graduacao em Ciencias e Tecnicas Nucleares, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Melo, B. M.; Lacerda, M. A. S.; Da Silva, T. A.; Ferreira F, T. C., E-mail: tcff01@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear, Programa de Pos Graduacao / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    The Plan of Radiological Protection licensed by the National Nuclear Energy Commission - CNEN in Brazil includes the risks of assessment of internal and external exposure by implementing a program of individual monitoring which is responsible of controlling exposures and ensuring the maintenance of radiation safety. The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology - LID/CDTN is responsible for routine monitoring of internal contamination of the Individuals Occupationally Exposed (IOEs). These are, the IOEs involved in handling {sup 18}F produced by the Unit for Research and Production of Radiopharmaceuticals sources; as well a monitoring of the entire body of workers from the Research Reactor TRIGA IPR-R1/CDTN or whenever there is any risk of accidental incorporation. The determination of photon emitting radionuclides from the human body requires calibration techniques of the counting geometries, in order to obtain a curve of efficiency. The calibration process normally makes use of physical phantoms containing certified activities of the radionuclides of interest. The objective of this project is the calibration of the WBC facility of the LID/CDTN using the BOMAB physical phantom and Monte Carlo simulations. Three steps were needed to complete the calibration process. First, the BOMAB was filled with a KCl solution and several measurements of the gamma ray energy (1.46 MeV) emitted by {sup 40}K were done. Second, simulations using MCNPX code were performed to calculate the counting efficiency (Ce) for the BOMAB model phantom and compared with the measurements Ce results. Third and last step, the modeled BOMAB phantom was used to calculate the Ce covering the energy range of interest. The results showed a good agreement and are within the expected ratio between the measured and simulated results. (Author)

  17. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using MCNPX code

    International Nuclear Information System (INIS)

    Guerra P, F.; Heeren de O, A.; Melo, B. M.; Lacerda, M. A. S.; Da Silva, T. A.; Ferreira F, T. C.

    2015-10-01

    The Plan of Radiological Protection licensed by the National Nuclear Energy Commission - CNEN in Brazil includes the risks of assessment of internal and external exposure by implementing a program of individual monitoring which is responsible of controlling exposures and ensuring the maintenance of radiation safety. The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology - LID/CDTN is responsible for routine monitoring of internal contamination of the Individuals Occupationally Exposed (IOEs). These are, the IOEs involved in handling 18 F produced by the Unit for Research and Production of Radiopharmaceuticals sources; as well a monitoring of the entire body of workers from the Research Reactor TRIGA IPR-R1/CDTN or whenever there is any risk of accidental incorporation. The determination of photon emitting radionuclides from the human body requires calibration techniques of the counting geometries, in order to obtain a curve of efficiency. The calibration process normally makes use of physical phantoms containing certified activities of the radionuclides of interest. The objective of this project is the calibration of the WBC facility of the LID/CDTN using the BOMAB physical phantom and Monte Carlo simulations. Three steps were needed to complete the calibration process. First, the BOMAB was filled with a KCl solution and several measurements of the gamma ray energy (1.46 MeV) emitted by 40 K were done. Second, simulations using MCNPX code were performed to calculate the counting efficiency (Ce) for the BOMAB model phantom and compared with the measurements Ce results. Third and last step, the modeled BOMAB phantom was used to calculate the Ce covering the energy range of interest. The results showed a good agreement and are within the expected ratio between the measured and simulated results. (Author)

  18. Calibration of Monte Carlo simulation code to low voltage electron beams through radiachromic dosimetry

    International Nuclear Information System (INIS)

    Weiss, D.E.; Kalweit, H.W.; Kensek, R.P.

    1994-01-01

    A simple multilayer slab model of an electron beam using the ITS/TIGER code can consistently account for about 80% of the actual dose delivered by a low voltage electron beam. The difference in calculated values is principally due to the 3D hibachi structure which blocks 22% of the beam. A 3D model was constructed using the ITS/ACCEPT code to improve upon the TIGER simulations. A rectangular source description update to the code and reproduction of all key geometric elements involved, including the hibachi, accounted for 90-95% of the dose received by routine dosimetry

  19. Electron beam dosimetry. Calibration and use of plane parallel chambers following IAEA TRS-381 recommendations

    International Nuclear Information System (INIS)

    Lizuain, M.C.; Linero, D.; Picon, C.; Saldana, O.

    2000-01-01

    Using different plane parallel chamber types (NACP-02, PTW Roos and PTW Markus), and a cylindrical chamber NE-2571 as reference, the IAEA TRS-381 Code of Practice has been compared with the AAPM TG-39 dosimetry protocol for plane parallel chambers. N D,air pp was determined following the 60 Co in-phantom method and the electron beam method described in TRS-381, using water, PMMA and RMI-457 Solid Water phantoms. Differences were smaller than 0.5% between the two methods except for the PTW Roos chamber where the discrepancy was about 1.5%. The absorbed dose to water was determined according to the procedures and data of each protocol for electron beams between 4 and 18 MeV. Differences in absorbed dose were less than 1% when measurements were made in water, but a deviation of up to 2% was found between TRS-381 and TG-39 when PMMA phantoms were used. To validate the results obtained and to investigate differences between plastic and water phantoms in electron beam dosimetry, the scaling factor C pl and the fluence correction factor h m for PMMA and solid water RMI-457 were measured and compared to the data in TRS-381. Good agreement was found for C pl , but only when the plastics density were taken into account. The experimental values of h m have a large uncertainty but for PMMA a trend for h m being lower than in TRS-381 has been obtained. (author)

  20. Characterization and Simulation of a New Design Parallel-Plate Ionization Chamber for CT Dosimetry at Calibration Laboratories

    Science.gov (United States)

    Perini, Ana P.; Neves, Lucio P.; Maia, Ana F.; Caldas, Linda V. E.

    2013-12-01

    In this work, a new extended-length parallel-plate ionization chamber was tested in the standard radiation qualities for computed tomography established according to the half-value layers defined at the IEC 61267 standard, at the Calibration Laboratory of the Instituto de Pesquisas Energéticas e Nucleares (IPEN). The experimental characterization was made following the IEC 61674 standard recommendations. The experimental results obtained with the ionization chamber studied in this work were compared to those obtained with a commercial pencil ionization chamber, showing a good agreement. With the use of the PENELOPE Monte Carlo code, simulations were undertaken to evaluate the influence of the cables, insulator, PMMA body, collecting electrode, guard ring, screws, as well as different materials and geometrical arrangements, on the energy deposited on the ionization chamber sensitive volume. The maximum influence observed was 13.3% for the collecting electrode, and regarding the use of different materials and design, the substitutions showed that the original project presented the most suitable configuration. The experimental and simulated results obtained in this work show that this ionization chamber has appropriate characteristics to be used at calibration laboratories, for dosimetry in standard computed tomography and diagnostic radiology quality beams.

  1. Design and fabrication of a multipurpose thyroid phantom for medical dosimetry and calibration

    International Nuclear Information System (INIS)

    Naderi, Simin Mehdizadeh; Sina, Sedigheh; Karimipoorfard, Mehrnoosh; Lotfalizadeh, Fatemeh; Moradi, Hamed; Faghihi, Reza; Entezarmahdi, Mohammad

    2016-01-01

    A multipurpose anthropomorphic neck phantom was designed and fabricated for use in medical applications. The designed neck phantom is composed of seven elliptic cylindrical slices with a semi-major axis of 14 cm and a semi-minor axis of 12.5 cm, each having the thickness of 2 cm. The thyroid gland, bony part of the neck, and the windpipe were also built inside the neck phantom. For the purpose of medical dosimetry, some holes were drilled inside the phantom to accommodate the thermoluminescence dosemeters with different shapes and dimensions. For testing the quality of images in nuclear medicine, the thyroid gland was built separately to accommodate the radioactive iodine. Finally, the nuclear medicine images were obtained by inserting 131 I in both male and female thyroid parts. (authors)

  2. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Karakirova, Y.

    2007-01-01

    A simple new approach for independent calibration of solid state/EPR (SS/EPR) dosimetry system is reported. It is based on the fact that: (i) gamma-irradiation of solid sucrose (sugar) induces stable EPR detectable free radicals accompanied by UV detectable brown colour stable in the solid state and in solution; (ii) both the EPR intensity of gamma-irradiated solid sucrose and its solution UV absorbance linearly depend on the absorbed dose high energy radiation and may be independently used for dosimetric purpose; (iii) UV spectrometers are calibrated. The correlation between EPR response and absorbed dose radiation of solid sucrose and UV absorption of its solutions is used in the present communication for calibration purpose. The procedure of sucrose extraction from sucrose-paraffin dosimeters is described. The calibration procedure may be applied to any other (alanine, self-calibrated, etc.) SS/EPR dosimeters, simultaneously irradiated with sucrose

  3. Impact of SPECT corrections on 3D-dosimetry for liver transarterial radioembolization using the patient relative calibration methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pacilio, Massimiliano, E-mail: mpacilio@scamilloforlanini.rm.it; Basile, Chiara [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Rome 00152 (Italy); Ferrari, Mahila; Botta, Francesca; Cremonesi, Marta [Department of Medical Physics, Istituto Europeo di Oncologia, Milan 20141 (Italy); Chiesa, Carlo [Department of Nuclear Medicine, Istituto Nazionale Tumori IRCCS Foundation, Milan 20133 (Italy); Lorenzon, Leda; Becci, Domenico [Postgraduate School of Medical Physics, “Sapienza” University of Rome, Rome 00185 (Italy); Mira, Marta [Post graduate Health Physics School, University of Milan, Milan 20122 (Italy); Torres, Leonel Alberto; Vergara Gil, Alex [Department of Nuclear Medicine, Clinical Research Division of the Center of Isotopes (DIC-CENTIS), Havana 11100 (Cuba); Coca Perez, Marco [Department of PET-CT and Nuclear Medicine, Imaging Center Medscan-Concepciòn, Concepciòn 4070061 (Chile); Ljungberg, Michael [Department of Medical Radiation Physics, University of Lund, Lund 22100 (Sweden); Pani, Roberto [Department of Medico-surgical Sciences and Biotecnologies, “Sapienza” University of Rome, Rome 00185 (Italy)

    2016-07-15

    Purpose: Many centers aim to plan liver transarterial radioembolization (TARE) with dosimetry, even without CT-based attenuation correction (AC), or with unoptimized scatter correction (SC) methods. This work investigates the impact of presence vs absence of such corrections, and limited spatial resolution, on 3D dosimetry for TARE. Methods: Three voxelized phantoms were derived from CT images of real patients with different body sizes. Simulations of {sup 99m}Tc-SPECT projections were performed with the SIMIND code, assuming three activity distributions in the liver: uniform, inside a “liver’s segment,” or distributing multiple uptaking nodules (“nonuniform liver”), with a tumoral liver/healthy parenchyma ratio of 5:1. Projection data were reconstructed by a commercial workstation, with OSEM protocol not specifically optimized for dosimetry (spatial resolution of 12.6 mm), with/without SC (optimized, or with parameters predefined by the manufacturer; dual energy window), and with/without AC. Activity in voxels was calculated by a relative calibration, assuming identical microspheres and {sup 99m}Tc-SPECT counts spatial distribution. 3D dose distributions were calculated by convolution with {sup 90}Y voxel S-values, assuming permanent trapping of microspheres. Cumulative dose-volume histograms in lesions and healthy parenchyma from different reconstructions were compared with those obtained from the reference biodistribution (the “gold standard,” GS), assessing differences for D95%, D70%, and D50% (i.e., minimum value of the absorbed dose to a percentage of the irradiated volume). γ tool analysis with tolerance of 3%/13 mm was used to evaluate the agreement between GS and simulated cases. The influence of deep-breathing was studied, blurring the reference biodistributions with a 3D anisotropic gaussian kernel, and performing the simulations once again. Results: Differences of the dosimetric indicators were noticeable in some cases, always negative

  4. A complete dosimetry experimental program in support to the core characterization and to the power calibration of the CABRI reactor. A complete dosimetry experimental program in support of the core characterization and of the power calibration of the CABRI reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodiac, F.; Hudelot, JP.; Lecerf, J.; Garnier, Y.; Ritter, G. [CEA, DEN, CAD/DER/SRES/LPRE, Cadarache, F-13108 Saint-Paul-lez-Durance, (France); Gueton, O.; Colombier, AC. [CEA, DEN, CAD/DER/SPRC/LPN, Cadarache, F-13108 Saint-Paul-lez-Durance, (France); Domergue, C. [CEA, DEN, CAD/DER/SPEx/LDCI, Cadarache, F-13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    CABRI is an experimental pulse reactor operated by CEA at the Cadarache research center. Since 1978 the experimental programs have aimed at studying the fuel behavior under Reactivity Initiated Accident (RIA) conditions. Since 2003, it has been refurbished in order to be able to provide RIA and LOCA (Loss Of Coolant Accident) experiments in prototypical PWR conditions (155 bar, 300 deg. C). This project is part of a broader scope including an overall facility refurbishment and a safety review. The global modification is conducted by the CEA project team. It is funded by IRSN, which is conducting the CIP experimental program, in the framework of the OECD/NEA project CIP. It is financed in the framework of an international collaboration. During the reactor restart, commissioning tests are realized for all equipment, systems and circuits of the reactor. In particular neutronics and power commissioning tests will be performed respectively in 2015 and 2016. This paper focuses on the design of a complete and original dosimetry program that was built in support to the CABRI core characterization and to the power calibration. Each one of the above experimental goals will be fully described, as well as the target uncertainties and the forecasted experimental techniques and data treatment. (authors)

  5. Uncertainties in the dosemeter calibration used for dosimetry in mammography; Incertezas na calibração de dosímetros utilizados para dosimetria em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Vivian C.R.N.; Evangelista, Claudete R.; Silva, Teógenes A. da, E-mail: vcrnb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This study aims to detail the sources of uncertainties and to estimate the combined standard uncertainties associated with the calibration procedure of dosimeters to be used in the dosimetry of X-ray bundles in mammography. A RADCAL ionization chamber, model RC6-M, and the semiconductor dosimeters UNFORS Xi and RADCAL Digitizer AGDM Accul-Gold were used. The calibration coefficients in terms of air kerma and uncertainties were obtained for the reference radiations of the W-Mo target-filter combinations. (author)

  6. CR-39 nuclear track detector used for neutron dosimetry: system calibration

    International Nuclear Information System (INIS)

    Saint Martin, G.; Lopez, F.; Bernaola, Omar A.

    2009-01-01

    Stacks composed by 1 mm thickness CR-39 foils and polyethylene and PVC films were evaluated to be used as neutron dosemeters. Irradiations were made with a calibrated 241 Am-Be source in a dose range from 0 to 3.1 mSv and the etching conditions were optimized. The measurements of number of tracks per surface unit in the CR-39 detectors showed a good linear behaviour as a function of the dose. The minimum detectable dose equivalent (MDDE) was calculated. (author)

  7. WE-G-BRA-06: Calibrating an Ionisation Chamber: Gaining Experience Using a Dosimetry 'flight Simulator'.

    Science.gov (United States)

    Beavis, A; Saunderson, J; Ward, J

    2012-06-01

    Recently there has been great interest in the use of simulation training, with the view to enhance safety within radiotherapy practice. We have developed a Virtual Environment for Radiotherapy Training (VERT) which facilitates this, including the simulation of a number of 'Physics practices'. One such process is the calibration of an ionisation chamber for use in Linac photon beams. The VERT system was used to provide a life sized 3D virtual environment within which we were able to simulate the calibration of a departmental chamber for 6MV and 15 MV beams following the UK 1990 Code of Practice. The characteristics of the beams are fixed parameters in the simulation, whereas default (Absorbed dose to water) correction factors of the chambers are configurable thereby dictating their response in the virtual x-ray beam. When the simulation is started, a random, realistic temperature and pressure is assigned to the bunker. Measurement and chamber positional errors are assigned to the chambers. A virtual water phantom was placed on the Linac couch and irradiated through the side using a 10 × 10 field. With a chamber at the appropriate depths and irradiated iso-centrically, the Quality Indices (QI) of the beams were obtained. The two chambers were 'inter-compared', allowing the departmental chamber calibration factor to be calculated from that of the reference chamber. For the virtual 6/15 MV beams, the QI were found to be 0.668/ 0.761 and the inter-comparison ratios 0.4408/ 0.4402 respectively. The departmental chamber calibration factors were calculated; applying these and appropriate environmental corrections allowed the output of the Linac to be confirmed. We have shown how a virtual training environment can be used to demonstrate practical processes and reinforce learning. The UK CoP was used here, however any relevant protocol could be demonstrated. Two of the authors (Beavis and Ward) are Founders of Vertual Ltd, a spin-out company created to commercialise the

  8. Development of dose calibrators Tandem systems and establishment of beta dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Cecatti, Sonia Garcia Pereira

    2004-01-01

    A quality control program at Nuclear Medicine Services includes the checking of all equipment used for diagnostics and treatment, and the individual monitoring of the workers occupationally exposed to ionizing radiations. In this work the main quality control tests were performed with three dose calibrators using standard radiation sources of 57 Co, 133 Ba, 137 Cs and 60 Co. Tandem systems of dose calibrators were established and characterized using four cylindrical absorbers of different materials for an additional quality control test in Nuclear Medicine. The main utility of this new test is the possibility of impurity detection in radiopharmaceuticals, when the ratio of the measurements with different absorbers is different from that obtained at the laboratory in ideal conditions. The dosimetric characteristics of three types of CaS0 4 :Dy + Teflon pellets were studied for an appropriate choice of the material to be used for individual monitoring of workers. The thermoluminescent detectors were irradiated using beta sources of 90 Sr+ 90 Y, 204 TI, 147 Pm, 153 Sm and 32 P. A wrist badge for beta individual monitoring was developed for workers that handle beta radiopharmaceuticals in Nuclear Medicine Services. (author)

  9. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico; Dosimetria a traves del Laboratorio Secundario de Calibracion Dosimetrica de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tovar M, V.M.; Alvarez R, J.T.; Medina O, V.P.; Vergara M, F.; Anaya M, R.; Cejudo A, J.; Salinas L, B. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of ''clinical dosemeters''. In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the

  10. NVLAP activities at Department of Defense calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  11. NVLAP activities at Department of Defense calibration laboratories

    International Nuclear Information System (INIS)

    Schaeffer, D.M.

    1993-01-01

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  12. Application of methodology for calibration of instruments utilized in dosimetry of high energy beams, for radiodiagnosis

    International Nuclear Information System (INIS)

    Potiens, Maria P.A.; Caldas, Linda V.E.

    2000-01-01

    The radiation qualities recommended by the IEC 1267 standard for the calibration of instruments used in diagnostic radiology measurements were established using a neo-diagnomax X-ray system (125 kV). The RQR radiation qualities are recommended to test ionization chambers used in non attenuated beams, and the RQA radiation qualities in attenuated beams (behind a phantom). To apply the methodology, 6 ionization chambers commonly used in diagnostic radiology were tested. The higher energy dependence (17%) was obtained for an ionization chamber recommended for mammography beams, that is not the case of the X radiation system used in this work. The other ionization chambers presented good performance in terms of energy (maximum of 5%), therefore within the limits of the international recommendations for this kind of instrument. (author)

  13. Establishing working standards of chromosome aberrations analysis for biological dosimetry

    International Nuclear Information System (INIS)

    Bui Thi Kim Luyen; Tran Que; Pham Ngoc Duy; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2015-01-01

    Biological dosimetry is an dose assessment method using specify bio markers of radiation. IAEA (International Atomic Energy Agency) and ISO (International Organization for Standardization) defined that dicentric chromosome is specify for radiation, it is a gold standard for biodosimetry. Along with the documents published by IAEA, WHO, ISO and OECD, our results of study on the chromosome aberrations induced by radiation were organized systematically in nine standards that dealing with chromosome aberration test and micronucleus test in human peripheral blood lymphocytes in vitro. This standard addresses: the reference dose-effect for dose estimation, the minimum detection levels, cell culture, slide preparation, scoring procedure for chromosome aberrations use for biodosimetry, the criteria for converting aberration frequency into absorbed dose, reporting of results. Following these standards, the automatic analysis devices were calibrated for improving biological dosimetry method. This standard will be used to acquire and maintain accreditation of the Biological Dosimetry laboratory in Nuclear Research Institute. (author)

  14. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  15. DOE standard: The Department of Energy Laboratory Accreditation Program administration

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP), organizational responsibilities, and the accreditation process. DOELAP evaluates and accredits personnel dosimetry and radiobioassay programs used for worker monitoring and protection at DOE and DOE contractor sites and facilities as required in Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. The purpose of this technical standard is to establish procedures for administering DOELAP and acquiring accreditation

  16. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories (SSDLs) and hospitals

    International Nuclear Information System (INIS)

    2002-03-01

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192 Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  17. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  18. (Re)implantation of quality system of LCR (Laboratory for Radiation Sciences) for accreditation in the standard ABNT NBR ISO/IEC 17025:2005

    International Nuclear Information System (INIS)

    Leite, Sandro P.; Fernandes, Elisabeth O.; David, Mariano G.; Pires, Evandro J.; Alves, Carlos F.E.; Almeida, Carlos E.

    2014-01-01

    This paper presents preparing procedure of the metrology laboratory (LABMETRO), which belongs Laboratorio de Ciencias Radiologicas of Rio de Janeiro , for postulating accreditation of its services metrology to INMETRO. This process, supported by the Technological Services Network SIBRATEC/FINEP for Radiation Protection and Dosimetry Technological Services, had as one of its aims to avoid possible technical barriers to the purchase services in the area of ionizing radiation laboratories. Accreditation will also enable the integration of services such laboratories in Brazilian Calibration Network (RBC). (author)

  19. Clinical laboratory accreditation in India.

    Science.gov (United States)

    Handoo, Anil; Sood, Swaroop Krishan

    2012-06-01

    Test results from clinical laboratories must ensure accuracy, as these are crucial in several areas of health care. It is necessary that the laboratory implements quality assurance to achieve this goal. The implementation of quality should be audited by independent bodies,referred to as accreditation bodies. Accreditation is a third-party attestation by an authoritative body, which certifies that the applicant laboratory meets quality requirements of accreditation body and has demonstrated its competence to carry out specific tasks. Although in most of the countries,accreditation is mandatory, in India it is voluntary. The quality requirements are described in standards developed by many accreditation organizations. The internationally acceptable standard for clinical laboratories is ISO15189, which is based on ISO/IEC standard 17025. The accreditation body in India is the National Accreditation Board for Testing and Calibration Laboratories, which has signed Mutual Recognition Agreement with the regional cooperation the Asia Pacific Laboratory Accreditation Cooperation and with the apex cooperation the International Laboratory Accreditation Cooperation.

  20. Individual neutron dosimetry

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.

    1987-01-01

    The most important concepts and development in individual neutron dosimetry are presented, especially the dosimetric properties of the albedo technique. The main problem in albedo dosimetry is to calibrate the dosemeter in the environs of each neutron source. Some of the most used calibration techniques are discussed. The IRD albedo dosemeter used in the routine neutron individual monitoring is described in detail. Its dosimetric properties and calibration methods are discussed. (Author) [pt

  1. Pathway to Accreditation of Medical laboratories in Mauritius

    African Journals Online (AJOL)

    Nafiisah

    The issue of quality management systems and accreditation is gaining increasing ... MAURITAS is to provide accreditation services to testing/calibration ... carries out its own, internal, audits on a regular basis and record the results for scrutiny ...

  2. Quality assurance in radiotherapy dosimetry in China

    International Nuclear Information System (INIS)

    Li Kaibao; Luo Suming; Cheng Jinsheng; He Zhijian; An Jinggang; Hu Yimin; Feng Ningyuan

    2002-01-01

    In 1995, the SSDL in the Laboratory of Industrial Hygiene cooperated with Beijing Cancer Hospital, Chinese Academy of Medical science joined the IAEA Co-ordinated Research Programme (NO.8769/RO). According to the requirements of the project, an External Audit Group (EAG) in China was established in 1996 with the responsibilities of operating TLD-based quality audit for radiotherapy dosimetry. Since then. The national TLD dose quality audit services have been carried out in 7 provinces in China. Besides this, the national programmes for brachytherapy and stereostatic radiosurgery (SRS) treatment dosimetry were initiated in 2001. The activity measurement intercomparison between the SSDL and some hospitals for Ir-192 HDR brachytherapy sources has been performed using a HDR well-type ionization chamber (Model HDR 1000 plus) and CDX-2000A Charge Digitizer, which were calibrated in Accredited Dosimetry Calibration Laboratory, University of Wisconsin, USA. The preliminary results indicated that the agreement between SSDL measured activity and hospital stated activity was within ±5% for more than 80% of total participants

  3. Experimental facilities for calibrations at the dosimetry facility of group 6.5 'Neutron dosimetry' at the Physikalisch-Technische Bundesanstalt

    International Nuclear Information System (INIS)

    Strzelczyk, H.

    1986-07-01

    The mechanical and electrical layout of the ''Dosimetriemessplatz'', a low scattering target area at the accelerator facility is described. Monoenergetic neutrons are generated at the irradiation facility for the research on neutron detectors and dosimeters for radiation protection. The report is aimed to inform dosimetry in particular for those guest's coming from other laboratories. For that purpose a detailed description is given of the mechanical construction, of cable connections and of the monitor system. The feasibitity of data transfer from the system at the target position to the user's system and the mode of acceptance of external data are explained. (orig./HP) [de

  4. Clinical dosimetry

    International Nuclear Information System (INIS)

    Rassow, J.

    1973-01-01

    The main point of this paper on clinical dosimetry which is to be understood here as application of physical dosimetry on accelerators in medical practice, is based on dosimetric methodics. Following an explanation of the dose parameters and description of the dose distribution important for clinical practice as well as geometric irradiation parameters, the significance of a series of physical parameters such as accelerator energy, surface energy of average stopping power etc. is dealt with in detail. Following a section on field homogenization with bremsstrahlung and electron radiation, details on dosimetry in clinical practice are given. Finally, a few problems of dosemeter or monitor calibration on accelerators are described. The explanations are supplemented by a series of diagrams and tables. (ORU/LH) [de

  5. Radiotherapy Dosimetry Protocols For High Energy Photons And Electrons

    International Nuclear Information System (INIS)

    Thwaites, D.I.

    1999-01-01

    One vital requirement in radiotherapy is to ensure as closely as possible consistency in determination of dose between different centers and at different times, both within a given country and internationally, because the comparison and transfer of clinical experience and the evaluation of clinical trials is dependent on common statements of dose delivered. In addition at each loon] centre it is vital that the absorbed dose calibration of each beam is carried out to exacting and consistent standards, as this is the fundamental measurement upon which the quality of all treatments on that machine depend throughout its clinical lifetime. The systems in place to ensure consistency in dosimetry differ in the details from country to country, but all depend on the same basic considerations: - the use of ion chambers of similar design and similar construction materials, - traceable calibrations of these chambers to an accredited primary or secondary standard dosimetry laboratory (SSDL) in terms of some agreed relevant dosimetric quantity, - dose statements in terms of absorbed dose to a common material, water, - the application of an appropriate recommended national or international dosimetry protocol (or code of practice) which ensures commonality in the method of use of the calibrated ion chamber, the radiotherapy treatment beam calibration conditions and any data required to convert the ion chamber reading to absorbed dose to water, and - strict quality control on each step in this process

  6. Perry Johnson Laboratory Accreditation, Inc. (PJLA)

    Science.gov (United States)

    2011-03-28

    Accreditation Body, established in 1999, located in Troy, Michigan • Current Accreditation Programs– ISO / IEC 17025 :2005 and DoD ELAP, EPA NLLAP...Upcoming Accreditation Programs–Field Site Sampling & Measurement Organizations (FSMO)–TNI Volume 1 and 2, Reference Material Producers– ISO Guide...Testing/Calibration – 17025 -Testing–120 – 17025 -Calibration–191 – 17025 & DoD ELAP–14 (5 Pending) – 17025 and EPA NLLAP–1 – Pending

  7. Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification.

    Science.gov (United States)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald

    2017-11-01

    Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  8. Characterization of the materials used in the construction of a physical phantom for calibration of {sup 18}F-FDG internal dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Katia D.; Mendes, Bruno M.; Fonseca, Telma C.F.; Silva, Teógenes A. da, E-mail: katiadvitall@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte - MG (Brazil)

    2017-07-01

    The Internal Dosimetry Laboratory (LDI) of the Nuclear Technology Development Center (CDTN) in Minas Gerais, Brazil, is responsible for the routine monitoring of Occupationally Exposed Individuals (OEIs) to {sup 18}F-FDG and other radiopharmaceuticals produced at CDTN. The monitoring system is usually calibrated using a physical head simulator, since {sup 18}F is usually incorporated into the brain at the time of contamination. However, the geometry of the brain is not adequately represented by the latex pocket, which does not fill the entire volume of the volume skull. In this study, the characterization of the materials regarding the composition, density and attenuation coefficient of the materials used in the production of the new physical head simulator was carried out. An equivalent tissue material containing 97% water, 2.5% agar, 0.5% urea and 8 MBq of {sup 18}F-FDG was produced, the interior of the skull was filled with the material. After solidification, experimental measurements were performed on the NaI(Tl) 3 {sup x}3{sup s}cintillation detector, the density of the simulant material was determined by the flotation method and the attenuation coefficient of the XCOM database software provided by NIST. It was concluded that the PVC skull has acceptable characteristics to simulate a human skull in {sup 18}F-FDG internal dosimetry. The agar gel was shown to be a stable material capable of modeling different geometries and simulating the incorporation of {sup 18}F-FDG into the brain. (author)

  9. Characterization of the materials used in the construction of a physical phantom for calibration of 18F-FDG internal dosimetry system

    International Nuclear Information System (INIS)

    Vital, Katia D.; Mendes, Bruno M.; Fonseca, Telma C.F.; Silva, Teógenes A. da

    2017-01-01

    The Internal Dosimetry Laboratory (LDI) of the Nuclear Technology Development Center (CDTN) in Minas Gerais, Brazil, is responsible for the routine monitoring of Occupationally Exposed Individuals (OEIs) to 18 F-FDG and other radiopharmaceuticals produced at CDTN. The monitoring system is usually calibrated using a physical head simulator, since 18 F is usually incorporated into the brain at the time of contamination. However, the geometry of the brain is not adequately represented by the latex pocket, which does not fill the entire volume of the volume skull. In this study, the characterization of the materials regarding the composition, density and attenuation coefficient of the materials used in the production of the new physical head simulator was carried out. An equivalent tissue material containing 97% water, 2.5% agar, 0.5% urea and 8 MBq of 18 F-FDG was produced, the interior of the skull was filled with the material. After solidification, experimental measurements were performed on the NaI(Tl) 3 x 3 s cintillation detector, the density of the simulant material was determined by the flotation method and the attenuation coefficient of the XCOM database software provided by NIST. It was concluded that the PVC skull has acceptable characteristics to simulate a human skull in 18 F-FDG internal dosimetry. The agar gel was shown to be a stable material capable of modeling different geometries and simulating the incorporation of 18 F-FDG into the brain. (author)

  10. Comparison of radiotherapy dosimetry for 3D-CRT, IMRT, and SBRT based on electron density calibration

    International Nuclear Information System (INIS)

    Kartutik, K; Pawiro, S A; Wibowo, W E

    2016-01-01

    Accurate calculation of dose distribution affected by inhomogeneity tissue is required in radiotherapy planning. This study was performed to determine the ratio between radiotherapy planning using 3D-CRT, IMRT, and SBRT based on a calibrated curve of CT-number in the lung for different target's shape in 3D-CRT, IMRT, and spinal cord for SBRT. Calibration curves of CT-number were generated under measurement basis and introduced into TPS, then planning was performed for 3D-CRT, IMRT, and SBRT with 7, and 15 radiation fields. Afterwards, planning evaluation was performed by comparing the DVH curve, HI, and CI. 3D-CRT and IMRT produced the lowest HI at calibration curve of CIRS 002LFC with the value 0.24 and 10. Whereas SBRT produced the lowest HI on a linear calibration curve with a value of 0.361. The highest CI in IMRT and SBRT technique achieved using a linear calibration curve was 0.97 and 1.77 respectively. For 3D-CRT, the highest CI was obtained by using calibration curve of CIRS 062M with the value of 0.45. From the results of CI and HI, it is concluded that the calibration curve of CT-number does not significantly differ with Schneider's calibrated curve, and inverse planning gives a better result than forward planning. (paper)

  11. Accredition: An accredited utility's perspective

    International Nuclear Information System (INIS)

    Jambrovic, H.

