WorldWideScience

Sample records for accompaniedby dna sequestration

  1. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  2. DNA induced sequestration of a bioactive cationic fluorophore from the lipid environment: A spectroscopic investigation.

    Science.gov (United States)

    Ghosh, Saptarshi; Kundu, Pronab; Chattopadhyay, Nitin

    2016-01-01

    The effect of calf-thymus DNA (ctDNA) on the lipid bound probe, formed by the cationic phenazinium dye phenosafranin (PSF) and the anionic lipid dimyristoyl-L-α-phosphatidylglycerol (DMPG), has been unearthed exploiting various spectroscopic techniques. Steady state and time-resolved fluorometric studies and measurements of circular dichroism and DNA helix melting temperature reveal that in the presence of DNA the probe is dislodged from the lipid environment and gets intercalated within the DNA helix. The work qualitatively illustrates that the anionic lipid can be used as a potential nanocarrier for delivering the cationic drugs to the most relevant biomacromolecular target, DNA.

  3. Cytoplasmic sequestration of an O6-methylguanine-DNA methyltransferase enhancer binding protein in DNA repair-deficient human cells

    OpenAIRE

    Frank Y. Chen; Harris, Linda C.; Joanna S Remack; Brent, Thomas P.

    1997-01-01

    O6-Methylguanine-DNA methyltransferase (MGMT), an enzyme that repairs adducts at O6 of guanine in DNA, is a major determinant of susceptibility to simple methylating carcinogens or of tumor response to anticancer chloroethylating drugs. To investigate the mechanisms underlying cellular expression of this DNA repair enzyme, we focused on the role of a 59-bp enhancer of the human MGMT gene in the regulation of its expression. By using chloramphenicol acetyltransferase reporter assays, we found ...

  4. Pulmonary sequestration

    International Nuclear Information System (INIS)

    Pulmonary sequestration is a congenital affection consisting in the presence of a cystic mass of no-functional pulmonary tissue without an obvious communication with tracheobronchial tree and that receives all or most of its bloodstream of the anomalous vessels from systemic circulation. Taking into account that presentation of this affection is rare compared to other pulmonary affections (between the 1% and the 2% of all pulmonary resections) and that also the more usual is its definitive treatment before adulthood. The case of man aged 44 is presented coming to consultation due to frequent episodes of pneumonias from more 10 years ago diagnosed as a bronchiectasis. The more significant facts of embryology origin of this affection including: anatomical and pathological features, imaging diagnosis, surgical treatment details, and postoperative course. (author)

  5. Bronchopulmonary sequestration and dextrocardia.

    Science.gov (United States)

    Ivanovi-Herceg, Z; Majerić-Kogler, V; Mazuranić, I; Neralić-Meniga, I; Puljić, I

    1998-06-01

    Bronchopulmonary sequestration (BPS) is usually a rare congenital anomaly, which is most frequently extralobar or intralobar. The case of a patient with positional congenital anomaly--dextrocardia (situs thoracalis inversus) and intrapulmonary sequestration (IPS) is presented. Clinical and radiological characteristics of EPS and IPS are discussed, and new combinations of congenital anomalies with bronchopulmonary sequestration are described, dextrocardia and intrapulmonary sequestration. The importance of the algorithm of diagnostic examinations is emphasized, from detection of bronchopulmonary sequestration on the chest roentgenogram to establishing a definite diagnosis by means of angiography.

  6. Extralobar pulmonary sequestration

    Directory of Open Access Journals (Sweden)

    Ulys A

    2011-04-01

    Full Text Available Albertas Ulys, Narimantas Evaldas Samalavicius, Saulius Cicenas, Tadas Petraitis, Mantas Trakymas, Dmitrij Sheinin, Leonid GatijatullinInstitute of Oncology, Vilnius University, Santariskiu, Vilnius, LithuaniaAbstract: Prevalence of pulmonary sequestration accounts for up to 6.4% of all congenital pulmonary malformations. We report on a 40-year-old woman who underwent excision of an aberrant solid retroperitoneal mass in the left subdiaphragmatic area. The mass was identified to be an extralobar pulmonary sequestration. The diagnosis could be made without surgery by percutaneous tissue biopsy and imaging. We encourage keeping in mind pulmonary sequestration anomaly presenting as an aberrant retroperitoneal mass. The aim of this case report is to increase awareness about the condition and review the criteria for its definitive diagnosis and treatment.Keywords: retroperitoneal aberrant mass, extralobar pulmonary sequestration

  7. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of

  8. Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: implication on dissociation of the drug-DNA complex via detergent sequestration.

    Science.gov (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-10-20

    The present study aims at exploring a detailed characterization of the binding interaction of a promising cancer cell photosensitizer, harmane (HM), with DNA extracted from herring sperm. The polarity-sensitive prototropic transformation of HM, a naturally occurring, fluorescent, drug-binding alkaloid, β-carboline, is remarkably modified upon interaction with DNA and is manifested through significant modulations on the absorption and emission profiles of HM. From the series of studies undertaken in the present program, for example, absorption; steady-state emission; the effect of chaotrope (urea); iodide ion-induced steady-state fluorescence quenching; circular dichroism (CD); and helix melting from absorption spectroscopy; the mode of binding of HM into the DNA helix has been substantiated to be principally intercalative. Concomitantly, a discernible dependence of the photophysics of the DNA-bound drug on the medium ionic strength indicates that electrostatic attraction should not be ignored in the interaction. Efforts have also been delivered to delineate the dynamical aspects of the interaction, such as modulation in time-resolved fluorescence decay and rotational relaxation dynamics of the drug within the DNA environment. In view of the prospective biological applications of HM, the issue of facile dissociation of intercalated HM from the DNA helix also comprises a crucial prerequisite for the functioning as an effective therapeutic agent. In this context, our results imply that the concept of detergent-sequestered dissociation of the drug from the drug-DNA complex can be a prospective strategy through an appropriate choice of the detergent molecule. The utility of the present work resides in exploring the potential applicability of the fluorescence property of HM for studying its interactions with a relevant biological target, for example, DNA. In addition, the methods and techniques used in the present work can also be exploited to study the interaction of

  9. Carbon Sequestration in Agricultural Soils

    OpenAIRE

    World Bank

    2009-01-01

    The purpose of this report is to improve the knowledge base for facilitating investments in land management technologies that sequester soil organic carbon. While there are many studies on soil carbon sequestration, there is no single unifying volume that synthesizes knowledge on the impact of different land management practices on soil carbon sequestration rates across the world. A meta-a...

  10. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  11. Bile acid sequestrants for cholesterol

    Science.gov (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  12. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  13. Soil Carbon Sequestration in India

    International Nuclear Information System (INIS)

    With a large land area and diverse ecoregions, there is a considerable potential of terrestrial/soil carbon sequestration in India. Of the total land area of 329 million hectares (Mha), 297 Mha is the land area comprising 162 Mha of arable land, 69 Mha of forest and woodland, 11 Mha of permanent pasture, 8 Mha of permanent crops and 58 Mha is other land uses. The soil organic carbon (SOC) pool is estimated at 21 Pg (petagram = Pg = 1 x 1015 g billion ton) to 30-cm depth and 63 Pg to 150-cm depth. The soil inorganic carbon (SIC) pool is estimated at 196 Pg to 1-m depth. The SOC concentration in most cultivated soils is less than 5 g/kg compared with 15 to 20 g/kg in uncultivated soils. Low SOC concentration is attributed to plowing, removal of crop residue and other biosolids, and mining of soil fertility. Accelerated soil erosion by water leads to emission of 6 Tg C/y. Important strategies of soil C sequestration include restoration of degraded soils, and adoption of recommended management practices (RMPs) of agricultural and forestry soils. Potential of soil C sequestration in India is estimated at 7 to 10 Tg C/y for restoration of degraded soils and ecosystems, 5 to 7 Tg C/y for erosion control, 6 to 7 Tg C/y for adoption of RMPs on agricultural soils, and 22 to 26 Tg C/y for secondary carbonates. Thus, total potential of soil C sequestration is 39 to 49 (44± 5) Tg C/y

  14. Carbon sequestration via wood burial

    OpenAIRE

    Zeng Ning

    2008-01-01

    Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux...

  15. Southeast Regional Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2006-08-30

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  16. Mechanisms of Soil Carbon Sequestration

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  17. Chapter 4: Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, J; Herzog, H

    2006-06-14

    Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) from 600 large pulverized coal plants ({approx}1000 MW each) or 3600 injection projects at the scale of Statoil's Sleipner project. At present, global carbon emissions from coal approximate 2.5 Gt C. However, given reasonable economic and demand growth projections in a business-as-usual context, global coal emissions could account for 9 Gt C. These volumes highlight the need to develop rapidly an understanding of typical crustal response to such large projects, and the magnitude of the effort prompts certain concerns regarding implementation, efficiency, and risk of the enterprise. The key questions of subsurface engineering and surface safety associated with carbon sequestration are: (1) Subsurface issues: (a) Is there enough capacity to store CO{sub 2} where needed? (b) Do we understand storage mechanisms well enough? (c) Could we establish a process to certify injection sites with our current level of understanding? (d) Once injected, can we monitor and verify the movement of subsurface CO{sub 2}? (2) Near surface issues: (a) How might the siting of new coal plants be influenced by the distribution of storage sites? (b) What is the probability of CO{sub 2} escaping from injection sites? What are the attendant risks? Can we detect leakage if it occurs? (3) Will surface leakage negate or

  18. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  19. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  20. Tropical forestry practices for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Costa, P. [Innoprise-Face Foundation Rainforest Rehabilitation Project, Lahad Datu, Sabah (Malaysia)

    1996-12-31

    Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of greenhouse gases and climate change. This chapter provides an overview of various aspects related to carbon sequestration through forestry. It describes the main concepts of carbon fixation; the trends in global environmental policy are discussed; different forestry practices are listed; and examples of existing projects are given. The paper also discusses issues related to the quantification of carbon sequestration potential of different forestry options. This section was included with the intention of specifically highlighting some problems related to commercial transactions for carbon sequestration. 92 refs., 6 figs., 2 tabs.

  1. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  2. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  5. Geophysical monitoring technology for CO2 sequestration

    Science.gov (United States)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  6. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  7. Biochar production for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, J.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the use of agricultural biomass for biochar production and its storage in a landfill to sequester carbon. Capturing the energy from biomass that would otherwise decay, is among the many options available to mitigate the impact of the greenhouse gas (GHG) emissions associated with fossil fuel consumption. Biochar is a solid fuel which can be produced from agricultural biomass such as wheat and barley straw. This organic solid can be produced by slow pyrolysis of straw. A conceptual techno-economic model based on actual data was used to estimate the cost of producing biochar from straw in a centralized plant. The objectives of the study were to estimate the overall delivered cost of straw to the charcoal production plant; estimate the transportation costs of charcoal to the landfill site; estimate the cost of landfill; and estimate the overall cost of carbon sequestration through a charcoal landfill. According to preliminary results, the cost of carbon sequestration through this pathway is greater than $50 per tonne of carbon dioxide.

  8. Carbon sequestration via wood burial

    Directory of Open Access Journals (Sweden)

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  9. Carbon sequestration and eruption hazards

    Science.gov (United States)

    Zhang, Y.

    2007-12-01

    In order to reduce the buildup of carbon dioxide in the atmosphere, proposals have been made to sequestrate carbon in ocean, or in coal mines and other underground formations. High gas concentration in ocean or underground formations has to potential to power gas-driven eruptions. In this presentation, possible eruption hazards are explored. Whenever carbon dioxide is sequestrated in the form of carbon dioxide gas, or dissolved and/or absorbed carbon dioxide, it is necessary to exercise caution to avoid gas-driven eruption hazard. It is long known that explosive volcanic eruptions are driven by H2O gas in magma. Lake eruptions powered by dissolved CO2 in lake bottom water were discovered in the 1980's (Kling et al., 1987; Zhang, 1996). Gas-driven ocean eruptions with mechanism similar to lake eruptions have been hypothesized (Zhang, 2003; Zhang and Kling, 2006) although not confirmed. Mud volcanos are commonly thought to be driven by methane-rich fluids in sediment (Milkov, 2000). Recently, Zhang et al. (2007) have proposed that coal outbursts in underground coal mines are driven by dissolved high CO2 concentration in coal, causing coal fragmentation and outburst. That is, coal outbursts may be regarded as a new type of gas-driven eruptions. Therefore, high concentrations of free gas or dissolved/absorbed gas may power eruptions of magma, lake water, ocean water, sediment, and coal. Gas- driven volcanic, lake and ocean eruptions are due to volume expansion from bubble growth, whereas gas-driven coal and sediment eruptions are due to high gas-pressure, leading to fragmentation of coal and sediment. (In explosive volcanism, magma fragmentation is also a critical point.) The threshold conditions for many of these eruptions are not known yet. In planning large (industrial) scale injection of CO2 into a natural reservoir, it is important to know the eruption threshold and design the injection scheme accordingly. More safe sequestration in terms of eruption hazards would

  10. Method for carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  11. Outcome-based Carbon Sequestration Resource Assessment

    Science.gov (United States)

    Sundquist, E. T.; Jain, A. K.

    2015-12-01

    Opportunities for carbon sequestration are an important consideration in developing policies to manage the mass balance of atmospheric carbon dioxide (CO2). Assessments of potential carbon sequestration, like other resource assessments, should be widely accepted within the scientific community and broadly applicable to public needs over a range of spatial and temporal scales. The essential public concern regarding all forms of carbon sequestration is their effectiveness in offsetting CO2 emissions. But the diverse forms and mechanisms of potential sequestration are reflected in diverse assessment methodologies that are very difficult for decision-makers to compare and apply to comprehensive carbon management. For example, assessments of potential geologic sequestration are focused on total capacities derived from probabilistic analyses of rock strata, while assessments of potential biologic sequestration are focused on annual rates calculated using biogeochemical models. Non-specialists cannot readily compare and apply such dissimilar estimates of carbon storage. To address these problems, assessment methodologies should not only tabulate rates and capacities of carbon storage, but also enable comparison of the time-dependent effects of various sequestration activities on the mitigation of increasing atmospheric CO2. This outcome-based approach requires consideration of the sustainability of the assessed carbon storage, as well as the response of carbon-cycle feedbacks. Global models can be used to compare atmospheric CO2 trajectories implied by alternative global sequestration strategies, but such simulations may not be accessible or useful in many decision settings. Simplified assessment metrics, such as ratios using impulse response functions, show some promise in providing comparisons of CO2 mitigation that are broadly useful while minimizing sensitivity to differences in global models and emissions scenarios. Continued improvements will require close

  12. Carbon dioxide sequestration by mineral carbonation

    OpenAIRE

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  13. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  14. Shallow Carbon Sequestration Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  15. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-07-01

    In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

  16. Carbon sequestration research and development

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  17. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  18. Technological Development in Carbon Sequestration at Petrobras

    Energy Technology Data Exchange (ETDEWEB)

    Castello Branco, R.; Vazquez Sebastian, G.; Murce, T.; Cunha, P.; Dino, R.; Sartori Santarosa, C.

    2007-07-01

    Petrobras defined, in its mission, the intention to act in a safe and profitable way, with social and environmental responsibility. In its vision, the company decided to be an oil and energy company, taking into account climate change mitigation. These changes were partially caused, without the company's knowledge, for many years, by the burning of fossil fuels. Among many technologies available for this mitigation, carbon sequestration is the one that, in a short space of time, can avoid the collapse of earth's climate. In order to meet this carbon sequestration challenge, there has been established, at CENPES, three strategies for its technological development: (i) establishment of a Systemic Project for Carbon Sequestration within the scope of the Environmental Technology Program - PROAMB; (ii) creation of a Group of Carbon Sequestration Technologies for Climate Change Mitigation - formation of team and qualification program, which includes the realization of the International Seminar on Carbon Sequestration and Climate Change at Petrobras in October 2006; and (iii) Implementation of the Technological Network of Technologies for Climate Change Mitigation. (auth)

  19. Federal Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold W. [Univ. of Utah, Salt Lake City, UT (United States)

    2011-04-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  20. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  1. Localised fibrous mesothelioma arising in an intralobar pulmonary sequestration.

    OpenAIRE

    Paksoy, N.; Demircan, A.; Altiner, M; Artvinli, M

    1992-01-01

    A localised fibrous mesothelioma arising from an intralobar lung sequestration occurred in a 64 year old Turkish woman. This appears to be the first report of a mesothelioma occurring within a pulmonary sequestration.

