WorldWideScience

Sample records for accompanying high-pressure phase

  1. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  2. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  3. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  4. High pressure phases of alkali ternary borohydrides

    Science.gov (United States)

    Kumar, Ravhi; Cornelius, Andrew

    2007-03-01

    Insitu synchrotron x-ray diffraction experiments were carried out on MBH4 (M = K and Rb) borohydrides at high pressures up to 26 GPa using diamond anvil cells. KBH4 undergoes a structural transition at 4 GPa to a tetragonal phase from cubic and then to an orthorhombic phase around 7 GPa which are very similar to NaBH4 investigated earlier [1]. However, RbBH4 shows, a direct transition from the ambient cubic to an orthorhombic phase at 2.9 GPa, followed by a monoclinic phase at 8 GPa. Complementary high pressure Raman experiments, support the transitions observed in the diffraction experiments. The results will be presented in detail. [1]. Ravhi S. Kumar and Andrew L. Cornelius, Appl.Phys.Lett., 87,261916 (2005) This work is supported in part by the U.S. Department of Energy (DOE) under Award Number DE-FG36 05GO85028. HPCAT is supported by DOE-BES, DOE-NNSA,NSF, and the W.M. Keck Foundation.

  5. High Pressure EVA Glove (HPEG), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Final Frontier Design's (FFD) High Pressure EVA Glove (HPEG) is a game changing technology enabling future exploration class space missions. The high operating...

  6. Phase diagram of Nitrogen at high pressures and temperatures

    Science.gov (United States)

    Jenei, Zsolt; Lin, Jung-Fu; Yoo, Choong-Shik

    2007-03-01

    Nitrogen is a typical molecular solid with relatively weak van der Waals intermolecular interactions but strong intramolecular interaction arising from the second highest binding energy of all diatomic molecules. The phase diagram of solid nitrogen is, however, complicated at high pressures, as inter-molecular interaction becomes comparable to the intra-molecular interaction. In this paper, we present an updated phase diagram of the nitrogen in the pressure-temperature region of 100 GPa and 1000 K, based on in-situ Raman and synchrotron x-ray diffraction studies using externally heated membrane diamond anvil cells. While providing an extension of the phase diagram, our results indicate a ``steeper'' slope of the δ/ɛ phase boundary than previously determined^1. We also studied the stability of the ɛ phase at high pressures and temperatures. Our new experimental results improve the understanding of the Nitrogen phase diagram. 1. Gregoryanz et al, Phys. Rev. B 66, 224108 (2002)

  7. High pressure phase transitions for CdSe

    Indian Academy of Sciences (India)

    Administrator

    respectively and the intermediate states between the Cmcm structure and the CsCl structure should exist. Keywords. Semiconductor; high pressure; phase transition. 1. Introduction. CdSe has become quite interesting and important because of its major applications in solar cells and other optoelec- tronic devices due to its ...

  8. Theoretical Predictions of Phase Transitions at Ultra-high Pressures

    Science.gov (United States)

    Boates, Brian

    2013-06-01

    We present ab initio calculations of the high-pressure phase diagrams of important planetary materials such as CO2, MgSiO3, and MgO. For CO2, we predict a series of distinct liquid phases over a wide pressure (P) and temperature (T) range, including a first-order transition to a dense polymer liquid. We have computed finite-temperature free energies of liquid and solid CO2 phases to determine the melting curve beyond existing measurements and investigate possible phase separation transitions. The interaction of these phase boundaries with the mantle geotherm will also be discussed. Furthermore, we find evidence for a vast pressure-temperature regime where molten MgSiO3 decomposes into liquid SiO2 and solid MgO, with a volume change of approximately 1.2 percent. The demixing transition is driven by the crystallization of MgO ? the reaction only occurs below the high-pressure MgO melting curve. The predicted transition pressure at 10,000 K is in close proximity to an anomaly reported in recent laser-driven shock experiments of MgSiO3. We also present new results for the high-pressure melting curve of MgO and its B1-B2 solid phase transition, with a triple point near 364 GPa and 12,000 K.

  9. High pressure structural phase transition of neodymium mono pnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Ojha, P.; Sanyal, S.P.; Aynyas, Mahendra

    2007-01-01

    We have investigated theoretically the high-pressure structural phase transition of two neodymium mono NdX (X=As, Sb) using an interionic potential theory with necessary modification to include the effect of Coulomb screening by the delocalized f electrons of Nd ion. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to body centered tetragonal (BCT) at 27 GPa and 15.3 GPa respectively. We also calculated the Nd-Nd distance as a function of pressure. (author)

  10. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: afu@jsg.utexas.edu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)

    2016-04-21

    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  11. A subdivision algorithm for phase equilibrium calculations at high pressures

    Directory of Open Access Journals (Sweden)

    M. L. Corazza

    2007-12-01

    Full Text Available Phase equilibrium calculations at high pressures have been a continuous challenge for scientists and engineers. Traditionally, this task has been performed by solving a system of nonlinear algebraic equations originating from isofugacity equations. The reliability and accuracy of the solutions are strongly dependent on the initial guess, especially due to the fact that the phase equilibrium problems frequently have multiple roots. This work is focused on the application of a subdivision algorithm for thermodynamic calculations at high pressures. The subdivision algorithm consists in the application of successive subdivisions at a given initial interval (rectangle of variables and a systematic test to verify the existence of roots in each subinterval. If the interval checked passes in the test, then it is retained; otherwise it is discharged. The algorithm was applied for vapor-liquid, solid-fluid and solid-vapor-liquid equilibrium as well as for phase stability calculations for binary and multicomponent systems. The results show that the proposed algorithm was capable of finding all roots of all high-pressure thermodynamic problems investigated, independent of the initial guess used.

  12. High pressure-phases in the scandium-gallium system

    International Nuclear Information System (INIS)

    Popova, S.V.; Fomicheva, L.N.; Putro, V.G.

    1980-01-01

    Investigated are the crystalline structure and composition of scandium-gallium alloys, which can be prepared under high pressure. Scandium gallide synthesis has been carried out under 77 kbar constant pressure, the temperature has been changed from 200 to 1000 deg C. It is shown, that high pressure effect causes complication of state diagram of the scandium-gallium system. Three intermediate phases are found in the system at p=77 kbar within the range from 200 to 1000 deg C :Sc 5 Ga 3 (Mn 5 Si 3 type)- stable under atmospheric pressure and ScGa 2 gallides, metastable under normal conditions (ZrGa 2 type), and ScGa 3 (Cu 3 Au type)

  13. High-pressure Raman spectroscopy of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Zalden, Peter [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen (Germany); JARA – Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, PULSE Institute, Menlo Park, California 94025 (United States)

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  14. High-pressure phase transitions of deep earth materials

    International Nuclear Information System (INIS)

    Hirose, Kei

    2009-01-01

    Recent developments in synchrotron XRD measurements combined with laser-heated diamond-anvil cell (LHDAC) techniques have enabled us to search for a novel phase transition at extremely high pressure and temperature. A phase transition from MgSiO 3 perovskite to post-perovskite was discovered through a drastic change in XRD patterns above 120 GPa and 2500 K, corresponding to the condition in the lowermost mantle (Murakami et al., 2004; Oganov and Ono, 2004). A pressure-induced phase transformation from ABO 3 -type perovskite to any denser structures was not known at that time. This new MgSiO 3 polymorph called post-perovskite has an orthorhombic symmetry (space group: Cmcm) with a sheet-stacking structure. The Mg site in post-perovskite is smaller than that in perovskite, which results in a volume reduction by 1.0-1.5% from perovskite structure. The electrical conductivity of post-perovskite is higher by three orders of magnitude than that of perovskite at similar pressure range (Ohta et al., 2008). This is likely due to a shorter Fe-Fe distance in post-perovskite structure, while conduction mechanism is yet to be further examined. Phase transition boundary between perovskite and post-perovskite has been determined in a wide temperature range up to 4400 K at 170 GPa (Tateno et al., 2008). Phase relations of Fe alloys have been also studied at core pressures (>135 GPa), although the generation of high temperature is more difficult at higher pressures. A new high-pressure B2 phase of B2 phase of FeS was recently discovered above 180 GPa (Sata et al., 2008). The Fe-Ni alloys have a wide pressure-temperature stability field of fcc phase at the core pressure range, depending on the Ni content (Kuwayama et al., 2008). (author)

  15. Magnetic phase diagram of FeO at high pressure

    Science.gov (United States)

    Zhang, Peng; Cohen, R. E.; Haule, K.

    2017-05-01

    FeO is an insulator with anti-ferromagnetic (AFM) spin ordering at ambient pressure. At increased external pressure, the Néel temperature of FeO first increases at the pressure below 40 GPa. Experiments predict that the AFM ordering will collapse above 80 GPa, but the mechanism of the high pressure magnetic collapse is still unknown. Using the combination of density functional theory and dynamical mean-field theory (DFT+DMFT), the nature of the magnetic collapse of FeO is examined and its magnetic phase diagram up to 180 GPa is discussed.

  16. Superconductivity in the high-pressure phase of bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Philip A.C.; Semeniuk, Konstantin; Grosche, F. Malte [Department of Physics, Cavendish Laboratory, University of Cambridge (United Kingdom)

    2016-07-01

    At pressures above 27 kbar, elemental bismuth adopts a highly unusual incommensurate host-guest structure. This structure combines two distinct, interpenetrating crystal lattices and consequently lacks discrete translational symmetry. Although similar high pressure structures have been observed in other elements, their electronic properties have not been investigated in detail. The moderate pressure required to induce the host-guest phase in bismuth presents a favourable opportunity for comprehensive electrical transport studies. The high-pressure host-guest phase of bismuth, termed Bi-III, is known to be superconducting with a transition temperature of around 7 K, but the details of its superconducting and normal state properties are comparatively little explored. We report resistivity and magnetisation measurements in the Bi-III phase in fields up to 9 T and temperatures down to 120 mK. We find evidence for a strikingly high critical field and an unusual temperature dependence of the resistivity above the superconducting transition. We discuss our findings in the context of theoretical descriptions of host-guest materials.

  17. Surface-initiated phase transition in solid hydrogen under the high-pressure compression

    Science.gov (United States)

    Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo

    2018-03-01

    The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.

  18. Phase transitions and hydrogen bonding in deuterated calcium hydroxide: High-pressure and high-temperature neutron diffraction measurements

    International Nuclear Information System (INIS)

    Iizuka, Riko; Komatsu, Kazuki; Kagi, Hiroyuki; Nagai, Takaya; Sano-Furukawa, Asami; Hattori, Takanori; Gotou, Hirotada; Yagi, Takehiko

    2014-01-01

    In situ neutron diffraction measurements combined with the pulsed neutron source at the Japan Proton Accelerator Research Complex (J-PARC) were conducted on high-pressure polymorphs of deuterated portlandite (Ca(OD) 2 ) using a Paris–Edinburgh cell and a multi-anvil press. The atomic positions including hydrogen for the unquenchable high-pressure phase at room temperature (phase II′) were first clarified. The bent hydrogen bonds under high pressure were consistent with results from Raman spectroscopy. The structure of the high-pressure and high-temperature phase (Phase II) was concordant with that observed previously by another group for a recovered sample. The observations elucidate the phase transition mechanism among the polymorphs, which involves the sliding of CaO polyhedral layers, position modulations of Ca atoms, and recombination of Ca–O bonds accompanied by the reorientation of hydrogen to form more stable hydrogen bonds. - Graphical abstract: Crystal structures of high-pressure polymorphs of Ca(OD) 2 , (a) at room temperature (phase II′) and (b) at high temperature (phase II), were obtained from in situ neutron diffraction measurements. - Highlights: • We measured in situ neutron diffraction of high-pressure polymorphs of Ca(OD) 2 . • Hydrogen positions of the high-pressure phase are first determined. • The obtained hydrogen bonds reasonably explain Raman peaks of OH stretching modes. • A phase transition mechanism among the polymorphs is proposed

  19. High Pressure Electrochemical Oxygen Generation for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced high pressure electrochemical oxygen concentrator (EOC) that offers a simple alternative to the use of pressure swing...

  20. A New High Pressure Phase and the Equation of State of YbH2

    DEFF Research Database (Denmark)

    Staun Olsen, J.; Buras, B.; Gerward, Leif

    1984-01-01

    High-pressure X-ray diffraction studies have been performed on YbH2 up to 28 GPa. A first order phase transition from an orthorhombic structure to a collapsed hexagonal structure with c/a = 1.34 has been observed at about 15 GPa. The transition is accompanied by a 5.2% decrease in volume. Fitting...... the V(P) data to Murnaghan's equation of state yields the bulk modulus B0 = 40.2 GPa and its pressure derivative B'0 = 4.75 for the orthorhombic phase. For the hexagonal phase we find the bulk modulus to be B = B0 = 138 GPa independent of pressure, i.e. B'0 = 0....

  1. Pyridinium salt investigations under high pressure: pressure-induced phase transitions in ferroelectric pyridinium perrhenate

    International Nuclear Information System (INIS)

    Czarnecki, P; Beskrovny, A I; Bobrowicz-Sarga, L; Lewicki, S; Wasicki, J

    2005-01-01

    The properties of pyridinium perrhenate have been studied by three methods: dielectric spectroscopy, neutron powder diffractometry and NMR spectrometry under high pressure. It has been shown that under high pressure the temperatures of the two phase transitions in the crystal are shifted towards lower ones. Moreover, the results have shown the occurrence of a new high pressure phase with a triple point corresponding to the pressure of 100 MPa and the temperature of 240 K

  2. High pressure MHD coal combustors investigation, phase 2

    Science.gov (United States)

    Iwata, H.; Hamberg, R.

    1981-05-01

    A high pressure MHD coal combustor was investigated. The purpose was to acquire basic design and support engineering data through systematic combustion experiments at the 10 and 20 thermal megawatt size and to design a 50 MW/sub t/ combustor. This combustor is to produce an electrically conductive plasma generated by the direct combustion of pulverized coal with hot oxygen enriched vitiated air that is seeded with potassium carbonate. Vitiated air and oxygen are used as the oxidizer, however, preheated air will ultimately be used as the oxidizer in coal fired MHD combustors.

  3. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  4. High-pressure fluid phase equilibria phenomenology and computation

    CERN Document Server

    Deiters, Ulrich K

    2012-01-01

    The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. introduces phase diagram class...

  5. Phase transition of solid bismuth under high pressure

    Science.gov (United States)

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan

    2016-10-01

    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  6. High Pressure Phase Transitions in Yttria, Y2O3

    International Nuclear Information System (INIS)

    Bose, Preyoshi P; Gupta, M K; Mittal, R; Chaplot, S L; Rols, S; Achary, S N; Tyagi, A K

    2012-01-01

    We have carried out neutron inelastic scattering measurement of the phonon density of states and lattice dynamic calculations for Y 2 O 3 using ab-initio density functional perturbation theory and interatomic potential model. The calculations are found to be in good agreement with experimental data, indicating that the potential model can be used for the calculation of phase diagram of Y 2 O 3 . The model is then used for free energy calculation to understand the stability of various phases as a function of pressure and temperature.

  7. High pressure phase transitions for CdSe

    Indian Academy of Sciences (India)

    Administrator

    3.1 Ground state structure and thermal equation of state. In the cubic zinc-blende (ZB) and hexagonal wurzite. (WZ) phases, the calculated zero-pressure equilibrium lattice constants, equilibrium cell volume V0, bulk modulus B0 and its pressure derivative Bj0 together with the available experimental (Madelung et al 1982; ...

  8. Superconductivity of divalent Chevrel phases at very high pressures

    International Nuclear Information System (INIS)

    Yao, Y.S.; Guertin, R.P.; Hinks, D.G.; Jorgensen, J.; Capone II, D.W.

    1988-01-01

    The electrical resistivity and the superconducting transition temperatures were examined for three representative divalent Chevrel phase systems, SnMo 6 S 8 , EuMo 6 S 8 , and BaMo 6 S 8 , as a function of hydrostatic pressure to 2 GPa and in quasihydrostatic pressures to 10 GPa. In all systems, T/sub c/ is depressed to 0 K for sufficiently large pressures. For the Sn- and Eu-based systems, both highly purified samples and samples with controlled oxygen content were used. In an oxygenated SnMo 6 S 8 sample (less than 3% O 2 substituted for the S atoms) the pressure threshold and maximum T/sub c/ are 40% lower than in the pure sample, but for P>3.5 GPa the T/sub c/-P phase diagrams nearly coincide, with T/sub c/ reaching zero at an extrapolated pressure of about 12 GPa. In pure EuMo 6 S 8 , superconductivity appears only above a threshold pressure of about 1 GPa and is depressed to 0 K above 4.5 GPa. In an oxygenated sample the maximum T/sub c/ and the threshold pressure are depressed, and above about 3.5 GPa the T/sub c/-P phase diagrams coincide, as in the Sn-based system, although T/sub c/ is then rapidly depressed to 0 K at about 4.5 GPa. In a highly purified BaMo 6 S 8 sample superconductivity appears above about 2 GPa and is depressed to 0 K at extrapolated pressures above 12 GPa. A full transition to the zero-resistance superconducting state is observed in BaMo 6 S 8 . The data are discussed in terms of a model linking the rhombohedral-to-triclinic structural transition, the superconducting transition temperature, and the role of pressure in suppressing the structural transition

  9. Rheology of phase A at high pressure and high temperature

    Science.gov (United States)

    Hilairet, N.; Amiguet, E.; Wang, Y.; Merkel, S.

    2013-12-01

    Subduction zones are locations where a tectonic plate slides and bends under another one. Materials there undergo large and heterogeneous deformations and stresses which are released through seismicity, occasionally. Thus plasticity of minerals filling faults and shear zones is a critical parameter for understanding the stress balance of whole subduction zones. We present a deformation study on a hexagonal hydrous phase that can exist in shear zones within subducting slabs, phase A, after dehydration of serpentine into pyroxene + phase A. Pure phase A samples were synthesized at 11 GPa and ca. 1100K, in the multi-anvil facility in Clermont-Ferrand, France, with N. Bolfan and D. Andrault. Three samples were deformed at 11 GPa confining pressure, and 673K or 973K, using a D-DIA apparatus [1] at 13B-MD at GSE-CARS, APS, in uniaxial shortening up to -0.24 strain and at 5.10-5 s-1. Lattice strains (a proxy for macro-stress), texture and strain were measured in-situ, using synchrotron radiation. Results from lattice strain and texture analysis show a decrease in flow stress and a change in deformation mechanisms with temperature, coherent with the findings in transmission electron microscopy on samples recovered in relaxation experiments from [2]. The slip systems involved during deformation were further analyzed using Visco-Plastic Self-Consistent (VPSC) simulations [3]. The model inputs were known slip systems for hexagonal materials, including the ones observed by [2], with tunable strengths, the strain rate, final strain, and either a random texture or the starting experimental texture. The final experimental textures could be reproduced. The slip systems that had to be activated for matching the experimental texture confirm the observations by [2]: at 673K, the most active slip systems are prismatic and pyramidal, with the requirement of a smaller activity on the basal system, and at 973K the basal system is the main slip system activated. [1] Wang et al, Review for

  10. Structural phase transition of BaZrO3 under high pressure

    International Nuclear Information System (INIS)

    Yang, Xue; Li, Quanjun; Liu, Ran; Liu, Bo; Zhang, Huafang; Jiang, Shuqing; Zou, Bo; Cui, Tian; Liu, Bingbing; Liu, Jing

    2014-01-01

    We studied the phase transition behavior of cubic BaZrO 3 perovskite by in situ high pressure synchrotron X-ray diffraction experiments up to 46.4 GPa at room temperature. The phase transition from cubic phase to tetragonal phase was observed in BaZrO 3 for the first time, which takes place at 17.2 GPa. A bulk modulus 189 (26) GPa for cubic BaZrO 3 is derived from the pressure–volume data. Upon decompression, the high pressure phase transforms into the initial cubic phase. It is suggested that the unstable phonon mode caused by the rotation of oxygen octahedra plays a crucial role in the high pressure phase transition behavior of BaZrO 3

  11. A new high pressure phase of sodium formate dihydrate; an experimental and computational study.

    Science.gov (United States)

    Walker, Martin; Morrison, Carole A; Allan, David R; Pulham, Colin R; Marshall, William G

    2007-05-28

    As part of an on-going programme to study the high pressure structural behaviour of hydrated small molecular systems, sodium formate dihydrate has been studied using high pressure single crystal X-ray and neutron powder diffraction methods. A new phase was initially identified at 17 kbar by X-ray diffraction and high level quantum mechanical calculations completed the structure, allowing definitive hydrogen atom positioning. The resulting structure compared favourably with that found subsequently by high pressure neutron diffraction. The neutron diffraction study also revealed that the deuterated form, NaDCO(2).2D(2)O, is stable in a different structural form to that of the non-deuterated material at ambient pressure. The structure of this phase is related to that of the high pressure phase via a simple translation of the molecular layers.

  12. Laser-driven formation of a high-pressure phase in amorphous silica.

    Science.gov (United States)

    Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y

    2003-12-01

    Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.

  13. The influence of peak shock stress on the high pressure phase transformation in Zr

    International Nuclear Information System (INIS)

    Cerreta, E K; Addessio, F L; Bronkhorst, C A; Brown, D W; Escobedo, J P; Fensin, S J; Gray, G T III; Lookman, T; Rigg, P A; Trujillo, C P

    2014-01-01

    At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, a significant volume fraction of high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and the multi-phase plasticity under shock conditions is not well understood. For these reasons, the influence of peak shock stress and temperature on the retention of omega phase in Zr has been explored. VISAR and PDV measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase and qualitatively understand the kinetics of this transformation. In turn, soft recovered specimens with varying volume fractions of retained omega phase have been utilized to understand the contribution of omega and alpha phases to strength in shock loaded Zr.

  14. Nitrogen-hydrogen-oxygen ternary phase diagram: New phases at high pressure from structural prediction

    Science.gov (United States)

    Shi, Jingming; Cui, Wenwen; Botti, Silvana; Marques, Miguel A. L.

    2018-02-01

    Using an ab initio evolutionary structural search, we predict two novel crystalline phases in the H-N-O ternary phase diagram at high pressure, namely, NOH4 and HNO3 (nitric acid). Our calculations show that the C 2 /m phase of NOH4 becomes stable at 71 GPa, while the P 21/m phase of HNO3 stabilizes at 39 GPa. Both phases remain thermodynamically stable at least up to 150 GPa, the maximum pressure we considered. The C 2 /m phase of NOH4 contains two O-H layers and one dumbbell cluster layer, formed by two NH3 molecules linked by a N-N covalent bond. The P 21/m phase of HNO3 contains a surprising quasiclover layer formed of H-N-O covalent bonds. Further calculations show that both phases are semiconducting, with band gaps of 6.0 and 2.6 eV for NOH4 and NHO3, respectively. Our calculations also confirm that the compound NOH5(NH3H2O ) becomes unstable at pressures above 122 GPa, decomposing into NH3 and H2O .

  15. Electronic structure and high pressure phase transition in LaSb and CeSb

    International Nuclear Information System (INIS)

    Mathi Jaya, S.; Sanyal, S.P.

    1992-09-01

    The electronic structure and high pressure structural phase transition in cerium and lanthanum antimonides have been investigated using the tight binding LMTO method. The calculation of total energy reveals that the simple tetragonal structure is found to be stable at high pressures for both the compounds. In the case of LaSb, the calculated value of the equilibrium cell volume and the cell volume at which phase transition occurs are found to have a fairly good agreement with the experimental results. However, in the case of CeSb, the agreement is not as good as in LaSb. We also predicted the most favoured c/a value in the high pressure phase (simple tetragonal) for these compounds. Further we present the calculated results on the electronic structure of these systems at the equilibrium as well as at the reduced cell volumes. (author). 8 refs, 11 figs, 1 tab

  16. A viscosity measurement during the high pressure phase transition in triolein

    International Nuclear Information System (INIS)

    Siegoczynski, R M; Rostocki, A J; Kielczynski, P; Szalewski, M

    2008-01-01

    The high-pressure properties of triolein, a subject of extensive research at the Faculty of Physics of Warsaw University of Technology (WUT) have been enhanced by the results of viscosity measurement within the pressure range up to 0.8 GPa. For the measurement the authors have adopted a new ultrasonic method based on Bleustein-Gulyaev waves, successfully developed earlier for the low pressures in the Section of Acoustoelectronics of the Institute of Fundamental Technological Research. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.5 GPa. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. Further exponential rise of viscosity with pressure of the high-pressure phase of triolein. 4. The pressure exponents of the viscosity of both phases were different (the high-pressure phase had much smaller exponent). 5. The decomposition of the high pressure phase due to the slow decompression have shown very large hysteresis of viscosity on pressure dependence

  17. Study on flow regimes of high-pressure and dense-phase pneumatic conveying

    International Nuclear Information System (INIS)

    Lu Peng; Chen Xiaoping; Liang Cai; Pu Wenhao; Zhou Yun; Xu Pan; Zhao Changsui

    2009-01-01

    High-pressure and dense-phase pneumatic conveying of pulverized coal is a key technology in the field of large-scale entrained bed coal gasification. Flow regime plays an important role in two-phase flow because it affects not only flow behavior and safety operation, but also the reliability of practical processes. Few references and experiences in high-pressure and dense-phase conveying are available, especially for the flow regimes. And because of the high stickiness and electrostatic attraction of pulverized coal to the pipe wall, it is very difficult to make out the flow regimes in the conveying pipe by visualization method. Thus quartz powder was chosen as the conveyed material to study the flow regime. High-speed digital video camera was employed to photograph the flow patterns. Experiments were conducted on a pilot scale experimental setup at the pressure up to 3.6MPa. With the decrease in superficial gas velocity, three distinguishable flow regimes were observed: stratified flow, dune flow and plug flow. The characteristics of pressure traces acquired by high frequency response pressure transmitter and their EMD (Empirical Mode Decomposition) characteristics were correlated strongly with the flow regimes. Combining high-speed photography and pressure signal analysis together can make the recognition of flow patterns in the high-pressure and dense-phase pneumatic conveying system more accurate. The present work will lead to better understanding of the flow regime transition under high-pressure.

  18. Phase transitions in Cd3P2 at high pressures and high temperatures

    DEFF Research Database (Denmark)

    Yel'kin, F.S.; Sidorov, V.A.; Waskowska, A.

    2008-01-01

    The high-pressure, high-temperature structural behaviour of Cd3P2 has been studied using electrical resistance measurements, differential thermal analysis, thermo baric analysis and X-ray diffraction. At room temperature, a phase transformation is observed at 4.0 GPa in compression. The experimen......The high-pressure, high-temperature structural behaviour of Cd3P2 has been studied using electrical resistance measurements, differential thermal analysis, thermo baric analysis and X-ray diffraction. At room temperature, a phase transformation is observed at 4.0 GPa in compression....... The experimental zero-pressure bulk modulus of the low-pressure phase is 64.7(7) GPa, which agrees quite well with the calculated value of 66.3 GPa using the tight-binding linear muffin-tin orbital method within the local density approximation. Tentatively, the high-pressure phase has an orthorhombic crystal...... structure with space group Pmmn (#59). The relative volume change at the phase transition is Delta V/V= -5.5%. Amorphization of the sample occurs above 25 GPa. A P-T phase diagram of Cd3P2 has been constructed. A metastable phase is observed at ambient conditions after heating the sample to above 600 K...

  19. Calculation of quadrupole interactions in the high pressure phase of β-gallium metal

    International Nuclear Information System (INIS)

    Acharya, B.K.; Mohapatra, N.C.

    1998-01-01

    Electric field gradient q and quadrupole interaction frequency ν calculated at 256.7 K in the high pressure phase (orthorhombic) of β- Ga metal are reported. The results are: q=+0.251 atomic units (au), ν=5.479 MHz. These are compared with results from experiment and previous calculation available for the monoclinic phase of β- Ga metal at normal pressure. The results from the previous calculation at 248 K are: q=-0.250 au and ν=5.318 MHz. The result from experiment extrapolated to 256.7 K is: ν=4.871 MHz. The sign reversal of the calculated q is attributed mainly to the change of point symmetry of the lattice from the orthorhombic to monoclinic. That the interaction frequency in high pressure phase is higher than experiment may be partly due to the increase of pressure and partly to the structural phase change

  20. Phase transition and water incorporation into Eu2Sn2O7 pyrochlore at high pressure

    Science.gov (United States)

    Zhang, F. X.; Lang, M.; Ewing, R. C.

    2016-04-01

    Structural changes of europium stannate pyrochlore, Eu2Sn2O7, have been investigated at high pressures with in situ Raman spectroscopy, photoluminescence (PL), and synchrotron X-ray diffraction (XRD) techniques. The XRD measurements suggest that a pressure-induced phase transition starts at 34.4 GPa. The PL spectrum from Eu3+ cations also suggests a phase transition above 36 GPa. XRD analysis shows that the unit cell of the cubic phase deviates from the equation of state at pressures above 23.8 GPa. This is due to the incorporation of water from the pressure medium in the structure at high pressures, which is confirmed by optical spectroscopy measurements.

  1. The influence of peak shock stress on the high pressure phase transformation in zirconium

    Directory of Open Access Journals (Sweden)

    Brown D.W.

    2012-08-01

    Full Text Available At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, the high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and currently models that accurately represent such a solid-solid phase transformation coupled with the multi-phase plasticity likely under shock conditions do not exist. For this reason, the influence of peak shock stress on the retention of omega phase in Zr is explored in this study. In-situ VISAR measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase, morphology of the shocked alpha and omega phases, and qualitatively understand the kinetics of this transformation. This understanding of the role of peak shock stress will be utilized to address physics to be encoded in our present macro-scale models.

  2. High-pressure phase transition and properties of spinel ZnMn2O4

    DEFF Research Database (Denmark)

    Åbrink, S.; Waskowska, A.; Gerward, Leif

    1999-01-01

    to normal pressure. The c/a ratio reduces from 1.62 to 1.10 above P-c and remains nearly pressure independent in the high-pressure phase. The transition is attributed to the changes in electron configuration of the Mn3+ ions. According to the crystal field theory, the e(g) electron of octahedrally......-pressure behavior of ZnMn2O4 was investigated up to 52 GPa using the energy-dispersive x-ray diffraction technique and synchrotron radiation. The structural first-order phase transition from the body-centered to primitive-tetragonal cell takes place at P-c = 23 GPa. The high-pressure phase is metastable down...... coordinated Mn3+ is either in the d(z)(2) orbital or in the d(x2-y2). In the first configuration the MnO6 octahedron will be elongated and this is the case at normal pressure, while the second configuration gives the flattened octahedron. In the high-pressure phase some proportion of the e(g) electrons...

  3. Five-dimensional visualization of phase transition in BiNiO3 under high pressure

    OpenAIRE

    Liu, Yijin; Wang, Junyue; Azuma, Masaki; Mao, Wendy L.; Yang, Wenge

    2014-01-01

    Colossal negative thermal expansion was recently discovered in BiNiO3 associated with a low density to high density phase transition under high pressure. The varying proportion of co-existing phases plays a key role in the macroscopic behavior of this material. Here, we utilize a recently developed X-ray Absorption Near Edge Spectroscopy Tomography method and resolve the mixture of high/low pressure phases as a function of pressure at tens of nanometer resolution taking advantage of the charg...

  4. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2005-2008)

    DEFF Research Database (Denmark)

    Fonseca, José; Dohrn, Ralf; Peper, Stephanie

    2011-01-01

    A review of systems is given, for which experimental high-pressure phase-equilibrium data were published in the period between 2005 and 2008, continuing a series of reviews. To find candidates for articles that are of interest for this survey a three-stage search strategy was used including...... a systematic search of the contents of the 17 most important journals of the field. Experimental methods for the investigation of high-pressure phase equilibria were classified, described and illustrated using examples from articles of the period between 2005 and 2008. For the systems investigated......, the reference, the temperature and pressure range of the data, and the experimental method used for the measurements is given in 54 tables. Vapor–liquid equilibria, liquid–liquid equilibria, vapor–liquid–liquid equilibria, solid–liquid equilibria, solid–vapor equilibria, solid–vapor–liquid equilibria, critical...

  5. Role of relativity in high-pressure phase transitions of thallium.

    Science.gov (United States)

    Kotmool, Komsilp; Chakraborty, Sudip; Bovornratanaraks, Thiti; Ahuja, Rajeev

    2017-02-20

    We demonstrate the relativistic effects in high-pressure phase transitions of heavy element thallium. The known first phase transition from h.c.p. to f.c.c. is initially investigated by various relativistic levels and exchange-correlation functionals as implemented in FPLO method, as well as scalar relativistic scheme within PAW formalism. The electronic structure calculations are interpreted from the perspective of energetic stability and electronic density of states. The full relativistic scheme (FR) within L(S)DA performs to be the scheme that resembles mostly with experimental results with a transition pressure of 3 GPa. The s-p hybridization and the valence-core overlapping of 6s and 5d states are the primary reasons behind the f.c.c. phase occurrence. A recent proposed phase, i.e., a body-centered tetragonal (b.c.t.) phase, is confirmed with a small distortion from the f.c.c. phase. We have also predicted a reversible b.c.t. → f.c.c. phase transition at 800 GPa. This finding has been suggested that almost all the III-A elements (Ga, In and Tl) exhibit the b.c.t. → f.c.c. phase transition at extremely high pressure.

  6. Five-dimensional visualization of phase transition in BiNiO3 under high pressure

    Science.gov (United States)

    Liu, Yijin; Wang, Junyue; Azuma, Masaki; Mao, Wendy L.; Yang, Wenge

    2014-01-01

    Colossal negative thermal expansion was recently discovered in BiNiO3 associated with a low density to high density phase transition under high pressure. The varying proportion of co-existing phases plays a key role in the macroscopic behavior of this material. Here, we utilize a recently developed X-ray Absorption Near Edge Spectroscopy Tomography method and resolve the mixture of high/low pressure phases as a function of pressure at tens of nanometer resolution taking advantage of the charge transfer during the transition. This five-dimensional (X, Y, Z, energy, and pressure) visualization of the phase boundary provides a high resolution method to study the interface dynamics of high/low pressure phase.

  7. High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy.

    Science.gov (United States)

    Zha, Chang-sheng; Liu, Zhenxian; Ahart, Muhtar; Boehler, Reinhard; Hemley, Russell J

    2013-05-24

    Phase IV of dense solid hydrogen has been identified by its infrared spectrum using high-pressure synchrotron radiation techniques. The spectrum exhibits a sharp vibron band at higher frequency and lower intensity than that for phase III, indicating the stability of molecular H(2) with decreased intermolecular interactions and charge transfer between molecules. A low-frequency vibron having a strong negative pressure shift indicative of strongly interacting molecules is also observed. The character of the spectrum is consistent with an anisotropic, mixed layer structure related to those recently predicted theoretically. Phase IV was found to be stable from 220 GPa (300 K) to at least 340 GPa (near 200 K), with the I-III-IV triple point located. Infrared transmission observed to the lowest photon energies measured places constraints on the electronic properties of the phase.

  8. Phase equilibrium data and thermodynamic modelling of the system (propane + DMF + methanol) at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Charin, Rafael M. [Department of Chemical Engineering, Federal University of Parana (UFPR), Polytechnic Center (DTQ/ST/UFPR), Jardim das Americas, Curitiba 82530-990, PR (Brazil); Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim 99700-000, RS (Brazil); Corazza, Marcos L.; Ndiaye, Papa M. [Department of Chemical Engineering, Federal University of Parana (UFPR), Polytechnic Center (DTQ/ST/UFPR), Jardim das Americas, Curitiba 82530-990, PR (Brazil); Rigo, Aline A.; Mazutti, Marcio A. [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim 99700-000, RS (Brazil); Vladimir Oliveira, J., E-mail: vladimir@uricer.edu.b [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim 99700-000, RS (Brazil)

    2011-03-15

    Reported in this work are phase equilibrium data at high pressures for the binary and ternary systems formed by {l_brace}propane + N,N-dimethylformamide (DMF) + methanol{r_brace}. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method for obtaining the experimental bubble and dew points transition data over the temperature range of (363 to 393) K, pressures up to 11.5 MPa and overall mole fraction of the lighter component varying from 0.1 to 0.995. For the systems investigated, vapour-liquid (VLE), liquid-liquid (LLE) and vapour-liquid-liquid (VLLE) phase transitions were visually recorded. Results show that the systems investigated present UCST (upper critical solution temperature) phase transition curves with an UCEP (upper critical end point) at a temperature higher than the propane critical temperature. The experimental data were modelled using the Peng-Robinson equation of state with the Wong-Sandler and the classical quadratic mixing rules, affording a satisfactory representation of the experimental data.

  9. High pressure-induced distortion in face-centered cubic phase of thallium

    Science.gov (United States)

    Kotmool, Komsilp; Li, Bing; Chakraborty, Sudip; Bovornratanaraks, Thiti; Luo, Wei; Mao, Ho-kwang; Ahuja, Rajeev

    2016-10-01

    The complex and unusual high-pressure phase transition of III-A (i.e. Al, Ga, and In) metals have been investigated in the last several decades because of their interesting periodic table position between the elements having metallic and covalent bonding. Our present first principles-based electronic structure calculations and experimental investigation have revealed the unusual distortion in face-centered cubic (f.c.c.) phase of the heavy element thallium (Tl) induced by the high pressure. We have predicted body-centered tetragonal (b.c.t) phase at 83 GPa using an evolutionary algorithm coupled with ab initio calculations, and this prediction has been confirmed with a slightly distorted parameter (2 × a - c)/c lowered by 1% using an angle-dispersive X-ray diffraction technique. The density functional theory (DFT)-based calculations suggest that s-p mixing states and the valence-core overlapping of 6s and 5d states play the most important roles for the phase transitions along the pathway h.c.p→b.c.t.

  10. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  11. Novel High-Pressure Monoclinic Metallic Phase of V2O3

    Science.gov (United States)

    Ding, Yang; Chen, Cheng-Chien; Zeng, Qiaoshi; Kim, Heung-Sik; Han, Myung Joon; Balasubramanian, Mahalingam; Gordon, Robert; Li, Fangfei; Bai, Ligang; Popov, Dimitry; Heald, Steve M.; Gog, Thomas; Mao, Ho-kwang; van Veenendaal, Michel

    2014-02-01

    Vanadium sesquioxide, V2O3, is a prototypical metal-to-insulator system where, in temperature-dependent studies, the transition always coincides with a corundum-to-monoclinic structural transition. As a function of pressure, V2O3 follows the expected behavior of increased metallicity due to a larger bandwidth for pressures up to 12.5 GPa. Surprisingly, for higher pressures when the structure becomes unstable, the resistance starts to increase. Around 32.5 GPa at 300 K, we observe a novel pressure-induced corundum-to-monoclinic transition between two metallic phases, showing that the structural phase transition can be decoupled from the metal-insulator transition. Using x-ray Raman scattering, we find that screening effects, which are strong in the corundum phase, become weakened at high pressures. Theoretical calculations indicate that this can be related to a decrease in coherent quasiparticle strength, suggesting that the high-pressure phase is likely a critical correlated metal, on the verge of Mott-insulating behavior.

  12. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000-2004)

    DEFF Research Database (Denmark)

    Dohrn, Ralf; Peper, Stephanie; Fonseca, José

    2010-01-01

    , and the experimental method used for the measurements are given in 54 tables. Most of experimental data in the literature have been given for binary systems. Of the 1204 binary systems, 681 (57%) have carbon dioxide as one of the components. Information on 156 pure components, 451 ternary systems of which 267 (62......%) contain carbon dioxide, 150 multicomponent and complex systems, and 129 systems with hydrates is given. Experimental methods for the investigation of high-pressure phase equilibria are classified and described. Work on the continuation of the review series is under way, covering the period between 2005...

  13. a Steinberg-Guinan Model for High-Pressure Carbon: Diamond Phase

    Science.gov (United States)

    Orlikowski, Daniel; Correa, Alfredo A.; Schwegler, Eric; Klepeis, John E.

    2007-12-01

    Since the diamond phase of carbon has such a high yield strength, dynamic simulations must account for strength even for strong shock waves (˜3 Mbar). We have determined an initial parametrization of two strength models: Steinberg-Guinan (SG) and a modified or improved SG(ISG), that captures the high pressure dependence of the calculated shear modulus up to 10 Mbar. The models are based upon available experimental data and on calculated elastic moduli using robust density functional theory. Additionally, we have evaluated these models using hydrodynamic simulations of planar shocks experiments.

  14. Phase transformation of GaAs at high pressures and temperatures

    Science.gov (United States)

    Ono, Shigeaki; Kikegawa, Takumi

    2018-02-01

    The high-pressure behavior of gallium arsenide, GaAs, has been investigated using an in-situ X-ray powder diffraction technique in a diamond anvil cell combined with a resistance heating method, at pressures and temperatures up to 25 GPa and 1000 K respectively. The pressure-induced phase transition from a zincblende to an orthorhombic (Cmcm) structure was observed. This transition occurred at 17.3 GPa and at room temperature, where a negative temperature dependence for this transition was confirmed. The transition boundary was determined to be P (GPa) = 18.0 - 0.0025 × T (K).

  15. Synthesis and Raman spectroscopy of a layered SiS2 phase at high pressures

    Science.gov (United States)

    Wang, Yu; Jiang, Shu-Qing; Goncharov, Alexander F.; Gorelli, Federico A.; Chen, Xiao-Jia; Plašienka, Dušan; MartoÅák, Roman; Tosatti, Erio; Santoro, Mario

    2018-01-01

    Dichalcogenides are known to exhibit layered solid phases, at ambient and high pressures, where 2D layers of chemically bonded formula units are held together by van der Waals forces. These materials are of great interest for solid-state sciences and technology, along with other 2D systems such as graphene and phosphorene. SiS2 is an archetypal model system of the most fundamental interest within this ensemble. Recently, high pressure (GPa) phases with Si in octahedral coordination by S have been theoretically predicted and also experimentally found to occur in this compound. At variance with stishovite in SiO2, which is a 3D network of SiO6 octahedra, the phases with octahedral coordination in SiS2 are 2D layered. Very importantly, this type of semiconducting material was theoretically predicted to exhibit continuous bandgap closing with pressure to a poor metallic state at tens of GPa. We synthesized layered SiS2 with octahedral coordination in a diamond anvil cell at 7.5-9 GPa, by laser heating together elemental S and Si at 1300-1700 K. Indeed, Raman spectroscopy up to 64.4 GPa is compatible with continuous bandgap closing in this material with the onset of either weak metallicity or of a narrow bandgap semiconductor state with a large density of defect-induced, intra-gap energy levels, at about 57 GPa. Importantly, our investigation adds up to the fundamental knowledge of layered dichalcogenides.

  16. Phase Behavior at High Pressure of the Ternary System: CO2, Ionic Liquid and Disperse Dye

    Directory of Open Access Journals (Sweden)

    Helen R. Mazzer

    2012-01-01

    Full Text Available High pressure phase behavior experimental data have been measured for the systems carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] and carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] + 1-amino-2-phenoxy-4-hydroxyanthraquinone (C.I. Disperse Red 60. Measurements were performed in the pressure up to 18 MPa and at the temperature (323 to 353 K. As reported in the literature, at higher concentrations of carbon dioxide the phase transition pressure increased very steeply. The experimental data for the binary and ternary systems were correlated with good agreement using the Peng-Robinson equation of state. The amount of water in phase behavior of the systems was evaluated.

  17. High-pressure phase in tetragonal two-dimensional polymeric C60

    International Nuclear Information System (INIS)

    Meletov, K.P.; Rossijskaya Akademiya Nauk, Chernogolovka; Arvanitidis, J.; Ves, S.; Kourouklis, G.A.

    2001-01-01

    The pressure behavior of the phonon modes of tetragonal two-dimensional polymeric C 60 has been studied at pressure up to 27.5 GPa and room temperature by means of Raman spectroscopy. Gradual transformation of the material to a new phase was observed in the pressure region 18.0-22.0 GPa. The Raman spectrum characteristics of the high-pressure phase provide a strong indication that the fullerene molecular cage is retained and the material may be related to a three-dimensionally polymerized C 60 . The new phase remains stable upon pressure decrease down to 9 GPa. Further release of pressure leads to its transformation to a highly disordered structure whose broad features in the Raman spectrum resemble those of amorphous carbon. (orig.)

  18. Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate

    Directory of Open Access Journals (Sweden)

    Rulong Zhou

    2014-03-01

    Full Text Available Although CO_{2} and SiO_{2} both belong to group-IV oxides, they exhibit remarkably different bonding characteristics and phase behavior at ambient conditions. At room temperature, CO_{2} is a gas, whereas SiO_{2} is a covalent solid with rich polymorphs. A recent successful synthesis of the silicon-carbonate solid from the reaction between CO_{2} and SiO_{2} under high pressure [M. Santoro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 7689 (2011] has resolved a long-standing puzzle regarding whether a Si_{x}C_{1−x}O_{2} compound between CO_{2} and SiO_{2} exists in nature. Nevertheless, the detailed atomic structure of the Si_{x}C_{1−x}O_{2} crystal is still unknown. Here, we report an extensive search for the high-pressure crystalline structures of the Si_{x}C_{1−x}O_{2} compound with various stoichiometric ratios (SiO_{2}:CO_{2} using an evolutionary algorithm. Based on the low-enthalpy structures obtained for each given stoichiometric ratio, several generic structural features and bonding characteristics of Si and C in the high-pressure phases are identified. The computed formation enthalpies show that the SiC_{2}O_{6} compound with a multislab three-dimensional (3D structure is energetically the most favorable at 20 GPa. Hence, a stable crystalline structure of the elusive Si_{x}C_{1−x}O_{2} compound under high pressure is predicted and awaiting future experimental confirmation. The SiC_{2}O_{6} crystal is an insulator with elastic constants comparable to typical hard solids, and it possesses nearly isotropic tensile strength as well as extremely low shear strength in the 2D plane, suggesting that the multislab 3D crystal is a promising solid lubricant. These valuable mechanical and electronic properties endow the SiC_{2}O_{6} crystal for potential applications in tribology and nanoelectronic devices, or as a stable solid-state form for CO_{2} sequestration.