    1990-01-01

    Accredition is a quality assurance program that applies to electricity billing meters. Under the Electricity and Gas Inspection Act, an electricity meter is not a legal billing device until a prototype has been scrutinized and approved for use by Consumer and Corporate Affairs Canada (CCAC) laboratories, and a meter cannot be used for billing purposes unless its accuracy and condition have been inspected and the meter is sealed to prevent tampering. In 1986 an ammendment to the act allowed accredited organizations to inspect, verify and seal their own billing meters. Ontario Hydro embarked on a program to become accredited in 1987, to offset spiraling government inspection fees in the order of $500,000/y, and to be less dependent on the availability of government inspectors. Ontario Hydro achieved accredition status two years after embarking on the program, which involved completion of cost benefit analysis, securing senior management commitment, preparation of a comprehensive quality assurance program manual, implementation of quality assurance program policies, procedures and controls, submitting meter shop operations and field meter handling practices to both internal Ontario Hydro and external government audit, and correction of audit findings. 2 figs

  12. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Casson, W.H.; Thein, C.M.; Bogard, J.S. [eds.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  13. Accreditation - ISO/IEC 17025

    Science.gov (United States)

    Kaus, Rüdiger

    This chapter gives the background on the accreditation of testing and calibration laboratories according to ISO/IEC 17025 and sets out the requirements of this international standard. ISO 15189 describes similar requirements especially tailored for medical laboratories. Because of these similarities ISO 15189 is not separately mentioned throughout this lecture.

  14. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  15. Comparing Hp(3) evaluated from the conversion coefficients from air kerma to personal dose equivalent for eye lens dosimetry calibrated on a new cylindrical PMMA phantom

    Science.gov (United States)

    Esor, J.; Sudchai, W.; Monthonwattana, S.; Pungkun, V.; Intang, A.

    2017-06-01

    Based on a new occupational dose limit recommended by ICRP (2011), the annual dose limit for the lens of the eye for workers should be reduced from 150 mSv/y to 20 mSv/y averaged over 5 consecutive years in which no single year exceeding 50 mSv. This new dose limit directly affects radiologists and cardiologists whose work involves high radiation exposure over 20 mSv/y. Eye lens dosimetry (Hp(3)) has become increasingly important and should be evaluated directly based on dosimeters that are worn closely to the eye. Normally, Hp(3) dose algorithm was carried out by the combination of Hp(0.07) and Hp(10) values while dosimeters were calibrated on slab PMMA phantom. Recently, there were three reports from European Union that have shown the conversion coefficients from air kerma to Hp(3). These conversion coefficients carried out by ORAMED, PTB and CEA Saclay projects were performed by using a new cylindrical head phantom. In this study, various delivered doses were calculated using those three conversion coefficients while nanoDot, small OSL dosimeters, were used for Hp(3) measurement. These calibrations were performed with a standard X-ray generator at Secondary Standard Dosimetry Laboratory (SSDL). Delivered doses (Hp(3)) using those three conversion coefficients were compared with Hp(3) from nanoDot measurements. The results showed that percentage differences between delivered doses evaluated from the conversion coefficient of each project and Hp(3) doses evaluated from the nanoDots were found to be not exceeding -11.48 %, -8.85 % and -8.85 % for ORAMED, PTB and CEA Saclay project, respectively.

  16. Onsite assessments for the Department of Energy Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1992-01-01

    For Department of Energy (DOE) facilities, compliance with DOE Order 5480.11 became a requirement in January 1989. One of the requirements of this Order is that personal external dosimetry programs be accredited under the Department of Energy's Laboratory Accreditation Program (DOELAP) in Personnel Dosimetry. The accreditation process, from the facility's perspective, is two-fold: dosimeters must meet performance criteria in radiation categories appropriate for each facility, and personnel administering and carrying out the program must demonstrate good operating practices. The DOELAP onsite assessment is designed to provide an independent evaluation of the latter

  17. Evaluation of Multiple-Sampling Function used with a Microtek flatbed scanner for Radiation Dosimetry Calibration of EBT2 Film

    International Nuclear Information System (INIS)

    Chang, Liyun; Ho, Sheng-Yow; Ding, Hueisch-Jy; Hwang, Ing-Ming; Chen, Pang-Yu; Lee, Tsair-Fwu

    2016-01-01

    The radiochromic EBT2 film is a widely used quality assurance device for radiation therapy. This study evaluated the film calibration performance of the multiple-sampling function, a function of the ScanWizard Pro scanning software provided by the manufacturer, when used with Microtek 9800XL plus (9800XL + ) flatbed scanner. By using the PDD method, each one of the eight EBT2 films, four delivered by 290 monitor unit (MU) and four by 88 MU via 6-MV photon beams, was tightly sandwiched in a 30 3 -cm 3 water equivalent polystyrene phantom prior to irradiation. Before and after irradiation, all films were scanned using the Microtek 9800XL + scanner with five different modes of the multiple-sampling function, which could generate the image with the averaged result of multiple-sampling. The net optical densities (netOD) on the beam central axis of film were assigned to corresponding depth doses for calibration. For each sampling mode with either delivered MU, the depth-dose uncertainty of a single film from repeated scans and that of a single scan of the four films were analyzed. Finally, the calibration error and the combined calibration uncertainty between film determined depth-doses and delivered depth-doses were calculated and evaluated for each sampling mode. All standard deviations and the calibration error were demonstrated to be unrelated to the number of sampling lines. The calibration error of the 2-line and 16-line mode was within 3 cGy and better than that of the other modes. The combined uncertainty of the 2-line mode was the lowest, which was generally less than 6 cGy except for the delivered dose around 100 cGy. The evaluation described herein revealed that the EBT2 film calibrated with the 2-line mode has relatively lower error, scanning time and combined uncertianty. Therefore, it is recommended for routine EBT2 film calibration and verification of treatment plans.

  18. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  19. Radiation protection - Performance criteria for service laboratories performing biological dosimetry by cytogenetics

    International Nuclear Information System (INIS)

    2004-01-01

    This International Standard provides criteria for quality assurance and quality control, evaluation of the performance and the accreditation of biological dosimetry by cytogenetic service laboratories. This International Standard addresses: a) the confidentiality of personal information, for the customer and the service laboratory, b) the laboratory safety requirements, c) the calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels, d) the scoring procedure for unstable chromosome aberrations used for biological dosimetry, e) the criteria for converting a measured aberration frequency into an estimate of absorbed dose, f) the reporting of results, g) the quality assurance and quality control, h) informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations and a sample report

  20. DRDC Ottawa working standard for biological dosimetry

    International Nuclear Information System (INIS)

    Segura, T.M.; Prud'homme-Lalonde, L.; Thorleifson, E.; Lachapelle, S.; Mullins, D.; Qutob, S.; Wilkinson, D.

    2005-07-01

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  1. DRDC Ottawa working standard for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Segura, T M; Prud' homme-Lalonde, L [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S; Mullins, D [JERA Consulting (Canada); Qutob, S [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D

    2005-07-15

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  2. Evaluation of Multiple-Sampling Function used with a Microtek flatbed scanner for Radiation Dosimetry Calibration of EBT2 Film

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liyun [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 82445, Taiwan (China); Ho, Sheng-Yow [Department of Nursing, Chang Jung Christian University, Tainan 71101, Taiwan (China); Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan (China); Ding, Hueisch-Jy [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 82445, Taiwan (China); Hwang, Ing-Ming [Department of Medical Imaging and Radiology, Shu Zen College of Medicine and Management, Kaohsiung 82144, Taiwan (China); Chen, Pang-Yu, E-mail: pangyuchen@yahoo.com.tw [Department of Radiation Oncology, Sinlau Christian Hospital, Tainan 70142, Taiwan (China); Lee, Tsair-Fwu, E-mail: tflee@kuas.edu.tw [Medical Physics and Informatics Laboratory, Department of Electronics Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan (China)

    2016-10-01

    The radiochromic EBT2 film is a widely used quality assurance device for radiation therapy. This study evaluated the film calibration performance of the multiple-sampling function, a function of the ScanWizard Pro scanning software provided by the manufacturer, when used with Microtek 9800XL plus (9800XL{sup +}) flatbed scanner. By using the PDD method, each one of the eight EBT2 films, four delivered by 290 monitor unit (MU) and four by 88 MU via 6-MV photon beams, was tightly sandwiched in a 30{sup 3}-cm{sup 3} water equivalent polystyrene phantom prior to irradiation. Before and after irradiation, all films were scanned using the Microtek 9800XL{sup +} scanner with five different modes of the multiple-sampling function, which could generate the image with the averaged result of multiple-sampling. The net optical densities (netOD) on the beam central axis of film were assigned to corresponding depth doses for calibration. For each sampling mode with either delivered MU, the depth-dose uncertainty of a single film from repeated scans and that of a single scan of the four films were analyzed. Finally, the calibration error and the combined calibration uncertainty between film determined depth-doses and delivered depth-doses were calculated and evaluated for each sampling mode. All standard deviations and the calibration error were demonstrated to be unrelated to the number of sampling lines. The calibration error of the 2-line and 16-line mode was within 3 cGy and better than that of the other modes. The combined uncertainty of the 2-line mode was the lowest, which was generally less than 6 cGy except for the delivered dose around 100 cGy. The evaluation described herein revealed that the EBT2 film calibrated with the 2-line mode has relatively lower error, scanning time and combined uncertianty. Therefore, it is recommended for routine EBT2 film calibration and verification of treatment plans.

  3. Calibration of the indium foil used for criticality accident dosimetry in the UCC-ND employee identification badge

    International Nuclear Information System (INIS)

    Ryan, M.T.; Butler, H.M.; Gupton, E.D.; Sims, C.S.

    1982-05-01

    The UCC-ND Employee Identification Badge contains an indium foil disc that is intended for use as a dosimetry screening device in the event of a criticality accident. While it is recognized that indium is not a precise mixed neutron-gamma dosimeter, its activation by neutrons provides adequate means for separating potentially exposed persons into three groups. These groups are: (1) personnel exposed below annual dose limits, (2) personnel exposed above annual dose limits but below 25 rem, and (3) personnel exposed above 25 rem. This screening procedure is designed to facilitate dosimeter processing in order to meet regulatory reporting requirements. A quick method of interpreting induced activity measurements is presented and discussed

  4. Quality assurance in personal dosimetry of external radiation: present situation and future needs

    International Nuclear Information System (INIS)

    Ma, N.

    2006-01-01

    Whole body personal dosimetry is well established for the individual monitoring of radiation workers. High quality radiation dosimetry is essential for workers who rely upon personal dosemeters to record the amount of radiation to which they are exposed. The mandate has been given to the Personal Dosimetry, (secondary standard dosimetry laboratories) S.S.D.L., (Malaysian institute for nuclear energy research) M.I.N.T. to assure the individual monitoring for radiation workers in Malaysia. In 2005, the S.S.D.L;-M.I.N.T. supply, process and read out of personal dosemeters of nearly 13,000 dosimeters monthly, whereby. 12,000 are films and 1,000 are T.L.D.s. The objective of individual monitoring is not limited to the measurement of doses delivered to individuals, but it should demonstrate that limits of exposure have not been exceeded and that working conditions have not unexpectedly deteriorated. Dosimetry measurements are an important component of radiation protection programs and must be of high quality. The exposure of workers to radiation must be controlled and monitored in order to comply with regulatory requirements. S.S.D.L.-M.I.N.T; demonstrates that its performance is at an acceptable level by implementing overall system performance, as evidenced by the ISO 9001 certification of the Personal Dosimetry Service in 2002 and ISO/I.E.C. 17025 accreditation to the calibration laboratory in 2004. The certification and accreditation processes achieved the goal by formalizing the recognition of satisfactory performance, and providing evidence of this performance. Overall performances are assessed, personnel operating the system will be trained and are well qualified and all actions will be documented. The paper describes the overview of the Q.M.S. carried out at the S.S. D.L.-M.I.N.T.. During the implementation of Q.M.S. a few areas has been identified for future consideration. These include performance specification and type testing of dosemeters, which provide a

  5. (Re)implantation of quality system of LCR (Laboratory for Radiation Sciences) for accreditation in the standard ABNT NBR ISO/IEC 17025:2005; (Re)implantacao do sistema da qualidade do LCR para acreditacao na ABNT NBR ISO/IEC 17025:2005

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Sandro P., E-mail: leite_sp@ig.com.br [Rede Sibratec, Sao Paulo, SP (Brazil); Fernandes, Elisabeth O.; David, Mariano G.; Pires, Evandro J.; Alves, Carlos F.E.; Almeida, Carlos E. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2014-07-01

    This paper presents preparing procedure of the metrology laboratory (LABMETRO), which belongs Laboratorio de Ciencias Radiologicas of Rio de Janeiro , for postulating accreditation of its services metrology to INMETRO. This process, supported by the Technological Services Network SIBRATEC/FINEP for Radiation Protection and Dosimetry Technological Services, had as one of its aims to avoid possible technical barriers to the purchase services in the area of ionizing radiation laboratories. Accreditation will also enable the integration of services such laboratories in Brazilian Calibration Network (RBC). (author)

  6. Nuclear accident dosimetry: the calibration of Geiger-Mueller and 2π proportional counters for sulphur and gold

    International Nuclear Information System (INIS)

    Delafield, H.J.; Reading, A.H.

    1981-10-01

    A reference, 2π precision counter was set up at Harwell and absolutely calibrated for the measurement of sulphur discs ( 32 P) and gold foils ( 198 Au) used in the UK personnel criticality dosimeter. Sample sulphur discs and gold foils were irradiated in the GLEEP reactor at Harwell, counted in the 2π counter, and their activities absolutely assayed by the National Physical Laboratory. The 2π counter was then used to intercalibrate the GM counters used routinely for the assessment of the criticality dosimeter. The mean measured efficiencies of the GM counters were found to be for 32 P in sulphur discs within +- 4%, and for gold ( 198 Au) within +- 6% of the values given by previous calibrations. (author)

  7. Beyond Californium-A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S.

    Science.gov (United States)

    Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K

    2017-09-01

    Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is

  8. Testing and linearity calibration of films of phenol compounds exposed to thermal neutron field for EPR dosimetry.

    Science.gov (United States)

    Gallo, S; Panzeca, S; Longo, A; Altieri, S; Bentivoglio, A; Dondi, D; Marconi, R P; Protti, N; Zeffiro, A; Marrale, M

    2015-12-01

    This paper reports the preliminary results obtained by Electron Paramagnetic Resonance (EPR) measurements on films of IRGANOX® 1076 phenols with and without low content (5% by weight) of gadolinium oxide (Gd2O3) exposed in the thermal column of the Triga Mark II reactor of LENA (Laboratorio Energia Nucleare Applicata) of Pavia (Italy). Thanks to their size, the phenolic films here presented are good devices for the dosimetry of beams with high dose gradient and which require accurate knowledge of the precise dose delivered. The dependence of EPR signal as function of neutron dose was investigated in the fluence range between 10(11) cm(-2) and 10(14) cm(-2). Linearity of EPR response was found and the signal was compared with that of commercial alanine films. Our analysis showed that gadolinium oxide (5% by weight) can enhance the thermal neutron sensitivity more than 18 times. Irradiated dosimetric films of phenolic compound exhibited EPR signal fading of about 4% after 10 days from irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Manual of dosimetry in radiotherapy. A practical guide for testing and calibrating equipment used in external beam treatments

    International Nuclear Information System (INIS)

    Massey, J.B.

    1971-01-01

    In order to achieve safe and efficient radiotherapy, one should respect a number of technical criteria, meaning that the irradiation facility should be adapted every time to the specific patient and the dose received by the patient should be fixed. If the radio therapist should decide about the characteristics of the treatment, he might not have the technical education needed to ensure that the applied devices are appropriate for obtaining the wanted results. This is the responsibility of the medical radio physicist. Unfortunately many countries lack qualified medical doctors experienced in radiotherapy. Although these countries can supply numerous hospitals with radiotherapeutic devices and x-ray sources they cannon make good use of them. That is why the IAEA, WHO and Pan-American Health Organization organised an experts team to study the problems of dosimetry in the radiotherapeutic centres. The objective of the present manual is to supply specialists in radiotherapy with practical instructions which will enable them to apply precise physical data on the irradiation volume and applied doses

  10. Accredited Birth Centers

    Science.gov (United States)

    ... Danbury, CT 06810 203-748-6000 Accredited Since March 1998 Corvallis Birth & Women's Health Center Accredited 2314 NW Kings Blvd, Suite ... Washington, DC 20002 202-398-5520 Accredited Since March 2001 Flagstaff Birth and Women's Center Accredited 401 West Aspen Avenue Flagstaff, AZ ...

  11. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  12. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  13. Sixth symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    1987-01-01

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  14. Preliminary measurements of the establishment of a quality control programme for the activimeter calibration reference system

    International Nuclear Information System (INIS)

    Martins, Elaine W.; Potiens, Maria da Penha A.

    2009-01-01

    The nuclear medicine techniques efficiency and safety depends on, beside other factors, a quality control programme, mainly regards to the nuclides activimeter utilization. The Calibration Laboratory of IPEN uses as a work standard, a tertiary standard system Capintec, calibrated at the Accredited Dosimetry Calibration Laboratory of the Medical radiation Research Center - University of Wisconsin. In this work, as preliminary measurements to establish a quality control programme for the activimeter calibration procedures, initially the repeatability and reproducibility (long term stability) tests were performed using a sealed check source of 133 Ba. Later on, to complete this quality control programme other check sources ( 137 Cs, 57 Co, 60 Co) will be used to perform the same tests. A series of 80 experiments of 10 measurements each has been carried out. The reference system showed a good behaviour to the repeatability test, considering the tolerance limits of 5%. The percent deviations of all tested sources in the activity measurements were lower 1% to 133 Ba. (author)

  15. The dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    1987-01-01

    Describes the activities of the IAEA's Dosimetry Laboratory which provides calibration and comparison services for secondary standard dosimetry laboratories (SSDLs) of Member States. In addition, a joint IAEA/WHO postal dosimetry service has been established for radiotherapy centers. The International Measurement System and the calibration ''chain'' from measurement standard instruments of the International Bureau of Weights and Measurements (BIPM) through the primary and secondary standards to the dosimeters of the users are presented as well

  16. Proceedings of the second conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base

  17. Proceedings of the second conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R. E.; Sims, C. S. [eds.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  18. Group: radiation dosimetry

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    1990-01-01

    The main activities of the radiation dosimetry group is described, including the calibration of instruments, sources and radioactive solutions and the determination of neutron flux; development, production and market dosimetric materials; development radiation sensor make the control of radiation dose received by IPEN workers; development new techniques for monitoring, etc. (C.G.C.)

  19. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  20. Electromedical devices test laboratories accreditation

    International Nuclear Information System (INIS)

    Murad, C; Rubio, D; Ponce, S; Alvarez Abri, A; Terron, A; Vicencio, D; Fascioli, E

    2007-01-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University

  1. Accreditation experience of radioisotope metrology laboratory of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Iglicki, A. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: iglicki@cae.cnea.gov.ar; Mila, M.I. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: mila@cae.cnea.gov.ar; Furnari, J.C. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Arenillas, P. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Cerutti, G. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Carballido, M. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Guillen, V. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Araya, X. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Bianchini, R. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)

    2006-10-15

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the ({alpha}/{beta})-{gamma} coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.

  2. Accreditation experience of radioisotope metrology laboratory of Argentina

    International Nuclear Information System (INIS)

    Iglicki, A.; Mila, M.I.; Furnari, J.C.; Arenillas, P.; Cerutti, G.; Carballido, M.; Guillen, V.; Araya, X.; Bianchini, R.

    2006-01-01

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (α/β)-γ coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved

  3. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina

    International Nuclear Information System (INIS)

    Radl, A.; Sapienza, C.E.; Taja, M.R.; Bubniak, R.; Deminge, M.; Di Giorgio, M.

    2013-01-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary

  4. Components of laboratory accreditation.

    Science.gov (United States)

    Royal, P D

    1995-12-01

    Accreditation or certification is a recognition given to an operation or product that has been evaluated against a standard; be it regulatory or voluntary. The purpose of accreditation is to provide the consumer with a level of confidence in the quality of operation (process) and the product of an organization. Environmental Protection Agency/OCM has proposed the development of an accreditation program under National Environmental Laboratory Accreditation Program for Good Laboratory Practice (GLP) laboratories as a supplement to the current program. This proposal was the result of the Inspector General Office reports that identified weaknesses in the current operation. Several accreditation programs can be evaluated and common components identified when proposing a structure for accrediting a GLP system. An understanding of these components is useful in building that structure. Internationally accepted accreditation programs provide a template for building a U.S. GLP accreditation program. This presentation will discuss the traditional structure of accreditation as presented in the Organization of Economic Cooperative Development/GLP program, ISO-9000 Accreditation and ISO/IEC Guide 25 Standard, and the Canadian Association for Environmental Analytical Laboratories, which has a biological component. Most accreditation programs are managed by a recognized third party, either privately or with government oversight. Common components often include a formal review of required credentials to evaluate organizational structure, a site visit to evaluate the facility, and a performance evaluation to assess technical competence. Laboratory performance is measured against written standards and scored. A formal report is then sent to the laboratory indicating accreditation status. Usually, there is a scheduled reevaluation built into the program. Fee structures vary considerably and will need to be examined closely when building a GLP program.

  5. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  6. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  7. [Laboratory accreditation and proficiency testing].

    Science.gov (United States)

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.

  8. Quality control at the Regional Centre of Nuclear Sciences chemical dosimetry laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Melo, Roberto T. de; Silva, Danubia B. da; Pedroza, Eryka H.; Rodrigues, Kelia R.G.; Cunha, Manuela S. da; Figueiredo, Marcela D.C. de [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Oliveira, Aristides, E-mail: vlsouza@cnen.gov.b, E-mail: rtmelo@cnen.gov.b [Hospital de Cancer de Pernambuco, Recife, PE (Brazil)

    2011-07-01

    Standards for accreditation of laboratories as in ISO 9001 in section: 4.11 require inspection, measuring and equipment testing; likewise, IEC 17025: 2005 in section: 5.5.2 requires the equipment to be calibrated or verified before being put into use. In our laboratory, quality control is often accomplished by standards set done by the laboratory scientists themselves; however, at present, Hellma secondary calibration standards (4026 - Holmium oxide - Filters: F0, F2, F3, F4 and filter didymium - F7) have been used in order to verify if errors in the laboratory have been close to the 1-2% margin. Control graphs were made by using the results of synthetically prepared standards and standardized spectral calibration certificates. The set of secondary calibration standards permits to check the accuracy of the spectrophotometers used in research for both the absorbance in the visible spectrum (at 440, 465, 546, 590 and 635 nm wavelengths) and for the wavelengths (270, 280, 300, 320 nm) of the ultraviolet light. Filters (F0, F2, F3, F4 and F7) are stable and do not suffer the influence of temperature (the influence is negligible), the F0 filter was being used as a blank. The purpose is to verify whether the spectrometer needs adjustments, an important procedure to check absorbance stability, baseline flatness, slit width accuracy and stray radiation. The calibration tests are performed annually in our laboratory and recalibration of Hellma secondary standards is recommended every two years. The results show that the Chemical Dosimetry Laboratory in CRCN has a calibrated spectrophotometer and their synthetic standards for Fricke dosimetry could be used as an alternative method for testing the proficiency and competence of calibration laboratories in accordance with the regulations and standards. (author)

  9. Training Accreditation Program

    International Nuclear Information System (INIS)

    1989-01-01

    The Training Accreditation Program establishes the objectives and criteria against which DOE nuclear facility training is evaluated to determine its readiness for accreditation. Training programs are evaluated against the accreditation objectives and criteria by facility personnel during the initial self-evaluation process. From this self-evaluation, action plans are made by the contractor to address the scope of work necessary in order to upgrade any deficiencies noted. This scope of work must be formally documented in the Training Program Accreditation Plan. When reviewed and approved by the responsible Head of the Field Organization and cognizant Program Secretarial Office, EH-1 concurrence is obtained. This plan then becomes the document which guides accreditation efforts for the contractor

  10. Advances in reference and transfer dosimetry

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1999-01-01

    All prerequisites are now in place to create a fundamentally and radically different type of calibration service for the radiation processing industry. Advancements in dosimetry and information technology can be combined to provide industry with on-line calibrations, on demand at a low cost. The remote calibration service will serve as a basis for other areas of metrology. (Author)

  11. Advances in reference and transfer dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Desrosiers, M.F. [Ionizing Radiation Division, Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    1999-07-01

    All prerequisites are now in place to create a fundamentally and radically different type of calibration service for the radiation processing industry. Advancements in dosimetry and information technology can be combined to provide industry with on-line calibrations, on demand at a low cost. The remote calibration service will serve as a basis for other areas of metrology. (Author)

  12. Calibration of individual dosemeters by using external beams of photon radiation. A nationwide survey among Personal Dosimetry Services, authorized by CSN

    International Nuclear Information System (INIS)

    Brosed, A.; Ginjaume, M.

    1995-12-01

    A nationwide survey in 1995 among Personal Dosimetry Services, authorized by the Spanish Nuclear Safety Council (CSN), has led the Spanish Dosimetry Laboratories to review and update the dosimetric conversion coefficients and correction factors in use in Spain since 1987. The recommendations of the ICRU Report 47(1992) are discussed and adopted. In addition differences in back-scattering form IRCU tissue and PMMA phantoms are analysed. Analytical functions used to calculate conversion coefficients and back-scattering correction factors due to the use of different phantom materials are presented, together with the adopted final values. Firstly, the above mentioned parameters are applied to ISO narrow spectra series, which are discribed in this report. Secondly, differences between 1995 and 1987 values are also shown. (Author)

  13. Measurement protocols for performance testing of dosimetry services for external radiations

    International Nuclear Information System (INIS)

    1993-01-01

    In the Health and Safety Executive's ''Requirements for the Approval of Dosimetry Services under the Ionising Radiations Regulations 1985'', it is stipulated that dosimetry services seeking approval must show that they have successfully completed a performance test. The services must arrange for the tests to be carried out on application and thereafter every 18 months, by a laboratory which has received accreditation from the National Measurement Accreditation Service (NAMAS) for the whole performance testing activity. The performance tests must be carried out to published protocols and the purpose here is to provide protocols for external, whole body film and TLD dosimetry services, and for skin and extremity dosimetry services. (Author)

  14. Secondary calibration laboratory for dosimetry in levels of therapy at the University of Santiago; Laboratorio secundario de calibracion para dosimetria en niveles de terapia en la Universidad de Santiago

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Pazos Alvarez, A.

    2011-07-01

    A basic inherent benefits provided by the existence of a traceability chain radiation in any application, add the legal requirement for hospitals as pointed to by the RO. 1566/1998, which sets quality standards in radiotherapy. The decree attributed to hospital specialists radio physics in article 10 the responsibility for determining the acceptance and initial reference state of radiation generating equipment for therapeutic purposes, and the establishment and implementation of quality control programs associated and technical and physical aspects of radiation dosimetry. Different international organizations such as ICRU and IAEA recommendations on maintaining the accuracy of the dose delivered to patients in general, should be placed at least 5% considering the whole chain irradiation. In order to achieve this purpose it is necessary to establish programs of quality control and calibration dosimetric regular basis. The protocol of the IAEA TRS398 recommended dose calibration in water because it is a quantity of interest closest to clinical use and allows a relative uncertainty in the calibration environment reduced to 1%.. (Author)

  15. SU-E-I-24: Design and Fabrication of a Multi-Functional Neck and Thyroid Phantom for Medical Dosimetry and Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh, S; Sina, S [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Karimipourfard, M; Lotfalizadeh, F [Nuclear Engineering department, Shiraz University, Shiraz (Iran, Islamic Republic of); Faghihi, R [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Nuclear Engineering department, Shiraz University, Shiraz (Iran, Islamic Republic of); Babaei, A [Shiraz University of medical sciences, Shiraz (Iran, Islamic Republic of)

    2014-06-01

    Purpose: The purpose of this study is the design and fabrication of a multipurpose anthropomorphic neck and thyroid phantom for use in medical applications (i.e. quality control of images in nuclear medicine, and dosimetry). Methods: The designed neck phantom is composed of seven elliptic cylindrical slices with semi-major axis of 14 and semi-minor axis of 12.5 cm, each having the thickness of 2cm. Thyroid gland, bony part of the neck, and the wind pipe were also built inside the neck phantom. Results: The phantom contains some removable plugs,inside and at its surface to accommodate the TLD chips with different shapes and dimensions, (i.e. rod, cylindrical and cubical TLD chips)for the purpose of medical dosimetry (i.e. in radiology, radiotherapy, and nuclear medicine). For the purpose of quality control of images in nuclear medicine, the removable thyroid gland was built to accommodate the radioactive iodine. The female and male thyroid glands were built in two sizes separately. Conclusion: The designed phantom is a multi-functional phantom which is applicable for dosimetry in diagnostic radiology, radiotherapy, and quality control of images in nuclear medicine.

  16. Evaluation of uncertainty in dosimetry of irradiator system

    International Nuclear Information System (INIS)

    Santos, Gelson P.; Potiens, Maria P.A.; Vivolo, Vitor

    2005-01-01

    This paper describes the study of uncertainties in the estimates of dosimetry irradiator system STS 0B85 of LCI IPEN/CNEN-SP. This study is relevant for determination of best measurement capability when the laboratory performs routine calibrations of measuring radiation next the optimal measures designed to radioprotection. It is also a requirement for obtaining the accreditation of the laboratory by the INMETRO. For this dosimetry was used a reference system of the laboratory composed of a electrometer and a spherical ionization chamber of 1 liter. Measurements were made at five distances selected so to include the whole range of the optical bench tests and using three attenuators filters so as to extend the measurement capability. The magnitude used for evaluation was the rate of air kerma for 1 37C s and 6 0C o beams. Were carried out four series of measurements. It was verified the inverse square law to these series and their sets of uncertainty. Unfiltered, with one and two filters series showed good agreement with the inverse square low and the maximum uncertainty obtained was approximately 1.7%. In series with all the filters was a major deviation of the inverse square law and wide increase in uncertainty to measurements at the end of the optical bench

  17. Collection of abstracts. 6. national symposium on radiation dosimetry

    International Nuclear Information System (INIS)

    1983-08-01

    Abstracts are given of the total of 137 papers presented at the symposium. The papers discussed radiation dosimetry methods, dosemeters and detectors, the metrology and calibration of radiation sources, calibration standards, and radioactivity monitoring. (J.P.)

  18. [Accreditation of forensic laboratories].

    Science.gov (United States)

    Sołtyszewski, Ireneusz

    2010-01-01

    According to the framework decision of the European Union Council, genetic laboratories which perform tests for the benefit of the law enforcement agencies and the administration of justice are required to obtain a certificate of accreditation testifying to compliance with the PN EN ISO/IEC 17025:2005 standard. The certificate is the official confirmation of the competence to perform research, an acknowledgement of credibility, impartiality and professional independence. It is also the proof of establishment, implementation and maintenance of an appropriate management system. The article presents the legal basis for accreditation, the procedure of obtaining the certificate of accreditation and selected elements of the management system.

  19. Impact of missing attenuation and scatter corrections on 99m Tc-MAA SPECT 3D dosimetry for liver radioembolization using the patient relative calibration methodology: A retrospective investigation on clinical images.