  2. Intralobar pulmonary sequestration masquerading as congenital lobar emphysema

    Directory of Open Access Journals (Sweden)

    Bilal Mirza

    2011-01-01

    Full Text Available Intrapulmonary sequestrations are quite uncommon in pediatric age group. The preoperative diagnosis of pulmonary sequestration is not possible in most of the cases. A 2-year-old boy presented with recurrent episodes of chest infections and respiratory distress. A preoperative diagnosis of congenital lobar emphysema was made on the basis of chest radiograph and computed tomography scan. At operation, an intralobar pulmonary sequestration was found. The sequestration cyst was excised with uneventful recovery.

  3. Intralobar pulmonary sequestration masquerading as congenital lobar emphysema

    OpenAIRE

    Bilal Mirza; Afsheen Batool Raza; Iftikhar Ijaz; Lubna Ijaz; Farah Naz; Afzal Sheikh

    2011-01-01

    Intrapulmonary sequestrations are quite uncommon in pediatric age group. The preoperative diagnosis of pulmonary sequestration is not possible in most of the cases. A 2-year-old boy presented with recurrent episodes of chest infections and respiratory distress. A preoperative diagnosis of congenital lobar emphysema was made on the basis of chest radiograph and computed tomography scan. At operation, an intralobar pulmonary sequestration was found. The sequestration cyst was excised with uneve...

  4. Developing Carbon Sequestration Forestry for Mitigating Climate Change: Practice and Management of Carbon Sequestration Forestry in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By elaborating the functions and effects of forestry in mitigating climate change, introducing the concepts and significance of forest carbon sink, forestry carbon sequestration, and carbon sequestration forestry, and summarizing the practices of carbon sequestration forestry in China, the paper came up with the outline for strengthening the management of carbon sequestration forestry, i.e. implementing the Climate Change Forestry Action Plan, reinforcing the accounting and monitoring of national forest car...

  5. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Howard J. Herzog; E. Eric Adams

    2005-04-01

    On December 4, 1997, the US Department of Energy (DOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a ''Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration''. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. This report is a summary of the evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration. Almost 100 papers and reports resulted from this collaboration, including 18 peer reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. A full listing of these publications is in the reference section.

  6. Pulmonary sequestration: Report of three cases

    Directory of Open Access Journals (Sweden)

    Stević Ruža

    2009-01-01

    Full Text Available Introduction Pulmonary sequestration is a non-functioning pulmonary parenchyma that is separated from tracheobronchial tree and receives its blood supply via systemic arteries. The diagnosis of sequestration pulmonis is based on clinical symptoms and characteristic radiologic findings. Case reports In this report, radiological findings of pulmonary sequester in three patients with non-resolving pneumonia were retrospectively reviewed. All patients underwent chest x-ray, computerized tomography of thorax and angiography. X-ray revealed in all cases tumorlike, unsharply bordered shadows in the posterior basal parts of the lung, two on the right and one on the left side. Computerized tomography(CT finding showed solid-cystic tumor masses and angiography revealed anomalous blood supply from systemic arteries arising from aorta and running to the shadow in the lung. This finding is typical of bronchopulmonary sequestration. All patients were operated on and histological analysis of operative material confirmed diagnosis of intralobar pulmonary sequestration. Discussion Sequestratio pulmonis can cause a diagnostic problem due to unspecific symptoms and atypical radiographic and CT findings. Therefore, it is important to demonstrate the arterial supply and venous drainage of the sequestered segment preoperatively. Today, with the help of non-invasive imaging techniques such as CT and magnetic resonance imaging (MRI, preoperative diagnosis of pulmonary sequester can be made easily, so, invasive techniques such as angiography are not required frequently.

  7. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  8. Southwest Regional Partnership on Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners

  9. International Collaboration on CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter H. Israelsson; E. Eric Adams

    2007-06-30

    On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be

  10. SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2004-04-01

    The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential

  11. Federal Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold

    2011-04-11

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­‐burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­‐fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  12. Southeast Regional Carbon Sequestration Partnership (SECARB)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2005-09-30

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing

  13. Colesevelam: a new bile acid sequestrant.

    Science.gov (United States)

    Wong, N N

    2001-01-01

    Coronary heart disease is the most prevalent form of cardiovascular disease in the United States. Hyperlipidemia--specifically, increased total and low-density lipoprotein cholesterol levels--positively correlates with the development of coronary heart disease. Colesevelam, a nonabsorbed, water-insoluble polymer, is a new bile acid sequestrant that is effective in lowering total and low-density lipoprotein cholesterol levels. In several short-term, placebo-controlled studies, colesevelam has decreased total cholesterol levels by approximately 6 to 10% and low-density lipoprotein cholesterol levels by approximately 9 to 20%. When given in combination with atorvastatin, lovastatin, or simvastatin, low-density lipoprotein cholesterol levels were decreased more than with colesevelam alone. Its unique hydrogel formulation may also minimize the potential for gastrointestinal adverse effects, which are common with other bile acid sequestrants. There have been few published studies available concerning this drug; no long-term studies and few large-scale studies have been published.

  14. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    H.J. Herzog; E.E. Adams

    2000-08-23

    The specific objective of our project on CO{sub 2} ocean sequestration is to investigate its technical feasibility and to improve the understanding of any associated environmental impacts. Our ultimate goal is to minimize any impacts associated with the eventual use of ocean carbon sequestration to reduce greenhouse gas concentrations in the atmosphere. The project will continue through March 31, 2002, with a field experiment to take place in the summer of 2001 off the Kona Coast of Hawaii. At GHGT-4 in Interlaken, we presented a paper detailing our plans. The purpose of this paper is to present an update on our progress to date and our plans to complete the project. The co-authors of this paper are members of the project's Technical Committee, which has been formed to supervise the technical aspects and execution of this project.

  15. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP)

    Energy Technology Data Exchange (ETDEWEB)

    David Ball; Judith Bradbury; Rattan Lal; Larry Wickstrom; Neeraj Gupta; Robert Burns; Bob Dahowski

    2004-04-30

    This is the first semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  16. CO2 sequestration in basalts: laboratory measurements

    Science.gov (United States)

    Otheim, L. T.; Adam, L.; van Wijk, K.; McLing, T. L.; Podgorney, R. K.

    2010-12-01

    Geologic sequestration of CO2 is proposed as the only promising large-scale method to help reduce CO2 gas emission by its capture at large point sources and subsequent long-term storage in deep geologic formations. Reliable and cost-effective monitoring will be important aspect of ensuring geological sequestration is a safe, effective, and acceptable method for CO2 emissions mitigation. Once CO2 injection starts, seismic methods can be used to monitor the migration of the carbon dioxide plume. To calibrate changes in rock properties from field observations, we propose to first analyze changes in elastic properties on basalt cores. Carbon dioxide sequestration in basalt rocks results in fluid substitution and mixing of CO2 with water and rock mineralizations. Carbon dioxide sequestration in mafic rocks creates reactions such as Mg2SiO 4 + CaMgSi2O 6 + 4CO2 = Mg 3Ca(CO 3) 4 + 3SiO2 whereby primary silicate minerals within the basalt react with carbonic acid laden water to creating secondary carbonate minerals and silicates. Using time-lapse laboratory scale experiments, such as laser generated ultrasonic wave propagation; it is possible to observe small changes in the physical properties of a rock. We will show velocity and modulus measurements on three basalt core samples for different saturation. The ultimate goal of the project is to track seismic changes due to fluid substitution and mineralization. The porosity of our basalts ranges from 8% to 12%, and the P-wave velocity increases by 20% to 40% from dry to water saturated conditions. Petrographic analysis (CT-scans, thin sections, XRF, XRf) will aid in the characterization of the mineral structure in these basalts and its correlation to seismic properties changes resulting from fluid substitution and mineralization.

  17. Southwest Regional Partnership on Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2006-04-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

  18. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct

  19. Research on Global Carbon Emission and Sequestration

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Prof.Fang Jingyun,member of the Chinese Academy of Science,of Peking University and colleagues published an online article on Science in July,2011 introducing the findings of an international research group about the global carbon emission and sequestration which will produce significant influence on researches on climate change as well as the international climate change policies.The research project was funded by NSFC and MOST.

  20. The CO2 capture and sequestration plan

    International Nuclear Information System (INIS)

    The CO2 capture and sequestration plan is officially one of the most relevant solution in the world control against the greenhouse gas releases. In spite of the multiplication of the pilot plans, this technology delays however to run up. At the moment, it is always the petroleum and natural gas industries, with the enhanced oil recovery process, which highlight this technology. But, without a modification of the support mechanisms, the chances of succeed of the sector could be compromised. (O.M.)

  1. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  2. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    Energy Technology Data Exchange (ETDEWEB)

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential

  3. Sequestration Options for the West Coast States

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Larry

    2006-04-30

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source

  4. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHP (SECARB)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2005-04-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first 18-months of its two year program. Work during the semiannual period (fifth and sixth project quarters) of the project (October 1, 2004-March 31, 2005) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, no changes occurred during the fifth or sixth quarters of the project. Under Task 2.0 Characterize the Region, refinements have been made to the general mapping and screening of sources and sinks. Integration and geographical information systems (GIS) mapping is ongoing. Characterization during this period was focused on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB continues to expand upon its assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has used results of a survey and focus group meeting to refine approaches that are being taken to educate and involve the public. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB has evaluated findings from work performed during the first 18-months. The focus of the project team has shifted from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team is developing an integrated approach to implementing the most promising opportunities and in setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. Milestones completed during the

  5. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2004-09-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing

  6. Today's PTA Advocate: Speak Up to Stop Sequestration

    Science.gov (United States)

    Chevalier, Jacque

    2012-01-01

    The word sequestration has been in the news lately when talking about the federal budget. Sequestration refers to across-the-board cuts, and depending on where one lives and the amount of federal aid one's community receives, those cuts could amount to as much as 17 percent. That spells bad news for schools unless parents, educators, and other…

  7. Dutch (organic) agriculture, carbon sequestration and energy production

    NARCIS (Netherlands)

    Burgt, van der G.J.H.M.; Staps, S.; Timmermans, B.

    2010-01-01

    Carbon sequestration in soils is often mentioned in the discussions about climate changes. In this paper the opportunities for carbon sequestration in Dutch agriculture are discussed at farm and national level. Farm internal carbon sources are already completely used in livestock farming. The effect

  8. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    H.J. Herzog; E.E. Adams

    1999-08-23

    The ocean represents the largest potential sink for anthropogenic CO{sub 2}. In order to better understand this potential, Japan, Norway, and the United States signed a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration in December 1997; since that time, Canada and ABB (Switzerland) have joined the project. The objective of the project is to investigate the technical feasibility of, and improve understanding of the environmental impacts from, CO{sub 2} ocean sequestration in order to minimize the impacts associated with the eventual use of this technique to reduce greenhouse gas concentrations in the atmosphere. The project will continue through March 31, 2002, with a field experiment to take place in the summer of 2000 off the Kona Coast of Hawaii. The implementing research organizations are the Research Institute of Innovative Technology for the Earth (Japan), the Norwegian Institute for Water Research (Norway), and the Massachusetts Institute of Technology (USA). The general contractor for the project will be the Pacific International Center for High Technology Research in Hawaii. A Technical Committee has been formed to supervise the technical aspects and execution of this project. The members of this committee are the co-authors of this paper. In this paper we discuss key issues involved with the design, ocean engineering, measurements, siting, and costs of this experiment.

  9. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  10. Pulmonary Sequestration%肺隔离症

    Institute of Scientific and Technical Information of China (English)

    张志勇; 洪应中

    2001-01-01

    @@ 肺隔离症(pulmonary sequestration或bronchopulmonary sequestration,以下简称"PS”)系较为常见的肺先天性发育畸形.PS时,部分肺组织发育不全,无呼吸功能,与邻近正常肺组织隔离开;其动脉供血和静脉回流异常,且隔离肺内支气管与邻近正常支气管不通[1-15].1946年Pryce[1]首先提出"隔离”这个术语.当时认为系一种相对少见的肺发育异常.1974年Sade[1]等建议使用"PS谱(sequestration spectrum)”,用以概括与异常胚胎发育相关的一组肺部疾病,包括了大叶性肺气肿,先天性的肺囊肿,囊性腺瘤样畸形等先天性的肺部异常,这些是肺隔离症的变异.因此,P谱含括了血液循环正常而肺实质发育异常,或血液循环异常而肺实质发育正常的一组疾病.

  11. Carbon Sequestration on Surface Mine Lands

    Energy Technology Data Exchange (ETDEWEB)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-10-02

    During this quarter a general forest monitoring program was conducted to measure treatment effects on above ground and below ground carbon C and Nitrogen (N) pools for the tree planting areas. Detailed studies to address specific questions pertaining to Carbon cycling was initiated with the development of plots to examine the influence of mycorrhizae, spoil chemical and mineralogical properties, and use of amendment on forest establishment and carbon sequestration. Efforts continued during this period to examine decomposition and heterotrophic respiration on C cycling in the reforestation plots. Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies to sequester carbon in various terrestrial ecosystems. Reclaimed surface mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. New plantings required the modification and design and installation on monitoring equipment. Maintenance and data monitoring on past and present installations are a continuing operation. The Department of Mining Engineering continued the collection of penetration resistance, penetration depth, and bulk density on both old and new treatment areas. Data processing and analysis is in process for these variables. Project scientists and graduate students continue to present results at scientific meetings, tours and field days presentations of the research areas are being conducted on a request basis.

  12. Sequestrated Thrombolysis: Comparative Evaluation In Vivo

    International Nuclear Information System (INIS)

    Purpose: Lysis of a thrombus is a function of the local concentration of thrombolytic enzymes. This study was designed to determine in a porcine model of acute deep vein thrombosis (DVT) whether perithrombic sequestration of small volumes of a concentrated enzyme solution can accelerate the process of thrombolysis.Methods: DVT was induced in both hind limbs using a previously described technique (n = 32). Thirty minutes later the animal was heparinized and unilateral thrombolysis was attempted using 8 mg recombinant tissue plasminogen activator (rt-PA); saline was administered in the opposite leg. For conventional high-volume infusion (CI) (n = 5) rt-PA (0.067 mg/ml) was infused at 1 ml/min. For sequestrated thrombolysis the external iliac vein was endoluminally occluded, and rt-PA (0.25 mg/ml) administered either for proximal injection (ST-P) (n = 5), as a bolus every 3 min through a microcatheter placed via the balloon catheter, or for transthrombic injection (ST-T) (n = 5), as a bolus every 3 min through a Katzen wire in the balloon catheter. At autopsy, the thrombus mass in the iliofemoral veins was measured, and the extent of residual thrombosis in the venous tributaries graded at four sites. From these data a thrombolysis score was calculated.Results: One pig died before thrombolysis could be performed. Only with ST-T was residual thrombus mass in the test limb normalized to control, residual thrombus index (RTI), consistently less than unity. The median RTI of this group was 0.50 (range 0.39-0.97) compared with 1.22 (0.64-1.38) for ST-P and 0.88 (0.37-1.13) for CI. Compared with contralateral controls, a lower grade of residual thrombosis in tributaries was observed in test limbs at more venous sites with ST-T (8/20; 95% confidence interval 5-13) and ST-P (9/20; confidence interval 5-13) than with CI (2/20; confidence interval 0-5) (p= 0.04). A trend toward lower thrombolysis scores was observed with ST-T (p = 0.08). Systemic fibrinogenolysis was not

  13. CO{sub 2} sequestration; Sequestration du CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Acket, C

    2008-04-15

    The carbon dioxide is the main gas associated to the human activity, generating consequences on the greenhouse effect. By the use of fossil fuels, the human activity generates each year, about 26 milliards of tons. Only the half of theses releases is absorbed by the nature, the rest reinforces the greenhouse effect. To reduce the emissions two actions are proposed: a better energy consumption and the development of technologies which do not produce, or weakly, greenhouse effect gases. Another way is studied: the carbon sequestration and geological storage. This document details the different technologies of sequestration, the transport and the underground storage. It discusses also the economical and legislative aspects, providing examples and projects. (A.L.B.)