  19. Novel High Pressure Pump-on-a-Chip Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  20. High pressure induced phase transition and superdiffusion in anomalous fluid confined in flexible nanopores

    International Nuclear Information System (INIS)

    Bordin, José Rafael; Krott, Leandro B.; Barbosa, Marcia C.

    2014-01-01

    The behavior of a confined spherical symmetric anomalous fluid under high external pressure was studied with Molecular Dynamics simulations. The fluid is modeled by a core-softened potential with two characteristic length scales, which in bulk reproduces the dynamical, thermodynamical, and structural anomalous behavior observed for water and other anomalous fluids. Our findings show that this system has a superdiffusion regime for sufficient high pressure and low temperature. As well, our results indicate that this superdiffusive regime is strongly related with the fluid structural properties and the superdiffusion to diffusion transition is a first order phase transition. We show how the simulation time and statistics are important to obtain the correct dynamical behavior of the confined fluid. Our results are discussed on the basis of the two length scales

  1. Structural phase transition of TmGa2 at high pressure

    International Nuclear Information System (INIS)

    Schwarz, U.; Braeuninger, S.; Grin, Yu.; Syassen, K.

    1996-01-01

    We have investigated the structural properties of the intermetallic compound TmGa 2 under hydrostatic pressures up to 45 GPa by means of X-ray powder diffraction in diamond anvil cells. The orthorhombic low-pressure modification of the KHg 2 (CeCu 2 ) type undergoes a structural phase transition at 21(3) GPa into a high-pressure modification of the AlB 2 structure type. TB-LMTO-ASA calculations and use of the electron localization function confirm that the structural change from a three-dimensional gallium network to a layered structure is associated with a transition from a tetrahedral homonuclear gallium network to a trigonal planar one. (orig.)

  2. Phase Behaviour of the System Propene/Polypropene at High Pressure

    Directory of Open Access Journals (Sweden)

    Oliver Ruhl

    2011-01-01

    Full Text Available The phase behaviour of mixtures of supercritical propene and a number of polypropenes, which have a similar density but significantly different molecular weights and tacticities, was investigated in a broad range of polymer weight fractions and temperatures at high pressures. The cloud-point pressures were measured optically, using a view cell which was equipped with two windows made of synthetic sapphire and a metal bellows to accurately adjust the pressure. The cloud-point pressures were found in the range from 29 to 37 MPa decreasing with increasing polymer weight fraction and increasing with increasing temperature and polymer molecular weight. The critical weight fraction was found below 2 to 6 wt.-%. Whereas the cloud-point pressures of atactic and syndiotactic samples were high and very similar, the isotactic species exhibit distinctly lower values. The results, extrapolated to lower temperatures, show good agreement with the literature data.

  3. Study on objective functions for the slow shot phase in high-pressure die casting

    Science.gov (United States)

    Frings, Markus; Behr, Marek; Elgeti, Stefanie

    2016-10-01

    High-pressure die casting is an important process in the field of aluminum processing. Especially during the slow shot phase, the process parameters immensely influence the cast part quality. At the current state of the art, the appropriate process parameters are identified based on running-in trials and significant experience. To translate this experience into a mathematical framework is the aim of this work. The idea is to shift the running-in trials to the computer—now in the form of a numerical optimization. In view of the optimization, this paper presents a selection of objective functions. These are assessed with the respect to (1) their suitability as an overall quality measure of the casting process and (2) the extent to which they reflect the goals of the casting process.

  4. Phase transformations in a Cu−Cr alloy induced by high pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Korneva, Anna, E-mail: a.korniewa@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow (Poland); Straumal, Boris [Institute of Solid State Physics, Russian Academy of Sciences, Ac. Ossipzn Str. 2, Chernogolovka 142432 (Russian Federation); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Laboratory of Hybrid Nanomaterials, National University of Science and Technology «MISIS», Leninskii prosp. 4, 119049 Moscow (Russian Federation); Kilmametov, Askar [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chulist, Robert [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow (Poland); Straumal, Piotr [Laboratory of Hybrid Nanomaterials, National University of Science and Technology «MISIS», Leninskii prosp. 4, 119049 Moscow (Russian Federation); Zięba, Paweł [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow (Poland)

    2016-04-15

    Phase transformations induced by high pressure torsion (HPT) at room temperature in two samples of the Cu-0.86 at.% Cr alloy, pre-annealed at 550 °C and 1000 °C, were studied in order to obtain two different initial states for the HPT procedure. Observation of microstructure of the samples before HPT revealed that the sample annealed at 550 °C contained two types of Cr precipitates in the Cu matrix: large particles (size about 500 nm) and small ones (size about 70 nm). The sample annealed at 1000 °C showed only a little fraction of Cr precipitates (size about 2 μm). The subsequent HPT process resulted in the partial dissolution of Cr precipitates in the first sample and dissolution of Cr precipitates with simultaneous decomposition of the supersaturated solid solution in another. However, the resulting microstructure of the samples after HPT was very similar from the standpoint of grain size, phase composition, texture analysis and hardness measurements. - Highlights: • Cu−Cr alloy with two different initial states was deformed by HPT. • Phase transformations in the deformed materials were studied. • SEM, TEM and X-ray diffraction techniques were used for microstructure analysis. • HPT leads to formation the same microstructure independent of the initial state.

  5. Phase behaviour measurements for the system (carbon dioxide + biodiesel + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Araújo, Odilon A.S.; Silva, Fabiano R.; Ramos, Luiz P.; Lenzi, Marcelo K.; Ndiaye, Papa M.; Corazza, Marcos L.

    2012-01-01

    Graphical abstract: Comparison between ethyl and methyl esters in a pressure-composition of {CO 2 (1) + biodiesel(2)} at 303.15 K (triangles), 323.15 K (squares) and 343.15 K (circles). Open symbols are ethyl biodiesel (this work) and closed symbols are methyl biodiesel data by Pinto et al. Highlights: ► We measured phase behaviour for the system involving {CO 2 + biodiesel + ethanol}. ► The saturation pressures were obtained using a variable-volume view cell. ► The experimental data were modelled using PR-vdW2 and PR-WS equations of state. - Abstract: This work reports phase equilibrium measurements for binary system {CO 2 (1) + biodiesel(2)} and ternary system {CO 2 (1) + biodiesel(2) + ethanol(3)}. The biodiesel (ethyl esters) used in this work was produced from soybean oil, purified and characterised following the standard specification for subsequent use. Nowadays, great interest in biodiesel production processes at supercritical and/or pressurised solvents is observed, such as, non-catalytic supercritical biodiesel production and enzyme-catalyzed biodiesel production, besides the supercritical CO 2 can be an interesting alternative to glycerol separation in the biodiesel purification step. Towards this, the main goal of this work is to study the phase behaviour at high pressure for the binary and ternary systems involving CO 2 , biodiesel and ethanol. Experiments were carried out in a high pressure variable-volume view cell with operating temperatures ranging from (303.15 to 343.15) K and pressures up to 25 MPa. The CO 2 molar fraction ranged from 0.4213 to 0.9855 for the system {CO 2 (1) + biodiesel(2)}, 0.4263 to 0.9781 for the system {CO 2 (1) + biodiesel(2) + ethanol(3)} with a biodiesel to ethanol molar ratio of (1:3), and 0.4317 to 0.9787 for the system {CO 2 (1) + biodiesel(2) + ethanol(3)} with a biodiesel to ethanol molar ratio of (1:8). For the systems investigated, vapour–liquid (VL), liquid–liquid (LL) and vapour–liquid–liquid (VLL

  6. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  7. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  8. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  9. Pressure-induced irreversible metallization accompanying the phase transitions in S b2S3

    Science.gov (United States)

    Dai, Lidong; Liu, Kaixiang; Li, Heping; Wu, Lei; Hu, Haiying; Zhuang, Yukai; Yang, Linfei; Pu, Chang; Liu, Pengfei

    2018-01-01

    We have revealed S b2S3 to have two phase transitions and to undergo metallization using a diamond anvil cell at around 5.0, 15.0, and 34.0 GPa, respectively. These results were obtained on the basis of high-pressure Raman spectroscopy, temperature-dependent conductivity measurements, atomic force microscopy, high-resolution transmission electron microscopy, and first-principles calculations. The first phase transition at ˜5.0 GPa is an isostructural phase transition, which is manifested in noticeable changes in five Raman-active modes and the slope of the conductivity because of a change in the electronic structure. The second pressure-induced phase transition was characterized by a discontinuous change in the slope of conductivity and a new low-intensity Raman mode at ˜15.0 GPa . Furthermore, a semiconductor-to-metal transition was found at ˜34.0 GPa , which was accompanied by irreversible metallization, and it could be attributed to the permanently plastic deformation of the interlayer spacing. This high-pressure behavior of S b2S3 will help us to understand the universal crystal structure evolution and electrical characteristics for A2B3 -type compounds, and to facilitate their application in electronic devices.

  10. The role of equilibrium volume and magnetism on the stability of iron phases at high pressures.

    Science.gov (United States)

    Alnemrat, S; Hooper, J P; Vasiliev, I; Kiefer, B

    2014-01-29

    The present study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in the known hcp, bcc and fcc iron. The Birch-Murnaghan equation of state parameters are; bcc: V0 = 11.759 A(3)/atom, K0 = 177.72 GPa; hcp: V0 = 10.525 A(3)/atom, K0 = 295.16 GPa; and fcc: V0 = 10.682 A(3)/atom, K0 = 274.57 GPa. These parameters compare favorably with previous studies. Consistent with previous studies we find that the close-packed hcp and fcc phases are non-magnetic at pressures above 50 GPa and 60 GPa, respectively. The principal features of magnetism in iron are predicted to be invariant, at least up to ∼6% overextension of the equilibrium volume. Our results predict that magnetism for overextended fcc iron disappears via an intermediate spin state. This feature suggests that overextended lattices can be used to stabilize particular magnetic states. The analysis of the orbital hybridization shows that the magnetic bcc structure at high pressures is stabilized by splitting the majority and minority spin bands. The bcc phase is found to be magnetic at least up to 600 GPa; however, magnetism is insufficient to stabilize the bcc phase itself, at least at low temperatures. Finally, the analysis of the orbital contributions to the total energy provides evidence that non-magnetic hcp and fcc phases are likely more stable than bcc at core earth pressures.

  11. The novel phase transition of NaBi(WO4)2 under high pressure

    International Nuclear Information System (INIS)

    Ma, Chunli; Cui, Hang; Li, Fangfei; Wang, Jingshu; Wu, Xiaoxin; Zhang, Jian; Zhou, Qiang; Liu, Jinghe; Cui, Qiliang

    2013-01-01

    The Raman and synchrotron angle-dispersive X-ray diffraction studies have been performed on NaBi(WO 4 ) 2 under high pressure up to 30.7 and 36.2 GPa, respectively, at room temperature. With pressure increases to ∼7.0 GPa, the structure of NaBi(WO 4 ) 2 begins to transform from tetragonal (I4 1 /a) into monoclinic (P2/m), and the phase transition completes around 13 GPa. With pressure higher than 29.0 GPa, the NaBi(WO 4 ) 2 turns into amorphous state. The random arrangement of Na + and Bi 3+ in short-range ordered scheelite NaBi(WO 4 ) 2 results in the tetragonal to monoclinic phase transition, which is different from that observed in AWO 4 tungstates and AMoO 4 molybdates (A=Ca, Sr, Ba, Pb, Eu, Cd). - Graphical abstract: The NaBi(WO 4 ) 2 transforms from tetragonal into monoclinic, which starts around 7 GPa and completes at about 13 GPa. With pressure higher than 29 GPa, the NaBi(WO 4 ) 2 turns into amorphous state. Highlights: ► Raman and X-ray diffraction studies performed on NaBi(WO 4 ) 2 up to 30.7 and 36.2 GPa, respectively. ► The tetragonal (I4 1 /a) into monoclinic (P2/m) phase transition is determined. ► With pressure higher than 29 GPa, the NaBi(WO 4 ) 2 ultimately turns into amorphous state. ► The ambient pressure bulk modulus and volume of tetragonal and monoclinic phases are obtained

  12. Phase transition of intermetallic TbPt at high temperature and high pressure

    Science.gov (United States)

    Qin, Fei; Wu, Xiang; Yang, Ke; Qin, Shan

    2018-04-01

    Here we present synchrotron-based x-ray diffraction experiments combined with diamond anvil cell and laser heating techniques on the intermetallic rare earth compound TbPt (Pnma and Z  =  4) up to 32.5 GPa and ~1800 K. The lattice parameters of TbPt exhibit continuous compression behavior up to 18.2 GPa without any evidence of phase transformation. Pressure-volume data were fitted to a third-order Birch-Murnaghan equation of state with V 0  =  175.5(2) Å3, {{K}{{T0}}}   =  110(5) GPa and K{{T0}}\\prime   =  3.8(7). TbPt exhibits anisotropic compression with β a   >  β b   >  β c and the ratio of axial compressibility is 2.50:1.26:1.00. A new monoclinic phase of TbPt assigned to the Pc or P2/c space group was observed at 32.5 GPa after laser heating at ~1800 K. This new phase is stable at high pressure and presented a quenchable property on decompression to ambient conditions. The pressure-volume relationship is well described by the second-order Birch-Murnaghan equation of state, which yields V 0  =  672(4) Å3, {{K}{{T0}}}   =  123(6) GPa, which is about ~14% more compressible than the orthorhombic TbPt. Our results provide more information on the structure and elastic property view, and thus a better understanding of the physical properties related to magnetic structure in some intermetallic rare earth alloys.

  13. Anomalous compression and new high-pressure phases of vanadium sesquioxide, V2O3

    Science.gov (United States)

    Ovsyannikov, Sergey V.; Trots, Dmytro M.; Kurnosov, Alexander V.; Morgenroth, Wolfgang; Liermann, Hanns-Peter; Dubrovinsky, Leonid

    2013-09-01

    We report results of a powder x-ray diffraction (XRD) study of vanadium sesquioxide, V2O3, under pressurization in a neon pressure-transmitting medium up to 57 GPa. We have established a bulk modulus value for corundum-type V2O3 of B0 = 150 GPa at B‧ = 4. This bulk modulus value is the lowest among those known for the corundum-type-structured oxides, e.g. Al2O3, α-Fe2O3, Cr2O3, Ti2O3, and α-Ga2O3. We have proposed that this might be related to the difference in the electronic band structures: at room temperature V2O3 is metallic, but the above corundum-structured sesquioxides are semiconducting or insulating. Around ˜21-27 and ˜50 GPa we registered changes in the XRD patterns that might be addressed to phase transitions. These transitions were sluggish upon room-temperature compression, and hence we additionally facilitated them by the laser heating of one sample. We have refined the XRD patterns of only the first high-pressure phase in an orthorhombic lattice of a Rh2O3(II)-type. Our findings significantly extend the knowledge of the P-T phase diagram of V2O3 and advance the understanding of its properties. We speculate that the elastic properties of V2O3 can be closely linked to its electronic band structure and, consequently, we propose that slightly doped V2O3 (e.g. with Cr) could be a potential candidate for systems in which the bulk modulus value may be remarkably switched by moderate pressure or temperature.

  14. High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase

    Science.gov (United States)

    Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.

    2009-03-01

    Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of

  15. High-pressure phase transition of alkali metal-transition metal deuteride Li2PdD2

    Science.gov (United States)

    Yao, Yansun; Stavrou, Elissaios; Goncharov, Alexander F.; Majumdar, Arnab; Wang, Hui; Prakapenka, Vitali B.; Epshteyn, Albert; Purdy, Andrew P.

    2017-06-01

    A combined theoretical and experimental study of lithium palladium deuteride (Li2PdD2) subjected to pressures up to 50 GPa reveals one structural phase transition near 10 GPa, detected by synchrotron powder x-ray diffraction, and metadynamics simulations. The ambient-pressure tetragonal phase of Li2PdD2 transforms into a monoclinic C2/m phase that is distinct from all known structures of alkali metal-transition metal hydrides/deuterides. The structure of the high-pressure phase was characterized using ab initio computational techniques and from refinement of the powder x-ray diffraction data. In the high-pressure phase, the PdD2 complexes lose molecular integrity and are fused to extended [PdD2]∞ chains. The discovered phase transition and new structure are relevant to the possible hydrogen storage application of Li2PdD2 and alkali metal-transition metal hydrides in general.

  16. Design Concepts for Low Aspect Ratio High Pressure Turbines for High Bypass Ratio Turbofans, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance gains and weight reductions from using Ceramic Matrix Composite(CMC) turbine blades in both the High Pressure Turbine(HPT) and Low Pressure...

  17. Design Concepts for Low Aspect Ratio High Pressure Turbines for High Bypass Ratio Turbofans, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal is to identify cycle improvements and verify structural feasibility of shrouding a low aspect ratio High Pressure Turbine(HPT) rotor designed to use...

  18. Hydrostatic high pressures for material deformations. Application to Chevrel phase superconductors

    International Nuclear Information System (INIS)

    Massat, H.

    1984-01-01

    The effect of hydrostatic high pressures on the ductility of materials is reviewed and applications are made to powder metallurgy under isostatic pressure and hydrostatic extrusion of superconductors [fr

  19. High-pressure electron-resonance studies of electronic, magnetic, and structural phase transitions. Progress report

    International Nuclear Information System (INIS)

    Pifer, J.H.; Croft, M.C.

    1983-01-01

    Research is described in development of a high-pressure electron-resonance probe capable of operating down to 1.5 0 K temperatures. The apparatus has been used to measure the EPR of a sample of DPPH at room temperature and zero pressure. EPR has been used to measure valence field instabilities in alloy systems. Studies have been done on metal-insulator transitions at high pressure, and are briefly described

  20. In situ high pressure phase transition of alcohol intercalated zirconium phosphate observed by synchrotron X-ray scattering

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Zima, Vítězslav; Melánová, Klára; Steinhart, Miloš; Kriechbaum, M.; Amenitsch, H.; Bernstorff, S.

    2004-01-01

    Roč. 65, č. 2-3 (2004), s. 615-618 ISSN 0022-3697 R&D Projects: GA ČR GV202/98/K002 Institutional research plan: CEZ:AV0Z4050913 Keywords : phase transition * high pressure Subject RIV: CA - Inorganic Chemistry Impact factor: 0.988, year: 2004

  1. Application of neural networks to prediction of phase transport characteristics in high-pressure two-phase turbulent bubbly flows

    International Nuclear Information System (INIS)

    Yang, A.-S.; Kuo, T.-C.; Ling, P.-H.

    2003-01-01

    The phase transport phenomenon of the high-pressure two-phase turbulent bubbly flow involves complicated interfacial interactions of the mass, momentum, and energy transfer processes between phases, revealing that an enormous effort is required in characterizing the liquid-gas flow behavior. Nonetheless, the instantaneous information of bubbly flow properties is often desired for many industrial applications. This investigation aims to demonstrate the successful use of neural networks in the real-time determination of two-phase flow properties at elevated pressures. Three back-propagation neural networks, trained with the simulation results of a comprehensive theoretical model, are established to predict the transport characteristics (specifically the distributions of void-fraction and axial liquid-gas velocities) of upward turbulent bubbly pipe flows at pressures covering 3.5-7.0 MPa. Comparisons of the predictions with the test target vectors indicate that the averaged root-mean-squared (RMS) error for each one of three back-propagation neural networks is within 4.59%. In addition, this study appraises the effects of different network parameters, including the number of hidden nodes, the type of transfer function, the number of training pairs, the learning rate-increasing ratio, the learning rate-decreasing ratio, and the momentum value, on the training quality of neural networks.

  2. 2D IR spectroscopy of high-pressure phases of ice

    NARCIS (Netherlands)

    Tran, Halina; Cunha, Ana V.; Shephard, Jacob J.; Shalit, Andrey; Hamm, Peter; Jansen, Thomas L. C.; Salzmann, Christoph G.

    2017-01-01

    We present experimental and simulated 2D IR spectra of some high-pressure forms of isotope-pure D2O ice and compare the results to those of ice Ih published previously [F. Perakis and P. Hamm, Phys. Chem. Chem. Phys. 14, 6250 (2012); L. Shi et al., ibid. 18, 3772 (2016)]. Ice II, ice V, and ice XIII

  3. A new phase of ThC at high pressure predicted from a first-principles study

    Science.gov (United States)

    Guo, Yongliang; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Han, Han; Ren, Cuilan; Zhu, Zhiyuan

    2015-08-01

    The phase transition of thorium monocarbide (ThC) at high pressure has been studied by means of density functional theory. Through structure search, a new phase with space group P 4 / nmm has been predicted. The calculated phonons demonstrate that this new phase and the previous B2 phase are dynamically stable as the external pressure is greater than 60 GPa and 120 GPa, respectively. The transformation from B1 to P 4 / nmm is predicted to be a first-order transition, while that from P 4 / nmm to B2 is found to be a second-order transition.

  4. Orientation relations during the α-ω phase transition of zirconium: in situ texture observations at high pressure and temperature.

    Science.gov (United States)

    Wenk, H-R; Kaercher, P; Kanitpanyacharoen, W; Zepeda-Alarcon, E; Wang, Y

    2013-11-08

    Transition metals Ti, Zr, and Hf have a hexagonal close-packed structure (α) at ambient conditions, but undergo phase transformations with increasing temperature and pressure. Of particular significance is the high-pressure hexagonal ω phase which is brittle compared to the α phase. There has been a long debate about transformation mechanisms and orientation relations between the two crystal structures. Here we present the first high pressure experiments with in situ synchrotron x-ray diffraction texture studies on polycrystalline aggregates. We follow crystal orientation changes in Zr, confirming the original suggestion by Silcock for an α→ω martensitic transition for Ti, with (0001)(α)||(1120)(ω), and a remarkable orientation memory when ω reverts back to α.

  5. High-pressure cell for luminescence studies of condensed phases at low temperatures

    International Nuclear Information System (INIS)

    Variano, B.F.; Brenner, H.C.; Daniels, W.B.

    1986-01-01

    A clamped optical cell for high-pressure low-temperature fluorescence and phosphorescence studies is described. A particular innovation is the use of a bifurcated fiber-optic lightguide to enable sample illumination and emission collection with a single optical window. This very simple type of cell is adaptable to a variety of optical setups and is easily assembled and disassembled for sample mounting

  6. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    Science.gov (United States)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  7. Structural modification of aluminium oxynitride phases under stresses at high temperatures, high pressures and under irradiation by fast neutrons

    International Nuclear Information System (INIS)

    Labbe, J.C.; Jeanne, A.; Roult, G.

    1990-01-01

    The structural modifications of the aluminium oxynitride phases under stresses are studied by the time of flight neutron diffraction method, at high temperatures (up to 1375degC), at high pressures (up to 2.4 GPa), and under irradiation by fast neutrons (up to 3.2 X 10 20 n/cm 2 ). In each case the evolutions of cell parameter, interatomic bond angles, bond lengths and atomic positions are given. (orig.)

  8. The piston-cylinder apparatus for in-situ structural investigations of high-pressure phases of gas hydrates with the use of synchrotron radiation

    CERN Document Server

    Mirinski, D S; Larionova, E G; Kurnosov, A V; Ancharov, A I; Dyadin, Y A; Tolochko, B P; Sheromov, M A

    2001-01-01

    The piston-cylinder apparatus for the investigation of high-pressure gas hydrate phases by the powder diffraction method is presented. The first results concerning the nature of the high-pressure gas hydrate phase in the sulfur hexafluoride-water system are reported.

  9. High-pressure Raman investigations of phase transformations in pentaerythritol (C(CH sub 2 OH) sub 4)

    CERN Document Server

    Bhattacharya, T

    2002-01-01

    Our high-pressure Raman scattering experiments on pentaerythritol (C(CH sub 2 OH) sub 4) show that this compound undergoes at least three phase transformations up to 25 GPa. Splitting of various modes at approx 6.3, approx 8.2 and 10 GPa suggests that these phase transformations result in lowering of crystalline symmetry. A very small discontinuous change in slope of most of the Raman-active modes is observed at 0.3 GPa. However, no other signature of a phase transition was observed at this pressure. The observed correlation of the pressures for the onset of the two phase transformations with the limiting values of the distances between various non-bonded atoms in the parent phase suggests that the molecular rearrangements across the phase transformations are not very drastic. In addition, our earlier Fourier transform infrared and present Raman investigations indicate that high-pressure compression leads to increase in strength of the hydrogen bond present in this compound.

  10. Series of phase transitions in cesium azide under high pressure studied by in situ x-ray diffraction

    Science.gov (United States)

    Hou, Dongbin; Zhang, Fuxiang; Ji, Cheng; Hannon, Trevor; Zhu, Hongyang; Wu, Jianzhe; Ma, Yanzhang

    2011-08-01

    In situ x-ray diffraction measurements of cesium azide (CsN3) were performed at high pressures of up to 55.4 GPa at room temperature. Three phase transitions were revealed as follows: tetragonal (I4/mcm, Phase II) → monoclinic (C2/m, Phase III) → monoclinic (P21/m or P21, Phase IV) → triclinic (P1 or P1¯, Phase V), at 0.5, 4.4, and 15.4 GPa, respectively. During the II-III phase transition, CsN3 keeps its layered structure and the azide anions rotate obviously. The compressibility of Phase II is dominated by the repulsions between azide anions. The deformation of unit cell is isotropic in Phases II and IV and anisotropic in Phase III. With increasing pressures, the monoclinic angle increases in Phase III and then becomes stable in Phase IV. The bulk moduli of Phases II, III, IV, and V are determined to be 18 ± 4, 20 ± 1, 27 ± 1 and 34 ± 1 GPa, respectively. The ionic character of alkali azides is found to play a key role in their pressure-induced phase transitions.

  11. Anomalous thermal expansion, negative linear compressibility, and high-pressure phase transition in ZnAu2(CN) 4 : Neutron inelastic scattering and lattice dynamics studies

    Science.gov (United States)

    Gupta, Mayanak K.; Singh, Baltej; Mittal, Ranjan; Zbiri, Mohamed; Cairns, Andrew B.; Goodwin, Andrew L.; Schober, Helmut; Chaplot, Samrath L.

    2017-12-01

    We present temperature-dependent inelastic-neutron-scattering measurements, accompanied by ab initio calculations of the phonon spectra and elastic properties as a function of pressure to quantitatively explain an unusual combination of negative thermal expansion and negative linear compressibility behavior of ZnAu2(CN) 4 . The mechanism of the negative thermal expansion is identified in terms of specific anharmonic phonon modes that involve bending of the -Zn-NC-Au-CN-Zn- linkage. The soft phonon at the L point at the Brillouin zone boundary quantitatively relates to the high-pressure phase transition at about 2 GPa. The ambient pressure structure is also found to be close to an elastic instability that leads to a weakly first-order transition.

  12. Five-dimensional visualization of phase transition in BiNiO{sub 3} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yijin, E-mail: liuyijin@slac.stanford.edu, E-mail: wyang@ciw.edu [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Wang, Junyue; Yang, Wenge, E-mail: liuyijin@slac.stanford.edu, E-mail: wyang@ciw.edu [Center of High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); High Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States); Azuma, Masaki [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503 (Japan); Mao, Wendy L. [Geological and Environmental Sciences, 450 Serra Mall, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2014-01-27

    Colossal negative thermal expansion was recently discovered in BiNiO{sub 3} associated with a low density to high density phase transition under high pressure. The varying proportion of co-existing phases plays a key role in the macroscopic behavior of this material. Here, we utilize a recently developed X-ray Absorption Near Edge Spectroscopy Tomography method and resolve the mixture of high/low pressure phases as a function of pressure at tens of nanometer resolution taking advantage of the charge transfer during the transition. This five-dimensional (X, Y, Z, energy, and pressure) visualization of the phase boundary provides a high resolution method to study the interface dynamics of high/low pressure phase.

  13. High-pressure phases of Weyl semimetals NbP, NbAs, TaP, and TaAs

    Science.gov (United States)

    Guo, ZhaoPeng; Lu, PengChao; Chen, Tong; Wu, JueFei; Sun, Jian; Xing, DingYu

    2018-03-01

    In this study, we used the crystal structure search method and first-principles calculations to systematically explore the highpressure phase diagrams of the TaAs family (NbP, NbAs, TaP, and TaAs). Our calculation results show that NbAs and TaAs have similar phase diagrams, the same structural phase transition sequence I41 md→ P6¯ m2→ P21/ c→ Pm3¯ m, and slightly different transition pressures. The phase transition sequence of NbP and TaP differs somewhat from that of NbAs and TaAs, in which new structures emerge, such as the Cmcm structure in NbP and the Pmmn structure in TaP. Interestingly, we found that in the electronic structure of the high-pressure phase P6¯ m2-NbAs, there are coexistingWeyl points and triple degenerate points, similar to those found in high-pressure P6¯ m2-TaAs.

  14. Reverse phase high pressure liquid chromatographic determination of aflatoxins in foods.

    Science.gov (United States)

    Beebe, R M

    1978-11-01

    A method for determining aflatoxins by high pressure liquid chromatography (HPLC) with fluorescence detection after CB extraction and cleanup has been applied to various foods. Recoveries at 1--15 ppb levels from green coffee and peanut butter was 72--85 and 74--104%, respectively. Precision of the method has been tested for peanut butter. Other products to which the method has been successfully applied include tree nuts, seeds, grains, chocolate-covered peanut butter candy, and roasted, salted-in-shell peanuts. High levels of aflatoxins found in several samples of nuts by this method have been verified by the official thin layer chromatographic (TLC) method. The advantages of this HPLC method are speed, precision, sensitivity, selectivity, and immediate chemical confirmation of aflatoxins B1 and G1. None of the products analyzed required special cleanup procedures. Preparative-scale HPLC was used to isolate purified B1 for toxicity testing.

  15. Phase transitions in cerium at high pressure up to 15 GPa and at high temperatures

    International Nuclear Information System (INIS)

    Tsiok, O.B.; Khvostantsev, L.G.

    2001-01-01

    The phase transitions in cerium are studied through the electric resistance measurement method at pressures up to 15 GPa and high temperatures. It is determined that cerium at pressures above 10 GPa constitutes the mixture of stable and metastable phases, whereby its composition depends on thee trajectory on the P-T-plane, leading to the point with the given P-T-parameters. The transitions in the stable and metastable components of this mixture, proceeding more or less independently, demonstrate the entangled picture of the phase transitions. It was supposed that only the α (Fcc) and α' (α-U) phases are stable in the area of pressures above the well-known γ-α-transition; the remainder phases are metastable. The proposed cupola-shaped equilibrium phase diagram includes extremely wide hysteresis area, wherein the stable and metastable phases may coexist. However after heating above 500 deg C at 15 GPa there remains only one phase α (Fcc) [ru

  16. Pressure and Temperature Dependent Structural Studies on Hollandite Type Ferrotitanate and Crystal Structure of a High Pressure Phase.

    Science.gov (United States)

    Bevara, Samatha; Achary, S Nagabhusan; Garg, Nandini; Chitnis, Abhishek; Sastry, P U; Shinde, A B; Krishna, P Siva Ram; Tyagi, Avesh Kumar

    2018-02-19

    The structural stability and phase transition behavior of tetragonal (I4/m) hollandite type K 2 Fe 2 Ti 6 O 16 have been investigated by in situ high pressure X-ray diffraction using synchrotron radiation and a diamond anvil cell as well as by variable temperature powder neutron and X-ray diffraction. The tetragonal phase is found to be stable in a wider range of temperatures, while it reversibly transforms to a monoclinic (I2/m) structure at a moderate pressure, viz. 3.6 GPa. The pressure induced phase transition occurs with only a marginal change in structural arrangements. The unit cell parameters of ambient (t) and high pressure (m) phases can be related as a m ∼ a t , b m ∼ c t , and c m ∼ b t . The pressure evolution of the unit cell parameters indicates anisotropic compression with β a = β b ≥ β c in the tetragonal phase and becomes more anisotropic with β a ≪ β b pressure-volume equations of state of both phases have been obtained by second order Birch-Murnaghan equations of state, and the bulk moduli are 122 and 127 GPa for tetragonal and monoclinic phases, respectively. The temperature dependent unit cell parameters show nearly isotropic expansion, with marginally higher expansion along the c-axis compared to the a- and b-axes. The tetragonal to monoclinic phase transition occurs with a reduction of unit cell volume of about 1.1% while the reduction of unit cell volume up to 6 K is only about 0.6%. The fitting of temperature dependent unit cell volume by using the Einstein model of phonons indicates the Einstein temperature is about 266(18) K.

  17. High Pressure phase transition in some alkali halides using interatomic potential model

    International Nuclear Information System (INIS)

    Yazar, H.R.

    2002-01-01

    We have predicted the phase transition pressure in some alkali halides using an interatomic potential approach based on rigid ion model.The phase transition pressures(28.69 and 2.4 GPa) obtained by us for two alkali halides (NaCl and KCl ) are in closer agreement with their corresponding experimental data(29.0 and 2.0 GPa).This potential is promising with respect to prediction of the phase transition pressure of other alkali halides as well

  18. Pressure-induced transformations in PrVO4 and SmVO4 and isolation of high-pressure metastable phases.

    Science.gov (United States)

    Errandonea, Daniel; Achary, S Nagabhusan; Pellicer-Porres, Julio; Tyagi, Avesh K

    2013-05-06

    Zircon-type PrVO4 and SmVO4 have been studied by high-pressure Raman spectroscopy up to 17 GPa. The occurrence of phase transitions has been detected when compression exceeds 6 GPa. The transformations are not reversible. Raman spectra of the high-pressure phases show similarities with those expected for a monazite-type phase in PrVO4 and a scheelite-type phase in SmVO4.The high-pressure phases have been also synthesized using a large-volume press and recovered at ambient conditions. X-ray diffraction measurements of the metastable products recovered after decompression confirms the monazite (PrVO4) and scheelite (SmVO4) structures of the high-pressure phases. Based upon optical properties of the reported new polymorphs, novel applications for rare-earth vanadates are proposed, including photocatalytic hydrogen production.

  19. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    Science.gov (United States)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  20. Effect of a pulsed magnetic field on terbium high pressure phase

    International Nuclear Information System (INIS)

    Tonkov, E.Yu.; Aptekar', I.L.; Degtyareva, V.F.; Ponomarev, B.K.; Tissen, V.G.

    1977-01-01

    Through the effect of an elevated (up to 90 kbar) quasi hydrostatic pressure the Tb 3 phase has been obtained having a samarium-resembling structure which remains metastable after the pressure has been removed. It is shown that the action of a pulse magnetic field reconvert the Tb 3 phase to the initial Tb 3 phase. The Tb 3 → Tb 2 transition begins at temperatures below 190 K, the quantity of the converted phase increasing as the temperature goes down. The Neel point has been observed in Tb 3 at about 190 K. The Tb 3 → Tb 2 transition can alternatively be effected by heating to about 200 deg C and under plastic strain. Magnetostriction of the antiferromagnetic Tb 3 phase can be the possible mechanism of the Tb 3 → Tb 2 transition under the effect of magnetic field

  1. High-pressure magnetic phase diagram of CeP studied by neutron diffraction

    International Nuclear Information System (INIS)

    Hannan, A.; Kohgi, M.; Iwasa, K.; Osakabe, T.

    2002-01-01

    Neutron-diffraction experiments have been performed in order to clarify the magnetic structures of CeP under pressures above 1.9 GPa using a sapphire-anvil cell. The P-T phase diagram up to 2.8 GPa has been investigated. Some new phases have been found, for example the phase 2 + (↑ ↑ ↓ ↓ ↑ ↑) under the pressure of 1.9 GPa. Type-IA antiferromagnetic structure (↑ ↑ ↓ ↓) was found below 22.5 and 45 K at 1.9 and 2.2 GPa, respectively. A phase characterized by the wave vector k=1/3 and a ferromagnetic phase were observed in the pressure range 2.5-2.8 GPa. (orig.)

  2. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ming, L. C. [University of Hawaii; Zinin, P. V. [University of Hawaii; Sharma, S. K. [University of Hawaii

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  3. Employment of a novel ultrasonic method to investigate high pressure phase transitions in oleic acid

    Science.gov (United States)

    Rostocki, A. J.; Siegoczyński, R. M.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Zduniak, M.

    2011-06-01

    In this work, the variation of sound velocity with hydrostatic pressure for oleic acid is evaluated up to 350 MPa. During the measurement, we identified the phase transformation of oleic acid and the presence of the hysteresis of the dependence of sound velocity on pressure. From the performed measurements, it can be seen that the dependence of sound velocity on pressure can be used to investigate phase transformations in natural oils. Ultrasonic waves were excited and detected using piezoelectric LiNbO3(Y-36 cut) 5 MHz transducers. The phase velocity of the longitudinal ultrasonic waves was measured using a cross-correlation method to evaluate the time of flight.

  4. Synthesis of silicon- and germanium-rich phases at high-pressure conditions

    OpenAIRE

    Castillo, Rodrigo

    2016-01-01

    The main focus of the present work was the Ge-rich part of the binary Ba – Ge system, in which by inspecting the behavior of the clathrate-I Ba8Ge43 under pressure, several new phases were found. The new phases in this system have the following compositions: BaGe3 (with two modifications), BaGe5, BaGe5.5 and BaGe6, therefore they are quite close in composition range: 75% - ~85% at. Ge. Concerning the conditions required for the synthesis of each phase, several combinations of temperature ...

  5. Novel structural phases and the electrical properties of Si3B under high pressure.

    Science.gov (United States)

    Wang, Jingjing; Sun, Guoliang; Kong, Panlong; Sun, Weiguo; Lu, Cheng; Peng, Feng; Kuang, Xiaoyu

    2017-06-21

    We report a detailed theoretical study of the electronic structure, phase stability, elastic and mechanical properties of Si 3 B in the pressure range of 0-160 GPa by employing the crystal structure analysis by particle swarm optimization (CALYPSO) method combined with first-principles calculations. Our theoretical predictions reveal that, as the pressure increases, Si 3 B moves through the following sequence of phases: P3 1 21 → C2/m → P2 1 /m, and the corresponding transition pressures are computed to be 30 and 64 GPa, respectively. The results of band structures, density of states and electronic localization functions indicate that all three phases act as metallic with strong covalent bonding. The Vickers hardness of C2/m and P2 1 /m phases has been estimated by Gao's, Lyakhov-Oganov's and Šimůnek's models, implying that Si 3 B is a potential hard material with a hardness value of ∼20 GPa. The superconducting critical temperatures of polymeric Si 3 B are also uncovered to be 3.6 K for the C2/m phase at 50 GPa and 5.7 K for the P2 1 /m phase at 100 GPa. Our results enrich the crystal structures of the Si-B system and provide a further understanding of structures and their properties.

  6. Ligand partitioning into lipid bilayer membranes under high pressure: Implication of variation in phase-transition temperatures.

    Science.gov (United States)

    Matsuki, Hitoshi; Kato, Kentaro; Okamoto, Hirotsugu; Yoshida, Shuntaro; Goto, Masaki; Tamai, Nobutake; Kaneshina, Shoji

    2017-12-01

    The variation in phase-transition temperatures of dipalmitoylphosphatidylcholine (DPPC) bilayer membrane by adding two membrane-active ligands, a long-chain fatty acid (palmitic acid (PA)) and an inhalation anesthetic (halothane (HAL)), was investigated by light-transmittance measurements and fluorometry. By assuming the thermodynamic colligative property for the bilayer membrane at low ligand concentrations, the partitioning behavior of these ligands into the DPPC bilayer membrane was considered. It was proved from the differential partition coefficients between two phases that PA has strong affinity with the gel (lamellar gel) phase in a micro-molal concentration range and makes the bilayer membrane more ordered, while HAL has strong affinity with the liquid crystalline phase in a milli-molal concentration range and does the bilayer membrane more disordered. The transfer volumes of both ligands from the aqueous solution to each phase of the DPPC bilayer membrane showed that the preferential partitioning of the PA molecule into the gel (lamellar gel) produces about 20% decrease in transfer volume as compared with the liquid crystalline phase, whereas that of the HAL molecule into the liquid crystalline phase does about twice increase in transfer volume as compared with the gel (ripple gel) phase. Furthermore, changes in thermotropic and barotropic phase behavior of the DPPC bilayer membrane by adding the ligand was discussed from the viewpoint of the ligand partitioning. Reflecting the contrastive partitioning of PA and HAL into the pressure-induced interdigitated gel phase among the gel phases, it was revealed that PA suppresses the formation of the interdigitated gel phase under high pressure while HAL promotes it. These results clearly indicate that each phase of the DPPC bilayer membrane has a potential to recognize various ligand molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure.

    Science.gov (United States)

    Okusa, Kensuke; Iwasaki, Yuki; Kuroda, Ikuma; Miwa, Shohei; Ohira, Masayoshi; Nagai, Toshiharu; Mizobe, Hoyo; Gotoh, Naohiro; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2014-04-25

    A high-density, polymeric C18 stationary phase (Inertsil ODS-P) or a polymeric C30 phase (Inertsil C30) provided improved resolution of the isomeric fatty acids (FAs), FA methyl esters (FAMEs), triacylglycerols (TAGs), and tocopherols with an increase in pressure of 20-70MPa in reversed-phase HPLC. With respect to isomeric C18 FAMEs with one cis-double bond, ODS-P phase was effective for recognizing the position of a double bond among petroselinic (methyl 6Z-octadecenoate), oleic (methyl 9Z-octadecenoate), and cis-vaccenic (methyl 11Z-octadecenoate), especially at high pressure, but the differentiation between oleic and cis-vaccenic was not achieved by C30 phase regardless of the pressure. A monomeric C18 phase (InertSustain C18) was not effective for recognizing the position of the double bond in monounsaturated FAME, while the separation of cis- and trans-isomers was achieved by any of the stationary phases. The ODS-P and C30 phases provided increased separation for TAGs and β- and γ-tocopherols at high pressure. The transfer of FA, FAME, or TAG molecules from the mobile phase to the ODS-P stationary phase was accompanied by large volume reduction (-30∼-90mL/mol) resulting in a large increase in retention (up to 100% for an increase of 50MPa) and improved isomer separation at high pressure. For some isomer pairs, the ODS-P and C30 provided the opposite elution order, and in each case higher pressure improved the separation. The two stationary phases showed selectivity for the isomers having rigid structures, but only the ODS-P was effective for differentiating the position of a double bond in monounsaturated FAMEs. The results indicate that the improved isomer separation was provided by the increased dispersion interactions between the solute and the binding site of the stationary phase at high pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Structural phase transitions of Ga(Mn)N under high pressure

    Science.gov (United States)

    Sukserm, Akkarach; Pinsook, Udomsilp; Pluengphon, Prayoonsak

    2017-09-01

    Gallium nitride doped with a small concentration of manganese (Ga1-x Mn x N) is one of diluted magnetic semiconductors which can be used for spintronic applications. In this work, Ga31Mn1N32 in the zinc blende (ZB) and rock salt (RS) structures were investigated. We employed the density functional theory (DFT) within the generalized gradient approximation (GGA) to study structural properties, the density of states and the magnetization. The structural phase transitions under pressure up to 60 GPa were also studied. We found that Ga31Mn1N32 in the ZB phase is stable at ambient pressure, and change to the RS phase at about 42 GPa. By using GGA+U, the absolute magnetization is 4.68 μB per cell at 0 GPa. We found also that the absolute magnetization is reduced under pressure.

  9. Spectroscopic Study of the Effects of Pressure Media on High-Pressure Phase Transitions in Natrolite

    Energy Technology Data Exchange (ETDEWEB)

    D Liu; W Lei; Z Liu; Y Lee

    2011-12-31

    Structural phase transitions in natrolite have been investigated as a function of pressure and different hydrostatic media using micro-Raman scattering and synchrotron infrared (IR) spectroscopy. Natrolite undergoes two reversible phase transitions at 0.86 and 1.53 GPa under pure water pressure medium. These phase transitions are characterized by the changes in the vibrational frequencies of four- and eight-membered rings related to the variations in the bridging T-O-T angles and the geometry of the elliptical eight-ring channels under pressure. Concomitant to the changes in the framework vibrational modes, the number of the O-H stretching vibrational modes of natrolite changes as a result of the rearrangements of the hydrogen bonds in the channels caused by a successive increase in the hydration level under hydrostatic pressure. Similar phase transitions were also observed at relatively higher pressures (1.13 and 1.59 GPa) under alcohol-water pressure medium. Furthermore, no phase transition was found up to 2.52 GPa if a lower volume ratio of the alcohol-water to natrolite was employed. This indicates that the water content in the pressure media plays a crucial role in triggering the pressure-induced phase transitions in natrolite. In addition, the average of the mode Grueneisen parameters is calculated to be about 0.6, while the thermodynamic Grueneisen parameter is found to be 1.33. This might be attributed to the contrast in the rigidity between the TO{sub 4} tetrahedral primary building units and other flexible secondary building units in the natrolite framework upon compression and subsequent water insertion.