    Science.gov (United States)

    Botta, Francesca; Ferrari, Mahila; Chiesa, Carlo; Vitali, Sara; Guerriero, Francesco; Nile, Maria Chiara De; Mira, Marta; Lorenzon, Leda; Pacilio, Massimiliano; Cremonesi, Marta

    2018-04-01

    To investigate the clinical implication of performing pre-treatment dosimetry for 90 Y-microspheres liver radioembolization on 99m Tc-MAA SPECT images reconstructed without attenuation or scatter correction and quantified with the patient relative calibration methodology. Twenty-five patients treated with SIR-Spheres ® at Istituto Europeo di Oncologia and 31 patients treated with TheraSphere ® at Istituto Nazionale Tumori were considered. For each acquired 99m Tc-MAA SPECT, four reconstructions were performed: with attenuation and scatter correction (AC_SC), only attenuation (AC_NoSC), only scatter (NoAC_SC) and without corrections (NoAC_NoSC). Absorbed dose maps were calculated from the activity maps, quantified applying the patient relative calibration to the SPECT images. Whole Liver (WL) and Tumor (T) regions were drawn on CT images. Injected Liver (IL) region was defined including the voxels receiving absorbed dose >3.8 Gy/GBq. Whole Healthy Liver (WHL) and Healthy Injected Liver (HIL) regions were obtained as WHL = WL - T and HIL = IL - T. Average absorbed dose to WHL and HIL were calculated, and the injection activity was derived following each Institute's procedure. The values obtained from AC_NoSC, NoAC_SC and NoAC_NoSC images were compared to the reference value suggested by AC_SC images using Bland-Altman analysis and Wilcoxon paired test (5% significance threshold). Absorbed-dose maps were compared to the reference map (AC_SC) in global terms using the Voxel Normalized Mean Square Error (%VNMSE), and at voxel level by calculating for each voxel the normalized difference with the reference value. The uncertainty affecting absorbed dose at voxel level was accounted for in the comparison; to this purpose, the voxel counts fluctuation due to Poisson and reconstruction noise was estimated from SPECT images of a water phantom acquired and reconstructed as patient images. NoAC_SC images lead to activity prescriptions not significantly different from the

  20. List of Accredited Attorneys

    Data.gov (United States)

    Department of Veterans Affairs — VA accreditation is for the sole purpose of providing representation services to claimants before VA and does not imply that a representative is qualified to provide...

  1. Tales of Accreditation Woe.

    Science.gov (United States)

    Dickmeyer, Nathan

    2002-01-01

    Offers cautionary tales depicting how an "Enron mentality" infiltrated three universities and jeopardized their accreditation status. The schools were guilty, respectively, of bad bookkeeping, lack of strategy and stable leadership, and loss of academic integrity by selling degrees. (EV)

  2. List of Accredited Organizations

    Data.gov (United States)

    Department of Veterans Affairs — VA accreditation is for the sole purpose of providing representation services to claimants before VA and does not imply that a representative is qualified to provide...

  3. List of Accredited Representatives

    Data.gov (United States)

    Department of Veterans Affairs — VA accreditation is for the sole purpose of providing representation services to claimants before VA and does not imply that a representative is qualified to provide...

  4. Accreditation of nuclear engineering programs

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1989-01-01

    The American Nuclear Society (ANS) Professional Development and Accreditation Committee (PDAC) has the responsibility for accreditation of engineering and technology programs for nuclear and similarly named programs. This committee provides society liaison with the Accreditation Board for Engineering and Technology (ABET), is responsible for the appointment and training of accreditation visitors, nomination of members for the ABET Board and Accreditation Commissions, and review of the criteria for accreditation of nuclear-related programs. The committee is composed of 21 members representing academia and industry. The ABET consists of 19 participating bodies, primarily professional societies, and 4 affiliate bodies. Representation on ABET is determined by the size of the professional society and the number of programs accredited. The ANS, as a participating body, has one member on the ABET board, two members on the Engineering Accreditation Commission, and one on the Technology Accreditation Commission. The ABET board sets ABET policy and the commissions are responsible for accreditation visits

  5. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  6. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  7. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  8. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  9. Accreditation of laboratories in the field of radiation protection

    International Nuclear Information System (INIS)

    Galjanic, S.; Franic, Z.

    2005-01-01

    This paper gives a review of requirements and procedures for the accreditation of test and calibration laboratories in the field of radiation protection, paying particular attention to Croatia. General requirements to be met by a testing or calibration laboratory to be accredited are described in the standard HRN EN ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories. The quality of a radiation protection programme can only be as good as the quality of the measurements made to support it. Measurement quality can be assured by participation in measurement assurance programmes that evaluate the appropriateness of procedures, facilities, and equipment and include periodic checks to assure adequate performance. These also include internal consistency checks, proficiency tests, intercomparisons and site visits by technical experts to review operations. In Croatia, laboratories are yet to be accredited in the field of radiation protection. However, harmonisation of technical legislation with the EU legal system will require some changes in laws and regulations in the field of radiation protection, including the ones dealing with the notification of testing laboratories and connected procedures. Regarding the notification procedures for testing laboratories in Croatia, in the regulated area, the existing accreditation infrastructure, i.e. Croatian Accreditation Agency is ready for its implementation, as it has already established and further developed a consistent accreditation system, compatible with international requirements and procedures.(author)

  10. Results of the dosimetry intercomparison

    International Nuclear Information System (INIS)

    Dure, Elsa S.

    2000-07-01

    The appropriate way to verify the accuracy of the results of dose reported by the laboratories that offer lend personal dosimetry service is in the periodic participation of round of intercomparison dosimetry, undertaken by laboratories whose standards are trace (Secondary Laboratory). The Laboratory of External Personal Dosimetry of the CNEA-PY has participated in three rounds of intercomparison. The first two were organized in the framework of the Model Project RLA/9/030 RADIOLOGICAL WASTE SECURITY, and the irradiations were carried out in the Laboratory of Regional Calibration of the Center of Nuclear Technology Development, Belo Horizonte-Brazil (1998) and in the National Laboratory of Metrology of the ionizing radiations of the Institute of Radioprotection and Dosimetry, Rio de Janeiro-Brazil (1999). The third was organized by the IAEA and the irradiations were made in the Physikalisch-Technische Bundesanstalt PTB, Braunschweig - Federal Republic of Germany (1999-2000) [es

  11. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  12. [Accreditation of medical laboratories].

    Science.gov (United States)

    Horváth, Andrea Rita; Ring, Rózsa; Fehér, Miklós; Mikó, Tivadar

    2003-07-27

    In Hungary, the National Accreditation Body was established by government in 1995 as an independent, non-profit organization, and has exclusive rights to accredit, amongst others, medical laboratories. The National Accreditation Body has two Specialist Advisory Committees in the health care sector. One is the Health Care Specialist Advisory Committee that accredits certifying bodies, which deal with certification of hospitals. The other Specialist Advisory Committee for Medical Laboratories is directly involved in accrediting medical laboratory services of health care institutions. The Specialist Advisory Committee for Medical Laboratories is a multidisciplinary peer review group of experts from all disciplines of in vitro diagnostics, i.e. laboratory medicine, microbiology, histopathology and blood banking. At present, the only published International Standard applicable to laboratories is ISO/IEC 17025:1999. Work has been in progress on the official approval of the new ISO 15189 standard, specific to medical laboratories. Until the official approval of the International Standard ISO 15189, as accreditation standard, the Hungarian National Accreditation Body has decided to progress with accreditation by formulating explanatory notes to the ISO/IEC 17025:1999 document, using ISO/FDIS 15189:2000, the European EC4 criteria and CPA (UK) Ltd accreditation standards as guidelines. This harmonized guideline provides 'explanations' that facilitate the application of ISO/IEC 17025:1999 to medical laboratories, and can be used as a checklist for the verification of compliance during the onsite assessment of the laboratory. The harmonized guideline adapted the process model of ISO 9001:2000 to rearrange the main clauses of ISO/IEC 17025:1999. This rearrangement does not only make the guideline compliant with ISO 9001:2000 but also improves understanding for those working in medical laboratories, and facilitates the training and education of laboratory staff. With the

  13. Calibration of personal dosemeters in terms of the ICRU operational quantities

    International Nuclear Information System (INIS)

    McDonald, J.C.; Hertel, N.E.

    1992-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined several new operational quantities for radiation protection purposes. The quantities to be used for personal monitoring are defined at depths in the human body. Because these quantities are impossible to measure directly, the ICRU has recommended that personal dosimeters should be calibrated under simplified conditions on an appropriate phantom, such as the ICRU sphere. The U.S. personal dosimetry accreditation programs make use of a 30 x 30 x 15 cm polymethylmethacrylate (PMMA) phantom; therefore it is necessary to relate the response of dosimeters calibrated on this phantom to the ICRU operational quantities. Calculations of the conversion factors to compute dosimeter response in terms of the operational quantities have been performed using the code MCNP. These calculations have also been compared to experimental measurements using thermoluminescent (TLD) detectors. (author)

  14. Calibration of personal dosemeters in terms of the ICRU operational quantities

    International Nuclear Information System (INIS)

    McDonald, J.C.; Hertel, N.E.

    1992-05-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined several new operational quantities for radiation protection purposes. The quantities to be used for personal monitoring are defined at depths in the human body. Because these quantities are impossible to measure directly, the ICRU has recommended that personal dosemeters should be calibrated under simplified conditions on an appropriate phantom, such as the ICRU sphere. The US personal dosimetry accreditation programs make use of a 30 x 30 x 15 cm polymethymethacrylate (PMMA) phantom, therefore it is necessary to relate the response of dosemeters calibrated on this phantom to the ICRU operational quantities. Calculations of the conversion factors to compute dosemeter response in terms of the operational quantities have been performed using the code MCNP. These calculations have also been compared to experimental measurements using thermoluminescent (TLD) detectors

  15. Dosimetry for electron beam sterilization

    International Nuclear Information System (INIS)

    Miller, A.

    2007-01-01

    According to ISO 11137-1 (sect 4.3.4) dosimetry used in the development, validation and routine control of the sterilization process shall have measurement traceability to national or international standards and shall have a known level of uncertainty. It can only be obtained through calibration of the dosimeters. In presented lecture different types of dosimeter systems for electron beams (calorimeters, radiochromic film dosimeters, alanine / EPR) and their calibration are described

  16. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Kumar, A.; Reddy, A.R.

    1994-01-01

    The last few years have seen a significant increase in the use of ionising radiation in industrial processes and also international trade in irradiated products. With this, the demand for internationally accepted dosimetric techniques, accredited to international standards has also increased which is further stimulated by the emergence of ISO-9000 series of standards in industries. The present paper describes some of the important dosimetric techniques used in radiation processing, the role of IAEA in evolving internationally accepted standards and work carried out at the Defence Laboratories, Jodhpur in the development of a cheap, broad dose range and simple dosimeter for routine dosimetry. For this polyhydroxy alcohols viz., mannitol, sorbitol and inositol were studied using the spectrophotometric read out method. Out of the alcohols studied mannitol was found to be most promising covering a dose range of 0.01 kGy - 100 kGy. (author). 26 refs., 3 figs., 1 tab

  17. Dosimetry for Electron Beam Applications

    DEFF Research Database (Denmark)

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film...

  18. Dosemeter calibration in X-ray and in cobalt-60

    International Nuclear Information System (INIS)

    Silva, T.A. da

    1988-01-01

    Some tests about quality security for clinical dosemeter calibration in secondary standard dosimetry laboratory are described. The tests in gama calibration system, in X-ray calibration, in secondary standard dosimeter, in the dosemeter that will be calibrated, during the calibration and after the calibration are shown. (C.G.C.) [pt

  19. Interlaboratory niobium dosimetry comparison

    International Nuclear Information System (INIS)

    Wille, P.

    1980-01-01

    For an interlaboratory comparison of neutron dosimetry using niobium the 93 sup(m)Nb activities of irradiated niobium monitors were measured. This work was performed to compare the applied techniques of dosimetry with Nb in different laboratories. The niobium monitors were irradiated in the fast breeder EBRII, USA and the BR2, Belgium. The monitors were dissolved and several samples were prepared. Their niobium contents were determined by the 94 Nb-count rates. since the original specific count rate was known. The KX radiations of the 93 sup(m)Nb of the samples and of a calibrated Nb-foil were compared. This foil was measured by PTB, Braunschweig and CBNM, Geel, which we additionally compared with the KX radiation of 88 Sr produced by a thin 88 Y source from a 88 Y-standard solution (PTB). (orig.) [de

  20. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  1. Third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  2. Statistical analysis of personal dosimetry of exposed workers

    International Nuclear Information System (INIS)

    Sanchez Munoz, F. J.; Alejo Luque, L.; Mas Munoz, I.; Serrada Hierro, A.

    2013-01-01

    The dosimetry centers accredited by the Nuclear Safety Council (CSN) normally report overcoming legal limits, or some fraction thereof, but do not provide comparative dosimetric criteria indicating if assigned to a given dose is large TPE or small relative to that of their peers. In order to help to resolve the difficulties mentioned ds, it has developed an application that statistically processes the dosimetric data provided by the National Dosimetry Center. (Author)

  3. From Evaluation to Accreditation

    DEFF Research Database (Denmark)

    Rasmussen, Palle

    Quality was introduced as political priority in Danish higher education during the 1980ties, associated with new public management as well as with new liberalism and conservatism. As a political goal the concept of quality has a paradoxical character because it does not lay out any definite course...... of education programmes has been introduced, also in the form of a national agency with the mission of accrediting all higher education programmes. The paper discusses reasons for and problems in this approach, and the more general social functions of quality assessment and accreditation....

  4. Dosimetry in radiotherapy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  5. Environmental dosimetry of radon-222 and daughters: measurement of absolute calibration factors of CR-39 considering the plate-out effects and environmental factors

    International Nuclear Information System (INIS)

    Paulo, S.R. de.

    1991-08-01

    The subject of this work concerns with the measurement of absolute calibration factors for the use of CR-39 as an absolute detector in indoor and daughters monitoring. Up to now the usefulness of calibration factors was restricted to environmental conditions equal (or very close) to those worthing during their determinations. This fact is consequence of the difficulties related to the understanding of the plate-out properties of radon daughters activity in the air. The plate-out effects on radon daughters monitoring performed by SSNTDs are studied. Our experimental results are in agreement with those of other authors about the great sensitivity of CR-39 to the plate-out effects, fact that recommended its use in this work. Being succeeded in the employment of CR-39 as an alpha-spectrometer we concluded that some important information (like the radon daughters deposition rates on the walls of an environment) can be achieved. The knowledge about the behavior of plate-out made possible the determination of the ranges in zenithal angle and energy where CR-39 can detect alpha-particles with efficiency of 100%, at our conditions of track observation. In this way, we obtained calibration factors for CR-39 that are weakly dependent on environmental conditions. We think that these results can contribute to the improvement of RD (Radiation Detector) detection techniques. (author). 159 refs, 106 figs, 05 tabs

  6. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Dennis, N.A.; Kinneman, J.D.; Costello, F.M.; White, J.R.; Nimitz, R.L.

    1983-01-01

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  7. 76 FR 18645 - Third Party Testing for Certain Children's Products; Notice of Requirements for Accreditation of...

    Science.gov (United States)

    2011-04-05

    ... to the International Standards Organization (ISO)/International Electrotechnical Commission (IEC) Standard ISO/IEC 17025:2005, ``General Requirements for the Competence of Testing and Calibration... paint ban and 16 CFR part 1303, it must be accredited to ISO/IEC 17025- 2005 by an accreditation body...

  8. Calibration of farmer dosemeters

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Anwar, K.; Arshed, W.; Mubarak, M.A.; Orfi, S.D.

    1984-08-01

    The Farmer Dosemeters of Atomic Energy Medical Centre (AEMC) Jamshoro were calibrated in the Secondary Standard Dosimetry Laboratory (SSDL) at PINSTECH, using the NPL Secondary Standard Therapy level X-ray exposure meter. The results are presented in this report. (authors)

  9. Is Gerontology Ready for Accreditation?

    Science.gov (United States)

    Haley, William E.; Ferraro, Kenneth F.; Montgomery, Rhonda J. V.

    2012-01-01

    The authors review widely accepted criteria for program accreditation and compare gerontology with well-established accredited fields including clinical psychology and social work. At present gerontology lacks many necessary elements for credible professional accreditation, including defined scope of practice, applied curriculum, faculty with…

  10. Valuing the Accreditation Process

    Science.gov (United States)

    Bahr, Maria

    2018-01-01

    The value of the National Association for Developmental Education (NADE) accreditation process is far-reaching. Not only do students and programs benefit from the process, but also the entire institution. Through data collection of student performance, analysis, and resulting action plans, faculty and administrators can work cohesively towards…

  11. Quality assurance and accreditation.

    Science.gov (United States)

    1997-01-01

    In 1996, the Joint Commission International (JCI), which is a partnership between the Joint Commission on Accreditation of Healthcare Organizations and Quality Healthcare Resources, Inc., became one of the contractors of the Quality Assurance Project (QAP). JCI recognizes the link between accreditation and quality, and uses a collaborative approach to help a country develop national quality standards that will improve patient care, satisfy patient-centered objectives, and serve the interest of all affected parties. The implementation of good standards provides support for the good performance of professionals, introduces new ideas for improvement, enhances the quality of patient care, reduces costs, increases efficiency, strengthens public confidence, improves management, and enhances the involvement of the medical staff. Such good standards are objective and measurable; achievable with current resources; adaptable to different institutions and cultures; and demonstrate autonomy, flexibility, and creativity. The QAP offers the opportunity to approach accreditation through research efforts, training programs, and regulatory processes. QAP work in the area of accreditation has been targeted for Zambia, where the goal is to provide equal access to cost-effective, quality health care; Jordan, where a consensus process for the development of standards, guidelines, and policies has been initiated; and Ecuador, where JCI has been asked to help plan an approach to the evaluation and monitoring of the health care delivery system.

  12. Accreditation of Employee Development.

    Science.gov (United States)

    Geale, John

    A British project was conducted to improve understanding of the advantages and disadvantages of certification for work-based training and to analyze factors that influence the demand for accreditation. Three studies investigated what was happening in three employment sectors: tourism (service/commercial), social services (public administration),…

  13. States Moving from Accreditation to Accountability. Accreditation: State School Accreditation Policies

    Science.gov (United States)

    Wixom, Micah Ann

    2014-01-01

    Accreditation policies vary widely among the states. Since Education Commission of the States last reviewed public school accreditation policies in 1998, a number of states have seen their legislatures take a stronger role in accountability--resulting in a move from state-administered accreditation systems to outcomes-focused state accountability…

  14. Is gerontology ready for accreditation?

    Science.gov (United States)

    Haley, William E; Ferraro, Kenneth F; Montgomery, Rhonda J V

    2012-01-01

    The authors review widely accepted criteria for program accreditation and compare gerontology with well-established accredited fields including clinical psychology and social work. At present gerontology lacks many necessary elements for credible professional accreditation, including defined scope of practice, applied curriculum, faculty with applied professional credentials, and resources necessary to support professional credentialing review. Accreditation with weak requirements will be dismissed as "vanity" accreditation, and strict requirements will be impossible for many resource-poor programs to achieve, putting unaccredited programs at increased risk for elimination. Accreditation may be appropriate in the future, but it should be limited to professional or applied gerontology, perhaps for programs conferring bachelor's or master's degrees. Options other than accreditation to enhance professional skills and employability of gerontology graduates are discussed.

  15. Mammography accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, P.

    1993-12-31

    In the mid-1980`s, the movement toward the use of dedicated mammography equipment provided significant improvement in breast cancer detection. However, several studies demonstrated that this change was not sufficient to ensure optimal image quality at a low radiation dose. In particular, the 1985 Nationwide Evaluation of X-ray Trends identified the wide variations in image quality and radiation dose, even from dedicated units. During this time period, the American Cancer Society (ACS) launched its Breast Cancer Awareness Screening Campaign. However, there were concerns about the ability of radiology to respond to the increased demand for optimal screening examinations that would result from the ACS program. To respond to these concerns, the ACS and the American College of Radiology (ACR) established a joint committee on mammography screening in 1986. After much discussion, it was decided to use the ACR Diagnostic Practice Accreditation Program as a model for the development of a mammography accreditation program. However, some constraints were required in order to make the program meet the needs of the ACS. This voluntary, peer review program had to be timely and cost effective. It was determined that the best way to address these needs would be to conduct the program by mail. Finally, by placing emphasis on the educational nature of the program, it would provide an even greater opportunity for improving mammographic quality. The result of this effort was that, almost six years ago, in May 1987, the pilot study for the ACR Mammography Accreditation Program (MAP) began, and in August of that year, the first applications were received. In November 1987, the first 3-year accreditation certificates were awarded.

  16. Mammography accreditation program

    International Nuclear Information System (INIS)

    Wilcox, P.

    1993-01-01

    In the mid-1980's, the movement toward the use of dedicated mammography equipment provided significant improvement in breast cancer detection. However, several studies demonstrated that this change was not sufficient to ensure optimal image quality at a low radiation dose. In particular, the 1985 Nationwide Evaluation of X-ray Trends identified the wide variations in image quality and radiation dose, even from dedicated units. During this time period, the American Cancer Society (ACS) launched its Breast Cancer Awareness Screening Campaign. However, there were concerns about the ability of radiology to respond to the increased demand for optimal screening examinations that would result from the ACS program. To respond to these concerns, the ACS and the American College of Radiology (ACR) established a joint committee on mammography screening in 1986. After much discussion, it was decided to use the ACR Diagnostic Practice Accreditation Program as a model for the development of a mammography accreditation program. However, some constraints were required in order to make the program meet the needs of the ACS. This voluntary, peer review program had to be timely and cost effective. It was determined that the best way to address these needs would be to conduct the program by mail. Finally, by placing emphasis on the educational nature of the program, it would provide an even greater opportunity for improving mammographic quality. The result of this effort was that, almost six years ago, in May 1987, the pilot study for the ACR Mammography Accreditation Program (MAP) began, and in August of that year, the first applications were received. In November 1987, the first 3-year accreditation certificates were awarded

  17. Accreditation and Participatory Design

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Scheuer, John Damm

    2016-01-01

    This paper presents a soft project management paradigm approach based on participatory design to assuring values and benefits in public projects. For more than a decade, quality development in the Danish healthcare sector has been managed with an accreditation system known as the Danish Quality......-driven IT development and suggest how this approach may form a cornerstone of project management in a new quality-assurance program for the Danish healthcare sector....

  18. MO-A-BRD-07: Feasibility of X-Ray Acoustic Computed Tomography as a Tool for Calibration and In Vivo Dosimetry of Radiotherapy Electron and Photon Beams

    International Nuclear Information System (INIS)

    Hickling, S; Hobson, M; El Naqa, I

    2014-01-01

    Purpose: This work simulates radiation-induced acoustic waves to assess the feasibility of x-ray acoustic computed tomography (XACT) as a dosimeter. XACT exploits the phenomenon that acoustic waves with amplitude proportional to the dose deposited are induced following a radiation pulse. After detecting these acoustic waves with an ultrasound transducer, an image of the dose distribution can be reconstructed in realtime. Methods: Monte Carlo was used to simulate the dose distribution for monoenergetic 6 MeV photon and 9 MeV electron beams incident on a water tank. The dose distribution for a prostate patient planned with a photon 4-field box technique was calculated using clinical treatment planning software. All three dose distributions were converted into initial pressure distributions, and transportation of the induced acoustic waves was simulated using an open-source toolkit. Ideal transducers were placed around the circumference of the target to detect the acoustic waves, and a time reversal reconstruction algorithm was used to obtain an XACT image of the dose for each radiation pulse. Results: For the photon water tank relative dosimetry case, it was found that the normalized acoustic signal amplitude agreed with the normalized dose at depths from 0 cm to 10 cm, with an average percent difference of 0.5%. For the reconstructed in-plane dose distribution of an electron water tank irradiation, all pixels passed a 3%–3 mm 2D gamma test. The reconstructed prostate dose distribution closely resembled the plan, with 89% of pixels passing a 3%–3 mm 2D gamma test. For all situations, the amplitude of the induced acoustic waves ranged from 0.01 Pa to 1 Pa. Conclusion: Based on the amplitude of the radiation-induced acoustic waves and accuracy of the reconstructed dose distributions, XACT is a feasible technique for dosimetry in both calibration and in vivo environments for photon and electron beams and merits further investigation. Funding from NSERC, CIHR and Mc

  19. Environmental dosimetry

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    For more than 60 years, natural radiation has offered broad opportunities for basic research as evidenced by many fundamental discoveries. Within the last decade, however, dramatic changes have occurred in the motivation and direction of this research. The urgent need for economical energy sources entailing acceptably low levels of environmental impact has compelled the applied aspects of our radiation environment to become overriding considerations. It is within this general framework that state-of-the-art environmental dosimetry techniques are reviewed. Although applied motivation and relevance underscores the current milieu for both reactor and environmental dosimetry, a perhaps even more unifying force is the broad similarity of reactor and environmental radiation fields. In this review, a comparison of these two mixed radiation fields is presented stressing the underlying similarities that exist. On this basis, the evolution of a strong inner bond between dosimetry methods for both reactor and environmental radiation fields is described. The existence of this bond will be illustrated using representative examples of observed spectra. Dosimetry methods of particularly high applicability for both of these fields are described. Special emphasis is placed on techniques of high sensitivity and absolute accuracy which are capable of resolving the components of these mixed radiation fields

  20. Air kerma standard for calibration of well-type chambers in Brazil using {sup 192}Ir HDR sources and its traceability

    Energy Technology Data Exchange (ETDEWEB)

    Di Prinzio, Renato; Almeida, Carlos Eduardo de [Laboratorio de Ciencias Radiologicas-Universidade do Estado do Rio de Janeiro (LCR/UERJ), R. Sao Francisco Xavier, 524, Pavilhao Haroldo Lisboa da Cunha, Terreo, Sala 136-Maracana, CEP 20550-900-Rio de Janeiro/RJ-Rio de Janeiro, RJ (Brazil) and Instituto de Radioprotecao e Dosimetria-Comissao Nacional de Energia Nuclear (IRD/CNEN), Av. Salvador Allende, s/n, Jacarepagua-CE22780-160-Rio de Janeiro, RJ (Brazil); Laboratorio de Ciencias Radiologicas-Universidade do Estado do Rio de Janeiro (LCR/UERJ), R. Sao Francisco Xavier, 524, Pavilhao Haroldo Lisboa da Cunha, Terreo, Sala 136-Maracana, CEP 20550-900-Rio de Janeiro/RJ-Rio de Janeiro, RJ (Brazil)

    2009-03-15

    In Brazil there are over 100 high dose rate (HDR) brachytherapy facilities using well-type chambers for the determination of the air kerma rate of {sup 192}Ir sources. This paper presents the methodology developed and extensively tested by the Laboratorio de Ciencias Radiologicas (LCR) and presently in use to calibrate those types of chambers. The system was initially used to calibrate six well-type chambers of brachytherapy services, and the maximum deviation of only 1.0% was observed between the calibration coefficients obtained and the ones in the calibration certificate provided by the UWADCL. In addition to its traceability to the Brazilian National Standards, the whole system was taken to University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) for a direct comparison and the same formalism to calculate the air kerma was used. The comparison results between the two laboratories show an agreement of 0.9% for the calibration coefficients. Three Brazilian well-type chambers were calibrated at the UWADCL, and by LCR, in Brazil, using the developed system and a clinical HDR machine. The results of the calibration of three well chambers have shown an agreement better than 1.0%. Uncertainty analyses involving the measurements made both at the UWADCL and LCR laboratories are discussed.

  1. Accuracy Requirements in Medical Radiation Dosimetry

    International Nuclear Information System (INIS)

    Andreo, P.

    2011-01-01

    The need for adopting unambiguous terminology on 'accuracy in medical radiation dosimetry' which is consistent with international recommendations for metrology is emphasized. Uncertainties attainable, or the need for improving their estimates, are analysed for the fields of radiotherapy, diagnostic radiology and nuclear medicine dosimetry. This review centres on uncertainties related to the first step of the dosimetry chain in the three fields, which in all cases involves the use of a detector calibrated by a standards laboratory to determine absorbed dose, air kerma or activity under reference conditions in a clinical environment. (author)

  2. FLEXIBLE SCOPE IN ACCREDITATION - INTRODUCING VAGUENESS OR BETTER EXPRESSION OF SCOPE

    Directory of Open Access Journals (Sweden)

    Miloš Jelić

    2007-09-01

    Full Text Available Historically, laboratory accreditation has been grounded on fixed scope of accreditation to establish precisely and unambiguously the range of tests and calibrations covered by a granted accreditation. By the time elapsed it was noticed that such approach sometimes appears to be restrictive since it constrains new or modified methods to be added to a laboratory's scope, even where competence in this general area has already been demonstrated. Accreditation of a flexible scope places more of the responsibility onto the laboratory itself because it imposes to the laboratory to establish and maintain management system that can control its proposed approach. Flexible scope of accreditation yields benefit to all accreditation stakeholders but, on the other hand, introduces more requiring interpretations of relevant standard clauses and includes the bounds of the scope which are defined in more distinct way.

  3. Relative dosimetry by Ebt-3

    International Nuclear Information System (INIS)

    De Leon A, M. A.; Rivera M, T.; Hernandez O, J. O.

    2015-10-01

    In the present work relative dosimetry in two linear accelerator for radiation therapy was studied. Both Varian Oncology systems named Varian Clinac 2100-Cd and MLC Varian Clinac i X were used. Gaf Chromic Ebt-3 film was used. Measurements have been performed in a water equivalent phantom, using 6 MV and 18 MV photon beams on both Linacs. Both calibration and Electron irradiations were carried out with the ionization chamber placed at the isocenter, below a stack of solid water slabs, at the depth of dose maximum (D max), with a Source-to-Surface Distance (SSD) of 100 cm and a field size of 10 cm x 10 cm. Calibration and dosimetric measurements photons were carried out under IAEA-TRS 398 protocol. Results of relative dosimetry in the present work are discussed. (Author)

  4. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories; Calibracion de fuentes de fotones y rayos beta usadas en braquiterapia. Guia de procedimiento estandarizados en Laboratorios Secundarios de Calibracion Dosimetrica (LSCD) y en hospitales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of {sup 192}Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis

  5. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  6. Calibration of sources for alpha spectroscopy systems

    International Nuclear Information System (INIS)

    Freitas, I.S.M.; Goncalez, O.L.

    1992-01-01

    This paper describes the calibration methodology for measuring the total alpha activity of plane and thin sources with the Alpha Spectrometer for Silicon Detector in the Nuclear Measures and Dosimetry laboratory at IEAv/CTA. (author)

  7. Optimization of SPECT calibration for quantification of images applied to dosimetry with iodine-131; Otimização da calibração em SPECT para a quantificação de imagens aplicada à dosimetria com iodo-131

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Samira Marques de

    2018-04-01

    SPECT systems calibration plays an essential role in the accuracy of the quantification of images. In this work, in its first stage, an optimized SPECT calibration method was proposed for {sup 131}I studies, considering the partial volume effect (PVE) and the position of the calibration source. In the second stage, the study aimed to investigate the impact of count density and reconstruction parameters on the determination of the calibration factor and the quantification of the image in dosimetry studies, considering the reality of clinical practice in Brazil. In the final step, the study aimed evaluating the influence of several factors in the calibration for absorbed dose calculation using Monte Carlo simulations (MC) GATE code. Calibration was performed by determining a calibration curve (sensitivity versus volume) obtained by applying different thresholds. Then, the calibration factors were determined with an exponential function adjustment. Images were performed with high and low counts densities for several source positions within the simulator. To validate the calibration method, the calibration factors were used for absolute quantification of the total reference activities. The images were reconstructed adopting two approaches of different parameters, usually used in patient images. The methodology developed for the calibration of the tomographic system was easier and faster to implement than other procedures suggested to improve the accuracy of the results. The study also revealed the influence of the location of the calibration source, demonstrating better precision in the absolute quantification considering the location of the target region during the calibration of the system. The study applied in the Brazilian thyroid protocol suggests the revision of the calibration of the SPECT system, including different positions for the reference source, besides acquisitions considering the Signal to Noise Ratio (SNR) of the images. Finally, the doses obtained

  8. Field dosimetry on sterilization area of medical-hospitable materials

    International Nuclear Information System (INIS)

    Mariano, C.S.T.P.; Campos, L.L.