  14. An Overview of Geologic Carbon Sequestration Potential in California

    Energy Technology Data Exchange (ETDEWEB)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  15. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  16. PV water pumping for carbon sequestration in dry land agriculture

    International Nuclear Information System (INIS)

    Highlights: • A novel model for carbon sequestration in dry land agriculture is developed. • We consider the water-food-energy-climate nexus to assess carbon sequestration. • Using water for carbon sequestration should be assessed critically. • Co-benefits of carbon sequestration should be included in the assessment. • Moisture feedback is part of the nexus model. - Abstract: This paper suggests a novel model for analysing carbon sequestration activities in dry land agriculture considering the water-food-energy-climate nexus. The paper is based on our on-going studies on photovoltaic water pumping (PVWP) systems for irrigation of grasslands in China. Two carbon sequestration projects are analysed in terms of their water productivity and carbon sequestration potential. It is concluded that the economic water productivity, i.e. how much water that is needed to produce an amount of grass, of grassland restoration is low and that there is a need to include several of the other co-benefits to justify the use of water for climate change mitigation. The co-benefits are illustrated in a nexus model including (1) climate change mitigation, (2) water availability, (3) downstream water impact, (4) energy security, (5) food security and (6) moisture recycling. We argue for a broad approach when analysing water for carbon sequestration. The model includes energy security and food security together with local and global water concerns. This makes analyses of dry land carbon sequestration activities more relevant and accurate. Without the nexus approach, the co-benefits of grassland restoration tend to be diminished

  17. Management of antenatally diagnosed pulmonary sequestration associated with congenital cystic adenomatoid malformation

    OpenAIRE

    Samuel, M; BURGE, D.

    1999-01-01

    BACKGROUND—Sequestration with associated cystic adenomatoid malformation is rare. A study was undertaken to determine whether pulmonary sequestration associated with congenital cystic adenomatoid malformation has a more favourable natural history than that of sequestration without associated cystic adenomatoid malformation.
METHODS—An outline of the postnatal work up leading to the management of extralobar or intralobar pulmonary sequestration with congenital cystic ad...

  18. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  19. A case report of extralobar pulmonary sequestration in a dog

    Institute of Scientific and Technical Information of China (English)

    Reza Kheirandish; Shahrzad Azizi; Soodeh Alidadi

    2012-01-01

    Pulmonary sequestration is a rare congenital anomaly in the veterinary literature. This malformation is characterized by a cystic mass of non-functioning primitive lung tissue that does not communicate with the tracheobronchial tree or with the pulmonary arteries. This article describes gross and histopathological characteristics of extralobar pulmonary sequestration in a dog. Grossly, a mass was observed in the left side of the thoracic cavity, closed to the caudal lobes of the lung, without communication with the tracheobronchial tree and the pulmonary arteries that was separated by pleural covering. Histopathologic examination showed emphysematous alveoli and bronchi, hypertrophy of smooth muscles and presence of the undifferentiated mesenchymal tissue. Therefore, based on microscopic findings, extralobar pulmonary sequestration was diagnosed. To the best of our knowledge, this is the first report of extralobar pulmonary sequestration in dog.

  20. Water Challenges for Geologic Carbon Capture and Sequestration

    OpenAIRE

    Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utiliza...

  1. Field validation of chlordecone soil sequestration by organic matter addition

    OpenAIRE

    Clostre, F.; Woignier, T.; RANGON, Luc; Fernandes, P.; Soler, A.; Lesueur-Jannoyer, M.

    2014-01-01

    Purpose The use of chlordecone (CLD) has caused pollution of soils, which are now a source of contamination for crops and ecosystems. Because of its long-term impacts on human health, exposure to CLD is a public health concern and contamination of crops by CLD must be limited. To this end, we conducted field trials on chlordecone sequestration in soil with added compost. Materials and methods The impact of added compost on chlordecone sequestration was measured in nitisols. After characteriza...

  2. Pulmonary sequestration cyst in a patient of cerebral palsy

    OpenAIRE

    Bilal Mirza; Muhammad Saleem; Lubna Ijaz; Arsalan Qureshi; Afzal Sheikh

    2011-01-01

    Pulmonary sequestration cyst is a rare entity in pediatric patients. Most of the time, it is diagnosed as an incidental finding. It is associated with other congenital anomalies, especially congenital diaphragmatic hernia. We report a patient of cerebral palsy presented with vomiting and recurrent chest infections. He was diagnosed to have hiatal hernia on computed tomography scan of chest. At operation, a pulmonary sequestration cyst along with hiatal hernia, malrotation, and meckel′s divert...

  3. The role of carbon sequestration in a global energy future

    International Nuclear Information System (INIS)

    Governmental policies and international treaties that aim at curbing the emissions of greenhouse gases and local pollutants can be expected. These regulations will increase the competitiveness of CO2-neutral energy sources, i.e., renewables, nuclear or decarbonization of fossil fuels with CO2-sequestration. The purpose of this paper is to illustrate the potential role carbon sequestration may play if stringent carbon constraints are applied

  4. Recovery Act: Geologic Sequestration Training and Research

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Peter; Esposito, Richard; Theodorou, Konstantinos; Hannon, Michael; Lamplugh, Aaron; Ellison, Kirk

    2013-06-30

    Work under the project entitled "Geologic Sequestration Training and Research," was performed by the University of Alabama at Birmingham and Southern Company from December 1, 2009, to June 30, 2013. The emphasis was on training of students and faculty through research on topics central to further development, demonstration, and commercialization of carbon capture, utilization, and storage (CCUS). The project had the following components: (1) establishment of a laboratory for measurement of rock properties, (2) evaluation of the sealing capacity of caprocks, (3) evaluation of porosity, permeability, and storage capacity of reservoirs, (4) simulation of CO{sub 2} migration and trapping in storage reservoirs and seepage through seal layers, (5) education and training of students through independent research on rock properties and reservoir simulation, and (6) development of an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. Four graduate students and one undergraduate student participated in the project. Two were awarded Ph.D. degrees for their work, the first in December 2010 and the second in August 2013. A third graduate student has proposed research on an advanced technique for measurement of porosity and permeability, and has been admitted to candidacy for the Ph.D. The fourth graduate student is preparing his proposal for research on CCUS and solid waste management. The undergraduate student performed experimental measurements on caprock and reservoir rock samples and received his B.S.M.E. degree in May 2012. The "Caprock Integrity Laboratory," established with support from the present project, is fully functional and equipped for measurement of porosity, permeability, minimum capillary displacement pressure, and effective permeability to gas in the presence of wetting phases. Measurements are made at ambient temperature and under reservoir conditions, including supercritical CO{sub 2

  5. Guide to CO{sub 2} capture, sequestration, and storage

    Energy Technology Data Exchange (ETDEWEB)

    Drazga, B. (ed.)

    2007-02-15

    The report addresses the probability of incorporating carbon sequestration (CS) as a viable market mechanism for sustainable development. The approach includes analyzing the utility of carbon sequestration projects as a mechanism for promoting sustainable forestry practices and environmental preservation, as well as addressing stakeholder interests in the implementation of these projects. The report provides an overview and conceptual framework of the issues and the problems associated with sequestration projects in general; and discusses the economic and policy constraints and the challenges associated with the implementation of these projects. It examines the methodology currently being used in this area and address the problems associated with leakages specific to forest-based carbon sequestration projects. The report gives a conceptual framework of the topic, and provides a detailed analysis of the linkages between carbon and climate change and the issues associated with the current treaties, specifically the Kyoto Protocol. The report discusses the problem of leakage, compellance versus volunteerism, and the feasibility of the market approach to carbon sequestration. The report also examines the flaws involved with the current approach and identifies some of the early success stories. The report uses the Bolivia Noelle Kempff Climate Action model as a case study of a large-scale carbon project at work in a developing country. It examines what some countries are currently doing to link the various issues pertaining to carbon sequestration and sustainable development.

  6. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO2. Some techniques could be used to reduced CO2 emission and stabilize atmospheric CO2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO2 emissions such as renewable or nuclear energy, iii) capture and store CO2 from fossil fuels combustion, and enhance the natural sinks for CO2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO2 and to review the various options for CO2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could make a

  7. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  8. Ion sequestration particles for naval anticorrosion coatings

    Science.gov (United States)

    Zguris, Zachary Z.

    Corrosion is the electrochemical process of a metal returning to its lower energy state, the metal oxide. The cost of corrosion is difficult to estimate. One area particularly susceptible to corrosion problems with high maintenance costs is that of the 20,000 tanks existent in the US Naval Fleet. The Navy is sponsoring the development of novel coatings and additives that can be used to decrease the rising corrosion related costs. This dissertation describes in detail the synthesis of Ion Sequestration Particles (ISP) that when added to the standard MIL-DTL-24441 or potentially another coating system act to enhance the anticorrosion properties of the coating. A solid ion sequestration core material (SISCM) is first produced. The core is then encapsulated in a second stage forming a shell that protects the SISCM sufficiently from the harmful interactions with uncured epoxy based coatings. ISPs were designed to sequester harmful ions while releasing passivating ions in their place. The passivating ions then migrate to defect sites at the coating interface where they act to inhibit corrosion. The anticorrosion performance of ISPs in epoxy coatings has been demonstrated by both 500 hrs of hot deionized water immersion and 1000 hrs of salt spray exposure (ASTM B117). The best improvements in coating performance are attained with ISP content ranging from 5-10 wt % loading in a coating. ISPs were designed to limit the transport of harmful ions through the coating. However this work has determined high diffusion coefficients for ions (CI- and PO42-) through the epoxy matrix. Without ISPs, the diffusion coefficient through the MIL-DTL-24441 coating was determined for phosphate to be 1.16x10-7 cm2/s and for chloride to be in the range of 2.7x10-9 to 5.6x10-10 cm2/s. The addition of 5 wt % ISPs to the coating had the effect of decreasing the diffusion coefficient by an average of 25.5%. These results yield the conclusion that the enhanced anticorrosion properties of coatings

  9. Carbon sequestration R&D overview

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Justine [Office of Fossil Energy, U.S. Department of Energy (United States)

    2008-07-15

    In this presentation the author discusses over the technological options for the handling of carbon. He shows the objectives and challenges of the program of carbon sequestration of the Department of Energy of the United States, as well as a table with the annual CO{sub 2} emissions in the United States; a graph with the world-wide capacity of CO{sub 2} geologic storage and a listing with the existing projects of CCS at the moment in the world. [Spanish] En esta presentacion el autor platica sobre las opciones tecnologicas para el manejo del carbono. Muestra los objetivos y retos del programa de secuestro de carbono del Departamento de Energia de los Estados Unidos, asi como una tabla con las emisiones anuales de CO{sub 2} en los Estados Unidos; un grafico con la capacidad mundial de almacenamiento de CO{sub 2} en el subsuelo y un listado con los proyectos de CCS existentes actualmente en el mundo.

  10. CO{sub 2} sequestration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ketzer, Marcelo [Brazilian Carbon Storage Research Center (Brazil)

    2008-07-15

    In this presentation the importance of the capture and sequestration of CO{sub 2} is outlined for the reduction of gas discharges of greenhouse effect; then the principles of CO{sub 2} storage in geologic formations are reviewed; afterwards, the analogs for the CO{sub 2} storage are commented, such as the storage of the acid gas, the natural gas storage and the natural CO{sub 2} deposits. Also it is spoken on the CO{sub 2} storage in coal, in water-bearing saline deposits and in oil fields, and finally the subject of the safety and monitoring of the CO{sub 2} storage is reviewed. [Spanish] En esta presentacion se expone la importancia de la captura y secuestro de CO{sub 2} para la reduccion de emisiones de gases de efecto invernadero; luego se tratan los principios de almacenamiento de CO{sub 2} en formaciones geologicas; despues se comentan los analogos para el almacenamiento de CO{sub 2} como el almacenamiento del gas acido, el almacenamiento de gas natural y los yacimientos naturales de CO{sub 2}. Tambien se habla sobre el almacenamiento de CO{sub 2} en carbon, acuiferos salinos y yacimientos petroliferos y por ultimo se toca el tema de la seguridad y monitoreo del almacenamiento de CO{sub 2}.

  11. Alliance for Sequestration Training, Outreach, Research & Education

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Hilary

    2013-09-01

    The Sequestration Training, Outreach, Research and Education (STORE) Alliance at The University of Texas at Austin completed its activity under Department of Energy Funding (DE- FE0002254) on September 1, 2013. The program began as a partnership between the Institute for Geophysics, the Bureau of Economic Geology and the Petroleum and Geosystems Engineering Department at UT. The initial vision of the program was to promote better understanding of CO2 utilization and storage science and engineering technology through programs and opportunities centered on training, outreach, research and technology transfer, and education. With over 8,000 hrs of formal training and education (and almost 4,500 of those hours awarded as continuing education credits) to almost 1,100 people, STORE programs and activities have provided benefits to the Carbon Storage Program of the Department of Energy by helping to build a skilled workforce for the future CCS and larger energy industry, and fostering scientific public literacy needed to continue the U.S. leadership position in climate change mitigation and energy technologies and application. Now in sustaining mode, the program is housed at the Center for Petroleum and Geosystems Engineering, and benefits from partnerships with the Gulf Coast Carbon Center, TOPCORP and other programs at the university receiving industry funding.

  12. Carbon sequestration using sea water agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Platt, Joseph B. [Planetary Design Corp., Phoenix, AZ (United States)

    1998-09-01

    An innovative biomass technology is described which is being used in the Activities Implemented Jointly programme which seeks to promote climatic change mitigation and economic development through cooperation between developed and developing countries. Commercially viable halophyte farms are being created by the American Planetary Design Corporation in Mexico and India. Halophytes are salt resistant plants which can be cultivated on desert lands using sea water for irrigation. Virtually all parts of one such plant, salicornia, yields useful by-products which include seed oil rich in polyunsaturates, animal feed, protein rich flour, and particle board from the waste. These by-products contribute to the economics of a biomass crop which contributes to carbon sequestration and makes use of land which cannot support other crops. The economics can be further improved where halophyte farming is integrated with aquaculture. Sea water is first pumped into raceways that grow shrimp, then into ponds for fin fish; finally the nutrient rich waste water, which is a major concern for the aquaculture industry, is applied to the halophyte fields where it enriches the crop. (UK)

  13. Natural CO2 Analogs for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Scott H. Stevens; B. Scott Tye

    2005-07-31

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  14. The economics of soil C sequestration

    Science.gov (United States)

    Alexander, P.; Paustian, K.; Smith, P.; Moran, D.

    2014-12-01

    Carbon is a critical component of soil vitality and of our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence this is a case of significant market failure. In the design of alternative policy options we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.

  15. Carbon sequestration by young Norway spruce monoculture

    Science.gov (United States)

    Pokorny, R.; Rajsnerova, P.; Kubásek, J.

    2012-04-01

    Many studies have been focused on allometry, wood-mass inventory, carbon (C) sequestration, and biomass expansion factors as the first step for the evaluation of C sinks of different plant ecosystems. To identify and quantify these terrestrial C sinks, and evaluate CO2 human-induced emissions on the other hand, information for C balance accounting (for impletion of commitment to Kyoto protocol) are currently highly needed. Temperate forest ecosystems have recently been identified as important C sink. Carbon sink might be associated with environmental changes (elevated [CO2], air temperature, N deposition etc.) and large areas of managed fast-growing young forests. Norway spruce (Pice abies L. Karst) is the dominant tree species (35%) in Central European forests. It covers 55 % of the total forested area in the Czech Republic, mostly at high altitudes. In this contribution we present C sequestration by young (30-35 year-old) Norway spruce monocultures in highland (650-700 m a.s.l., AT- mean annual temperature: 6.9 ° C; P- annual amount of precipitation: 700 mm; GL- growing season duration: 150 days) and mountain (850-900 m a.s.l.; AT of 5.5 ° C; P of 1300 mm; and GL of 120 days) areas and an effect of a different type of thinning. However, the similar stem diameter at the breast height and biomass proportions among above-ground tree organs were obtained in the both localities; the trees highly differ in their height, above-ground organ's biomass values and total above ground biomass, particularly in stem. On the total mean tree biomass needle, branch and stem biomass participated by 22 %, 24 % and 54 % in highland, and by 19 %, 23 % and 58 % in mountain area, respectively. Silvicultural management affects mainly structure, density, and tree species composition of the stand. Therefore, dendrometric parameters of a tree resulted from genotype, growth conditions and from management history as well. Low type of thinning (LT; common in highland) stimulates rather tree

  16. CO2 Sequestration within Spent Oil Shale

    Science.gov (United States)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  17. Carbon sequestration potential of extensive green roofs.