  10. Bonding, elastic and vibrational properties in low and high pressure synthesized diamond-like BCx phases

    Energy Technology Data Exchange (ETDEWEB)

    Zinin, P.; Liu, X. R.; Jia, R.; Sharma, S. K.; Ming, L. C.; Kutuza, I.; Troyan, I.

    2017-10-01

    Recent studies demonstrate that low pressure chemical vapor deposition at 950 K leads to the synthesis of diamond-like boron carbides with high concentrations of boron (0.66 < x < 4) in which the sp 2 fraction depends on the boron concentration [1]. This indicates that the graphitic BC3 (g-BC3) phases obtained by chemical vapor deposition materials are mixtures of diamond-like and graphitic BCx phases. This finding allows us to revise the interpretation of the x-ray diffraction (XRD) patterns of the g-BC3 phases discussed previously [2, 3]. To support the new interpretation, we conducted a laser heating experiment of the g-BC3 phase. We found that after laser heating at 1100 K and 25 GPa in a diamond anvil cell (DAC) almost all graphitic layers of the g-BC3 transform into a cubic structure. The XRD pattern of the cubic BC3 phase (c-BC3) can be indexed with a cubic unit cell a = 3.619 (0.165) Å. Measurements of the equation of state of the g-BC3 phase demonstrated that boron atoms were incorporated into the graphitic B-C network. The linear compressibility along the c axis can be characterized by the value of the linear modulus Bc = 29.2 ± 1.8 GPa. Linear fitting of the experimental data for the a/a o parameter as a function of pressure gives us the value of the linear elastic modulus along the a axes: Ba = 800 ± 75 GPa.

  11. Bonding, elastic and vibrational properties in low and high pressure synthesized diamond-like BCx phases

    Science.gov (United States)

    Zinin, P.; Liu, X. R.; Jia, R.; Sharma, S. K.; Ming, L. C.; Kutuza, I.; Troyan, I.

    2017-10-01

    Recent studies demonstrate that low pressure chemical vapor deposition at 950 K leads to the synthesis of diamond-like boron carbides with high concentrations of boron (0.66 x boron concentration [1]. This indicates that the graphitic BC3 (g-BC3) phases obtained by chemical vapor deposition materials are mixtures of diamond-like and graphitic BCx phases. This finding allows us to revise the interpretation of the x-ray diffraction (XRD) patterns of the g-BC3 phases discussed previously [2, 3]. To support the new interpretation, we conducted a laser heating experiment of the g-BC3 phase. We found that after laser heating at 1100 K and 25 GPa in a diamond anvil cell (DAC) almost all graphitic layers of the g-BC3 transform into a cubic structure. The XRD pattern of the cubic BC3 phase (c-BC3) can be indexed with a cubic unit cell a = 3.619 (0.165) Å. Measurements of the equation of state of the g-BC3 phase demonstrated that boron atoms were incorporated into the graphitic B-C network. The linear compressibility along the c axis can be characterized by the value of the linear modulus Bc = 29.2 ± 1.8 GPa. Linear fitting of the experimental data for the a/a o parameter as a function of pressure gives us the value of the linear elastic modulus along the a axes: Ba = 800 ± 75 GPa.

  12. High-pressure phase relation of KREEP basalts: A clue for finding the lost Hadean crust?

    Science.gov (United States)

    Gréaux, Steeve; Nishi, Masayuki; Tateno, Shigehiko; Kuwayama, Yasuhiro; Hirao, Naohisa; Kawai, Kenji; Maruyama, Shigenori; Irifune, Tetsuo

    2018-01-01

    The phase relations, mineral chemistry and density of KREEP basalt were investigated at pressures of 12-125 GPa and temperatures up to 2810 K by a combination of large volume multi-anvil press experiments and in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. Our results showed that grossular-rich majorite garnet, liebermannite and Al-bearing stishovite are dominant in the upper-to-middle part of the upper mantle while in the lowermost transition zone a dense Ti-rich CaSiO3 perovskite exsoluted from the garnet, which becomes more pyropic with increasing pressure. At lower mantle conditions, these minerals transform into an assemblage of bridgmanite, Ca-perovskite, Al-stishovite, the new aluminium-rich (NAL) phase and the calcium-ferrite type (CF) phase. At pressures higher than 50 GPa, NAL phase completely dissolved into the CF phase, which becomes the main deposit of alkali metals in the lower mantle. The density of KREEP estimated from phase compositions obtained by energy dispersive X-ray spectroscopy (EDS) in scanning (SEM) and transmission (TEM) electron microscopes, was found substantially denser than pyrolite suggesting that the Earth primordial crust likely subducted deep into the Earth's mantle after or slightly before the final solidification of magma ocean at 4.53 Ga. Radiogenic elements U, Th and 40K which were abundant in the final residue of magma ocean were brought down along the subduction of the primordial crust and generate heat by decay after the settlement of the primordial crust on top of the CMB, suggesting the non-homogeneous distribution of radiogenic elements in the Hadean mantle with implications for the thermal history of the Earth.

  13. Compressibility of the high-pressure rocksalt phase of ZnO

    DEFF Research Database (Denmark)

    Recio, J.M.; Blanco, M.A.; Luana, V.

    1998-01-01

    We report the results of a combined experimental and theoretical investigation on the stability and the volume behavior under hydrostatic pressure of the rocksalt (B1) phase of ZnO. Synchrotron-radiation x-ray powder-diffraction data are obtained from 0 to 30 GPa. Static simulations of the ZnO B1...... in the range of 160-194 GPa. For its zero-pressure first derivative, the experimental and theoretical data yield a value of 4.4+/-1.0. Overall, our results show that the ZnO B1 phase is slightly more compressible than previously reported. [S0163-1829(98)07537-7]....

  14. High-pressure phase of the cubic spinel NiMn2O4

    DEFF Research Database (Denmark)

    Åsbrink, S.; Waskowska, A.; Olsen, J. Staun

    1998-01-01

    experimental uncertainty, there is no volume change at the transition. The cia ratio of the tetragonal spinel is almost independent of pressure and equal to 0.91. The phase transition is attributed to the Jahn-Teller-type distortion and the ionic configurationcan be assumed as (Mn3+)(tetr)[Ni2+Mn3+](oct...

  15. Simulation of the high-pressure phase equilibria of hydrocarbon-water/brine systems

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan; Guo, Tian-Min

    1996-01-01

    The major objectives of this work are: (1) extend the modified Patel-Teja (MPT) equation of state proposed for aqueous electrolyte systems (Zuo and Guo, 1991) to describe the liquid-liquid and vapor-liquid-liquid equilibria of hydrocarbon-water/brine systems through introducing an unconventional ...... that the influence of the coexisting aqueous phase is not negligible....

  16. Neutron diffraction and electrical transport studies on the incommensurate magnetic phase transition in holmium at high pressures

    International Nuclear Information System (INIS)

    Thomas, Sarah A; Uhoya, Walter O; Tsoi, Georgiy M; Wenger, Lowell E; Vohra, Yogesh K; Chesnut, Gary N; Weir, Samuel T; Tulk, Christopher A; Dos Santos, Antonio M

    2012-01-01

    Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Néel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa -1 up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures. (paper)

  17. Neutron diffraction and electrical transport studies on the incommensurate magnetic phase transition in holmium at high pressures.

    Science.gov (United States)

    Thomas, Sarah A; Uhoya, Walter O; Tsoi, Georgiy M; Wenger, Lowell E; Vohra, Yogesh K; Chesnut, Gary N; Weir, Samuel T; Tulk, Christopher A; dos Santos, Antonio M

    2012-05-30

    Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Néel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa(-1) up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures.

  18. High-pressure phase diagram of the drug mitotane in compressed and/or supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Favareto, Rogerio [Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Bloco D-90, 87020-900 Maringa, PR (Brazil); Pereira, Jose R.D. [Department of Physique, State University of Maringa (UEM), Av. Colombo, 5790, Bloco G-56, 87020-900 Maringa, PR (Brazil); Santana, Cesar C. [College of Chemical Engineering, State University of Campinas (UNICAMP), Cx. Postal 6066, 13083-970 Campinas, SP (Brazil); Madureira, Ed H. [College of Veterinary Medicine and Zootechny, University of Sao Paulo (USP), Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP (Brazil); Cabral, Vladimir F. [Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Bloco D-90, 87020-900 Maringa, PR (Brazil); Tavares, Frederico W. [School of Chemical, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil); Cardozo-Filho, Lucio, E-mail: cardozo@deq.uem.b [Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Bloco D-90, 87020-900 Maringa, PR (Brazil)

    2010-02-15

    This work provides experimental phase diagram of mitotane, a drug used in the chemotherapy treatment of adrenocortical carcinoma, in compressed and/or supercritical CO{sub 2}. The synthetic-static method in a high-pressure variable-volume view cell coupled with a transmitted-light intensity probe was used to measure the solid-fluid (SF) equilibrium data. The phase equilibrium experiments were determined in temperature ranging from (298.2 to 333.1) K and pressure up to 22 MPa. Peng-Robinson equation of state (PR-EoS) with classical mixing rule was used to correlate the experimental data. Excellent agreement was found between experimental and calculated values.

  19. Electrical Characterization in the Phase Transition between Cubic PbCrO3 Perovskites at High Pressures

    International Nuclear Information System (INIS)

    Wang Wen-Dan; He Duan-Wei; Wang Shan-Min; Xu Ji-An; Xiao Wan-Sheng

    2013-01-01

    By in situ x-ray diffraction, an isostructural phase transition between two kinds of the cubic PbCrO 3 perovskites at around 1.6 GPa and room temperature with a 9.8% volume change is discovered. Recently, we have synthesized this cubic PbCrO 3 perovskite successfully. Here we report our high-pressure in situ electrical resistance measurements up to 4.1 GPa for this perovskite sample. At room temperature, the resistance shows special changes at 1.2 and 2.7GPa. They may indicate the starting and ending points of this transformation. At 4.1 GPa, the negative temperature resistance coefficient is observed, which means that phase II could be considered as a semiconductor according to our present measurement

  20. Development and testing of a new apparatus for the measurement of high-pressure low-temperature phase equilibria

    DEFF Research Database (Denmark)

    Fonseca, José M.S.; von Solms, Nicolas

    2012-01-01

    A new apparatus for the study of high-pressure phase equilibria at low temperatures using an analytical method was designed, assembled and tested. The apparatus was specially developed for the study of multi-phase equilibria in systems containing hydrocarbons, water and hydrate inhibitors......, at temperatures ranging from 213K to 353K and pressures up to 40MPa. The core of the apparatus is a variable-volume equilibrium cell, equipped with a 360° sapphire window and connected to an analytical system by three capillary samplers.The quality of the apparatus was confirmed through several tests, including...... the study of the system methane+water. An equilibrium point for the quaternary system methane+n-hexane+methanol+water is also presented....

  1. Crystalline and amorphous phases in carbon nitride films produced by intense high-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gurarie, V.N.; Orlov, A.V.; Bursill, L.A.; JuLin, P.; Nugent, K.W.; Chon, J.W.; Prawer, S

    1997-12-31

    Carbon-nitride films are prepared using a high-intensity pulsed plasma deposition technique. A wide range of nitrogen pressure and discharge intensity are used to investigate their effect on the morphology, nitrogen content, structure, bonding, phase composition and mechanical characteristics of the CN films deposited. Increasing the nitrogen pressure from 0.1 atm to 10 atm results in an increase of nitrogen incorporation into CN films to maximum of 45 at %. Under the high-energy density deposition conditions which involve ablation of the quartz substrate the CN films are found to incorporate in excess of 60 at %N. Raman spectra of these films contain sharp peaks characteristic of a distinct crystalline CN phase. TEM diffraction patterns for the films deposited below 1 atm unambiguously show the presence of micron-sized crystals displaying a cubic symmetry. (authors). 12 refs., 4 figs.

  2. Hybrid functionals and electronic structure of high-pressure phase of CdO

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, K.B.; Paliwal, U. [Department of Physics, M. L. Sukhadia University, Udaipur 313001 (India); Sharma, B.K. [Department of Physics, University of Rajasthan, Jaipur 302004 (India)

    2011-05-15

    The electronic band structure and density of states (DOS) of B2-phase cadmium oxide (CdO) are computed following the first-principles linear combination of atomic orbitals method applying the CRYSTAL code. The PBE correlation functional coupled with Becke's ansatz for exchange is considered for calculations. The electronic band structure and DOS are examined considering HF, B3LYP and hybrid schemes. Hybrid functionals are used with 25, 15, 10 and 5% mixing of Fock exchange with PBE-GGA. Depending on the correlation functionals, and different mixings in the hybrid schemes, B2-phase CdO may have an indirect positive band gap, a negative band gap or a zero gap. The effect of pd repulsion originating from pd hybridisation is visible in the calculated band structures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Gapped excitations in the high-pressure antiferromagnetic phase of URu2Si2

    Science.gov (United States)

    Williams, T. J.; Barath, H.; Yamani, Z.; Rodriguez-Riviera, J. A.; Leão, J. B.; Garrett, J. D.; Luke, G. M.; Buyers, W. J. L.; Broholm, C.

    2017-05-01

    We report a neutron scattering study of the magnetic excitation spectrum in each of the three temperature and pressure driven phases of URu2Si2 . We find qualitatively similar excitations throughout the (H 0 L ) scattering plane in the hidden-order and large-moment phases, with no changes in the ℏ ω widths of the excitations at the Σ =(1.407 ,0 ,0 ) and Z =(1 ,0 ,0 ) points, within our experimental resolution. There is, however, an increase in the gap at the Σ point from 4.2(2) meV to 5.5(3) meV, consistent with other indicators of enhanced antiferromagnetism under pressure.

  4. High-pressure structural and dielectric studies of the phase transitions in lithium thallium tartrate monohydrate

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Kulda, J.; Petříček, Václav; McIntyre, G.; Kiat, J. P.

    2002-01-01

    Roč. 14, č. 15 (2002), s. 4045-4054 ISSN 0953-8984 R&D Projects: GA ČR GA202/01/0612; GA AV ČR IAA1010213 Institutional research plan: CEZ:AV0Z1010914 Keywords : lithium thalim tartarate monohzdrate * phase transitions * neutrom diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2002

  5. Phase Equilibria of the Carbon Dioxide + 1-Decanol System at High Pressures.

    Science.gov (United States)

    Ioniţă, Simona; Feroiu, Viorel; Geană, Dan

    2013-11-14

    In this work experimental vapor-liquid equilibrium (VLE) data and three-phase vapor-liquid-liquid equilibrium (VLLE) data are presented for the carbon dioxide + 1-decanol system. The VLE data were measured at five temperatures, (303.2, 308.2, 323.2, 333.2, and 343.2) K, and pressures up to 16 MPa. The VLLE data cover pressure-temperature ( P-T ) values from 289 K and 5 MPa to the upper critical end point (UCEP). We have used two models to represent the complex fluid phase behavior ( P-T critical curve, VLLE line, and VLE isotherms) of the carbon dioxide + 1-decanol system: the cubic general equation of state (GEOS) and Peng-Robinson (PR) equation in conjunction with van der Waals two parameters conventional mixing rules (2PCMR). A correlation method involving temperature-dependent interaction parameters and a semipredictive approach with independent temperature interaction parameters have been used. Comparisons with experimental data reported in this work and available in the literature indicate that the topology of fluid phase behavior is satisfactorily given by the semipredictive procedure both for the critical line and in subcritical region, considering the relative simple used cubic equations of state.

  6. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    Science.gov (United States)

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  7. Structure and elasticity of phase-pi, Al3Si2O7(OH)3 at high-Pressure

    Science.gov (United States)

    Liu, S.; Mookherjee, M.; Hermann, A.; Wunder, B.

    2016-12-01

    Phase-pi is a hydrous aluminosilicate (Al3Si2O7(OH)3) mineral that is likely to be stabilized in subducted sedimentary rocks. It is capable of transporting water into the deep Earth. The mineralogy of subducted sediments can be modeled within the ternary system with Al2O3-SiO2-H2O (ASH) as end member components. Hydrous phases that are stable in the ASH ternary system includes gibbsite (Al(OH)3), diaspore (AlOOH), kaolinite (Al2Si2O5(OH)4), topaz-OH (Al2SiO4(OH)2), phase Egg (AlSiO3(OH)), and phase-Pi (Al3Si2O7(OH)3). Among these various phases almost nothing is known about the high-pressure behavior of phase-Pi. High-pressure phase relations have shown that phase-Pi is stable between 2 and 7 GPa (Wunder et al., 1993). Here we report the crystal structure and elasticity as a function of pressure. We find that the pressure volume results from the first principles simulation could be described by a finite strain fit with volume, V0, bulk modulus, K0, and its pressure derivative at zero pressure, K0' as 310.3 Å3, 133 GPa, and 3.6, respectively. At zero pressure, the full elastic stiffness tensor shows significant anisotropy with the diagonal principal components- C11, C22, and C33 being 235.0 (7.2), 291.5 (6.2), 265.6 (4.6) GPa respectively, the diagonal shear C44, C55, and C66 being 86.0 (1.8), 92.4 (3.3), and 87.2 (1.2) GPa respectively, and the off-diagonal stiffness C12, C13, C14, C15, C16, C23, C24, C25, C26, C34, C35, C36, C45, C46, and C56 being 73.4 (3.7), 77.8 (3.1), 6.2 (0.2), -29.6 (1.2), 14.6 (-0.2), 60.6 (3.2), 17.3 (-0.2), 2.4 (0.5), 1.3 (0.02), -12.8 (-0.3), -14.7 (0.6), 5.5 (0.1), 3.3 (-0.4), 1.0 (0.3), and 3.3 (-0.3) GPa respectively. The numbers in the brackets represent the pressure derivatives of the components of full elastic stiffness tensor, i.e., dCij/dP. Upon compression, hydrogen bonding in phase-pi diversifies, with some hydrogen bonds weakening and others strengthening. The latter eventually undergo symmetrization at pressure greater (> 40

  8. New investigations on shock-wave synthesized high-pressure phases in the system Si-Al-O-N

    Science.gov (United States)

    Schlothauer, T.; Greif, A.; Keller, K.; Schwarz, M. R.; Kroke, E.; Heide, G.

    2012-12-01

    The shock-wave synthesis of nanostructured high-pressure phases at a gram-scale permits the analysis of spinel type nitrides with different chemical composition using methods not suitable for microgram amounts of material. Methods with a significant mass loss through the analytical process like TG-MS or FT-IR or bulk methods at the g-scale like 29Si-MAS-NMR or neutron diffraction were used. The synthesis of pure high-pressure modifications (gamma-phases) of different SiAlON-compounds using amorphous H-bearing precursors at pressures of 30-40 GPa is a necessary prerequisite for precise determinations of crystal chemical features. Etching with HF is a well-known method to purify the high-pressure nitrides (Sekine 2002). The etched parts were analyzed by neutron diffraction, TG-MS, and carrier gas hot extraction (CGHE). Volatile elements like H2 and Cl2, as well as non-stoichiometric oxygen and nitrogen, and NOx, H2O are enriched in the disordered rims. This degassing process ends at temperatures of approximately 600°C, while the spinel structure remains well preserved up to 1300°C. Under these conditions the gamma-phases stay unchanged under air, argon and vacuum. Furthermore chlorine, an important impurity of the H-bearing precursors neither influences the synthesized products nor the synthesis process itself. IR-spectroscopy of gamma-Si3(O,N)4 shows that peak shifts of octahedral lattice vibrations (≈ 680 cm-1) and both tetrahedral vibrations (ny3 and ny4) (Jeanloz 1980, Preudhomme & Tarte 1971) to higher frequencies with decreasing oxygen content occur. This effect is also visible in samples contaminated with impurities of low pressure modifications. The more complex structure of gamma-SiAlON and the simultaneously exchange of the cation- and the anion-positions prevents the appearance of this important feature. Yet to be synthesized pure gamma-SiAlON using similar H-bearing precursors is necessary to resolve its structure. Sekine, T., H. He, T. Kobayashi, K

  9. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    Science.gov (United States)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Recycling of water of high pressure cleaning of pipes. Phase 1. Quality demands and economical aspects

    International Nuclear Information System (INIS)

    Van Weers, A.W.; Zwaard, J.

    1999-01-01

    According to the regulation 6.1 in the current licence Surface Water Pollution Law (WVO, abbreviated in Dutch) of October 10, 1997, ECN carried out the first phase of a study on the title subject with respect to pipes applied in oil and gas exploration. In the present situation water of the so-called pipe-cleaner is transported via a seapipe after precipitation and membrane filtration. Next to the quality demands and economical aspects attention is paid to a number of environmental aspects

  11. A route to possible civil engineering materials: the case of high-pressure phases of lime.

    Science.gov (United States)

    Bouibes, A; Zaoui, A

    2015-07-23

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.

  12. Gas-phase ion-molecule reactions and high-pressure mass spectrometer, 1

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo

    1977-01-01

    The reasons for the fact that the research in gas-phase ion-molecule reactions, to which wide interest is shown, have greatly contributed to the physical and chemical fields are that, first it is essential in understanding general phenomena concerning ions, second, it can furnish many unique informations in the dynamics of chemical reactions, and third, usefulness of '' chemical ionization'' methods has been established as its application to chemical analysis. In this review, the history and trend of studies and equipments in gas-phase ion-molecule reactions are surveyed. The survey includes the chemical ionization mass spectrometer for simultaneously measuring the positive and negative ions utilizing a quadrupole mass spectrometer presented by Hunt and others, flowing afterglow method derived from the flowing method which traces neutral chemical species mainly optically, ion cyclotron resonance mass spectrometer, trapped ion mass spectrometer and others. Number of reports referred to ion-molecule reactions issued during the last one year well exceeds the total number of reports concerning mass spectrometers presented before 1955. This truly shows how active the research and development are in this field. (Wakatsuki, Y.)

  13. High-pressure phase transition makes B4.3C boron carbide a wide-gap semiconductor.

    Science.gov (United States)

    Hushur, Anwar; Manghnani, Murli H; Werheit, Helmut; Dera, Przemyslaw; Williams, Quentin

    2016-02-03

    Single-crystal B4.3C boron carbide is investigated through the pressure-dependence and inter-relation of atomic distances, optical properties and Raman-active phonons up to ~70 GPa. The anomalous pressure evolution of the gap width to higher energies is striking. This is obtained from observations of transparency, which most rapidly increases around 55 GPa. Full visible optical transparency is approached at pressures of  >60 GPa indicating that the band gap reaches ~3.5 eV; at high pressure, boron carbide is a wide-gap semiconductor. The reason is that the high concentration of structural defects controlling the electronic properties of boron carbide at ambient conditions initially decreases and finally vanishes at high pressures. The structural parameters and Raman-active phonons indicate a pressure-dependent phase transition in single-crystal (nat)B4.3C boron carbide near 40 GPa, likely related to structural changes in the C-B-C chains, while the basic icosahedral structure appears to be less affected.

  14. Phase equilibrium of binary system carbon dioxide - methanol at high pressure using artificial neural network

    International Nuclear Information System (INIS)

    Nasri, F.; Hatami, T.

    2012-01-01

    Interest in supercritical fluids extraction (SFE ) is increasing throughout many scientific and industrial fields. The common solvent for use in SFE is carbon dioxide. However, pure carbon dioxide frequently fails to efficiently extract the essential oil from a sample matrix, and modifier fluids such as methanol should be used to enhance extraction yield. A more efficient use of SFE requires quantitative prediction of phase equilibrium of this binary system, carbon dioxide - methanol. The purpose of the current research is modeling carbon dioxide - methanol system using artificial neural network (ANN). Results of ANN modeling has been compared with experimental data as well as thermodynamic equations of state. The comparison shows that the ANN modeling has a higher accuracy than thermodynamic models. (author)

  15. Hydrodynamics of double phase under high pressure: evolutions of flow configurations until critical heating

    International Nuclear Information System (INIS)

    Raisson, Claude

    1968-01-01

    This research thesis reports the experimental study of flows and of their evolution until critical heating by using appropriate measurement instruments. The objective is to understand how flow evolution may condition critical heating. After a recall of some notions and values related to the study of two-phase flows, and an overview of published works on flow configurations and on critical heating, the author describes test installation and measurement devices, presents the typical test process, reports instrument calibration, and flow configuration tests with water-air flow under low pressure. Results are reported. The author proposes explanations regarding observed phenomena, and a possible scheme to explain the flow evolution until critical heating [fr

  16. Study of Raman Spectroscopy on Phase Relations of CaCO3 at High Temperature and High Pressure

    Science.gov (United States)

    Li, M.; Zheng, H.; Duan, T.

    2006-05-01

    Laser Raman Spectroscopy was used to study phase relations between calcite I, calcite II and aragonite at high pressure and high temperature. The experiment was performed in an externally heated Basselt type diamond anvil cell (DAC). Natural calcite (calcite I) was used as starting mineral. The sample and a small chip of quartz were loaded in a cavity (300 μm in diameter and 250 μm in depth) in a rhenium gasket. The Na2CO3 aqueous solution of 1mol/L was also loaded as a pressure medium to yield hydrostatic pressure. The whole assembly was pressurized first and then heated stepwise to 400°C. Pressure and temperature in the chamber were determined by the shift of Raman band at 464 cm-1 of quartz and by NiCr-NiSi thermocouple, respectively. The Raman spectra were measured by a Renishaw 1000 spetrometer with 50 mW of 514.5nm argon-ion laser as the excitation light source. The slit width was 50 μm and the corresponding resolution was ±1 cm-1. From the experiments, we observed the phase transitions between calcite I and calcite II, calcite I and aragonite, calcite II and aragonite, respectively. Our data showed a negative slope for the boundary between calcite I and calcite II, which was similar to Bridgman's result, although Hess et al. gave a positive slope. The boundary with a negative slope for calcite II and aragonite was also defined, which had never been done before. And all these data can yield a more complete phase diagram of CaCO3 than the studies of Hess et al. and Suito et al.Reference:Bridgeman P. W.(1939) Journal: American Journal of Science, Vol. 237, p. 7-18Bassett W. A. et al. (1993) Journal: Review of Scientific Instruments, Vol. 64, p. 2340-2345Suito K. et al. (2001) Journal: American Mineralogist, Vol. 86, p. 997- 1002Hess N. J. et al. (1991) In A. K. Singh, Ed., Recent Trends in High Pressure Research; Proc. X IIIth AIRAPT International Conference on High Pressure Science and Technology, p. 236-241. Oxford & IBH Publishing Co. Pvt, Ltd., New

  17. THE GENERALIZED MAXIMUM LIKELIHOOD METHOD APPLIED TO HIGH PRESSURE PHASE EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.Foi empregado o método da máxima verossimilhança generalizado para determinação de parâmetros de interação binária entre os componentes do óleo essencial de laranja e dióxido de carbono. Foram usados dados experimentais de equilíbrio líquido-vapor de misturas binárias de dióxido de carbono e componentes do óleo essencial de laranja. O equilíbrio líquido-vapor foi modelado com as equações de Peng-Robinson e de Soave-Redlich-Kwong usando a metodologia proposta em 1979 por Asselineau, Bogdanic e Vidal. A escolha destes sistemas teve como objetivo demonstrar que o método da máxima verosimilhança produz parâmetros de interação binária, para equações cúbicas de estado capazes de descrever satisfatoriamente até mesmo o equilíbrio para o binário etanol/CO2. Os resultados comprovam que tanto a equação de Peng-Robinson quanto a de Soave-Redlich-Kwong podem ser empregadas para descrever o equilíbrio de fases para o sistemas: componentes do óleo essencial de laranja/CO2.

  18. Evidence for plasma phase transition in high pressure hydrogen from ab-initio simulations

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M; Pierleoni, C; Schwegler, E; Ceperley, D

    2010-02-08

    We have performed a detailed study of molecular dissociation in liquid hydrogen using both Born-Oppenheimer molecular dynamics with Density Functional Theory and Coupled Electron-Ion Monte Carlo simulations. We observe a range of densities where (dP/d{rho}){sub T} = 0 that coincides with sharp discontinuities in the electronic conductivity, which is clear evidence of the plasma phase transition for temperatures 600K {le} T {le} 1500K. Both levels of theory exhibit the transition, although Quantum Monte Carlo predicts higher transition pressures. Based on the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures slightly below 2000 K. We examine the influence of proton zero point motion by using Path Integral Molecular Dynamics with Density Functional Theory; the main effect is to shift the transition to lower pressures. Furthermore, we calculate the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line in good agreement with previous calculations. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using Quantum Monte Carlo energetics.

  19. Self-annealing in a two-phase Pb-Sn alloy after processing by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nian Xian [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Chinh, Nguyen Q. [Department of Materials Physics, Eötvös Loránd University, 1117 Budapest, Pázmány Péter s. 1/A. (Hungary); Kawasaki, Megumi [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Huang, Yi, E-mail: Y.Huang@soton.ac.uk [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Langdon, Terence G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2016-06-01

    A Pb-62% Sn two-phase eutectic alloy was processed by high-pressure torsion (HPT) and stored at room temperature (RT) to investigate the occurrence of self-annealing. The microstructural characteristics and mechanical properties were recorded during self-annealing using scanning electron microscopy, tensile testing and nanoindentation. Processing by HPT produces a weakening effect but storage at RT leads to a gradual increase in the hardness together with significant grain growth. Nanoindentation tests were performed by applying both the indentation depth-time (h-t) relationship at the holding stage and the hardness, H, at various loading rates in order to explore the evolution of the strain rate sensitivity (SRS), m. The results obtained by tensile testing and nanoindentation are consistent despite the large difference in the volumes of the examined regions, thereby confirming the validity of using nanoindentation to measure the strain rate sensitivity.

  20. Hydrogen bond symmetrization and superconducting phase of HBr and HCl under high pressure: An ab initio study.

    Science.gov (United States)

    Duan, Defang; Tian, Fubo; He, Zhi; Meng, Xing; Wang, Liancheng; Chen, Changbo; Zhao, Xiusong; Liu, Bingbing; Cui, Tian

    2010-08-21

    Ab initio calculations are performed to probe the hydrogen bonding, structural, and superconducting behaviors of HBr and HCl under high pressure. The calculated results show that the hydrogen bond symmetrization (Cmc2(1)-->Cmcm transition) of HBr and HCl occurs at 25 and 40 GPa, respectively, which can be attributed to the symmetry stretching A(1) mode softening. After hydrogen bond symmetrization, a pressure-induced soft transverse acoustic phonon mode of Cmcm phase is identified and a unique metallic phase with monoclinic structure of P2(1)/m (4 molecules/cell) for both compounds is revealed by ab initio phonon calculations. This phase preserves the symmetric hydrogen bond and is stable in the pressure range from 134 to 196 GPa for HBr and above 233 GPa for HCl, while HBr is predicted to decompose into Br(2)+H(2) above 196 GPa. Perturbative linear-response calculations predict that the phase P2(1)/m is a superconductor with T(c) of 27-34 K for HBr at 160 GPa and 9-14 K for HCl at 280 GPa.

  1. High-pressure phase equilibrium data for systems with carbon dioxide, {alpha}-humulene and trans-caryophyllene

    Energy Technology Data Exchange (ETDEWEB)

    Michielin, Eliane M.Z.; Rosso, Sibele R. [EQA/UFSC, Chemical and Food Engineering Department, Federal University of Santa Catarina, C.P. 476, CEP 88040-900, Florianopolis, SC (Brazil); Franceschi, Elton; Borges, Gustavo R.; Corazza, Marcos L.; Oliveira, J. Vladimir [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99700-000 (Brazil); Ferreira, Sandra R.S. [EQA/UFSC, Chemical and Food Engineering Department, Federal University of Santa Catarina, C.P. 476, CEP 88040-900, Florianopolis, SC (Brazil)], E-mail: sandra@enq.ufsc.br

    2009-01-15

    The aim of this work is to report phase equilibrium data for the binary systems (CO{sub 2} + {alpha}-humulene) and (CO{sub 2} + trans-caryophyllene), and for the ternary system (CO{sub 2} + {alpha}-humulene + trans-caryophyllene). Results from literature show that {alpha}-humulene and trans-caryophyllene are the main compounds responsible for the anti-inflammatory and anti-allergic characteristics attributed to the medicinal plant Cordia verbenacea D.C., hence giving importance to the phase behaviour investigation performed in this work. Phase equilibrium experiments were performed in a high-pressure, variable-volume view cell over the temperature range of T = (303 to 343) K and pressures up to 20 MPa. (Liquid + liquid) and (vapour + liquid + liquid) equilibrium were observed at T = 303 K, while (vapour + liquid) phase transitions were verified to occur from T = (313 to 343) K, for all systems studied. Thermodynamic modelling was performed using the Peng-Robinson equation of state and the classical quadratic mixing rules, with a satisfactory agreement between experimental and calculated values.

  2. Phase equilibrium measurements and thermodynamic modelling for the system (CO2 + ethyl palmitate + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Gaschi, Priscilla S.; Mafra, Marcos R.; Ndiaye, Papa M.; Corazza, Marcos L.

    2013-01-01

    Graphical abstract: Ethyl palmitate and biodiesel comparison in a pressure–composition diagram for the systems (CO 2 + ethyl palmitate + biodiesel), at different temperatures. Highlights: ► We measured VLE, LLE, and VLLE for the system (CO 2 + ethyl palmitate + ethanol). ► The saturation pressures were obtained using a variable-volume view cell. ► Phase envelope of (CO 2 + ethyl palmitate) is different that (CO 2 + soybean oil biodiesel). ► The experimental data were modeled using PR-vdW2 and PR–WS equations of state. - Abstract: This work reports phase equilibrium measurements for the binary {CO 2 (1) + ethyl palmitate(2)} and ternary {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} systems at high pressures. There is currently great interest in biodiesel production processes involving supercritical and/or pressurized solvents, such as non-catalytic supercritical biodiesel production and enzyme-catalysed biodiesel production. Also, supercritical CO 2 can offer an interesting alternative for glycerol separation in the biodiesel purification step in a water-free process. In this context, the main goal of this work was to investigate the phase behaviour of binary and ternary systems involving CO 2 , a pure constituent of biodiesel ethyl palmitate and ethanol. Experiments were carried out in a high-pressure variable-volume view cell with operating temperatures ranging from (303.15 to 353.15) K and pressures up to 21 MPa. The CO 2 mole fraction ranged from 0.5033 to 0.9913 for the binary {CO 2 (1) + ethyl palmitate(2)} system and from 0.4436 to 0.9712 for ternary system {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} system with ethyl ester to ethanol molar ratios of (1:6), (1:3), and (1:1). For the systems investigated, vapour–liquid (VL), liquid–liquid (LL) and vapour–liquid–liquid (VLL) phase transitions were observed. The experimental data sets were successfully modeled using the Peng–Robinson equation of state with the classical van der Waals

  3. Hydrostatic Compression Behavior and High-Pressure Stabilized β-Phase in γ-Based Titanium Aluminide Intermetallics

    Directory of Open Access Journals (Sweden)

    Klaus-Dieter Liss

    2016-07-01

    Full Text Available Titanium aluminides find application in modern light-weight, high-temperature turbines, such as aircraft engines, but suffer from poor plasticity during manufacturing and processing. Huge forging presses enable materials processing in the 10-GPa range, and hence, it is necessary to investigate the phase diagrams of candidate materials under these extreme conditions. Here, we report on an in situ synchrotron X-ray diffraction study in a large-volume press of a modern (α2 + γ two-phase material, Ti-45Al-7.5Nb-0.25C, under pressures up to 9.6 GPa and temperatures up to 1686 K. At room temperature, the volume response to pressure is accommodated by the transformation γ → α2, rather than volumetric strain, expressed by the apparently high bulk moduli of both constituent phases. Crystallographic aspects, specifically lattice strain and atomic order, are discussed in detail. It is interesting to note that this transformation takes place despite an increase in atomic volume, which is due to the high ordering energy of γ. Upon heating under high pressure, both the eutectoid and γ-solvus transition temperatures are elevated, and a third, cubic β-phase is stabilized above 1350 K. Earlier research has shown that this β-phase is very ductile during plastic deformation, essential in near-conventional forging processes. Here, we were able to identify an ideal processing window for near-conventional forging, while the presence of the detrimental β-phase is not present under operating conditions. Novel processing routes can be defined from these findings.

  4. Phase behavior for the poly(alkyl methacrylate)+supercritical CO2+DME mixture at high pressures

    International Nuclear Information System (INIS)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo

    2016-01-01

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO 2 , as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO 2 . The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO 2 at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO 2 +20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO 2 +DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO 2 shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  5. Solid-state amorphization of a quenched high-pressure GaSb phase studied by real-time neutron diffraction: evolution of the crystalline phase.

    Science.gov (United States)

    Fedotov, V K; Barkalov, O I; Ponyatovsky, E G; Calvo-Dahlborg, M; Dahlborg, U; Hansen, T

    2009-01-28

    The amorphization of a quenched sample of the GaSb-II high-pressure phase was studied at ambient pressure by real-time neutron diffraction in the course of the sample heating from 100 K to room temperature at a rate of 0.4 K min(-1). The transformation to the amorphous state begins at 140 K and is completed near room temperature. The β-Sn type structure was shown to represent only the mean lattice of the high-pressure GaSb-II phase. The superstructure of this phase widely varied with temperature and is caused by the ordered displacement of atoms. The temperature range of the metastable crystalline phase relaxation is divided into three intervals according to the temperature dependence of the tetragonality ratio (c/a). At the boundaries of these temperature intervals, i.e. temperatures T = 170 and 230 K, two second-order phase transitions are observed. Anomalous heat and volumetric effects were observed earlier by means of calorimetry and dilatometry in the same temperature range. Variation of the β-Sn type crystal structure reflects the general tendency of ideal tetrahedral bond network recovery. All phase transformations observed were found to be irreversible.

  6. Structures of two intermediate phases between the B1 and B2 phases of PbS under high pressure

    Directory of Open Access Journals (Sweden)

    Yanchun Li

    2014-12-01

    Full Text Available The structural transitions of PbS were investigated at pressures up to 50 GPa using synchrotron powder and single crystal X-ray diffraction (XRD methods in diamond anvil cells. We found two intermediate phases between the B1 phase under atmospheric pressure and the B2 phase at 21.1 GPa, which is different to previous reports. The structures of these two intermediate phases were indexed as B27 and B33, respectively. Their structural parameters were investigated using density functional theory (DFT calculations. Our results provide a new insight into understanding the transition pathway between the B1 and B2 phases in PbS.

  7. Compatibility of amino acids in ice Ih and high-pressure phases: implications for the origin of life

    Science.gov (United States)

    Hao, J.; Giovenco, E.; Pedreira-Segade, U.; Montagnac, G.; Daniel, I.

    2017-12-01

    Icy environments may have been common on the early Earth due to the faint young sun. Previous studies have proposed that the formation of large icy bodies in the early ocean could concentrate the building blocks of life in eutectic fluids and therefore facilitate the polymerization of monomers. This hypothesis is based on the untested assumption that organic molecules are virtually incompatible in ice Ih. In this study, we conducted freezing experiments to explore the partitioning behavior of selected amino acids (glycine, L-alanine, L-proline, and L-phenylalanine) between ice Ih and aqueous solutions analogous to seawater. We let ice crystals grow slowly from a few seeds in equilibrium with the solution and used Raman spectroscopy to analyze in situ the relative concentrations of amino acids in the ice and aqueous solution. During freezing, there was no precipitation of amino acid crystals, indicating that the concentrations in solution never reached their solubility limit, even when the droplet was mostly frozen. Analyses of the Raman spectra of ice and eutectic solution showed that considerable amounts of amino acids existed in the ice phase with partition coefficients ranging between 0.2 and 0.5. This study also explored the partitioning of amino acids between other phases of ice (ice VI and ice VII) and solutions at high pressures and observed similar results. These observations implied little incompatibility of amino acids in ice during the freezing of the solutions, rendering the hypothesis of a cold origin of life unwarranted. However, incorporation into ice could significantly improve the efficiency of extraterrestrial transport of small organics. Therefore, this study supports the hypothesis of extraterrestrial delivery of organic molecules in the icy comets and asteroids to the primitive Earth as suggested by an increasing number of independent observations.

  8. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    Science.gov (United States)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  9. Phase equilibrium data and thermodynamic modeling of the system (CO{sub 2} + biodiesel + methanol) at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Leandro F.; Segalen da Silva, Diogo Italo [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Rosa da Silva, Fabiano; Ramos, Luiz P. [Department of Chemistry, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Ndiaye, Papa M. [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Corazza, Marcos L., E-mail: corazza@ufpr.br [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil)

    2012-01-15

    Highlights: > We measured phase behavior for the system involving {l_brace}CO{sub 2} + biodiesel + methanol{r_brace}. > The saturation pressures were obtained using a variable-volume view cell. > The experimental data were modeled using PR-vdW2 and PR-WS equations of state. - Abstract: The main objective of this work was to investigate the high pressure phase behavior of the binary systems {l_brace}CO{sub 2}(1) + methanol(2){r_brace} and {l_brace}CO{sub 2}(1) + soybean methyl esters (biodiesel)(2){r_brace} and the ternary system {l_brace}CO{sub 2}(1) + biodiesel(2) + methanol(3){r_brace} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {l_brace}CO{sub 2}(1) + methanol(2){r_brace}; (0.4201 to 0.9931) for the binary system {l_brace}CO{sub 2}(1) + biodiesel(2){r_brace}; (0.4864 to 0.9767) for the ternary system {l_brace}CO{sub 2}(1) + biodiesel(2) + methanol(3){r_brace} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {l_brace}CO{sub 2} + biodiesel + methanol{r_brace} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR-WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR-WS presented the best performance.

  10. Calculation of stability of sodic phases in high-pressure metapelites and observation of Sambagawa metamorphic rocks

    Science.gov (United States)

    Kouketsu, Y.; Enami, M.

    2010-12-01

    P-T pseudosection analyses of high-pressure metapelites from several subduction related regions were carried out by using the computer program Perple_X 07 in order to determine the mineral equilibrium, particularly the stability of sodic phases, in the model system MnO-Na2O-K2O-CaO-FeO-MgO-Al2O3-SiO2-H2O. Metapelites from Sambagawa, Western Alps, New Caledonia, Greece, and South Tianshan were selected for these analyses. Although the occurrence of sodic pyroxene in these metapelite samples is free or very rare, all the samples are considered to have undergone high-pressure metamorphism under blueschist-eclogite facies conditions. The bulk rock compositions of these metapelites have relatively low XNa [=Na/(Al + Na)] values. Therefore, the rare occurrences of sodic pyroxene in these samples are possibly due to their characteristic bulk rock compositions, although this has not been proved yet. The calculation results for the stability of sodic phases under the blueschist and eclogite facies conditions indicate the following. (1) Sodic pyroxene in the studied metapelites is stable only under higher-pressure conditions of P > 2.5 GPa, although its stable P-T range increases toward the lower-pressure side with increasing XNa value of the bulk-rock composition. (2) Paragonite and glaucophane are stable throughout the wide XNa range of bulk-rock compositions of host rocks under the blueschist and quartz-eclogite facies conditions. (3) The stability field of paragonite enlarges with the presence of CO2 in the metamorphic fluid. Thus, the high stability of paragonite and glaucophane in metapelites and the close relationship between the stability of sodic pyroxene and the bulk-rock composition explain why omphacite-bearing metapelites are rarely found. Observations of Sambagawa metapelites were carried out on the basis of these results. In the Besshi region of the Sambagawa belt, quartz grains with a high residual pressure of up to 0.8 GPa extensively occur as inclusions in

  11. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  12. Neutron Diffraction Study of Structural Phase Transition in Ternary Mercury Chalcogenides $HgSe_{1-x}S_{x}$ under High Pressure

    CERN Document Server

    Voronin, V I; Berger, I F; Glazkov, V P; Kozlenko, D P; Savenko, B N; Tikhomirov, S V

    2001-01-01

    A structure of ternary mercury chalcogenides HgSe_{1-x}S_x has been studied by means of neutron diffraction under high pressure up to 35 kbar. A phase transition from the cubic zinc blende phase to the hexagonal cinnabar phase was observed with the pressure increase. Lattice parameters and positional parameters of Hg and Se/S atoms as functions of pressure were obtained. Coexistence of the cubic and the hexagonal phases was observed in the pressure region close to the phase transition point.

  13. Ammonia-water mixtures at high pressures - Melting curves of ammonia dihydrate and ammonia monohydrate and a revised high-pressure phase diagram for the water-rich region. [in primordial solar system ices

    Science.gov (United States)

    Boone, S.; Nicol, M. F.

    1991-01-01

    The phase relations of some mixtures of ammonia and water are investigated to create a phase diagram in pressure-temperature-composition space relevant to the geophysical study of bodies in the outer solar system. The mixtures of NH3(x)H2O(1-x), where x is greater than 0.30 but less than 0.51, are examined at pressures and temperatures ranging from 0-6.5 GPa and 125-400 K, respectively. The ruby luminescence technique monitors the pressure and a diamond-anvil cell compresses the samples, and the phases are identified by means of normal- and polarized-light optical microscopy. The melting curve for NH3H2O(2) is described by the equation T = 176 + 60P - 8.5P squared for the ranges of 0.06-1.4 GPa and 179-243 K. The equation for NH3H2O is T = 194 + 37P - P squared, which represents a minor correction of a previous description by Johnson et al. (1985). Observed phase transitions are consistent with the high-pressure stability limit of NH3H2O(2), and the transition boundary is found to be linear.