    1992-01-01

    The calcium sulfate doped with dysprosium, used in high dose dosimetry by electron paramagnetic resonance (EPR), is studied on field dosimetry for medical-hospitable materials sterilization. The calibration curves of EPR signal in function of absorbed dose in air and the thermal decay of EPR signal at room temperature are also presented. (C.G.C)

  9. Department of Energy standard for the performance testing of personnel dosimetry systems

    International Nuclear Information System (INIS)

    1986-12-01

    This standard is intended to be used in the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems. It is based on the American National Standards Institute's (ANSI) ''Criteria for Testing Personnel Dosimetry Performance,'' ANSI N13.11-1983, recommendations made to DOE in ''Guidelines for the Calibration of Personnel Dosimeters,'' Pacific Northwest Laboratory (PNL)-4515 and comments received during peer review by DOE and DOE contractor personnel. The recommendations contained in PNL-4515 were based on an evaluation of ANSI N13.11 conducted for the Office of Nuclear Safety, DOE, by PNL. Parts of ANSI N13.11 that did not require modification were used essentially intact in this standard to maintain consistency with nationally recognized standards. Modifications to this standard have resulted from several DOE/DOE contractor reviews and a pilot testing session. An initial peer review by selected DOE and DOE contractor representatives on technical content was conducted in 1983. A review by DOE field offices, program offices, and contractors was conducted in mid-1984. A pilot performance testing session sponsored by the Office of Nuclear Safety was conducted in early 1985 by the Radiological and Environmental Sciences Laboratory, Idaho Falls. Results of the pilot test were reviewed in late 1985 by a DOE and DOE contractor committee. 11 refs., 4 tabs

  10. SPRT Calibration Uncertainties and Internal Quality Control at a Commercial SPRT Calibration Facility

    Science.gov (United States)

    Wiandt, T. J.

    2008-06-01

    The Hart Scientific Division of the Fluke Corporation operates two accredited standard platinum resistance thermometer (SPRT) calibration facilities, one at the Hart Scientific factory in Utah, USA, and the other at a service facility in Norwich, UK. The US facility is accredited through National Voluntary Laboratory Accreditation Program (NVLAP), and the UK facility is accredited through UKAS. Both provide SPRT calibrations using similar equipment and procedures, and at similar levels of uncertainty. These uncertainties are among the lowest available commercially. To achieve and maintain low uncertainties, it is required that the calibration procedures be thorough and optimized. However, to minimize customer downtime, it is also important that the instruments be calibrated in a timely manner and returned to the customer. Consequently, subjecting the instrument to repeated calibrations or extensive repeated measurements is not a viable approach. Additionally, these laboratories provide SPRT calibration services involving a wide variety of SPRT designs. These designs behave differently, yet predictably, when subjected to calibration measurements. To this end, an evaluation strategy involving both statistical process control and internal consistency measures is utilized to provide confidence in both the instrument calibration and the calibration process. This article describes the calibration facilities, procedure, uncertainty analysis, and internal quality assurance measures employed in the calibration of SPRTs. Data will be reviewed and generalities will be presented. Finally, challenges and considerations for future improvements will be discussed.

  11. Hematological dosimetry

    International Nuclear Information System (INIS)

    Fluery-Herard, A.

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues [fr

  12. 76 FR 52548 - National Veterinary Accreditation Program; Currently Accredited Veterinarians Performing...

    Science.gov (United States)

    2011-08-23

    .... APHIS-2006-0093] RIN 0579-AC04 National Veterinary Accreditation Program; Currently Accredited... accredited in the National Veterinary Accreditation Program (NVAP) may continue to perform accredited duties..., 2011. FOR FURTHER INFORMATION CONTACT: Dr. Todd Behre, National Veterinary Accreditation Program, VS...

  13. Determining the lower limit of detection for personnel dosimetry systems

    International Nuclear Information System (INIS)

    Roberson, P.L.; Carlson, R.D.

    1992-01-01

    A simple method for determining the lower limit of detection (LLD) for personnel dosimetry systems is described. The method relies on the definition of a critical level and a detection level. The critical level is the signal level above which a result has a small probability of being due to a fluctuation of the background. All results below the critical level should not be reported as an indication of a positive result. The detection level is the net signal level (i.e., dose received) above which there is a high confidence that a true reading will be detected and reported as a qualitatively positive result. The detection level may be identified as the LLD. A simple formula is derived to allow the calculation of the LLD under various conditions. This type of formula is being used by the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry. Participants in either the National Voluntary Laboratory Accreditation Program (NVLAP) for personnel dosimetry or DOELAP can use performance test results along with a measurement of background levels to estimate the LLDs for their dosimetry system. As long as they maintain their dosimetry system such that the LLDs are less than half the lower limit of the NVLAP or DOELAP test exposure ranges, dosimetry laboratories can avoid testing failures due to poor performance at very low exposures

  14. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina; Actividades desarrolladas por el laboratorio de dosimetria biologica de la Autoridad Regulatoria Nuclear de Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Radl, A.; Sapienza, C. E.; Taja, M. R.; Bubniak, R.; Deminge, M.; Di Giorgio, M., E-mail: csapienza@arn.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aires (Argentina)

    2013-07-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary.

  15. A new method for dosimetry with films radiochromic

    International Nuclear Information System (INIS)

    Mendez Carot, I.

    2013-01-01

    in this paper a new method is presented and the results of the comparison between the calibration is summarized based on a planning reference and calibration obtained from the irradiated fragments measure different dose levels multichannel compare dosimetry based on the weighted average dosimetry described by Micke et al.(present in the FilmQAPro software) and, finally, show different results obtained with the method proposed in several applications clinics. (Author)

  16. Accreditation: a cultural control strategy.

    Science.gov (United States)

    Paccioni, André; Sicotte, Claude; Champagne, François

    2008-01-01

    The purpose of this paper is to describe and understand the effects of the accreditation process on organizational control and quality management practices in two Quebec primary-care health organizations. A multiple-case longitudinal study was conducted taking a mixed qualitative/quantitative approach. An analytical model was developed of the effects of the accreditation process on the type of organizational control exercised and the quality management practices implemented. The data were collected through group interviews, semi-directed interviews of key informers, non-participant observations, a review of the literature, and structured questionnaires distributed to all the employees working in both institutions. The accreditation process has fostered the implementation of consultation mechanisms in self-assessment teams. Improving assessments of client satisfaction was identified as a prime objective but, in terms of the values promoted in organizations, accreditation has little effect on the perceptions of employees not directly involved in the process. As long as not all staff members have integrated the basis for accreditation and its outcomes, the accreditation process appears to remain an external, bureaucratic control instrument. This study provides a theoretical model for understanding organizational changes brought about by accreditation of primary services. Through self-assessment of professional values and standards, accreditation may foster better quality management practices.

  17. Aligning Assessments for COSMA Accreditation

    Science.gov (United States)

    Laird, Curt; Johnson, Dennis A.; Alderman, Heather

    2015-01-01

    Many higher education sport management programs are currently in the process of seeking accreditation from the Commission on Sport Management Accreditation (COSMA). This article provides a best-practice method for aligning student learning outcomes with a sport management program's mission and goals. Formative and summative assessment procedures…

  18. Assembly of a laboratory for calibration in brachytherapy. Comparison of responses with different instrumentation

    International Nuclear Information System (INIS)

    Pirchio, R.; Saravi, M.

    2006-01-01

    A common practice in quality control programs for dosimetry in brachytherapy is the source calibration. The AAPM (American Association of Physicists in Medicine) in the Task Group No. 40 (TG-40) it recommends that each institution that offers a brachytherapy service verifies the intensity of each source provided by the maker with secondary traceability. For such a reason it is necessary to have laboratories able to make calibrations of sources, traceable electrometer-chambers to primary or credited laboratories. The Regional Center of Reference of Dosimetry of the CNEA (National Commission of Atomic Energy) it is in the stage of finalization of the assembly of a Laboratory for source calibration and use equipment in brachytherapy. For it has two ionization chambers well type and two electrometers gauged by the Accredited Dosimetry Calibration Laboratory of the University of Wisconsin. Also account with a wide variety of supports and with a tube of 137 Cs pattern 3M model 6500/6D6C. The procedures for the calibration of sources and equipment were elaborated starting from the TECDOC-1274. On the other hand, its were carried out measurements with different instrumentation for the comparison of responses and at the same time to implement the calibration procedures. For it, its were used chambers and electrometers of the institution, of hospitals and of the national company 'Solydes'. In the measurements its were used seeds of 125 I taken place in Argentina and the tube of 137 Cs pattern mentioned previously. In first place it was proceeded to the determination of the center of the region of the plateau in the axial response for the seeds of Iodine-125 and the tube of Cesium-137 pattern using different chambers. Later on its were carried out measurements of accumulated loads during a certain interval of time in this position. The calibration factors of each chamber were determined, N Sk (μGy m 2 h -1 A -1 ), as the quotient of the kerma rate in reference air of the

  19. University Accreditation using Data Warehouse

    Science.gov (United States)

    Sinaga, A. S.; Girsang, A. S.

    2017-01-01

    The accreditation aims assuring the quality the quality of the institution education. The institution needs the comprehensive documents for giving the information accurately before reviewed by assessor. Therefore, academic documents should be stored effectively to ease fulfilling the requirement of accreditation. However, the data are generally derived from various sources, various types, not structured and dispersed. This paper proposes designing a data warehouse to integrate all various data to prepare a good academic document for accreditation in a university. The data warehouse is built using nine steps that was introduced by Kimball. This method is applied to produce a data warehouse based on the accreditation assessment focusing in academic part. The data warehouse shows that it can analyse the data to prepare the accreditation assessment documents.

  20. IADC's well control accreditation program

    International Nuclear Information System (INIS)

    Kropla, S.M.

    1997-01-01

    WellCAP is a well control accreditation program devised and implemented by the International Association of Drilling Contractors (IADC). It is a worldwide comprehensive system that defines a well control training curriculum, establishes minimum standards and recommends guidelines for course structure. The program began in mid-1993 and is viewed as a means for training institutions to demonstrate industry recognition to customers, contractors and local governments. Schools can apply to have their courses accredited. The accreditation system is administered by a review panel. The application process requires that the school perform a detailed review of its curriculum and operations and bring them in line with the WellCAP curriculum and accreditation criteria. Currently, more than 75 schools around the world have requested application materials for WellCAP. To date fifteen schools have been fully accredited

  1. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  2. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1982-01-01

    The measurement of neutron exposures to personnel is an issue that has received increased attention in the last few years. It is important to consider key aspects of the whole dosimetry system when developing dose estimates. This begins with selection of proper dosimeters and survey instruments, and extends through the calibration methods. One must match the spectral response and sensitivity of the dosimeter to the spectral characteristics of the neutron fields. Threshold detectors that are insensitive to large fractions of neutrons in the lower energy portion of reactor spectra should be avoided. Use of two or more detectors with responses that complement each other will improve measurement quality. It is important to understand the spectral response of survey instruments, so that spectra which result in significant overresponse do not lead to overestimation of dose. Calibration sources that do not match operational field spectra can contribute to highly erroneous results. In those situations, in-field calibration techniques should be employed. Although some detection developments have been made in recent years, a lot can be done with existing technology until fully satisfactory, long term solutions are obtained

  3. Radiation dosimetry and standards at the austrian dosimetry laboratory

    International Nuclear Information System (INIS)

    Leitner, A.

    1984-10-01

    The Austrian Dosimetry Laboratory, established and operated in cooperation between the Austrian Research Center Seibersdorf and the Federal Office of Metrology and Surveying (Bundesamt and Eich- und Vermessungswesen) maintains the national primary standards for radiation dosimetry. Furthermore its tasks include routine calibration of dosemeters and dosimetric research. The irradiation facilities of the laboratory comprise three X-ray machines covering the voltage range from 5 kV to 420 kV constant potential, a 60 Co teletherapy unit, a circular exposure system for routine batch calibration of personnel dosemeters with four gamma ray sources ( 60 Co and 137 Cs) and a reference source system with six gamma ray sources ( 60 Co and 137 Cs). In addition a set of calibrated beta ray sources are provided ( 147 Pm, 204 Tl and 90 Sr). The dosimetric equipment consists of three free-air parallelplate ionization chambers serving as primary standards of exposure for the X-ray energy region, graphite cavity chambers with measured volume as primary standards for the gamma radiation of 137 Cs and 60 Co as well as different secondary standard ionization chambers covering the dose rate range from the natural background level up to the level of modern therapy accelerators. In addition for high energy photon and electron radiation a graphite calorimeter is provided as primary standard of absorbed dose. The principle experimental set-ups for the practical use of the standards are presented and the procedures for the calibration of the different types of dosemeters are described. (Author)

  4. Technical basis document for internal dosimetry

    International Nuclear Information System (INIS)

    Hickman, D.P.

    1991-01-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosimetry program in accordance with expected Department of Energy Laboratory Accreditation Program (DOELAP) requirements for the selected radionuclides provided in this document, including uranium mill tailing mixtures. Additions and modifications to this document and procedures derived FR-om this document are expected in the future according to changes in standards and changes in programmatic mission

  5. Clinical dosimetry using mosfets

    International Nuclear Information System (INIS)

    Ramani, Ramaseshan; Russell, Stephen; O'Brien, Peter

    1997-01-01

    Purpose: The use of metal oxide-silicon field effect transistors (MOSFETs) as clinical dosimeters is demonstrated for a number of patients with targets at different clinical sites. Methods and Materials: Commercially available MOSFETs were characterized for energy response, angular dependency of response, and effect of accumulated dose on sensitivity and some inherent properties of MOSFETs. The doses determined both by thermoluminescence dosimetry (TLD) and MOSFETs in clinical situation were evaluated and compared to expected doses determined by calculation. Results: It was observed that a standard calibration of 0.01 Gy/mV gave MOSFET determined doses which agreed with expected doses to within 5% at the 95% confidence limit for photon beams from 6 to 25 MV and electron beams from 5 to 14 MeV. An energy-dependent variation in response of up to 28% was observed between two orientations of a MOSFET. The MOSFET doses compared very well with the doses estimated by TLDs, and the patients tolerated MOSFETs very well. A standard deviation of 3.9% between expected dose and MOSFET determined dose was observed, while for TLDs the standard deviation was 5.1%. The advantages and disadvantages of using MOSFETs for clinical dosimetry are discussed in detail. Conclusion: It was concluded that MOSFETs can be used as clinical dosimeters and can be a good alternative to TLDs. However, they have limitations under certain clinical situations

  6. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developed for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98

  7. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  8. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  9. Dosimetry techniques applied to thermoluminescent age estimation

    International Nuclear Information System (INIS)

    Erramli, H.

    1986-12-01

    The reliability and the ease of the field application of the measuring techniques of natural radioactivity dosimetry are studied. The natural radioactivity in minerals in composed of the internal dose deposited by alpha and beta radiations issued from the sample itself and the external dose deposited by gamma and cosmic radiations issued from the surroundings of the sample. Two technics for external dosimetry are examined in details. TL Dosimetry and field gamma dosimetry. Calibration and experimental conditions are presented. A new integrated dosimetric method for internal and external dose measure is proposed: the TL dosimeter is placed in the soil in exactly the same conditions as the sample ones, during a time long enough for the total dose evaluation [fr

  10. Radiation Calibration Measurements

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  11. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  12. Survey of international personnel radiation dosimetry programs

    International Nuclear Information System (INIS)

    Swaja, R.E.

    1985-04-01

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  13. Quality control through dosimetry at a contract radiation processing facility

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Roediger, A.H.A.

    1985-01-01

    Reliable dosimetry procedures constitute a very important part of process control and quality assurance at a contract gamma radiation processing facility that caters for a large variety of different radiation applications. The choice, calibration and routine intercalibration of the dosimetry systems employed form the basis of a sound dosimetry policy in radiation processing. With the dosimetric procedures established, detailed dosimetric mapping of the irradiator upon commissioning (and whenever source modifications take place) is carried out to determine the radiation processing characteristics and peformance of the plant. Having established the irradiator parameters, routine dosimetry procedures, being part of the overall quality control measures, are employed. In addition to routine dosimetry, independent monitoring of routine dosimetry is performed on a bi-monthly basis and the results indicate a variation of better than 3%. On an annaul basis the dosimetry systems are intercalibrated through at least one primary standard dosimetry laboratory and to date a variation of better than 5% has been experienced. The company also participates in the Pilot Dose Assurance Service of the International Atomic Energy Agency, using the alanine/ESR dosimetry system. Routine calibration of the instrumentation employed is carried out on a regular basis. Detailed permanent records are compiled on all dosimetric and instrumentation calibrations, and the routine dosimetry employed at the plant. Certificates indicating the measured absorbed radiation doses are issued on request and in many cases are used for the dosimetric release of sterilized medical and pharmaceutical products. These procedures, used by Iso-Ster at its industrial gamma radiation facility, as well as the experience built up over a number of years using radiation dosimetry for process control and quality assurance are discussed. (author)

  14. Quality management system in the CIEMAT Radiation Dosimetry Service.

    Science.gov (United States)

    Martín, R; Navarro, T; Romero, A M; López, M A

    2011-03-01

    This paper describes the activities realised by the CIEMAT Radiation Dosimetry Service (SDR) for the implementation of a quality management system (QMS) in order to achieve compliance with the requirements of ISO/IEC 17025 and to apply for the accreditation for testing measurements of radiation dose. SDR has decided the accreditation of the service as a whole and not for each of its component laboratories. This makes it necessary to design a QMS common to all, thus ensuring alignment and compliance with standard requirements, and simplifying routine works as possible.

  15. Commission for the Accreditation of Birth Centers

    Science.gov (United States)

    ... Learning Login: Commissioners Birth Centers CABC Learning Place Home Accredited Birth Centers Find CABC Accredited Birth Centers What does ... In the Pursuit of Excellence You are here: Home In the ... for the Accreditation of Birth Centers (CABC) provides support, education, and accreditation to ...

  16. Standards of Quality: Accreditation Guidelines Redesigned

    Science.gov (United States)

    Forsythe, Hazel; Andrews, Frances; Stanley, M. Sue; Anderson, Carol L.

    2011-01-01

    To ensure optimal standards for AAFCS program accreditation, the Council for Accreditation (CFA) conducted a review and revision of the "2001 AAFCS Standards for Accreditation." The CFA took a three-pronged approach including (a) a review of academic accreditations that had relationships to the FCS disciplines, (b) concept, content, and process…

  17. 75 FR 59605 - National Veterinary Accreditation Program; Currently Accredited Veterinarians Performing...

    Science.gov (United States)

    2010-09-28

    .... APHIS-2006-0093] RIN 0579-AC04 National Veterinary Accreditation Program; Currently Accredited... Veterinary Accreditation Program (NVAP) may continue to perform accredited duties and to elect to continue to..., National Veterinary Accreditation Program, VS, APHIS, 4700 River Road Unit 200, Riverdale, MD 20737; (301...

  18. Accredited dose measurements for validation of radiation sterilized products

    DEFF Research Database (Denmark)

    Miller, A.

    1993-01-01

    for control of radiation sterilization. The accredited services include: 1. 1. Irradiation of dosimeters and test samples with cobalt-60 gamma rays. 2. 2. Irradiation of dosimeters and test samples with 10 MeV electrons. 3. 3. Issue of and measurement with calibrated dosimeters. 4. 4. Measurement...... of the dosimetric parameters of an irradiation facility. 5. 5. Measurement of absorbed dose distribution in irradiated products. The paper describes these services and the procedures necessary for their execution....

  19. [Accreditation of Independent Ethics Committees].

    Science.gov (United States)

    Ramiro Avilés, Miguel A

    According to Law 14/2007 and Royal Decree 1090/2015, biomedical research must be assessed by an Research Ethics Committee (REC), which must be accredited as an Research ethics committee for clinical trials involving medicinal products (RECm) if the opinion is issued for a clinical trial involving medicinal products or clinical research with medical devices. The aim of this study is to ascertain how IEC and IECm accreditation is regulated. National and regional legislation governing biomedical research was analysed. No clearly-defined IEC or IECm accreditation procedures exist in the national or regional legislation. Independent Ethics Committees are vital for the development of basic or clinical biomedical research, and they must be accredited by an external body in order to safeguard their independence, multidisciplinary composition and review procedures. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. List of Accredited Claims Agents

    Data.gov (United States)

    Department of Veterans Affairs — VA accreditation is for the sole purpose of providing representation services to claimants before VA and does not imply that a representative is qualified to provide...

  1. Accreditation, the reward for quality

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Arkansas Power and Light Co. (AP and L) includes safety along with efficiency in the ''bottom line'' of a quality training program designed to improve performance at its nuclear units. The program keeps operators aware of design and refueling as well as regulatory changes. The Institute of Nuclear Power Operations (INPO) accredited the utility's operator training program in 1984. The article cites examples of the training program, and gives an overview of the INPO team's analysis that led to accreditation

  2. The Seibersdorf TL Personnel Dosimetry Service

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-11-01

    Since 1976 the Department for Radiation Protection of the Austrian Research Centre Seibersdorf has been operating a TLD Personnel Monitoring Service, which presently covers about 18,000 radiation workers in Austria, with monthly monitoring periods. We have been the first accredited monitoring service in Europe, which fully converted from film dosimetry to TLD. From the beginning up to 1991 the service was based on three automated TLD systems Model 2271 from HARSHAW, USA. After extensive testing and comparisons, since almost four years now, the monitoring service has been operating on two HARSHAW 8800 systems, which are described in more detail below. (author)

  3. The Seibersdorf TL Personnel Dosimetry Service

    Energy Technology Data Exchange (ETDEWEB)

    Duftschmid, K E [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria)

    1994-11-01

    Since 1976 the Department for Radiation Protection of the Austrian Research Centre Seibersdorf has been operating a TLD Personnel Monitoring Service, which presently covers about 18,000 radiation workers in Austria, with monthly monitoring periods. We have been the first accredited monitoring service in Europe, which fully converted from film dosimetry to TLD. From the beginning up to 1991 the service was based on three automated TLD systems Model 2271 from HARSHAW, USA. After extensive testing and comparisons, since almost four years now, the monitoring service has been operating on two HARSHAW 8800 systems, which are described in more detail below. (author).

  4. Radiation dosimetry

    International Nuclear Information System (INIS)

    Harper, M.W.; Thomas, B.; Conway, J.

    1977-01-01

    A dosemeter is described that is based on the TSCD principle (thermally stimulated current dosimetry). Basically this involves irradiating a responsive material and then heating it,whereby an electric current is produced. If the material is heated in an electric field the peak value of the thermally stimulated current or alternatively the total charge released by heating, can be related to the radiation dose received. The instrument described utilises a sheet coated with a thermoplastic polymer, such as a poly4-methylpent-l-ene. The polymer should have a softening point not lower than 150 0 C with an electrical resistivity of at least 10 16 chms/cm at 150 0 C. The polymer may also be PTFE. Heating should be in the range 150 0 C to 200 0 C and the electric field in the range 50 to 10,000V/mm. (U.K.)

  5. Technical basis document for internal dosimetry

    CERN Document Server

    Hickman, D P

    1991-01-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosi...

  6. Organ dosimetry

    International Nuclear Information System (INIS)

    Kaul, Dean C.; Egbert, Stephen D.; Otis, Mark D.; Kuhn, Thomas; Kerr, George D.; Eckerman, Keith F.; Cristy, Mark; Ryman, Jeffrey C.; Tang, Jabo S.; Maruyama, Takashi

    1987-01-01

    This chapter describes the technical approach, complicating factors, and sensitivities and uncertainties of calculations of doses to the organs of the A-bomb survivors. It is the object of the effort so described to provide data that enables the dosimetry system to determine the fluence, kerma, absorbed dose, and similar quantities in 14 organs and the fetus, specified as being of radiobiological interest. This object was accomplished through the use of adjoint Monte Carlo computations, which use a number of random particle histories to determine the relationship of incident neutrons and gamma rays to those transported to a target organ. The system uses these histories to correlate externally-incident energy- and angle-differential fluences with the fluence spectrum (energy differential only) within the target organ. In order for the system to work in the most efficient manner possible, two levels of data were provided. The first level, represented by approximately 6,000 random adjoint-particle histories, enables the computation of the fluence spectrum with sufficient precision to provide statistically reliable (± 6 %) mean doses within any given organ. With this limited history inventory, the system can be run rapidly for all survivors. Mean organ dose and dose uncertainty are obtainable in this mode. The second mode of operation enables the system to produce a good approximation to fluence spectrum within any organ or to produce the dose in each of an array of organ subvolumes. To be statistically reliable, this level of detail requires far more random histories, approximately 40,000 per organ. Thus, operation of the dosimetry system in this mode (i.e., with this data set) is intended to be on an as-needed, organ-specific basis, since the system run time is eight times that in the mean dose mode. (author)

  7. Calibration of well-type ionization chambers

    International Nuclear Information System (INIS)

    Alves, C.F.E.; Leite, S.P.; Pires, E.J.; Magalhaes, L.A.G.; David, M.G.; Almeida, C.E. de

    2015-01-01

    This paper presents the methodology developed by the Laboratorio de Ciencias Radiologicas and presently in use for determining of the calibration coefficient for well-type chambers used in the dosimetry of 192 Ir high dose rate sources. Uncertainty analysis involving the calibration procedure are discussed. (author)

  8. Secondary standard dosimetry laboratory at INFLPR

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  9. Dosimetry for electron beam application

    International Nuclear Information System (INIS)

    Miller, A.

    1983-12-01

    This report describes two aspects of electron beam dosimetry, on one hand development of film dosimeters and measurements of their properties, and on the other hand development of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimeters have been developed in this department, and the properties of these and commercially available dosimeters have been measured and found to be comparable. Calorimeters which are in use for routine measurements, are being investigated with reference to their application as standardizing instruments, and new calorimeters are being developed. (author)

  10. Organisation of a laboratory of photographic dosimetry

    International Nuclear Information System (INIS)

    Soudain, Georges

    1961-01-01

    After a recall of the main properties of photographic dosimetry, the author describes the principle of this method, and comments the issue of chromatic sensitivity of photographic emulsions. He discusses the calibration process for gamma radiation, X rays, and thermal neutrons. He describes how fast neutron dosimetry is performed. In the next part, he describes the organisation of the photometry laboratory which has to prepare and distribute dosimeters, to collect and exploit them, and to prepare a publication of results. These different missions and tasks are described

  11. 5th symposium on neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F

    1985-03-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of /sup 252/Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.).

  12. 5th symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    Spurny, F.

    1985-01-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of 252 Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.)

  13. Dosimetry and process control for radiation processing

    International Nuclear Information System (INIS)

    Mod Ali, N.

    2002-01-01

    Complete text of publication follows. Accurate radiation dosimetry can provide quality assurance in radiation processing. Considerable relevant experiences in dosimetry by the SSDL-MINT has necessitate the development of methods making measurement at gamma plant traceable to the national standard. It involves the establishment of proper calibration procedure and selection of appropriate transfer system/technique to assure adequate traceability to a primary radiation standard. The effort forms the basis for irradiation process control, the legal approval of the process by the public health authorities (medical product sterilization and food preservation) and the safety and acceptance of the product

  14. Situation analysis of occupational and environmental health laboratory accreditation in Thailand.

    Science.gov (United States)

    Sithisarankul, Pornchai; Santiyanont, Rachana; Wongpinairat, Chongdee; Silva, Panadda; Rojanajirapa, Pinnapa; Wangwongwatana, Supat; Srinetr, Vithet; Sriratanaban, Jiruth; Chuntutanon, Swanya

    2002-06-01

    The objective of this study was to analyze the current situation of laboratory accreditation (LA) in Thailand, especially on occupational and environmental health. The study integrated both quantitative and qualitative approaches. The response rate of the quantitative questionnaires was 54.5% (226/415). The majority of the responders was environmental laboratories located outside hospital and did not have proficiency testing. The majority used ISO 9000, ISO/IEC 17025 or ISO/ EEC Guide 25, and hospital accreditation (HA) as their quality system. However, only 30 laboratories were currently accredited by one of these systems. Qualitative research revealed that international standard for laboratory accreditation for both testing laboratory and calibration laboratory was ISO/IEC Guide 25, which has been currently revised to be ISO/IEC 17025. The National Accreditation Council (NAC) has authorized 2 organizations as Accreditation Bodies (ABs) for LA: Thai Industrial Standards Institute, Ministry of Industry, and Bureau of Laboratory Quality Standards, Department of Medical Sciences, Ministry of Public Health. Regarding LA in HA, HA considered clinical laboratory as only 1 of 31 items for accreditation. Obtaining HA might satisfy the hospital director and his management team, and hence might actually be one of the obstacles for the hospital to further improve their laboratory quality system and apply for ISO/IEC 17025 which was more technically oriented. On the other hand, HA may be viewed as a good start or even a pre-requisite for laboratories in the hospitals to further improve their quality towards ISO/IEC 17025. Interviewing the director of NAC and some key men in some large laboratories revealed several major problems of Thailand's LA. Both Thai Industrial Standards Institute and Bureau of Laboratory Quality Standards did not yet obtain Mutual Recognition Agreement (MRA) with other international ABs. Several governmental bodies had their own standards and

  15. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  16. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  17. Personal dosimetry performance testing in the United States

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2008-01-01

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11. Now in it's fourth edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Laboratory Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by U.S. Nuclear Regulatory Commission (NRC) regulations. The U.S. Department of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Department of Energy Laboratory Accreditation Program (DOELAP). One of the goals of this current revision was the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonization to U.S. personal dosemeter performance testing. The testing philosophy of ANSI/HPS N13.11 has always combined elements of type testing and routine performance testing and is thus different from the testing philosophy used in the rest of the world. In this paper, the history of performance testing in the U.S. is briefly reviewed. Also described is the revision that produced the fourth edition of this standard, which has taken place over the last three years (2005-2008) by a working group representing national standards laboratories, government laboratories, the military, dosimetry vendors, universities and the nuclear power industry. (author)

  18. Neutron dosimetry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W

    1955-03-29

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  19. Standards in radiation protection at the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Czap, L.; Pernicka, F.; Matscheko, G.; Andreo, P.

    1999-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the Agency is making every necessary effort to insure that SSDLs measurements in radiation protection are traceable to Primary Standards. The IAEA provides traceable calibrations of ionization chambers in terms of air kerma at radiation protection levels and ambient dose equivalent calibrations. SSDLs are encouraged to use the calibrations available from the Agency to provide traceability for their radiation protection measurements. Measurements on diagnostic X ray generators have become increasingly important in radiation protection and some SSDLs are involved in such measurements. The IAEA has proper radiation sources available to provide traceable calibrations to the SSDLs in this field, including an X ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory will be described. (author)

  20. The program director and accreditation

    International Nuclear Information System (INIS)

    Tristan, T.A.; Capp, M.P.; Krabbenhoft, K.L.; Armbruster, J.S.

    1987-01-01

    Field Survey is contrasted with the Specialist Site Visitor. The discussion addresses the reasons for different types of surveys and how the surveys and the Hospital Information Form are used in evaluating a graduate residency program in radiology for accreditation. The Residency Review Committee for Radiology (RRC) and the staff of the Accreditation Council for Graduate Medical Education (ACGME) of Residencies in Radiology offer a program for program directors and other interested leaders in graduate programs in radiology. The authors explain the review and accreditation process for residencies in radiology with special emphasis on the preparation for inspection by accurate and full completion of the Hospital Information Form on which the program is judged, and the nature of the inspection procedures

  1. Individual monitoring dosimetry in Europe

    International Nuclear Information System (INIS)

    Menzel, H.G.

    1991-01-01

    This report discusses the various types of individual monitoring systems presently in use within the European community and neutron dosimetry research being coordinated by the EURADOS working group. Research is currently being conducted on nuclear track dosimeters, primarily with CR-39 (TM), and TLD-albedo dosimeters. Studies are being conducted on the energy and angular response of each type of dosimeter. Because the response of dosimeters depends on the energy of the neutrons, it is necessary to have spectral information to accurately assess the dose. Neutron energy spectrum measurements are being performed in typical work place environments. Work is also progressing on development of calibration sources which will be representative of the neutron energy spectrum found in typical neutron exposure situations. This work utilizes 14 MeV neutrons incident on a uranium block with various other filters. Research is also continuing on neutron dosimetry using tissue equivalent proportional counters and microdosimetric techniques. The results of intercomparisons between several different instruments are discussed. In addition to personnel dosimetry, these systems are being used to record the dose to passengers and flight crews aboard commercial aircraft

  2. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  3. Laboratory accreditation in developing economies

    International Nuclear Information System (INIS)

    Loesener, O.