    Science.gov (United States)

    Getter, Kristin L; Rowe, D Bradley; Robertson, G Philip; Cregg, Bert M; Andresen, Jeffrey A

    2009-10-01

    Two studies were conducted with the objective of quantifying the carbon storage potential of extensive green roofs. The first was performed on eight roofs in Michigan and four roofs in Maryland, ranging from 1 to 6 years in age. All 12 green roofs were composed primarily of Sedum species, and substrate depths ranged from 2.5 to 12.7 cm. Aboveground plant material was harvested in the fall of 2006. On average, these roofs stored 162 g C x m(-2) in aboveground biomass. The second study was conducted on a roof in East Lansing, MI. Twenty plots were established on 21 April 2007 with a substrate depth of 6.0 cm. In addition to a substrate only control, the other plots were sown with a single species of Sedum (S. acre, S. album, S. kamtshaticum, or S. spurium). Species and substrate depth represent typical extensive green roofs in the United States. Plant material and substrate were harvested seven times across two growing seasons. Results at the end of the second year showed that aboveground plant material storage varied by species, ranging from 64 g C x m(-2) (S. acre) to 239 g C x m(-2) (S. album), with an average of 168 g C x m(-2). Belowground biomass ranged from 37 g C x m(-2) (S. acre) to 185 g C x m(-2) (S. kamtschaticum) and averaged 107 g C x m(-2). Substrate carbon content averaged 913 g C x m(-2), with no species effect, which represents a sequestration rate of 100 g C x m(-2) over the 2 years of this study. The entire extensive green roof system sequestered 375 g C x m(-2) in above- and belowground biomass and substrate organic matter.

  18. Contribution of Donana wetlands to carbon sequestration.

    Directory of Open Access Journals (Sweden)

    Edward P Morris

    Full Text Available Inland and transitional aquatic systems play an important role in global carbon (C cycling. Yet, the C dynamics of wetlands and floodplains are poorly defined and field data is scarce. Air-water CO2 fluxes in the wetlands of Doñana Natural Area (SW Spain were examined by measuring alkalinity, pH and other physiochemical parameters in a range of water bodies during 2010-2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous CO2 transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of CO2 (-0.8 and 36.3 mmol(CO2 m(-2 d(-1. Fluxes in semi-permanent streams and ponds changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and -1.2 mmol(CO2 m(-2 d(-1. Overall, Doñana's water bodies were a net annual source of CO2 (5.2 mol(C m(-2 y(-1. Up-scaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous CO2 transport (13.1 Gg(C y(-1. Nevertheless, this estimate is about 6 times < local marsh net primary production, suggesting the system acts as an annual net CO2 sink. Initial indications suggest longer hydroperiods may favour autochthonous C capture by phytoplankton. Direct anthropogenic impacts have reduced the hydroperiod in Doñana and this maybe exacerbated by climate change (less rainfall and more evaporation, suggesting potential for the modification of C sequestration.

  19. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  20. Fundamental Elements of Geologic C02 Sequestration in Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J W; Nitao, J J; Steefel, C I

    2001-11-19

    Geologic sequestration represents a promising strategy for isolating CO{sub 2} waste streams from the atmosphere. Successful implementation of this approach hinges on our ability to predict the relative effectiveness of subsurface CO{sub 2} migration and sequestration as a function of key target-formation and cap-rock properties, which will enable us to identify optimal sites and evaluate their long-term isolation performance. Quantifying this functional relationship requires a modeling capability that explicitly couples multiphase flow and kinetically controlled geochemical processes. We have developed a unique computational package that meets these criteria, and used it to model CO{sub 2} injection at Statoil's North-Sea Sleipner facility, the world's first saline-aquifer storage site. The package integrates a state-of-the-art reactive transport simulator (NUFT) with supporting geochemical software and databases (SUPCRT92). In our Sleipner study, we have quantified--for the first time--the influence of intra-aquifer shales and aquifer/cap-rock composition on migration/sequestration balance, sequestration partitioning among hydrodynamic, solubility, and mineral trapping mechanisms, and the isolation performance of shale cap rocks. Here, we review the fundamental elements of geologic CO{sub 2} sequestration in saline aquifers as revealed from model XSH of our Sleipner study; this model, unlike CSH and DSH, does not address the complicating (yet advantageous) presence of intra-aquifer shales.

  1. [Seagrass ecosystems: contributions to and mechanisms of carbon sequestration].

    Science.gov (United States)

    Qiu, Guang-Long; Lin, Hsing-Juh; Li, Zong-Shan; Fan, Hang-Qing; Zhou, Hao-Lang; Liu, Guo-Hua

    2014-06-01

    The ocean's vegetated habitats, in particular seagrasses, mangroves and salt marshes, each capture and store a comparable amount of carbon per year, forming the Earth's blue carbon sinks, the most intense carbon sinks on the planet. Seagrass meadows, characterized by high primary productivity, efficient water column filtration and sediment stability, have a pronounced capacity for carbon sequestration. This is enhanced by low decomposition rates in anaerobic seagrass sediments. The carbon captured by seagrass meadows contributes significantly to the total blue carbon. At a global scale, seagrass ecosystems are carbon sink hot spots and have profound influences on the global carbon cycle. This importance combined with the many other functions of seagrass meadows places them among the most valuable ecosystems in the world. Unfortunately, seagrasses are declining globally at an alarming rate owing to anthropogenic disturbances and climate change, making them also among the most threatened ecosystems on the Earth. The role of coastal systems in carbon sequestration has received far too little attention and thus there are still many uncertainties in evaluating carbon sequestration of global seagrass meadows accurately. To better assess the carbon sequestration of global seagrass ecosystems, a number of scientific issues should be considered with high priorities: 1) more accurate measurements of seagrass coverage at national and global levels; 2) more comprehensive research into species- and location-specific carbon sequestration efficiencies; 3) in-depth exploration of the effects of human disturbance and global climate change on carbon capture and storage by seagrass ecosystems. PMID:25223044

  2. Geo-Spatial Technologies for Carbon Sequestration Monitoring and Management

    Directory of Open Access Journals (Sweden)

    V. Jeyanny

    2011-01-01

    Full Text Available Problem statement: Globally, the quantification of Carbon Sequestration (CS potential of various ecosystems is a challenge. There is an urgent need for technologies that can quantify CS potential cost-efficiently in a repeated and organized manner. Approach: Remote Sensing (RS and Geographic Information System (GIS have great potential in current estimation, future prediction and management of carbon sequestration potential in terrestrial ecosystems. This review discusses the current utilization of RS and GIS technologies in CS management in various sectors. Results: Deployment of RS and GIS for CS sequestration improves accuracy, reduces costs, increases productivity, and provides current observations from a regional scale. Conclusion: This review demonstrates the synergistic role of RS and GIS technologies in improving CS management.

  3. A Circular Bioeconomy with Biobased Products from CO2 Sequestration.

    Science.gov (United States)

    Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G

    2016-06-01

    The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. PMID:27048926

  4. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  5. Thyroglossal duct cyst accompanied by laryngomalacia and pulmonary sequestration.

    Science.gov (United States)

    Yagasaki, Hideaki; Makino, Koichi; Goto, Yusuke; Suzuki, Takeyuki; Oyachi, Noboru; Obana, Kazuko; Ko, Junichi; Komai, Takayuki

    2014-06-01

    A 2-month-old full-term female infant developed nasal stridor, which progressed to respiratory distress and poor sucking ability. Direct pharyngoscopy showed laryngomalacia and a midline cystic mass in the lingual region. The mass pressed on the epiglottis, causing dyspnea. Computed tomography incidentally revealed extralobar pulmonary sequestration. Direct deroofing of the lingual cyst and plication of the epiglottis were performed at 3 months of age, and the patient recovered from the respiratory distress. Histopathology of the cystic mass showed a thyroglossal duct cyst. Thoracoscopic resection of the pulmonary sequestration was then done at 17 months of age. Thyroglossal duct cysts in the lingual region may cause destabilization of the epiglottis and laryngomalacia, resulting in acquired respiratory obstruction. The combination of thyroglossal duct cyst, laryngomalacia, and pulmonary sequestration is rare; therefore, reports must be accumulated in order to explore the embryological origins of such cases. PMID:24894942

  6. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    OpenAIRE

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (

  7. Fatal splenic sequestration crisis in adult sickle cell-beta thalassaemia.

    OpenAIRE

    van Rhee, F; Balsitis, M.; French, E. A.

    1991-01-01

    Fatal acute splenic sequestration crisis in an adult patient with sickle cell-beta+ thalassaemia is described. To our knowledge fatal splenic sequestration in adult sickle cell-beta thalassaemia has not been previously reported.

  8. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have

  9. State and Regional Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Durrant, Marie [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  10. State and Regional Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold; Durrant, Marie

    2011-03-31

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­‐three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­‐and-­‐trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  11. Carbon Sequestration on Surface Mine Lands

    Energy Technology Data Exchange (ETDEWEB)

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    reclamation practice. In addition, experiments were integrated within the reforestation effort to address specific questions pertaining to sequestration of carbon (C) on these sites.

  12. Evaluating the seismic risk of mineral carbon sequestration

    Science.gov (United States)

    Balcerak, Ernie

    2013-04-01

    Geologic carbon sequestration, in which carbon is captured and stored underground, has been proposed as one way to mitigate the climatic effects of carbon dioxide emissions. One method of geologic carbon sequestration is to inject carbon dioxide in aqueous solution into rocks. However, as the solution fills the pore space in the rocks, the fluid pressure on the rocks increases, potentially increasing the risk of earthquakes. Another option would be to inject carbon dioxide solutions into mafic rocks; the silicate minerals in these rocks react with the carbon dioxide, leaving solid carbonate reaction products, which decrease the amount of pore fluid.

  13. Current Status and Development Prospect of Carbon Sequestration Forestry in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbon sequestration forestry plays an important role in climate change and global warming mitigation, and thus gains more and more attention around the world. The paper introduced the concept, the significance and the status of carbon sequestration forestry in China, discussed existing issues and put forward countermeasures and suggestions to address these issues. Finally, development prospect of carbon sequestration forestry was analyzed.

  14. 75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop

    Science.gov (United States)

    2010-06-14

    ... of Energy Efficiency and Renewable Energy Notice of the Carbon Sequestration--Geothermal Energy... the Carbon Sequestration--Geothermal Energy--Science Joint Workshop. SUMMARY: The DOE Geothermal....geothermal.energy.gov . DATES: The Carbon Sequestration--Geothermal Energy--Science Joint Workshop will...

  15. Additional carbon sequestration benefits of grassland diversity restoration

    NARCIS (Netherlands)

    De Deyn, G.B.; Shiel, R.S.; Ostle, N.J.; McNamara, N.P.; Oakley, S.; Young, I.; Freeman, C.; Fenner, N.; Quirk, H.; Bardgett, R.D.

    2011-01-01

    1. In Europe, grassland agriculture is one of the dominant land uses. A major aim of European agri-environment policy is the management of grassland for botanical diversity conservation and restoration, together with the delivery of ecosystem services including soil carbon (C) sequestration. 2. To t

  16. Additional carbon sequestration benefits of grassland diversity restoration

    NARCIS (Netherlands)

    Deyn, de G.B.; Shiel, R.S.; Ostle, N.J.; McNamara, N.P.; Oakley, S.; Young, I.; Freeman, C.; Fenner, N.; Quirk, H.; Bardgett, R.D.

    2011-01-01

    1. In Europe, grassland agriculture is one of the dominant land uses. A major aim of European agri-environment policy is the management of grassland for botanical diversity conservation and restoration, together with the delivery of ecosystem services including soil carbon (C) sequestration. 2. To t

  17. Plant functional traits and soil carbon sequestration in contrasting biomes.

    Science.gov (United States)

    De Deyn, Gerlinde B; Cornelissen, Johannes H C; Bardgett, Richard D

    2008-05-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its release from soil through respiration, fire and leaching. However, our mechanistic understanding of these processes is incomplete. Here, we present a mechanistic framework, based on the plant traits that drive soil carbon inputs and outputs, for understanding how alteration of vegetation composition will affect soil carbon sequestration under global changes. First, we show direct and indirect plant trait effects on soil carbon input and output through autotrophs and heterotrophs, and through modification of abiotic conditions, which need to be considered to determine the local carbon sequestration potential. Second, we explore how the composition of key plant traits and soil biota related to carbon input, release and storage prevail in different biomes across the globe, and address the biome-specific mechanisms by which plant trait composition may impact on soil carbon sequestration. We propose that a trait-based approach will help to develop strategies to preserve and promote carbon sequestration.

  18. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  19. A Sustainability Initiative to Quantify Carbon Sequestration by Campus Trees

    Science.gov (United States)

    Cox, Helen M.

    2012-01-01

    Over 3,900 trees on a university campus were inventoried by an instructor-led team of geography undergraduates in order to quantify the carbon sequestration associated with biomass growth. The setting of the project is described, together with its logistics, methodology, outcomes, and benefits. This hands-on project provided a team of students…

  20. Geothermal energy combined with CO2 sequestration: An additional benefit

    NARCIS (Netherlands)

    Salimi, H.; Wolf, K.H.A.A.; Bruining, J.

    2012-01-01

    In this transition period from a fossil-fuel based society to a sustainable-energy society, it is expected that CO2 capture and subsequent sequestration in geological formations plays a major role in reducing greenhouse gas emissions. An alternative for CO2 emission reduction is to partially replace

  1. Soil Carbon Sequestration and the Greenhouse Effect (2nd Edition)

    Science.gov (United States)

    This volume is a second edition of the book “Soil Carbon Sequestration and The Greenhouse Effect”. The first edition was published in 2001 as SSSA Special Publ. #57. The present edition is an update of the concepts, processes, properties, practices and the supporting data. All chapters are new co...

  2. Effect of bile acid sequestrants on glycaemic control

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David Peick; Mikkelsen, Kristian Hallundbæk;

    2012-01-01

    In addition to the lipid-lowering effect of bile acid sequestrants (BASs), they also lower blood glucose and, therefore, could be beneficial in the treatment of patients with type 2 diabetes mellitus (T2DM). Three oral BASs are approved by the US Food and Drug Administration (FDA) for the treatment...

  3. Carbon sequestration in the agricultural soils of Europe

    NARCIS (Netherlands)

    Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, A.

    2004-01-01

    In this review, technical and economically viable potentials for carbon sequestration in the agricultural soils of Europe by 2008¿2012 are analysed against a business-as-usual scenario. We provide a quantitative estimation of the carbon absorption potential per hectare and the surface of agricultura

  4. Genome-enabled Discovery of Carbon Sequestration Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Kalluri, Udaya C [ORNL; Yin, Tongming [ORNL; Yang, Xiaohan [ORNL; Zhang, Xinye [ORNL; Engle, Nancy L [ORNL; Ranjan, Priya [ORNL; Basu, Manojit M [ORNL; Gunter, Lee E [ORNL; Jawdy, Sara [ORNL; Martin, Madhavi Z [ORNL; Campbell, Alina S [ORNL; DiFazio, Stephen P [ORNL; Davis, John M [University of Florida; Hinchee, Maud [ORNL; Pinnacchio, Christa [U.S. Department of Energy, Joint Genome Institute; Meilan, R [Purdue University; Busov, V. [Michigan Technological University; Strauss, S [Oregon State University

    2009-01-01

    The fate of carbon below ground is likely to be a major factor determining the success of carbon sequestration strategies involving plants. Despite their importance, molecular processes controlling belowground C allocation and partitioning are poorly understood. This project is leveraging the Populus trichocarpa genome sequence to discover genes important to C sequestration in plants and soils. The focus is on the identification of genes that provide key control points for the flow and chemical transformations of carbon in roots, concentrating on genes that control the synthesis of chemical forms of carbon that result in slower turnover rates of soil organic matter (i.e., increased recalcitrance). We propose to enhance carbon allocation and partitioning to roots by 1) modifying the auxin signaling pathway, and the invertase family, which controls sucrose metabolism, and by 2) increasing root proliferation through transgenesis with genes known to control fine root proliferation (e.g., ANT), 3) increasing the production of recalcitrant C metabolites by identifying genes controlling secondary C metabolism by a major mQTL-based gene discovery effort, and 4) increasing aboveground productivity by enhancing drought tolerance to achieve maximum C sequestration. This broad, integrated approach is aimed at ultimately enhancing root biomass as well as root detritus longevity, providing the best prospects for significant enhancement of belowground C sequestration.

  5. Cost Evaluation of CO2 Sequestration by Aqueous Mineral Carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2007-01-01

    A cost evaluation of CO2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO3) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a

  6. Barriers and Prospects of Carbon Sequestration in India.

    Science.gov (United States)

    Gupta, Anjali; Nema, Arvind K

    2014-04-01

    Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects. PMID:26563072

  7. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. PMID:26732128

  8. How strongly can forest management influence soil carbon sequestration?

    NARCIS (Netherlands)

    Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.M.S.D.L.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A.