  14. A new fullerene network phase obtained from C.sub.70./sub. at high-pressure and high-temperature

    Czech Academy of Sciences Publication Activity Database

    Marques, L.; Skorokhod, Yuriy; Soares, R.

    2015-01-01

    Roč. 9, č. 9 (2015), s. 535-538 ISSN 1862-6254 Institutional support: RVO:68378271 Keywords : fullerenes * high-pressure synthesis * X-ray diffraction * density functional calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.578, year: 2015

  15. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Prilliman, Stephen Gerald [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe2O3) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the γ to the α structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the α structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced α phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the α phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition

  16. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    International Nuclear Information System (INIS)

    Prilliman, Gerald Stephen

    2003-01-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe 2 O 3 ) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the γ to the α structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the α structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced α phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the α phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition that must be overridden with pressure

  17. Second-order phase transition in PbO and SnO at high pressure: Implications for the litharge-massicot phase transformation

    Science.gov (United States)

    Adams, David M.; Christy, Andrew G.; Haines, Julian; Clark, Simon M.

    1992-11-01

    We have studied the structural behavior of PbO at high pressure by powder neturon diffraction in a McWhan cell, and by energy-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell. A phase (γ-PbO) occurs at room temperature between ~0.7 and ~2.5 GPa pressure, between the stability fields of litharge (phase is related to litharge by a reversible second-order transition. We infer that this is associated with the collapse of the eu acoustic mode. Unit-cell data at 1.6 GPa are Pm21n, a=4.027(3) Å, b=3.950(3) Å, c=4.767(4) Å, and Z=2. The pressure evolution of the spontaneous strain follows a simple Landau model. There are four distinct solid-state transformation paths between litharge and massicot that maintain the known topotactic relationship between the phases, maintain the translational symmetry common to both, and make use of continuous transitions between group-subgroup related structural intermediates. Both the γ phase and the modulated low-temperature phase of PbO are closely related to one step on one of these paths. Although there is evidence to suggest that the intermediate states do have a transient existence, several paths appear to be utilized. A transition to a γ-like phase also occurs in SnO, at 2.5 GPa, although there is no evidence of a massicotlike polymorph of this compound. The orthorhombic phase is stable to at least 7.5 GPa.

  18. First principles investigation of high pressure behavior of FeOOH-AlOOH-phase H (MgSiO4H2) system.

    Science.gov (United States)

    Tsuchiya, J.; Thompson, E. C.; Tsuchiya, T.; Nishi, M.; Kuwayama, Y.

    2017-12-01

    It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) in the descending cold plate. A numbers of researches have been conducted so far about the high pressure behaviors of DHMSs. In recent years, we found new DHMS, phase H, at lower mantle pressure condition and the solid solution between phase H and d-AlOOH has been proposed as the most important carrier of water in the deepest part of Earth's mantle (Tsuchiya 2013 GRL, Nishi et al. 2014 Nature Geo., Ohira et al. 2014 EPSL). However, those hydrous minerals are actually not denser than surrounding (dry) mantle minerals (Tsuchiya and Mookherjee 2015 Scientific Reports) and the gravitational stability in deeper part of the Earth is questionable. Therefore, the effects of denser element such as Fe on the stability of DHMS are intimately connected to the ability of transportation of water into Earth's deep interiors. In order to assess the effect of Fe on the phase relation of phase H and d-AlOOH, we first investigated the high pressure behavior of the end-member composition of this system, the e-FeOOH. We have found the new high pressure transformation of FeOOH in the lower mantle conditions both theoretically and experimentally(Nishi et al. 2017 Nature). Here we show high pressure structures and the physical properties of FeOOH-AlOOH-phase H system using first principles calculation and discuss the possible geophysical implications of these phases.

  19. Phase relationships of the system Fe-Ni-S and structure of the high-pressure phase of (Fe1-xNix)3S2

    Science.gov (United States)

    Urakawa, Satoru; Kamuro, Ryota; Suzuki, Akio; Kikegawa, Takumi

    2018-04-01

    The phase relationships of the Fe-Ni-S system at 15 GPa were studied by high pressure quench experiments. The stability fields of (Fe,Ni)3S and (Fe,Ni)3S2 and the melting relationships of the Fe-Ni-S system were determined as a function of Ni content. The (Fe,Ni)3S solid solution is stable in the composition of Ni/(Fe + Ni) > 0.7 and melts incongruently into an Fe-Ni alloy + liquid. The (Fe,Ni)3S2 makes a complete solid solution and melts incongruently into (Fe,Ni)S + liquid, whose structure was determined to show Cmcm-orthorhombic symmetry by in situ synchrotron X-ray diffraction experiments. The eutectic contains about 30 at.% of S, and its temperature decreases with increasing Ni content with a rate of ∼5 K/at.% from 1175 K. The density of the Fe-FeS eutectic composition (Fe70S30) liquid is evaluated to be 6.93 ± 0.08 g/cm3 at 15 GPa and 1200 K based on the Clausius-Clapeyron relations and densities of subsolidus phases. The Fe-Ni-S liquids are a primary sulfur-bearing phase in the deep mantle with a reducing condition (250-660 km depth), and they would play a significant role in the carbon cycle as a carbon host as well as in the generation of diamond.

  20. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures

    Science.gov (United States)

    Mookherjee, Mainak; Tsuchiya, Jun; Hariharan, Anant

    2016-02-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent neutron diffraction experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons in topaz-OH. Upon full geometry optimization we find two distinct space group, an orthorhombic Pbnm and a monoclinic P21/c for topaz-OH. The topaz-OH with the monoclinic P21/c space group has a lower energy compared to the orthorhombic Pbmn space group symmetry. The pressure-volume results for the monoclinic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0mon = 348.63 (±0.04) Å3, K0mon = 164.7 (±0.04) GPa, and K0mon = 4.24 (±0.05). The pressure-volume results for the orthorhombic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0orth = 352.47 (±0.04) Å3, K0orth = 166.4 (±0.06) GPa, and K0orth = 4.03 (±0.04). While the bulk moduli are very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic constants and the shear moduli are very sensitive to the position of the proton, orientation of the O-H dipole, and the space group symmetry. The S-wave anisotropy for the orthorhombic and monoclinic topaz-OH are also quite distinct. In the hydrated sedimentary layer of subducting slabs, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to topaz-OH (Al2SiO4(OH)2) is likely to be accompanied by an increase in density, compressional velocity, and shear wave velocity. However

  1. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Meducin, F.

    2001-10-01

    This study concerns the durability of oil-well cementing. Indeed, in oil well cementing a cement slurry is pumped down the steel casing of the well up the annular space between it and the surrounding rock to support and protect the casing. The setting conditions of pressure and temperature may be very high (up to 1000 bar and 250 deg C at the bottom of the oil-well). In this research, the hydration of the main constituent of cement, synthetic tri-calcium silicate Ca{sub 3}SiO{sub 2}, often called C{sub 3}S (C = CaO; S = SiO{sub 2} and H H{sub 2}O), is studied. Calcium Silicate hydrates are prepared in high-pressure cells to complete their phase diagram (P,T) and obtain the stability conditions for each species. Indeed, the phases formed in these conditions are unknown and the study consists in the hydration of C{sub 3}S at different temperatures, pressures, and during different times to simulate the oil-well conditions. In a first step (until 120 deg C at ambient pressure) the C-S-H, a not well crystallized and non-stoichiometric phase, is synthesized: it brings adhesion and mechanical properties., Then, when pressure and temperature increase, crystallized phases appear such as jaffeite (Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6}) and hillebrandite (Ca{sub 2}(SiO{sub 3})(OH){sub 2}). Silicon {sup 29}Si Nuclear Magnetic Resonance (using standard sequences MAS, CPMAS) allow us to identify all the silicates hydrates formed. Indeed, {sup 29}Si NMR is a valuable tool to determine the structure of crystallized or not-well crystallized phases of cement. The characterization of the hydrated samples is completed by other techniques: X- Ray Diffraction and Scanning Electron Microscopy. The following results are found: jaffeite is the most stable phase at C/S=3. To simulate the hydration of real cement, hydration of C{sub 3}S with ground quartz and with or without super-plasticizers is done. In those cases, new phases appear: kilchoanite mainly, and xonotlite. A large amount of

  2. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  3. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  4. Room temperature synthesis of wurtzite phase nanostructured ZnS and accompanied enhancement in dielectric constant

    Science.gov (United States)

    Virpal, Kumar, J.; Singh, G.; Singh, M.; Sharma, S.; Singh, R. C.

    2017-04-01

    We report the room temperature synthesis of ZnS in the wurtzite phase by using ethylenediamine, which acts as a template as well as a capping agent. With the addition of ethylenediamine, structural transformation in ZnS from cubic to wurtzite phase is observed. This is accompanied by an increase in the real permittivity by an order of 2, and reduction in dielectric loss by a factor of 6 as compared to a sample without ethylenediamine. Thus, suggesting that ethylenediamine capped wurtzite ZnS is more suitable for miniaturied capactive devices.

  5. First-principles study on the phase transitions, crystal stabilities and thermodynamic properties of TiN under high pressure

    Science.gov (United States)

    Sun, Xinjun; Liu, Changdong; Guo, Yongliang; Sun, Deyan; Ke, Xuezhi

    2018-03-01

    The structural and thermodynamic properties of titanium nitride (TiN) have been investigated by merging first-principles calculations and particle-swarm algorithm. The three phases are identified for TiN, including the B1, the P63 / mmc, and the B2 phases. A new phase of anti-TiP structure with the space group P63 / mmc has been predicted. The calculated phase transition from the B1 to the P63 / mmc occurs at 270 GPa. The vibrational, elastic, and thermodynamic properties for the three phases have been calculated and discussed.

  6. Physical properties and phase diagram of the magnetic compound Cr{sub 0.26}NbS{sub 1.74} at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, V. A.; Petrova, A. E.; Pinyagin, A. N. [Russian Academy of Sciences, Institute for High Pressure Physics (Russian Federation); Kolesnikov, N. N.; Khasanov, S. S. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation); Stishov, S. M., E-mail: sergei@hppi.troitsk.ru [Russian Academy of Sciences, Institute for High Pressure Physics (Russian Federation)

    2016-06-15

    We report the results of a study of magnetic, electrical, and thermodynamic properties of a single crystal of the magnetic compound Cr{sub 0.26}NbS{sub 1.74} at ambient and high pressures. Results of the measurements of magnetization as a function of temperature reveal the existence of a ferromagnetic phase transition in Cr{sub 0.26}NbS{sub 1.74}. The effective number of Bohr magnetons per Cr atom in the paramagnetic phase of Cr{sub 0.26}NbS{sub 1.74} is µ{sub eff} ≈ 4.6µB, which matches the literature data for Cr1/3NbS2. Similarly, the effective number of Bohr magnetons per Cr atom in the saturation fields is rather close in both substances and corresponds to the number of magnetons in the Cr{sup +3} ion. In contrast to the stoichiometric compound, Cr{sub 0.26}NbS{sub 1.74} does not show a metamagnetic transition, that indicates the lack of a magnetic soliton. A high-pressure phase diagram of the compound reveals the quantum phase transition at T = 0 and P ≈ 4.2 GPa and the triple point situated at T ≈ 20 K and P ≈ 4.2 GPa.

  7. Observation of phase transformations in LiMn2O4 under high pressure and at high temperature by in situ X-ray diffraction measurements

    International Nuclear Information System (INIS)

    Darul, J.; Nowicki, W.; Lathe, C.; Piszora, P.

    2011-01-01

    This work presents the diffraction features of lithium-manganese oxide in extreme pressure and temperature conditions used as positive electrode materials in lithium-ion batteries. Energy-dispersive X-ray diffraction yield reliable description of material lattice, its distortion and chemical stability under high pressure and at high temperature (HP/HT). The phase evolution as a function of pressure and temperature is reported and analyzed in the LiMn 2 O 4 sample. A comparison with another tetragonal spinel shows the influence of the Jahn-Teller effect on the HP/HT structure of this class of materials.

  8. Role of the lattice in the gamma-->alpha phase transition of Ce: a high-pressure neutron and x-ray diffraction study.

    Science.gov (United States)

    Jeong, I-K; Darling, T W; Graf, M J; Proffen, Th; Heffner, R H; Lee, Yongjae; Vogt, T; Jorgensen, J D

    2004-03-12

    The temperature and pressure dependence of the thermal displacements and lattice parameters were obtained across the gamma-->alpha phase transition of Ce using high-pressure, high-resolution neutron and synchrotron x-ray powder diffraction. The estimated vibrational entropy change per atom in the gamma-->alpha phase transition, DeltaS(gamma-alpha)(vib) approximately (0.75+/-0.15)k(B), is about half of the total entropy change. The bulk modulus follows a power-law pressure dependence that is well described using the framework of electron-phonon coupling. These results clearly demonstrate the importance of lattice vibrations, in addition to the spin and charge degrees of freedom, for a complete description of the gamma-->alpha phase transition in elemental Ce.

  9. Phase separation, effects of magnetic field and high pressure on charge ordering in γ-Na0.5CoO2

    International Nuclear Information System (INIS)

    Yang, H.X.; Shi, Y.G.; Nie, C.J.; Wu, D.; Yang, L.X.; Dong, C.; Yu, H.C.; Zhang, H.R.; Jin, C.Q.; Li, J.Q.

    2005-01-01

    Transmission electron microscopy (TEM) observations reveal the presence of complex superstructures and remarkable phase separation in association with Na-ordering phenomenon in γ-Na 0.5 CoO 2 . Resistivity and magnetization measurements indicate that three phase transitions at the temperatures of 25, 53 and 90 K, respectively, appear commonly in γ-Na 0.5 CoO 2 samples. Under a high pressure up to 10 kbar, the low-temperature transport properties show certain changes below the charge order transition; under an applied magnetic field of 7 T, phase transitions at around 25 and 53 K, proposed fundamentally in connection with alternations of magnetic structure and charge ordering maintain almost unchanged

  10. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Rømer, Carsten; Kær, Søren Knudsen

    2016-01-01

    In this work, the use of a circular-planar, interdigitated flow field for the anode of a high pressure proton exchange membrane (PEM) water electrolysis cell is investigated in a numerical study. While PEM fuel cells have separated flow fields for reactant transport and coolant, it is possible......-phase flow model for establishing the effect of geometry and a two-phase flow model for studying the effect of dispersed gas bubbles. Both models account for turbulence and heat transport. By means of the developed models, it is elucidated that the circular-planar shape of the interdigitated flow field...... causes maldistribution, if land areas of equal width are applied. Moreover, below a water stoichiometry of 350, and at a current density of 1 A/cm2, flow and temperature maldistribution is adversely affected by the presence of the gas phase; particularly gas hold-up near outlet channels can cause...

  11. High pressure cosmochemistry applied to major planetary interiors: Experimental studies. [phase diagram for the ammonia water system

    Science.gov (United States)

    Nicol, M. F.; Johnson, M.; Schwake, A.

    1983-01-01

    Progress is reported in the development of the P-T-X diagram for 0 less than or = X less than or = 0.50 and in the development of techniques for measuring adiabats of phases of NH3-H2O. The partial phase diagram is presented, investigations of the compositions of ammonia ices are described, and methods for obtaining the infrared spectra of ices are discussed.

  12. Phase behaviour and thermodynamic modelling for the system (grape seed oil + carbon dioxide + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Dalmolin, Irede; Rigo, Aline A.; Corazza, Marcos L.; Ndiaye, Papa M.; Meireles, M. Angela A.; Batista, Eduardo A.C.; Oliveira, J. Vladimir

    2014-01-01

    This short communication reports phase equilibrium data (cloud points), employing the synthetic static method, for the system {grape seed oil (GSO) + carbon dioxide (CO 2 ) + ethanol} up to T = 343.15 K and 22.53 MPa. Experimental results were modelled using the Peng-Robinson equation of state with the classical van der Waals quadratic mixing rule (PR-vdW2). It is shown that the thermodynamic model is able to represent satisfactorily the phase behaviour of the system investigated

  13. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

    Science.gov (United States)

    Vattré, A.; Denoual, C.

    2016-07-01

    A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.

  14. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    International Nuclear Information System (INIS)

    Wu, Yan.

    1990-11-01

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs

  15. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yan.

    1990-11-01

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs.

  16. Tunable high pressure lasers

    Science.gov (United States)

    Hess, R. V.

    1976-01-01

    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  17. A new high-pressure phase of Fe2SiO4 and the relationship between spin and structural transitions

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Nakamoto, Y.; Kharlamova, S. A.; Struzhkin, V. V.; Gramsch, S.; Mao, H.; Hemley, R. J.

    2013-12-01

    Structure transformation of Fe2SiO4 Angle-dispersive powder x-ray diffraction was carried out at beam line 16-BMD APS. Structure of a new high-pressure phase of I-Fe2SiO4 spinel was determined by Rietveld profile fitting of x-ray diffraction data up to 64GPa at ambient temperature. A structural transition from the cubic spinel to the new structure was observed at 34GPa. Diffraction patterns taken at 44.6GPa and 54.6GPa indicate a two-phase mixture of spinel and new high-pressure phase. Reversible transition from I-Fe2SiO4 to spinel was confirmed. Laser heating experiment at 1500K proved the decomposition of Fe2SiO4 spinel to two oxides of FeO and SiO2. Spin transition X-ray emission measurements of Fe2SiO4 were carried out up to 65GPa at ambient temperature at beam line 16-IDD APS. The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. Although the compression curve of the spinel is discontinuous at approximately 20 GPa, Fe Kβ emission measurements show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17GPa in the spinel phase. The IS electronic state is gradually enhanced with pressure, which results in an isostructural phase transition. HS-to-LS transition of iron bearing spinels starts from 15.6GPa in Fe3O4 and 19.6GPa in Fe2TiO4. The transition is more capable due to Fe2+ in the octahedral site. The extremely shortened octahedral bonds result in a distortion of 6-fold cation site. New structure of Fe2SiO4 Monte Carlo method was applied to find candidates for the high-pressure phase using the diffraction intensities with fixed lattice constants determined by DICVOL. Rietveld profile fitting was then performed using the initial model. The new structure is a body centered orthorhombic phase (I-Fe2SiO4) with space group Imma and Z=4, with two crystallographically distinct FeO6 octahedra. Silicon exists in six-fold coordination in I-Fe2Si

  18. Magnetic Phase Transitions in Iron-Doped Manganites Pr_{0.7}Ca_{0.3}Mn_{1-y}Fe_{y}O_{3} at High Pressures

    CERN Document Server

    Kozlenko, D P; Glazkov, V P; Medvedeva, I V; Savenko, B N

    2003-01-01

    Atomic and magnetic structure of manganites Pr_{0.7}Ca_{0.3}Mn_{1-y}Fe_{y}O_{3} (y=0, 0.1) has been studied by means of neutron diffraction at high pressures up to 4 GPa in the temperature range 16v300 K. At ambient pressure and low temperature, a phase transition from paramagnetic to antiferromagnetic (AFM) state of pseudo-CE type in Pr_{0.7}Ca_{0.3}MnO_{3} and a phase transition from paramagnetic state to ferromagnetic state in Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_{3} occur. Partial substitution of Mn by Fe atoms leads to the noticeable decrease of the average value of the magnetic moment per atom. At high pressure P\\approx 2.2 GPa in Pr_{0.7}Ca_{0.3}MnO_{0.3} and P\\approx 2.7 GPa in Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_{3} in the low temperature range, an appearance of the new AFM state of A-type was observed. The possible reason for the stabilization of the AFM state of A-type is the compression anisotropy of these compounds which leads to the apical compression of MnO_{0.3} octahedra in the structure and forms...

  19. Shear-driven instability in zirconium at high pressure and temperature and its relationship to phase-boundary behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, M. K.; Velisavljevic, N.; Kono, Y.; Park, C.; Kenney-Benson, C.

    2017-04-01

    Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Further, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation of these can be made through inspection of shear-driven anomalies in other systems.

  20. High pressures phase equilibria of (carbon dioxide + 1-undecanol) system and their potential role in carbon capture and storage

    International Nuclear Information System (INIS)

    Secuianu, Catinca; Ioniţă, Simona; Feroiu, Viorel; Geană, Dan

    2016-01-01

    Highlights: • Isothermal VLE and VLLE data for (CO 2 + 1-undecanol) system are reported. • The P–T data of the LLV curve up to the upper critical endpoint was measured. • The new data and all available literature data are modeled with GEOS, PR, SRK EoS. • The solubility of CO 2 in 1-undecanol decreases as temperature increases. - Abstract: The influence of a large molecular alcohol on thermodynamic phase behaviour is investigated for its potential use in CCS. New isothermal (vapour + liquid) equilibria and (vapour + liquid + liquid) equilibria data for the (carbon dioxide + 1-undecanol) system are reported at several temperatures (303.15, 313.15, 323.15, and 333.15) K and pressures up to 15 MPa, together with the pressure–temperature data of the three phases (liquid + liquid + vapour) equilibrium curve up to the upper critical endpoint. A static-analytical method with phases sampling was used. The experimental results of this study are compared with literature data when available, and discussed. The new data and all available literature data for the (carbon dioxide + 1-undecanol) binary system are modelled with three cubic equations of state, namely the General Equation of State, Peng–Robinson, and Soave–Redlich–Kwong with classical van der Waals mixing rules. The aforementioned EoS were used to model the phase behaviour of the (carbon dioxide + 1-undecanol) binary system (critical curves, the three phases equilibrium curve, isothermal VLE, and (vapour + liquid + liquid) equilibria, using a semi-predictive approach. The calculations results are compared to the new data reported in this work and to all available literature data. The results show a satisfactory agreement between the models and the experimental values.

  1. Mass spectrometric elucidation of triacylglycerol content of Brevoortia tyrannus (menhaden) oil using non-aqueous reversed-phase liquid chromatography under ultra high pressure conditions.

    Science.gov (United States)

    Dugo, Paola; Beccaria, Marco; Fawzy, Nermeen; Donato, Paola; Cacciola, Francesco; Mondello, Luigi

    2012-10-12

    A non-aqueous reversed phase high performance liquid chromatography method was developed, and optimized for triacylglycerol analysis in a Brevoortia tyrannus (menhaden) oil sample. Four columns were serially coupled to tackle such a task, for a total length of 60 cm of shell-packed stationary phase, and operated under ultra high pressure conditions. As detection, positive-ion atmospheric pressure chemical ionization mass spectrometry was used to attain identification of the analyzed sample components. A number of 137 triacylglycerols containing up to 19 fatty acids, with 14-22 carbon atom alkyl chain length and 0-6 double bonds, were positively identified in the complex lipidic sample. This is the first work that reports an extensive characterization of the triacylglycerol fraction of menhaden oil. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  3. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  4. Phase stability, physical properties of rhenium diboride under high pressure and the effect of metallic bonding on its hardness

    International Nuclear Information System (INIS)

    Zhong, Ming-Min; Kuang, Xiao-Yu; Wang, Zhen-Hua; Shao, Peng; Ding, Li-Ping; Huang, Xiao-Fen

    2013-01-01

    Highlights: •The transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. •The single-bonded B–B feather remains in ReB 2 compounds. •A semiempirical method to evaluate the hardness of crystals with partial metallic bond is presented. •The large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material. •The zigzag interconnected B–Re and B–B covalent bonds underlie the ultraincompressibilities. -- Abstract: Using first-principles calculations, the elastic constants, thermodynamic property and structural phase transition of rhenium diboride under pressure are investigated by means of the pseudopotential plane-waves method, as well as the effect of metallic bond on its hardness. Eight candidate structures of known transition-metal compounds are chosen to probe for rhenium diboride ReB 2 . The calculated lattice parameters are consistent with the experimental and theoretical values. Based on the third order Birch–Murnaghan equation of states, the transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. Elastic constants, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature are derived. The single-bonded B–B feather remains in ReB 2 compounds. Furthermore, according to Mulliken overlap population analysis, a semiempirical method to evaluate the hardness of multicomponent crystals with partial metallic bond is presented. Both strong covalency and a zigzag topology of interconnected bonds underlie the ultraincompressibilities. In addition, the superior performance and large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material

  5. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    transmitting medium. Through careful structural analysis combined with theoretical calculations, the structures of all the new high-pressure phases identified herein were determined. In the hydroquinone - methanol and hydroquinone - acetonitrile clathrate structures the phase transitions break the host...... illustrates how important it is to quantify all intermolecular interactions in structures. This enables researchers to see a more complete picture and not focus only on a few interactions deemed particularly important....

  6. Low temperature and high pressure thermoelastic and crystallographic properties of SrZrO3 perovskite in the Pbnm phase

    Science.gov (United States)

    Knight, Kevin S.; Bull, Craig L.

    2016-12-01

    The thermoelastic and structural properties of SrZrO3 perovskite in the Pnma (Pbnm) phase have been studied using neutron powder diffraction at 82 temperatures between 11 K and 406 K at ambient pressure, and at sixteen pressures between 0.07 and 6.7 GPa at ambient temperature. The bulk modulus, derived by fitting the equation of state to a second order Birch-Murnaghan equation-of-state, 157(5) GPa, is in excellent agreement with that deduced in a recent resonant ultrasound investigation. Experimental axial compressional moduli are in agreement with those calculated from the elastic stiffness coefficients derived by ab-initio calculation, although the experimental bulk modulus is significantly softer than that calculated. Following low temperature saturation for temperatures less than 40 K, the unit cell monotonically increases with a predicted high temperature limit in the volume expansivity of ∼2.65 × 10-5 K-1. Axial linear thermal expansion coefficients are found to be in the order αb < αc < αa for all temperatures greater than 20 K with the b axis indicating a weak, low temperature negative expansion coefficient at low temperatures. The thermoelastic properties of SrZrO3 can be approximated by a two-term Debye model for the phonon density of states with Debye temperatures of 238(4) K and 713(6) K derived in a self-consistent manner by simultaneously fitting the isochoric heat capacity and the unit cell volume. Atomic displacement parameters have been fitted to a modified Debye model in which the zero-point term is an additional refinable variable and shows the cations and anions have well separated Debye temperatures, mirroring the need for two Debye-like distributions in the vibrational density of states. The temperature dependence of the crystal structure is presented in terms of the amplitudes of the seven symmetry-adapted basis vectors of the aristotype phase that are consistent with space group Pbnm, thus permitting a direct measure of the order

  7. High pressure phase equilibrium of ternary and multicomponent alkane mixtures in the temperature range from (283–473) K

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Liu, Yiqun; Wibowo, Ahmad A.

    2017-01-01

    Asymmetric multicomponent alkane mixtures can be used as model systems for reservoir fluids. We have prepared two ternary mixtures, methane/n-butane/n-decane and methane/n-butane/n-dodecane, and two multicomponent mixtures composed of methane/n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane a......Asymmetric multicomponent alkane mixtures can be used as model systems for reservoir fluids. We have prepared two ternary mixtures, methane/n-butane/n-decane and methane/n-butane/n-dodecane, and two multicomponent mixtures composed of methane......-Redlich-Kwong (SRK), Peng-Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR), have been used to predict phase equilibrium of the measured systems. PR and PC-SAFT give better results than others and Soave-BWR gives poor phase envelope predictions...... the fractions just below the saturation pressures are difficult to predict. Moreover GERG-2008 has also been tested with the measured methane/n-butane/n-decane system. It over predicts the saturation pressures but predicts low pressure liquid fractions quite accurately....

  8. High-pressure structural phase transitions in TiO sub 2 and synthesis of the hardest known oxide

    CERN Document Server

    Ahuja, R

    2002-01-01

    Despite great technological importance and many investigations, a material with a measured hardness comparable to that of diamond or cubic boron nitride has yet to be identified. Our combined theoretical and experimental investigations led to the discovery of a new polymorph of titanium dioxide, where titanium is ninefold coordinated to oxygen in the cotunnite (PbCl sub 2) structure. Hardness measurements on this phase, synthesized at pressures above 60 GPa and temperatures above 1000 K, reveal that this material is the hardest oxide yet discovered. Furthermore, it is one of the least compressible (with a measured bulk modulus of 431 GPa) and hardest (with a microhardness of 38 GPa) polycrystalline materials studied so far.

  9. High pressure phase transitions in Mg{sub 1-x}Ca{sub x}O: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Anurag; Chauhan, Mamta [Advanced Material Research Lab, Indian Institute of Information Technology and Management, Gwalior (India); Singh, R.K. [Department of Physics, ITM University, Gurgaon (India); Padegaonker, Rishikesh [Indian Embassy School, Sana (Yemen)

    2011-08-15

    We have analysed a B1 {yields} B2 structural phase transitions in Mg{sub 1-x}Ca{sub x}O solid solutions and their ground state properties by using first principle density functional theory and charge transfer interaction potential (CTIP) approach. The effects of exchange-correlation interactions are handled by the generalized gradient approximation with Perdew-Burke-Ernzerhof type parameterization. CTIP approach includes the long range modified Coulomb with charge transfer interactions and short range part of this model includes the van der Waals as well as Hafemeister Flygare type overlap repulsive interactions. The study observes a linear variation of calculated transition pressure, bulk modulus and lattice parameter of Mg{sub 1-x}Ca{sub x}O as a function of Ca composition. The observed results for the end point members are in agreement to their experimental counterparts and the deviations have been discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    Science.gov (United States)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  11. Direct Observation of the Quantum Phase Transition of SrCu2(BO3)2 by High-Pressure and Terahertz Electron Spin Resonance

    Science.gov (United States)

    Sakurai, Takahiro; Hirao, Yuki; Hijii, Keigo; Okubo, Susumu; Ohta, Hitoshi; Uwatoko, Yoshiya; Kudo, Kazutaka; Koike, Yoji

    2018-03-01

    High-pressure and high-field electron spin resonance (ESR) measurements have been performed on a single crystal of the orthogonal-dimer spin system SrCu2(BO3)2. With frequencies below 1 THz, ESR signals associated with transitions from the singlet ground state to the one-triplet excited states and the two-triplet bound state were observed at pressures up to 2.1 GPa. We obtained directly the pressure dependence of the gap energies, finding a clear first-order phase transition at Pc = 1.85 ± 0.05 GPa. By comparing this pressure dependence with the calculated excitation energies obtained from an exact diagonalization, we determined the precise pressure dependence for inter- (J') and intra-dimer (J) exchange interactions considering the Dzyaloshinski-Moriya interaction. Thus this system undergoes a first-order quantum phase transition from the dimer singlet phase to a plaquette singlet phase above the ratio (J'/J)c = 0.660 ± 0.003.

  12. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  13. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-25

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  14. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  15. High pressure annular two-phase flow in a narrow duct. Part 1: Local measurements in the droplet field, and Part 2: Three-field modeling

    Energy Technology Data Exchange (ETDEWEB)

    Trabold, T.A.; Kumar, R. [Lockheed Martin Corp., Schenectady, NY (United States)

    1999-07-01

    In Part 1, detailed measurements were made in a high pressure, adiabatic (boiled at the inlet) annular flow in a narrow, high aspect ratio duct using a gamma densitometer, hot-film anemometer and high-speed video photography. Measurements of void fraction, droplet frequency, velocity, drop size, and interfacial area concentration have been made to support the three field computational capability. An important aspect of this testing is the use of a modeling fluid (R-134a) in a vertical duct which permits visual access in annular flow. This modeling fluid accurately simulates the low liquid-to-vapor density ratio of steam-water flows at high pressures. These measurements have been taken in a narrow duct of hydraulic diameter 4.85 mm, and a cross-section aspect ratio of 22.5. However, the flow displays profiles of various shapes not only in the narrow dimension, but also in the width dimension. In particular, the shape of the droplet profiles depends on the entrained droplet flux from the edges in the vapor core. The average diameter from these profiles compare well with the models developed in the literature. Interfacial area concentration for these low density ratio flows is higher than the highest concentration reported for air-water flows. Video records show that along with the bow-shaped waves, three-dimensional {lambda}-shaped waves appear in annular flows for high flow rates. Part 2 outlines the development of a three-field modeling approach in annular flow and the predictive capability of an analysis code. Models have been developed here or adapted from the literature for the thin film near the wall as well as the droplets in the vapor core, and have been locally applied in a fully developed, two-phase adiabatic boiling annular flow in a duct heated at the inlet at high pressure. Numerical results have been obtained using these models that are required for the closure of the continuity and momentum equations. The two-dimensional predictions are compared with

  16. High-pressure microfluidics

    Science.gov (United States)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  17. High-pressure crystallography.

    Science.gov (United States)

    McMahon, Malcolm I

    2012-01-01

    The ability of pressure to change inter-atomic distances strongly leads to a wide range of pressure-induced phenomena at high pressures: for example metallisation, amorphisation, superconductivity and polymerisation. Key to understanding these phenomena is the determination of the crystal structure using x-ray or neutron diffraction. The tools necessary to compress matter above 1 million atmospheres (1 Megabar or 100 GPa) were established by the mid 1970s, but it is only since the early 1990s that we have been able to determine the detailed crystal structures of materials at such pressures. In this chapter I briefly review the history of high-pressure crystallography, and describe the techniques used to obtain and study materials at high pressure. Recent crystallographic studies of elements are then used to illustrate what is now possible using modern detectors and synchrotron sources. Finally, I speculate as to what crystallographic studies might become possible over the next decade.

  18. High-pressure apparatus

    OpenAIRE

    Schepdael, van, L.J.M.; Bartels, P.V.; Berg, van den, R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which are oriented in the peripheral direction and are embedded in a matrix of epoxy resin or polyurethane. By applying the axial prestress to the pressure vessel (3), the tangential stress is distribut...

  19. Structure and phase diagram of an adhesive colloidal dispersion under high pressure: a small angle neutron scattering, diffusing wave spectroscopy, and light scattering study.

    Science.gov (United States)

    Vavrin, R; Kohlbrecher, J; Wilk, A; Ratajczyk, M; Lettinga, M P; Buitenhuis, J; Meier, G

    2009-04-21

    We have applied small angle neutron scattering (SANS), diffusing wave spectroscopy (DWS), and dynamic light scattering (DLS) to investigate the phase diagram of a sterically stabilized colloidal system consisting of octadecyl grafted silica particles dispersed in toluene. This system is known to exhibit gas-liquid phase separation and percolation, depending on temperature T, pressure P, and concentration phi. We have determined by DLS the pressure dependence of the coexistence temperature and the spinodal temperature to be dP/dT=77 bar/K. The gel line or percolation limit was measured by DWS under high pressure using the condition that the system became nonergodic when crossing it and we determined the coexistence line at higher volume fractions from the DWS limit of turbid samples. From SANS measurements we determined the stickiness parameter tau(B)(P,T,phi) of the Baxter model, characterizing a polydisperse adhesive hard sphere, using a global fit routine on all curves in the homogenous regime at various temperatures, pressures, and concentrations. The phase coexistence and percolation line as predicted from tau(B)(P,T,phi) correspond with the determinations by DWS and were used to construct an experimental phase diagram for a polydisperse sticky hard sphere model system. A comparison with theory shows good agreement especially concerning the predictions for the percolation threshold. From the analysis of the forward scattering we find a critical scaling law for the susceptibility corresponding to mean field behavior. This finding is also supported by the critical scaling properties of the collective diffusion.

  20. Investigation of the Influence of Sucrose and Cholesterol on the Phase Transition Temperature of nanoliposomal formulation besides using particle size Reduction Techniques (Ultrasonication/High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Z Malaei-Balasi

    2017-05-01

    Full Text Available Introduction: The successful application of nanoliposoms as an effective drug delivery system depends on their stability in the medium. In this article, influence of additive materials such as cholesterol and sucrose besides two natural and synthesized phospholipids have been investigated. Methods: In the present study, designing and synthesis of nanoliposomal formulations were prepared using thin film method. This liposomal suspension was downsized by two methods, the high-pressure homogenizer and ultrasound to form small unilamellar vesicles. The size distributions, zeta potentials and phase transition temperature of formulations were all determined by a zetasizer and differential scanning calorimetry(DSC. In addition, the contribution of nanoliposomal formulation has been investigated by HPLC and FTIR methods. Results: Results of the DSC measurments indicated that incorporation of unsaturated phospholipid (SOY PC may cause phase separation with partial miscibility in the liposome bilayer containing of DPPG. The optimal nanoliposomal formulation was composed of (DPPC: CHOL: mPEG2000-DSPE with the mole percents equal to (83:15:2, respectively. In addition, sucrose has been used in the formulation with a total amounts six times greater than that of the lipids. The properties of optimized nanoliposome have been shown as the size average 104nm, zeta potential 8.04mv and phase transition temperature of lipid less than 37°C which were stable enough to be utilized for loading and releasing bioactives in body temperature. Conclusion: Finally the produced nanoliposomes were stable vesicles in the proper size, phase transition temperature and surface charge without any aggregation and fusion.

  1. High-pressure phase behaviors of ZnTiO3: ilmenite-perovskite transition, decomposition of perovskite into constituent oxides, and perovskite-lithium niobate transition

    Science.gov (United States)

    Akaogi, M.; Abe, K.; Yusa, H.; Kojitani, H.; Mori, D.; Inaguma, Y.

    2015-06-01

    High-pressure high-temperature phase transitions of ZnTiO3 ilmenite were examined using multianvil apparatus up to 25.5 GPa and 1,500 °C and diamond anvil cell to 26.5 GPa and about 2,000 °C. Combined results of the multianvil quench experiments and in situ diamond anvil cell experiments indicated that at about 10 GPa and 1,200 °C ZnTiO3 ilmenite transforms to orthorhombic perovskite which is converted to lithium niobate phase on release of pressure. The boundary of the ilmenite-provskite transition is expressed by P(GPa) = 15.9 - 0.005 T (°C). The high-pressure experiments also indicated that at 20-24 GPa and 1,000-1,400 °C ZnTiO3 orthorhombic perovskite dissociates into rocksalt-type ZnO + baddeleyite-type TiO2 which are recovered, respectively, as wurtzite-type ZnO and α-PbO2-type TiO2 at 1 atm. The boundary of the perovskite dissociation is expressed by P(GPa) = 8.7 + 0.011 T (°C). Molar volume changes of ZnTiO3 at ambient conditions were estimated as -4.7 % for the ilmenite-perovskite transition and -3.5 % for the perovskite decomposition into the oxides. The absence of CaIrO3-type postperovskite in ZnTiO3 is consistent with that dissociation of ZnTiO3 perovskite into the oxides has the larger molar volume change than -1 to -2 % of the perovskite-postperovskite transition in various ABO3 compounds and with previous data that ABO3 perovskites with relatively ionic B-O bonds do not transform to the postperovskite. The transition behaviors of ZnTiO3 are similar to those of MnTiO3 and FeTiO3, but ZnTiO3 perovskite dissociates into the constituent oxides.

  2. Fascination at high pressures

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Research at high pressures has developed into an interdisciplinary area which has important implications for and applications in the areas of physics, chemistry, materials sciences, planetary sciences, biology, engineering sciences and technology. The state of-the-art in this field is reviewed and future directions are indicated. (M.G.B.)

  3. High-Pressure High-Temperature Phase Diagram of H2O: An Accurate Mapping With in-situ p-T Determination

    Science.gov (United States)

    Sundberg, S.; Lazor, P.

    2002-05-01

    We have developed new system for accurate mapping of phase diagrams of condensed phases at high pressures and high temperatures in the temperature range 77 - 900 K and pressure range 0-10 GPa. The system is build around externally heated diamond anvil cell of a piston-cylinder design and spectrograph with a sensitive CCD detector. For the in-situ pressure determination at high temperatures we use SrB4O7: Sm2+ luminescence sensor and apply calibration results from pioneering work of Lacam et al. [1]. The wavelength shift of this sensor is nearly independent of temperature. Its combination with the ruby sensor in the same sample chamber provides possibility for the determination of local temperature without using readouts of thermocouples [2]. The p-T path followed in an experiment is displayed and recorded in real time with temporal resolution as high as 10 Hz. Due to the high signal-to-noise ratio of the luminescence signal relative variations of pressure as small as 0.0005 GPa are easily detected. This, along with isochoric conditions in the more narrow temperature ranges, allows detection of subtle phase transitions, and places significant constraints on the equations of states, particularly those of coexisting phases. We used this system for the further investigation of the phase diagram of H2O in the stability fields of fluid and ices I - VII. In accordance with previous observations we observe large metastability of several phases. The melting curve of new metastable ice reported by Chou et al. [3] is extended to higher pressures. In several melting experiments the course of p-T path in the immediate vicinity of the transition suggests "pre-melting behaviour" possibly characterized by a progressive breaking of hydrogen bonds. 1. Lacam A., Genotelle M., Chateau C. (1986) C. R. Acad. Sc. Paris II, 303(7) 547-552 2. Datchi F., R. Le Toullec, P. Loubeyre (1997), J. Appl. Phys. 81(8), 3333-3339 3. Chou I.M., Blank J.G., Goncharov A.F., Mao H.K., Hemley R.J. (1998

  4. A rapid, sensitive and validated method for the determination of ondansetron in human plasma by reversed-phase high-pressure liquid chromatography.

    Science.gov (United States)

    Chandrasekar, Durairaj; Ramakrishna, Sistla; Diwan, Prakash V

    2004-01-01

    A simple and sensitive method for the determination of ondansetron (CAS 116002-70-1) in human plasma was developed using high-pressure liquid chromatography (HPLC). The procedure involves extraction of human plasma with tertiary butyl methyl ether containing 2 mol/l sodium hydroxide, followed by reversed-phase HPLC using a LiChrospher 100 RP-18e 5 microm column and UV detection at 305 nm. The retention times of ondansetron and internal standard (propranolol hydrochloride, CAS 318-98-9) were 9.38 and 13.40 min, respectively. The calibration curves were linear over the range of 10 ng/ml (lower limit of quantitation, LOQ) and 380 ng/ml for ondansetron. The intra- and inter-assay coefficients of variation for all the criteria of validation were less than 15% over the linearity range. Ondansetron was stable upon storage in human plasma. The sensitivity and precision of the method were within the accepted limits (< 15 %) throughout the validation period. The present method is useful for determination of plasma concentrations of ondansetron during human pharmacokinetic studies.

  5. High pressure size exclusion chromatography (HPSEC) determination of dissolved organic matter molecular weight revisited: Accounting for changes in stationary phases, analytical standards, and isolation methods

    Science.gov (United States)

    McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping

    2018-01-01

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.

  6. High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods.

    Science.gov (United States)

    McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping

    2018-01-16

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .

  7. Valence-Band Electronic Structures of High-Pressure-Phase PdF2-type Platinum-Group Metal Dioxides MO2 (M = Ru, Rh, Ir, and Pt)

    Science.gov (United States)

    Soda, Kazuo; Kobayashi, Daichi; Mizui, Tatsuya; Kato, Masahiko; Shirako, Yuichi; Niwa, Ken; Hasegawa, Masashi; Akaogi, Masaki; Kojitani, Hiroshi; Ikenaga, Eiji; Muro, Takayuki

    2018-04-01

    The valence-band electronic structures of high-pressure-phase PdF2-type (HP-PdF2-type) platinum-group metal dioxides MO2 (M = Ru, Rh, Ir, and Pt) were studied by synchrotron radiation photoelectron spectroscopy and first-principles calculations. The obtained photoelectron spectra for HP-PdF2-type RuO2, RhO2, and IrO2 agree well with the calculated valence-band densities of states (DOSs) for these compounds, indicating their metallic properties, whereas the DOS of HP-PdF2-type PtO2 (calculated in the presence and absence of spin-orbit interactions) predicts that this material may be metallic or semimetallic, which is inconsistent with the electric conductivity reported to date and the charging effect observed in current photoelectron measurements. Compared with the calculated results, the valence-band spectrum of PtO2 appears to have shifted toward the high-binding-energy side and reveals a gradual intensity decrease toward the Fermi energy EF, implying a semiconductor-like electronic structure. Spin-dependent calculations predict a ferromagnetic ground state with a magnetization of 0.475 μB per formula unit for HP-PdF2-type RhO2.

  8. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure.

    Science.gov (United States)

    Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2016-06-10

    Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.

  9. A first-principle study on the phase transition, electronic structure, and mechanical properties of three-phase ZrTi2 alloy under high pressure*

    Science.gov (United States)

    Yuan, Xiao-Li; Xue, Mi-An; Chen, Wen; An, Tian-Qing

    2016-11-01

    We employed density-functional theory (DFT) within the generalized gradient approximation (GGA) to investigate the ZrTi2 alloy, and obtained its structural phase transition, mechanical behavior, Gibbs free energy as a function of pressure, P-V equation of state, electronic and Mulliken population analysis results. The lattice parameters and P-V EOS for α, β and ω phases revealed by our calculations are consistent with other experimental and computational values. The elastic constants obtained suggest that ω-ZrTi2 and α-ZrTi2 are mechanically stable, and that β-ZrTi2 is mechanically unstable at 0 GPa, but becomes more stable with increasing pressure. Our calculated results indicate a phase transition sequence of α → ω → β for ZrTi2. Both the bulk modulus B and shear modulus G increase linearly with increasing pressure for three phases. The G/B values illustrated good ductility of ZrTi2 alloy for three phases, with ωJournal web page at http://dx.doi.org/10.1140/epjb/e2016-70218-0

  10. Superconductivity under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K.; Takeda, K.; Tateiwa, N.; Muramatsu, T.; Ishizuka, M.; Kobayashi, T.C

    2003-05-01

    In part 1, we review techniques developed in our laboratory for producing the complex extreme condition of very low temperature and ultra-high pressure and those for measuring electrical resistance and magnetization of the sample confined in the extremely small space of the used pressure cell. In part 2, we review our experimental results in search for pressure-induced superconductivity, which have been obtained by the use of developed techniques. Typical examples are shown in the case of simple inorganic and organic molecular crystals, ionic crystals, and magnetic metals.