    2004-01-01

    Full text: Accreditation of laboratories has been practiced for well over one hundred years with the primary objective of seeking a formal recognition for the competence of a laboratory to perform specified tests or measurements. While first accreditation schemes intended initially to serve only the immediate needs of the body making the evaluation with the purpose of minimizing testing and inspection to be conducted by laboratories, third-party accreditation enables a laboratory to demonstrate its capability as well as availability of all necessary resources to undertake particular tests correctly and that is managed in such a way that it is likely to do this consistently, taking into consideration standards developed by national and international standards-setting bodies. The international standard ISO/IEC 17025 and laboratory accreditation are concerned with competence and quality management of laboratories only, thus requiring a single common set of criteria applicable to them. Quality assurance is therefore fully relevant to laboratories in general and analytical laboratories in particular; it should not be confused with the certification approach according to ISO/IEC 9000 family of standards, that is concerned with quality management applicable to any organization as a whole. The role of laboratory accreditation can be manifold, but in all cases the recipient of the test report needs to have confidence that the data in it is reliable, particularly if the test data is important in a decision-making process. As such, it offers a comprehensive way to ensure: - the availability of managerial and technical staff with the authority and resources needed; - the effectiveness of equipment management, traceability of measurement and safety procedures; - the performance of tests, taking into consideration laboratory accommodation and facilities as well as laboratory practices. The presentation will include also some practical aspects of quality management system

  4. Software for evaluation of EPR-dosimetry performance

    International Nuclear Information System (INIS)

    Shishkina, E.A.; Timofeev, Yu.S.; Ivanov, D.V.

    2014-01-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty. (authors)

  5. Dosimetry system 1986

    International Nuclear Information System (INIS)

    Woolson, William A.; Egbert, Stephen D.; Gritzner, Michael L.

    1987-01-01

    In May 1983, the authors proposed a dosimetry system for use by the Radiation Effects Research Foundation (RERF) that would incorporate the new findings and calculations of the joint United States - Japan working groups on the reassessment of A-bomb dosimetry. The proposed dosimetry system evolved from extensive discussions with RERF personnel, numerous meetings of the scientists from Japan and the United States involved in the dosimetry reassessment research, and requirements expressed by epidemiologists and radiobiologists on the various review panels. The dosimetry system proposed was based on considerations of the dosimetry requirements for the normal work of RERF and for future research in radiobiology, the computerized input data on A-bomb survivors available in the RERF data base, the level of detail, precision, and accuracy of various components of the dosimetric estimates, and the computer resources available at RERF in Hiroshima. These discussions and our own experience indicated that, in light of the expansion of computer and radiation technologies and the desire for more detail in the dosimetry, an entirely new approach to the dosimetry system was appropriate. This resulted in a complete replacement of the T65D system as distinguished from a simpler approach involving a renormalization of T65D parameters to reflect the new dosimetry. The proposed dosimetry system for RERF and the plan for implementation was accepted by the Department of Energy (DOE) Working Group on A-bomb Dosimetry chaired by Dr. R.F. Christy. The dosimetry system plan was also presented to the binational A-bomb dosimetry review groups for critical comment and was discussed at joint US-Japan workshop. A prototype dosimetry system incorporating preliminary dosimetry estimates and applicable to only a limited set of A-bomb survivors was installed on the RERF computer system in the fall of 1984. This system was successfully operated at RERF and provided an initial look at the impact of

  6. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  7. A journey to accreditation: is ISO 15189 laboratory accreditation ...

    African Journals Online (AJOL)

    Through this journey we comprehend that the first step before accreditation is building enthusiastic team with education on quality management system. Other steps include selection of methods, developing or improving the metrology system, definition and structure of documents, preparation of a quality manual, SOPs, ...

  8. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    Orlic, M.; Spasic-Jokic, V.; Jovanovic, M.; Vranjes, S. . E-mail address of corresponding author: morlic@vin.bg.ac.yu; Orlic, M.)

    2005-01-01

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  9. Dosimetry on the radiological risks prevention in radiotherapy

    International Nuclear Information System (INIS)

    Fornet R, O. M.; Perez G, F.

    2014-08-01

    Dosimetry in its various forms plays a determining role on the radiological risks prevention in radiotherapy. To prove this in this paper is shown an analysis based on the risk matrix method, how the dosimetry can influence in each stages of a radiotherapy service; installation and acceptance, operation, maintenance and calibration. For each one of these stages the role that can play is analyzed as either the initiating event of a radiological accident or limiting barrier of these events of the dosimetric processes used for the individual dosimetry, the area monitoring, fixed or portable, for radiation beam dosimetry and of the patients for a radiotherapy service with cobalt-therapy equipment. The result of the study shows that the application of a prospective approach in the role evaluation of dosimetry in the prevention and mitigation of the consequences of a radiological accident in radiotherapy is crucial and should be subject to permanent evaluation at each development stage of these services. (author)

  10. Practical applications of the new ICRP recommendation to external dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.

    1992-01-01

    Focussing on external dosimetry for occupational exposure the consequences of the new quantities equivalent dose (radiation weighting factor), effective dose (tissue weighting factor) and the ICRU operational quantities for individual and area dosimetry are discussed. Despite some arguments against the new quantities they should be introduced as rapidly as possible to keep international uniformity in radiation protection monitoring. It is shown that they provide a conservative estimate of the effective dose for photons and neutrons. In photon dosimetry only minor changes of the conversion factors relating operational quantities to effective dose is observed. In neutron dosimetry the conversion factors change by a factor of up to 2. It is pointed out that there is a urgent need to calculate standardized conversion factors for field quantities -operational quantities- organ and effective dose in a joint effort of ICRP and ICRU. This includes standardization of calibration methods for individual dosimetry using suitable phantoms instead of the sphere. (author)

  11. Role of secondary standard dosimetry laboratory in radiation protection program

    International Nuclear Information System (INIS)

    Rahman, Sohaila; Ali, Noriah Mohd.

    2008-01-01

    Full text: The radiation dosimetry program is an important element of operational radiation protection. Dosimetry data enable workers and radiation protection professionals to evaluate and control work practices to eliminate unnecessary exposure to ionizing radiation. The usefulness of the data produced however depends on its quality and traceability. The emphasis of the global dosimetry program is focused through the IAEA/WHO network of secondary standard dosimetry laboratories (SSDLs), which aims for the determination of SI quantities through proper traceable calibration of radiation protection equipment. The responsibility of SSDL-NUCLEAR MALAYSIA to guarantee a reliable dosimetry service, which is traceable to international standards, is elucidated. It acts as the basis for harmonized occupational radiation monitoring in Malaysia.

  12. 22 CFR 96.63 - Renewal of accreditation or approval.

    Science.gov (United States)

    2010-04-01

    ... for renewal in a timely fashion. Before deciding whether to renew the accreditation or approval of an... accrediting entity or the Secretary during its most current accreditation or approval cycle, the accrediting...

  13. Dosimetry systems for radiation processing in Japan

    International Nuclear Information System (INIS)

    Tamura, Naoyuki

    1995-01-01

    The present situation of dosimetry systems for radiation processing industry in Japan is reviewed. For gamma-rays irradiation the parallel-plate ionization chamber in TRCRE, JAERI has been placed as a reference standard dosimeter for processing-level dose. Various solid and liquid chemical dosimeters are used as routine dosimeters for gamma processing industries. Alanine dosimeters is used for the irradiation purpose which needs precise dosimetry. For electron-beam irradiation the electron current density meter and the total absorption calorimeter of TRCRE are used for the calibration of routine dosimeters. Plastic film dosimeters, such as cellulose triacetate and radiochromic dye are used as routine dosimeters for electron processing industries. When the official traceability systems for processing-level dosimetry now under investigation is completed, the ionization chamber of TRCRE is expected to have a role of the primary standard dosimeter and the specified alanine dosimeter will be nominated for the secondary or reference standard dosimeter. (author)

  14. Performance testing of UK personal dosimetry laboratories

    CERN Document Server

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  15. Performance testing of UK personal dosimetry laboratories

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it are also estimated. (author)

  16. Clinical Psychology Training: Accreditation and Beyond.

    Science.gov (United States)

    Levenson, Robert W

    2017-05-08

    Beginning with efforts in the late 1940s to ensure that clinical psychologists were adequately trained to meet the mental health needs of the veterans of World War II, the accreditation of clinical psychologists has largely been the province of the Commission on Accreditation of the American Psychological Association. However, in 2008 the Psychological Clinical Science Accreditation System began accrediting doctoral programs that adhere to the clinical science training model. This review discusses the goals of accreditation and the history of the accreditation of graduate programs in clinical psychology, and provides an overview of the evaluation procedures used by these two systems. Accreditation is viewed against the backdrop of the slow rate of progress in reducing the burden of mental illness and the changes in clinical psychology training that might help improve this situation. The review concludes with a set of five recommendations for improving accreditation.

  17. ORIGINAL ARTICLES Academic hospital accreditation strengthens ...

    African Journals Online (AJOL)

    This case study originated from the combined experiences of the accreditation process of a ... (iv) the benefits of hospital accreditation and quality management. The study ... Tertiary healthcare is in a crisis after nearly 3 decades of neglect,2,3.

  18. Lyoluminescence dosimetry of the radiation in industrial doses

    International Nuclear Information System (INIS)

    Vigna Filho, E. del.

    1984-01-01

    The γ-rays lyoluminescence (LL) dosimetry study is presented. The basic principles involved, both in the method and radiation dosimetry, the equivalence between water and lyoluminescent materials, apparatus, irradiation technique and calibration method are discussed. The LL response dependence with environmental conditions are presented. These were temperature, humidity, storage time and the dependence on dissolved mass. A pre-reading thermal treatment was developed to overcome previous difficulties. The developed technique was applied to dose intercomparisons. (M.A.C.) [pt

  19. Accreditation and Educational Quality: Are Students in Accredited Programs More Academically Engaged?

    Science.gov (United States)

    Cole, James S.; Cole, Shu T.

    2008-01-01

    There has been a great deal of debate regarding the value of program accreditation. Two research questions guided this study: 1) are students enrolled in accredited parks, recreation, and leisure programs more academically engaged than students enrolled in non-accredited programs, and 2) do students enrolled in accredited parks, recreation, and…

  20. Accreditation to supervise research

    International Nuclear Information System (INIS)

    Calvet, D.

    2011-01-01

    In this document the author reviews his works between 1995 and 2010. First, the development of a silicon pixel detector is detailed, the purpose of this detector was to improve the forward proton spectrometer of the H1 experiment at DESY. The works made to develop the reading circuits of the pixel detector are presented, particularly the design of the test bench for the testing of these circuits and the simulation of their behaviour in realistic environment. The second part describes the design of the front electronic for the data acquisition of the calorimeter detector of ATLAS (TileCal) and its testing system (MobiDICK). The software for the control system of the laser calibration of TileCal is detailed. The last part gives an account of the author's activities in the field of science popularization through the 'Cosmophone' and knowledge dissemination. The Cosmophone is a particle detector that turns the passage of particles into sounds in order to make the general public more aware of the presence of particles

  1. 7 CFR 205.506 - Granting accreditation.

    Science.gov (United States)

    2010-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Accreditation of Certifying Agents § 205.506 Granting accreditation. (a... accreditation as provided in § 205.510(c), the certifying agent voluntarily ceases its certification activities...

  2. The Role of Accreditation in Consumer Protection.

    Science.gov (United States)

    Warner, W. Keith; Andersen, Kay J.

    1982-01-01

    Upper-level college administrators in the Western accreditation region were surveyed about how well the Western Association of Schools and Colleges (WASC) served its constituency. Questions concerned consumer protection as an objective of accreditation, emphasis on disseminating information about the accreditation process, and potential policy…

  3. Statistical analysis of personal dosimetry of exposed workers; Analisis estadistico de la dosimetria personal de trabajadores expuestos

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Munoz, F. J.; Alejo Luque, L.; Mas Munoz, I.; Serrada Hierro, A.

    2013-07-01

    The dosimetry centers accredited by the Nuclear Safety Council (CSN) normally report overcoming legal limits, or some fraction thereof, but do not provide comparative dosimetric criteria indicating if assigned to a given dose is large TPE or small relative to that of their peers. In order to help to resolve the difficulties mentioned ds, it has developed an application that statistically processes the dosimetric data provided by the National Dosimetry Center. (Author)

  4. Dosimetry intercomparisons between fast neutron radiotherapy facilities

    International Nuclear Information System (INIS)

    Almond, P.R.; Smith, A.R.; Smathers, J.B.; Otte, V.A.

    1975-01-01

    Neutron dosimetry intercomparisons have been made between M.D. Anderson Hospital and Tumor Institute, Naval Research Laboratory, University of Washington Hospital, and Hammersmith Hospital. The parameters that are measured during these visits are: tissue kerma in air, tissue dose at depth of dose maximum, depth dose, beam profiles, neutron/gamma ratios and photon calibrations of ionization chambers. A preliminary report of these intercomparisons will be given including a comparison of the calculation and statement of tumor doses for each institution

  5. Evaluation of surface contamination based on certifiably traceable, internationally accreditable measurements

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1992-01-01

    National Accreditation and Measurement Service (NAMAS) adopted by the EUROMET agreement requires that the calibration of monitoring instruments be traceable internationally with the objective that radiation hazard assessment be improved. This objective is achieved for Tritium surface contamination by employing calibration sources and evaluation methods which comply with ISO standards including the measurement of activity removable by Volatilization as well as dust. Consideration should be given to organic binding of tritium in the skin with its implications in the event of litigation. (author)

  6. Accreditation in general practice in Denmark

    DEFF Research Database (Denmark)

    Andersen, Merethe K; Pedersen, Line B; Siersma, Volkert

    2017-01-01

    Background: Accreditation is used increasingly in health systems worldwide. However, there is a lack of evidence on the effects of accreditation, particularly in general practice. In 2016 a mandatory accreditation scheme was initiated in Denmark, and during a 3-year period all practices, as default...... general practitioners in Denmark. Practices allocated to accreditation in 2016 serve as the intervention group, and practices allocated to accreditation in 2018 serve as controls. The selected outcomes should meet the following criteria: (1) a high degree of clinical relevance; (2) the possibility...... practice and mortality. All outcomes relate to quality indicators included in the Danish Healthcare Quality Program, which is based on general principles for accreditation. Discussion: The consequences of accreditation and standard-setting processes are generally under-researched, particularly in general...

  7. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2015-01-01

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  8. Thermoluminescence in medical dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.

    2011-10-01

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  9. TRS 398 dosimetry protocol for radiotherapy

    International Nuclear Information System (INIS)

    Palmans, H.; Smyth, V.

    2004-01-01

    Full text: In recent years, international codes of practice based on absorbed dose to water standards have been published for the clinical reference dosimetry of external beams. It has become widely accepted that dosimetry of radiotherapeutic beams should be based on these standards. These codes of practice are a major improvement over earlier ones that used air kerma calibration factors as they are based on a calibration directly in a phantom in terms of the quantity of interest. The previous codes begin with calibration in air in terms of air kerma, then use theoretical and generic conversion factors to obtain dose to water that do not take account of chamber-to-chamber variation. Other good reasons for implementing the new codes are that they are conceptually simpler, include improved physical data and improve the consistency for various ionisation chamber types as well as between different beam types. TRS-3982,3 is a new Code of Practice (CoP) for reference dosimetry of external radiotherapy beams based on absorbed dose to, water calibrations and was published by the IAEA in a joint effort with the WHO, PAHO and ESTRO. It is the first CoP of its kind comprehensively covering all external radiotherapy beams except neutrons. The Radiotherapy Interest Group (RJG) of the ACPSEM has recommended that radiotherapy centres in Australia and New Zealand implement this CoP by the end of 2004. In this workshop, the general philosophy of the CoP will be outlined which will provide a framework for each of the individual subcodes. Although it represents just one of the potential implementations of the CoP, this workshop will deal only with dosimetry based on a cylindrical ionisation chamber with an absorbed dose calibration factor in 60Co from the standards laboratory. With the framework of the code in mind, it is straightforward to identify the basic steps that are required for measuring absorbed dose under reference conditions in a high-energy photon beam. The same is true

  10. Commissioning dosimetry for the laboratory irradiation facility type PX-γ-30

    International Nuclear Information System (INIS)

    Prieto Miranda, E.F.; Cuesta Fuente, G.I.; Chavez Ardanza, A.; Sainz Vidal, D.

    1997-01-01

    In the present paper at the laboratory irradiation type PX-y-30 was carried out the commissioning dosimetry, which belongs to Radiological Department of the CEADEN. It was determined the dose distribution as well as principal dosimetric parameters of the irradiation process. Besides, an irradiation position was found for the calibration or intercomparison of dosimetry systems

  11. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  12. Internal sources dosimetry

    International Nuclear Information System (INIS)

    Savio, Eduardo

    1994-01-01

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  13. Quality assurance in the measurement of internal radioactive contamination and dose assessment and the United States Department of Energy Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Bhatt, Anita

    2016-01-01

    The Quality Assurance for analytical measurement of internal radioactive contamination and dose assessment in the United States (US) is achieved through the US Department of Energy (DOE) Laboratory Accreditation Program (DOELAP) for both Dosimetry and Radio bioassay laboratories for approximately 150,000 radiation workers. This presentation will explain the link between Quality Assurance and the DOELAP Accreditation process. DOELAP is a DOE complex-wide safety program that ensures the quality of worker radiation protection programs. DOELAP tests the ability of laboratories to accurately measure and quantify radiation dose to workers and assures the laboratories quality systems are capable of defending and sustaining their measurement results. The United States Law in Title 10 of the Code of Federal Regulations 835 requires that personnel Dosimetry and Radio bioassay programs be tested and accredited

  14. [ISO 15189 medical laboratory accreditation].

    Science.gov (United States)

    Aoyagi, Tsutomu

    2004-10-01

    This International Standard, based upon ISO/IEC 17025 and ISO 9001, provides requirements for competence and quality that are particular to medical laboratories. While this International Standard is intended for use throughout the currently recognized disciplines of medical laboratory services, those working in other services and disciplines will also find it useful and appropriate. In addition, bodies engaged in the recognition of the competence of medical laboratories will be able to use this International Standard as the basis for their activities. The Japan Accreditation Board for Conformity Assessment (AB) and the Japanese Committee for Clinical Laboratory Standards (CCLS) are jointly developing the program of accreditation of medical laboratories. ISO 15189 requirements consist of two parts, one is management requirements and the other is technical requirements. The former includes the requirements of all parts of ISO 9001, moreover it includes the requirement of conformity assessment body, for example, impartiality and independence from any other party. The latter includes the requirements of laboratory competence (e.g. personnel, facility, instrument, and examination methods), moreover it requires that laboratories shall participate proficiency testing(s) and laboratories' examination results shall have traceability of measurements and implement uncertainty of measurement. Implementation of ISO 15189 will result in a significant improvement in medical laboratories management system and their technical competence. The accreditation of medical laboratory will improve medical laboratory service and be useful for patients.

  15. Hospital accreditation: staff experiences and perceptions.

    Science.gov (United States)

    Bogh, Søren Bie; Blom, Ane; Raben, Ditte Caroline; Braithwaite, Jeffrey; Thude, Bettina; Hollnagel, Erik; Plessen, Christian von

    2018-06-11

    Purpose The purpose of this paper is to understand how staff at various levels perceive and understand hospital accreditation generally and in relation to quality improvement (QI) specifically. Design/methodology/approach In a newly accredited Danish hospital, the authors conducted semi-structured interviews to capture broad ranging experiences. Medical doctors, nurses, a quality coordinator and a quality department employee participated. Interviews were audio recorded and subjected to framework analysis. Findings Staff reported that The Danish Healthcare Quality Programme affected management priorities: office time and working on documentation, which reduced time with patients and on improvement activities. Organisational structures were improved during preparation for accreditation. Staff perceived that the hospital was better prepared for new QI initiatives after accreditation; staff found disease specific requirements unnecessary. Other areas benefited from accreditation. Interviewees expected that organisational changes, owing to accreditation, would be sustained and that the QI focus would continue. Practical implications Accreditation is a critical and complete hospital review, including areas that often are neglected. Accreditation dominates hospital agendas during preparation and surveyor visits, potentially reducing patient care and other QI initiatives. Improvements are less likely to occur in areas that other QI initiatives addressed. Yet, accreditation creates organisational foundations for future QI initiatives. Originality/value The authors study contributes new insights into how hospital staff at different organisational levels perceive and understand accreditation.

  16. ESR/Alanine {gamma}-dosimetry in the 10-30 Gy range

    Energy Technology Data Exchange (ETDEWEB)

    Fainstein, C. E-mail: cfainstein@cab.cnea.gov.ar; Winkler, E.; Saravi, M

    2000-05-15

    We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for {gamma}-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in {gamma}-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.

  17. Measurement uncertainty. A practical guide for Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    2008-05-01

    The need for international traceability for radiation dose measurements has been understood since the early nineteen-sixties. The benefits of high dosimetric accuracy were recognized, particularly in radiotherapy, where the outcome of treatments is dependent on the radiation dose delivered to patients. When considering radiation protection dosimetry, the uncertainty may be greater than for therapy, but proper traceability of the measurements is no less important. To ensure harmonization and consistency in radiation measurements, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) created a Network of Secondary Standards Dosimetry Laboratories (SSDLs) in 1976. An SSDL is a laboratory that has been designated by the competent national authorities to undertake the duty of providing the necessary link in the traceability chain of radiation dosimetry to the international measurement system (SI, for Systeme International) for radiation metrology users. The role of the SSDLs is crucial in providing traceable calibrations; they disseminate calibrations at specific radiation qualities appropriate for the use of radiation measuring instruments. Historically, although the first SSDLs were established mainly to provide radiotherapy level calibrations, the scope of their work has expanded over the years. Today, many SSDLs provide traceability for radiation protection measurements and diagnostic radiology in addition to radiotherapy. Some SSDLs, with the appropriate facilities and expertise, also conduct quality audits of the clinical use of the calibrated dosimeters - for example, by providing postal dosimeters for dose comparisons for medical institutions or on-site dosimetry audits with an ion chamber and other appropriate equipment. The requirements for traceable and reliable calibrations are becoming more important. For example, for international trade where radiation products are manufactured within strict quality control systems, it is

  18. Report of a consultants meeting on dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Pernicka, F.

    1999-01-01

    During its biennial meeting in 1996, the Standing Advisory Committee 'SSDL Scientific Committee', recommended extending the long experience of the Agency in the field of standardization and monitoring dosimetry calibrations at radiotherapy and radiation protection level for the Secondary Standard Dosimetry Laboratory (SSDL) Network, to the field of diagnostic x-ray dosimetry. It was emphasized that 'Measurements on diagnostic x-ray machines have become increasingly important and some SSDLs are involved in such measurements. The Agency's dosimetry laboratory should, therefore, have proper radiation sources available to provide traceable calibrations to the SSDLs'. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments

  19. History of personal dosimetry performance testing in the United States

    International Nuclear Information System (INIS)

    Soares, C. G.

    2007-01-01

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11 (2001). Now in its third edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by US Nuclear Regulatory Commission (NRC) regulations. The US Dept. of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Dept. of Energy Laboratory Accreditation Program (DOELAP). A focus in recent years has been the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonisation to US personal dosemeter processing testing. Since there is no type testing program in the US for personal dosemeters, the testing philosophy of ANSI N13.11 has always combined elements of type testing and routine performance testing. This philosophy is explored in detail in this presentation, along with trends in the development of the document to its present state. In addition, a look will be taken at what the future holds for the next revision of the document, scheduled to begin in 2005. (authors)

  20. Personal dosimetry performance testing in the United States

    International Nuclear Information System (INIS)

    Soares, C.G.

    2005-01-01

    Full text: The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11 (2002). Now in its third edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by US Nuclear Regulatory Commission (NRC) regulations. The US Department of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Department of Energy Laboratory Accreditation Program (DOELAP). A focus in recent years has been the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonization to US personal dosimeter processing testing. The testing philosophy of ANSI N13.11 has always combined elements of type testing and routine performance testing and is thus different from the testing philosophy used in the rest of the world. This unique philosophy is explored in detail in this presentation, along with trends in the development of the document to its present state. In addition, a look will be taken at what the future holds for the next revision of the document, scheduled to begin in 2005. (author)

  1. Nuclear accident dosimetry

    International Nuclear Information System (INIS)

    1982-01-01

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  2. Personal dosimetry in Kazakhstan

    International Nuclear Information System (INIS)

    Khvoshnyanskaya, I.R.; Vdovichenko, V.G.; Lozbin, A.Yu.

    2003-01-01

    KATEP-AE Radiation Laboratory is the first organization in Kazakhstan officially licensed by the Kazakhstan Atomic Energy Committee to provide individual dosimetry services. The Laboratory was established according to the international standards. Nowadays it is the largest company providing personal dosimetry services in the Republic of Kazakhstan. (author)

  3. Nuclear accident dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  4. 100 years of solid state dosimetry and radiation protection dosimetry

    International Nuclear Information System (INIS)

    Bartlett, David T.

    2008-01-01

    The use of solid state detectors in radiation dosimetry has passed its 100th anniversary. The major applications of these detectors in radiation dosimetry have been in personal dosimetry, retrospective dosimetry, dating, medical dosimetry, the characterization of radiation fields, and also in microdosimetry and radiobiology research. In this introductory paper for the 15th International Conference, I shall speak of the history of solid state dosimetry and of the radiation measurement quantities that developed at the same time, mention some landmark developments in detectors and applications, speak a bit more about dosimetry and measurement quantities, and briefly look at the past and future

  5. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  6. Guidelines for the calibration of personnel dosimeters

    International Nuclear Information System (INIS)

    Roberson, P.L.; Holbrook, K.L.

    1984-01-01

    This guide describes minimum acceptable performance levels for personnel dosimetry systems used at Department of Energy (DOE) facilities. The goal is to improve both the quality of radiological calibrations and the methods of comparing reported occupational doses between DOE facilities. Reference calibration techniques are defined. A standard for evaluation of personnel dosimetry systems and recommended design parameters for personnel dosimeters are also included. Approximate intervals for the radiation energies for which these guidelines are appropriate are 15 keV to 2 MeV for photons; above 0.3 MeV for beta particles; and 1 keV to 2 MeV for neutrons. An analysis of ANSI N13.11 was completed using performance evaluations of selected personnel dosimetry systems in use at DOE facilities. The results of this analysis are incorporated in the guidelines

  7. A Threat to Accreditation: Defamation Judgment against an Accreditation Team Member.

    Science.gov (United States)

    Flygare, Thomas J.

    1980-01-01

    Delaware Law School founder Alfred Avins successfully sued accreditation team member James White for defamation as a result of comments made in 1974 and 1975. An appeals brief claims Avins was a "public figure," that he consented to accreditation, and that the accreditation process deserves court protection against such suits. (PGD)

  8. Surviving Accreditation: A QIAS Ideas Bank. Accreditation and Beyond Series, Volume I.

    Science.gov (United States)

    Ferry, Jan

    This publication provides information on the accreditation process for early childhood education and care providers participating in the Quality Improvement and Accreditation System (QIAS), developed by the National Childcare Accreditation Council of Australia. The publication is divided into sections corresponding to steps in the…

  9. Accreditation to manage research programs

    International Nuclear Information System (INIS)

    Miramand, Pierre

    1993-01-01

    In this report for an accreditation to supervise research, the author proposes an overview of a study of transfers of vanadium towards benthic organisms (i.e. the toxicity of vanadium for sea coastal organisms), of studies of transfer of transuranic elements from sediment to marine benthic species. He presents current researches and perspectives: study of the level of metallic pollutants and physical-chemical characteristics of coastal waters in northern Cotentin, researches in Seine Bay, study of pollution biologic indicators. Numerous articles are provided in appendix

  10. The United Kingdom's radiotherapy dosimetry audit network

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Allahverdi, M.; Powley, S.K.; Nisbet, A.

    2003-01-01

    The first comprehensive national dosimetry intercomparison in the United Kingdom involving all UK radiotherapy centres was carried out in the late 1980s. Out of this a regular radiotherapy dosimetry audit network evolved in the early 1990s. The network is co-ordinated by the Institute of Physics and Engineering in Medicine and comprises eight co-operative regional groups. Audits are based on site visits using ionization chambers and epoxy resin water substitute phantoms. The basic audit methodology and phantom design follows that of the original national intercomparison exercise. However, most of the groups have evolved more complex methods, to extend the audit scope to include other parameters, other parts of the radiotherapy process and other treatment modalities. A number of the groups have developed phantoms to simulate various clinical treatment situations, enabling the sharing of phantoms and expertise between groups, but retaining a common base. Besides megavoltage external beam photon dosimetry, a number of the groups have also included the audit of kilovoltage X ray beams, electron beams and brachytherapy dosimetry. The National Physical Laboratory is involved in the network and carries out basic beam calibration audits to link the groups. The network is described and the methods and results are illustrated using the Scottish+ group as an example. (author)

  11. Dosimetry practices at the Radiation Technology Centre (Ghana)

    International Nuclear Information System (INIS)

    Emi-Reynolds, G.; Banini, G.K.; Ennison, I.

    1997-01-01

    Dosimetry practices undertaken to support research and pilot scale gamma irradiation activities at the Radiation Technology Centre of the Ghana Atomic Energy Commission are presented. The Fricke dosemeter was used for calibrating the gamma field of the gammacell-220. The Fricke system and the gammacell-220 were then used to calibrate the ethanol chlorobenzene (ECB) dosemeter. The Fricke and ECB dosemeter systems have become routine dosemeters at the centre. Dosimetry work has covered a wide range of research specimens and pilot scale products to establish the relevant irradiation protocol and parameters for routine treatment. These include yams, pineapple explants, blood for feeding tsetseflies, cocoa bud wood and cassava sticks. Pilot scale dosimetry studies on maize, medical devices like intravenous infusion sets and surgical gauze have also been completed. The results and observations made on some of these products are reported. (author). 4 refs., 5 figs

  12. Calibration Laboratory of the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    Gmuer, K.; Wernli, C.

    1994-01-01

    Calibration and working checks of radiation protection instruments are carried out at the Calibration Laboratory of the Paul Scherrer Institute. In view of the new radiation protection regulation, the calibration laboratory received an official federal status. The accreditation procedure in cooperation with the Federal Office of Metrology enabled a critical review of the techniques and methods applied. Specifically, personal responsibilities, time intervals for recalibration of standard instruments, maximum permissible errors of verification, traceability and accuracy of the standard instruments, form and content of the certificates were defined, and the traceability of the standards and quality assurance were reconsidered. (orig.) [de

  13. In vivo dosimetry with silicon diodes in total body irradiation

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  14. Clinical application of in vivo dosimetry for external telecobalt machine

    International Nuclear Information System (INIS)

    Mohammed, H. H. M.

    2011-01-01

    In external beam radiotherapy quality assurance is carried out on the individual components of treatment chain. The patient simulating device, planning system and treatment machine are tested regularly according to set protocols developed by national and international organizations. Even thought these individual systems are not tested for errors which can be made in the transfer between the systems. The best quality assurance for the treatment planning chain. In vivo dosimetry is used as a quality assurance tool for verifying dosimetry as either the entrance or exit surface of the patient undergoing external beam radiotherapy. It is a proven reliable method of checking overall treatment accuracy, allowing verification of dosimetry and dose calculation as well as patient treatment setup. Accurate in vivo dosimetry is carried out if diodes and thermoluminescence dosimeters (TLDs). the main detector types in use for in vivo dosimetry, are carefully calibrated and the factors influencing their sensitivity are taken into account. The aim of this study was to verify the response of TLDs type (LiF: Mg, Cu, p) use in radiotherapy, to establish calibration procedure for TLDs and to evaluate entrance dose obtained by the treatment planning system with measured dose using thermoluminescence detectors. Calibration of TLDs was done using Cobalt-60 teletherapy machine, linearity and calibration factors were determined. Measurements were performed in random phantom for breast irradiation (for the breast irradiation ( For the breast irradiation technique considered, wedge field was used). All TLDs were processed and analyzed at RICK. In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Thermoluminescent dosimeters are considered the gold stander for in vivo dosimetry and do not require cables for measurements which makes them ideal for mail based studies and have no dose rate or temperature dependence

  15. Guidelines on calibration of neutron measuring devices

    International Nuclear Information System (INIS)

    Burger, G.