    2007-01-01

    We reviewed the experimental evidence for long-term carbon (C) sequestration in soils as consequence of specific forest management strategies. Utilization of terrestrial C sinks alleviates the burden of countries which are committed to reducing their greenhouse gas emissions. Land-use changes such a

  9. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.

  10. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION

    Science.gov (United States)

    The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...

  11. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)

    Science.gov (United States)

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  12. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  13. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

    Energy Technology Data Exchange (ETDEWEB)

    P. UNKEFER; M. EBINGER; ET AL

    2001-02-01

    Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies. A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation

  14. Regulating forest rotation to increase CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gong, P.; Kristroem, B.

    1999-06-01

    Previous studies have shown that the optimal forest rotation age increases considerably if the benefits of CO{sub 2} sequestration are included in rotation decisions. While these studies provide some guidelines for managing public forests, private forest owners may not choose the socially optimal rotation age. This paper discusses a regulation measure to increase CO{sub 2} sequestration in privately owned forests. The regulation problem is treated as a sequential game, where the regulator chooses a subsidy scheme and forest owners respond by changing rotation ages. A private forest owner receives a subsidy at the time of harvesting if he/she changes the rotation age towards the socially optimal one. The subsidy is proportional to the associated change in timber yield. The forest owner`s objective is to maximize the net present value of after-tax timber production profits and subsidies. The regulator`s decision problem is to find the subsidy rate that maximizes the net benefits of implementing the policy (the net of increased CO{sub 2} sequestration benefits, subsidy costs, and changes in forestry taxation income). Empirical results for Swedish examples show that the optimal subsidy rate is sensitive to the marginal benefit of CO{sub 2} sequestration, the social discount rate, and site quality. The optimal subsidy rate is found to be significantly lower than the marginal benefit of CO{sub 2} sequestration. With the proposed subsidy scheme, private forest owners will choose rotation ages longer than the Faustmann rotation, but significantly shorter than the socially optimal rotation age 21 refs, 6 tabs. Arbetsrapport 272

  15. Impact of parameter uncertainty on carbon sequestration modeling

    Science.gov (United States)

    Bandilla, K.; Celia, M. A.

    2013-12-01

    Geologic carbon sequestration through injection of supercritical carbon dioxide (CO2) into the subsurface is one option to reduce anthropogenic CO¬2 emissions. Widespread industrial-scale deployment, on the order of giga-tonnes of CO2 injected per year, will be necessary for carbon sequestration to make a significant contribution to solving the CO2 problem. Deep saline formations are suitable targets for CO2 sequestration due to their large storage capacity, high injectivity, and favorable pressure and temperature regimes. Due to the large areal extent of saline formations, and the need to inject very large amounts of CO2, multiple sequestration operations are likely to be developed in the same formation. The injection-induced migration of both CO2 and resident formation fluids (brine) needs to be predicted to determine the feasibility of industrial-scale deployment of carbon sequestration. Due to the larger spatial scale of the domain, many of the modeling parameters (e.g., permeability) will be highly uncertain. In this presentation we discuss a sensitivity analysis of both pressure response and CO2 plume migration to variations of model parameters such as permeability, compressibility and temperature. The impact of uncertainty in the stratigraphic succession is also explored. The sensitivity analysis is conducted using a numerical vertically-integrated modeling approach. The Illinois Basin, USA is selected as the test site for this study, due to its large storage capacity and large number of stationary CO2 sources. As there is currently only one active CO2 injection operation in the Illinois Basin, a hypothetical injection scenario is used, where CO2 is injected at the locations of large CO2 emitters related to electricity generation, ethanol production and hydrocarbon refinement. The Area of Review (AoR) is chosen as the comparison metric, as it includes both the CO2 plume size and pressure response.

  16. Cleaving DNA with DNA

    Science.gov (United States)

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-03-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This ``deoxyribozyme'' can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min-1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple ``restriction enzymes'' for the site-specific cleavage of single-stranded DNA.

  17. Assessment of Carbon Sequestration in German Alley Cropping Systems

    Science.gov (United States)

    Tsonkova, P. B.; Quinkenstein, A.; Böhm, C.; Freese, D.

    2012-04-01

    Alley cropping systems (ACS) are agroforestry practices in which perennial trees or shrubs are grown in wide rows and arable crops are cultivated in the alleys between the tree rows. Recently, ACS which integrate stripes of short rotation coppices into conventional agricultural sites have gained interest in Germany. These systems can be used for simultaneous production of crops and woody biomass which enables farmers to diversify the provision of market goods. Adding trees into the agricultural landscape creates additional benefits for the farmer and society also known as ecosystem services. An ecosystem service provided by land use systems is carbon sequestration. The literature indicates that ACS are able to store more carbon compared to agriculture and their implementation may lead to greater benefits for the environment and society. Moreover, carbon sequestration in ACS could be included in carbon trading schemes and farmers rewarded additionally for the provision of this ecosystem service. However, methods are required which are easy to use and provide reliable information regarding change in carbon sequestration with change of the land use practice. In this context, our aim was to develop a methodology to assess carbon sequestration benefit provided by ACS in Germany. Therefore, the change of carbon in both soil and biomass had to be considered. To predict the change in soil carbon our methodology combined the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and the soil organic carbon balance recommended by the Association of German Agricultural Investigation and Research Centers (VDLUFA). To reflect the change in biomass carbon average annual yields were adopted. The results showed that ACS established on agricultural sites can increase the carbon stored because in the new soil-plant system carbon content is higher compared to agriculture. ACS have been recommended as suitable land use systems for marginal sites, such as post-mining areas. In

  18. New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales).

    Science.gov (United States)

    Smith, Matthew E; Amses, Kevin R; Elliott, Todd F; Obase, Keisuke; Aime, M Catherine; Henkel, Terry W

    2015-12-01

    Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera. PMID:26732137

  19. Organic nutrient enrichment in the oligotrophic ocean: Impacts on remineralization, carbon sequestration, and community structure

    Science.gov (United States)

    Mackey, K. R.; Paytan, A.; Post, A. F.

    2007-12-01

    In oligotrophic seas where inorganic nitrogen (N) and phosphorus (P) are below the limits of detection, organic forms of these nutrients may constitute greater than 90% of the total N and P in the euphotic zone. The combined enzymatic activity of phytoplankton and heterotrophic bacteria determines the rate of nutrient remineralization, thereby influencing phytoplankton growth rates and carbon sequestration in these regions. In this study we investigated the effects of fertilization with ammonium (NH4), nitrate (NO3), nitrite (NO2), and phosphate (PO4) as well as various forms of organic N (urea, glycine) and P (deoxyribonucleic acid, 2- aminoethyl phosphonic acid, phytic acid) on the growth and taxonomic composition of the phytoplankton community in the Gulf of Aqaba, Red Sea. The impacts of these changes on nutrient cycling and biological assimilation were also assessed. Organic N additions led to phytoplankton growth when given together with PO4, yielding 2-3 fold increases in chlorophyll a (Chl a) and cell density relative to initial levels. Moreover, our results show that addition of NH4 or NO3 led to accumulation of extra-cellular NO2, suggesting that incomplete assimilatory reduction of NO3 by phytoplankton as well as chemoautotrophic oxidation of NH4 by ammonium oxidizing microbes contributed to NO2 formation. These findings conflict with earlier studies in the Gulf that attributed NO2 formation solely to the phytoplankton community. Organic P additions also led to 2-3 fold increases in Chl a and cell density relative to initial levels when given together with NH4 and NO3. Compared to other P additions, DNA led to the rapid accumulation of extra-cellular PO4, indicating substantial nucleotidase activity in excess of the amount needed to meet phytoplankton growth requirements. These results show the importance and interconnectivity of phytoplankton and heterotrophic bacteria communities in contributing to nutrient cycling and carbon sequestration in

  20. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  1. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    Energy Technology Data Exchange (ETDEWEB)

    K. Lorenz; R. Lal

    2007-12-31

    This research project was aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of RMS and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. Restoration of disturbed land is followed by the application of nutrients to the soil to promote the vegetation development. Reclamation is important both for preserving the environmental quality and increasing agronomic yields. Since reclamation treatments have significant influence on the rate of soil development, a study on subplots was designed with the objectives of assessing the potential of different biosolids on soil organic C (SOC) sequestration rate, soil development, and changes in soil physical and water transmission properties. All sites are owned and maintained by American Electric Power (AEP). These sites were reclaimed by two techniques: (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover.

  2. CO2 Sequestration Potential of Texas Low-Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2003-07-01

    The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

  3. Geothermal energy combined with CO2 sequestration: An additional benefit

    OpenAIRE

    Salimi, H.; Wolf, K.H.A.A.; Bruining, J.

    2012-01-01

    In this transition period from a fossil-fuel based society to a sustainable-energy society, it is expected that CO2 capture and subsequent sequestration in geological formations plays a major role in reducing greenhouse gas emissions. An alternative for CO2 emission reduction is to partially replace conventional-energy for heating and cooling buildings (e.g., cogeneration units) with geothermal energy. A mixture of CO2 with cold return water injected into geothermal reservoirs can be the inte...

  4. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    Science.gov (United States)

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  5. Quercus ilex L. carbon sequestration capability related to shrub size.

    Science.gov (United States)

    Gratani, Loretta; Catoni, Rosangela; Varone, Laura

    2011-07-01

    CO(2) sequestration capacity of Quercus ilex L., an evergreen species developing in shrub and forest communities widely distributed in the Mediterranean Basin, was analysed. Experiments were carried out in the period of January to December 2009 on 20 shrubs of different size, growing at the Botanical Garden of Rome. At shrub level, the largest differences concern total photosynthetic leaf surface area per shrub and shrub volume. Shrubs structure significantly contribute to reduce total irradiance and air temperature below the canopy. Leaf mass per area is higher in sun leaves than in shade ones (20 ± 1 and 12 ± 2 mg cm( -2), respectively). Sun leaves are also characterised by the highest leaf thickness (78% higher in sun than in shade leaves), the spongy parenchyma thickness (71% higher in sun than in shade leaves) and the highest adaxial cuticle thickness (7.2 ± 1.2 and 4.7 ± 0.5 μm, respectively). Net photosynthetic rates (P (N)) of sun and shade leaves are the highest in spring, and shade leaves contribute 6% to the whole shrub P (N). Q. ilex CO(2) sequestration depends on shrub size. In particular, the CO(2) sequestration per shrub was 0.20 ± 0.02 Kg CO(2) year( -1) in small shrubs, and it was 75% and 98% lower than in medium and large ones. The highest CO(2) sequestration is measured in spring, decreasing 77% during drought. Q. ilex may play a significant role in mitigating carbon dioxide concentration and lowering air and soil temperature in areas around the Mediterranean Basin.

  6. [Intralobar pulmonary sequestration with multiple arterial blood supply].

    Science.gov (United States)

    Uroz Tristán, J; Mogueya, S A; Poenaru, D; Martínez Lagares, F; Arteaga García, R; Sanchís Solera, L; López-Pinto Ruiz, J

    1994-04-01

    We report the case of a 4 years old boy, who presented at our institution with reiterative neumonia affecting left basal lobe. Anomalous vascular appearance was detected in the chest x-ray. With the suspicion of pulmonary sequestration we carried on Digital Intravenous Angiography by Substraction (DIVAS) and aortogram. The anomalous systemic arterial supply was formed by 6 vessels coming from the thoracic aorta and going into the left lower lobe basal segment. Lobectomy was performed and previous diagnosis was confirmed pathologically.

  7. Technological Learning for Carbon Capture and Sequestration Technologies

    OpenAIRE

    K. Riahi; Rubin, E.S.; Taylor, M. R.; L. Schrattenholzer; Hounshell, D.

    2004-01-01

    This paper analyzes potentials of carbon capture and sequestration technologies (CCT) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCT. In order to get a reasonable guide to future technological progress in managing CO2 emissions, we review past experience in controlling sulfur dioxide (SO2) emissions from power plants. By doing so, we quantify a "learning curve" for CCT, which describes the relationship between ...

  8. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    Science.gov (United States)

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  9. CT imaging of splenic sequestration in sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, S.; Piomelli, S. [Columbia Univ., New York, NY (United States). Dept. of Pediatrics; Ruzal-Shapiro, C.; Berdon, W.E. [Columbia Univ., New York, NY (United States). Div. of Pediatric Radiology

    2000-12-01

    Pooling of blood in the spleen is a frequent occurrence in children with sickle cell diseases, particularly in the first few years of life, resulting in what is termed ''splenic sequestration crisis.'' The spectrum of severity in this syndrome is wide, ranging from mild splenomegaly to massive enlargement, circulatory collapse, and even death. The diagnosis is usually clinical, based on the enlargement of the spleen with a drop in hemoglobin level by >2 g/dl, and it is rare that imaging studies are ordered. However, in the patient who presents to the emergency department with non-specific findings of an acute abdomen, it is important to recognize the appearance of sequestration on imaging studies. We studied seven patients utilizing contrast-enhanced CT scans and found two distinct patterns - multiple, peripheral, non-enhancing low-density areas or large, diffuse areas of low density in the majority of the splenic tissue. Although radiological imaging is not always necessary to diagnose splenic sequestration, in those situations where this diagnosis is not immediately obvious, it makes an important clarifying contribution. (orig.)

  10. Nucleophilic substitution as a mechanism of atrazine sequestration in soil

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Shao, Juan [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China)

    2015-03-02

    Highlights: • Atrazine tends to form nonextractable bound residue in soil. • Nucleophilic substitution is a pathway leading to atrazine sequestration in soil. • Sulfur containing amino acids are likely to play an important role as nucleophiles during this process. - Abstract: Formation of nonextractable residue was widely observed as a sink of atrazine (ATZ) in soil. However, the mechanisms by which ATZ binds to soil organic matter remain unclear. In this study, we demonstrated that neucleophilic substitution could serve an important pathway causing ATZ sequestration. The carbon bonded to the chlorine in ATZ molecule is partially positively charged due to the strong electronegativity of chlorine and is susceptible to the attack of nucleophiles such as aniline. Since aromatic amines are relatively rare in natural soils, amino acids/peptides were hypothesized to act as the main nucleophiles in real environment. However, substantially ATZ transformation was only observed in the presence of those species containing thiol functionality. Thus, we speculated that it was the thiol group in amino acids/peptides acting as the nucleophile. Nitrogen in amino acids was in fact not an active nucleophile toward ATZ. In addition to the sulfur-containing amino acids, other thiol compounds, and sulfide were also proved to be reactive to ATZ. Thus, the sequestration potential of ATZ probably correlates to the availability of thiol compounds in soil.

  11. Carbon dioxide sequestration in cement kiln dust through mineral carbonation.

    Science.gov (United States)

    Huntzinger, Deborah N; Gierke, John S; Kawatra, S Komar; Eisele, Timothy C; Sutter, Lawrence L

    2009-03-15

    Carbon sequestration through the formation of carbonates is a potential means to reduce CO2 emissions. Alkaline industrial solid wastes typically have high mass fractions of reactive oxides that may not require preprocessing, making them an attractive source material for mineral carbonation The degree of mineral carbonation achievable in cement kiln dust (CKD) underambienttemperatures and pressures was examined through a series of batch and column experiments. The overall extent and potential mechanisms and rate behavior of the carbonation process were assessed through a complementary set of analytical and empirical methods, including mass change, thermal analysis, and X-ray diffraction. The carbonation reactions were carried out primarily through the reaction of CO2 with Ca(OH)2, and CaCO3 was observed as the predominant carbonation product. A sequestration extent of over 60% was observed within 8 h of reaction without any modifications to the waste. Sequestration appears to follow unreacted core model theory where reaction kinetics are controlled by a first-order rate constant at early times; however, as carbonation progresses, the kinetics of the reaction are attenuated by the extent of the reaction due to diffusion control, with the extent of conversion never reaching completion. PMID:19368202

  12. Nitrogen input effectiveness on carbon sequestration in rainfed cropping system

    Science.gov (United States)

    Novara, Agata; Gristina, Luciano; Poma, Ignazio

    2016-04-01

    The combined effect of total N and C/N ratio had a large influence on the decomposition rate and consequently on potential soil organic carbon sequestration. The aim of the work was to evaluate Carbon sequestration potentiality under three mineral N fertilization levels in interaction with two cropping systems characterized by addition of N input due to leguminous species in the rotation. The study was carried out in the semiarid Mediterranean environment in a 18years long-term experiment. Is well know that in the semiarid environment the excess of N fertilization reduces biomass yield and the consequent C input. On the contrary, both N and C input determine high difference in C/N input ratio and faster organic matter mineralization. Results showed no influence of N fertilization on SOC sequestration and a reduction of SOC stock due to crop rotation due to lower C input. Crop residue quality of durum wheat-pea crop rotation characterized by a faster decomposition rate could explain the lower ability of crop rotation to sequester C in the semiarid environment.