  11. High pressure induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K

    2003-10-15

    We have developed complex extreme condition of very low temperature down to 30 mK and ultra high pressure exceeding 200 GPa by assembling compact diamond anvil cell (DAC) on a powerful {sup 3}He/{sup 4}He dilution refrigerator. We have also developed measuring techniques of electrical resistance, magnetization and optical measurement for the sample confined in the sample space of the DAC. Using the newly developed apparatus and techniques, we have searched for superconductivity in various materials under pressure. In this paper, we will shortly review our newly developed experimental apparatus and techniques and discuss a few examples of pressure induced superconductivity which were observed recently.

  12. Structural and magnetic phase transitions in Pr.sub.0.15./sub.Sr.sub.0.85./sub.MnO.sub.3./sub. at high pressure

    Czech Academy of Sciences Publication Activity Database

    Kozlenko, D. P.; Dang, N.T.; Jirák, Zdeněk; Kichanov, S.E.; Lukin, E.V.; Savenko, B. N.; Dubrovinsky, L.S.; Lathe, C.; Martin, C.

    2010-01-01

    Roč. 77, č. 3 (2010), s. 407-411 ISSN 1434-6028 Institutional research plan: CEZ:AV0Z10100521 Keywords : high pressure * magnetic phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.575, year: 2010

  13. Phase diagram of the La-Si binary system under high pressure and the structures of superconducting LaSi 5 and LaSi 10

    Science.gov (United States)

    Yamanaka, Shoji; Izumi, Satoshi; Maekawa, Shoichi; Umemoto, Keita

    2009-08-01

    The La-Si binary phase diagram under a high pressure of 13.5 GPa was experimentally constructed. New superconducting silicides LaSi 5 and LaSi 10 were found, which have peritectic decomposition temperatures at 1000 and 750 °C, respectively. The single crystal X-ray structural analysis revealed that there are two polymorphs in LaSi 5. The α-form obtained by heating a molar mixture of LaSi 2 and 3 Si at about 700 °C or by a rapid cooling from 1000 °C under pressure crystallizes with the space group C2 /m and the lattice parameters a=15.11(3), b=4.032(6), c=8.26(1) Å, and β=109.11(1)°. The β-form obtained by a slow cooling from 800-950 °C to 600 °C under pressure has the same space group but with slightly different lattice parameters, a=14.922(7), b=3.906(2), c=8.807(4) Å, and β=107.19(1)°. The β-form is formed during the incomplete transformation of the α-form on cooling, and has always been obtained as a mixture with the α-form. The compound can be characterized as a Zintl phase with a polyanionic framework ∞3[Si] with large tunnels running along the b axis hosting lanthanum ions. In the β-form, three of the five Si sites are disordered. The two polymorphs contain one dimensional sila-polyacene ribbons, Si ladder polymer, running along the b axis. The α-form showed superconductivity with the transition temperature T c of 11.5 K. LaSi 10 crystallizes with the space group 6 3/ mmc and the lattice parameters a=9.623(4), c=4.723(3) Å. It is composed of La containing Si 18 polyhedra (La@Si 18) of hexagonal beer-barrel shape, which form straight columns by stacking along the c-axis via face sharing. One-dimensional columns of La@Si 18 barrels are edge-shared, and bundled with infinite Si trigonal bipyramid chains via corner sharing. The Si atoms in the straight chains have a five-fold coordination. LaSi 10 became a superconductor with T c=6.7 K. The ab initio calculation of the electric band structures showed that α-LaSi 5 and LaSi 10 are metallic

  14. Single-Crystal X-Ray Diffraction of Orthoenstatite to 48 GPa: New High-Pressure Phases with 4-, 5-, and 6-Coordinated Silicon

    Science.gov (United States)

    Finkelstein, G. J.; Dera, P. K.; Duffy, T. S.

    2013-12-01

    Orthopyroxene (opx, (Mg,Fe)SiO3) is one of the major phases in Earth's upper mantle, comprising ~20% of the region by volume. At high pressures and temperatures, this phase undergoes several well-characterized phase transitions. Its behavior at low temperature is less well known, but may be important for cold subducting slabs (1, 2). Previous studies (3, 4) reported that MgSiO3 orthoenstatite persists up to ~12 GPa, and a phase transition above this pressure was recently discovered by Zhang et al. (5). This structure, which we call β-opx (designated HPCEN2 in previous studies), is related to one predicted by theory (6), and has P21/c monoclinic symmetry. It retains an opx topology despite its lower symmetry, distinguishing it from a true clinopyroxene. We conducted single-crystal X-ray diffraction experiments in a diamond anvil cell at GSECARS and HPCAT at the APS. Mg0.91Fe0.09SiO3 orthopyroxene was compressed in a neon pressure medium with a gold pressure standard. In addition to the orthopyroxene to β-opx transition, we observe two further phase changes at ~28 GPa and ~38 GPa. The transitions result in volume reductions of ~2.5% and ~3.9%, respectively. The Si layers in both new structures are intermediate between the opx structure and that of the ilmenite-structured akimotoite polymorph. Akimotoite consists of edge-sharing MgO6 and SiO6 octahedra arranged in alternating honeycomb sheets. A theoretical study suggested clinoenstatite could transform directly to akimotoite at low temperatures through a shear-based mechanism (7). Here, we observe that the path toward akimotoite-like Si layers is stepwise. In the new MgSiO3 structures, the initial chains of SiO4 tetrahedra are partially converted to the characteristic 6-coordinated honeycomb layers. This results in some 5-coordinated Si sites in both structures. Due to the increased coordination number, we are calling the new structures α- and β-post-orthopyroxene (α-popx and β-popx). The Mg layers, however, do

  15. High pressure mechanical seal

    Science.gov (United States)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  16. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  17. The use of high pressure CO2 -facilitated pH swings to enhance in situ product recovery of butyric acid in a two-phase partitioning bioreactor.

    Science.gov (United States)

    Peterson, Eric C; Daugulis, Andrew J

    2014-11-01

    Through the use of high partial pressures of CO2 (pCO2 ) to facilitate temporary pH reductions in two-phase partitioning bioreactors (TPPBs), improved pH dependent partitioning of butyric acid was observed which achieved in situ product recovery (ISPR), alleviating end-product inhibition (EPI) during the production of butyric acid by Clostridium tyrobutyricum (ATCC 25755). Through high pressure pCO2 studies, media buffering effects were shown to be substantially overcome at 60 bar pCO2 , resulting in effective extraction of the organic acid by the absorptive polymer Pebax® 2533, yielding a distribution coefficient (D) of 2.4 ± 0.1 after 1 h of contact at this pressure. Importantly, it was also found that C. tyrobutyricum cultures were able to withstand 60 bar pCO2 for 1 h with no decrease in growth ability when returned to atmospheric pressure in batch reactors after several extraction cycles. A fed-batch reactor with cyclic high pCO2 polymer extraction recovered 92 g of butyric acid to produce a total of 213 g compared to 121 g generated in a control reactor. This recovery reduced EPI in the TPPB, resulting in both higher productivity (0.65 vs. 0.33 g L(-1)  h(-1) ) and yield (0.54 vs. 0.40). Fortuitously, it was also found that repeated high pCO2 -facilitated polymer extractions of butyric acid during batch growth of C. tyrobutyricum lessened the need for pH control, and reduced base requirements by approximately 50%. Thus, high pCO2 -mediated absorptive polymer extraction presents a novel method for improving process performance in butyric acid fermentation, and this technique could be applied to the bioproduction of other organic acids as well. © 2014 Wiley Periodicals, Inc.

  18. High-pressure phase relations in the composition of albite NaAlSi3O8 constrained by an ab initio and quasi-harmonic Debye model, and their implications

    Science.gov (United States)

    Deng, L.; Liu, X.; Liu, H.; Dong, J.

    2010-12-01

    The high pressure physical-chemical behaviors of feldspar in subducted slab are very important to the geodynamic process in the deep interior of the Earth. Albite (NaAlSi3O8;Ab) is one of the few end members in the feldspar family, and its high-P behavior is obviously a prerequisite to the full understanding of the physical-chemical properties of feldspar at high pressures. So far it has been well accepted that Ab breaks down to the phase assemblage of Jadeite+Stishovite(NaAlSi2O6; Jd, SiO2; St,JS hereafter) at ~9-10 GPa. The JS phase assemblage might be stable up to ~23 GPa, and eventually directly change into the phase assemblage of calcium-ferrite type NaAlSiO4 (Cf) +2St (CS hereafter). However, some independent researches suggest there is an intermediate phase Na-hollandite (Na-Hall; a phase with the composition of NaAlSi3O8 and the structure of hollandite) between JS phase assemblage transition into CS phase assemblage (Liu 1978; Tutti 2007; Sekine and Ahrens, 1992; Beck et al., 2004). Whether Na-Hall is a thermodynamic stable phase under high P-T conditions remains unknown. In this work, phase relations in the composition of albite NaAlSi3O8 at pressures up to 40 GPa were constrained by a theoretical method that combines the ab initio calculation and quasi-harmonic Debyemodel. First, the P-T dependence of the thermodynamic potentials of the individual phase, St, Cf, Jd and the hypothetical Na-Holl were derived. Our results are generally in consistent agreement with available experimental data and previous theoretical predictions. Second, the Gibbs free energy of the hypothetical Na-Holl phase was compared with that of the phase assemblages JS and CS. Our results show that the Na-Holl phase is not a thermodynamically stable phase over the studied P-T conditions of 0-40 GPa and 100-600 K, which rules it out as a possible intermediate phase along the transition path from the JS phase assemblage to CS phase assemblage. Our calculations have predicted that the JS

  19. Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials.

    Science.gov (United States)

    Alvino, Jason F; Bennett, Trystan; Kler, Rantej; Hudson, Rohan J; Aupoil, Julien; Nann, Thomas; Golovko, Vladimir B; Andersson, Gunther G; Metha, Gregory F

    2017-05-01

    A high-temperature, high-pressure, pulsed-gas sampling and detection system has been developed for testing new catalytic and photocatalytic materials for the production of solar fuels. The reactor is fitted with a sapphire window to allow the irradiation of photocatalytic samples from a lamp or solar simulator light source. The reactor has a volume of only 3.80 ml allowing for the investigation of very small quantities of a catalytic material, down to 1 mg. The stainless steel construction allows the cell to be heated to 350 °C and can withstand pressures up to 27 bar, limited only by the sapphire window. High-pressure sampling is made possible by a computer controlled pulsed valve that delivers precise gas flow, enabling catalytic reactions to be monitored across a wide range of pressures. A residual gas analyser mass spectrometer forms a part of the detection system, which is able to provide a rapid, real-time analysis of the gas composition within the photocatalytic reaction chamber. This apparatus is ideal for investigating a number of industrially relevant reactions including photocatalytic water splitting and CO 2 reduction. Initial catalytic results using Pt-doped and Ru nanoparticle-doped TiO 2 as benchmark experiments are presented.

  20. Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials

    Science.gov (United States)

    Alvino, Jason F.; Bennett, Trystan; Kler, Rantej; Hudson, Rohan J.; Aupoil, Julien; Nann, Thomas; Golovko, Vladimir B.; Andersson, Gunther G.; Metha, Gregory F.

    2017-05-01

    A high-temperature, high-pressure, pulsed-gas sampling and detection system has been developed for testing new catalytic and photocatalytic materials for the production of solar fuels. The reactor is fitted with a sapphire window to allow the irradiation of photocatalytic samples from a lamp or solar simulator light source. The reactor has a volume of only 3.80 ml allowing for the investigation of very small quantities of a catalytic material, down to 1 mg. The stainless steel construction allows the cell to be heated to 350 °C and can withstand pressures up to 27 bar, limited only by the sapphire window. High-pressure sampling is made possible by a computer controlled pulsed valve that delivers precise gas flow, enabling catalytic reactions to be monitored across a wide range of pressures. A residual gas analyser mass spectrometer forms a part of the detection system, which is able to provide a rapid, real-time analysis of the gas composition within the photocatalytic reaction chamber. This apparatus is ideal for investigating a number of industrially relevant reactions including photocatalytic water splitting and CO2 reduction. Initial catalytic results using Pt-doped and Ru nanoparticle-doped TiO2 as benchmark experiments are presented.

  1. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  2. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    ing high pressure are described. Empirical equations of state. (EOS) are illustrated for some standard materials. 1. Introduction. Pressure, like temperature is an important thermodynamic param- eter in our daily life. We use pressure cookers in our kitchen to cook food and use gas cylinders containing LPG at high pressures.

  3. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 6. High Pressure Research on Materials - Production and Measurement of High Pressures in the Laboratory. P Ch Sahu N V Chandra Shekar. General Article Volume 12 Issue 6 June 2007 pp 10-23 ...

  4. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  5. Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes a Phase II program to advance its very successful SBIR Phase I technology effort to the point of minimum hydrogen loss through the electrolyzer...

  6. Observation of a re-entrant phase transition in the molecular complex tris(μ2-3,5-diisopropyl-1,2,4-triazolato-κ2N1:N2trigold(I under high pressure

    Directory of Open Access Journals (Sweden)

    Christopher H. Woodall

    2016-09-01

    Full Text Available We report a molecular crystal that exhibits four successive phase transitions under hydrostatic pressure, driven by aurophilic interactions, with the ground-state structure re-emerging at high pressure. The effect of pressure on two polytypes of tris(μ2-3,5-diisopropyl-1,2,4-triazolato-κ2N1:N2trigold(I (denoted Form-I and Form-II has been analysed using luminescence spectroscopy, single-crystal X-ray diffraction and first-principles computation. A unique phase behaviour was observed in Form-I, with a complex sequence of phase transitions between 1 and 3.5 GPa. The ambient C2/c mother cell transforms to a P21/n phase above 1 GPa, followed by a P21/a phase above 2 GPa and a large-volume C2/c supercell at 2.70 GPa, with the previously observed P21/n phase then reappearing at higher pressure. The observation of crystallographically identical low- and high-pressure P21/n phases makes this a rare example of a re-entrant phase transformation. The phase behaviour has been characterized using detailed crystallographic theory and modelling, and rationalized in terms of molecular structural distortions. The dramatic changes in conformation are correlated with shifts of the luminescence maxima, from a band maximum at 14040 cm−1 at 2.40 GPa, decreasing steeply to 13550 cm−1 at 3 GPa. A similar study of Form-II displays more conventional crystallographic behaviour, indicating that the complex behaviour observed in Form-I is likely to be a direct consequence of the differences in crystal packing between the two polytypes.

  7. Crystal lattice and phase transitions in Na4TiP2O9 (NTP) and Na4.5FeP2O8(O,F) (NFP) superionic conductors as a function of high pressures and temperatures.

    Science.gov (United States)

    Maximov; Sirota; Werner; Schulz

    1999-06-01

    The lattice dynamics of Na(4)TiP(2)O(9) (tetrasodium titanium diphosphorus nonaoxide, NTP) and Na(4.5)FeP(2)O(8)(O,F) (nonasodium diiron tetraphosphorus difluoride octadecaoxide, NFP) crystals, which are superionic conductors with Na(+)-ion conductivity, were studied under high pressures. Lattice constants as a function of hydrostatic pressure were measured on a four-circle diffractometer using a high-pressure cell with diamond anvils. At 1.78 +/- 0.15 GPa NTP undergoes a reversible phase transition from the modulated monoclinic (pseudo-orthorhombic) modification which is stable under atmospheric conditions. A similar phase transition in NTP is observed at 523 K. For NFP, it may be assumed that at least three phase transitions occur when the pressure increases from atmospheric to 12 GPa, at 1.39 +/- 0.08, 4.52 +/- 0.32, and 6.02 +/- 0.02 GPa, as concluded from the change in the unit-cell parameters and in the color of the crystals: the color changes from ginger (dark orange) to pink at ~1.5-2.0 GPa pressure and to violet at ~6.0 GPa.

  8. High Pressure Industrial Water Facility

    Science.gov (United States)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  9. The pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure: a mechanism for the zinc blende to cinnabar reconstructive phase transition

    CERN Document Server

    Kozlenko, D P; Ehm, L; Hull, S; Savenko, B N; Shchennikov, V V; Voronin, V I

    2003-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by x-ray and neutron powder diffraction at pressures up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. A phenomenological model of this reconstructive phase transition based on a displacement mechanism is proposed. Analysis of the geometrical relationship between the zinc blende and the cinnabar phases has shown that the possible order parameter for the zinc blende-cinnabar structural transformation is the spontaneous strain e sub 4. This assignment agrees with the previously observed high pressure behaviour of the elastic constants of some mercury chalcogenides.

  10. Experimental Investigation of Magnetic Superconducting and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures using Designer Diamond Anvils

    International Nuclear Information System (INIS)

    Maple, M. Brian; Jeffries, Jason R.; Ho, Pei-Chun; Butch, Nicholas P.

    2004-01-01

    Pressure is often used as a controlled parameter for the investigation of condensed matter systems. In particular, pressure experiments can provide valuable information into the nature of superconductivity, magnetism, and the coexistence of these two phenomena. Some f-electron, heavy-fermion materials display interesting and novel behavior at moderately low pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require ultrahigh pressure techniques, techniques that generate significantly higher pressures than conventional methods, to sufficiently explore their important properties. To that end, we have been funded to develop an ultrahigh pressure diamond anvil cell facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena. Our goals for the first year of this grant were as follows: (a) set up and test a suitable refrigerator; (b) set up a laser and spectrometer fluorescence system to determine the pressure within the diamond anvil cell; (c) perform initial resistivity measurements at moderate pressures from room temperature to liquid helium temperatures (∼1K); (d) investigate f-electron materials within our current pressure capabilities to find candidate materials for high-pressure studies. During the past year, we have ordered almost all the components required to set up a diamond anvil cell facility at UCSD, we have received and implemented many of the components that have been ordered, we have performed low pressure research on several materials, and we have engaged in a collaborative effort with Sam Weir at Lawrence Livermore National Lab (LLNL) to investigate Au4V under ultrahigh pressure in a designer diamond anvil cell (dDAC). This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as

  11. High temperature and high pressure oxidation behavior of Zr-2.5Nb pressure tube material – Effect of β phase composition and surface machining

    Energy Technology Data Exchange (ETDEWEB)

    Nouduru, S.K., E-mail: nouduru@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kumar, M. Kiran; Kain, Vivekanand [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Khanna, A.S. [Dept. of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Saibaba, N. [Nuclear Fuel Complex, ECILPost, Hyderabad 500062 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-03-15

    Pressure tube material, Zr-2.5Nb, of pressurized heavy water reactors was given selective heat-treatments. The objective was to generate microstructures with different compositions of the second phase β namely, Νb depleted β{sub Zr} phase and Nb rich β{sub Nb} phase. The material with β{sub Zr} was then subjected to surface machining. The presence of phases after different heat-treatments was confirmed by X-ray diffraction and the resultant microstructures were characterized by transmission electron microscopy and electron back scattered diffraction. The Nb content in the β phase after heat-treatments and residual stresses before and after surface machining were measured using X-ray diffraction. Oxidation was carried out in steam at 400 °C and 10 MPa up to 30 days and the oxides were characterized by Raman spectroscopy. It is shown that the presence of Nb rich β{sub Nb} in the microstructure and faster diffusion of Nb into β phase brought about by surface machining resulted in an enhanced oxidation resistance. - Highlights: • Effect of heat treatments in formation of Nb rich/depleted phases established. • Microstructure with β{sub Nb} and Nb depleted α shown to have high oxidation resistance. • Surface machining resulted in grain refinement, strain and tensile residual stress. • Surface machining improved oxidation resistance and its extent increased with time. • Machined specimen showed higher fraction of tetragonal zirconia.

  12. High temperature and high pressure oxidation behavior of Zr-2.5Nb pressure tube material – Effect of β phase composition and surface machining

    International Nuclear Information System (INIS)

    Nouduru, S.K.; Kumar, M. Kiran; Kain, Vivekanand; Khanna, A.S.; Saibaba, N.; Dey, G.K.

    2016-01-01

    Pressure tube material, Zr-2.5Nb, of pressurized heavy water reactors was given selective heat-treatments. The objective was to generate microstructures with different compositions of the second phase β namely, Νb depleted β Zr phase and Nb rich β Nb phase. The material with β Zr was then subjected to surface machining. The presence of phases after different heat-treatments was confirmed by X-ray diffraction and the resultant microstructures were characterized by transmission electron microscopy and electron back scattered diffraction. The Nb content in the β phase after heat-treatments and residual stresses before and after surface machining were measured using X-ray diffraction. Oxidation was carried out in steam at 400 °C and 10 MPa up to 30 days and the oxides were characterized by Raman spectroscopy. It is shown that the presence of Nb rich β Nb in the microstructure and faster diffusion of Nb into β phase brought about by surface machining resulted in an enhanced oxidation resistance. - Highlights: • Effect of heat treatments in formation of Nb rich/depleted phases established. • Microstructure with β Nb and Nb depleted α shown to have high oxidation resistance. • Surface machining resulted in grain refinement, strain and tensile residual stress. • Surface machining improved oxidation resistance and its extent increased with time. • Machined specimen showed higher fraction of tetragonal zirconia.

  13. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    Imm2). The structural transition is clearly reflected in the high pressure Raman data through the appearance of several new modes, allowing us to map in detail the (P,T) phase diagram and determine the transition line between the two phases. In the new phase, the renormalization of the buckling mode is completely suppressed, while no anomalies are observed in any of the other Raman active phonons. According to ab initio calculations, the coupling of the buckling mode to the electronic system is not significantly affected by the structural phase transition. The absence of phonon renormalizations in the presence of sizable electron-phonon coupling, indicate that, in contrast to earlier transport studies, YBa{sub 2}Cu{sub 4}O{sub 8} is not superconducting anymore under hydrostatic pressures higher than 10 GPa. Finally we proceeded with the investigation of the high pressure structural and vibrational properties of SmFeAsO, a member of the ''1111'' family (space group P4/nmm) of the Fe-based superconductors, in which superconductivity is commonly induced either by substituting F/H for O or by applying high pressures on the parent magnetic compound. The magnetic transition of the undoped compound is accompanied with a tetragonal-to-orthorhombic structural distortion, both of which are commonly suppressed upon the emergence of superconductivity. In the SmFeAsO{sub x}F{sub 1-x} system while the magnetic transition is totally suppressed already at low doping levels, structural studies have reported either the gradual suppression of the orthorhombic distortion or its retention over a wide regime of the superconducting phase. We addressed this controversy using high pressure as an alternative tuning parameter to suppress the magneto-structural transition and induce superconductivity in the parent compound. Our high pressure, low temperature X-ray diffraction measurements on single crystals of SmFeAsO have revealed that the tetragonal

  14. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  15. Modification of Sako-Wu-Prausnitz equation of state for fluid phase equilibria in polyethylene-ethylene systems at high pressures

    OpenAIRE

    Gharagheizi,F.; Mehrpooya,M.; Vatani,A.

    2006-01-01

    In order to model phase equilibria at all pressures, it is necessary to have an equation of state. We have chosen the Sako-Wu-Prausnitz cubic equation of state, which had shown some promising results. However, in order to satisfy our demands, we had to modify it slightly and fit new pure component parameters. New pure component parameters have been determined for ethylene and the n-alkane series, using vapor pressure data, saturated liquid volume and one-phase PVT-data. For higher n-alkanes, ...

  16. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  17. Phase stability and elastic properties of Tan+1AlCn (n = 1-3) at high pressure and elevated temperature

    International Nuclear Information System (INIS)

    Music, Denis; Emmerlich, Jens; Schneider, Jochen M

    2007-01-01

    We have studied the electronic structure of Ta n+1 AlC n (space group P6 3 /mmc,n = 1-3) under uniform compression from 0 to 60 GPa and at temperatures from 0 to 1500 K using ab initio calculations. These phases can be characterized by alternating layers of high and low electron density and are referred to as nanolaminates. At 0 K we observe similar compressibilities in both the a and c directions for all phases investigated. This is unusual for nanolaminates. Based on the density of states analysis, we propose that these similar compressibilities may be caused by an increase in Ta-Al and Ta-Ta bonding strength as well as a stronger long-range interaction between TaC-TaC layers. No evidence of a phase transition is observed as the pressure is increased to 60 GPa. However, as the temperature is increased to approximately 1000 K without applying pressure, a first-order phase transition occurs in Ta 3 AlC 2 . These results are relevant for applications of Ta n+1 AlC n at elevated temperature and pressure

  18. Structural and magnetic phase transitions in Pr0.15Sr0.85MnO3 at high pressure

    International Nuclear Information System (INIS)

    Kozlenko, D.P.; Kichanov, S.E.; Lukin, E.V.; Savenko, B.N.; Dang, N.T.; Jirak, Z.; Dubrovinskij, L.S.; Lathe, C.

    2010-01-01

    The crystal and magnetic structures of Pr 0.15 Sr 0.85 MnO 3 manganite have been studied by means of powder X-ray and neutron diffraction in the temperature range 10-400 K at high external pressures up to 55 and 4 GPa, respectively. A structural phase transition from cubic to tetragonal phase upon compression was observed, with large positive pressure coefficient of transition temperature dT ct /dP = 26(2) K/GPa. The C-type antiferromagnetic (AFM) ground state is formed below T N ∼ 280 K. While at ambient pressure the structural and magnetic transition temperatures coincide, T ct ∼ T N , upon compression they become decoupled with T N ≤ T ct due to much weaker T N -pressure dependence with coefficient dT N /dP = 3.8(1) K/GPa

  19. Modification of Sako-Wu-Prausnitz equation of state for fluid phase equilibria in polyethylene-ethylene systems at high pressures

    Directory of Open Access Journals (Sweden)

    F. Gharagheizi

    2006-09-01

    Full Text Available In order to model phase equilibria at all pressures, it is necessary to have an equation of state. We have chosen the Sako-Wu-Prausnitz cubic equation of state, which had shown some promising results. However, in order to satisfy our demands, we had to modify it slightly and fit new pure component parameters. New pure component parameters have been determined for ethylene and the n-alkane series, using vapor pressure data, saturated liquid volume and one-phase PVT-data. For higher n-alkanes, where vapor pressure data are poor or not available, determination of the pure component parameters was made in part by extrapolation and in part by fitting to one-phase PVT-data. Using one-fluid van der Waals mixing rules, with one adjustable interaction parameter, good correlation of binary hydrocarbon system was obtained, except for the critical region. The extension of the equation of state to polyethylene systems is covered in this work. Using the determined parameters, flash and cloud point calculations were performed, and treating the polymer as polydisperse. The results fit data well.

  20. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  1. In situ observation of high-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, Sally June

    2017-06-01

    SiC is an important high-strength ceramic material used for a range of technological applications, including lightweight impact shielding and abrasives. SiC is also relevant to geology and planetary science. It may be a host of reduced carbon in the Earth's interior and also occurs in meteorites and impact sites. SiC has also been put forward as a possible major constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but lattice-level structural information was not obtained. Here we present the behavior of silicon carbide under shock loading as investigated through a series of time-resolved pump-probe x-ray diffraction measurements up to 200 GPa. Our experiments were conducted at the Materials in Extreme Conditions beamline of the Linac Coherent Light Source. In situ x-ray diffraction data on shock-compressed SiC was collected using a free electron laser source combined with a pulsed high-energy laser. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that the wurtzite phase of SiC transforms directly to the B1 structure. Our measurements also reveal details of the material texture evolution under shock loading and release.

  2. Liquid-vapor equilibrium of the systems butylmethylimidazolium nitrate-CO2 and hydroxypropylmethylimidazolium nitrate-CO2 at high pressure: influence of water on the phase behavior.

    Science.gov (United States)

    Bermejo, M Dolores; Montero, Marta; Saez, Elisa; Florusse, Louw J; Kotlewska, Aleksandra J; Cocero, M José; van Rantwijk, Fred; Peters, Cor J

    2008-10-30

    Ionic liquids (IL) are receiving increasing attention due to their potential as "green" solvents, especially when used in combination with SC-CO2. In this work liquid-vapor equilibria of binary mixtures of CO2 with two imidazolium-based ionic liquids (IL) with a nitrate anion have been experimentally determined: butylmethylimidazolium nitrate (BMImNO3) and hydroxypropylmethylimidazolium nitrate (HOPMImNO3), using a Cailletet apparatus that operates according to the synthetic method. CO2 concentrations from 5 up to 30 mol % were investigated. It was found that CO2 is substantially less soluble in HOPMImNO3 than in BMImNO3. Since these ILs are very hygroscopic, water easily can be a major contaminant, causing changes in the phase behavior. In case these Ils are to be used in practical applications, for instance, together with CO2 as a medium in supercritical enzymatic reactions, it is very important to have quantitative information on how the water content will affect the phase behavior. This work presents the first systematic study on the influence of water on the solubility of carbon dioxide in hygroscopic ILs. It was observed that the presence of water reduces the absolute solubility of CO2. However, at fixed ratios of CO2/IL, the bubble point pressure remains almost unchanged with increasing water content. In order to explain the experimental results, the densities of aqueous mixtures of both ILs were determined experimentally and the excess molar volumes calculated.

  3. Thermodynamic properties of fluid mixtures at high pressures and high temperatures. Application to high explosives and to phase diagrams of binary mixtures

    International Nuclear Information System (INIS)

    Pittion-Rossillon, Gerard

    1982-01-01

    The free energy for mixtures of about ten species which are chemically reacting is calculated. In order to have accurate results near the freezing line, excess properties are deduced from a modern statistical mechanics theory. Intermolecular potentials for like molecules are fitted to give good agreement with shock experiments in pure liquid samples, and mixture properties come naturally from the theory. The stationary Chapman-Jouguet detonation wave is calculated with a chemical equilibrium computer code and results are in good agreement with experiment for a lot of various explosives. One then study gas-gas equilibria in a binary mixture and show the extreme sensitivity of theoretical phase diagrams to the hypothesis of the model (author) [fr

  4. Evolution of tetragonal phase of ZrO2 in the corrosion of Zry-4 and Zr-2.5Nb at high pressure and temperature

    International Nuclear Information System (INIS)

    Bordoni, Roberto A.; Olmedo, Ana M.; Villegas, Marina; Maroto, Alberto J. G.; Lin, J.; Szpunar, J. A.

    1999-01-01

    The corrosion kinetics of Zr-2.5 Nb and Zircaloy-4 was studied at 350 C degrees in lithiated heavy water. The oxides grown on both alloys during the exposures were found to be strongly textured. The pole figures showed that the major orientation components of the oxide formed on Zr-2.5 Nb were (10-3) [0-10] and (10-3)[301] while (10-3) fiber was formed on Zircaloy-4. No significant change in texture was found in either alloy when increasing the thickness of the oxide film. The phases present in the film were determined and their evolution with the exposure time was followed. The results indicated that the tetragonal volume fraction decreased with increasing the thickness of the oxide layers of both materials. The tetragonal volume fraction of Zircaloy-4 was higher than that of Zr-2.5 Nb for the same oxide thickness. (author)

  5. High-pressure water facility

    Science.gov (United States)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  6. Isothermal equation of state and high-pressure phase transitions of synthetic meridianiite (MgSO4·11D2O) determined by neutron powder diffraction and quasielastic neutron spectroscopy

    Science.gov (United States)

    Fortes, A. Dominic; Fernandez-Alonso, Felix; Tucker, Matthew; Wood, Ian G.

    2017-01-01

    We have collected neutron powder diffraction data from MgSO4·11D2O (the deuterated analogue of meridianiite), a highly hydrated sulfate salt that is thought to be a candidate rock-forming mineral in some icy satellites of the outer solar system. Our measurements, made using the PEARL/HiPr and OSIRIS instruments at the ISIS neutron spallation source, covered the range 0.1 pressure volume V 0 = 706.23 (8) Å3, zero-pressure bulk modulus K 0 = 19.9 (4) GPa and its first pressure derivative, K′ = 9 (1). The structure’s compressibility is highly anisotropic, as expected, with the three principal directions of the unit-strain tensor having compressibilities of 9.6 × 10−3, 3.4 × 10−2 and 3.4 × 10−3 GPa−1, the most compressible direction being perpendicular to the long axis of a discrete hexadecameric water cluster, (D2O)16. At high pressure we observed two different phase transitions. First, warming of MgSO4·11D2O at 545 MPa resulted in a change in the diffraction pattern at 275 K consistent with partial (peritectic) melting; quasielastic neutron spectra collected simultaneously evince the onset of the reorientational motion of D2O molecules with characteristic time-scales of 20–30 ps, longer than those found in bulk liquid water at the same temperature and commensurate with the lifetime of solvent-separated ion pairs in aqueous MgSO4. Second, at ∼ 0.9 GPa, 240 K, MgSO4·11D2O decomposed into high-pressure water ice phase VI and MgSO4·9D2O, a recently discovered phase that has hitherto only been formed at ambient pressure by quenching small droplets of MgSO4(aq) in liquid nitrogen. The fate of the high-pressure enneahydrate on further compression and warming is not clear from the neutron diffraction data, but its occurrence indicates that it may also be a rock-forming mineral in the deep mantles of large icy satellites.

  7. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  8. Three-Dimensional Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping

    2010-01-01

    Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  9. Vacancy-induced initial decomposition of condensed phase NTO via bimolecular hydrogen transfer mechanisms at high pressure: a DFT-D study.

    Science.gov (United States)

    Liu, Zhichao; Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2015-04-28

    Density functional theory with dispersion-correction (DFT-D) was employed to study the effects of vacancy and pressure on the structure and initial decomposition of crystalline 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO), a high-energy insensitive explosive. A comparative analysis of the chemical behaviors of NTO in the ideal bulk crystal and vacancy-containing crystals under applied hydrostatic compression was considered. Our calculated formation energy, vacancy interaction energy, electron density difference, and frontier orbitals reveal that the stability of NTO can be effectively manipulated by changing the molecular environment. Bimolecular hydrogen transfer is suggested to be a potential initial chemical reaction in the vacancy-containing NTO solid at 50 GPa, which is prior to the C-NO2 bond dissociation as its initiation decomposition in the gas phase. The vacancy defects introduced into the ideal bulk NTO crystal can produce a localized site, where the initiation decomposition is preferentially accelerated and then promotes further decompositions. Our results may shed some light on the influence of the molecular environments on the initial pathways in molecular explosives.

  10. Drug-to-antibody determination for an antibody-drug-conjugate utilizing cathepsin B digestion coupled with reversed-phase high-pressure liquid chromatography analysis.

    Science.gov (United States)

    Adamo, Michael; Sun, Guoyong; Qiu, Difei; Valente, Joseph; Lan, Wenkui; Song, Hangtian; Bolgar, Mark; Katiyar, Amit; Krishnamurthy, Girija

    2017-01-20

    Antibody drug conjugates or ADCs are currently being evaluated for their effectiveness as targeted chemotherapeutic agents across the pharmaceutical industry. Due to the complexity arising from the choice of antibody, drug and linker; analytical methods for release and stability testing are required to provide a detailed understanding of both the antibody and the drug during manufacturing and storage. The ADC analyzed in this work consists of a tubulysin drug analogue that is randomly conjugated to lysine residues in a human IgG1 antibody. The drug is attached to the lysine residue through a peptidic, hydrolytically stable, cathepsin B cleavable linker. The random lysine conjugation produces a heterogeneous mixture of conjugated species with a variable drug-to-antibody ratio (DAR), therefore, the average amount of drug attached to the antibody is a critical parameter that needs to be monitored. In this work we have developed a universal method for determining DAR in ADCs that employ a cathepsin B cleavable linker. The ADC is first cleaved at the hinge region and then mildly reduced prior to treatment with the cathepsin B enzyme to release the drug from the antibody fragments. This pre-treatment allows the cathepsin B enzyme unrestricted access to the cleavage sites and ensures optimal conditions for the cathepsin B to cleave all the drug from the ADC molecule. The cleaved drug is then separated from the protein components by reversed phase high performance liquid chromatography (RP-HPLC) and quantitated using UV absorbance. This method affords superior cleavage efficiency to other methods that only employ a cathepsin digestion step as confirmed by mass spectrometry analysis. This method was shown to be accurate and precise for the quantitation of the DAR for two different random lysine conjugated ADC molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Unusual electronic and mechanical properties of sodium chlorides at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Hongxia, E-mail: buhx666@163.com [College of Physics and Electronic Engineering, Qilu Normal University, Jinan, Shandong 250200 (China); Zhao, Mingwen, E-mail: zmw@sdu.edu.cn [School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100 (China); Zhou, Hongcai [School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100 (China); Du, Yanling [College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355 (China)

    2016-04-08

    Using first-principles calculations, we performed systematic investigation on the electronic and mechanical properties of sodium chlorides with different stoichiometries at high pressures. It was found that most of the phases are metallic except the Pnma-NaCl{sub 3} with a gap of 2.155 eV. The extended Cl (or Na) sublattice at Cl-rich (or Na-rich) conditions contributes to the metallization. Accompanied by metallization, the Na{sub m}Cl{sub n} crystals exhibit good ductility in contrast to the brittle NaCl crystal, due to the changes of binding features induced by high pressure. These results are expected to be useful for understanding the exotic properties of NaCl at high pressures. - Highlights: • We performed systematic investigation on the electronic and mechanical properties of Na{sub m}Cl{sub n}. • The extended Cl (or Na) sublattice at Cl-rich (or Na-rich) conditions contributes to the metallization at high pressures. • The Na{sub m}Cl{sub n} crystals exhibit good ductility in contrast to the brittle NaCl crystal. • The P4/mmm-Na{sub 3}Cl possesses the best ductility and the semiconducting Pnma-NaCl{sub 3} has the largest hardness.

  12. Brillouin scattering at high pressures

    International Nuclear Information System (INIS)

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H 2 , N 2 , Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted

  13. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  14. High-Pressure Oxygen Concentrator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA desires to generate and store gases including oxygen and nitrogen at sub-critical conditions as a part of its lunar and spacecraft atmospheric systems. Oxygen...

  15. "Secrets" of High Pressure Phase Equilibrium Experiment.

    Czech Academy of Sciences Publication Activity Database

    Wichterle, Ivan

    2005-01-01

    Roč. 54, č. 11 (2005), s. 477-479 ISSN 0022-9830 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapour-liquid equilibrium * experimental work Subject RIV: CF - Physical ; Theoretical Chemistry

  16. High-Pressure Oxygen Concentrator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA desires to generate and store gases including oxygen and nitrogen at sub-critical conditions as a part of its lunar and spacecraft atmospheric systems. Oxygen...

  17. Structural studies at high pressure using time-of-flight neutron powder diffraction

    International Nuclear Information System (INIS)

    Jorgensen, J.D.

    1989-07-01

    Time-of-flight neutron powder diffraction offers unique capabilities for structural studies at high pressure. Scientific applications have included studies of compression mechanisms, new high-pressure structures, and phase transitions. 11 refs., 1 fig

  18. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  19. Internally consistent thermodynamic data for high-pressure and ultrahigh-pressure phases in the system CaO-MgO-Al2O3-SiO2-H2O

    Science.gov (United States)

    Grevel, K. D.

    2008-12-01

    In order to enable reliable calculations of phase relations among high-pressure phases the Berman [1] data set was augmented by data for the high-pressure phases stishovite (stv), topaz-OH (toz-OH), phase pi (pi), Mg-staurolite (Mg-st), Mg-sursassite (Mg-sur), and Mg-chloritoid (Mg-cld) using a similar optimization technique as described by Berman et al. [2]. The data of several other phases of the system CaO-MgO- Al2O3-SiO2-H2O obtained in the Berman data base were slightly refined to keep the consistency to the reversal brackets and the originally measured data: andalusite (and), clinochlore (chl), coesite (cs), diaspore (dsp), kaolinite (kln), kyanite (ky), lawsonite (lws), pyrophyllite (prl), sillimanite (sil), zoisite (zo). CP-data were kept constant [1] or estimated [3]. phase; ΔfH0298 (kJ mol-1); S0298 (J K-1 mol-1); V0298 (J K-1 mol-1); v1×105 (bar-1); v2×1012 (bar-2); v3×105 (K-1); v4×108 (K-2) and; -2589.857; 91.47; 5.146; -0.0653; 0.000; 2.291; 0.170 chl; -8903.532; 437.92; 21.000; -0.1328; 3.837; 2.142; 0.962 Mg-cld; -3551.657; 142.20; 6.874; -0.0692; 0.000; 2.544; 0.000 cs; -907.510; 39.63; 2.064; -0.0998; 1.823; 0.620; 0.960 dsp; -999.115; 35.22; 1.776; -0.0719; 0.629; 3.245; 0.684 kln; -4119.400; 204.18; 9.952; -0.1200; 0.000; 3.200; 0.000 ky; -2593.767; 82.71; 4.408; -0.0593; 1.021; 1.730; 0.787 lws; -4866.665; 228.04; 10.155; -0.0825; 0.000; 3.339; 0.000 Mg-sur; -13907.329; 608.39; 26.888; -0.0826; 0.923; 3.187; 0.087 pi; -9586.742; 403.23; 18.559; -0.0678; 0.000; 2.254; 0.000 prl; -5640.501; 239.43; 12.782; -0.1800; 0.000; 2.621; 0.000 sil; -2586.169; 95.40; 4.984; -0.0601; 1.341; 1.138; 0.605 Mg-st; -24998.289; 944.53; 44.260; -0.0579; 0.000; 2.017; 0.000 stv; -870.861; 25.59; 1.401; -0.0318; 0.000; 1.849; 0.000 toz-OH; -2885.939; 117.40; 5.352; -0.0630; 0.000; 1.938; 0.000 zo; -6889.494; 297.20; 13.565; -0.0695; 0.000; 2.752; 0.000 References [1] R.G. Berman, J. Petrol., 1988, 29, 445 [2] R.G. Berman et al., J. Petrol., 1986, 27, 1331 [3] R

  20. High pressure processing of meat

    DEFF Research Database (Denmark)

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per

    Abstract Background: The research of high pressure (HP) processing of meat based foods needs to address how pressure affects protein interactions, aggregation and/or gelation. The understanding of the gel forming properties of myofibrillar components is fundamental for the development of muscle...... based products (Chapleau et al., 2004;Colmenero, 2002). Object: The aim was to study the rheological properties of pork meat emulsion exposed to HP and the effect of HP on the aggregation state of myofibrillar proteins. To address the role of cathepsin in myofibrillar protein degradation the changes...... in the myofibrillar protein pattern and HP-induced change in activity of cathepsin B and L were investigated. Results: In this study we showed that HP treatment of pork meat emulsion, ranging from 0.1 to 800 MPa, induced protein gel formation as shown by the increased Young’s modulus (Fig.1). Analysis of SDS...

  1. Phase equilibrium at high pressure of heavy oil fraction in propane and n-butane; Equilibrio de fases em alta pressao de fracoes pesadas do petroleo em propano e n-butano

    Energy Technology Data Exchange (ETDEWEB)

    Canziani, Daniel B.; Ndiaye, Papa M. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Oliveira, Jose V. de; Corazza, Marcos L. [Universidade Regional Integrada, Erechim, RS (Brazil)

    2008-07-01

    One of the biggest challenge of the oil industry is the preparation and adequacy of existing refineries for processing of heavy oil in large quantities. Specifically aims of this work is to measure phase equilibria date at high-pressure with systems involving GOP (Heavy Gasoil), RAT (Atmospheric Residue) and Marlim (crude oil) in n-butane and propane, using the static-synthetic method. The influence of the addition of methanol on the transition pressure is also investigated. With regard to tests made with the use of methanol as a co-solvent, those with higher levels of methanol (5% in mass fraction) had presented transition pressures a little higher than systems with 1% of methanol and systems without methanol. The systems without methanol showed similar pressures. All systems are PT diagrams of the type Lower Critical Solution Temperature (LCST). Among the solvents used the n-butane shown to be the most soluble for all solutes, in particular for the RAT. With the n-butane were observed only liquid-vapour equilibria, and with propane the liquid-liquid, liquid-liquid-vapour and liquid-liquid-fluid equilibria could be observed. The system Propane-5%Methanol-GOP presented liquid-liquid-vapour transitions, indicates be a diagram of the type V (according to the classification of van Konynenburg and Scott). (author)

  2. Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry.