    1988-01-01

    The International Atomic Energy Agency and the World Health Organization have agreed to establish an IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs) in order to improve accuracy in applied radiation dosimetry throughout the world. These SSDLs must be equipped with, and maintain, secondary standard instruments, which have been calibrated against primary standards, and must be nominated by their governments for membership of the network. The majority of the existing SSDLs were established primarily to work with photon radiation (X-rays and gamma rays). Neutron sources are, however, increasingly being applied in industrial processes, research, nuclear power development and radiation biology and medicine. Thus, it is desirable that the SSDLs in countries using neutron sources on a regular basis should also fulfil the minimum requirements to calibrate neutron measuring devices. It is the primary purpose of this handbook to provide guidance on calibration of instruments for radiation protection. A calibration laboratory should also be in a position to calibrate instrumentation being used for the measurement of kerma and absorbed dose and their corresponding rates. This calibration is generally done with photons. In addition, since each neutron field is usually contaminated by photons produced in the source or by scatter in the surrounding media, neutron protection instrumentation has to be tested with respect to its intrinsic photon response. The laboratory will therefore need to possess equipment for photon calibration. This publication deals primarily with methods of applying radioactive neutron sources for calibration of instrumentation, and gives an indication of the space, manpower and facilities needed to fulfil the minimum requirements of a calibration laboratory for neutron work. It is intended to serve as a guide for centres about to start on neutron dosimetry standardization and calibration. 94 refs, 8 figs, 12 tabs

  16. External dosimetry - Applications to radiation protection

    International Nuclear Information System (INIS)

    Faussot, Alain

    2011-01-01

    Dosimetry is the essential component of radiation protection. It allows to determine by calculation and measurement the absorbed dose value, i.e. the energy amounts deposited in matter by ionizing radiations. It deals also with the irradiation effects on living organisms and with their biological consequences. This reference book gathers all the necessary information to understand and master the external dosimetry and the metrology of ionizing radiations, from the effects of radiations to the calibration of radiation protection devices. The first part is devoted to physical dosimetry and allows to obtain in a rigorous manner the mathematical formalisms leading to the absorbed dose for different ionizing radiation fields. The second part presents the biological effects of ionizing radiations on living matter and the determination of a set of specific radiation protection concepts and data to express the 'risk' to develop a radio-induced cancer. The third part deals with the metrology of ionizing radiations through the standardized study of the methods used for the calibration of radiation protection equipments. Some practical exercises with their corrections are proposed at the end of each chapter

  17. Factors influencing EPR dosimetry in fingernails

    International Nuclear Information System (INIS)

    Dubner, D.L.; Spinella, M.R.; Bof, E.

    2010-01-01

    The technique based on the detection of ionizing radiation induced radicals by EPR in tooth enamel is an established method for the dosimetry of exposed persons in radiological emergencies. Dosimetry based on EPR spectral analysis of fingernail clippings, currently under development, has the practical advantage of the easier sample collection. A limiting factor is that overlapping the radiation induced signal (RIS), fingernails have shown the presence of two mechanically induced signals, called MIS1 and MIS2, due to elastic and plastic deformation respectively, at the time of fingernails cutting. With a water treatment, MIS1 is eliminated while MIS2 is considerably reduced. The calibration curves needed for radiation accident dosimetry should have 'universal' characteristics, ie. Represent the variability that can be found in different individuals. Early studies were directed to the analysis of factors affecting the development of such universal calibration curves. The peak to peak amplitude of the signal before and after the water treatment as well as the effect of size and number of clippings were studied. Furthermore, the interpersonal and intrapersonal variability were analyzed. Taking into account these previous studies, the optimal conditions for measurement were determined and EPR spectra of samples irradiated at different doses were used for the developing of dose-response curves. This paper presents the analysis of the results.(authors) [es

  18. Quality Management and Calibration

    Science.gov (United States)

    Merkus, Henk G.

    Good specification of a product’s performance requires adequate characterization of relevant properties. Particulate products are usually characterized by some PSD, shape or porosity parameter(s). For proper characterization, adequate sampling, dispersion, and measurement procedures should be available or developed and skilful personnel should use appropriate, well-calibrated/qualified equipment. The characterization should be executed, in agreement with customers, in a wellorganized laboratory. All related aspects should be laid down in a quality handbook. The laboratory should provide proof for its capability to perform the characterization of stated products and/or reference materials within stated confidence limits. This can be done either by internal validation and audits or by external GLP accreditation.

  19. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  20. Radiation Dosimetry for Quality Control of Food Preservation and Disinfestation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Uribe, R.M.

    1983-01-01

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters...

  1. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  2. Consecutive cycles of hospital accreditation

    DEFF Research Database (Denmark)

    Falstie-Jensen, Anne Mette; Bogh, Søren Bie; Johnsen, Søren Paaske

    2018-01-01

    Objective: To examine the association between compliance with consecutive cycles of accreditation and patient-related outcomes. Design: A Danish nationwide population-based study from 2012 to 2015. Setting: In-patients admitted with one of the 80 diagnoses at public, non-psychiatric hospitals....... Participants: In-patients admitted with one of 80 primary diagnoses which accounted for 80% of all deaths occuring within 30 dyas after admission. Intervention: Admission to a hospital with high (n = 125 485 in-patients) or low compliance (n = 152 074 in-patients) in both cycles of accreditation by the Danish...... admission (adjusted OR: 1.26 (95% CI: 1.11-1.43) and a longer LOS (adjusted HR of discharge: 0.89 (95% CI: 0.82-0.95) than in-patients at high compliant hospitals. No difference was seen for acute readmission (adjusted HR: 0.98 (95% CI: 0.90-1.06)). Focusing on the second cycle alone, in...

  3. Library Standards: Evidence of Library Effectiveness and Accreditation.

    Science.gov (United States)

    Ebbinghouse, Carol

    1999-01-01

    Discusses accreditation standards for libraries based on experiences in an academic law library. Highlights include the accreditation process; the impact of distance education and remote technologies on accreditation; and a list of Internet sources of standards and information. (LRW)

  4. Theoretical basis for dosimetry

    International Nuclear Information System (INIS)

    Carlsson, G.A.

    1985-01-01

    Radiation dosimetry is fundamental to all fields of science dealing with radiation effects and is concerned with problems which are often intricate as hinted above. A firm scientific basis is needed to face increasing demands on accurate dosimetry. This chapter is an attempt to review and to elucidate the elements for such a basis. Quantities suitable for radiation dosimetry have been defined in the unique work to coordinate radiation terminology and usage by the International Commission on Radiation Units and Measurements, ICRU. Basic definitions and terminology used in this chapter conform with the recent ''Radiation Quantities and Units, Report 33'' of the ICRU

  5. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  6. IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry

    International Nuclear Information System (INIS)

    Izewska, J.; Bera, P.; Vatnitsky, S.

    2002-01-01

    Since 1969 the International Atomic Energy Agency, together with the World Health Organization, has performed postal TLD audits to verify calibration of radiotherapy beams in developing countries. The TLD programme also monitors activities of Secondary Standard Dosimetry Laboratories (SSDLs). The programme has checked approximately 4000 clinical beams in over 1100 hospitals, and in many instances significant errors have been detected in the beam calibration. Subsequent follow-up actions help to resolve the discrepancies, thus preventing further mistreatment of patients. The audits for SSDLs check the implementation of the dosimetry protocol in order to assure proper dissemination of dosimetry standards to the end-users. The TLD audit results for SSDLs show good consistency in the basic dosimetry worldwide. New TLD procedures and equipment have recently been introduced by the IAEA that include a modified TLD calibration methodology and computerised tools for automation of dose calculation from TLD readings. (author)

  7. Practitioner Perceptions of Advertising Education Accreditation.

    Science.gov (United States)

    Vance, Donald

    According to a 1981 survey, advertising practitioners place more importance on the accreditation of college advertising programs when it comes to evaluating a graduate of such a program than do the educators who must earn the accreditation. Only directors of advertising education programs in the communication-journalism area that are currently…

  8. 42 CFR 414.68 - Imaging accreditation.

    Science.gov (United States)

    2010-10-01

    ... relates to the past year's accreditations and trends. (viii) Attest that the organization will not perform... past year's accreditation activities and trends. (h) Continuing Federal oversight of approved... to compel by subpoena the production of witnesses, papers, or other evidence. (v) Within 45 calendar...

  9. 38 CFR 21.4253 - Accredited courses.

    Science.gov (United States)

    2010-07-01

    ... teacher's certificate or teacher's degree. (5) The course is approved by the State as meeting the... which are certified as true and correct in content and policy by an authorized representative, and the... college or university is accredited by a nationally recognized regional accrediting agency listed by the...

  10. Accreditation Association for Ambulatory Health Care

    Science.gov (United States)

    ... learn more » Study Finds Compliance Concerns Remain with Safe Injection Practices (SIP) learn more » AAAHC Updates Standards Approach ... your newborn, or something in-between, you expect safe, high-quality care. The AAAHC certificate of accreditation ... seminar Application for accreditation survey Application for Medical Home On- ...

  11. An investigation of false positive dosimetry results

    International Nuclear Information System (INIS)

    Lewandowski, M.A.; Davis, S.A.; Goff, T.E.; Wu, C.F.

    1996-01-01

    The Waste Isolation Pilot Plant (WIPP) is a facility designed for the demonstration of the safe disposal of transuranic waste. Currently, the radiation source term is confined to sealed calibration and check sources since WIPP has not received waste for disposal. For several years the WIPP Dosimetry Group has operated a Harshaw Model 8800C reader to analyze Harshaw 8801-7776 thermoluminescent cards (3 TLD-700 and 1 TLD-600) with 8805 holder. The frequency of false positive results for quarterly dosimeter exchanges is higher than desired by the Dosimetry Group management. Initial observations suggested that exposure to intense ambient sunlight may be responsible for the majority of the false positive readings for element 3. A study was designed to investigate the possibility of light leaking through the holder and inducing a signal in element 3. This paper discusses the methods and results obtained, with special emphasis placed on recommendations to reduce the frequency of light-induced false positive readings

  12. Calibration factor or calibration coefficient?

    International Nuclear Information System (INIS)

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  13. Dosimetry of internal emitters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Dosimetry of Internal Emitter Program endeavors to refine the correlation between radiation dose and observed biological effects. The program is presently engaged in the development of studies that will demonstrate the applicability of microdosimetry models developed under the Microdosimetry of Internal Sources Program. The program also provides guidance and assistance to Pacific Northwest Laboratory's Biology Department in the dosimetric analysis of internally deposited radionuclides. This report deals with alpha particle dosimetry plutonium 239 inhalation, and in vitro studies of chromosomal observations

  14. JENDL Dosimetry File

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu; Iguchi, Tetsuo; Kobayashi, Katsuhei; Iwasaki, Shin; Sakurai, Kiyoshi; Ikeda, Yujiro; Nakagawa, Tsuneo.

    1992-03-01

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d, n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form. (author) 76 refs

  15. JENDL Dosimetry File

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Masaharu; Iguchi, Tetsuo [Tokyo Univ. (Japan). Faculty of Engineering; Kobayashi, Katsuhei [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Iwasaki, Shin [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Sakurai, Kiyoshi; Ikeda, Yujior; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1992-03-15

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d,n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form.

  16. The current status of forensic science laboratory accreditation in Europe.

    Science.gov (United States)

    Malkoc, Ekrem; Neuteboom, Wim

    2007-04-11

    Forensic science is gaining some solid ground in the area of effective crime prevention, especially in the areas where more sophisticated use of available technology is prevalent. All it takes is high-level cooperation among nations that can help them deal with criminality that adopts a cross-border nature more and more. It is apparent that cooperation will not be enough on its own and this development will require a network of qualified forensic laboratories spread over Europe. It is argued in this paper that forensic science laboratories play an important role in the fight against crime. Another, complimentary argument is that forensic science laboratories need to be better involved in the fight against crime. For this to be achieved, a good level of cooperation should be established and maintained. It is also noted that harmonization is required for such cooperation and seeking accreditation according to an internationally acceptable standard, such as ISO/IEC 17025, will eventually bring harmonization as an end result. Because, ISO/IEC 17025 as an international standard, has been a tool that helps forensic science laboratories in the current trend towards accreditation that can be observed not only in Europe, but also in the rest of the world of forensic science. In the introduction part, ISO/IEC 17025 states that "the acceptance of testing and calibration results between countries should be facilitated if laboratories comply with this international standard and if they obtain accreditation from bodies which have entered into mutual recognition agreements with equivalent bodies in other countries using this international standard." Furthermore, it is emphasized that the use of this international standard will assist in the harmonization of standards and procedures. The background of forensic science cooperation in Europe will be explained by using an existing European forensic science network, i.e. ENFSI, in order to understand the current status of forensic

  17. Implementation of the International Code of Practice on Dosimetry in Diagnostic Radiology (TRS 457): Review of Test Results

    International Nuclear Information System (INIS)

    2011-01-01

    In 2007, the IAEA published Dosimetry in Diagnostic Radiology: An International Code of Practice (IAEA Technical Reports Series No. 457). This publication recommends procedures for calibration and dosimetric measurement for the attainment of standardized dosimetry. It also addresses requirements both in standards dosimetry laboratories, especially Secondary Standards Dosimetry Laboratories (SSDLs), and in clinical centres for radiology, as found in most hospitals. The implementation of TRS No. 457 decreases the uncertainty in the dosimetry of diagnostic radiology beams and provides Member States with a unified and consistent framework for dosimetry in diagnostic radiology, which previously did not exist. A coordinated research project (CRP E2.10.06) was established in order to provide practical guidance to professionals at SSDLs and to clinical medical physicists on the implementation of TRS No. 457. This includes the calibration of radiological dosimetry instrumentation, the dissemination of calibration coefficients to clinical centres and the establishment of dosimetric measurement processes in clinical settings. The main goals of the CRP were to: Test the procedures recommended in TRS No. 457 for calibration of radiation detectors in different types of diagnostic beams and measuring instruments for varying diagnostic X ray modalities; Test the clinical dosimetry procedures, including the use of phantoms and patient dose surveys; Report on the practical implementation of TRS No. 457 at both SSDLs and hospital sites. Testing of TRS No. 457 was performed by a group of medical physicists from hospitals and SSDLs from various institutions worldwide

  18. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  19. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  20. Variations of influence quantities in industrial irradiators and their effect on dosimetry performance

    International Nuclear Information System (INIS)

    Chu, R.D.H.

    1999-01-01

    Many environmental factors, including irradiation temperature, post-irradiation storage temperature, dose rate, relative humidity, oxygen content and the energy spectrum may affect the response of dosimetry systems used in industrial radiation processing. Although the effects of individual influence quantities have been extensively studied, the variations of these influence quantities in production irradiators and the complex relationships between the effects of different influence quantities make it difficult to assess the overall effect on the measurement uncertainty. In the development of new dosimetry systems it is important to know the effect of each influence quantity and developers of new dosimetry systems should perform studies over a wide range of irradiation conditions. Analysis parameters and manufacturing specifications should be chosen to minimize the effect of influence quantities in the environments where the dosimeters will be used. Because of possible relationships between different influence quantities, care must be taken to ensure that the response function determined in the calibration of the dosimetry system is applicable for the conditions in which the dosimeters will be used. Reference standard dosimetry systems which have been thoroughly studied and have known relationships between dose response and influence quantities should be used to verify the calibration of routine dosimetry systems under the actual conditions of use. Better understanding of the variations in influence quantities in industrial irradiators may be obtained by modeling or direct measurements and may provide improvements in the calibration of routine dosimetry system and reduction of the overall measurement uncertainty. (author)

  1. Status of computed tomography dosimetry for wide cone beam scanners

    International Nuclear Information System (INIS)

    2011-01-01

    International standardization in dosimetry is essential for the successful exploitation of radiation technology. To provide such standardization in diagnostic radiology, the IAEA published Code of Practice entitled Dosimetry in Diagnostic Radiology: An International Code of Practice (IAEA Technical Reports Series No. 457; 2007), which recommends procedures for calibration and dosimetric measurement both in standards dosimetry laboratories, especially Secondary Standards Dosimetry Laboratories (SSDLs), and in clinical centres for radiology, as found in most hospitals. These standards address the main dosimetric methodologies needed in clinical diagnostic radiology, with the calibration of associated dosimetric equipment, including the measurement methodologies for computed tomography (CT). For some time now there has been a growing awareness that radiation dose originating from medical diagnostic procedures in radiology, is contributing an increasing proportion to the total population dose, with a large component coming from CT examinations. This is accompanied by rapid developments in CT technology, including the use of increasingly wide X ray scanning beams, which are presenting problems in dosimetry that currently cannot be adequately addressed by existing standards. This situation has received attention from a number of professional bodies, and institutions have proposed and are investigating new and adapted dosimetric models in order to find robust solutions to these problems that are critically affecting clinical application of CT dosimetry. In view of these concerns, and as a response to a recommendation from a coordinated research project that reviewed the implementation of IAEA Technical Reports Series No. 457, a meeting was held to review current dosimetric methodologies and to determine if a practical solution for dosimetry for wide X ray beam CT scanners was currently available. The meeting rapidly formed the view that there was an interim solution that

  2. Accreditation - Its relevance for laboratories measuring radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S E [Icelandic Radiation Protection Inst. (Iceland)

    2001-11-01

    Accreditation is an internationally recognised way for laboratories to demonstrate their competence. Obtaining and maintaining accreditation is, however, a costly and time-consuming procedure. The benefits of accreditation also depend on the role of the laboratory. Accreditation may be of limited relevance for a research laboratory, but essential for a laboratory associated with a national authority and e.g. issuing certificates. This report describes work done within the NKSBOK-1.1 sub-project on introducing accreditation to Nordic laboratories measuring radionuclides. Initially the focus was on the new standard ISO/IEC 17025, which was just in a draft form at the time, but which provides now a new framework for accreditation of laboratories. Later the focus was widened to include a general introduction to accreditation and providing through seminars a forum for exchanging views on the experience laboratories have had in this field. Copies of overheads from the last such seminar are included in the appendix to this report. (au)

  3. Image in nuclear dosimetry using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Guinsburg, G.; Matsuoka, M.; Watanabe, S.

    1987-01-01

    A low cost methodology to produce images of internal sick organs by radioisotopic intake, is presented. Dosimetries of thermoluminescent material and Teflon (ratio:50%) in bidimensional matrix shape are used with a Pb collimator. This collimator-bidimensional matrix system was tested ''in vivo'' and in thyroid phantoms using 99m Tc. A comparative evaluation between this method and the scintigraphy one is presented. (M.A.C.) [pt

  4. The role of the IAEA Dosimetry Laboratory in the dissemination of standards for radiation protection

    International Nuclear Information System (INIS)

    Czap, L.; Andreo, P.; Matscheko, G.

    1998-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the IAEA is taking every necessary effort to insure that SSDLs measurements are traceable to Primary Standards. The Agency has proper radiation sources available to provide traceable calibrations to the SSDLs involved in measurements on diagnostic x-ray generators, including an x-ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory are described

  5. A Finnish national code of practice for reference dosimetry of radiation therapy

    International Nuclear Information System (INIS)

    Kosunen, A.; Sipilae, P.; Jaervinen, H.; Parkkinen, R.; Jokelainen, I.

    2002-01-01

    Full text: A national Code of Practice (CoP) for reference dosimetry of radiation therapy in Finland will be established during 2002 and will be implemented from the beginning of 2003. The CoP will cover dosimetry of the conventional radiotherapy modalities used in Finland i.e. external radiotherapy with megavoltage photon and electron beams, external radiotherapy with low energy kilovoltage X-ray beams and brachytherapy. The formalisms for external radiation beam dosimetry are those of TRS 389. For brachytherapy the formalism will follow the general guidelines of TECDOC-1274. The CoP will be prepared by the SSDL of STUK in close co-operation with the Finnish radiotherapy physicists. For external beam radiotherapy, the main objective of the national Code of Practice for radiation therapy dosimetry is to maintain the achieved good level of consistency of the dosimetry procedures in external beam radiotherapy as the 'absorbed dose to water' based approach of TRS 389 is implemented in Finland. In the CoP the dosimetry the procedures are described for the whole dosimetry chain starting from the calibration of the ionisation chambers at the SSDL of STUK and ending to the calibration of the beam monitor ionisation chamber of a linear accelerator. For brachytherapy dosimetry the aim is to fix the national practice for reference air kerma rate calibrations both for radioactive sources and for well-type ionisation chambers. Although the dosimetry procedures are described independently of the SSDL service, CoP makes use of the special features of the calibration service offered by the SSDL of STUK. For ionisation chambers used for photon dosimetry the calibration factors for the user measurement chain are given not only for the actual reference beam quality ( 60 Co) but also for a set of user beam qualities. Furthermore, SSDL of STUK offers calibration services for plane parallel ionisation chambers in an electron beam of a user linac. For brachytherapy SSDL of STUK has

  6. Worldwide QA networks for radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Izewska, J.; Svensson, H.; Ibbott, G.

    2002-01-01

    A number of national or international organizations have developed various types and levels of external audits for radiotherapy dosimetry. There are three major programmes who make available external audits, based on mailed TLD (thermoluminescent dosimetry), to local radiotherapy centres on a regular basis. These are the IAEA/WHO TLD postal dose audit service operating worldwide, the European Society for Therapeutic Radiology and Oncology (ESTRO) system, EQUAL, in European Union (EU) and the Radiological Physics Center (RPC) in North America. The IAEA, in collaboration with WHO, was the first organization to initiate TLD audits on an international scale in 1969, using mailed system, and has a well-established programme for providing dose verification in reference conditions. Over 32 years, the IAEA/WHO TLD audit service has checked the calibration of more than 4300 radiotherapy beams in about 1200 hospitals world-wide. Only 74% of those hospitals who receive TLDs for the first time have results with deviation between measured and stated dose within acceptance limits of ±5%, while approximately 88% of the users that have benefited from a previous TLD audit are successful. EQUAL, an audit programme set up in 1998 by ESTRO, involves the verification of output for high energy photon and electron beams, and the audit of beam parameters in non-reference conditions. More than 300 beams are checked each year, mainly in the countries of EU, covering approximately 500 hospitals. The results show that although 98% of the beam calibrations are within the tolerance level of ±5%, a second check was required in 10% of the participating centres, because a deviation larger than ±5% was observed in at least one of the beam parameters in non-reference conditions. EQUAL has been linked to another European network (EC network) which tested the audit methodology prior to its application. The RPC has been funded continuously since 1968 to monitor radiation therapy dose delivery at

  7. Regulatory issues in accreditation of toxicology laboratories.

    Science.gov (United States)

    Bissell, Michael G

    2012-09-01

    Clinical toxicology laboratories and forensic toxicology laboratories operate in a highly regulated environment. This article outlines major US legal/regulatory issues and requirements relevant to accreditation of toxicology laboratories (state and local regulations are not covered in any depth). The most fundamental regulatory distinction involves the purposes for which the laboratory operates: clinical versus nonclinical. The applicable regulations and the requirements and options for operations depend most basically on this consideration, with clinical toxicology laboratories being directly subject to federal law including mandated options for accreditation and forensic toxicology laboratories being subject to degrees of voluntary or state government–required accreditation.

  8. Accreditation and Expansion in Danish Higher Education

    DEFF Research Database (Denmark)

    Rasmussen, Palle

    2014-01-01

    During the last decade, an accreditation system for higher education has been introduced in Denmark. Accreditation partly represents continuity from an earlier evaluation system, but it is also part of a government policy to increasingly define higher education institutions as market actors....... The attempts of universities to increase their student enrolments have combined with the logic of accreditation to produce an increasing number of higher education degrees, often overlapping in content. Students’ scope for choice has been widened, but the basis for and the consequences of choice have become...

  9. Computer dosimetry of 192Ir wire

    International Nuclear Information System (INIS)

    Kline, R.W.; Gillin, M.T.; Grimm, D.F.; Niroomand-Rad, A.

    1985-01-01

    The dosimetry of 192 Ir linear sources with a commercial treatment planning computer system has been evaluated. Reference dose rate data were selected from the literature and normalized in a manner consistent with our clinical and dosimetric terminology. The results of the computer calculations are compared to the reference data and good agreement is shown at distances within about 7 cm from a linear source. The methodology of translating source calibration in terms of exposure rate for use in the treatment planning computer is developed. This may be useful as a practical guideline for users of similar computer calculation programs for iridium as well as other sources

  10. Neutron dosimetry of the Little Boy device

    International Nuclear Information System (INIS)

    Pederson, R.A.; Plassmann, E.A.

    1984-01-01

    Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements

  11. Dosimetry and quality control in radiodiagnosis

    International Nuclear Information System (INIS)

    Le Gouic, M.

    1983-07-01

    This work deals with physics of radiodiagnosis. In a first part a study of the characteristics of different kinds of radiological equipments and a quality assurance of some of them (standard radiography, coronarography and computed tomography) have been performed. The second part deals with patient irradiation. After a bibliographic study of radiodiagnosis dosimetry, two kinds of dosimetric measures have been made: ''in vitro'' measures, using a phantom, that had allowed to calibrate the equipment and to improve the individual irradiation card, and ''in vivo'' measures. For the first types of measures ionization chambers, have been used for the second thermoluminescent dosimeters [fr

  12. Calibration of RB reactor power

    International Nuclear Information System (INIS)

    Sotic, O.; Markovic, H.; Ninkovic, M.; Strugar, P.; Dimitrijevic, Z.; Takac, S.; Stefanovic, D.; Kocic, A.; Vranic, S.

    1976-09-01

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  13. Quality assurance programs at the PNL calibrations laboratory

    International Nuclear Information System (INIS)

    Piper, R.K.; McDonald, J.C.; Fox, R.A.; Eichner, F.N.

    1993-03-01

    The calibrations laboratory at Pacific Northwest Laboratory (PNL) serves as a radiological standardization facility for personnel and environmental dosimetry and radiological survey instruments. As part of this function, the calibrations laboratory must maintain radiological reference fields with calibrations traceable to the National Institute of Standards and Technology (NIST). This task is accomplished by a combination of (1) sources or reference instruments calibrated at or by NIST, (2) measurement quality assurance (MQA) interactions with NIST, and (3) rigorous internal annual and quarterly calibration verifications. This paper describes a representative sample of the facilities, sources, and actions used to maintain accurate and traceable fields

  14. A new method for dosimetry with films radiochromic; Un nuevo metodo para la dosimetria con peliculas radiocromica

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Carot, I.

    2013-07-01

    in this paper a new method is presented and the results of the comparison between the calibration is summarized based on a planning reference and calibration obtained from the irradiated fragments measure different dose levels multichannel compare dosimetry based on the weighted average dosimetry described by Micke et al.(present in the FilmQAPro software) and, finally, show different results obtained with the method proposed in several applications clinics. (Author)

  15. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    Energy Technology Data Exchange (ETDEWEB)

    Cerra, F.; Heaton, H.T. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.

  16. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    International Nuclear Information System (INIS)

    Cerra, F.; Heaton, H.T.

    1993-01-01

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards

  17. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    from the first-generation nuclear-powered submarines by gamma scanning / A. F. Usatyi. L. A. Serdyukova and B. S. Stepennov -- Oral session 3: Power plant surveillance. Upgraded neutron dosimetry procedure for VVER-440 surveillance specimens / V. Kochkin ... [et al.]. Neutron dosimetry on the full-core first generation VVER-440 aimed to reactor support structure load evaluation / P. Borodkin ... [et al.]. Ex-vessel neutron dosimetry programs for PWRs in Korea / C. S. Yoo. B. C. Kim and C. C. Kim. Comparison of irradiation conditions of VVER-1000 reactor pressure vessel and surveillance specimens for various core loadings / V. N. Bukanov ... [et al.]. Re-evaluation of dosimetry in the new surveillance program for the Loviisa 1 VVER-440 reactor / T. Serén -- Oral session 4: Benchmarks, intercomparisons and adjustment methods. Determination of the neutron parameter's uncertainties using the stochastic methods of uncertainty propagation and analysis / G. Grégoire ... [et al.].Covariance matrices for calculated neutron spectra and measured dosimeter responses / J. G. Williams ... [et al.]. The role of dosimetry at the high flux reactor / S. C. van der Marek ... [et al.]. Calibration of a manganese bath relative to Cf-252 nu-bar / D. M. Gilliam, A. T. Yue and M. Scott Dewey. Major upgrade of the reactor dosimetry interpretation methodology used at the CEA: general principle / C. Destouches ... [et al.] -- Oral session 5: power plant surveillance. The role of ex-vessel neutron dosimetry in reactor vessel surveillance in South Korea / B.-C. Kim ... [et al.]. Spanish RPV surveillance programmes: lessons learned and current activities / A. Ballesteros and X. Jardí. Atucha I nuclear power plant extended dosimetry and assessment / H. Blaumann ... [et al.]. Monitoring of radiation load of pressure vessels of Russian VVER in compliance with license amendments / G. Borodkin ... [et al.] -- Poster session 2: Test reactors, accelerators and advanced systems; cross sections, nuclear

  18. Dosimetry quality assurance in Martin Marietta Energy Systems' centralized external dosimetry system

    International Nuclear Information System (INIS)

    Souleyrette, M.L.

    1992-01-01

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm 2 filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet

  19. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  20. ISO/IEC 17025 laboratory accreditation of NRC Acoustical Standards Program

    Science.gov (United States)

    Wong, George S. K.; Wu, Lixue; Hanes, Peter; Ohm, Won-Suk

    2004-05-01

    Experience gained during the external accreditation of the Acoustical Standards Program at the Institute for National Measurement Standards of the National Research Council is discussed. Some highlights include the preparation of documents for calibration procedures, control documents with attention to reducing future paper work and the need to maintain documentation or paper trails to satisfy the external assessors. General recommendations will be given for laboratories that are contemplating an external audit in accordance to the requirements of ISO/IEC 17025.

  1. Impact of National Universities Commission (NUC) Accreditation ...

    African Journals Online (AJOL)

    Nekky Umera

    (NUC) accreditation exercise on university administrative structure of four selected Nigerian ... The Commission's recommendations led to the setting up by Government the National ... For instance, the goals of tertiary education as spelt out in ...

  2. Accreditation of undergraduate and graduate medical education

    DEFF Research Database (Denmark)

    Davis, Deborah J; Ringsted, Charlotte

    2006-01-01

    Accreditation organizations such as the Liaison Committee for Medical Education (LCME), the Royal College of Physicians and Surgeons of Canada (RCPSC), and the Accreditation Council for Graduate Medical Education (ACGME) are charged with the difficult task of evaluating the educational quality...... of medical education programs in North America. Traditionally accreditation includes a more quantitative rather than qualitative judgment of the educational facilities, resources and teaching provided by the programs. The focus is on the educational process but the contributions of these to the outcomes...... are not at all clear. As medical education moves toward outcome-based education related to a broad and context-based concept of competence, the accreditation paradigm should change accordingly. Udgivelsesdato: 2006-Aug...

  3. Student Affairs Assessment, Strategic Planning, and Accreditation

    Science.gov (United States)

    Fallucca, Amber

    2017-01-01

    This chapter illustrates how student affairs units participate in accreditation across regional agency expectations and program-level requirements. Strategies for student affairs units to engage in campus strategic planning processes to further highlight their contributions are also recommended.

  4. 42 CFR 424.58 - Accreditation.

    Science.gov (United States)

    2010-10-01

    ... enforcing the DMEPOS quality standards for suppliers of DMEPOS and other items or services. Section 1847(b... disparity, there are widespread or systemic problems in an organization's accreditation process such that...

  5. NIST high-dose calibration services

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1989-01-01

    There is a need for the standardization of high-dose measurements used in the radiation-processing industry in order to provide assured traceability to national standards. NIST provides dosimetry calibration services to this industry. One of these services involves administration of known absorbed doses of gamma rays to customer-supplied dosimeters. The dosimeters are packaged to provide electron equilibrium conditions and are irradiated in a standard 60 Co calibration facility; this provides a calibration of that batch of dosimeters. Another service consists of supplying to a customer calibrated transfer dosimeters for irradiation with the customer's radiation source. The irradiated transfer dosimeters are then returned to NIST for analysis; the results are reported to the customer, providing a calibration of the dose rate of the customer's source. (orig.)

  6. Trust, accreditation and Philanthropy in the Netherlands

    OpenAIRE

    Bekkers, R.H.F.P.

    2003-01-01

    Given the increasing numbers of scandals, the awareness among fund-raisers that the public’s trust is crucial for the nonprofit sector is growing. This study investigates the relationship between trust and charitable giving. Charitable organizations can increase the public’s trust by signaling their trustworthiness. The example of the Netherlands shows how a system of accreditation can be an instrument for signaling trustworthiness to the public. Donors aware of the accreditation system have ...

  7. Neutron dosimetry in biology

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Smith, H.H.; Gustafsson, A.