  13. Saharan dust enhances carbon sequestration in the North Atlantic

    Science.gov (United States)

    Pabortsava, Katsiaryna; Lampitt, Richard; Le Moigne, Frederic; Sanders, Richard; Statham, Peter

    2016-04-01

    We present unique time-series data from sediment traps deployed at 3000 m depth in the subtropical North (NOG) and South (SOG) Atlantic oligotrophic gyres during 2007-2010. The sampling sites have similar physical properties and carbon fixation rates but different surface ocean biogeochemistry owing to enhanced input of Saharan dust in the North. NOG and SOG sites are thus ideal to investigate the effects of dust input on carbon sequestration in low-nutrient low-chlorophyll oceans. Analyses of the trap material (chemical, microscopic and stable isotope) revealed significant inter-basin differences in the downward particle flux and its composition, showing that biogeochemical differences at the surface have major effects on deep ocean sequestration scenarios. Particulate organic carbon flux in the dustier Northern gyre was twice that in the dust-poor Southern gyre. We conclude that this is a consequence of tight coupling between fertilization and ballasting due to dust deposition. We suggest that excess of micronutrient Fe from the dust increased phytoplankton biomass by stimulating di-nitrogen fixation, while dust particles caused rapid and more efficient transport to depth via ballasting. These findings present compelling direct evidence of two distinct biogeochemical provinces in the subtropical oligotrophic Atlantic not only with respect to surface nutrient biogeochemistry but also with respect to carbon sequestration.

  14. Accelerated Sequestration of Terrestrial Plant Biomass in the Deep Ocean

    Science.gov (United States)

    Strand, S. E.

    2010-12-01

    One of the most efficient uses of aboveground agricultural residues to reduce atmospheric CO2 is burial in sites removed from contact with the atmosphere and in which degradation of lignocellulose is inhibited (Strand and Benford 2009). Similarly by burying forest residues greater benefits for atmospheric carbon accrue compared to incineration or bioethanol production. Accessible planetary sites that are most removed from contact with the atmosphere are primarily the deep ocean sediments. Many deep ocean sediment ecologies are acclimated to massive inputs of terrestrial plant biomass. Nonetheless, marine degradation rates of lignocellulose are slower than terrestrial rates (Keil et al. 2010). Additionally, anaerobic conditions are easily achieved in many deep ocean sediments, inhibiting lignocellulose degradation further, while the dominance of sulfate in the water column as electron acceptor prevents the release of methane from methanogenesis to the atmosphere. The potential benefit of massive removal of excess terrestrial biomass to the deep ocean will be estimated and compared to other uses including biochar and BECS. The impact of the biomass on the marine environment will be discussed and potential sequestration sites in the Gulf of Mexico and the Atlantic compared. Keil, R. G., J. M. Nuwer, et al. (2010). "Burial of agricultural byproducts in the deep sea as a form of carbon sequestration: A preliminary experiment." Marine Chemistry (In Press, online 6 August 2010). Strand, S. E. and G. Benford (2009). "Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments." Environ. Sci. Technol. 43(4): 1000-1007.

  15. Community perceptions of carbon sequestration: insights from California

    International Nuclear Information System (INIS)

    Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.

  16. Common Scientific Challenges in Carbon Sequestration and Geothermal Energy Systems

    Science.gov (United States)

    LaBonte, A.; Groat, C. G.; Schwartz, L.

    2011-12-01

    In June of 2010, DOE convened a Carbon Sequestration- Geothermal Energy--Science Joint Workshop composed of academic, industry, and government experts. Participants were charged with looking beyond needs unique to either geothermal energy or carbon storage to identify common research needs. The expectation is greater collaboration in the identified common research areas will accelerate understanding of scientific processes critical to scaling up Carbon Sequestration and Geothermal Energy Systems. The major topic areas of the workshop include: Assessment and Characterization, to aide preliminary screening for prospective sites at the regional scale and subsurface characterization to assess feasibility at the site scale, Reservoir Sustainability, such as understanding evolution of pore and fracture structure to determine storage or production capacity and integrity of the reservoir over its intended lifetime, Modeling, a key element to conceptualizing, predicting, and managing the effects of reservoir processes over a wide variety of temporal and spatial scales when subjected to perturbations, Monitoring, requiring improvements to sensors, and data collection and interpretation methods to track changes in the reservoir and seal properties, and Performance Assessment, as a critical component to both optimize economic aspects and minimize health and environmental risks of a project. Workshop outcomes detailing research to enable scale-up of both carbon sequestration and geothermal energy applications will be presented.

  17. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    Science.gov (United States)

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate. PMID:20698546

  18. Optimization geological sequestration of CO2 by capillary trapping mechanisms

    Science.gov (United States)

    Wildenschild, D.; Harper, E.; Herring, A. L.; Armstrong, R. T.

    2012-12-01

    Geological carbon sequestration, as a method of atmospheric greenhouse gas reduction, is at the technological forefront of the climate change movement. Sequestration is achieved by capturing carbon dioxide (CO2) gas effluent from coal fired power plants and injecting it into saline aquifers. In an effort to fully understand and optimize CO2 trapping efficiency, the capillary trapping mechanisms that immobilize subsurface CO2 were analyzed at the pore scale. Pairs of analogous fluids representing the range of in situ supercritical CO2 and brine conditions were used during experimentation. The two fluids (identified as wetting and non wetting) were imbibed and drained from a flow cell apparatus containing a sintered glass bead column. Experimental and fluid parameters, such as interfacial tension, non-wetting fluid viscosity, and flow rate, were altered to characterize their impact on capillary trapping. Through the use of computed x-ray microtomography (CMT), we were able to quantify distinct differences between initial (post NW phase imbibition) and residual (post wetting fluid flood) non-wetting phase saturations. Alterations to the viscosity of the non-wetting and wetting fluid phases were made during experimentation; results indicate that the viscosity of the non-wetting fluid is the parameter of interest as residual saturations increased with increasing viscosity. These observed trends will be used to identify optimal conditions for trapping CO2 during subsurface sequestration.

  19. Implementation of Emission Trading in Carbon Dioxide Sequestration Optimization Management

    Science.gov (United States)

    Zhang, X.; Duncan, I.

    2013-12-01

    As an effective mid- and long- term solution for large-scale mitigation of industrial CO2 emissions, CO2 capture and sequestration (CCS) has been paid more and more attention in the past decades. A general CCS management system has complex characteristics of multiple emission sources, multiple mitigation technologies, multiple sequestration sites, and multiple project periods. Trade-off exists among numerous environmental, economic, political, and technical factors, leading to varied system features. Sound decision alternatives are thus desired for provide decision supports for decision makers or managers for managing such a CCS system from capture to the final geologic storage phases. Carbon emission trading has been developed as a cost-effective tool for reducing the global greenhouse gas emissions. In this study, a carbon capture and sequestration optimization management model is proposed to address the above issues. The carbon emission trading is integrated into the model, and its impacts on the resulting management decisions are analyzed. A multi-source multi-period case study is provided to justify the applicability of the modeling approach, where uncertainties in modeling parameters are also dealt with.

  20. Carbon sequestration, optimum forest rotation and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr [Department of Economics, Bahcesehir University, Besiktas, Istanbul (Turkey); Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr [Department of Business Studies, Bahcesehir University, Besiktas, Istanbul (Turkey)

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.

  1. Terrestrial Biological Carbon Sequestration: Science for Enhancement and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Post, W. M.; Amonette, James E.; Birdsey, Richard A.; Garten, Jr, C. T.; Izaurralde, Roberto C.; Jardine, Philip M.; Jastrow, Julie D.; Lal, Rattan; Marland , G.; McCarl, Bruce A.; Thomson, Allison M.; West, T. O.; Wullschleger, Stan D.; Metting, F. Blaine

    2009-12-01

    Fossil-fuel combustion and land-use change have elevated atmospheric CO2 concentrations from 280 ppmv at the beginning of the industrial era to more than 381 ppmv in 2006. Carbon dioxide emissions from fossil fuels and cement rose 71% during 1970–2000 to a rate of 7.0 PgC/y (1). Canadell et al. (2) estimated that CO2 emissions rose at a rate at 1.3% per year during 1990–1999, but since 2000 it has been growing at 3.3% per year. Emissions reached 8.4 PgC/y in 2006. It is likely that the current 2-ppm annual increase will accelerate as the global economy expands, increasing the risk of climate system impacts. There is good agreement that photosynthetic CO2 capture from the atmosphere and storage of the C in above- and belowground biomass and in soil organic and inorganic forms could be exploited for safe and affordable greenhouse gas (GHG) mitigation (3). Nevertheless, C sequestration in the terrestrial biosphere has been a source of contention before and since the drafting of the Kyoto Protocol in 1997. Concerns have been raised that C sequestration in the biosphere is not permanent, that it is difficult to measure and monitor, that there would be “carbon leakage” outside of the mitigation activity, and that any attention paid to environmental sequestration would be a distraction from the central issue of reducing GHG emissions from energy production and use. A decade after drafting the Kyoto Protocol, it is clear that international accord and success in reducing emissions from the energy system are not coming easily and concerns about climate change are growing. It is time to re-evaluate all available options that might not be permanent yet have the potential to buy time, bridging to a future when new energy system technologies and a transformed energy infrastructure can fully address the climate challenge. Terrestrial sequestration is one option large enough to make a contribution in the coming decades using proven land-management methods and with the

  2. Impacts of crop rotations on soil organic carbon sequestration

    Science.gov (United States)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  3. Analysis and Comparison of Carbon Capture & Sequestration Policies

    Science.gov (United States)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the

  4. SITE CHARACTERIZATION AND SELECTION GUIDELINES FOR GEOLOGICAL CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, S J

    2007-08-31

    Carbon capture and sequestration (CCS) is a key technology pathway to substantial reduction of greenhouse gas emissions for the state of California and the western region. Current estimates suggest that the sequestration resource of the state is large, and could safely and effectively accept all of the emissions from large CO2 point sources for many decades and store them indefinitely. This process requires suitable sites to sequester large volumes of CO2 for long periods of time. Site characterization is the first step in this process, and the state will ultimately face regulatory, legal, and technical questions as commercial CCS projects develop and commence operations. The most important aspects of site characterizations are injectivity, capacity, and effectiveness. A site can accept at a high rate a large volume of CO2 and store it for a long time is likely to serve as a good site for geological carbon sequestration. At present, there are many conventional technologies and approaches that can be used to estimate, quantify, calculate, and assess the viability of a sequestration site. Any regulatory framework would need to rely on conventional, easily executed, repeatable methods to inform the site selection and permitting process. The most important targets for long-term storage are deep saline formations and depleted oil and gas fields. The primary CO2 storage mechanisms for these targets are well understood enough to plan operations and simulate injection and long-term fate of CO2. There is also a strong understanding of potential geological and engineering hazards for CCS. These hazards are potential pathway to CO2 leakage, which could conceivably result in negative consequences to health and the environmental. The risks of these effects are difficult to quantify; however, the hazards themselves are sufficiently well understood to identify, delineate, and manage those risks effectively. The primary hazard elements are wells and faults, but may include other

  5. Soil carbon sequestration in mixed farming landscapes: Insights from the Lachlan soil carbon project

    OpenAIRE

    Pearson, Leonie J.; Crean, Jason; Badgery, Warwick; Murphy, Brian; Rawson, Andrew; Capon, Timothy; Reeson, Andrew

    2012-01-01

    The potential for soil carbon sequestration to play a significant role in meeting Australia’s greenhouse reduction targets has attracted widespread interest. Despite this interest, the economic scope for soil carbon sequestration remains poorly understood and the practical approaches that could be used to capture any opportunities have not been explored. In this paper we present preliminary results on a pilot soil carbon sequestration variable price, reverse tender auction in the mixed (wheat...

  6. Predicting and Evaluating the Effectiveness of Ocean Carbon Sequestration by Direct Injection

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K; Herzog, H J; Wickett, M E

    2001-04-24

    Direct injection of CO{sub 2} into the ocean is a potentially effective carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection and develop the appropriate analytic framework to allow us to compare the effectiveness of this strategy with other carbon management options. Here, after a brief review of direct oceanic injection, we estimate the effectiveness of ocean carbon sequestration using one dimensional and three dimensional ocean models. We discuss a new measure of effectiveness of carbon sequestration in a leaky reservoir, which we denote sequestration potential. The sequestration potential is the fraction of global warning cost avoided by sequestration in a reservoir. We show how these measures apply to permanent sequestration and sequestration in leaky reservoirs, such as the oceans, terrestrial biosphere, and some geologic formations. Under the assumptions of a constant cost of carbon emission and a 4% discount rate, injecting 900 m deep in the ocean avoids {approx}90% of the global warming cost associated with atmospheric emission; an injection 1700 m deep would avoid > 99 % of the global warming cost. Hence, for discount rates in the range commonly used by commercial enterprises, oceanic direct injection may be nearly as economically effective as permanent sequestration at avoiding global warming costs.

  7. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    Science.gov (United States)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable

  8. Southwest Regional Partnership on Carbon Sequestration Phase II

    Energy Technology Data Exchange (ETDEWEB)

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the

  9. Carbon stocks and soil sequestration rates of tropical riverine wetlands

    Science.gov (United States)

    Adame, M. F.; Santini, N. S.; Tovilla, C.; Vázquez-Lule, A.; Castro, L.; Guevara, M.

    2015-06-01

    Riverine wetlands are created and transformed by geomorphological processes that determine their vegetation composition, primary production and soil accretion, all of which are likely to influence C stocks. Here, we compared ecosystem C stocks (trees, soil and downed wood) and soil N stocks of different types of riverine wetlands (marsh, peat swamp forest and mangroves) whose distribution spans from an environment dominated by river forces to an estuarine environment dominated by coastal processes. We also estimated soil C sequestration rates of mangroves on the basis of soil C accumulation. We predicted that C stocks in mangroves and peat swamps would be larger than marshes, and that C, N stocks and C sequestration rates would be larger in the upper compared to the lower estuary. Mean C stocks in mangroves and peat swamps (784.5 ± 73.5 and 722.2 ± 63.6 MgC ha-1, respectively) were higher than those of marshes (336.5 ± 38.3 MgC ha-1). Soil C and N stocks of mangroves were highest in the upper estuary and decreased towards the lower estuary. C stock variability within mangroves was much lower in the upper estuary (range 744-912 MgC ha-1) compared to the intermediate and lower estuary (range 537-1115 MgC ha-1) probably as a result of a highly dynamic coastline. Soil C sequestration values were 1.3 ± 0.2 MgC ha-1 yr-1 and were similar across sites. Estimations of C stocks within large areas need to include spatial variability related to vegetation composition and geomorphological setting to accurately reflect variability within riverine wetlands.

  10. Carbon sequestration in sinks. An overview of potential and costs

    International Nuclear Information System (INIS)

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  11. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  12. Effects of forest fertilization on C sequestration and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Bull, G.Q.; Northway, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Resources Management; Mohn, W.W. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Microbiology and Immunology

    2005-07-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N{sub 2}O) and consumption of methane (CH{sub 4}) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO{sub 2}). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N{sub 2}O production and CH{sub 4} oxidation in order to determine the complex and often contradictory effects of fertilizers on N{sub 2}O emission and CH{sub 4} oxidation in forest soils. The actual N{sub 2}O, CO{sub 2}, and CH{sub 4} fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity.

  13. Effects of forest fertilization on C sequestration and GHG emissions

    International Nuclear Information System (INIS)

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N2O) and consumption of methane (CH4) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO2). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N2O production and CH4 oxidation in order to determine the complex and often contradictory effects of fertilizers on N2O emission and CH4 oxidation in forest soils. The actual N2O, CO2, and CH4 fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity

  14. Trace Metal Source Terms in Carbon Sequestration Environments

    Energy Technology Data Exchange (ETDEWEB)

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  15. Carbon sequestration in sinks. An overview of potential and costs

    Energy Technology Data Exchange (ETDEWEB)

    Kolshus, Hans H.