    Science.gov (United States)

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Pagano, Imma; Russo, Mariateresa; Rastrelli, Luca

    2016-01-08

    This study reports a fast and automated analytical procedure for the analysis of aflatoxin M1 (AFM1) in milk and dairy products. The method is based on the simultaneous protein precipitation and AFM1 extraction, by salt-induced liquid-liquid extraction (SI-LLE), followed by an online solid-phase extraction (online SPE) coupled to ultra-high-pressure-liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis to the automatic pre-concentration, clean up and sensitive and selective determination of AFM1. The main parameters affecting the extraction efficiency and accuracy of the analytical method were studied in detail. In the optimal conditions, acetonitrile and NaCl were used as extraction/denaturant solvent and salting-out agent in SI-LLE, respectively. After centrifugation, the organic phase (acetonitrile) was diluted with water (1:9 v/v) and purified (1mL) by online C18 cartridge coupled with an UHPLC column. Finally, selected reaction monitoring (SRM) acquisition mode was applied to the detection of AFM1. Validation studies were carried out on different dairy products (whole and skimmed cow milk, yogurt, goat milk, and powder infant formula), providing method quantification limits about 25 times lower than AFM1 maximum levels permitted by EU regulation 1881/2006 in milk and dairy products for direct human consumption. Recoveries (86-102%) and repeatability (RSDmilk and dairy products studied. The proposed method improves the performance of AFM1 analysis in milk samples as AFM1 determination is performed with a degree of accuracy higher than the conventional methods. Other advantages are the reduction of sample preparation procedure, time and cost of the analysis, enabling high sample throughput that meet the current concerns of food safety and the public health protection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Electrical Transport Experiments at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Weir, S

    2009-02-11

    High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

  4. High pressure research at CHESS

    International Nuclear Information System (INIS)

    Brister, K.

    1992-01-01

    Since February 1990 there has been a dedicated high pressure line at the Cornell High Energy Synchrotron Source (CHESS). This facility provides X-ray instrumentation for energy dispersive X-ray diffraction and Laue diffraction using diamond anvil cells. Both hard-bend magnet and wiggler radiation are available as well as focused monochromatic radiation. In addition, support instrumentation is also available; a ruby system, laser heating, sample loading, and data analysis software. Experienced users need only to bring their diamond anvil cells and samples and can leave with the initial data analysis finished. Research using diamond anvil cells will be introduced and the facility will be described. Some of the diamond anvil cell research done at CHESS will be reviewed, including crystalline to amorphous transitions (R.R. Winters et al., Chem. Phys, in press), properties of C 6 0 under stress (S.J. Duclos et al., Nature 351 (1991) 380), deep earthquakes (T.C. Wu et al., submitted to J. Geophys. Res.)l, and reaching pressures of the center of Earth (A.L. Ruoff et al., Rev. Sci. Instr. 61 (1990) 3830). (orig.)

  5. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development

    Science.gov (United States)

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  6. Photophysics of organic molecules at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean James [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    The pressure dependence of emission intensities, energies, and lifetimes of several classes of organic compounds in plastic media were investigated over the range 0-140 kilobars. The fluorescence intensity of 9-anthraldehyde, 9-acetylanthracene, and 9-benzoylanthracene increases remarkably with increasing pressure, accompanied by a large red shift in the emission spectrum. For azulene and several derivatives, the efficiency of fluorescence from both the second and first excited singlet states was pressure dependent as was the relative energy of these states. The rate of internal conversion depended strongly on the energy separating the relevant states. The energy and quantum efficiency of fluorescence for fluorenone in crystalline form and in several polymeric matrices was measured as a function of pressure. The quantum yield, ranged from 0.001 at low pressure to a maximum of about 0.1 at high pressure in paraffinic plastics. Fluorescence quantum yields and phosphorescence quantum yields and lifetimes were measured for pyrazine (P) 2,6-dimethylpyrazine and tetramethylpyrazine (TMP) in PMMA over the pessure range 20-120 kbar. An additional emission, which is attributed to excimer fluorescence, was also observed for these samples and for crystalline pyrazine. The phosphorescence radiative lifetime for P and TMP was about 18 ms.

  7. Single solid phase extraction method for the simultaneous analysis of polar and non-polar pesticides in urine samples by gas chromatography and ultra high pressure liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Cazorla-Reyes, Rocío; Fernández-Moreno, José Luis; Romero-González, Roberto; Frenich, Antonia Garrido; Vidal, José Luis Martínez

    2011-07-15

    A new multiresidue method has been developed and validated for the simultaneous extraction of more than two hundred pesticides, including non-polar and polar pesticides (carbamates, organochlorine, organophosphorous, pyrethroids, herbicides and insecticides) in urine at trace levels by gas and ultra high pressure liquid chromatography coupled to ion trap and triple quadrupole mass spectrometry, respectively (GC-IT-MS/MS, UHPLC-QqQ-MS/MS). Non-polar and polar pesticides were simultaneously extracted from urine samples by a simple and fast solid phase extraction (SPE) procedure using C(18) cartridges as sorbent, and dichloromethane as elution solvent. Recovery was in the range of 60-120%. Precision values expressed as relative standard deviation (RSD) were lower than 25%. Identification and confirmation of the compounds were performed by the use of retention time windows, comparison of spectra (GC-amenable compounds) or the estimation of the ion ratio (LC-amenable compounds). For GC-amenable pesticides, limits of detection (LODs) ranged from 0.001 to 0.436 μg L(-1) and limits of quantification (LOQs) from 0.003 to 1.452 μg L(-1). For LC-amenable pesticides, LODs ranged from 0.003 to 1.048 μg L(-1) and LOQs ranged from 0.011 to 3.494 μg L(-1). Finally, the optimized method was applied to the analysis of fourteen real samples of infants from agricultural population. Some pesticides such as methoxyfenozide, tebufenozide, piperonyl butoxide and propoxur were found at concentrations ranged from 1.61 to 24.4 μg L(-1), whereas methiocarb sulfoxide was detected at trace levels in two samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  9. Synthetic chemistry with periodic mesostructures at high pressure.

    Science.gov (United States)

    Mandal, Manik; Landskron, Kai

    2013-11-19

    Over the last two decades, researchers have studied extensively the synthesis of mesostructured materials, which could be useful for drug delivery, catalytic cracking of petroleum, or reinforced plastics, among other applications. However, until very recently researchers used only temperature as a thermodynamic variable for synthesis, completely neglecting pressure. In this Account, we show how pressure can affect the synthetic chemistry of periodic mesoporous structures with desirable effects. In its simplest application, pressure can crystallize the pore walls of periodic mesoporous silicas, which are difficult to crystallize otherwise. The motivation for the synthesis of periodic mesoporous silica materials (with pore sizes from 2 to 50 nm) 20 years ago was to replace the microporous zeolites (which have pore sizes of amorphous nature of the mesoporous materials' channel walls. To address this problem, we developed the concept of "nanocasting at high pressure". Through this approach, we produced hitherto-unavailable, periodic mesostructured silicas with crystalline pore walls. In nanocasting, we compress a periodic mesostructured composite (e.g. a periodic mesoporous silica with carbon-filled pores) and subsequently heat it to induce the selective crystallization of one of the two phases. We attain the necessary high pressure for synthesis using piston-cylinder and multianvil apparatuses. Using periodic mesostructured silica/carbon nanocomposites as starting material, we have produced periodic mesoporous coesite and periodic mesoporous quartz. The quartz material is highly stable under harsh hydrothermal conditions (800°C in pure steam), verifying that crystallinity in the channel walls of periodic mesoporous silicas increases their hydrothermal stability. Even without including the carbon phase in the silica pores, we could obtain mesoporous coesite materials. We found similar behavior for periodic mesoporous carbons, which convert into transparent, mesoporous

  10. Accessing Mefenamic Acid Form II through High-Pressure Recrystallisation

    Directory of Open Access Journals (Sweden)

    Nasir Abbas

    2017-05-01

    Full Text Available High-pressure crystallisation has been successfully used as an alternative technique to prepare Form II of a non-steroidal anti-inflammatory drug, mefenamic acid (MA. A single crystal of Form II, denoted as high-pressure Form II, was grown at 0.3 GPa from an ethanolic solution by using a diamond anvil cell. A comparison of the crystal structures shows that the efficient packing of molecules in Form II was enabled by the structural flexibility of MA molecules. Compression studies performed on a single crystal of Form I resulted in a 14% decrease of unit cell volume up to 2.5 GPa. No phase transition was observed up to this pressure. A reconstructive phase transition is required to induce conformational changes in the structure, which was confirmed by the results of crystallisation at high pressure.

  11. Investigation of Acrylic Acid at High Pressure using Neutron Diffraction

    DEFF Research Database (Denmark)

    Johnston, Blair F.; Marshall, William G.; Parsons, Simon

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalised using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new...

  12. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction

    DEFF Research Database (Denmark)

    Marshall, William G.; Urquhart, Andrew; Oswald, Iain D. H.

    2015-01-01

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low...

  13. High pressure and multiferroics materials: a happy marriage

    Directory of Open Access Journals (Sweden)

    Edmondo Gilioli

    2014-11-01

    Full Text Available The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.

  14. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  15. High pressure studies of molecular lumenescence

    Energy Technology Data Exchange (ETDEWEB)

    Drickamer, H.G.

    1982-01-01

    The studies of high pressure molecular luminescence reviewed, along with results for inorganic systems discussed elsewhere, provide evidence about the versatility and power of high pressure as a tool for characterizing electronic states, testing theories concerning electronic phenomena, and generally obtaining a better understanding of electronic behavior in condensed systems. 16 figures.

  16. Depth Gauge for Liquids Under High Pressure

    Science.gov (United States)

    Zuckerwar, A. J.; Mazel, D. S.

    1987-01-01

    Piezoelectric element mounted in hole drilled in high-pressure plug. Transducer used to measure depth of liquid when pressure in vessel high. New configuration transmits ultrasonic vibration directly into liquid, enhancing signal strength, accuracy, and range, yet piezoelectric element protected from high-pressure liquid.

  17. Coal swelling and thermoplasticity under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ndaji, F.E.; Butterfield, I.M.; Thomas, K.M. (Newcastle upon Tyne University, Newcastle upon Tyne (United Kingdom). Northern Carbon Research Labs., Dept. of Chemistry)

    1992-01-01

    The literature on the following topics is reviewed: swelling and agglomeration of coal; measurements of swelling index and dilatometric and plastometric properties at high pressures; and the effects of oxidation, tar addition and minerals on high-pressure thermoplastic properties. 34 refs., 6 figs.

  18. High-pressure protein crystallography of hen egg-white lysozyme

    International Nuclear Information System (INIS)

    Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa

    2015-01-01

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phase transition from P4 3 2 1 2 to P4 3 . Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL

  19. High-pressure protein crystallography of hen egg-white lysozyme

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Hiroyuki; Nagae, Takayuki [Nagoya University, Chikusa, Nagoya, Aichi 464-8603 (Japan); Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp [Nagoya University, Chikusa, Nagoya, Aichi 464-8603 (Japan); Nagoya University, Chikusa, Nagoya, Aichi 464-8603 (Japan)

    2015-04-01

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phase transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.

  20. Phosphorus Dimerization in Gallium Phosphide at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lavina, Barbara [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States; Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States; Kim, Eunja [Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States; Cynn, Hyunchae [Lawrence Livermore National Laboratory, Livermore, California 94550, United States; Weck, Philippe F. [Sandia National Laboratories, Albuquerque, New Mexico 87185, United States; Seaborg, Kelly [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States; Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States; Siska, Emily [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States; Meng, Yue [HPCAT, Carnegie Institution of Washington, Argonne, Illinois 60439, United States; Evans, William [Lawrence Livermore National Laboratory, Livermore, California 94550, United States

    2018-02-09

    Using combined experimental and computational approaches, we show that at 43 GPa and 1300 K gallium phosphide adopts the super-Cmcm structure, here indicated with its Pearson notation oS24. First-principles enthalpy calculations demonstrate that this structure is more thermodynamically stable above ~20 GPa than previously proposed polymorphs. Here, in contrast to other polymorphs, the oS24 phase shows a strong bonding differentiation and distorted fivefold coordination geometries of both P atoms. The shortest bond of the phase is a single covalent P–P bond measuring 2.171(11) Å at synthesis pressure. Phosphorus dimerization in GaP sheds light on the nature of the super-Cmcm phase and provides critical new insights into the high-pressure polymorphism of octet semiconductors. Bond directionality and anisotropy explain the relatively low symmetry of this high-pressure phase.

  1. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  2. Investigation of Acrylic Acid at High Pressure Using Neutron Diffraction

    OpenAIRE

    Johnston, Blair F.; Marshall, William G.; Parsons, Simon; Urquhart, Andrew J.; Oswald, Iain D. H.

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scan...

  3. Neutron diffraction study of structural transformations in ternary systems of HgSe sub 1 sub - sub x S sub x mercury chalcogenides at high pressure

    CERN Document Server

    Voronin, V I; Berger, I F; Glazkov, V P; Kozlenko, D P; Savenko, B N; Tikhomirov, S V

    2001-01-01

    The structure of the ternary systems of the HgSe sub 1 sub - sub x S sub x mercury chalcogenides is studied at high pressures up to 35 kbar. It is established that by increase in the pressure in the HgSe sub 1 sub - sub x S sub x there takes place the transition from the sphalerite type cubic structure to the cinnabar type hexagonal structure, which is accompanied by the jump-like change in the elementary cell volume and interatomic distances. The parameters of the elementary cell and positional parameters of the Hg and Se/S for the hexagonal phase of high pressure are determined. The existence of the two-phase state in the area of the phase transformation is determined

  4. High-pressure structures of yttrium hydrides

    Science.gov (United States)

    Liu, Lu-Lu; Sun, Hui-Juan; Wang, C. Z.; Lu, Wen-Cai

    2017-08-01

    In this work, the crystal structures of YH3 and YH4 at high pressure (100-250 GPa) have been explored using a genetic algorithm combined with first-principles calculations. New structures of YH3 with space group symmetries of P21/m and I4/mmm were predicted. The electronic structures and the phonon dispersion properties of various YH3 and YH4 structures at different temperatures and pressures were investigated. Among YH3 phases, the P21/m structure of YH3 was found to have a relatively high superconducting transformation temperature T c of 19 K at 120 GPa, which is reduced to 9 K at 200 GPa. Other YH3 structures have much lower T cs. Compared with YH3, the T c of the YH4 compound is much higher, i.e. 94 K at 120 GPa and 55 K at 200 GPa.

  5. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  6. A High Pressure Apparatus for Neutron Diffraction

    OpenAIRE

    Kazuo, Kamigaki; Hajime, Yoshida; Masayoshi, Ohashi; Takejiro, Kaneko; Kozaburo, Sato; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals; Department of Physics, Faculty of Science, Hirosaki University

    1980-01-01

    A high pressure apparatus was developed for thermal neutron diffraction of time-of-flight method. The high pressure vessel was a piston-cylinder type, and Ti-Zr alloy was used as a material of the cylinder. The coherent scattering of neutron is suppressed in Ti-53wt% Zr alloy. The diffraction spectrum is formed of peaks from the specimen and a background, which corresponds to the energy distribution of the incident neutron. High pressure measurements were made in RbBr on the transformation be...

  7. High-pressure and temperature investigations of energetic materials

    Science.gov (United States)

    Gump, J. C.

    2014-05-01

    Static high-pressure measurements are extremely useful for obtaining thermodynamic and phase stability information from a wide variety of materials. However, studying energetic materials can be challenging when extracting information from static high-pressure measurements. Energetic materials are traditionally C, H, N, O compounds with low crystalline symmetry, producing weak signal in commonly performed x-ray diffraction measurements. The small sample volume available in a static high-pressure cell exacerbates this issue. Additionally, typical hydrostatic compression media, such as methanol/ethanol, may react with many energetic materials. However, characterization of their thermodynamic parameters and phase stability is critical to understanding explosive performance and sensitivity. Crystalline properties, such as bulk modulus and thermal expansion, are necessary to accurately predict the behaviour of shocked solids using hydrodynamic codes. In order to obtain these values, equations of state of various energetic materials were investigated using synchrotron angle-dispersive x-ray diffraction experiments at static high-pressure and temperature. Intense synchrotron radiation overcomes the weak x-ray scattering of energetic materials in a pressure cell. The samples were hydrostatically compressed using a non-reactive hydrostatic medium and heated using a heated diamond anvil cell. Pressure - volume data for the materials were fit to the Birch-Murnaghan and Vinet formalisms to obtain bulk modulus and its first pressure derivative. Temperature - volume data at ambient pressure were fit to obtain the volume thermal expansion coefficient. Data from several energetic materials will be presented and compared.

  8. High-pressure study on some superconductors

    CERN Document Server

    Li, K Q; Yao, Y S; Che, G C; Zhao, Z X

    2002-01-01

    High-pressure study has played an important role in the investigation of conventional superconductors. Since the discovery of cuprate superconductors, high-pressure study has become even more important, especially as regards high-pressure synthesis and the effect of pressure. In this report, the new materials Ca-doped Pr-123, (Fe, Cu)-1212, and MgB sub 2 - a very new and interesting system synthesized under high pressure with good quality - will be discussed. Chemical inner pressure has been thought to explain the high T sub c of Ca-doped Pr-123. As another possibility, the replacement of the physical pressure effect by a chemical effect will be discussed.

  9. Design of high pressure waterjet nozzles

    Science.gov (United States)

    Mazzoleni, Andre P.

    1994-10-01

    The Hydroblast Research Cell at Marshall Space Flight Center is used to investigate the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents. High pressure waterjet cleaning has proven to be a viable alternative to the use of solvents. A popular method of waterjet cleaning involves the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage and damage to the substrate from the waterjet have been observed. This report summarizes research consisting of identifying and investigating the basic properties of rotating, multijet, high pressure water nozzles, and how particular designs and modes of operation affect such things as stripping rate, standoff distance and completeness of coverage. The study involved computer simulations, an extensive literature review, and experimental studies of different nozzle designs.

  10. Nickel-graphite composites of variable architecture by graphitization-accompanied spark plasma sintering and hot pressing and their response to phase separation

    Directory of Open Access Journals (Sweden)

    Dudina D.V.

    2015-01-01

    Full Text Available We report the formation and phase separation response of nickel-graphite composites with variable-architecture phases by graphitization-accompanied consolidation via Spark Plasma Sintering and hot pressing. It was shown that the application of pressure during consolidation is crucial for the occurrence of graphitization and formation of 3D graphite structures. We evaluated the suitability of the synthesized composites as precursors for making porous structures. Nickel behaved as a space holder with the particle size and spatial distribution changing during consolidation with the temperature and determining the structure of porous graphite formed by phase separation by dissolution in HCl. The response of the consolidated Ni-Cgr to separation of carbon by its burnout in air was studied. The result of the carbon removal was either the formation of a dense and continuous NiO film on the surface of the compacts or oxidation through the compact thickness. The choice between these two options depended on the density of the compacts and on the presence of carbon dissolved in nickel. It was found that during the burnout of graphite from Ni-Cgr composites, sintering, rather than formation of pores, dominated.

  11. CARS Diagnostics of High Pressure Combustion.

    Science.gov (United States)

    1982-11-01

    e) 8. CONTRACT OR GRANT NUMBER(e) J. H. Stufflebeam t JDAAG29- 79-C-0008J %A,, Shirley R,,. Hall 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10...also the work in N2 at elevated tem- perature up to 30 atmospheres. John H. Stufflebeam continued the high pressure CARS work under the contract...Spectroscopy, Bordeaux, France, September 1982. 12. J. H. Stufflebeam , J. F. Verdieck, and R. J. Hall: CARS Diagnostics of High Pressure and

  12. High pressure structural studies of conjugated molecules

    DEFF Research Database (Denmark)

    Knaapila, Matti; Torkkeli, Mika; Scherf, Ullrich

    2018-01-01

    This chapter highlights high pressure GPa level structural studies of conjugated polymers and their analogues: conjugated oligomers and molecules, and rigid rod polymers. Attention is placed on our recent studies of polyfluorenes.......This chapter highlights high pressure GPa level structural studies of conjugated polymers and their analogues: conjugated oligomers and molecules, and rigid rod polymers. Attention is placed on our recent studies of polyfluorenes....

  13. High-pressure portable pneumatic drive unit.

    Science.gov (United States)

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  14. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  15. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  16. High pressure elasticity and thermal properties of depleted uranium

    International Nuclear Information System (INIS)

    Jacobsen, M. K.; Velisavljevic, N.

    2016-01-01

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.

  17. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    Science.gov (United States)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  18. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  19. Anomalous melting behavior of solid hydrogen at high pressures

    OpenAIRE

    Liu, Hanyu; Hernández, Eduardo R.; Yan, Jun; Ma, Yanming

    2013-01-01

    Hydrogen is the most abundant element in the universe, and its properties under conditions of high temperature and pressure are crucial to understand the interior of of large gaseous planets and other astrophysical bodies. At ultra high pressures solid hydrogen has been predicted to transform into a quantum fluid, because of its high zero point motion. Here we report first principles two phase coexistence and Z method determinations of the melting line of solid hydrogen in a pressure range sp...

  20. High pressure behaviour of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Soni, Pooja; Srivastava, Vipul; Sanyal, S.P.

    2008-01-01

    We have investigated theoretically the high-pressure structural phase transition and cohesive properties of two heavy rare earth mono anyimonides (LnSb; Ln = Dy and Lu) by using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 4f electrons of the RE ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves and the values of high-pressure behaviour have been discussed and compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 23.6 GPa and 25.4 GPa respectively. At phase transition the % volume collapse for both the compounds are little higher than the measured ones. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. The bulk moduli of LnSb compounds are obtained from the P-V curve fitted by the Birch equation of state. We also calculated the Ln-Ln distance as a function of pressure. (author)

  1. A high-pressure study of phase stability in La sub 0 sub . sub 5 sub - sub x Bi sub x Ca sub 0 sub . sub 5 MnO sub 3 by energy-dispersive x-ray diffraction

    CERN Document Server

    Wang Xin; Pan Yue Wu; Zou Guang Tian

    2002-01-01

    Energy-dispersive x-ray diffraction studies are carried out on the distorted perovskite La sub 0 sub . sub 5 sub - sub x Bi sub x Ca sub 0 sub . sub 5 MnO sub 3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) under high pressure at room temperature. The unusual expansion of the 202-040 d-spacing under pressure is observed, and the change of the Mn-O bond angle brings about the disappearance of the basal-plane Q sub 2 distortion mode. With doping content increasing, a shoulder peak appears in the observed main peak of La sub 0 sub . sub 2 sub 5 Bi sub 0 sub . sub 2 sub 5 Ca sub 0 sub . sub 5 MnO sub 3 at 43.9 GPa. The pressure-enhanced interactions between charge, orbital, and coupling with the lattice distortion are discussed.

  2. A high pressure apparatus for neutron diffraction

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Yoshida, Hajime; Ohashi, Masayoshi; Kaneko, Takejiro; Sato, Kozaburo.

    1980-01-01

    A high pressure apparatus was developed for thermal neutron diffraction of time-of-flight method. The high pressure vessel was a piston-cylinder type, and Ti-Zr alloy was used as a material of the cylinder. The coherent scattering of neutron is suppressed in Ti-53wt% Zr alloy. The diffraction spectrum is formed of peaks from the specimen and a background, which corresponds to the energy distribution of the incident neutron. High pressure measurements were made in RbBr on the transformation between NaCl-type structure and CsCl-type to a pressure about 20 kb, and a good agreement was confirmed with former experiments. (author)

  3. Curved and conformal high-pressure vessel

    Science.gov (United States)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  4. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction.

    Science.gov (United States)

    Marshall, William G; Urquhart, Andrew J; Oswald, Iain D H

    2015-09-10

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low pressures. The first is observed at 0.39 GPa, where both phases were observed simultaneously and confirm our previous observations. This transition is followed by a second transition at 1.2 GPa to a new polymorph that is characterized for the first time. On increasing pressure, the diffraction pattern of phase III deteriorates significantly. On decompression phase III persists to 0.54 GPa before transformation to the ambient pressure phase. There is significant loss of signal after decompression, signifying that there has been a loss of material through polymerization. The orientation of the molecules in phase III provides insight into the possible polymerization reaction.

  5. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  6. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  7. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  8. High pressure freon decontamination of remote equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.

    1987-01-01

    A series of decontamination tests using high pressure FREON 113 was conducted in the 200 Area of the Hanford site. The intent of these tests was to evaluate the effectiveness of FREON 113 in decontamination of manipulator components, tools, and equipment items contaminated with mixed fission products. The test results indicated that high pressure FREON 113 is very effective in removing fissile material from a variety of objects and can reduce both the quantity and the volume of the radioactive waste material presently being buried

  9. Investigation of acrylic acid at high pressure using neutron diffraction.

    Science.gov (United States)

    Johnston, Blair F; Marshall, William G; Parsons, Simon; Urquhart, Andrew J; Oswald, Iain D H

    2014-04-10

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼ 0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scanning calorimetry and found to possess a different molecular structure compared with polymers produced via traditional routes.

  10. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  11. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  12. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  13. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  14. Sintering of zirconia in high-pressure

    International Nuclear Information System (INIS)

    Kunrath, A.O.; Strohaecker, T.R.; Pereira, A.S.; Jornada, J.A.H. da; Piermarini, G.J.

    1989-01-01

    A systematic study about the sintering of zirconia hyperfines powders in high-pressure is presented. The differents conditions effect of sintering in microstructure and in hardness and tenacity properties of zirconia samples with a very fine grain is also studied. (C.G.C.) [pt

  15. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  16. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  17. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  18. High pressure synthesis of bismuth disulfide

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  19. Bonding Properties of Aluminum Nitride at High Pressure.

    Science.gov (United States)

    Liu, Zhao; Li, Da; Wei, Shuli; Wang, Wenjie; Tian, Fubo; Bao, Kuo; Duan, Defang; Yu, Hongyu; Liu, Bingbing; Cui, Tian

    2017-07-03

    Exploring the bonding properties and polymerization mechanism of stable polymeric nitrogen phases is the main goal of our high-pressure study. The pressure versus composition phase diagram of the Al-N system is established. In addition to the known Fm3̅m phase of AlN, a notable monoclinic phase with N 6 6- anion polymeric nitrogen chains for AlN 3 in the pressure range from 43 to 85 GPa is predicted. Its energy density is up to 2.75 kJ·g -1 , and the weight ratio of nitrogen is nearly 61%, which make it potentially interesting for the industrial applications as a high energy density material. The high-pressure studies of atomic and electronic structures in this predicted phase reveal that the formation of N 6 6- anion is driven by the sp 2 hybridization of nitrogen atoms. The resonance effect between alternating π-bonds and σ-bonds in polymeric nitrogen chains are all responsible for the structural stability. Because of the electrons transfer from aluminums to polymeric nitrogen chains, there is a pseudogap in the electronic structures of AlN 3 . The N_p electrons form π-type chemical bonds with the neighboring atoms, resulting in the delocalization of π electrons and charge transfer in polymeric nitrogen chains. Furthermore, disparities of charge density distribution between nitrogen atoms in polymeric nitrogen chains are the principal reason for the metallicity.

  20. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  1. Inspection technology for high pressure pipes

    International Nuclear Information System (INIS)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H.

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  2. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  3. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...

  4. Vibrational properties of ZnTe at high pressures

    International Nuclear Information System (INIS)

    Camacho, J.; Loa, I.; Syassen, K.; Cantarero, A.

    2002-01-01

    Raman spectra of ZnTe were measured under hydrostatic pressures up to 15 GPa at T=300 K. Results for the frequencies of first- and second-order Raman features of the zincblende phase (0-9.5 GPa) are used to set up a rigid-ion model of the phonon dispersion relations under pressure. Calculated phonon densities of states, mode Grueneisen parameters and the thermal expansion coefficient as a function of pressure are discussed. The effect of pressure on the widths and intensities of Raman spectral features is considered. Raman spectra of high-pressure phases of ZnTe are reported. These spectra indicate the possible existence of a new phase near 13 GPa, intermediate between the cinnabar and orthorhombic (Cmcm) phases of ZnTe. (author)

  5. Vibrational properties of ZnTe at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, J. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany) and Instituto de Ciencia de Materiales, Universidad de Valencia, Valencia (Spain)]. E-mail: Juana.Camacho@uv.es; Loa, I.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Cantarero, A. [Instituto de Ciencia de Materiales, Universidad de Valencia, Valencia (Spain)

    2002-02-04

    Raman spectra of ZnTe were measured under hydrostatic pressures up to 15 GPa at T=300 K. Results for the frequencies of first- and second-order Raman features of the zincblende phase (0-9.5 GPa) are used to set up a rigid-ion model of the phonon dispersion relations under pressure. Calculated phonon densities of states, mode Grueneisen parameters and the thermal expansion coefficient as a function of pressure are discussed. The effect of pressure on the widths and intensities of Raman spectral features is considered. Raman spectra of high-pressure phases of ZnTe are reported. These spectra indicate the possible existence of a new phase near 13 GPa, intermediate between the cinnabar and orthorhombic (Cmcm) phases of ZnTe. (author)

  6. High pressure synthesis of BiS2

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    crystal structures and electrical properties.1,2 Up until now, the most sulfur rich phase in the Bi-S phase diagram was Bi2S3.3 For BiS2 the Bi atoms have anisotropic charge distribution and more complex structures are expected when comparing the layered structures of transition metal dichalcogenides....... The possibilities of using high pressure synthesis to discover new phases in the Bi-S binary system were investigated as early as the 1960’s.4 The research led to discovery of a compound with BiS2 stoichiometry, but no structure solution of BiS2 was reported. A reason behind making this new phase is to study...... the physical properties since the related compound Bi2S3 is known to be a thermoelectric material.5 In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure...

  7. Structural and magnetic phase transitions occurring in Pr.sub.0.7./sub.Sr.sub.0.3./sub.MnO.sub.3./sub. manganite at high pressures

    Czech Academy of Sciences Publication Activity Database

    Dang, N.T.; Kozlenko, D. P.; Kichanov, S.E.; Dubrovinsky, L.S.; Jirák, Zdeněk; Levin, D.M.; Lukin, E.V.; Savenko, B. N.

    2013-01-01

    Roč. 97, č. 9 (2013), s. 540-545 ISSN 0021-3640 Institutional support: RVO:68378271 Keywords : magnetic phase transitions * crystal and magnetic structure Subject RIV: BE - Theoretical Physics Impact factor: 1.364, year: 2013

  8. Phase transition in a tetragonal In sub 9 sub 0 Pb sub 1 sub 0 alloy under high pressure: a switch from c/a > 1 to c/a < 1

    CERN Document Server

    Degtyareva, V F; Porsch, F; Novokhatskaya, N I

    2003-01-01

    The effect of pressure on tetragonal In-Pb alloys with 10, 15, and 22 at.% Pb has been studied up to pressure 30 GPa with diamond anvil cells using synchrotron radiation. The In-type face-centred tetragonal phase of the In alloy with 10 at.% Pb undergoes under pressure a phase transition with a discontinuous jump of the axial ratio from c/a > 1 to c/a < 1 via a two-phase region from 7 to 20 GPa. The tetragonal phases of the In alloys with 15 and 22 at.% Pb with c/a < 1 at ambient pressure show only a slight decrease in c/a with pressure increase. The correlation of the axial ratio with the alloy content and its change with pressure in In alloys and In itself are attributed to Brillouin-zone-Fermi-sphere interactions.

  9. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Department of Material Science, Himeji Institute of Technology, Kamigori,. Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we ...

  10. High pressure neutron powder diffraction at LANSCE

    International Nuclear Information System (INIS)

    Von Dreele, R.B.

    1994-01-01

    By making use of the recently developed ''Paris-Edinburgh'' high pressure cell, the author has successfully performed neutron powder experiments to 10GPa at ambient temperature. Results for the structural compression of the high Tc 1223-Hg superconductor to 9.2 GPa, the compression and possible hydrogen bond formation in brucite, Mg(OD) 2 , to 9.3 GPa, and the molecular reorientation in nitromethane to 5.5 GPa will be presented

  11. Synthesis and stability of hydrogen selenide compounds at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Edward J.; Binns, Jack; Alvarez, Miriam Pena; Dalladay-Simpson, Philip; Gregoryanz, Eugene; Howie, Ross T. (Edinburgh); (CHPSTAR- China)

    2017-11-14

    The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. High-pressure hydrogen selenide (H2Se) has also been predicted to be superconducting at high temperatures; however, its behaviour and stability upon compression remains unknown. In this study, we synthesize H2Se in situ from elemental Se and molecular H2 at pressures of 0.4 GPa and temperatures of 473 K. On compression at 300 K, we observe the high-pressure solid phase sequence (I-I'-IV) of H2Se through Raman spectroscopy and x-ray diffraction measurements, before dissociation into its constituent elements. Through the compression of H2Se in H2 media, we also observe the formation of a host-guest structure, (H2Se)2H2, which is stable at the same conditions as H2Se, with respect to decomposition. These measurements show that the behaviour of H2Se is remarkably similar to that of H2S and provides further understanding of the hydrogen chalcogenides under pressure.

  12. High pressure effects in anaesthesia and narcosis.

    Science.gov (United States)

    Wlodarczyk, Agnieszka; McMillan, Paul F; Greenfield, Susan A

    2006-10-01

    There is growing interest in determining the effects of high pressure on biological functions. Studies of brain processes under hyperbaric conditions can give a unique insight into phenomena such as nitrogen narcosis, inert gas anaesthesia, and pressure reversal of the effects of anaesthetic and narcotic agents. Such research may shed light on the action of anaesthetics, which remains poorly understood, and on the nature of consciousness itself. Various studies have established the behavioural response of organisms to hyperbaric conditions, in the presence or absence of anaesthetic agents. At the molecular level, X-ray crystallography has been used to investigate the incorporation of species like Xe in hydrophobic pockets within model ion channels that may account for pressure effects on neuronal transmission. New magnetic resonance imaging techniques are providing tomographic three-dimensional images that detail brain structure and function, and that can be correlated with behavioural studies and psychological test results. Such whole organ techniques are linked to the molecular scale via voltage-sensitive dye (VSD) imaging studies on brain slices that provide time-resolved images of the dynamic formation and interconnection of inter-neuronal complexes. The VSD experiments are readily adapted to in situ studies under high pressure conditions. In this tutorial review we review the current state of knowledge of hyperbaric effects on brain processes: anaesthesia and narcosis, recent studies at the molecular level via protein crystallography at high pressure in a Xe atmosphere, and we also present some preliminary results of VSD imaging of brain slices under hyperbaric conditions.

  13. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  14. Water solubility in pyrope at high pressures

    Science.gov (United States)

    Mookherjee, M.; Karato, S.-

    2006-12-01

    To address how much water is stored within the Earth's mantle, we need to understand the water solubility in the nominally anhydrous minerals. Much is known about olivine and pyroxene. Garnet is another important component, approaching 40% by volume in the transition zone. Only two studies on water solubility in pyrope at high-pressures exist which contradict each other. Lu and Keppler (1997) observed increase in water solubility in a natural pyrope up to 200 ppm wt of water, till 10 GPa. They concluded that the proton is located in the interstitial site. Withers et al. (1998) on the contrary, observed increasing water content in Mg-rich pyrope till 6 GPa, then sudden decrease of water, beyond detection, at 7 GPa. Based on infrared spectra, Withers et al. (1998), concluded hydrogarnet (Si^{4+} replaced by 4H+ to form O4H4) substitution in synthetic magnesium rich pyrope. They argued that at high pressure owing to larger volume, hydrogarnet substitution is unstable and water is expelled out of garnet. In transition zone conditions, however, majorite garnet seems to contain around 600-700 ppm wt of water (Bolfan-Casanova et al. 2000; Katayama et al. 2003). The cause for such discrepancy is not clear and whether garnet could store a significant amount of water at mantle condition is unconstrained. In order to understand the solubility mechanism of water in pyrope at high-pressure, we have conducted high- pressure experiments on naturally occurring single crystals of pyrope garnet (from Arizona, Aines and Rossman, 1984). To ascertain water-saturated conditions, we use olivine single-crystal as an internal standard. Preliminary results indicate that natural pyrope is capable of dissolving water at high-pressures, however, water preferentially enters olivine than in pyrope. We are undertaking systematic study to estimate the solubility of water in pyrope as a function of pressure. This will enable us to develop solubility models to understand the defect mechanisms

  15. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  16. Exotic magnetic structures in high-pressure synthesized perovskites

    Science.gov (United States)

    Manuel, Pascal; Khalyavin, Dmitry; Ding, Lei; Yi, Wei; Kumagai, Yu; Oba, Fumiyasu; Orlandi, Fabio; Belik, Alexei

    We present a neutron powder diffraction study of the crystal and magnetic structures of the high-pressure stabilized perovskite phases of TlMnO3, ScCrO3, InCrO3 and TlCrO3. These compounds exhibit original magnetic structures compared to other members of their respective manganite and orthochromite families with TlMnO3 also displaying unusual orbital ordering pattern. For both systems, we rationalise the structures through a combination of group theory and first principle calculations. We also highlight the dominant mechanism controlling the spin direction as being the single ion anisotropy.

  17. High-pressure structural study of Ammonium Perchlorate

    Science.gov (United States)

    Stavrou, Elissaios; Zaug, Joseph; Bastea, Sorin; Grivickas, Paulius; Greenberg, Eran; Kunz, Martin

    Ammonium perchlorate (AP) with the chemical formula NH4ClO4 is a powerful energetic oxidizer used as an ingredient in rocket propellants and explosive formulations. For this reason, its structural properties under extreme conditions have attracted considerable attention (M. Dunuwille et al., S. Hunter et al.). However, its structural properties under pressure are not completely understood. In addition to its importance as an energetic oxidizer, AP is one of the simplest supramolecular systems. Thus, a structural study of AP under pressure can provide crucial information in the context of the emerging field of high pressure supramolecular chemistry. Ammonium perchlorate has been studied using x-ray diffraction and Raman spectroscopy up to the record pressure of 40 GPa. The results reveal a pressure-induced first order phase transition at 4 GPa, in agreement with previous studies. However, preliminary analysis of our results contradicts with the previously proposed high-pressure phase, as determined by neutron diffraction. No further structural phase transitions have been observed up to the highest pressure of this study. Intermolecular bonding between NH4 and ClO4 ions will be discussed based on Raman spectroscopy measurements. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  18. High-pressure Raman study and lattice dynamical calculations for SrWO4

    International Nuclear Information System (INIS)

    Christofilos, D; Papagelis, K; Ves, S; Kourouklis, G A; Raptis, C

    2002-01-01

    A high-pressure Raman study of SrWO 4 reveals a pressure induced phase transition starting at 11.5 GPa. Several Raman lines exhibit a nonlinear behaviour in the pressure range of 11.5-15 GPa, which can be attributed to either stabilization of the high-pressure phase or an intermediate phase. Using a theoretical lattice dynamical calculation, based on an empirical potential model, we have obtained the Raman active mode eigenvectors giving us an insight into the phase transition mechanism. The lowest-frequency mode exhibits a negative pressure slope in the scheelite phase and involves a motion of the WO 4 tetrahedron as a whole according to the theoretical results. The experimental evidence suggests that the structure of the high-pressure phase is closely related to the scheelite structure, being formed by closely lying distorted WO 4 tetrahedra rather than involving an octahedrally coordinated W ion

  19. Vacuum surface flashover and high pressure gas streamers

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N.

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation

  20. High pressure cell for neutron scattering experiments

    International Nuclear Information System (INIS)

    Shinde, A.B.; Krishna, P.S.R.; Paranjpe, S.K.; Vaidya, S.N.

    1997-01-01

    We report here the design and fabrication of a high pressure clamped cell using EN45 steel for neutron scattering experiments up to 15 kbar. The pressure cell geometry allows detection of scattered neutrons in a plane over an angular range of 90 deg. The cell can be used for both elastic and inelastic scattering measurements on polycrystalline materials and disordered materials. The volume of the sample region is about 400 mm 3 . Preliminary results obtained from neutron diffraction of ND 4 I and KNO 3 are presented. (author)

  1. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  2. Conventional high pressure techniques fro neutron diffraction

    International Nuclear Information System (INIS)

    Mizuki, Jun-ichiro; Endoh, Yasuo

    1981-01-01

    Conventional high pressure techniques using a clamped type pressure cell have been adapted for studies by neutron diffraction. Careful calibration of the pressure sensing apparatus and an appropriate choice of pressure transmitting medium enable accurate neutron diffraction measurements to be made at reduced temperature as low as 4 K. In the present studies we have demonstrated that using the clamped type microbomb neutron diffraction measurements can be easily made under the pressure up to 5 kbar within the temperature range 4 K - 350 K. (author)

  3. High-pressure cell for neutron scattering

    International Nuclear Information System (INIS)

    Onodera, Akifumi; Nakai, Yutaka; Kunitomi, Nobuhiko

    1987-01-01

    We have developed a high-pressure cell for neutron scattering. The cell uses a barrel-shaped support cylinder made of sintered ceramics. Samples 6 mm in diameter and 10 mm long can be accommodated. The cell is suitable for use at low and high temperatures, after a pressure generated at room temperature is locked. The change of pressure on cooling to cryogenic temperatures is estimated by measuring the lattice parameter of NaCl. Besides the pressure locking technique, continuous pressurization can be achieved at room temperature by using a built-in mini-press while the cell is mounted on a goniometer of neutron spectrometer. (author)

  4. High pressure hydroformylation in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Paciello, R. [BASF Aktiengesellschaft, Ludwigshafen (Germany)

    2006-07-01

    Higher oxo alcohols are intermediates for large-scale applications, such as plasticizers, detergents and fuel additives, as well as being useful in the synthesis of fine chemicals such as vitamins or flavors and fragrances. Many of these alcohols are still made using high pressure technologies. Advantages and disadvantages of different technologies presently in use or being developed are discussed. In particular, efforts to decrease raw material costs, e.g. by increasing yield, or investment, e.g. by decreasing pressure, will be highlighted. (orig.)

  5. High pressure BF3 proportional counter

    International Nuclear Information System (INIS)

    Mihara, Masaru; Gotoh, Eiichiro; Kodama, Masahiro

    1978-01-01

    Plateau and pulse characteristics of high pressure BF 3 proportional counter were investigated in terms of counter geometry and gas pressure, in order to develop a small-sized and high-sensitive one. Description is given of the construction of improved gas filling equipment with filling procedure. A tentative brass counter, 67 mm in cathode diameter, 40 micron in anode diameter, filled to 1.2 kg/cm 2 revealed characteristics of 150 volts plateau range, the slope of which being 3% per 100 volts at the operation voltage of around 3.3 kV, and 103% full width at half-maximum in the pulse height distribution. (auth.)

  6. Novel stable structure of Li3PS4 predicted by evolutionary algorithm under high-pressure

    Directory of Open Access Journals (Sweden)

    S. Iikubo

    2018-01-01

    Full Text Available By combining theoretical predictions and in-situ X-ray diffraction under high pressure, we found a novel stable crystal structure of Li3PS4 under high pressures. At ambient pressure, Li3PS4 shows successive structural transitions from γ-type to β-type and from β-type to α type with increasing temperature, as is well established. In this study, an evolutionary algorithm successfully predicted the γ-type crystal structure at ambient pressure and further predicted a possible stable δ-type crystal structures under high pressure. The stability of the obtained structures is examined in terms of both static and dynamic stability by first-principles calculations. In situ X-ray diffraction using a synchrotron radiation revealed that the high-pressure phase is the predicted δ-Li3PS4 phase.

  7. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results

  8. High pressure Raman study of BaMoO4

    International Nuclear Information System (INIS)

    Christofilos, D.; Kourouklis, G.A.; Arvanitidis, J.; Kampasakali, E.; Papagelis, K.; Ves, S.

    2004-01-01

    The structural stability of polycrystalline BaMoO 4 under hydrostatic pressure has been investigated by means of Raman spectroscopy up to 8 GPa. Raman spectra reveal a pressure induced phase transition at ∝5.8 GPa. Upon pressure release the structure reverts to its ambient pressure scheelite (CaWO 4 ) structure with no observable hysteresis. The large number of Raman active modes of the high pressure phase suggests either an increase of the size of the unit cell and/or a non-centrosymmetric structure leading to the activation of the ungerade modes of the scheelite structure. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Sizing of high-pressure restriction orifices

    International Nuclear Information System (INIS)

    Casado Flores, E.

    1995-01-01

    Constant up-grading of power plants sometimes requires the modification of components which form part of suppliers' packages. In order to protect technology they have developed, however, the suppliers do not supply their calculation criteria. In order to reduce the costs of such improvements, and so as to be able to undertake the modification without having to rely on the original supplier, this paper describes the basic criteria applicable to the study of high-pressure restriction orifices, which can be considered to be representative of the components in question. The restriction orifices discussed are: - Insert - Multiplates in series with one perforation in each plate - Multiplates in series with several perforations in each plate For each type, an explanation of their sizing is given, together with the equations relating the corresponding flow and pressure drop. (Author)

  10. High-pressure structures of methane hydrate

    CERN Document Server

    Hirai, H; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K sub 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively.

  11. Superconductivity from magnetic elements under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya [KYOKUGEN, Research Center for Materials Science at Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)]. E-mail: shimizu@rcem.osaka-u.ac.jp; Amaya, Kiichi [Toyota Physical and Chemical Research Institute, Aichi 480-1192 (Japan); Suzuki, Naoshi [Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Onuki, Yoshichika [Graduate School of Science, Osaka University, Osaka 560-0043 (Japan)

    2006-05-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors.

  12. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  13. Superconductivity from magnetic elements under high pressure

    International Nuclear Information System (INIS)

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  14. High pressure and high temperature apparatus

    Science.gov (United States)

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  15. High Pressure Quick Disconnect Particle Impact Tests

    Science.gov (United States)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  16. Solids, liquids, and gases under high pressure

    Science.gov (United States)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  17. The effect of high pressures on actinide metals

    International Nuclear Information System (INIS)

    Benedict, U.