    1965-01-01

    To study adequately the biological effects of different energy neutrons it is necessary to have high-intensity sources which are not contaminated by other radiations, the most serious of which are gamma rays. An effective dosimetry must provide an accurate measure of the absorbed dose, in biological materials, of each type of radiation at any reactor facility involved in radiobiological research. A standardized biological dosimetry, in addition to physical and chemical methods, may be desirable. The ideal data needed to achieve a fully documented dosimetry has been compiled by H. Glubrecht: (1) Energy spectrum and intensity of neutrons; (2) Angular distribution of neutrons on the whole surface of the irradiated object; (3) Additional undesired radiation accompanying the neutrons; (4) Physical state and chemical composition of the irradiated object. It is not sufficient to note only an integral dose value (e.g. in 'rad') as the biological effect depends on the above data

  8. Clinical dosimetry in diagnostic and interventional radiology

    International Nuclear Information System (INIS)

    Dimcheva, M.; Sergieva, S.; Jovanovska, A.

    2012-01-01

    Full text: Introduction: Diagnostic and interventional procedures involving x-rays are the most significant contributor to total population dose form man made sources of ionizing radiation. Purpose and aim: X-ray imaging generally covers a diverse range of examination types, many of which are increasing in frequency and technical complexity. Materials and methods: The European Directives 96/29 and 97/43 EURATOM stress the importance of accurate dosimetry and require calibration of all measuring equipment related to application of ionizing radiation in medicine. Results: The paper gives and overview of current system of dosimetry of ionizing radiations that is relevant for metrology and clinical applications. It also reflects recently achieved international harmonization in the field promoted by International Atomic Energy Agency (IAEA). Discussion: Objectives of clinical dose measurements in diagnostic and interventional radiology are multiple, as assessment of equipment performance, or assessment of risk emerging from use of ionizing radiation Conclusion: Therefore, from the clinical point of view, the requirements for dosimeters and procedures to assess dose to standard dosimetry phantoms and patients in clinical diverse modalities, as computed tomography are presented

  9. Beyond accreditation: excellence in medical education.

    Science.gov (United States)

    Ahn, Eusang; Ahn, Ducksun

    2014-01-01

    Medical school accreditation is a relatively new phenomenon in Korea. The development of an accreditation body and standards for a two-tiered "Must" and "Should" system in 1997 eventually led to the implementation of a third "Excellence" level of attainment. These standards were conceived out of a desire to be able to first recognize and promote outstanding performance of medical schools, second to provide role models in medical education, and furthermore to preview the third level as potential components of the pre-existing second level for the next accreditation cycle. It is a quality-assurance mechanism that, while not required for accreditation itself, pushes medical schools to go beyond the traditional requirements of mere pass-or-fail accreditation adequacy, and encourages schools to deliver an unprecedented level of medical education. The Association for Medical Education in Europe developed its own third-tier system of evaluation under the ASPIRE project, with many similar goals. Due to its advanced nature and global scope, the Korean accreditation body has decided to implement the ASPIRE system in Korea as well.

  10. Medical students’ perceptions of international accreditation

    Science.gov (United States)

    Abdel-Razig, Sawsan; Nair, Satish C

    2015-01-01

    Objectives This study aimed to explore the perceptions of medical students in a developing medical education system towards international accreditation. Methods Applicants to an Internal Medicine residency program in an academic medical center in the United Arab Emirates (UAE) accredited by the Accreditation Council for Graduate Medical Education-International (ACGME-I) were surveyed between May and June 2014. The authors analysed responses using inductive qualitative thematic analysis to identify emergent themes. Results Seventy-eight of 96 applicants (81%) completed the survey. The vast majority of respondents 74 (95%) reported that ACGME-I accreditation was an important factor in selecting a residency program. Five major themes were identified, namely improving the quality of education, increasing opportunities, meeting high international standards, improving program structure, and improving patient care. Seven (10%) of respondents felt they would be in a position to pursue fellowship training or future employment in the United States upon graduation from an ACGME-I program. Conclusions UAE trainees have an overwhelmingly positive perception of international accreditation, with an emphasis on improving the quality of training provided. Misperceptions, however, exist about potential opportunities available to graduates of ACGME-I programs. As more countries adopt the standards of the ACGME-I or other international accrediting bodies, it is important to recognize and foster trainee “buy-in” of educational reform initiatives. PMID:26454402

  11. Medical students' perceptions of international accreditation.

    Science.gov (United States)

    Ibrahim, Halah; Abdel-Razig, Sawsan; Nair, Satish C

    2015-10-11

    This study aimed to explore the perceptions of medical students in a developing medical education system towards international accreditation. Applicants to an Internal Medicine residency program in an academic medical center in the United Arab Emirates (UAE) accredited by the Accreditation Council for Graduate Medical Education-International (ACGME-I) were surveyed between May and June 2014. The authors analysed responses using inductive qualitative thematic analysis to identify emergent themes. Seventy-eight of 96 applicants (81%) completed the survey. The vast majority of respondents 74 (95%) reported that ACGME-I accreditation was an important factor in selecting a residency program. Five major themes were identified, namely improving the quality of education, increasing opportunities, meeting high international standards, improving program structure, and improving patient care. Seven (10%) of respondents felt they would be in a position to pursue fellowship training or future employment in the United States upon graduation from an ACGME-I program. UAE trainees have an overwhelmingly positive perception of international accreditation, with an emphasis on improving the quality of training provided. Misperceptions, however, exist about potential opportunities available to graduates of ACGME-I programs. As more countries adopt the standards of the ACGME-I or other international accrediting bodies, it is important to recognize and foster trainee "buy-in" of educational reform initiatives.

  12. Automation of the Calibration of Reference Dosimeters Used in Radiotherapy

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2013-01-01

    Traceability, accuracy and consistency of radiation measurements are essential in radiation dosimetry, particularly in radiotherapy, where the outcome of treatments is highly dependent on the radiation dose delivered to patients. The role of Secondary Standard Dosimetry Laboratories (SSDLs) is crucial in providing traceable calibrations to hospitals, since these laboratories disseminate calibrations at specific radiation qualities appropriate to the use of radiation measuring instruments. These laboratories follow IAEA/WHO guidelines for calibration procedures, often being current and charge measurements described in these guidelines a tedious task. However, these measurements are usually done using modern electrometers which are equipped with a RS-232 interface that allows instrument control from a PC. This paper presents the design and employment of an automated system aimed to the measurements of the radiotherapy dosimeters calibration process for Cobalt-60 gamma rays. A software was developed using Lab View, in order to achieve the acquisition of the charge values measured, calculation of the calibration coefficient and issue of a calibration certificate. A primary data report file is filled and stored in the PC's hard disk. By using this software tool, a better control over the calibration process is achieved, it reduces the need for human intervention and it also reduces the exposure of the laboratory staff. The automated system has been used for the calibration of reference dosimeters used in radiotherapy at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene (Author)

  13. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact their dispatchers to explain their activities for the future, after LEP dismantling in order to be maintained on the regular distribution list at Individual DosimetryWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MAY/JUNE will be available from their usual dispatchers on Tuesday 2 May.Please have your films changed before the 12 May.The colour of the dosimeter valid in is MAY/JUNE is YELLOW.Individual Dosimetry Service will be closed on Friday 28 April.

  14. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  15. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    2002-07-01

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  16. Direct megavoltage photon calibration service in Australia

    International Nuclear Information System (INIS)

    Butler, D.J.; Ramanthan, G.; Oliver, C.; Cole, A.; Harty, P.D.; Wright, T.; Webb, D.V.; Lye, J.; Followill, D.S.

    2014-01-01

    The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) maintains the Australian primary standard of absorbed dose. Until recently, the standard was used to calibrate ionisation chambers only in 60 Co gamma rays. These chambers are then used by radiotherapy clinics to determine linac output, using a correction factor (k Q ) to take into account the different spectra of 60 Co and the linac. Over the period 2010–2013, ARPANSA adapted the primary standard to work in megavoltage linac beams, and has developed a calibration service at three photon beams (6, 10 and 18 MV) from an Elekta Synergy linac. We describe the details of the new calibration service, the method validation and the use of the new calibration factors with the International Atomic Energy Agency’s TRS-398 dosimetry Code of Practice. The expected changes in absorbed dose measurements in the clinic when shifting from 60 Co to the direct calibration are determined. For a Farmer chamber (model 2571), the measured chamber calibration coefficient is expected to be reduced by 0.4, 1.0 and 1.1 % respectively for these three beams when compared to the factor derived from 60 Co. These results are in overall agreement with international absorbed dose standards and calculations by Muir and Rogers in 2010 of k Q factors using Monte Carlo techniques. The reasons for and against moving to the new service are discussed in the light of the requirements of clinical dosimetry.

  17. Biophysical dosimetry using electron paramagnetic resonance in human tooth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Boreham, D.R.; Rink, W.J.

    2002-01-01

    Accidental dosimetry utilizing radiation induced paramagnetic species in biophysical tissues like teeth is a technique; that can measure the amount of radiation exposure to an individual. The major problem in implementing this technique at low doses is the presence of native organic signal, and various other artifacts produced as a result of sample processing. After a series of experimental trials, we developed an optimum set of rules, which uses high temperature ultrasonic treatment of enamel in KOH, multiple sample rotation during in-cavity measurement of natural and calibrated added irradiations, and dose construction using a backward extrapolation method. By using this we report the successful dose reconstruction in a few of our laboratory samples in 100 mGy range (76.29 ± 30.14) mGy with reasonably low uncertainty. Keywords: biophysical dosimetry, human tooth enamel, low dose measurements, accidental dosimetry (author)

  18. Development of 3D Slicer based film dosimetry analysis

    International Nuclear Information System (INIS)

    Alexander, K M; Schreiner, L J; Robinson, A; Pinter, C; Fichtinger, G

    2017-01-01

    Radiochromic film dosimetry has been widely adopted in the clinic as it is a convenient option for dose measurement and verification. Film dosimetry analysis is typically performed using expensive commercial software, or custom made scripts in Matlab. However, common clinical film analysis software is not transparent regarding what corrections/optimizations are running behind the scenes. In this work, an extension to the open-source medical imaging platform 3D Slicer was developed and implemented in our centre for film dosimetry analysis. This extension streamlines importing treatment planning system dose and film imaging data, film calibration, registration, and comparison of 2D dose distributions, enabling greater accessibility to film analysis and higher reliability. (paper)

  19. Dosimetry in Diagnostic Radiology for Paediatric Patients

    International Nuclear Information System (INIS)

    2013-01-01

    Concern about the radiation dose to children from diagnostic radiology examinations has recently been popularly expressed, particularly as related to computed tomography (CT) procedures. This involves the observation that children can receive doses far in excess of those delivered to adults, in part due to the digital nature of the image receptors that may give no warning to the operator of the dose to the patient. Concern for CT examinations should be extended to the broad range of paediatric diagnostic radiological procedures responsible for radiation doses in children, especially as factors, such as increased radiosensitivity and the longer life expectancy of children, increase the associated radiation risk. In all cases, owing to the added paediatric radiological examination factor of patient size and its associated impact on equipment selection, clinical examination protocol and dosimetric audit, the determination of paediatric dose requires a distinct approach from adult dosimetry associated with diagnostic radiological examinations. In response to this, there is a need to inform health professionals about standardized methodologies used to determine paediatric dose for all major modalities such as general radiography, fluoroscopy and CT. Methodologies for standardizing the conduct of dose audits and their use for the derivation and application of diagnostic reference levels for patient populations, that vary in size, are also required. In addition, a review is needed of the current knowledge on risks specific to non-adults from radiation, and also an analysis of the management of factors contributing to dose from paediatric radiological examinations. In 2007, the IAEA published a code of practice, Dosimetry in Diagnostic Radiology: An International Code of Practice, as Technical Reports Series No. 457 (TRS 457). TRS 457 recommends procedures for dosimetric measurement and calibration for the attainment of standardized dosimetry, and addresses requirements

  20. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    Full text: Main aims of patient dosimetry in diagnostic and interventional radiology are to determine dosimetric quantities for establishment and use of guidance levels or diagnostic reference levels and for comparative risk assessment. In the latter case, the average doses to the organs and tissues at risk should be assessed. Only limited number of measurements serve to potential risk assessment of the examination and intervention. An additional objective of dosimetry in diagnostic and interventional radiology is the assessment of equipment performance. Ionization chambers are the main devices used for dosimetric measurements in diagnostic and interventional radiology but other devices with special properties are also used. Important examples are thermoluminescent detectors (TLDs) and semiconductor detectors. For most dosemeters used in x-ray medical imaging the desired quantity for calibration of dosemeters is the air kerma free-in-air. Calibrations should be made at appropriate radiation qualities, for which recommendations are available for conventional radiology. It is important that the calibrations are traceable to the international measurement system. The uncertainty of dose measurements in medical x-ray imaging, for comparative risk assessments as well as for quality assurance, should not exceed about 7 per cent in terms of the expanded uncertainty using a coverage factor of 2. The dosimetric approaches in general diagnostic radiology, mammography and computed tomography are slightly different, resulting in application specific dosimetric quantities. Consequently, different protocols for patient dosimetry are available for these different purposes. In general diagnostic radiology, various quantities and terminologies have been used for the specification of dose on the central beam axis at the point where the x-ray beam enters the patient (or a phantom representing the patient). These include the exposure at skin entrance (ESE), the input radiation exposure

  1. Film dosimetry for IMRT: sensitivity corrections

    International Nuclear Information System (INIS)

    Suchowerska, N.; Hoban, P.; Davison, A.; Metcalfe, P.

    2000-01-01

    Full text: The trend towards conformal, dynamic and intensity modulated radiotherapy treatments has furthered the need for true integrating dosimetry. In traditional radiotherapy, film dosimetry is commonly used. The accuracy and reproducibility of film optical density as an indicator of dose, has been associated with several variables. These include the effects of film specific sensitivity, direction of exposure, chemical processing and film scanner sensitivity. In this study, a procedure is developed to account for these variables, with a particular view to film being used as a dosimeter for conformal treatments. An effective sensitometric curve was established by exposing part of a single sheet of film to known doses. All films were processed together and scanned using a DuoscanT1200 transmission scanner, resulting in 12 bit image files. The images were analysed using Osiris software and the results fitted to the modified Williamson equation: P P s (l - 10 αD ) This yields values of α [film sensitivity], and P s [saturation pixel value], allowing individual dosimetry films to be normalised to this sensitometric calibration curve. For validation, a piece of Kodak X Omat-V film was sealed in a head phantom and exposed to a total of 51 IMRT fields, delivered from 6 gantry angles. The rest of the sheet of film was resealed and exposed to four known doses, providing sensitometric data, specific to this exposure. All films were then processed, scanned and analysed as described above. Observed variations in serial films exposed to 50cGy is in the order of 9% [mean 25.0,standard deviation = 3.2]. The automatic gain of the scanner system typically contributed 4% variation and needs to be carefully monitored. Results indicate that by using the sensitometric data from each exposure, the collective errors can be minimised. The IMRT exposure results confirm that the above process is viable for use in dosimetry for conformal radiation therapy. Copyright (2000) Australasian

  2. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  3. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  4. Proficiency Testing Activities of Frequency Calibration Laboratories in Taiwan, 2009

    Science.gov (United States)

    2009-11-01

    cht.com.tw Abstract In order to meet the requirements of ISO 17025 and the demand of TAF (Taiwan Accreditation Foundation) for calibration inter... IEC 17025 General requirements for the competence of testing and calibration laboratories. The proficiency testing results are then important...on-site evaluation, an assessment team is organized to examine the technical competence of the labs and their compliance with the requirements of ISO

  5. Accreditation and Radiation Protection - Do We Need It Because of the Law or Because of Us

    International Nuclear Information System (INIS)

    Omahen, G.; Zdesar, U.

    2011-01-01

    Laboratories involved in the protection against radiation and therefore in the measurement of radioactivity, dose rate and contamination have always been tied to the quality of their measurements, particularly those that have performed measurements for nuclear power plants. However in the laboratories more than quality it was more important, that people are professional, that they are engaged in scientific work and know how to interpret the results. Very often these are things that do not go along with reviewing the measuring instruments and quality records. However customer requires measurement results that can be trusted. This is the purpose of the standard SIST EN ISO / IEC 17025 in which the requirements for testing and calibration laboratories are standardised. The standard is in force since 1999. In some countries, a request for accreditation of testing laboratories according to SIST EN ISO / IEC 17025 is even in regulation. This request is for example in the Croatian and Slovenian regulations for laboratories involved in measuring the radioactivity, dose rate, contamination, or by checking the X-ray apparatus. Several laboratories have been accredited for several years. From that experience we can conclude that customer gets reliable results from the accredited laboratories at relatively low cost. On the other side laboratory which is accredited has introduced a line of work in the laboratory, there are rules for equipment, personnel, training and all that eventually enhance measurement expertise. With accreditation, it is much easier to compensate for the loss of workers due to pension or leaving the laboratory because every moment must always be in the laboratory at least two who know how to work on the method. Accreditation is not improving radiation protection or reducing becquerel in the air. But at least we know how accurate mSv or Bq are and how small mSv and Bq can be measured. (author)

  6. The accreditation programs and proficiency test in Taiwan for personnel dosimeter services (1991-1998)

    International Nuclear Information System (INIS)

    Lee, B.T.; Hwang, W.S.; Su, S.H.

    2000-01-01

    According to the ionizing radiation safety regulation approved by the ROC Atomic Energy Council (AEC), personnel dosimeter processors shall be accredited by the Chinese National Laboratory Accreditation (CNLA) program before offering dosimeter services and shall be accredited every two years (now has been rescheduled to be every three years since 1996). The aim of this program is to secure quality and technical capability of personnel dosimeters, and to provide systematic improvement for the internal calibration and testing laboratory applying for accreditation by means of assessment procedures. The criteria used to evaluate the capability at laboratories are ISO/IEC 25 (1990) and technical guide in different accreditation fields. The Institute of Nuclear Energy Research (INER) was entrusted by CNLA as the central laboratory to perform the proficiency test of personnel dosimeters for laboratory accreditation in December 1990. Such proficiency tests, based on ANSI N13.11 (1983), which is mainly separated to accident categories and protection categories which consists of eight parts of tests including single and mixture radiation of x-ray, gamma, beta and neutron, have been conducted four times, in 1991, 1993, 1995 and 1998. This paper deals with the test procedures and results of proficiency tests of personnel dosimeters from 1991 until 1998. The results of the four proficiency tests showed that, for accident categories, the pass rate is about 91%; for protection categories, the pass rate is about 98%. Meanwhile, the central laboratory will adopt a new version of HPS N13.11 (1993) to replace ANSI N13.11 (1983) as new criteria for the next proficiency test to be conducted in 2001. (author)

  7. Accreditation and radiation protection - the cost or smaller doses and reliable results

    International Nuclear Information System (INIS)

    Omahen, G.; Zdesar, U.

    2011-01-01

    Laboratories involved in the protection against radiation and therefore in the measurement of radioactivity, dose rate and contamination have always been tied to the quality of their measurements, particularly those that have performed measurements for nuclear power plants. However in the laboratories more than quality it was more important, that people are professional, that they are engaged in scientific work and know how to interpret the results. Very often these are things that do not go along with reviewing the measuring instruments and quality records. However customer requires measurement results that can be trusted. This is the purpose of the standard SIST EN ISO / IEC 17025 in which the requirements for testing and calibration laboratories are standardised. The standard in force since 1999. In some countries, requests for accreditation of testing laboratories according to SIST EN ISO / IEC 17025 is even in regulation. This request is for example in the Croatian and Slovenian regulations for laboratories involved in measuring the radioactivity, dose rate, contamination, or by checking the X-ray apparatus. Several laboratories have been accreditation for several years. From that experience we can conclude that customer gets reliable results from the accredited laboratories at relatively low cost. On the other side laboratory which his accredited has introduced a line of work and his laboratory, there are rules for equipment, personnel, training and all that eventually enhanced measurement expertise. With accreditation, it is much easier to compensate for the loss of workers due to pension or leaving the laboratory because every moment must always be in the laboratory at least two who know how to work on the method. Accreditation is not improving radiation protection or reducing Becquerel in the air. But at least we know how accurate mSv or Bq are and how small mSv and Bq can be measured. (author) [sr

  8. Working conditions analysis according T.L. personal dosimetry results

    International Nuclear Information System (INIS)

    Marinkovic, O.; Jovanovic, S.

    2006-01-01

    Laboratory for personal dosimetry in the Institute of Occupational and Radiological Health, Belgrade, used TLD more than twenty years. Before that, film dosimetry was main method in external monitoring. T.L. dosimetry was started with Reader Toledo 654 and crystals Mg B 4 O 7 . Finally, from 1992 laboratory has Harshaw TLD Reader Model 6600. Dosimeters are crystals LiF type 100, card packed, worn in standard filtrated holders. Personal dosimetry data are keeping 30 years for each worker according to regulations. The data from 1990 are in electronic form. Long experience enables conclusion that new technique means more advantages in practice. Recommendation from this laboratory practice refers to TLD read-out cycle. The longest period should be one month. LiF is recommended crystal. Glow curve deconvolution gives information about chronological irradiation. It is very important to conclude was dosimetry irradiated by 'one-shot' or continuously. Preparing calibration for determination the time since accident laboratory has to define adequate dose calibration methodology including low temperature peaks. Possibility to follow working conditions analyzing TLD glow curve is much more important than low decrease of dose severity. Time depend analyze is not possible if TLD would be read-out more than (approximately) six weeks after irradiation. If ionizing sources produce such low dose and has negligible probability of accidental exposure (according nowadays regulation read-out frequency could be once in three month), the recommendation is not to use external personal monitoring. Reading personal dosimeters once in three months deemed not useful. Complete and successful personal dosimetry dictates using system that enables glow curve shape representation to be sure that signal is ionizing irradiation result or not. Time depend analyze imparts information about protection permanence. In special circumstance, it is possible to estimate the time of exposure. This is extremely

  9. CDC/NACCHO Accreditation Support Initiative: advancing readiness for local and tribal health department accreditation.

    Science.gov (United States)

    Monteiro, Erinn; Fisher, Jessica Solomon; Daub, Teresa; Zamperetti, Michelle Chuk

    2014-01-01

    Health departments have various unique needs that must be addressed in preparing for national accreditation. These needs require time and resources, shortages that many health departments face. The Accreditation Support Initiative's goal was to test the assumption that even small amounts of dedicated funding can help health departments make important progress in their readiness to apply for and achieve accreditation. Participating sites' scopes of work were unique to the needs of each site and based on the proposed activities outlined in their applications. Deliverables and various sources of data were collected from sites throughout the project period (December 2011-May 2012). Awardees included 1 tribal and 12 local health departments, as well as 5 organizations supporting the readiness of local and tribal health departments. Sites dedicated their funding toward staff time, accreditation fees, completion of documentation, and other accreditation readiness needs and produced a number of deliverables and example documents. All sites indicated that they made accreditation readiness gains that would not have occurred without this funding. Preliminary evaluation data from the first year of the Accreditation Support Initiative indicate that flexible funding arrangements may be an effective way to increase health departments' accreditation readiness.

  10. Proposed Accreditation Standards for Degree-Granting Correspondence Programs Offered by Accredited Institutions.

    Science.gov (United States)

    McGraw-Hill Continuing Education Center, Washington, DC.

    A study on proposed accreditation standards grew out of a need to (1) stimulate the growth of quality correspondence degree programs; and (2) provide a policy for accreditation of correspondence degree programs so that graduates would be encouraged to pursue advanced degree programs offered elsewhere by educational institutions. The study focused…

  11. Accreditation Outcome Scores: Teacher Attitudes toward the Accreditation Process and Professional Development

    Science.gov (United States)

    Ulmer, Phillip Gregory

    2015-01-01

    Accreditation is an essential component in the history of education in the United States and is a central catalyst for quality education, continuous improvement, and positive growth in student achievement. Although previous researchers identified teachers as an essential component in meeting accreditation outcomes, additional information was…

  12. IS 2010 and ABET Accreditation: An Analysis of ABET-Accredited Information Systems Programs

    Science.gov (United States)

    Saulnier, Bruce; White, Bruce

    2011-01-01

    Many strong forces are converging on information systems academic departments. Among these forces are quality considerations, accreditation, curriculum models, declining/steady student enrollments, and keeping current with respect to emerging technologies and trends. ABET, formerly the Accrediting Board for Engineering and Technology, is at…

  13. 42 CFR 8.13 - Revocation of accreditation and accreditation body approval.

    Science.gov (United States)

    2010-10-01

    ... GENERAL PROVISIONS CERTIFICATION OF OPIOID TREATMENT PROGRAMS Certification and Treatment Standards § 8.13... period of 1 year after the date of withdrawal of approval of the accreditation body, unless SAMHSA.... (2) Within 1 year from the date of withdrawal of approval of an accreditation body, or within any...

  14. On multichannel film dosimetry with channel-independent perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, I., E-mail: nmendez@onko-i.si; Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B. [Department of Medical Physics, Institute of Oncology Ljubljana, Zaloška cesta 2, Ljubljana 1000 (Slovenia)

    2014-01-15

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  15. On multichannel film dosimetry with channel-independent perturbations

    International Nuclear Information System (INIS)

    Méndez, I.; Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B.

    2014-01-01

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  16. Quality control for dose calibrators

    International Nuclear Information System (INIS)

    Mendes, L.C.G.

    1984-01-01

    Nuclear medicine laboratories are required to assay samples of radioactivity to be administered to patients. Almost universally, these assays are accomplished by use of a well ionization chamber isotope calibrator. The Instituto de Radioprotecao e Dosimetria (Institute for Radiological Protection and Dosimetry) of the Comissao Nacional de Energia Nuclear (National Commission for Nuclear Energy) is carrying out a National Quality Control Programme in Nuclear Medicine, supported by the International Atomic Energy Agency. The assessment of the current needs and practices of quality control in the entire country of Brazil includes Dose Calibrators and Scintillation Cameras, but this manual is restricted to the former. Quality Control Procedures for these Instruments are described in this document together with specific recommendations and assessment of its accuracy. (author)

  17. Personnel photographic film dosimetry

    International Nuclear Information System (INIS)

    Keirim-Markus, I.B.

    1981-01-01

    Technology of personnel photographic film dosimetry (PPD) based on the photographic effect of ionizing radiation is described briefly. Kinds of roentgen films used in PPD method are enumerated, compositions of a developer and fixing agents for these films are given [ru

  18. Dosimetry of pion beams

    International Nuclear Information System (INIS)

    Dicello, J.F.

    1975-01-01

    Negative pion beams are probably the most esoteric and most complicated type of radiation which has been suggested for use in clinical radiotherapy. Because of the limited availability of pion beams in the past, even to nuclear physicists, there exist relatively fewer basic data for this modality. Pion dosimetry is discussed

  19. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  20. Glucinium dosimetry in beryl

    International Nuclear Information System (INIS)

    Kremer, M.

    1949-05-01

    The application of the method developed by Kolthoff and Sandell (1928) for the dosimetry of glucinium (beryllium) in beryl gives non-reproducible results with up to 20% discrepancies. This method recommends to separate beryllium and aluminium using 8 hydroxyquinoline and then to directly precipitate glucinium in the filtrate using ammonia. One possible reason of the problems generated by this method should be the formation of a volatile complex between beryllium and the oxine. This work shows that when the oxine is eliminated before the precipitation with ammonia the dosimetry of beryllium becomes accurate. The destruction of the oxine requires the dry evaporation of the filtrate, which is a long process. Thus the search for a reagent allowing the quantitative precipitation of beryllium in its solutions and in presence of oxine has been made. It has been verified also that the quantitative precipitation of the double beryllium and ammonium phosphate is not disturbed by the oxine in acetic buffer. This method, which gives good results, has also the advantage to separate beryllium from the alkaline-earth compounds still present in the filtrate. The report details the operation mode of the method: beryllium dosimetry using ammonium phosphate, aluminium-beryllium separation, application to beryl dosimetry (ore processing, insolubilization of silica, precipitation with ammonia, precipitation with oxine, precipitation of PO 4 NH 4 Gl, preciseness). (J.S.)

  1. Instrumentation in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Julius, H.W.

    1986-01-01

    In the performance of a thermoluminescence dosimetry (TLD) system the equipment plays an important role. Crucial parameters of instrumentation in TLD are discussed in some detail. A review is given of equipment available on the market today - with some emphasis on automation - which is partly based on information from industry and others involved in research and development. (author)

  2. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  3. Dosimetry and shielding

    International Nuclear Information System (INIS)

    Farinelli, U.

    1977-01-01

    Today, reactor dosimetry and shielding have wide areas of overlap as concerns both problems and methods. Increased interchange of results and know-how would benefit both. The areas of common interest include calculational methods, sensitivity studies, theoretical and experimental benchmarks, cross sections and other nuclear data, multigroup libraries and procedures for their adjustment, experimental techniques and damage functions. This paper reviews the state-of-the-art and the latest development in each of these areas as far as shielding is concerned, and suggests a number of interactions that could be profitable for reactor dosimetry. Among them, re-evaluation of the potentialities of calculational methods (in view of the recent developments) in predicting radiation environments of interest; the application of sensitivity analysis to dosimetry problems; a common effort in the field of theoretical benchmarks; the use of the shielding one-material propagation experiments as reference spectra for detector cross sections; common standardization of the detector nuclear data used in both fields; the setting up of a common (or compatible) multigroup structure and library applicable to shielding, dosimetry and core physics; the exchange of information and experience in the fields of cross section errors, correlations and adjustment; and the intercomparison of experimental techniques

  4. Thermoluminescent dosimetry in computed tomography

    International Nuclear Information System (INIS)

    Lara C, A.; Rivera M, T.; Osorio V, M.; Hernandez O, O.

    2016-10-01

    In this work we studied the dosimetry performed on CT scan in two different equipment, SOMATOM and Phillips, with 16 and 64 slice respectively. We used 51 pellets of lithium fluoride doped with magnesium and titanium (LiF: Mg, Ti) also knows as TLD-100 due to its physical properties and its easy of use, in this study, first analysis a batch of 56 pellets, but only 53 pellets were optimal for this study, cesium-137 was used as source irradiation, then proceeded to calibrate the batch with X-rays source, measuring the corresponding dose in a Farmers ionization chamber, then, we obtained a calibration curve, and we used as reference to calculation of the applied dose, finally designing ergonomic mesh, were it was deposited a TLD 100, placed in a regions of interest were made to each scan type. Once characterized our material proceeded to testing in 30 patients, which were irradiated with X-ray tube, whose operation was performed at 80, 120 kV with a current of 100, 300 and 400 m A according to scanning protocol. Overall we measured dose of 5 mGy to 53 mGy, these measurements reflect significant dose to can induced cancer, due previous reports published, that doses greater than 20 mGy there is a risk of developing cancer in the long term, but in practice when it assigned a medical diagnosis, there are no dose limits due to benefits patients, however, IAEA publish recommendations that allow us to carry out optimum handling of ionizing radiation, among these is the quality control of the tomography equipment that helps greatly reduce patient dose. (Author)

  5. Thermoluminescent dosimetry in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lara C, A.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, Col. Irrigacion, 11500 Ciudad de Mexico (Mexico); Osorio V, M. [ISSSTE, Centro Medico Nacional 20 de Noviembre, Felix Cuevas 540, Col. del Valle, 03100 Ciudad de Mexico (Mexico); Hernandez O, O., E-mail: armando_lara_cam@yahoo.com.mx [Hospital General de Mexico, Dr. Balmis 148, Col. Doctores, 06726 Ciudad de Mexico (Mexico)

    2016-10-15

    In this work we studied the dosimetry performed on CT scan in two different equipment, SOMATOM and Phillips, with 16 and 64 slice respectively. We used 51 pellets of lithium fluoride doped with magnesium and titanium (LiF: Mg, Ti) also knows as TLD-100 due to its physical properties and its easy of use, in this study, first analysis a batch of 56 pellets, but only 53 pellets were optimal for this study, cesium-137 was used as source irradiation, then proceeded to calibrate the batch with X-rays source, measuring the corresponding dose in a Farmers ionization chamber, then, we obtained a calibration curve, and we used as reference to calculation of the applied dose, finally designing ergonomic mesh, were it was deposited a TLD 100, placed in a regions of interest were made to each scan type. Once characterized our material proceeded to testing in 30 patients, which were irradiated with X-ray tube, whose operation was performed at 80, 120 kV with a current of 100, 300 and 400 m A according to scanning protocol. Overall we measured dose of 5 mGy to 53 mGy, these measurements reflect significant dose to can induced cancer, due previous reports published, that doses greater than 20 mGy there is a risk of developing cancer in the long term, but in practice when it assigned a medical diagnosis, there are no dose limits due to benefits patients, however, IAEA publish recommendations that allow us to carry out optimum handling of ionizing radiation, among these is the quality control of the tomography equipment that helps greatly reduce patient dose. (Author)

  6. Analysis of ISO/IEC 17025 for establishment of KOLAS (Korea Laboratory Accreditation Scheme) quality assurance system

    International Nuclear Information System (INIS)

    Nam, Ji Hee

    2000-12-01

    Besides one existent accredited lab, radioactive material chemical analysis lab, five test laboratories and two calibration labs are under plan to acquire the accreditation from KOLAS. But the current Quality Manual was developed according to ISO Guide 25 that was superceded by ISO/IEC 17025. Since it is tailored to the radioactive material chemical analysis lab, a number of requirements of the Manual are not applicable to the labs other than radioactive material chemical analysis lab. Through the analysis of ISO/IEC 17025, a model of quality system was established which is not only consistent with ISO/IEC 17025 but reflective of the KAERI's situation

  7. Twenty new ISO standards on dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Farrar IV, H.

    2000-01-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but have

  8. Proficiency test in the accreditation system

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Idoeta, R.