    2001-07-01

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  16. Sequestration of noble gases in giant planet interiors

    CERN Document Server

    Wilson, Hugh F; 10.1103/PhysRevLett.104.121101

    2010-01-01

    The Galileo probe showed that Jupiter's atmosphere is severely depleted in neon compared to protosolar values. We show, via ab initio simulations of the partitioning of neon between hydrogen and helium phases, that the observed depletion can be explained by the sequestration of neon into helium-rich droplets within the postulated hydrogen-helium immiscibility layer of the planet's interior. We also demonstrate that this mechanism will not affect argon, explaining the observed lack of depletion of this gas. This provides strong indirect evidence for hydrogen-helium immiscibility in Jupiter.

  17. A Quantitative Investigation of CO2 Sequestration by Mineral Carbonation

    OpenAIRE

    Mohammad, Muneer; Ehsani, Mehrdad

    2015-01-01

    Anthropogenic activities have led to a substantial increase in carbon dioxide (CO2), a greenhouse gas (GHG), contributing to heightened concerns of global warming. In the last decade alone CO2 emissions increased by 2.0 ppm/yr. globally. In the year 2009, United States and China contributed up to 43.4% of global CO2 emissions. CO2 capture and sequestration have been recognized as promising solutions to mitigate CO2 emissions from fossil fuel based power plants. Typical techniques for carbon c...

  18. [Intralobar pulmonary sequestration with multiple arterial blood supply].

    Science.gov (United States)

    Uroz Tristán, J; Mogueya, S A; Poenaru, D; Martínez Lagares, F; Arteaga García, R; Sanchís Solera, L; López-Pinto Ruiz, J

    1994-04-01

    We report the case of a 4 years old boy, who presented at our institution with reiterative neumonia affecting left basal lobe. Anomalous vascular appearance was detected in the chest x-ray. With the suspicion of pulmonary sequestration we carried on Digital Intravenous Angiography by Substraction (DIVAS) and aortogram. The anomalous systemic arterial supply was formed by 6 vessels coming from the thoracic aorta and going into the left lower lobe basal segment. Lobectomy was performed and previous diagnosis was confirmed pathologically. PMID:8086288

  19. Biogeologic Carbon Sequestration - a Cost-Effective Proposal

    Science.gov (United States)

    Shaw, G. H.; Kuhns, R.

    2009-05-01

    Carbon sequestration has been proposed as a strategy for reducing the impact of carbon dioxide emissions from burning of fossil fuels. There are two main routes: 1) capture CO2 emissions from power plants or other large point sources followed by some form of "burial/sequestration", and 2) extraction of CO2 from the ambient atmosphere (involving substantial concentration relative to atmospheric levels) also followed by burial/sequestration. In either case the goal is to achieve significant long-term isolation of CO2 at an economically sustainable price, perhaps measured by some "market price" for CO2, such as the European carbon futures market, where the price is now (2/3/09) about 14-15/tonne of CO2. The second approach, removal of CO2 from the atmosphere, has the potential benefit of reversing the previous buildup of atmospheric CO2, and perhaps even providing a means to "adjust" terrestrial climate by regulating atmospheric CO2 concentrations. For the present, ideas of planetary "geo-engineering" are not as popular as reducing the impact of continued CO2 emissions. In fact, the energy and capital costs of extraction from a dilute atmosphere appear to make this approach uneconomical. Proposals to fertilize the open ocean suffer from concerns about long term ecosystem effects, to say nothing of a lack of verifiability. There is, however, an approach using biological systems that can not only extract significant amounts of CO2, but can do so cost-effectively. Lakes are known in which primary productivity approaches or exceeds 1gm C/cm2-yr. This equates to removal of 35,000 tonnes of CO2 per km2 per year, with a "market value" of about 500,000/yr. Such productivity only occurs under highly eutrophic conditions, and presumably requires significant nutrient additions. As such it would be unthinkable to pursue this technique on a large scale in extant lakes. If, however, it is possible to produce one or more large artificial lakes under acceptable conditions it is

  20. On leakage and seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-07-18

    Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by

  1. Radiological findings in pulmonary sequestration. Hallazgos radiologicos en el secuestro pulmonar

    Energy Technology Data Exchange (ETDEWEB)

    Zurera Tendero, L.J.; Ramirez Garcia, T.; Canis Lopez, M.; Oteros Fernandez, R.; Cano Sanchez, A.; Lazaro Rodriguez, J.C.

    1994-01-01

    Pulmonary sequestration is a rare congenital disorder, the clinical diagnosis of which is difficult and requires the aid of imaging methods. We present our experience in 5 patients with pulmonary sequestration (4 intralobar and 1 extralobar) confirmed by pathology. We assess the radiological findings using the different imaging techniques. (Author) 16 refs.

  2. Yield and soil carbon sequestration in grazed pastures sown with two or five forage species

    Science.gov (United States)

    Increasing plant species richness is often associated with an increase in productivity and associated ecosystem services such as soil C sequestration. In this paper we report on a nine-year experiment to evaluate the relative forage production and C sequestration potential of grazed pastures sown to...

  3. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects.

    Science.gov (United States)

    Yadav, Raju R; Krishnamurthi, Kannan; Mudliar, Sandeep N; Devi, S Saravana; Naoghare, Pravin K; Bafana, Amit; Chakrabarti, Tapan

    2014-06-01

    Anthropogenic activities have substantially increased the level of greenhouse gases (GHGs) in the atmosphere and are contributing significantly to the global warming. Carbon dioxide (CO2 ) is one of the major GHGs which plays a key role in the climate change. Various approaches and methodologies are under investigation to address CO2 capture and sequestration worldwide. Carbonic anhydrase (CA) mediated CO2 sequestration is one of the promising options. Therefore, the present review elaborates recent developments in CA, its immobilization and bioreactor methodologies towards CO2 sequestration using the CA enzyme. The promises and challenges associated with the efficient utilization of CA for CO2 sequestration and scale up from flask to lab-scale bioreactor are critically discussed. Finally, the current review also recommends the possible future needs and directions to utilize CA for CO2 sequestration. PMID:24740638

  4. Carbon dioxide sequestration in deep-sea basalt.

    Science.gov (United States)

    Goldberg, David S; Takahashi, Taro; Slagle, Angela L

    2008-07-22

    Developing a method for secure sequestration of anthropogenic carbon dioxide in geological formations is one of our most pressing global scientific problems. Injection into deep-sea basalt formations provides unique and significant advantages over other potential geological storage options, including (i) vast reservoir capacities sufficient to accommodate centuries-long U.S. production of fossil fuel CO2 at locations within pipeline distances to populated areas and CO2 sources along the U.S. west coast; (ii) sufficiently closed water-rock circulation pathways for the chemical reaction of CO2 with basalt to produce stable and nontoxic (Ca(2+), Mg(2+), Fe(2+))CO(3) infilling minerals, and (iii) significant risk reduction for post-injection leakage by geological, gravitational, and hydrate-trapping mechanisms. CO2 sequestration in established sediment-covered basalt aquifers on the Juan de Fuca plate offer promising locations to securely accommodate more than a century of future U.S. emissions, warranting energized scientific research, technological assessment, and economic evaluation to establish a viable pilot injection program in the future.

  5. Rock Physics of Geologic Carbon Sequestration/Storage

    Energy Technology Data Exchange (ETDEWEB)

    Dvorkin, Jack; Mavko, Gary

    2013-05-31

    This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

  6. Soil microstructure and organic matter: keys for chlordecone sequestration.

    Science.gov (United States)

    Woignier, T; Fernandes, P; Soler, A; Clostre, F; Carles, C; Rangon, L; Lesueur-Jannoyer, M

    2013-11-15

    Past applications of chlordecone, a persistent organochlorine pesticide, have resulted in diffuse pollution of agricultural soils, and these have become sources of contamination of cultivated crops as well as terrestrial and marine ecosystems. Chlordecone is a very stable and recalcitrant molecule, mainly present in the solid phase, and has a strong affinity for organic matter. To prevent consumer and ecosystem exposure, factors that influence chlordecone migration in the environment need to be evaluated. In this study, we measured the impact of incorporating compost on chlordecone sequestration in andosols as a possible way to reduce plant contamination. We first characterized the transfer of chlordecone from soil to plants (radish, cucumber, and lettuce). Two months after incorporation of the compost, soil-plant transfers were reduced by a factor of 1.9-15 depending on the crop. Our results showed that adding compost modified the fractal microstructure of allophane clays thus favoring chlordecone retention in andosols. The complex structure of allophane and the associated low accessibility are important characteristics governing the fate of chlordecone. These results support our proposal for an alternative strategy that is quite the opposite of total soil decontamination: chlordecone sequestration. PMID:24056248

  7. A Quantitative Investigation of CO2 Sequestration by Mineral Carbonation

    CERN Document Server

    Mohammad, Muneer

    2015-01-01

    Anthropogenic activities have led to a substantial increase in carbon dioxide (CO2), a greenhouse gas (GHG), contributing to heightened concerns of global warming. In the last decade alone CO2 emissions increased by 2.0 ppm/yr. globally. In the year 2009, United States and China contributed up to 43.4% of global CO2 emissions. CO2 capture and sequestration have been recognized as promising solutions to mitigate CO2 emissions from fossil fuel based power plants. Typical techniques for carbon capture include post-combustion capture, pre-combustion capture and oxy-combustion capture, which are under active research globally. Mineral carbonation has been investigated as a suitable technique for long term storage of CO2. Sequestration is a highly energy intensive process and the additional energy is typically supplied by the power plant itself. This leads to a reduction in net amount of CO2 captured because of extra CO2 emitted. This paper presents a quantitative analysis of the energy consumption during sequestra...

  8. Adsorption and desorption on coals for CO2 sequestration

    Institute of Scientific and Technical Information of China (English)

    WANG Zuo-tang; FU Zhen-kun; ZHANG Ban-gan; WANG Guo-xiong; RUDOLPH Victor; HUO Li-wen

    2009-01-01

    Adsorption and desorption of carbon dioxide, methane and other gases on coals has been investigated experimentally using representative Zhongliangshan coals. Gas adsorption is one of the major concerns for both CO2 sequestration and methane recovery processes. The experiments were carried out using both single and multi-component mixtures at 25 ℃ and 30 ℃ with the highest pressure of 12 MPa. The coal was under moisture equilibrated conditions. This provides experimental data from which a predictive assessment of CO2 sequestration and/or methane recovery can be conducted. The results show that for pure gasses the CH4 adsorption capacity is higher than the N2 adsorption capacity but lower than the CO2 adsorption capacity. Injection of CO2 or other gases into the coal significantly affects CH4 desorption. This allows the enhancement of CH4 recovery from the coals, thus supplying more clean energy while sequestering significant amounts of CO2 thereby reducing the greenhouse effect from human beings.

  9. Soil carbon sequestration via cover crops- A meta-analysis

    Science.gov (United States)

    Poeplau, Christopher; Don, Axel

    2014-05-01

    Agricultural soils are depleted in soil organic carbon (SOC) and have thus a huge potential to sequester SOC. This can primarily be achieved by increasing carbon inputs into the soil. Replacing winter fallows by cover crop cultivation for green manure has many benefits for the soil and forms an additional carbon input. An increase in carbon concentration has been reported in several studies worldwide. However, the effect on SOC stocks, as well as the influence of environmental parameters and management on SOC dynamics is not known. We therefore conducted a meta-analysis to investigate those issues. A total of 33 studies, comprising 47 sites and 147 plots were compiled. A pedotransfer function was used to estimate bulk densities and calculate SOC stocks. SOC stock change was found to be a linear function of time since introduction, with an annual sequestration rate of 0.32 Mg C ha-1 yr-1. Since no saturation was visible in the observations, we used the model RothC to estimate a new steady state level and the resulting total SOC stock change for an artificial "average cropland". The total average SOC stock change with an annual input of 1.87 Mg C ha-1 yr-1 was 16.76 Mg C ha-1 for the average soil depth of 22 cm. We estimated a potential global SOC sequestration of 0.12±0.03 Pg C yr-1, which would compensate for 8 % of the direct annual greenhouse gas emissions from agriculture.

  10. NMR characterization of a novel bile acid sequestrant, DMP 504.

    Science.gov (United States)

    Lerke, S A; Nemeth, G; Schubert, E; Hovsepian, P K

    2001-02-01

    DMP 504, a potential bile acid sequestrant for the treatment of hypercholesterolemia, is a highly insoluble, cross-linked polymer which does not lend itself to ordinary means of characterization used for drug substances in the pharmaceutical industry. Therefore, alternative characterization techniques have been sought. As part of an effort into extensive characterization of DMP 504 drug substance, nuclear magnetic resonance (NMR) was employed to provide insight into details of the DMP 504 polymer structure. The primary motivation for determining the structure of the polymer chain is to relate the DMP 504 structure to its performance properties as a bile acid sequestrant. Characterization of the polymer chain and understanding of the structural basis of its properties is essential in optimizing and controlling the manufacture of reproducible drug substance. NMR has proven a versatile tool for the description of polymer structure and dynamics because of the wide range of nuclear interactions affecting the NMR signal. This allows the design of experiments to elicit information about specific polymer interactions or properties. The methods of sample preparation utilized to obtain NMR spectra of the insoluble polymer, as well as a discussion and comparison of results for the characterization of DMP 504 obtained using several different NMR techniques will be presented.

  11. pH-Responsive Micelle Sequestrant Polymers Inhibit Fat Absorption.

    Science.gov (United States)

    Qian, Jian; Sullivan, Bradley P; Berkland, Cory

    2015-08-10

    Current antiobesity therapeutics are associated with side effects and/or poor long-term patient compliance, necessitating development of more efficacious and safer alternatives. Herein, we designed and engineered a new class of orally acting pharmaceutical agents, or micelle sequestrant polymers (MSPs), that could respond to the pH change in the gastrointestinal (GI) tract and potentially sequester lipid micelles; inhibiting lipid absorption through a pH-triggered flocculation process. These MSPs, derived from poly(2-(diisopropylamino)ethyl methacrylate) and poly(2-(dibutylamino)ethyl methacrylate), were soluble in acidic media, but they transitioned to become insoluble around pH 7.2 and 6.1, respectively. MSPs showed substantial bile acid and triglyceride sequestration capacity with fast pH response tested in vitro. In vivo study showed that orally dosed MSPs significantly enhanced fecal elimination of triglycerides and bile acids. Several MSPs increased fecal elimination of triglycerides by 9-10 times compared with that of the control. In contrast, fecal concentration of bile acids, but not triglycerides, was increased by cholestyramine or Welchol. Importantly, fecal elimination of bile acids and triglycerides was unaltered by addition of control dietary fibers. MSPs may serve as a novel approach to weight loss that inhibits excess caloric intake by preventing absorption of excess dietary triglycerides.

  12. Risk Assessment of Carbon Sequestration for Terrestrial Ecosystems in China

    Institute of Scientific and Technical Information of China (English)

    Shi Xiaoli; Wu Shaohong; Dai Erfu; Zhao Dongsheng; Pan mao

    2012-01-01

    Climate change will alter the capacity of carbon seques- tration, and the risk assessment of carbon sequestration for terres- trial ecosystems will be helpful to the decision-making for climate change countermeasures and international climate negotiations. Based on the net ecosystem productivity of terrestrial ecosystems simulated by Atmosphere Vegetation Integrated Model, each grid of the risk criterion was set by time series trend analysis. Then the risks of carbon sequestration of terrestrial ecosystems were investigated. The results show that, in the IPCCSRES-B2 climate scenario, climate change will bring risks of carbon sequestra- tion, and the high-risk level will dominate terrestrial ecosystems. The risk would expand with the increase of warming degree. By the end of the long-term of this century, about 60% of the whole country will face the risk; Northwest China, mountainous areas in Northeast China, middle and lower reaches plain of Yangtze River areas, Southwest China and Southeast China tend to be extremely vulnerable. Risk levels in most regions are likely to grow with the increase of warming degree, and this increase will mainly occur during the near-term to mid-term. Northwest China will become an area of high risks, and deciduous coniferous forests, temperate mixed forests and desert grassland tend to be extremely vulnerable.

  13. Soil microstructure and organic matter: keys for chlordecone sequestration.

    Science.gov (United States)

    Woignier, T; Fernandes, P; Soler, A; Clostre, F; Carles, C; Rangon, L; Lesueur-Jannoyer, M

    2013-11-15

    Past applications of chlordecone, a persistent organochlorine pesticide, have resulted in diffuse pollution of agricultural soils, and these have become sources of contamination of cultivated crops as well as terrestrial and marine ecosystems. Chlordecone is a very stable and recalcitrant molecule, mainly present in the solid phase, and has a strong affinity for organic matter. To prevent consumer and ecosystem exposure, factors that influence chlordecone migration in the environment need to be evaluated. In this study, we measured the impact of incorporating compost on chlordecone sequestration in andosols as a possible way to reduce plant contamination. We first characterized the transfer of chlordecone from soil to plants (radish, cucumber, and lettuce). Two months after incorporation of the compost, soil-plant transfers were reduced by a factor of 1.9-15 depending on the crop. Our results showed that adding compost modified the fractal microstructure of allophane clays thus favoring chlordecone retention in andosols. The complex structure of allophane and the associated low accessibility are important characteristics governing the fate of chlordecone. These results support our proposal for an alternative strategy that is quite the opposite of total soil decontamination: chlordecone sequestration.