    1987-01-01

    The solid state properties of the actinides are controlled by the dualism of the localized and itinerant (delocalized) configuration of the 5f electrons. This dualism allows to define two main subgroups. At ambient pressures the first subgroup, of elements with atomic number 91 to 94, is characterized by 5f electrons in an itinerant state and the second subgroup, atomic number 95 to 98, by 5f electrons in a localized state. The latter means that these electrons have well defined energy levels and do not contribute to the metallic bond. The other two subgroups consist of thorium, as a subgroup of its own because its 5f levels are practically unoccupied in the ground state configuration, and of the five heaviest elements with atomic number 99 to 103. The most remarkable effect of pressure on the actinide metals is that due to closer contact between the lattice atoms, localized 5f electrons can become itinerant, hybridise with the conduction electrons and participate in the metallic bond. In this chapter the high-pressure structural behaviour of actinide metals is reviewed. Section 3 gives an introduction into the techniques of generating and measuring pressure and of determining various physical properties of the actinides under pressure and describes a few high-pressure devices and methods. Sections 4 to 7 treat the high-pressure results for each subgroup separately. In section 8 the results of the preceding sections are brought together in a graphical representation which consists of interconnecting binary phase diagrams of neighbouring actinide metals. 155 refs.; 14 figs.; 7 tabs. (H.W.)

  18. Acceptance test procedure for High Pressure Water Jet System

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1995-01-01

    The overall objective of the acceptance test is to demonstrate a combined system. This includes associated tools and equipment necessary to perform cleaning in the 105 K East Basin (KE) for achieving optimum reduction in the level of contamination/dose rate on canisters prior to removal from the KE Basin and subsequent packaging for disposal. Acceptance tests shall include necessary hardware to achieve acceptance of the cleaning phase of canisters. This acceptance test procedure will define the acceptance testing criteria of the high pressure water jet cleaning fixture. The focus of this procedure will be to provide guidelines and instructions to control, evaluate and document the acceptance testing for cleaning effectiveness and method(s) of removing the contaminated surface layer from the canister presently identified in KE Basin. Additionally, the desired result of the acceptance test will be to deliver to K Basins a thoroughly tested and proven system for underwater decontamination and dose reduction. This report discusses the acceptance test procedure for the High Pressure Water Jet

  19. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, whi...

  20. High-pressure structural stability of the ductile intermetallic ...

    Indian Academy of Sciences (India)

    Keywords. Intermetallics; X-ray diffraction; high pressure; synchrotron radiation. Abstract. High-pressure angle dispersive ... Author Affiliations. S Meenakshi1. High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Dates. Manuscript received: 10 July 2013 ...

  1. 30 CFR 57.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  2. 30 CFR 56.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021...

  3. High pressure behaviour of uranium mono pnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Ojha, Poonam; Sanyal, S.P.; Aynyas, Mahendra

    2006-01-01

    The pressure induced structural phase transition of three actinide mono pnictides AX (A=U and X=As, Sb, Bi), have been studied theoretically using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 5f electrons of the actinide (uranium) ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves are compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 17GPa, 9.5GPa and 5.3 GPa respectively. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. (author)

  4. Subnanosecond breakdown in high-pressure gases

    Science.gov (United States)

    Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; Lomaev, Mikhail I.

    2018-01-01

    Pulsed discharges in high-pressure gases are of considerable interest as sources of nonequilibrium plasma for various technological applications: pollution control, pumping of laser media, plasma-assisted combustion, etc. Recently, attention has been attracted to the use of subnanosecond voltage fronts, producing diffuse discharges with radii of several millimeters. Such plasma structures, similar to pulsed glow discharges, are of special interest for applications due to quasi-uniformity of plasma parameters in relatively large gas volumes. This review presents the results of experimental and computational study of subnanosecond diffuse discharge formation. A description of generators of short high-voltage pulses with subnanosecond fronts and of discharge setups is given. Diagnostic methods for the measurement of various discharge parameters with high temporal and spatial resolution are described. Obtained experimental data on plasma properties for a wide range of governing factors are discussed. A review of various theoretical approaches used for computational study of the dynamics and structure of fast ionization waves is given; the applicability of conventional fluid streamer models for simulation of subnanosecond ionization waves is discussed. Calculated spatial-temporal profiles of plasma parameters during streamer propagation are presented. The efficiency of subnanosecond discharges for the production of reactive species is evaluated. On the basis of the comparison of simulation results and experimental data the effects of various factors (voltage rise time, polarity, etc.) on discharge characteristics are revealed. The major physical phenomena governing the properties of subnanosecond breakdown are analyzed.

  5. The high-pressure behavior of bloedite

    DEFF Research Database (Denmark)

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci

    2014-01-01

    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS......), yielding V0 = 495.6(7) Å3 with K0 = 39.9(6) GPa, and V0 = 496.9(7) Å3, with K0 = 36(1) GPa and K′ = 5.1 (4) GPa-1, respectively. The axial moduli were calculated using a Birch-Murnaghan EOS truncated at the second order, fixing K′ equal to 4, for a and b axes and a third-order Birch-Murnaghan EOS for c...... axis. The results were a0 = 11.08(1) and K0 = 56(3) GPa, b0 = 8.20(2) and K0 = 43(3) GPa, and c0 = 5.528(5), K0 = 40(2) GPa, K′ = 1.7(3) GPa-1. The values of the compressibility for a, b, and c axes are ba = 0.0060(3) GPa-1, bb = 0.0078(5) GPa-1, bc = 0.0083(4) GPa-1 with an anisotropic ratio of ba...

  6. High pressure waterjet cutting industrial needs survey

    Science.gov (United States)

    Klavuhn, John; Baker, Bruce

    1989-08-01

    The results are presented of a survey conducted by personnel of the National Center for Excellence in Metalworking Technology (NCEMT) to assess the industrial needs in high pressure water jet cutting (WJC) technology. Survey forms were mailed to approximately 1400 individuals obtained from three mailing lists. The respondents included approximately 200 individuals associated with a variety of industries: 12 percent were WJC equipment suppliers, 40 percent were WJC users, and 48 percent were neither suppliers nor users. The survey addressed five specific areas of WJC technology: research and development, standards, systems, new products, and training and service. Results show that the need having the highest priority is the establishment of a database on WJC that contains the cutting parameters for a wide range of materials. Associated with this objective is the expressed need for an independent demonstration and test center for testing, data generation and operator training. A further need was found for establishing organized efforts in hardware development and research in mechanisms of cutting.

  7. A2TiO5 (A = Dy, Gd, Er, and Yb) at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sulgiye; Rittman, Dylan; Tracy, Cameron L.; Chapman, Karena W.; Zhang, Fuxiang; Park, Changyong; Tkachev, Sergey N.; O' Quinn, Eric; Shamblin, Jacob; Lang, Maik; Mao, Wendy L.; Ewing, Rodney C.

    2018-02-01

    The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressure range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.

  8. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  9. Colloquium: High pressure and road to room temperature superconductivity

    Science.gov (United States)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  10. High-pressure Brillouin study on methane hydrate

    CERN Document Server

    Sasaki, S; Suwa, I; Kume, T; Shimizu, H

    2002-01-01

    Acoustic velocities and adiabatic elastic constants of structure I of methane hydrate (MH) have been determined as a function of pressure up to 0.6 GPa at 23 deg. C by the high-pressure Brillouin spectroscopy developed for a single molecular crystal. The pressure dependence of the acoustic velocities of MH is very similar to that of ice-Ih except for the longitudinal acoustic (LA) velocity. The value of the LA velocity along the (100) direction of MH at 0.02 GPa is 3.63 km s sup - sup 1 which is about 7% lower than the average of the LA velocities in the ice-Ih phase at -35.5 deg. C and atmospheric pressure.

  11. In situ viscosity measurements of albite melt under high pressure

    CERN Document Server

    Funakoshi, K I; Terasaki, H

    2002-01-01

    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.

  12. First principles centroid molecular dynamics simulation of high pressure ices

    Science.gov (United States)

    Ikeda, Takashi

    2018-03-01

    The nuclear quantum effects (NQEs) on the structural, elastic, electronic, and vibrational properties of high pressure ices (HPIs) VIII, VII, and X at 270 K were investigated via first principles centroid molecular dynamics (CMD). Our simulations clearly show that even at relatively high temperature of 270 K, the NQEs play a definite role in the pressure-induced proton order (ice VIII)-disorder (ice VII) transition occurring at ˜30 GPa in our H2O ice and the subsequent transition to the symmetric phase ice X suggested to occur at ˜80 GPa. The internal pressure computed at constant NVT conditions shows that the NQEs manifest themselves in the equation of state of HPIs. Our employed approach based on first principles CMD for computing vibrational spectra is proved to be able to reproduce well the overall features of the measured infrared and Raman spectra.

  13. Synthesis and properties of selenium trihydride at high pressures

    Science.gov (United States)

    Zhang, Xiao; Xu, Wan; Wang, Yu; Jiang, Shuqing; Gorelli, Federico A.; Greenberg, Eran; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2018-02-01

    The chemical reaction products of molecular hydrogen (H2) with selenium (Se) are studied by synchrotron x-ray diffraction (XRD) and Raman spectroscopy at high pressures. We find that a common H2Se is synthesized at 0.3 GPa using laser heating. Upon compression at 300 K, a crystal of the theoretically predicted Cccm H3Se has been grown at 4.6 GPa. At room temperature, H3Se shows a reversible phase decomposition after laser irradiation above 8.6 GPa, but remains stable up to 21 GPa. However, at 170 K Cccm H3Se persists up to 39.5 GPa based on XRD measurements, while low-temperature Raman spectra weaken and broaden above 23.1 GPa. At these conditions, the sample is visually nontransparent and shiny suggesting that metallization occurred.

  14. Equations of State and High-Pressure Phases of Explosives

    Science.gov (United States)

    Peiris, Suhithi M.; Gump, Jared C.

    Energetic materials, being the collective name for explosives, propellants, pyrotechnics, and other flash-bang materials, span a wide range of composite chemical formulations. Most militarily used energetics are solids composed of particles of the pure energetic material held together by a binder. Commonly used binders include various oils, waxes, and polymers or plasticizers, and the composite is melt cast, cured, or pressed to achieve the necessary mechanical properties (gels, putties, sheets, solid blocks, etc.) of the final energetic material. Mining, demolition, and other industries use liquid energetics that are similarly composed of an actual energetic material or oxidizer together with a fuel, that is to be mixed and poured for detonation. Pure energetic materials that are commonly used are nitroglycerine, ammonium nitrate, ammonium or sodium perchlorate, trinitrotoluene (TNT), HMX, RDX, and TATB. All of them are molecular materials or molecular ions that when initiated or insulted undergoes rapid decomposition with excessive liberation of heat resulting in the formation of stable final products. When the final products are gases, and they are rapidly produced, the sudden pressure increase creates a shock wave. When decomposition is so rapid that the reaction moves through the explosive faster than the speed of sound in the unreacted explosive, the material is said to detonate. Typically, energetic materials that undergo detonation are known as high explosives (HEs) and energetic materials that burn rapidly or deflagrate are known as low explosives and/or propellants.

  15. High Pressure Oxygen Generation for Future Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is the development of a cathode feed electrolysis cell stack capable of generating 3600 psia oxygen at a relevant scale for future...

  16. Dust Mitigation Strategies for High Pressure Oxygen QDs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As human spaceflight once again moves toward planetary exploration, space suit hardware must be ready to face the harsh environmental conditions of these surfaces....

  17. HIGH PRESSURE PHASE EQUILIBRIUM: PREDICTION OF ESSENTIAL OIL SOLUBILITY

    Directory of Open Access Journals (Sweden)

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.Este trabalho descreve uma metodologia para o cálculo da solubilidade de óleos essenciais em dióxido de carbono a altas pressões baseada na formulação proposta em 1979 por Asselineau, Bogdanic e Vidal. Foram utilizadas as equações cúbicas de estado de Peng-Robinson e Soave-Redlich-Kwong com regras de mistura de van der Waals com dois parâmetros de interação. O cálculo da solubilidade do óleo essencial de laranja em dióxido de carbono pressurizado foi usado para validação do método. A solubilidade calculada a 308,15 K para pressões entre 50 e 70 bar variou entre 1,5 e 4,1 mg/g. Valores experimentais para as mesmas condições variam entre 1,7± 0.1 a 3,6± 0.1 mg/g. Os valores preditos não são muito sensíveis à composição inicial do óleo essencial.

  18. Dimensionally Stable Membrane for High Pressure Electrolyzers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing high strength polymers with controlled pore dimensions as a support, a customized membrane electrode assembly (MEA) can be generated for NASA's...

  19. High pressure phase transition of alcohol intercalated zirconium phosphate

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Zima, Vítězslav; Melánová, Klára; Steinhart, Miloš; Kriechbaum, M.; Amenitsch, H.; Bernstortt, S.

    1a, č. 10 (2003), s. 80-81 [Kolokvium Krystalografické společnosti /31./. 16.06.2003-20.06.2003, Nové Hrady] R&D Projects: GA ČR GV202/98/K002; GA ČR GA202/01/0520 Keywords : zirconium phosphate Subject RIV: CA - Inorganic Chemistry

  20. Dimensionally Stable Membrane for High Pressure Electrolyzers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing high strength polymers with controlled pore dimensions as a support, a customized membrane electrode assembly (MEA) can be generated for NASA's...

  1. Phase transformations of amorphous semiconductor alloys under high pressures

    CERN Document Server

    Antonov, V E; Fedotov, V K; Harkunov, A I; Ponyatovsky, E G

    2002-01-01

    The paper reviews the results of experimental studies and thermodynamical modelling of metastable T-P diagrams of initially amorphous GaSb-Ge and Zn-Sb alloys which provide a new insight into the problem of pressure-induced amorphization.

  2. High Pressure Oxygen Generation for Future Exploration Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is the development of a cathode feed electrolysis cell stack capable of generating 3600 psi oxygen at a relevant scale for future exploration...

  3. High Pressure Electrochemical Oxygen Generation for ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced electrochemical static vapor feed oxygen (O2) concentrator (SVFOC) that offers a simple alternative to the use of pressure...

  4. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  5. The α → ω Transformation in Titanium-Cobalt Alloys under High-Pressure Torsion

    Directory of Open Access Journals (Sweden)

    Askar R. Kilmametov

    2017-12-01

    Full Text Available The pressure influence on the α → ω transformation in Ti–Co alloys has been studied during high pressure torsion (HPT. The α → ω allotropic transformation takes place at high pressures in titanium, zirconium and hafnium as well as in their alloys. The transition pressure, the ability of high pressure ω-phase to retain after pressure release, and the pressure interval where α and ω phases coexist depend on the conditions of high-pressure treatment. During HPT in Bridgeman anvils, the high pressure is combined with shear strain. The presence of shear strain as well as Co addition to Ti decreases the onset of the α → ω transition from 10.5 GPa (under quasi-hydrostatic conditions to about 3.5 GPa. The portion of ω-phase after HPT at 7 GPa increases in the following sequence: pure Ti → Ti–2 wt % Co → Ti–4 wt % Co → Ti–4 wt % Fe.

  6. A study on the relief of shell wall thinning of high pressure feedwater heater

    International Nuclear Information System (INIS)

    Kim, Hyung Joon; Park, Sang Hoon; Seo, Hyuk Ki; Kim, Kyung Hoon; Hwang, Kyung Mo

    2008-01-01

    Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line- inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis

  7. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH)2

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, Hannah; Barkley, Madison C.; Downs, Robert T.; Miletich, Ronald; Dera, Przemyslaw

    2016-05-31

    Three isotypic crystals, SiO2 (α-cristobalite), ε-Zn(OH)2 (wülfingite), and Be(OH)2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression-driven phase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high-pressure γ-phase of beryllium hydroxide and compare it with the high-pressure structures of the other two minerals. In Be(OH)2, the transition from the ambient β-behoite phase with the orthorhombic space group P212121 and ambient unit cell parameters a = 4.5403(4) Å, b = 4.6253(5) Å, c = 7.0599(7) Å, to the high-pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO4 tetrahedra.

  8. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  9. Modulation of pineal activity during the 23rd sunspot cycle: melatonin rise during the ascending phase of the cycle is accompanied by an increase of the sympathetic tone.

    Science.gov (United States)

    Bartsch, Christian; Bartsch, Hella; Seebald, Eckhard; Küpper, Heinz; Mecke, Dieter

    2014-05-01

    In two groups of female CD-rats nocturnal urine (19-23 h, 23-3 h, 3-7 h) was collected at monthly intervals over 658 days (I: 1997-1999) and 494 days (II: 1999-2000) coinciding with the ascending limb (1996-2000) of the 23rd sunspot cycle (1996-2008). The excretion of 6-sulfatoxymelatonin (aMT6s: I, II) was determined as well as the ratio of noradrenaline/adrenaline (NA/A: I) reflecting the activity of the sympathetic nervous system. AMT6s was higher in II than I (19-7 h: +24%; P sunspot cycle accompanied by growing geomagnetic disturbances (Ap) which elevate the sympathetic tone and thus affect the pineal gland, initially stimulating the activity of arylalkylamine N-acetyltransferase and subsequently fostering the expression of N-acetylserotonin O-methyltransferase (rate-limiting enzyme for melatonin biosynthesis) if Ap increases further. The potential (patho) physiological significance of these findings is discussed and the need for a systematic continuation of such studies is emphasized.

  10. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  11. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  12. Probing Hydrogen Diffusion under High Pressure

    Science.gov (United States)

    Bove, L. E.; Klotz, S.; Strassle, T.; Saitta, M.

    2012-12-01

    volume HP press can be now warmed up to 600K and the peculiar geometry of the gasket assure an excellent signal to background ratio. This new device has been recently settled up on neutron scattering facilities (PSI, ILL), successfully showing that very high quality data can be obtained on liquid water, and more generally on hydrogenated liquids dynamics under high pressure. Some new exciting results on the diffusion mechanism in hot dense water will be presented [9]. Possible future implementation of the device to reach the 20GPa and 1000K conditions will be also discussed. References [1] C. Cavazzoni et al., Science 283, 44 (1999) ; T. Guillot, Science 286 (1999), 72 . 77. [2] Some of the most active groups in this field are the Geophysical Laboratory (USA), Lawrence Livermore National Laboratory (USA), CEA/DAM (France) and the Bayerisches Geoinstitut (Allemagne). [3] Klotz S et al, Phys. Rev. Lett. 96 149602, 2006. [4] Nelmes R J Nature Phys. 2 414, 2006. [5] S. Klotz, L. Bove et al., Nature Mat. 8, 405 (2009). [6] L.E. Bove et al., Phys. Rev. Lett., 106 (2011) . [7] L. E. Bove et al., Phys. Appl. Lett., in preparation (2012). [8] A. Cunsolo et al., Journal of Chem. Phys. 124, 084503 (2006). [9] L.E. Bove et al., Phys. Rev. Lett., submitted (2012) .

  13. Functional Sub-states by High-pressure Macromolecular Crystallography.

    Science.gov (United States)

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  14. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  15. Microstructure of high-pressure die-casting AM50 magnesium alloy

    OpenAIRE

    R. Dabrowski; K.N. Braszczynska -Malik; J. Braszczynski

    2009-01-01

    Microstructure analyses of high-pressure die-casting AM50 magnesium alloy are presented. Investigated pressure casting wasproduced on a cold chamber die-casting machine with locking force at 1100 tones in “FINNVEDEN Metal Structures”. Light microscopyand X-ray phase analysis techniques were used to characterize the obtained material. In microstructure, an

  16. Equation of state for potassium in shock waves at high pressures

    Science.gov (United States)

    Khishchenko, K. V.

    2018-01-01

    A simple caloric equation-of-state model, which relates the pressure with density and internal energy, is applied for potassium in the bcc-solid and liquid phases. Thermodynamic characteristics along the principal Hugoniot are calculated for the metal and compared with available data from shock-wave experiments at high pressures.

  17. Metal additive manufacturing of a high-pressure micro-pump

    NARCIS (Netherlands)

    Wits, Wessel Willems; Weitkamp, Sander J.; van Es, J.; van Es, Johannes

    2013-01-01

    For the thermal control of future space applications pumped two-phase loops are an essential part to handle the increasing thermal power densities. This study investigates the design of a reliable, leak tight, low-weight and high-pressure micro-pump for small satellite applications. The developed

  18. Effective like- and unlike-pair interactions at high pressure and high temperature

    International Nuclear Information System (INIS)

    Ree, F.H.; van Thiel, M.

    1991-05-01

    We describe how information on effective interactions of chemical species involving C, O, and N atoms at high pressure and high temperature may be inferred from available shock wave data of NO and CO. Our approach uses a modern statistical mechanical theory and a detailed equation of state (EOS) model for the condensed phases of carbon

  19. Stability of very-high pressure arc discharges against perturbations of the electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S. [Departamento de Fisica, Ciencias Exactas e Engenharia, Universidade da Madeira, Largo do Municipio, Funchal 9000 (Portugal); Hechtfischer, U. [Philips Lighting, BU Automotive Lamps, Technology, Philipsstrasse 8, Aachen 52068 (Germany)

    2012-04-01

    We study the stability of the energy balance of the electron gas in very high-pressure plasmas against longitudinal perturbations, using a local dispersion analysis. After deriving a dispersion equation, we apply the model to a very high-pressure (100 bar) xenon plasma and find instability for electron temperatures, T{sub e}, in a window between 2400 K and 5500-7000 K x 10{sup 3} K, depending on the current density (10{sup 6}-10{sup 8} A/m{sup 2}). The instability can be traced back to the Joule heating of the electron gas being a growing function of T{sub e}, which is due to a rising dependence of the electron-atom collision frequency on T{sub e}. We then analyze the T{sub e} range occurring in very high-pressure xenon lamps and conclude that only the near-anode region exhibits T{sub e} sufficiently low for this instability to occur. Indeed, previous experiments have revealed that such lamps develop, under certain conditions, voltage oscillations accompanied by electromagnetic interference, and this instability has been pinned down to the plasma-anode interaction. A relation between the mechanisms of the considered instability and multiple anodic attachments of high-pressure arcs is discussed.

  20. CARS Diagnostics of High Pressure Combustion - 2. Measurements of NO, H2O and High Pressure Flames

    Science.gov (United States)

    1985-12-01

    R85-956328-F CARS DIAGNOSTICS OF r HIGH PRESSURE COMBUSTION -I MEASUREMENTS OF NO, H 0 AND HIGH PRESSURE FLAMES Final Report J.H. Stufflebeam DTIC I7...High Pressure Flames Final Report ~ 5%~ J. H. Stufflebeam J. A. Shirley December 1985 𔃿** U. S. Army Research Office Contract: DAAG29-83-C-OOO1...ClaIiation, CARS Diagnostics of High Pressure Combustion II 12. PERSONAL AUTHOR(S) Stufflebeam , 7. H., ShirleyJA 113a. TYPE OF REPORT 13b. TIME COVERED

  1. High Pressure Studies of UO3

    Science.gov (United States)

    Jenei, Zsolt; Lipp, Magnus; Klepeis, Jae-Hyun; Baer, Bruce; Cynn, Hyunchae; Evans, William; Park, Changyong; Popov, Dimitri

    2011-03-01

    It has been reported that upon compression t ambient temperature δ -UO3 becomes amorphous at 2.2 GPa. (Journal of Alloys and Compounds 315 p59--61). We studied the properties of γ -UO3 in diamond anvil cell up to 75 GPa. Powder diffraction experiments performed at HPCAT/Advanced Photon Source show the crystalline uranium trioxide transforms to an amorphous solid between 12 and 14 GPa and remains amorphous up to 75 GPa. The transition has been confirmed by Raman spectroscopy as well. In this paper we'll present our findings on the amorphous transition together with the equation of state of both the crystalline phase and the amorphous phase. This work performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344 HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA, DOE-BES and NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357.

  2. Anomalous perovskite PbRuO3 stabilized under high pressure

    Science.gov (United States)

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.

    2013-01-01

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  3. The Working Principle and Use of High Pressures in the Food Industry

    OpenAIRE

    Karlović, S.; Brnčić, M.; Ježek, D.; Tripalo, B.; Bosiljkov, T.

    2010-01-01

    High pressure in the food industry, as a new non-thermal method, is applied in many phases of food processing. This new non-thermal technology was developed in the 1990s. The main advantages of high-pressure processing are in the short time of processing which is between a few seconds and 30 minutes. Processing of solid or liquid food products with or without packaginghappens in the temperature interval 5 – 90 °C, and pressures 50 – 1000 MPa. The driving pressure is distributed uniformly thro...

  4. Automatic torque magnetometer for vacuum-to-high-pressure hydrogen environments

    International Nuclear Information System (INIS)

    Larsen, J.W.; Livesay, B.R.

    1979-01-01

    An automatic torque magnetometer has been developed for use in high-pressure hydrogen. It will contain pressures ranging from vacuum to 200 atm of hydrogen gas at sample temperatures greater than 400 0 C. This magnetometer, which uses an optical lever postion sensor and a restoring force technique has an operating range of 2.0 x 10 3 dyn cm to l.6 x 10 -4 dyn cm. An accompanying digital data collection system extends the sensitivity to 1 x 10 -5 dyn cm as well as increasing the data handling capacity of the system. The magnetic properties of thin films in high-temperature and high-pressure hydrogen environments can be studied using this instruments

  5. Neutron diffraction study of Lu2Fe17 under high pressure

    International Nuclear Information System (INIS)

    Prokhnenko, O.; Ritter, C.; Medvedeva, I.; Arnold, Z.; Kamarad, J.; Kuchin, A.

    2003-01-01

    Neutron diffraction techniques were used to study the evolution of the magnetic states of Lu 2 Fe 17 under hydrostatic pressure up to 5 kbar in the temperature range 2-300 K. The ferromagnetic phase gets suppressed by pressure and an incommensurate antiferromagnetic phase is found to exist down to 2 K under a pressure of 5 kbar. The complex thermal evolution of the magnetic structures of Lu 2 Fe 17 at ambient and high pressures is presented and discussed

  6. Elastic properties of Fe-bearing wadsleyite at high pressures

    Science.gov (United States)

    Mao, Z.; Jacobsen, S. D.; Jiang, F.; Smyth, J. R.; Holl, C. M.; Frost, D. J.; Duffy, T.

    2009-12-01

    The elastic properties of wadsleyite, thought to be the dominant phase from 410 to 520-km depth in the mantle, are essential to interpret the seismic images and profiles in the transition zone. Our previous experimental measurements showed that elasticity of Mg2SiO4 wadsleyite can be significantly reduced by hydration at high pressures (e.g. Mao et al., 2008a,b). These results provide the first constraints on the effect of hydration on the high-pressure sound velocities of wadsleyite, and are significantly important for identifying the potential hydrogen rich region in the Earth’s transition zone. Since mantle wadsleyite contains ~10 mol.% Fe, it is more important to investigate the combined effect of Fe and hydration on the elastic properties of wadsleyite. Here, we measured the single-crystal elasticity of wadsleyite with 1.0 wt.% H2O, Mg1.73Fe0.19SiO4H0.16, up to 12 GPa using Brillouin scattering. At ambient conditions, the aggregate bulk modulus, KS0, and shear modulus, G0, are 158.4(5) GPa and 99.2(3) GPa, respectively. Including the results of current and previous studies, we find that the elasticity of wadsleyite decreases linearly with Fe and H2O content according to relations (in GPa): KS0 = 171(3)-13.0(8)CH2O, G0 = 112(2)-8.8(3)CH2O-40(10)XFe, where CH2O is the concentration of hydrogen expressed as weight percent H2O, and XFe is the Fe molar fraction (XFe = Fe/(Mg+Fe)). Further high-pressure measurements showed that the presence of 1 wt.% H2O in Fe-bearing wadsleyite increases the pressure derivative of the shear modulus from 1.5(1) to 1.9(1). But Fe-bearing wadsleyite with this amount of H2O might have a similar pressure derivative of the bulk modulus (4.8(1)) similar to the corresponding anhydrous phase. Using our results, we computed the sound velocities of wadsleyite with 1 wt.% H2O up to 12 GPa at 300 K. Compared to Fe-bearing anhydrous wadsleyite, 1 wt.% H2O causes a 1.5(4)% reduction in the compressional velocity at 12 GPa, and a 1

  7. High-pressure studies on Tc and crystal structure of iron chalcogenide superconductors

    Directory of Open Access Journals (Sweden)

    Hiroki Takahashi, Takahiro Tomita, Hiroyuki Takahashi, Yoshikazu Mizuguchi, Yoshihiko Takano, Satoshi Nakano, Kazuyuki Matsubayashi and Yoshiya Uwatoko

    2012-01-01

    Full Text Available The superconducting transition temperature, Tc, in iron-based solids can be enhanced by applied pressure: Tc increases from 8 to 37 K for the 11-type FeSe when the pressure is raised from 0 to 4 GPa. High-pressure studies can elucidate the mechanism of superconductivity in such novel materials. In this paper, we present a high-pressure study of Fe(Se1−xTex and Fe(Se1−xSx. In the case of Fe(Se1−xTex, the maximum Tc under high pressure did not exceed the Tc of FeSe, which can be attributed to the structural transition to the monoclinic phase. For Fe(Se1−xSx (0 < x < 0.3, Tc exhibited a significant increase with pressure; however, the maximum Tc under high pressure did not exceed the Tc of FeSe. This may be due to the disorder induced by substituting S for Se, which is similar to the pressure effect on Tc for the 1111-type superconductor Ca(Fe1−xCoxAsF. The Tc of Fe(Se1−xSx showed a complex behavior below 1 GPa, first decreasing and then increasing with increasing pressure. From high-pressure x-ray diffraction measurements, the Tc (P curve was correlated with the local structural parameter.

  8. DySb under high pressures: A full-potential study

    International Nuclear Information System (INIS)

    Gupta, Dinesh C.; Kulshrestha, Subhra

    2011-01-01

    Research highlights: → Present study is first of its kind as no theoretical study is reported on DySb except experimental information. → High pressures phase transition properties, magnetic-to-non-magnetic transition, elastic moduli and valence band width at ambient and high pressures, band structure, thermo-physical properties, magnetic moments, etc. have been computed by means of LSDA and LSDA + U approach. → LSDA + U approach is more accurate in predicting the proper nature of f-electrons of rare-earths. → The results are in good agreement with experimental data. - Abstract: The magnetic, structural, electronic and mechanical properties of DySb in the stable Fm3-barm and high-pressure Fm3-barm phase have been analyzed using full potential (linear) augmented plane wave method. The local spin-density approximation along with Hubbard-U corrections and spin-orbit coupling has been used for present calculations. The magnetic phase stability shows that DySb is ferromagnetically stable at ambient and high pressures. Under compression, it undergoes first-order structural transition from B1 to B2 phase at 22.2 GPa which shows good agreement with the experimental value of ∼22 GPa. The elastic properties of DySb have also been computed at normal and high pressures. The structural properties viz, equilibrium lattice constant, bulk modulus and its pressure derivative, transition pressure, volume collapse and elastic moduli are in good agreement with the experimental data. The calculation shows DySb to be semi-metallic.

  9. X-ray Diffraction Study of Arsenopyrite at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Fan; M Ma; W Zhou; S Wei; Z Chen; H Xie

    2011-12-31

    The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol-ethanol-water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K{sub 0}, and K'{sub 0} refined with a third-order Birch-Murnaghan EOS are K{sub 0} = 123(9) GPa, and K'{sub 0} = 5.2(8). Furthermore, we confirm that the linear compressibilities ({beta}) along a, b and c directions of arsenopyrite is elastically isotropic ({beta}{sub a} = 6.82 x 10{sup -4}, {beta}{sub b} = 6.17 x 10{sup -4} and {beta}{sub c} = 6.57 x 10{sup -4} GPa{sup -1}).

  10. Phosphorous dimerization in GaP high-pressure polymorph

    Energy Technology Data Exchange (ETDEWEB)

    Lavina, Barbara [Univ. of Nevada, Las Vegas, NV (United States). High Pressure Science and Engineering Center (HiPSEC), Dept. of Physics and Astronomy; Kim, Eunja [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Physics and Astronomy; Cynn, Hyunchae [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seaborg, Kelly [Univ. of Nevada, Las Vegas, NV (United States). High Pressure Science and Engineering Center (HiPSEC), Dept. of Physics and Astronomy; Siska, Emily [Univ. of Nevada, Las Vegas, NV (United States). High Pressure Science and Engineering Center (HiPSEC); Meng, Yue [Carnegie Inst. of Washington, Argonne, IL (United States). Geophysical Lab., High Pressure Collaborative Access Team (HPCAT); Evans, Williams [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-01

    We report on the experimental and theoretical characterization of a novel GaP polymorph formed by laser heating of a single crystal of GaP-II in its stable region near 43 GPa. Thereby formed unstrained multigrain sample at 43 GPa and 1300 K, allowed high-resolution crystallographic analysis. We find an oS24 as an energetically optimized crystal structure contrary to oS8 reported by Nelmes et al. (1997). Our DFT calculation confirms a stable existence of oS24 between 18 – 50 GPa. The emergence of the oS24 structure is related to the differentiation of phosphorous atoms between those forming P-P dimers and those forming P-Ga bonds only. Bonding anisotropy explains the symmetry lowering with respect to what is generally expected for semiconductors high-pressure polymorphs. The metallization of GaP does not occur through a uniform change of the nature of its bonds but through the formation of an anisotropic phase containing different bond types.

  11. Production of nanograined intermetallics using high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: horita@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  12. Ultrasonic depth gauge for liquids under high pressure

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Mazel, David S. (Inventor)

    1988-01-01

    The invention relates to an ultrasonic depth gauge for liquids under high pressure and is particularly useful in the space industry where it is necessary to use a pressurized gas to transfer a liquid from one location to another. Conventional liquid depth gauges do not have the capability to operate under extreme high pressure (i.e., exceeding 300 psi). An ultrasonic depth gauge capable of withstanding high pressure according to the present invention is comprised of a transducer assembly and a supporting electronics unit. The former is mounted in to the bottom wall of a storage vessel with its resonating surface directly exposed to the highly pressurized liquid in the vessel. In operation, the ultrasonic pulse propagates upward through the liquid to the liquid-gas interface in the storage vessel. When the ultrasonic echo returns from the liquid-gas interface, it re-excites the composite resonator into vibration. The supporting electronics unit measures the round-trip transmit time for the ultrasonic pulse and its return echo to traverse the depth of the highly pressurized liquid. The novelty of the invention resides in the use of a conventional transducer rigidly bonded to the inside wall of a bored out conventional high-pressure plug to form a composite resonator capable of withstanding extremely high pressure.

  13. High pressure calorimetric studies of gas-polymer interactions

    Science.gov (United States)

    Banerjee, Tapan

    Gas sorption in polymeric materials is marked by mass uptake, volume dilation and enthalpy release. The enthalpy of sorption is a measure of polymer-penetrant interactions that complements mass uptake and volume dilation. We have developed a novel technique for direct measurement of enthalpy release, diffusion coefficient of gases and glass transition temperature of polymers in the presence of gas by high pressure microcalorimeter. Polymers used in this study are: bisphenol-A polycarbonate (PC), tetramethyl polycarbonate, tetrachloro polycarbonate, tetrabromo polycarbonate, poly(methyl methacrylate) and poly-dimethyl siloxane (PDMS). Gas used in the study is COsb2. Sorption is an exothermic phenomena. The heat of sorption in PDMS is constant at -1.5 kcal/mole, up to 300 psig and does not change upon depressurization. In PC, the heat of sorption changes from -3.4 kcal/mole during pressurization to -7.2 kcal/mole during depressurization due to presence of excess free volume regions in the glassy polycarbonate. The magnitude of enthalpy of sorption increases with conditioning pressure. Enthalpy of carbon dioxide sorption in polycarbonate substitutes are measured All samples were preconditioned with COsb2 at 300 psig and 35sp°C for 24 hours. The magnitude of the heat of sorption does not correlate well with polymer free volume, gas solubility or gas partial molar volume. The results suggest that free volume regions are not uniformly accessible. The transient signal from enthalpy of sorption experiment is used to extract diffusion coefficient. The diffusivities appear to be independent of sorbed gas concentration due to thermal inertia of the instrument although a increasing trend is expected. Glass transition temperature of polymers in the presence of high pressure COsb2 is measured. Tsbg measurements of the COsb2 - Poly(methyl methacrylate) system as a function g of gas phase pressure were made. Foaming appears to interfere with Tsbg measurement at the highest gas

  14. Safety analysis of high pressure gasous fuel container punctures

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  15. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  16. High-pressure vapor-liquid equilibrium data for CO2-orange peel oil

    Directory of Open Access Journals (Sweden)

    G.R. Stuart

    2000-06-01

    Full Text Available Recently, there has been a growing interest in fractionating orange peel oil by the use of supercritical carbon dioxide (SCCO2. However, progress in this area has been hindered by the lack of more comprehensive work concerning the phase equilibrium behavior of the SCCO2-orange peel oil system. In this context, the aim of this work is to provide new phase equilibrium data for this system over a wide range of temperatures and pressures, permitting the construction of coexistence PT-xy curves as well as the P-T diagram. The experiments were performed in a high-pressure variable-volume view cell in the temperature range of 50-70ºC from 70 to 135 atm and in the CO2 mass fraction composition range of 0.35-0.98. Based on the experimental phase equilibrium results, appropriate operating conditions can be set for high-pressure fractionation purposes.

  17. High Pressure Reduction of Selenite by Shewanella oneidensis MR-1

    Science.gov (United States)

    Picard, A.; Daniel, I.; Testemale, D.; Letard, I.; Bleuet, P.; Cardon, H.; Oger, P.

    2007-12-01

    High-pressure biotopes comprise cold deep-sea environments, hydrothermal vents, and deep subsurface or deep-sea sediments. The latter are less studied, due to the technical difficulties to sample at great depths without contamination. Nevertheless, microbial sulfate reduction and methanogenesis have been found to be spatially distributed in deep deep-sea sediments (1), and sulfate reduction has been shown to be actually more efficient under high hydrostatic pressure (HHP) in some sediments (2). Sulfate-reducing bacteria obtained from the Japan Sea are characterized by an increased sulfide production under pressure (3,4). Unfortunately, investigations of microbial metabolic activity as a function of pressure are extremely scarce due to the experimental difficulty of such measurements at high hydrostatic pressure. We were able to measure the reduction of selenite Se(IV) by Shewanella oneidensis MR-1 as a function of pressure, to 150 MPa using two different high-pressure reactors that allow in situ X-ray spectroscopy measurements on a synchrotron source. A first series of measurements was carried out in a low-pressure Diamond Anvil Cell (DAC) of our own design (5) at ID22 beamline at ESRF (European Synchrotron Radiation Facility); a second one was performed in an autoclave (6) at the BM30B beamline at ESRF. Selenite reduction by strain MR-17 was monitored from ambient pressure to 150 MPa over 25 hours at 30 deg C by XANES spectroscopy (X-ray Analysis of Near Edge Structure). Spectra were recorded hourly in order to quantify the evolution of the oxidation state of selenium with time. Stationary-phase bacteria were inoculated at a high concentration into fresh growth medium containing 5 or 10 M of sodium selenite and 20 mM sodium lactate. Kinetic parameters of the Se (IV) reduction by Shewanella oneidensis strain MR-1 could be extracted from the data, as a function of pressure. They show 1) that the rate constant k of the reaction is decreased by a half at high pressure

  18. High pressure and microwave based synthesis of transition metal pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Pobel, Roman Rupert

    2016-04-11

    The goal of this thesis was to explore the possibilities of synthetic methods that are not very common in current transition metal pnictide research. The substitution of the Ca-site in CaFe{sub 2}As{sub 2} with rare earth elements such as Pr the has been reported to induce superconductivity. However, some inconsistencies in the data suggested a non-intrinsic origin of the observed diamagnetic signal. Furthermore a solubility limit of 13% was found when prepared in an electrical furnace thus leaving a huge part of the physical phase diagram inaccessible. A high pressure/high temperature synthesis was developed to allow access to the whole doping range and an in-depth characterization of this compound was carried out. During the experiments concerning the high pressure synthesis of Ca{sub 1-x}Pr{sub x}Fe{sub 2}As{sub 2} the new ternary iron arsenide CaFe{sub 5}As{sub 3} was identified and classified as a member of the Ca{sub n(n+1)/2}(Fe{sub 1-x}M{sub x}){sub (2+3n)}M'{sub n(n-1)/2}As{sub (n+1)(n+2)/2} (n = 1-3; M =Nb, Pd, Pt; M' = □, Pd, Pt) family. The complete solid solution Ca{sub 1-x}Pr{sub x}Fe{sub 5}As{sub 3} (O ≤ x ≤ 1) was prepared and physically characterized. Furthermore, several useful techniques were developed to aid in future high pressure based investigations of transition metal pnictides. The second part of this thesis concerns a completely different, but equally promising synthetic approach. Microwave based synthesis is a well-established technique in many solution based fields, such as organic, medicinal or nano chemistry. For solid state and materials research several parameters and particularities have to be considered. But when successful, it allows for the reduction of reaction time by several orders of magnitude. It has very rarely been applied in the preparation of pnictides and on1y once in the context of pnictide superconductor research. The possibilities of this method were explored and employed in the preparation of several

  19. Effect of high pressure on the relaxation dynamics of glass-forming liquids

    International Nuclear Information System (INIS)

    Paluch, M; Grzybowska, K; Grzybowski, A

    2007-01-01

    A glass is usually formed by cooling a liquid at a rate sufficient to avoid crystallization. In the vicinity of the glass transition the structural relaxation time increases with lowering temperature in a non-Arrhenius fashion and the structural relaxation function reveals a non-Debye behaviour. However, liquid can be also vitrified by keeping it at a constant temperature and increasing the pressure. This pressure-induced transition to the glassy state is also accompanied by dramatic changes in the relaxation dynamics. Herein we discuss the behaviour of the structural relaxation times of glass-forming liquids and polymer melts under high pressure

  20. Elastic properties of crystalline and liquid gallium at high pressures

    International Nuclear Information System (INIS)

    Lyapin, A. G.; Gromnitskaya, E. L.; Yagafarov, O. F.; Stal'gorova, O. V.; Brazhkin, V. V.

    2008-01-01

    The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson's ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson's ratio exhibits a jump from typically covalent values of approximately 0.22-0.25 to values of approximately 0.32-0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a 'quasi-molecular' (partially covalent) metal state to a 'normal' metal state. An increase in the Poisson's ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G(p) with increasing pressure and an increase in the slope of the isobaric

  1. Report of National Research Institute for Pollution and Resources for fiscal 1979. Research on conversion of coal to petroleum, research on coal liquefaction, high pressure liquid phase hydrogenation of coal by continuous test equipment, and manufacture of coal chemicals; 1979 nendo sekitan no yuka no kenkyu / sekitan no ekika no kenkyu / renzoku shiken sochi ni yoru sekitan no koatsu ekiso suisoka bunkai / coal chemicals no seizo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    Research was conducted on conversion of coal to petroleum for the purpose of securing substitute liquid fuel. Recovery of hydrogen from the waste gas from the conversion process was explained, as were the conversion results from various coals produced in Japan. In coal liquefaction researches with the aim of manufacturing artificial petroleum, a report was made on each of the researches, i.e., the experiment results of coal liquefaction using various catalysts, manufacture of hydrogen by water gas reaction, catalytic action against coal paste, action of mixed oil and pressure against coal paste, result of hydrogen adding test for coal paste using an intermediate scale device, test result of secondary hydrogen addition for coal liquefied oil, and the test result of continuous secondary hydrogen addition for the liquefied oil. In the manufacture of fuel oil by hydro-cracking of coal or tar, a report was made on high pressure liquid phase hydrogenation of coal using a continuous testing device. Aromatic chemicals useful as chemical materials are supposed to be obtained by cutting inter-polymerized-unit bonding to make low molecules from the chemical structure of coal, removing surrounding radicals and simplifying it. A report was also made on the experiment of manufacturing coal chemicals by combination of high pressure liquid phase hydrogenation and hydro-dealkylation. (NEDO)

  2. The high pressure gas Cerenkov counter at the Omega Facility.

    CERN Multimedia

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  3. Bio-Hemostat-Acute Treatment Modality for High Pressure Hemorrhage

    National Research Council Canada - National Science Library

    Carr, Marcus

    2002-01-01

    Bleeding from an artery is difficult to control due to the high pressures found in the arterial system Hemorrhage is especially problematic in penetrating wounds where the bleeding source may not be...

  4. Novel High Pressure Pump-on-a-Chip Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc proposes to develop a novel high pressure "pump-on-a-chip" and "valve-on-a-chip" microfluidic technology for NASA planetary science...

  5. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  6. Accompanied consultations in occupational health.

    Science.gov (United States)

    Hobson, J; Hobson, H; Sharp, R

    2016-04-01

    Accompanied consultations are often reported as difficult by occupational physicians but have not been studied in the occupational health setting. To collect information about accompanied consultations and the impact of the companion on the consultation. We collected data on all accompanied consultations by two occupational physicians working in a private sector occupational health service over the course of 16 months. Accompanied consultations were matched to non-accompanied consultations for comparison. We collected data on 108 accompanied consultations. Accompanied consultations were more likely to be connected with ill health retirement (P Occupational health practitioners may benefit from better understanding of accompanied consultations and guidance on their management. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. High pressure dielectric studies on the structural and orientational glass.