    2008-01-01

    In the accreditation process of a radioactivity measurements laboratory, according to ISO standard 17025, proficiency tests play a fundamental role. These PTs constitute an irreplaceable tool for the validation of measuring methods. In the case of Spain, ENAC, which is the Spanish accreditation national body, requires that the laboratory has to take part in a PT for each one of the accredited measuring methods in the period of time between two reassessments of the accreditation, what happens every 4-5 years. In specific areas of determination procedures, among which radioactive measurements could be included, the number of methods which can be accredited is very large. The purpose of the present work is to establish a classification into families of the different radioactivity measurement procedures, as well as to establish complementary actions that guarantee that carrying out periodically proficiency-tests on any of the included procedures in each family, every measurement procedure include in that family is controlled, complying with the criteria established by ENAC

  9. Evaluating uncertainties in the cross-calibration of parallel ion chambers used in electron beam radiotherapy

    International Nuclear Information System (INIS)

    Anderson, Ernani; Travassos, Paulo; Ferreira, Max da Silva; Carvalho, Samira Marques de; Silva, Michele Maria da; Peixoto, Jose Guilherme Pereira; Salmon Junior, Helio Augusto

    2015-01-01

    This study aims to estimative the combined standard uncertainty for a detector parallel plate used for dosimetry of electron beams in linear accelerators for radiotherapy, which has been calibrated by the cross-calibration method. Keeping the combined standard uncertainty next of the uncertainty informed in the calibration certificate of the reference chamber, become possible establish the calibration factor of the detector. The combined standard uncertainty obtained in this study was 2.5 %. (author)

  10. Textbook of dosimetry. 4. ed.

    International Nuclear Information System (INIS)

    Ivanov, V.I.

    1999-01-01

    This textbook of dosimetry is devoted to the students in physics and technical physics of high education institutions, confronted with different application of atomic energy as well as with protection of population and environment against ionizing radiations. Atomic energy is highly beneficial for man but unfortunately incorporates potential dangers which manifest in accidents, the source of which is either insufficient training of the personnel, a criminal negligence or insufficient reliability of the nuclear facilities. The majority of the incident and accident events have had as origin the personnel errors. This was the case with both the 'Three Miles Island' (1979) and Chernobyl (1986) NPP accidents. The dosimetry science acquires a vital significance in accident situations since the data obtained by its procedures are essential in choosing the correct immediate actions, behaviour tactics, orientation of liquidation of accident consequences as well as in ensuring the health of population. An important accent is placed in this manual on clarification of the nature of physical processes taken place in dosimetric detectors, in establishing the relation between radiation field characteristics and the detector response as well as in defining different dosimetric quantities. The terminology and the units of physical quantities is based on the international system of units. The book contains the following 15 chapters: 1. Ionizing radiation field; 2. Radiation doses; 3. Physical bases of gamma radiation dosimetry; 4. Ionization dosimetric detectors; 5. Semiconductor dosimetric detectors; 6. Scintillation detection in the gamma radiation dosimetry; 7. Luminescent methods in dosimetry; 8. The photographic and chemical methods of gamma radiation dosimetry; 9. Neutron dosimetry; 10. Dosimetry of high intensity radiation; 11. Dosimetry of high energy Bremsstrahlung; 12. Measurement of the linear energy transfer; 13. Microdosimetry; 14. Dosimetry of incorporated

  11. Relative dosimetry by Ebt-3; Dosimetria relativa por EBT3

    Energy Technology Data Exchange (ETDEWEB)

    De Leon A, M. A.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico); Hernandez O, J. O., E-mail: madla16@hotmail.com [Hospital General de Mexico, Dr. Balmis 148, Col. Doctores, 06726 Mexico D. F. (Mexico)

    2015-10-15

    In the present work relative dosimetry in two linear accelerator for radiation therapy was studied. Both Varian Oncology systems named Varian Clinac 2100-Cd and MLC Varian Clinac i X were used. Gaf Chromic Ebt-3 film was used. Measurements have been performed in a water equivalent phantom, using 6 MV and 18 MV photon beams on both Linacs. Both calibration and Electron irradiations were carried out with the ionization chamber placed at the isocenter, below a stack of solid water slabs, at the depth of dose maximum (D max), with a Source-to-Surface Distance (SSD) of 100 cm and a field size of 10 cm x 10 cm. Calibration and dosimetric measurements photons were carried out under IAEA-TRS 398 protocol. Results of relative dosimetry in the present work are discussed. (Author)

  12. Secondary standard dosimetry system with automatic dose/rate calculation

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Bernhart, J.; Stehno, G.; Klosch, W.

    1980-01-01

    A versatile and automated secondary standard instrument has been designed for quick and accurate dose/rate measurement in a wide range of radiation intensity and quality (between 1 μR and 100 kR; 0.2 nC/kg - 20C/kg) for protection and therapy level dosimetry. The system is based on a series of secondary standard ionization chambers connected to a precision digital current integrator with microprocessor circuitry for data evaluation and control. Input of measurement parameters and calibration factors stored in an exchangeable memory chip provide computation of dose/rate values in the desired units. The ionization chambers provide excellent long-term stability and energy response and can be used with internal check sources to test validity of calibration. The system is a useful tool particularly for daily measurements in a secondary standard dosimetry laboratory or radiation therapy center. (H.K.)

  13. Code of practice for clinical proton dosimetry

    International Nuclear Information System (INIS)

    Vynckier, S.

    1991-01-01

    The objective of this document is to make recommendations for the determination of absorbed dose to tissue for clinical proton beams and to achieve uniformity in proton dosimetry. A Code of Practice (CoP) has been chosen, providing specific guidelines for the choice of the detector and the method of determination of absorbed dose for proton beams only. This CoP is confined specifically to the determination of absorbed dose and is not concerned with the biological effects of proton beams. It is recommended that dosimeters be calibrated by comparison with a calorimeter. If this is not available, a Faraday cup, or alter-natively, an ionization chamber, with a 60 Co calibration factor should be used. Physical parameters for determining the dose from tissue-equivalent ionization chamber measurements are given together with a worksheet. It is recommended that calibrations be carried out in water at the centre of the spread-out-Bragg-peak and that dose distributions be measured in a water phantom. It is estimated that the error in the calibrations will be less than +-5 per cent (1 S.D.) in all cases. Adoption and implementation of this CoP will facilitate the exchange of clinical information. (author). 34 refs.; 5 figs.; 5 tabs

  14. Activity Of EURADOS In Environmental Solid State Dosimetry

    International Nuclear Information System (INIS)

    Ranogajec-Komor, M.; Duch, M. A.; Haninger, T.

    2015-01-01

    H*(10) area dosimeters used for ERM (IC2014env) took place from spring to autumn 2014 at (PTB). Dosimeters were exposed at different PTB reference measuring sites to check the home calibration as well as the response of the dosimetry systems to cosmic and terrestrial radiation. 33 dosimetry systems were investigated in total by exposing 16 dosimeters per system under different conditions. Special attention was taken for the transport dose correction. Preliminary results demonstrated that the dosimeter response values were mostly around 1 in a band of ± 20 %, but a pronounced over-response to cosmic radiation has been observed. (author).

  15. The Radiotherapy Dosimetry Audit System In the UK

    International Nuclear Information System (INIS)

    Thwaites, D.I.

    1999-01-01

    Two national radiotherapy dosimetry intercomparisons have been earned out in the UK, involving all radiotherapy institutes. The first was concerned with megavoltage photon beams and looked at beam calibration and simple three-field planned distributions in a geometric phantom. The intercomparisons were carried out by an independent intercomparison physicist visiting each department in turn and making measurements with ion chambers, following a fixed protocol. The beam calibration intercomparison was earned out on every 60 C o beam and every MV x-ray beam, whilst the planned comparisons were carried out on one beam only. The plans included effects of wedges, oblique incidence and inhomogeneities. The study was unfunded and took a significant time (1988-1991) to cover the 65 or so centres. It was followed up by a national electron dosimetry intercomparison which was fended (Department of Health) and which ran from 1994-1996. This audited three electron beam energies in each centre (depth dose, beam energy, dose calibration) and also included a follow-up of the original photon beam intercomparison. In general these studies showed good consistency of dosimetry across the UK centres, with mean (measured/locally stated) doses being close to unity and standard deviations of the distributions of values being approx. 1.5 and 1% for photons, 1.8% for electrons for beam calibration and 2.5-3.5% for the planned multi-beam situations. 97-100% of measurements were within the pre-set 3% tolerance for beam calibration and around 90% of the measurements within a pre-set 5% tolerance for planned situations. The studies did highlight some areas where increased on Q A could provide benefits. In particular the photon intercomparison discovered one 60 C o unit mis calibration which led to national recommendations for the implementation of Quality Systems in radiotherapy departments

  16. The UK radiotherapy dosimetry audit network

    International Nuclear Information System (INIS)

    Thwaites, D.I.

    2002-01-01

    Full text: Radiotherapy dosimetry intercomparison in the UK has been carried out in limited studies since the 1960s. However the first national dosimetry intercomparison involving all radiotherapy centres was conducted in the late 1980s. This was based on visits to each centre, using ionisation chamber dosimetry. It audited megavoltage photon beam calibration and other single field parameters. It also measured doses in a three-field 'treatment' in a trapezoidal phantom constructed from epoxy-resin water-equivalent material and compared these to locally planned doses. This included off-axis points, oblique incidence, inhomogeneities, etc. The study found mean measured beam calibration doses close to stated values (ratio 1.003), with a standard deviation (sd) of the distribution of 1.5% and 97% of doses within the pro-set 3% tolerance. For the planned multi-field irradiations, mean dose ratios (measured/stated) were 1.01 (sd 3%, 90% of results within 5%). A number of discrepancies were identified, leading to improved practice. A follow up study (mid-1990s) for electron beam audit also repeated the megavoltage photon calibration audit. For photons, an improvement was noted (mean ratio 1.003, sd 1.0%, 100% within 3%), whilst for electron beams, the mean ratio of measured/stated dose was 0.994 (sd 1.8%, 94% within 3%, 99% within 5%). In parallel with - and growing out of - this, a national audit network began to develop in 1991/2. It utilised similar methodology to the intercomparison and a network approach to allow parallel developments of the scope of the system. The network has eight regional groups, each with up to 10 radiotherapy centres, serving average populations of 7-8 million. Each group organises audits of its own centres and has developed at its own pace. Most have piloted methodology, phantoms, etc. for new audits which can then be used by other groups. All 65 UK centres are included. The network is co-ordinated by an IPEM Steering Committee (current chair

  17. Strengthening organizational performance through accreditation research-a framework for twelve interrelated studies: the ACCREDIT project study protocol

    Directory of Open Access Journals (Sweden)

    Pope Catherine

    2011-10-01

    Full Text Available Abstract Background Service accreditation is a structured process of recognising and promoting performance and adherence to standards. Typically, accreditation agencies either receive standards from an authorized body or develop new and upgrade existing standards through research and expert views. They then apply standards, criteria and performance indicators, testing their effects, and monitoring compliance with them. The accreditation process has been widely adopted. The international investments in accreditation are considerable. However, reliable evidence of its efficiency or effectiveness in achieving organizational improvements is sparse and the value of accreditation in cost-benefit terms has yet to be demonstrated. Although some evidence suggests that accreditation promotes the improvement and standardization of care, there have been calls to strengthen its research base. In response, the ACCREDIT (Accreditation Collaborative for the Conduct of Research, Evaluation and Designated Investigations through Teamwork project has been established to evaluate the effectiveness of Australian accreditation in achieving its goals. ACCREDIT is a partnership of key researchers, policymakers and agencies. Findings We present the framework for our studies in accreditation. Four specific aims of the ACCREDIT project, which will direct our findings, are to: (i evaluate current accreditation processes; (ii analyse the costs and benefits of accreditation; (iii improve future accreditation via evidence; and (iv develop and apply new standards of consumer involvement in accreditation. These will be addressed through 12 interrelated studies designed to examine specific issues identified as a high priority. Novel techniques, a mix of qualitative and quantitative methods, and randomized designs relevant for health-care research have been developed. These methods allow us to circumvent the fragmented and incommensurate findings that can be generated in small

  18. Strengthening organizational performance through accreditation research-a framework for twelve interrelated studies: the ACCREDIT project study protocol.

    Science.gov (United States)

    Braithwaite, Jeffrey; Westbrook, Johanna; Johnston, Brian; Clark, Stephen; Brandon, Mark; Banks, Margaret; Hughes, Clifford; Greenfield, David; Pawsey, Marjorie; Corbett, Angus; Georgiou, Andrew; Callen, Joanne; Ovretveit, John; Pope, Catherine; Suñol, Rosa; Shaw, Charles; Debono, Deborah; Westbrook, Mary; Hinchcliff, Reece; Moldovan, Max

    2011-10-09

    Service accreditation is a structured process of recognising and promoting performance and adherence to standards. Typically, accreditation agencies either receive standards from an authorized body or develop new and upgrade existing standards through research and expert views. They then apply standards, criteria and performance indicators, testing their effects, and monitoring compliance with them. The accreditation process has been widely adopted. The international investments in accreditation are considerable. However, reliable evidence of its efficiency or effectiveness in achieving organizational improvements is sparse and the value of accreditation in cost-benefit terms has yet to be demonstrated. Although some evidence suggests that accreditation promotes the improvement and standardization of care, there have been calls to strengthen its research base.In response, the ACCREDIT (Accreditation Collaborative for the Conduct of Research, Evaluation and Designated Investigations through Teamwork) project has been established to evaluate the effectiveness of Australian accreditation in achieving its goals. ACCREDIT is a partnership of key researchers, policymakers and agencies. We present the framework for our studies in accreditation. Four specific aims of the ACCREDIT project, which will direct our findings, are to: (i) evaluate current accreditation processes; (ii) analyse the costs and benefits of accreditation; (iii) improve future accreditation via evidence; and (iv) develop and apply new standards of consumer involvement in accreditation. These will be addressed through 12 interrelated studies designed to examine specific issues identified as a high priority. Novel techniques, a mix of qualitative and quantitative methods, and randomized designs relevant for health-care research have been developed. These methods allow us to circumvent the fragmented and incommensurate findings that can be generated in small-scale, project-based studies. The overall

  19. Accreditation, a tool for business competitiveness

    International Nuclear Information System (INIS)

    Rivera, B.

    2015-01-01

    Conformity Assessment Bodies (laboratories , certification and inspection bodies, etc ) assess conformity of products and services to requirements , usually relating to quality and safety. For their activities to provide due confidence both in national and international markets these bodies must demonstrate to have the relevant technical competence and to perform according to international standards. This confidence is based on the assessments conducted in different countries by the accreditation body in Spain ENAC. Using accredited conformity assessment bodies bodies: risks are minimized; customer confidence is increased; acceptance in foreign countries is enhanced; self-regulation is promoted. (Author)

  20. Answer to request on the ININ internal dosimetry

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    1999-05-01

    In this report it is presented the reply to CNSNS asking for information about the methodology for the evaluation of the occupational dose due to internal contamination. The characteristics of the installation, type and dimensions of the shield room, construction materials, type of detecting, calibration geometries, type of used phantom, intervals of energy of the calibration, type of routine measurements, detection limit for Cs-137 and Co-60, code to carry out the analysis of the spectra, evaluation of the measurement data, whole body system type armchair with anthropomorphic phantom, whole body system of vertical scanning, distribution and location diagram of the internal dosimetry laboratory there are among the treated aspects. (Author

  1. Modern methods of personnel dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.; Herrmann, D.; Kiesewetter, W.

    The physical properties of radiation detectors for personnel dosimetry are described and compared. The suitability of different types of dosimeters for operational and central monitoring of normal occupational exposure, for accident and catastrophe dosimetry and for background and space-flight dosimetry is discussed. The difficulties in interpreting the dosimeter reading with respect to the dose in individual body organs are discussed briefly. 430 literature citations (up to Spring 1966) are given

  2. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  3. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  4. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    International Nuclear Information System (INIS)

    Antonio, Patricia L.; Caldas, Linda V.E.

    2011-01-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  5. Total skin high-dose-rate electron therapy dosimetry using TG-51

    International Nuclear Information System (INIS)

    Gossman, Michael S.; Sharma, Subhash C.

    2004-01-01

    An approach to dosimetry for total skin electron therapy (TSET) is discussed using the currently accepted TG-51 high-energy calibration protocol. The methodology incorporates water phantom data for absolute calibration and plastic phantom data for efficient reference dosimetry. The scheme is simplified to include the high-dose-rate mode conversion and provides support for its use, as it becomes more available on newer linear accelerators. Using a 6-field, modified Stanford technique, one may follow the process for accurate determination of absorbed dose

  6. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  7. Thermo-luminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Reither, M; Schorn, B; Schneider, E

    1981-01-01

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber. The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field.

  8. Legal aspects of dosimetry

    International Nuclear Information System (INIS)

    Pomarola, H.

    1976-01-01

    The use of ionizing radiations is regulated in France in all fields of application. The main principles governing inspection activities in the food industry are outlined. Conventional preservation methods are mentioned, after which a discussion is devoted to the preservation of food products by irradiation treatment and the increasing importance given to this technique. Consumer protection automatically implies the obligatory use of dosimetry by inspection organisms if the irradiated merchandise is likely to serve for human or animal consumption. Irradiation treatment permits are granted in a context of specific statutory texts mentioned here. Supervision is constant, but always both realistic and flexible. Each aspect of this treatment is discussed in maximum detail if not quite exhaustively, with special emphasis on dosimetry as an indispensable safety factor [fr

  9. WIPP radiation dosimetry program

    International Nuclear Information System (INIS)

    Wu, C.F.

    1991-01-01

    Radiation dosimetry is the process by which various measurement results and procedures are applied to quantify the radiation exposure of an individual. Accurate and precise determination of radiation dose is a key factor to the success of a radiation protection program. The Waste Isolation Pilot Plant (WIPP), a Department of Energy (DOE) facility designed for permanent repository of transuranic wastes in a 2000-foot-thick salt bed 2150 feet underground, has established a dosimetry program developed to meet the requirements of DOE Order 5480.11, ''Radiation Protection for Occupational Workers''; ANSI/ASME NQA-1, ''Quality Assurance Program Requirements for Nuclear Facilities''; DOE Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements''; and other applicable regulations

  10. TH-A-204-01: Part I - Key Data for Ionizing-Radiation Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. [National Institute of Standards & Technology (United States)

    2016-06-15

    The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair in dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV x-rays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and timeline

  11. TH-A-204-00: Key Dosimetry Data - Impact of New ICRU Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair in dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV xrays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and timeline

  12. Dosimetry characterization of the commercial CaF2 for beta radiation of 90Sr + 90Y

    International Nuclear Information System (INIS)

    Oliveira, Mercia L.; Caldas, Linda V.E.

    2003-01-01

    This work studies the dosimetric characteristics of the CaF 2 commercial dosimetry for detection of 90 Sr + 90 Y beta radiation for using in the calibration of flat and concave appliers. Were determined the repetitiousness and linearity of answers of the samples, and their calibration curves

  13. Instrumentation calibration

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-08-01

    Procedures for the calibration of different types of laboratory equipment are described. Provisions for maintaining the integrity of reference and working standards traceable back to a national standard are discussed. Methods of validation and certification methods are included. An appendix lists available publications and services of national standardizing agencies

  14. Dosimetry tools and techniques for IMRT

    International Nuclear Information System (INIS)

    Low, Daniel A.; Moran, Jean M.; Dempsey, James F.; Dong Lei; Oldham, Mark

    2011-01-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  15. Quantitative imaging for clinical dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bardies, Manuel [INSERM U601, 9 Quai Moncousu, 44093 Nantes (France)]. E-mail: manu@nantes.inserm.fr; Flux, Glenn [Department of Physics, Royal Marsden NHS Trust, Sutton (United Kingdom); Lassmann, Michael [Department of Nuclear Medicine, Julis-Maximilians University, Wuerzburg (Germany); Monsieurs, Myriam [Department of Health Physics, University of Ghent, 9000 Ghent (Belgium); Savolainen, Sauli [Department of Physical Sciences, University of Helsinki and HUS, Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland); Strand, Sven-Erik [Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University (Sweden)

    2006-12-20

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  16. Dosimetry for Crystals Irradiation

    CERN Document Server

    Lecomte, Pierre

    2005-01-01

    Before shipment to CMS, all PbWO4 crystals produced in China are irradiated there with 60 Co , in order to insure that the induced absorption coefficient is within specifications. Acceptance tests at CERNand at ENEA also include irradiation with gamma rays from 60 Co sources. There were initially discrepancies in quoted doses and doserates as well as in induced absorption coefficients. The present work resolves the discrepancies in irradiation measurements and defines common dosimetry methods for consistency checks between irradiation facilities.

  17. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    1999-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact the Individual Dosimetry ServiceWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period JANUARY/FEBRUARY will be available from their usual dispatchers on Monday the third of January 2000.Please have your films changed:before the 12 January.The colour of the dosimeter valid in JANUARY/FEBRUARY is WHITE.

  18. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact the Individual Dosimetry Service.We inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MARCH/APRIL will be available from their usual dispatchers on the third of March 2000.Please have your films changed before the 13th of March.The colour of the dosimeter valid in MARCH/APRIL is BLUE.

  19. Personal radon daughter dosimetry

    International Nuclear Information System (INIS)

    Stocker, H.

    1979-12-01

    The conventional means of radon daughter exposure estimatikn for uranium miners in Canada is by grab sampling and time weighting. Personal dosimetry is a possible alternative method with its own advantages and limitations. The author poses basic questions with regard to two methods of radon daughter detection, thermoluminescent chips and track-etch film. An historical review of previous and current research and development programs in Canada and in other countries is presented, as are brief results and conclusions of each dosimeter evaluation

  20. Personnel radiation dosimetry

    International Nuclear Information System (INIS)

    1987-01-01

    The book contains the 21 technical papers presented at the Technical Committee Meeting to Elaborate Procedures and Data for the Intercomparison of Personnel Dosimeters organizaed by the IAEA on 22-26 April 1985. A separate abstract was prepared for each of these papers. A list of areas in which additional research and development work is needed and recommendations for an IAEA-sponsored intercomparison program on personnel dosimetry is also included

  1. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2006-01-01

    The object of this paper is to give a new user some practical information on the use of radiochromic films for medical applications. While various aspects of radiochromic film dosimetry for medical applications have been covered in some detail in several other excellent review articles which have appeared in the last few years [Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E., Soares, C.G., 1998. Radiochromic dosimetry: recommendations of the AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093-2115; Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H., Williamson, J.F., 2000. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 2462-2475; Butson, M.J., Yu, P.K.N., Cheung, T., Metcalfe, P., 2003. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R41, 61-120], it is the intent of the present author to present material from a more user-oriented and practical standpoint. That is, how the films work will be stressed much less than how to make the films work well. The strength of radiochromic films is most evident in applications where there is a very high dose gradient and relatively high absorbed dose rates. These conditions are associated with brachytherapy applications, measurement of small fields, and at the edges (penumbra regions) of larger fields

  2. Neutron dosimetry in containment of a pressurized water reactor utilizing the Panasonic UD-802 dosimetry system

    International Nuclear Information System (INIS)

    Kralick, S.C.

    1984-01-01

    The Panasonic UD-802 dosimeter was evaluated as a potential neutron dosimeter for use in containment of a PWR. The Panasonic UD-802 dosimeter, although designed as a beta and gamma dosimeter, is also sensitive to neutrons. UD-802 dosimeters were mounted on polyethylene phantoms and irradiated to known doses at selected locations in containment. The known neutron dose equivalents were determined based on remmeter dose rate measurements and stay times. The thermoluminescent response of the dosimeters and the known neutron dose equivalents were used to obtain a calibration factor at each location. The average calibration factor was 3.7 (unit of dosimeter response per mrem) and all calibration factors were within +-30% of this mean value. The dosimeter distance from the phantom was found to have minimal effect on the response but the system was directionally dependent, necessitating a correction in the calibration factor. The minimum significant dosimeter response was determined independent of any calibration factor. The minimum significant response of the UD-802 to neutrons is a function of the corresponding gamma exposure rate. It is concluded that the Panasonic UD-802 dosimeter can be used for neutron dosimetry in PWR containment

  3. Dosimetry: an ARDENT topic

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The first annual ARDENT workshop took place in Vienna from 20 to 23 November. The workshop gathered together the Early-Stage Researchers (ESR) and their supervisors, plus other people involved from all the participating institutions.   “The meeting, which was organised with the local support of the Austrian Institute of Technology, was a nice opportunity for the ESRs to get together, meet each other, and present their research plans and some preliminary results of their work,” says Marco Silari, a member of CERN Radiation Protection Group and the scientist in charge of the programme. Two full days were devoted to a training course on radiation dosimetry, delivered by renowned experts. The workshop closed with a half-day visit to the MedAustron facility in Wiener Neustadt. ARDENT (Advanced Radiation Dosimetry European Network Training) is a Marie Curie ITN project funded under EU FP7 with €4 million. The project focuses on radiation dosimetry exploiting se...

  4. Dosimetry in dentistry.

    Science.gov (United States)

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  5. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  6. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  7. Dosimetry of ionizing radiation. Fundamentals and applications. Dosimetrie ionisierender Strahlen. Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Reich, H [ed.

    1990-01-01

    In the first chapter of the book, a brief description is given of the historical development of dosimetry, of its objectives and special role within the context of general physical metrology, followed by detailed explanations of the physical fundamentals of this science: the sources and fields of radiation, interactions between radiation and matter as well as radiation detectors. The terminology and units of measurement used in dosimetry are explained in a separate chapter. Chapters 7 and 8, which outline the various theoretical and experimental methods of dose determination, are the most essential contributions to this volume. Chapter 9 deals with the ways in which dosimetry is used in special cases in radiotherapy as well as in the measurement of very small or very large doses. Chapter 10 gives a survey of recently introduced units of measurements and methods to calculate the body dose with reference to the particular type of exposure used. Appendix A contains tables of measuring units, physical constants and measuring techniques along with at-a-glance information on the legal regulations concerning the calibration of dosimeters. Appendix B gives practical guidance on the handling of hardware-related inaccuracies of measurement in dose determination procedures and appendix C embraces 22 pages of tables showing data on radiation physics. (orig./HP) With 150 figs., 50 tabs. in the text, and annex with tables.

  8. CNEA's (Comision Nacional de Energia Atomica) experience in the preparation of a national system for laboratory accreditation

    International Nuclear Information System (INIS)

    Piacquadio, N.H.; Palacios, T.A.; Casa, V.A.; Koll, J.H.

    1993-01-01

    Within the regional markets, as it is the case of MERCOSUR , the laboratories which are suppliers of test and calibration results, are mutually recognized through the National Accreditation Systems. In Argentina there is a project to create a Center for the Accreditation of Test Laboratories. CNEA, which is involved in the execution of large projects and has adopted quality assurance criteria for a long time, requires for internal and external laboratories to be qualified. At the beginning of this year, a Committee for the Qualification of Laboratories was created in the Research and Development and Fuel Cycle Areas. Its objective was planning, management of documents, coordination, evaluation and quantification of laboratories, according to national IRAM and international ISO standards. This paper analyzes the organization of the system and the methods to evaluate and qualify laboratories as a process of growing up leading to the future National Accreditation System. (author). 3 figs

  9. Impact of quality concepts on nuclear engineering accreditation

    International Nuclear Information System (INIS)

    Woodall, D.M.

    1993-01-01

    This paper is an update of the accreditation process for nuclear engineering education at the undergraduate and graduate level in U.S. universities and colleges. The Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology (ABET) has made a number of major changes in the process for engineering accreditation in recent years. This paper identifies those changes that have taken place, discusses the rationale for those changes, and encourages U.S. universities with nuclear engineering programs to respond

  10. New instrument calibration facility for the DOE Savannah River Site

    International Nuclear Information System (INIS)

    Wilkie, W.H.; Polz, E.J.

    1993-01-01

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided

  11. New instrument calibration facility for the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, W.H.; Polz, E.J. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  12. What Should Gerontology Learn from Health Education Accreditation?

    Science.gov (United States)

    Bradley, Dana Burr; Fitzgerald, Kelly

    2012-01-01

    Quality assurance and accreditation are closely tied together. This article documents the work toward a unified and comprehensive national accreditation program in health education. By exploring the accreditation journey of another discipline, the field of gerontology should learn valuable lessons. These include an attention to inclusivity, a…

  13. Mozambique's journey toward accreditation of the National Tuberculosis Reference Laboratory.

    Science.gov (United States)

    Viegas, Sofia O; Azam, Khalide; Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P; Chongo, Patrina; Masamha, Jessina; Cirillo, Daniela M; Jani, Ilesh V; Gudo, Eduardo S

    2017-01-01

    Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL's process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  14. Practical Nursing Education: Criteria and Procedures for Accreditation.

    Science.gov (United States)

    National Association for Practical Nurse Education and Service, Inc., New York, NY.

    The third in a series of pamphlets on practical nursing education, this document contains information on accreditation standards governing nursing programs. Included are announcements of: (1) available accreditation and consultation services, (2) policies regulating accreditation eligibility, (3) standards of ethics by which nursing programs are…

  15. Accreditation in the Professions: Implications for Educational Leadership Preparation Programs

    Science.gov (United States)

    Pavlakis, Alexandra; Kelley, Carolyn

    2016-01-01

    Program accreditation is a process based on a set of professional expectations and standards meant to signal competency and credibility. Although accreditation has played an important role in shaping educational leadership preparation programs, recent revisions to accreditation processes and standards have highlighted attention to the purposes,…

  16. 9 CFR 161.3 - Standards for accredited veterinarian duties.

    Science.gov (United States)

    2010-01-01

    ... legally able to practice veterinary medicine. An accredited veterinarian shall perform the functions of an... examine such an animal showing abnormalities, in order to determine whether or not there is clinical... accredited work, an accredited veterinarian shall take such measures of sanitation as are necessary to...

  17. 9 CFR 439.10 - Criteria for obtaining accreditation.

    Science.gov (United States)

    2010-01-01

    ... degree in chemistry, food science, food technology, or a related field. (i) For food chemistry... ACT ACCREDITATION OF NON-FEDERAL CHEMISTRY LABORATORIES § 439.10 Criteria for obtaining accreditation. (a) Analytical laboratories may be accredited for the analyses of food chemistry analytes, as defined...

  18. Ties That Bind: Default, Accreditation, and Articulation.

    Science.gov (United States)

    Prager, Carolyn

    1995-01-01

    Examines changes in the accreditation environment and the resulting implications for the articulation of students from for-profit to not-for-profit institutions such as community colleges. Indicates that the costs of programmatic redundancy and duplication brought about by mission convergence at these institutions will emerge as a major policy…

  19. Quality Development in Healthcare: Participation vs. Accreditation

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Hertzum, Morten; Scheuer, John Damm

    2018-01-01

    and balanced with participatory approaches that allow for local experimentation and implementation of high-quality outcomes. We describe accreditation and participatory design as two approaches to reconfiguring and aligning work organisation and technology; further, we emphasise the differences in each...

  20. Accrediting Professional Education: Research and Policy Issues.

    Science.gov (United States)

    Koff, Robert H.; Florio, David H.

    Research and legal issues that relate to accreditation policy questions for schools, colleges, and departments of education are reviewed, and strategies for integrating empirical information and social/professional values are presented. The discussion divides into three sections: (1) information concerning a variety of contextual issues that…