    Science.gov (United States)

    Kaminska, E; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M

    2016-02-07

    High pressure dielectric studies on the H-bonded liquid D-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-D-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both D-glucose and 1,6-anhydro-D-glucose. Although it should be noted that ∂Tg(0)/∂p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of D-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-D-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-D-glucose. This result mimics the impact of pressure on the

  8. The system BaOGeO 2 at high pressures and temperatures, with special reference to high-pressure transformations in BaGeO 3, BaGe 2O 5, and Ba 2Ge 5O 12

    Science.gov (United States)

    Ozima, Mituko; Susaki, Jun-Ichi; Akimoto, Syun-Iti; Shimizu, Yoshio

    1982-10-01

    Phase relations in the system BaOGeO 2 were investigated in the pressure range 20-70 kbar in the temperature range 750-1200°C. Several new phases were identified in this system: an atmospheric phase of BaGe 2O 5 (monoclinic BaGe 2O 5 I), two high-pressure phases of BaGe 2O 5 (monoclinic BaGe 2O 5 II and tetragonal BaGe 2O 5 III), and a high-pressure phase of Ba 2Ge 5O 12. The phase boundary curve between BaGe 2O 5 II and BaGe 2O 5 III was preliminarily determined as P(kbar) = 7.7 + 0.047 T (°C). The high-pressure phases of BaGeO 3, which were previously reported by Y. Shimizu, Y. Syono, and S. Akimoto ( High Temp.-High Pressures2, 113 (1970)) in the pressure range 15-95 kbar, were interpreted to be not single-phase materials but complicated mixtures of more than two phases in the system BaOGeO 2. X-Ray powder diffraction data for the new compounds synthesized in this study are given.

  9. The Working Principle and Use of High Pressures in the Food Industry

    Directory of Open Access Journals (Sweden)

    Karlović, S.

    2010-11-01

    Full Text Available High pressure in the food industry, as a new non-thermal method, is applied in many phases of food processing. This new non-thermal technology was developed in the 1990s. The main advantages of high-pressure processing are in the short time of processing which is between a few seconds and 30 minutes. Processing of solid or liquid food products with or without packaginghappens in the temperature interval 5 – 90 °C, and pressures 50 – 1000 MPa. The driving pressure is distributed uniformly through the whole product independently of its quantity and shape. These processing characteristics combined with improved food microbiological safety, less energy expenditure, low concentration of waste products and longer shelf life make high-pressure processing a very promising novel food technology. Combined with lower cost of treatment (but unfortunately higher initial cost of equipment compared to traditional processing technologies, it is also economically profitable. The main purpose of such treated food products are in preservation of sensory, nutritive and textural properties. As the temperature increase is very low, there are no significant changes in sensory properties, in contrast to conventional thermal processing (sterilization, pasteurization. However, with the combination of heating or cooling and high pressure, modification of existing and creation of new food products is possible. Today, high pressure is used for the treatment of meat products (inactivation of microorganisms, freezing and defrosting of foodstuffs, production of fruit juices (pasteurization, processing of oysters, modificationof milk characteristics (foaming etc. The main purpose of this work is to present the working principle and application of high pressure in the food industry.

  10. Model of Structural Fragmentation Induced by High Pressure Torsion

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin; Sedláček, R.

    2010-01-01

    Roč. 25, č. 1 (2010), s. 88-98 ISSN 1606-5131 Institutional research plan: CEZ:AV0Z10750506 Keywords : High-pressure torsion * intergranular glide * homogeneous deformation mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.649, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/kruzik-model of structural fragmentation induced by high pressure torsion.pdf

  11. Neutron diffraction under high pressure and high temperature

    International Nuclear Information System (INIS)

    Komatsu, Kazuki

    2010-01-01

    Neutron diffraction study under high pressure and high temperature is reviewed from the technical point of view. Particularly, cell assembly for the high-PT neutron diffraction using a Paris-Edinburgh cell with the temperature calibration by neutron resonance spectroscopy is introduced. Notes on the errors relevant to high pressure and high temperature experiments in both monochromatic angle dispersive and time-of-flight methods are also discussed. (author)

  12. Thermal neutron scattering studies of condensed matter under high pressures

    International Nuclear Information System (INIS)

    Carlile, C.J.; Salter, D.C.

    1978-01-01

    Although temperature has been used as a thermodynamic variable for samples in thermal neutron scattering experiments since the inception of the neutron technique, it is only in the last decade that high pressures have been utilised for this purpose. In the paper the problems particular to this field of work are outlined and a review is made of the types of high-pressure cells used and the scientific results obtained from the experiments. 103 references. (author)

  13. Practical conditions in the neutron diffraction under high pressure

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Ohashi, Masayoshi

    1993-01-01

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  14. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  15. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  16. Anomalous lattice compression and magnetic ordering in CuO at high pressures: A structural study and first-principles calculations

    Science.gov (United States)

    Kozlenko, D. P.; DruŻbicki, K.; Kichanov, S. E.; Lukin, E. V.; Liermann, H.-P.; Glazyrin, K. V.; Savenko, B. N.

    2017-02-01

    The structural and magnetic properties of multiferroic CuO have been studied by means of neutron and x-ray powder diffraction at pressures up to 11 and 38 GPa, respectively, and by first-principles theoretical calculations. Anomalous lattice compression is observed, with enlargement of the lattice parameter a , reaching a maximum at P = 13 GPa , followed by its reduction at higher pressures. The lattice distortion of the monoclinic structure at high pressures is accompanied by a progressive change of the oxygen coordination around Cu atoms from the square fourfold towards the octahedral sixfold coordination. The pressure-induced evolution of the structural properties and electronic structure of CuO was successfully elucidated in the framework of full-electronic density functional theory calculations with range-separated HSE06, and meta-generalized gradient approximation hybrid M06 functionals. The antiferromagnetic (AFM) ground state with a propagation vector q = (0.5 , 0 , -0.5 ) remains stable in the studied pressure range. From the obtained structural parameters, the pressure dependencies of the principal superexchange magnetic interactions were analyzed, and the pressure behavior of the Néel temperature as well as the magnetic transition temperature from the intermediate incommensurate AFM multiferroic state to the commensurate AFM ground state were evaluated. The estimated upper limit of the Néel temperature at P = 38 GPa is about 260 K, not supporting the previously predicted existence of the multiferroic phase at room temperature and high pressure.

  17. Low-temperature single crystal X-ray diffraction and high-pressure Raman studies on [(CH 3) 2NH 2] 2[SbCl 5

    Science.gov (United States)

    Bujak, Maciej; Angel, Ross J.

    2007-11-01

    The structure of bis(dimethylammonium) pentachloroantimonate(III), [(CH 3) 2NH 2] 2[SbCl 5], BDP, was studied at 15 K and ambient pressure by single-crystal X-ray diffraction as well as at ambient temperature and high pressures up to 4.87(5) GPa by Raman spectroscopy. BDP crystallizes in the orthorhombic Pnma space group with a=8.4069(4), b=11.7973(7), c=14.8496(7) Å, and Z=4; R1=0.0381, w R2=0.0764. The structure consists of distorted [SbCl 6] 3- octahedra forming zig-zag [{SbCl 5} n] 2 n- chains that are cross-linked by dimethylammonium [(CH 3) 2NH 2] + cations. The organic and inorganic substructures are bound together by the N-H…Cl hydrogen bonds. The distortions of [SbCl 6] 3- units increase, partly due to the influence of the hydrogen bonds which became stronger, with decreasing temperature. The preliminary room temperature, high-pressure X-ray diffraction experiments suggest that BDP undergoes a first-order phase transition below ca. 0.44(5) GPa that destroys single-crystal samples. The transition is accompanied by changes in the intensities and positions of the Raman lines below 400 cm -1.

  18. Neutron and high-pressure X-ray diffraction study of hydrogen-bonded ferroelectric rubidium hydrogen sulfate.

    Science.gov (United States)

    Binns, Jack; McIntyre, Garry J; Parsons, Simon

    2016-12-01

    The pressure- and temperature-dependent phase transitions in the ferroelectric material rubidium hydrogen sulfate (RbHSO 4 ) are investigated by a combination of neutron Laue diffraction and high-pressure X-ray diffraction. The observation of disordered O-atom positions in the hydrogen sulfate anions is in agreement with previous spectroscopic measurements in the literature. Contrary to the mechanism observed in other hydrogen-bonded ferroelectric materials, H-atom positions are well defined and ordered in the paraelectric phase. Under applied pressure RbHSO 4 undergoes a ferroelectric transition before transforming to a third, high-pressure phase. The symmetry of this phase is revised to the centrosymmetric space group P2 1 /c, resulting in the suppression of ferroelectricity at high pressure.

  19. High pressure stability analysis and chemical bonding of Ti1-xZrxN alloy: A first principle study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti 1-x Zr x N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti 1-x Zr x N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  20. Glassy selenium at high pressure: Le Chatelier's principle still works

    Science.gov (United States)

    Brazhkin, V. V.; Tsiok, O. B.

    2017-10-01

    Selenium is the only easily vitrified elementary substance. Numerous experimental studies of glassy Se (g -Se) at high pressures show a large spread in the data on the compressibility and electrical resistivity of g -Se. Furthermore, H. Liu et al. [Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] have arrived at the surprising conclusion that the volume of glass increases during pressure-induced crystallization. We have performed high-precision measurements of the specific volume and electrical resistivity of glassy selenium (g -Se) at high hydrostatic pressures up to 9 GPa. The measured bulk modulus at normal pressure is B =(9.0 5 ±0.15 ) GPa and its pressure derivative is BP'=6.4 ±0.2 . In the pressure range P <3 GPa, glassy selenium has an anomalously large negative second derivative of the bulk modulus. The electrical resistivity of g -Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at a pressure of 8.75 GPa. The inelastic behavior and weak relaxation of the volume for g -Se begin at pressures above 3.5 GPa; the volume and logarithm of the electrical resistivity relax significantly (logarithmically with the time) at pressures above 8 GPa. Bulk measurements certainly indicate that the volume of g -Se glass in the crystallization pressure range is larger than the volumes of both appearing crystalline phases (by 2% and 4%). Therefore, the "volume expansion phenomenon" suggested in [H. Liu et al., Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] is not observed, and the pressure-induced crystallization of glassy selenium is consistent with the laws of thermodynamics.

  1. Micro-characterisation of Si wafers by high-pressure thermopower technique

    International Nuclear Information System (INIS)

    Ovsyannikov, Sergey V.; Shchennikov Jr, Vsevolod V.; Shaydarova, Nadezda A.; Shchennikov, Vladimir V.; Misiuk, Andrzej; Yang Deren; Antonova, Irina V.; Shamin, Sergey N.

    2006-01-01

    In the present work a set of Czochralski-grown silicon wafers (Cz-Si) differently pre-treated (annealed at high temperatures in pressure medium, doped with nitrogen, implanted with high-energy hydrogen ions) has been characterised by high-pressure thermopower S technique in the phase transitions region (0-20GPa). The shifts were observed in pressure of semiconductor-metal phase transition P t determined from the S(P) under pre-treatments. For the first time, correlation dependence has been established between high-pressure thermoelectric properties on the one hand and concentration of residual interstitial oxygen c O (which is always present in Cz-Si) on the other hand. The dependence exhibited a maximum of P t near c O ∼9x10 17 cm -3

  2. High-pressure high-temperature experiments on delta-MoN

    International Nuclear Information System (INIS)

    Bezinge, A.; Geneva Univ.; Yvon, K.; Muller, J.; Lengauer, W.; Ettmayer, P.

    1987-01-01

    High-pressure (6 GPa) high-temperature (1800 K) experiments on hexagonal delta-MoN were performed in an attempt to transform this phase to the cubic B1-MoN phase. No transformation was observed. The structure of delta-MoN after the high-pressure treatment was refined from X-ray powder diffraction data and found to consist of a NiAs-type related arrangement of Mo atoms which form triangular clusters and N atoms which are situated in trigonal prismatic holes. The superconducting critical temperature reached Tsub(c) =15.1 K. These are the first measurements on well characterized delta-MoN samples (author)

  3. Structure and stability of hydrous minerals at high pressure

    Science.gov (United States)

    Duffy, T. S.; Fei, Y.; Meade, C.; Hemley, R. J.; Mao, H. K.

    1994-01-01

    The presence of even small amounts of hydrogen in the Earth's deep interior may have profound effects on mantle melting, rheology, and electrical conductivity. The recent discovery of a large class of high-pressure H-bearing silicates further underscores the potentially important role for hydrous minerals in the Earth's mantle. Hydrogen may also be a significant component of the Earth's core, as has been recently documented by studies of iron hydride at high pressure. In this study, we explore the role of H in crystal structures at high pressure through detailed Raman spectroscopic and x ray diffraction studies of hydrous minerals compressed in diamond anvil cells. Brucite, Mg(OH)2, has a simple structure and serves as an analogue for the more complex hydrous silicates. Over the past five years, this material has been studied at high pressure using shock-compression, powder x ray diffraction, infrared spectroscopy, Raman spectroscopy, and neutron diffraction. In addition, we have recently carried out single-crystal synchrotron x-ray diffraction on Mg(OH)2 and Raman spectroscopy on Mg(OD)2 at elevated pressure. From all these studies, an interesting picture of the crystal chemical behavior of this material at high pressure is beginning to emerge. Some of the primary conclusions are as follows: First, hydrogen bonding is enhanced by the application of pressure. Second, layered minerals which are elastically anisotropic at low pressure may not be so at high pressure. Furthermore, the brucite data place constraints on the effect of hydrogen on seismic velocities and density at very high pressure. Third, the stability of hydrous minerals may be enhanced at high P by subtle structural rearrangements that are difficult to detect using traditional probes and require detailed spectroscopic analyses. Finally, brucite appears to be unique in that it undergoes pressure-induced disordering that is confined solely to the H-containing layers of the structure.

  4. Electrical resistivity of CeTIn{sub 5} (T=Rh, Ir) under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Takaki; Kobayashi, Tatsuo C.; Shimizu, Katsuya; Amaya, Kiichi; Aoki, Dai; Haga, Yoshinori; Onuki, Yoshichika

    2003-05-15

    We have studied the superconducting properties of CeTIn{sub 5} (T=Rh, Ir) under high pressures by means of electrical resistivity measurements and determined the pressure-temperature phase diagrams for the superconducting transition. For both systems, the superconductivity exists in a wide pressure range, 1.5{<=}P{<=}6.5 GPa for CeRhIn{sub 5} and 0{<=}P{<=}5.2 GPa for CeIrIn{sub 5}.

  5. Clinoenstatite in alpe arami peridotite: additional evidence of very high pressure

    Science.gov (United States)

    Bozhilov; Green; Dobrzhinetskaya

    1999-04-02

    Observations by transmission electron microscopy show that lamellae of clinoenstatite are present in diopside grains of the Alpe Arami garnet lherzolite of the Swiss Alps. The simplest interpretation of the orientation, crystallography, and microstructures of the lamellae and the phase relationships in this system is that the lamellae originally exsolved as the high-pressure C-centered form of clinoenstatite. These results imply that the rocks were exhumed from a minimum depth of 250 kilometers before or during continental collision.

  6. Nitric acid dihydrate at ambient and high pressure: An experimental and computational study

    International Nuclear Information System (INIS)

    Walker, Martin; Pulham, Colin R.; Morrison, Carole A.; Allan, David R.; Marshall, William G.

    2006-01-01

    The high pressure structural behavior of nitric acid dihydrate ([H 3 O] + ·[NO 3 ] - ·H 2 O) has been investigated up to 3.8 GPa using single crystal x-ray diffraction and neutron powder diffraction techniques. A new structural phase has been identified above 1.33 GPa and this has been further studied by ab initio quantum mechanical calculations. These have guided the refinement by neutron powder diffraction

  7. Predicted reentrant melting of dense hydrogen at ultra-high pressures

    OpenAIRE

    Geng, Hua Y.; Wu, Q.

    2016-01-01

    The phase diagram of hydrogen is one of the most important challenges in high-pressure physics and astrophysics. Especially, the melting of dense hydrogen is complicated by dimer dissociation, metallization and nuclear quantum effect of protons, which together lead to a cold melting of dense hydrogen when above 500?GPa. Nonetheless, the variation of the melting curve at higher pressures is virtually uncharted. Here we report that using ab initio molecular dynamics and path integral simulation...

  8. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  9. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  10. Experimental studies on radiation effects under high pressure oxygen

    International Nuclear Information System (INIS)

    Fujimura, Eisuke

    1974-01-01

    The effect of oxygen tension on the radiosensitivity of tumor cells is well known, but its clinical application for radiotherapy is not yet established. Rabbits with V x 2 carcinoma in the maxilla were irradiated by 60 Co under high pressure oxygen (experimental group), and compared with those treated in air (control group). For the purpose of examining the clinical effects of high pressure oxygen, an experiment was made in vivo. The following items were compared respectively: a) Tumor regression effect b) Tumor clearance rate c) Survival days d) Half size reduction time e) Inhibition of DNA synthesis in the tumor tissue. Results obtained were as follows: a) 56 per cent of animals showed tumor regression in the experimental group, whereas it occured 26 per cent in the control group. b) 53 per cent of animals showed tumor disappearance in the experimental group, while it was observed only in 13 per cent in the control group. c) Only 2 of 30 rabbits irradiated in air survived over 180 days, whereas 11 of 30 rabbits survived meanwhile in the group irradiated under high pressure oxygen. d) About 11 days were necessary to reduce the tumor size by half after irradiation in the group under high pressure oxygen, while it took 17 days in the group treated in normal air. e) DNA synthesis was inhibited more prominently in the group irradiated under high pressure oxygen in normal air. (author)

  11. High-pressure neutron diffraction studies at LANSCE

    International Nuclear Information System (INIS)

    Zhao, Yusheng; Zhang, Jianzhong; Xu, Hongwu; Lokshin, Konstantin A.; He, Duanwei; Qian, Jiang; Pantea, Cristian; Daemen, Luke L.; Vogel, Sven C.; Ding, Yang; Xu, Jian

    2010-01-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials science, and earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at the Los Alamos Neutron Science Center (LANSCE) to conduct in situ high-P-T neutron diffraction experiments. We have developed a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high P. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometry. More recently, we have developed high-P low-T gas/liquid cells in conjunction with neutron diffraction. These techniques enable in situ and real-time examination of gas uptake/release processes and allow accurate, time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equations of state, structural phase transitions, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation/decomposition kinetics of methane, CO 2 and hydrogen hydrate clathrates, and hydrogen/CO 2 adsorption of inclusion compounds such as metal-organic frameworks (MOFs). The aim of our research is to accurately map out phase relations and determine structural parameters (lattice constants, atomic positions, atomic thermal parameters, bond lengths, bond angles, etc.) in the P-T-X space. We are developing further high-P-T technology with a new 2000-ton press, TAPLUS-2000, and a ZIA (Deformation-DIA type) cubic anvil package to routinely achieve pressures up to 20 GPa and temperatures up to 2000 K. The design of a dedicated high-P neutron beamline, LAPTRON, is also underway for simultaneous high-P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high-pressure

  12. High-pressure x-ray studies of the UCo sub 3 B sub 2 compound and ambient magnetic properties

    CERN Document Server

    Sterer, E; Ettedgui, H; Caspi, E N

    2002-01-01

    Substituting B for Co in the strong permanent magnet materials ACo sub 5 (A Ln or U) substantially modifies the magnetic properties as a function of the B/Co ratio. Preliminary neutron diffraction studies on TbCo sub 3 B sub 2 show site-dependent magnetic moments for both the Tb and the Co atoms. The changing interatomic distances and magnetic properties with changing B/Co ratio lead to a rich magnetic phase diagram as a function of pressure. It is our intention to study some of these materials using high-pressure Moessbauer spectroscopy in the future. As a preliminary step it is essential to study the high-pressure crystallographic phase diagram of these materials. This work shows preliminary high-pressure crystallographic results on UCo sub 3 B sub 2 to 42 GPa, indicating a phase transition around 6 GPa.

  13. Security of bottle to fill in a high pressure air

    Science.gov (United States)

    Todic, M.; Latinovic, T.; Golubovic-Bugarski, V.; Majstorovic, A.

    2018-01-01

    Charging the bottle of high pressure air isolation devices is performed by a high-pressure compressor. The charging time is in function of the compressor capacity and the intensity of the nominal pressure of the air in the bottle. However, in accident situations this time is long and therefore high-pressure accumulators are used where the filling time of the bottle of isolation apparatus has been drastically reduced. Due to the short filling time of the bottle through the air flow, there is a thermodynamic load of bottle material that could endanger the safety of users and other participants in the area. It is therefore necessary to determine the critical parameters of the rapid charge and their intensity.

  14. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  15. Diagnostics and modeling of high pressure streamer induced discharges

    International Nuclear Information System (INIS)

    Marode, E.; Dessante, P.; Deschamps, N.; Deniset, C.

    2001-01-01

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  16. High pressure common rail injection system modeling and control.

    Science.gov (United States)

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Invitation to neutron scattering study at ultra high pressure

    International Nuclear Information System (INIS)

    Hamaya, Nozomu

    2006-01-01

    Understanding of the pressure evolution of physical and chemical properties of hydrogen is the ultimate goal of the high pressure science. This purpose has simulated the development of low-temperature high-pressure technique for neutron diffraction study. With benefit of high intensity neutron sources a new diamond anvil cell (DAC) has been invented by I.N. Goncharenko. This device allows us to study neutron diffraction under extreme conditions of pressures up to 50 GPa, temperatures down to 0.1 K and applied magnetic fields up to 7.5 T. We describe the details of this technique in the hope that J-PARC (Japan Proton Accelerator Research Complex) will make an epoch in ultra-high-pressure research. (author)

  18. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  19. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    International Nuclear Information System (INIS)

    1997-01-01

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky trademark pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust

  20. NMR studies of liquids and disordered solids at high pressure. [Pulsed and high-pressure techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fury, Michael Andrew [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    Molecular reorientation and translation in molecular liquids was studied. A dominant premise in these studies was that, except in strongly hydrogen-bonded systems such as water, the dynamics of a liquid may be considered to be a series of impulsive collisions. Details of the behavior would be dominated by the shape and size of the molecules under constant packing conditions. The second area of effort was in the plastic crystalline solid phase of two globular molecules, adamantane and cyclohexane. The NMR technique was used in these studies to measure self-diffusion coefficients and spin-lattice relaxation times. The applicability of pulsed NMR techniques to the study of the kinetics of order--disorder phase transitions in solid adamantane was demonstrated.

  1. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...... the wurtzite phase was retained up to 60 GPa in the case of nanocrystalline GaN. The bulk moduli for the wurtzite phases were determined to be 187 ( 7) and 319 ( 10) GPa for the bulk- and nanocrystalline phases, respectively, while the respective NaCl phases were found to have very similar bulk moduli [ 208...... ( 28) and 206 ( 44) GPa]....

  2. High-pressure hydrogen materials compatibility of piezoelectric films

    Science.gov (United States)

    Alvine, K. J.; Shutthanandan, V.; Bennett, W. D.; Bonham, C. C.; Skorski, D.; Pitman, S. G.; Dahl, M. E.; Henager, C. H.

    2010-11-01

    Hydrogen is well known for materials compatibility issues, including blistering and embrittlement in metals, which are challenges for its use as the next-generation "green" fuel. Beyond metals, hydrogen also degrades piezoelectric materials used as actuators used in direct injection hydrogen internal combustion engines. We present the materials compatibility studies of piezoelectric films in high-pressure hydrogen environments. Absorption of high-pressure hydrogen and composition changes were studied with an elastic recoil detection analysis and Rutherford back-scattering spectrometry in lead zirconate titanate and barium titanate thin films. Hydrogen surface degradation in the form of blistering and Pb mixing was also observed.

  3. Structural changes in tetracyanoethylene at high pressures: neutron diffraction study

    International Nuclear Information System (INIS)

    Mukhopadhyay, R.; Chaplot, S.L.

    2002-01-01

    We report on structural changes in monoclinic tetracyanoethylene, C 2 (CN) 4 as studied by in situ high-pressure (0-5 GPa) neutron powder diffraction experiments. Structural parameters were obtained by Rietveld profile refinement of the diffraction pattern up to P=2.5 GPa. Above this pressure the width parameter is found to diverge, indicating pressure-induced disordering at 2.5 GPa. The recovered sample, on release of pressure from 5 GPa, is found to have transformed to a graphite-like amorphous structure. The transformation to a graphite-like material has been verified by an independent high-pressure x-ray diffraction experiment. (author)

  4. Calculation of cooling tower plumes for high pressure wintry situations

    International Nuclear Information System (INIS)

    Gassmann, F.; Tinguely, M.; Haschke, D.

    1982-12-01

    The diffusion of the plumes of the projected nuclear power plants at Kaiseraugst and Schwoerstadt, during high pressure wintry conditions, has been examined using a mathematical model to simulate the plumes. For these calculations, microaerological measurements were made in the proximity of Kaiseraugst and Schwoerstadt. These give a typical image of the weather during high pressure wintry conditions, which is normally associated with an inversion, sometimes strong, at a low height. Dry cooling towers with natural draught, which offer an alternative solution to the wet cooling towers proposed for Kasieraugst, are examined equally. (Auth./G.T.H.)

  5. High-pressure-low-temperature x-ray power diffractometer.

    Science.gov (United States)

    Syassen, K; Holzapfel, W B

    1978-08-01

    A high-pressure technique for x-ray diffraction studies at low temperatures is described. The system consists of a Bridgman anvil type high-pressure device with either tungsten carbide or boron carbide anvils, a liquid He cryostat, and x-ray diffractometer operating in Debye-Scherrer geometry. The newly developed boron carbide anvil cell is capable of containing a liquid pressure transmitting medium. The precision of the lattice parameter determination is discussed and the effect of nonisostatic stress components on the diffraction pattern is examined.

  6. Elasticity of Hydrous Aluminosilicate Mineral, Topaz-OH (Al2SiO4(OH)2) at High Pressures

    Science.gov (United States)

    Hariharan, A.; Mookherjee, M.; Tsuchiya, J.

    2015-12-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons. Upon full geometry optimization, we find that there are two distinct crystal structures for the topaz-OH. The first crystal structure has an orthorhombic Pbnm space group symmetry, and the second crystal structure has a monoclinic P21/c space group symmetry. At static conditions, the monoclinic (P21/c) topaz-OH has lower energy compared to the orthorhombic (Pbnm) topaz-OH. The energy of the monoclinic (P21/c) topaz-OH remains stable at least up to 40 GPa, i.e., pressures beyond the thermodynamic stability of the topaz-OH. Based on the results from first principles simulation, the equation of state for the monoclinic topaz-OH is well represented by a third-order Birch-Murnaghan formulation, with V0 = 348.63 (±0.04) Å3, K0 = 164.7 (±0.04) GPa, and K'0 = 4.24 (±0.05). The equation of state for the orthorhombic topaz-OH is well represented by a third-order Birch-Murnaghan formulation, with V0 = 352.47 (±0.04) Å3, K0 = 166.4 (±0.06) GPa, and K'0 = 4.03 (±0.04). While the bulk modulus is very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic moduli are very sensitive to the position of the proton and the orientation of the hydroxyl (O-H) groups. In the hydrated sedimentary layer of a subducting slab, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to

  7. Equilibrium Iron Isotope Fractionation at Ultra-High Pressures: Focus on Mantle-Core Differentiation. (Invited)

    Science.gov (United States)

    Polyakov, V. B.

    2009-12-01

    Iron isotope fractionation studies provide an insight into chemical and phase transformations accompanying high-pressure core-mantle differentiation processes in planetary interiors. A method for determination of equilibrium iron isotope fractionation factors (β-factors) at wide range of pressures (up to ~ 150 GPa) was recently established (Polyakov et al., 2005, 2007; Polyakov 2009). The method consists in obtaining 57Fe partial vibration densities of states (PVDOS) at different pressures from synchrotron inelastic nuclear resonance x-ray scattering (INRXS) experiments followed by calculations of iron β-factors from the 57Fe PVDOS. Using INRXS-derived 57Fe PVDOS of Fe-metal (Mao et al., 2001), ferropericlase (FeP) (Lin et al., 2006), and postperovskite (PPV) (Mao et al., 2006), it was shown (Polyakov, 2009) that at high pressures FeP and PPV are enriched in heavy iron isotopes relative to Fe-metal contrary to the low-pressure iron isotope fractionation regularity. Earth's core may contain also Ni, Si, S, H, C, etc. along with iron. I estimated effect of these elements on iron β-factors using INRXS-derived 57Fe PVDOS for Fe0.92Ni0.08 and Fe0.85Si0.15 (Lin et al., 2003), FeS (Kobayashi et al., 2004), Fe3S (Lin et al., 2004), FeHx (Mao et al., 2004), Fe3C (Gao et al., 2008). Additions of Ni and Si to Fe-metal do not affect the iron β-factor contrary to additions of S, H, and C (see figure), which reduce the iron β-factors and aid in heavy iron isotope enrichment of silicate fraction during metal-silicate differentiation. This consits with the explanation of the observed enrichment (~ 0.1‰ for 57Fe/54Fe) of Earth's basalts in heavy isotopes with respect to those from Vesta and Mars (Poitrasson et al., 2004; Weyer et al., 2005; Shoenberg and von Blanckenburg, 2006) in terms of the equilibrium iron isotope fractionation during core-mantle differentiation processes as proposed in Polyakov (2009). Figure. Pressure dependence of 57Fe/54Fe β-factors. Open circles

  8. Structure and Stability of High-Pressure Dolomite with Implications for the Earth's Deep Carbon Cycle

    Science.gov (United States)

    Solomatova, N. V.; Asimow, P. D.

    2014-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth's deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A

  9. Neutron scattering study of structure and dynamics of ammonium halides under high pressure

    International Nuclear Information System (INIS)

    Kozlenko, D.P.; Balagurov, A.M.; Savenko, B.N.; Glazkov, V.P.; Somenkov, V.A.; Hull, S.

    1999-01-01

    Complete text of publication follows. Structural changes in ammonium halides ND 4 Cl, ND 4 Br and ND 4 F at pressures up to 40 kbar and ND 4 I at pressures up to 86 kbar have been studied bz means of neutron diffraction at room temperature. The pressure dependencies of the lattice parameter a and the deuterium position parameter u were obtained. It was found that the order - disorder II-IV phase transition in ND 4 Br and ND 4 Cl occurs at equal critical values of u, u cr =0.152(2). For ND 4 F, u is initially higher than u cr and only the ordered CsCl type phase III exists at high pressure. For ND 4 I, no II-IV phase transition was observed. A phase transition into the recently discovered high pressure phase V was detected in ND 4 I at 80 4 I(V) was found to be the same as the structure of the low temperature phase ND 4 I(III) - tetragonal one with antiparallel ordering of ammonium ions, space group P4/nmm. Vibrational spectra of NH 4 I and HN 4 F have been studied by means of incoherent inelastic neutron scattering at pressure up to 40 kbar. Vibration and transverse optical (TO) modes frequencies as functions of pressure were obtained. Both frequencies increase under pressure. (author)

  10. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

    Science.gov (United States)

    Xiao-Lin, Zhang; Yuan-Yuan, Wu; Xiao-Hong, Shao; Yong, Lu; Ping, Zhang

    2016-05-01

    The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2. Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.

  11. Investigation of density-wave oscillation in parallel boiling channels under high pressure

    International Nuclear Information System (INIS)

    Ming Xiao; Xuejun Chen; Mingyuan Zhang

    1992-01-01

    This paper presents experimental results on density-wave instability in parallel boiling channels. Experiments have been done in a high pressure steam-water loop. Different types of two-phase flow instabilities have been observed, including density-wave oscillation, pressure-drop type oscillation, thermal oscillation and secondary density-wave oscillation. The secondary density-wave oscillation appears at very low exit steam quality (less than 0.1) and at the positive portion of Δ P-G curves with both channels' flow rate oscillating in phase. Density-wave oscillation can appear at pressure up to 192 bar and disappear over 207 bar. (6 figures) (Author)

  12. Analysis of Physics Processes in the AC Plasma Torch Discharge under High Pressure

    International Nuclear Information System (INIS)

    Safronov, A A; Vasilieva, O B; Dudnik, J D; Kuznetsov, V E; Kuchina, J A; Shiryaev, V N; Pavlov, A V

    2017-01-01

    The paper is devoted to investigation of electrophysical processes in the electric discharge generated by a three-phase AC plasma torch when using a high pressure inert working gas. AC plasma torch design with end electrodes intended for work on inert gases at pressures up to 81 bar is studied. Current-voltage characteristics for different gas flow rates and pressures are presented. Physical processes characteristics of the arising voltage ripples which depend on various working parameters of the plasma torch have been investigated. Arc burning processes in the electric discharge chamber of the three-phase AC plasma torch at various working parameters were photographed. (paper)

  13. Magnetism in Solid Oxygen Studied by High-Pressure Neutron Diffraction

    Science.gov (United States)

    Klotz, Stefan

    2018-03-01

    This article reviews progress achieved over the last 15 years in our understanding of magnetism in solid oxygen under high pressure with a particular emphasis on the contribution of neutron diffraction in the multi-GPa range. The paper highlights the unexpected complexity of magnetic structures in the δ phase at 5-8 GPa, presents data on the pressure dependence of diffuse scattering in β-O2 and discusses potential magnetism in ɛ-O2. High-resolution diffraction data of all three solid phases at ambient pressure are presented.

  14. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  15. High Pressure Apparatus for Angle Dispersive Neutron Diffraction

    OpenAIRE

    Kazuo, Kamigaki; Takejiro, Kaneko; Shunya, Abe; Masayoshi, Ohashi

    1983-01-01

    A piston-cylinder type high pressure apparatus was designed for the angle dispersive neutron diffraction. A Ti-53wt% Zr alloy was used for the cylinder. The performance was tested by observing the structural transformation under pressure in RbBr from an NaCl-type to a CsCl-type.

  16. Ultra-high pressure water jet: Baseline report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  17. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    MgSiO3) post-perovskite at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density functional theory (DFT). The calculated structural parameters of MgSiO3 post-perovskite are consistent with the ...

  18. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2010-04-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  19. Laser-generated shockwave experiments at extreme high pressures

    International Nuclear Information System (INIS)

    Trainor, R.J.; Holmes, N.C.; More, R.M.

    1979-01-01

    The application of high-power lasers to production of extreme high pressures is discussed. Shock velocities consistent with pressures up to 2 TPa in aluminum have already been measured, and experiments in the 4 TPa range are now planned. We describe the status of our programs to develop new diagnostic techniques and perform experiments to characterize perturbing influences on the shock

  20. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  1. A high pressure sample facility for neutron scattering

    International Nuclear Information System (INIS)

    Carlile, C.J.; Glossop, B.H.

    1981-06-01

    Commissioning tests involving deformation studies and tests to destruction as well as neutron diffraction measurements of a standard sample have been carried out on the SERC high pressure sample facility for neutron scattering studies. A detailed description of the pressurising equipment is given. (author)

  2. Magnetism in UPtAl under high pressure

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Eto, T.; Oomi, G.; Sechovský, V.; Andreev, Alexander V.; Takeshita, N.; Môri, N.

    2002-01-01

    Roč. 52, č. 2 (2002), s. 263-266 ISSN 0011-4626. [Czech and Slovak Conference on Magnetism /11./. Košice, 20.08.2001-23.08.2001] Institutional research plan: CEZ:AV0Z1010914 Keywords : UPtAl * high pressure * electrical resistivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.311, year: 2002

  3. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density func- tional theory (DFT). The calculated ... is necessary for interpreting seismological information on earth's velocity structure at depth. That is, if one ... Computational methods. Quantum first principles calculations ...

  4. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  5. Ionic transport properties in AgCl under high pressures

    Science.gov (United States)

    Wang, Jia; Zhang, Guozhao; Liu, Hao; Wang, Qinglin; Shen, Wenshu; Yan, Yalan; Liu, Cailong; Han, Yonghao; Gao, Chunxiao

    2017-07-01

    Ionic transport behaviors of silver chloride (AgCl) have been revealed with impedance spectra measurement under high pressures up to 20.4 GPa. AgCl always presented ionic conducting under experimental pressures, but electronic conduction can coexist with ionic conduction within the pressure range from 6.7 to 9.3 GPa. The ionic conductivity of AgCl decreases by three orders of magnitude under compression, indicating that Ag+ ion migrations are suppressed by high pressure. A parameter, fW, was defined as the starting frequency at which Ag+ ions begin to show obvious long-distance diffusion in AgCl. fW showed a similar trend with the ionic conductivity under high pressures, indicating that the speed of Ag+ ion diffusion slows down as the pressure increases. Unlike AgI, Ag+ ion diffusion in AgCl is controlled by the indirect-interstitial mechanism. Due to stronger ionic bonds and larger lattice deformation, Ag+ ion diffusion in the rigid Cl- lattice is more difficult than in the I- lattice under high pressures.

  6. Effects of high pressures on magnetism in UNiGa

    Czech Academy of Sciences Publication Activity Database

    Míšek, M.; Sechovský, V.; Kamarád, Jiří; Prokleška, J.

    2010-01-01

    Roč. 30, č. 1 (2010), 8-11 ISSN 0895-7959 Grant - others:GAUK(CZ) 129009 Institutional research plan: CEZ:AV0Z10100521 Keywords : high pressure * uniaxial stress * magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.995, year: 2010

  7. High pressure resistivity of UPd.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Prchal, J.; Havela, L.; Andreev, Alexander V.

    2012-01-01

    Roč. 32, č. 2 (2012), s. 208-212 ISSN 0895-7959 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional research plan: CEZ:AV0Z10100520 Keywords : UPd 3 * resistivity * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.901, year: 2012

  8. Growth and high pressure studies of zirconium sulphoselenide ...

    Indian Academy of Sciences (India)

    tance was monitored in a Bridgman opposed anvil set-up up to 8 GPa pressure to identify the occurrence of any structural transition. These crystals do not possess any structural transitions upto the pressure limit examined. Keywords. Single crystals; chemical vapour transport (CVT) technique; high pressure;. Bridgman anvil ...

  9. High pressure injection injuries: a serious occupational hazard.

    Science.gov (United States)

    Mrvos, R; Dean, B S; Krenzelok, E P

    1987-01-01

    High pressure injection equipment such as airless paint sprayers, high pressure grease guns, and fuel injection apparatus constitute a serious safety hazard resulting in significant morbidity. These devices are capable of delivering contaminants such as paint, solvents, and grease at pressures ranging from 600-12,000 psi. This allows the substance to penetrate through a minute skin wound and to spread widely through fascial planes and tendon sheaths and to produce significant vascular compression and systemic toxicity. High pressure injection injuries frequently result in amputation. Fifty-five suspected high pressure injection injury cases were evaluated. Twenty were determined to be actual injection injuries from equipment producing pressures in the range of 1,500-12,000 psi. The injected contaminants included latex paint, mineral spirits, and concrete sealer. Fourteen injuries involved digits. Digital amputation was necessary in three patients. Hospital admissions averaged 6.5 days. Successful management of these cases involves awareness of the impending problem and rapid referral of the patient to an emergency department and to a competent orthopedic or plastic surgeon.

  10. The principles of ultra high pressure technology and its application ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... Key words: Ultra-high pressure (UHP), food processing/preservation and new food-processing technologies. INTRODUCTION. Increasing .... solutions, silicone oil, sodium benzoate solutions, ethanol solutions, inert gases and .... The residual enzyme activity and dissolved oxygen results in enzymatic and ...

  11. A high-pressure MWPC detector for crystallography

    DEFF Research Database (Denmark)

    Ortuno-Prados, F.; Bazzano, A.; Berry, A.

    1999-01-01

    The application of the Multi-Wire Proportional Counter (MWPC) as a potential detector for protein crystallography and other wide-angle diffraction experiments is presented. Electrostatic problems found with our large area MWPC when operated at high pressure are discussed. We suggest that a solution...

  12. Screening of hydrogen storage media applying high pressure thermogravimetry

    DEFF Research Database (Denmark)

    Bentzen, J.J.; Pedersen, Allan Schrøder; Kjøller, J.

    2001-01-01

    A number of commercially available hydride-forming alloys of the MmNi5–xSnx (Mm=mischmetal, a mixture of lanthanides) type were examined using a high pressure, high temperature microbalance,scanning electron microscopy and X-ray diffraction. Activation conditions, reversible storage capacity...

  13. Pyrolysis oil upgrading by high pressure thermal treatment

    NARCIS (Netherlands)

    de Miguel Mercader, F.; Groeneveld, M.J.; Kersten, Sascha R.A.; Venderbosch, R.H.; Hogendoorn, Kees

    2010-01-01

    High pressure thermal treatment (HPTT) is a new process developed by BTG and University of Twente with the potential to economically reduce the oxygen and water content of oil obtained by fast pyrolysis (pyrolysis oil), properties that currently complicate its co-processing in standard refineries.

  14. High pressure and foods -fruit/vegetable juices

    Czech Academy of Sciences Publication Activity Database

    Houška, M.; Strohalm, J.; Kocurová, K.; Totušek, J.; Lefnerová, D.; Tříska, Jan; Vrchotová, Naděžda; Fiedlerová, V.; Holasová, M.; Gabrovská, D.; Paulíčková, I.

    2006-01-01

    Roč. 77, č. 3 (2006), s. 386-398 ISSN 0260-8774 R&D Projects: GA MZe(CZ) QF3287 Institutional research plan: CEZ:AV0Z60870520 Keywords : high-pressure pasteurisation * Foods * Broccoli juice Subject RIV: GM - Food Processing Impact factor: 1.696, year: 2006

  15. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2012-02-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  16. Crosslinking polymerization of tetraethylene glycol dimethacrylate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Bogoslovov, R; Roland, C M [Chemistry Division, Code 6120, Naval Research Laboratory, Washington DC 20375-5342 (United States)], E-mail: kaminski@us.edu.pl

    2008-07-15

    The polymerization reaction of tetraethylene glycol dimethacrylate was induced by application of high pressure. Broadband dielectric spectroscopy was employed to investigate dielectric properties of the produced polymers. Additionally swelling experiment was performed to determine the degree of crossliniking of the polymers.

  17. Ultra-high pressure water jet: Baseline report

    International Nuclear Information System (INIS)

    1997-01-01

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky trademark pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems

  18. High pressure gas laser technology for atmospheric remote sensing

    Science.gov (United States)

    Javan, A.

    1980-01-01

    The development of a fixed frequency chirp-free and highly stable intense pulsed laser made for Doppler wind velocity measurements with accurate ranging is described. Energy extraction from a high pressure CO2 laser at a tunable single mode frequency is also examined.

  19. High-pressure deformation and failure of polycrystalline ceramics

    Science.gov (United States)

    Zhang, Dongmei

    2005-11-01

    High-strength polycrystalline ceramics are increasingly being used for armor applications because of their light weight and superior ballistic performance over conventional armor steels. However, accurate material modeling needed in ceramic armor design remains a challenge because of their complex behavior under impact loading. A ceramic may display extremely high strength during rapid compression but lose tensile strength when the load reverses from compression to tension. A good understanding of the mechanisms governing the deformation and failure of ceramics under high-stress impact and a capability to accurately predict the resulting effective strengths of both intact and damaged ceramics are critically needed. To this end, a computational methodology for micromechanical analysis of polycrystalline materials has been developed. It combines finite element analysis with microstructural modeling based on the Voronoi polycrystals, and material modeling that considers nonlinear elasticity, crystal plasticity, intergranular shear damage during compression and intergranular Mode-I cracking during tension. Using this method, simulations have been carried out on polycrystalline alpha-6H silicon carbide and alpha-phase aluminum oxide to determine if microplasticity is a viable mechanism of inelastic deformation in ceramics undergoing high-pressure uniaxial-strain compression. Further, the competing roles of in-grain microplasticity and intergranular microdamage during a sequence of dynamic compression and tension have been studied. The results show that microplasticity is a more plausible mechanism than microcracking under uniaxial-strain compression. The deformation by limited slip systems can be highly heterogeneous so that a significant amount of grains may remain elastic and thus result in high macroscopic compressive strength. On the other hand, the failure evolution during dynamic load reversal from compression to tension can be well predicted by intergranular Mode

  20. Effects of high pressure on azobenzene and hydrazobenzene probed by Raman spectroscopy.

    Science.gov (United States)

    Dong, Zhaohui; Seemann, Natashia M; Lu, Ning; Song, Yang

    2011-12-22

    In this study, two hydrazine derivatives, azobenzene and hydrazobenzene, were compressed in a diamond anvil cell at room temperature up to 28 GPa followed by decompression. In situ Raman spectroscopy was employed to monitor the pressure-induced structural evolutions. Azobenzene was found to undergo a phase transition at ~10 GPa. Further compression to 18 GPa resulted in an irreversible breakdown of the molecular structure. Although hydrazobenzene exhibited a structural transition at a similar pressure of 10 GPa, it was found to sustain a compression pressure as high as 28 GPa without chemical reactions. The transition sequence of hydrazobenzene upon compression and decompression was thus entirely reversible in the pressure region studied, in strong contrast to that of azobenzene. The high-pressure structures of these two molecules were examined based on the spectroscopic data, and their drastically different high-pressure behaviors were analyzed and interpreted with the aid of ab initio molecular orbital calculations.