  14. Seagrass restoration enhances "blue carbon" sequestration in coastal waters.

    Directory of Open Access Journals (Sweden)

    Jill T Greiner

    Full Text Available Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zosteramarina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years, were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and ²¹⁰Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m⁻² yr⁻¹. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone.

  15. Lead sequestration and species redistribution during soil organic matter decomposition

    Science.gov (United States)

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  16. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Zhijie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fang, Yilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-23

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  17. Ocean carbon sequestration by fertilization: An integrated bioeochemical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, N.; Sarmiento, J.L.; Gnandesikan, A.

    2005-05-31

    Under this grant, the authors investigated a range of issues associated with the proposal to fertilize the ocean with nutrients (such as iron) in order to increase the export of organic matter from the ocean's near surface waters and consequently increase the uptake of CO{sub 2} from the atmosphere. There are several critical scientific questions that have the potential to be make-or-break issues for this proposed carbon sequestration mechanism: (1) If iron is added to the ocean, will export of organic carbon from the surface actually occur? Clearly, if no export occurs, then there will be no sequestration. (2) if iron fertilization does lead to export of organic carbon from the surface of the ocean, how much CO{sub 2} will actually be removed from the atmosphere? Even if carbon is removed from the surface of the ocean, this does not guarantee that there will be significant removal of CO{sub 2} from the atmosphere, since the CO{sub 2} may be supplied by a realignment of dissolved inorganic carbon within the ocean. (3) What is the time scale of any sequestration that occurs? If sequestered CO{sub 2} returns to the atmosphere on a relatively short time scale, iron fertilization will not contribute significantly to slowing the growth of atmospheric CO{sub 2}. (4) Can the magnitude of sequestration be verified? If verification is extremely difficult or impossible, this option is likely to be viewed less favorably. (5) What unintended consequences might there be from fertilizing the ocean with iron? If these are severe enough, they will be a significant impact on policy decisions. Most research on carbon sequestration by fertilization has focused on the first of these issues. Although a number of in situ fertilization experiments have successfully demonstrated that the addition of iron leads to a dramatic increase in ocean productivity, the question of whether this results in enhanced export remains an open one. The primary focus of the research was on the

  18. Iron sequestration in young deep-sea sediments

    Science.gov (United States)

    Baldermann, Andre; Warr, Laurence; Letofsky-Papst, Ilse; Böttcher, Michael

    2014-05-01

    average) within the upper 25 m of sediment. Within the first 3 meters of the sedimentary pile, iron sequestration related to green clay formation is ~11 times higher than that of pyritization. Even at greater depths ≥ 3 mbsf, where the pyritization reaction becomes progressively more important and 29 to 66% of the initial detrital ferrihydrite input is almost dissolved, ~50% of iron sequestration can be attributed to glauconitization. Initial mass balance calculations of the sediment's iron budget indicate that iron sequestration at ODP Site 959 is mainly controlled by the competing rates of pyritization and glauconitization. Iron sequestration associated with early diagenetic green clay formation could significantly impact the bioavailability of reactive iron in marine aqueous systems and thus influence both the marine iron cycle and deep biosphere environment. The role of deep-water glauconitization on iron availability and sequestration should be considered in future ocean-atmospheric models of the iron biogeochemical cycle. Baldermann, A., Warr, L.N., Grathoff, G.H. & Dietzel, M. (2013) The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana Marginal Ridge. Clays and Clay Minerals, 61, 258-276.

  19. Dna Sequencing

    Science.gov (United States)

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  20. CO2 Sequestration Potential of Texas Low-Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

    2006-08-31

    Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0

  1. Feasibility of Large-Scale Ocean CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter Brewer; James Barry

    2001-09-30

    Direct ocean injection of CO{sub 2} is one of several approaches under consideration to sequester carbon dioxide in order to stabilize atmospheric CO{sub 2} near 550 ppm (2X preindustrial CO{sub 2} levels). Without significant efforts to stabilize greenhouse gas emissions, the Earth is expected to experience extreme climate warming consequences associated with the projected high ({approx}3-4X preindustrial) atmospheric CO{sub 2} levels in the next 100 to 200 years. Research funded by DOE-Office of Fossil Energy under this award is based on the development of novel experimental methods by MBARI to deploy small quantities (5-45 l) of liquid CO{sub 2} in the deep-sea for the purposes of investigating the fundamental science underlying the concepts of ocean CO{sub 2} sequestration. This project is linked closely with studies funded by the Office of Science and the Monterey Bay Aquarium Research Institute (MBARI). The objectives of studies in marine chemistry funded by the Office of Fossil Energy and MBARI are to: (1) Determine the long term fate of CO{sub 2} hydrate in the deep-sea, (2) Investigate the geochemical changes in marine sediments and pore waters associated with CO{sub 2} disposal, and (3) Investigate the transfer of CO{sub 2} from the hydrate phase to the oceanic water column as a boundary condition for ocean modeling of the fate of the released material. These activities extend the results of recent studies using the deep-sea CO{sub 2} deployment system, which characterized several features of liquid CO{sub 2} released into the sea, including hydrate formation and factors influencing dissolution rates of CO{sub 2}. Results from this project are relevant in determining the efficacy of carbon sequestration and the degree of perturbation of seawater chemistry. Biological studies, funded jointly by the Office of Science, Office of Fossil Energy, and MBARI, focus on the environmental consequences of CO{sub 2} release in the deep-sea. The specific objectives

  2. A Policy Option To Provide Sufficient Funding For Massive-Scale Sequestration of CO2

    Science.gov (United States)

    Kithil, P. W.

    2007-12-01

    Global emissions of CO2 now are nearly 30 billion tons per year, and are growing rapidly due to strong economic growth. Atmospheric levels of CO2 have reached 380 ppm and recent reports suggest the rate of increase has gone from 1% per year in the 1990's to 3% per year now - with potential to cross 550ppm in the 2020 decade. Without stabilization of atmospheric CO2 below 550ppm, climate models predict unacceptably higher average temperatures with significant risk of runaway global warming this century. While there is much talk about reducing CO2 emissions by switching to non-fossil energy sources, imposing energy efficiency, and a host of other changes, there are no new large-scale energy sources on the horizon. The options are to impose draconian cuts in fossil energy consumption that will keep us below 550ppm (devastating the global economy) - or to adopt massive-scale sequestration of CO2. Three approaches are feasible: biological ocean sequestration, geologic sequestration, and biological terrestrial sequestration. Biological sequestration is applicable to all CO2 sources, whereas geologic sequestration is limited to fossil-fuel power plants and some large point-source emitters such as cement plants and large industrial facilities. Sequestration provides a direct mechanism for reducing atmospheric levels of CO2, whereas offsetting technologies such as wind power or improved efficiency, reduce the need for more fossil fuels but do not physically remove CO2 from the environment. The primary geologic technique, carbon capture & sequestration (CCS), prevents CO2 from entering the atmosphere but likewise does not reduce existing levels of atmospheric CO2. Biological sequestration (ocean or terrestrial) physically removes CO2 from the atmosphere. Since we cannot shut down our global economy, urgent action is needed to counteract CO2 emissions, and avoid catastrophic climate change. Given the long lead time and/or small impact of offsetting energy sources

  3. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function

    Energy Technology Data Exchange (ETDEWEB)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration costs are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change.

  4. Management of water extracted from carbon sequestration projects

    Energy Technology Data Exchange (ETDEWEB)

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods

  5. Animals as an indicator of carbon sequestration and valuable landscapes

    Directory of Open Access Journals (Sweden)

    Jan Szyszko

    2011-05-01

    Full Text Available Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance, representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use.

  6. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    CERN Document Server

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  7. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  8. Colesevelam: a new and improved bile acid sequestrant?

    Science.gov (United States)

    Tziomalos, Konstantinos; Karagiannis, Asterios; Mikhailidis, Dimitri P; Athyros, Vasilios G

    2013-01-01

    Treatment with statins represents an essential component both of primary and secondary cardiovascular prevention strategies. However, a proportion of patients cannot reach low-density lipoprotein cholesterol (LDL-C) targets with the highest tolerable dose of a potent statin or is intolerant to statins. Several treatment options are available for these patients. Colesevelam is a relatively new bile acid sequestrant that decreases serum LDL-C levels. Moreover, colesevelam improves glycemic control and seems to be well-tolerated, at least in short-term studies. Therefore, colesevelam seems to be a useful tool for the management of high-risk patients who cannot achieve LDL-C targets with monotherapy with a potent statin.

  9. Phorbol ester stimulates calcium sequestration in saponized human platelets

    International Nuclear Information System (INIS)

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent 45Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated 45Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate

  10. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  11. Distribution characteristics of liquid sequestration in rats with sepsis

    Directory of Open Access Journals (Sweden)

    Bin LI

    2012-03-01

    Full Text Available Objective To investigate the distribution characteristics of organs with liquid sequestration during fluid resuscitation in rats with sepsis. Methods Fifty male Wistar rats were randomly divided into five groups: control group (n=10, sepsis group (n=10, crystalloid group (n=10, albumin group (n=10, and artificial colloid (HAES group (n=10. The sepsis model was reproduced by cecal ligation and puncture. The mean arterial pressure was monitored with carotid artery intubation. Twelve hours after fluid infusion by micro-infusion pump via the femoral vein, tissues from the heart, liver, lungs, kidney (right, and small intestine were harvested to observe the pathological changes and calculate the tissue water content. Results The water content of every visceral tissue was higher in the sepsis group than in the control group (P < 0.05; the water content in the heart, liver, and lung tissues was higher in the albumin group than in the crystalloid group (P < 0.05. The water content in both albumin and crystalloid groups was higher than that in the sepsis group (P < 0.05. Moreover, the water content in the heart, liver, and lungs in the HAES group was lower than that in the crystalloid and albumin groups (P < 0.05. Cellular injuries were more severe in the heart, liver, and lungs than in the intestine and kidney in the crystalloid group and albumin group under electron-microscope. Conclusion Liquid sequestration exists mainly in the lungs, heart, and liver of rats with sepsis during fluid resuscitation. The phenomenon is less evident in the kidney and small intestine. Artificial colloid can reduce capillary leak with a good volume expansion effect.

  12. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  13. Geomechanical Response of Jointed Caprock During CO2 Geological Sequestration

    Science.gov (United States)

    Newell, P.; Martinez, M. J.; Bishop, J. E.

    2014-12-01

    Geological sequestration of CO2 refers to the injection of supercritical CO2 into deep reservoirs trapped beneath a low-permeability caprock formation. Maintaining caprock integrity during the injection process is the most important factor for a successful injection. In this work we evaluate the potential for jointed caprock during injection scenarios using coupled three-dimensional multiphase flow and geomechanics modeling. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation or reactivation of joints (mechanical damage) can lead to enhanced pathways for leakage. In this work, we use an equivalent continuum approach to account for the joints within the caprock. Joint's aperture and non-linear stiffness of the caprock will be updated dynamically based on the effective normal stress. Effective permeability field will be updated based on the joints' aperture creating an anisotropic permeability field throughout the caprock. This feature would add another coupling between the solid and fluid in addition to basic Terzaghi's effective stress concept. In this study, we evaluate the impact of the joint's orientation and geometry of caprock and reservoir layers on geomechanical response of the CO2 geological systems. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Phorbol ester stimulates calcium sequestration in saponized human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.

  15. Caprock Breach: A Threat to Secure Geologic Sequestration

    Science.gov (United States)

    Selvadurai, A. P.; Dong, W.

    2013-12-01

    The integrity of caprock in providing a reliable barrier is crucial to several environmental geosciences endeavours related to geologic sequestration of CO2, deep geologic disposal of hazardous wastes and contaminants. The integrity of geologic barriers can be compromised by several factors. The re-activation of dormant fractures and development of new fractures in the caprock during the injection process are regarded as effects that can pose a threat to storage security. Other poromechanical influences of pore structure collapse due to chemically induced erosion of the porous fabric resulting in worm-hole type features can also contribute to compromising storage security. The assessment of the rate of steady or transient seepage through defects in the caprock can allow geoscientists to make prudent evaluations of the effectiveness of a sequestration strategy. While complicated computational simulations can be used to calculate leakage through defects, it is useful to explore alternative analytical results that could be used in providing preliminary estimates of leakage rates through defects in the caprock in a storage setting. The relevance of such developments is underscored by the fact that the permeability characteristics of the storage formation, the fracture and the surficial rocks overlying the caprock can rarely be quantified with certainty. This paper presents the problem of a crack in a caprock that connects to a storage formation and an overburden rock or surficial soil formation. The geologic media are maintained at constant far-field flow potentials and leakage takes place at either steady or transient conditions. The paper develops an analytical result that can be used to estimate the steady seepage through the crack. The analytical result can also be used to estimate the leakage through hydraulically non-intersecting cracks and leakage from caprock-well casing interfaces. The analytical result is used to estimate the accuracy of a computational

  16. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, Gail L.; Anisfeld, Shimon C.; Cahoon, Donald R.; Lynch, James C.

    2003-12-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4°S in the Indian Ocean to 55.5°N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ± 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ± 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area.

  17. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, M.C. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  18. Carbon sequestration from fossil fuels and biomass - long-term potentials

    International Nuclear Information System (INIS)

    Carbon sequestration and disposal from fossil fuels combustion is gaining attraction as a means to deal with climate change. However, CO2 emissions from biomass combustion can also be sequestered. If that is done, biomass energy with carbon sequestration (BECS) would become a net negative carbon sink that would at the same time deliver carbon free energy (heat, electricity or hydrogen) to society. Here we estimate some global technoeconomical potentials for BECS, and we also present some rough economics of electricity generation with carbon sequestration

  19. Modulation of UvrD helicase activity by covalent DNA-protein cross-links.

    Science.gov (United States)

    Kumari, Anuradha; Minko, Irina G; Smith, Rebecca L; Lloyd, R Stephen; McCullough, Amanda K

    2010-07-01

    UvrD (DNA helicase II) has been implicated in DNA replication, DNA recombination, nucleotide excision repair, and methyl-directed mismatch repair. The enzymatic function of UvrD is to translocate along a DNA strand in a 3' to 5' direction and unwind duplex DNA utilizing a DNA-dependent ATPase activity. In addition, UvrD interacts with many other proteins involved in the above processes and is hypothesized to facilitate protein turnover, thus promoting further DNA processing. Although UvrD interactions with proteins bound to DNA have significant biological implications, the effects of covalent DNA-protein cross-links on UvrD helicase activity have not been characterized. Herein, we demonstrate that UvrD-catalyzed strand separation was inhibited on a DNA strand to which a 16-kDa protein was covalently bound. Our sequestration studies suggest that the inhibition of UvrD activity is most likely due to a translocation block and not helicase sequestration on the cross-link-containing DNA substrate. In contrast, no inhibition of UvrD-catalyzed strand separation was apparent when the protein was linked to the complementary strand. The latter result is surprising given the earlier observations that the DNA in this covalent complex is severely bent ( approximately 70 degrees ), with both DNA strands making multiple contacts with the cross-linked protein. In addition, UvrD was shown to be required for replication of plasmid DNAs containing covalent DNA-protein complexes. Combined, these data suggest a critical role for UvrD in the processing of DNA-protein cross-links. PMID:20444702

  20. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent d...

  1. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.;

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  2. The Effect of Gasification Biochar on Soil Carbon Sequestration, Soil Quality and Crop Growth

    DEFF Research Database (Denmark)

    Hansen, Veronika

    New synergies between agriculture and the energy sector making use of agricultural residues for bioenergy production and recycling recalcitrant residuals to soil may offer climate change mitigation potential through the substitution of fossil fuels and soil carbon sequestration. However, concerns...

  3. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization.

    Science.gov (United States)

    Prawitt, Janne; Caron, Sandrine; Staels, Bart

    2014-05-01

    Intestinal bile acid (BA) sequestration efficiently lowers plasma glucose concentrations in type 2 diabetes (T2D) patients. Because BAs act as signaling molecules via receptors, including the G protein-coupled receptor TGR5 and the nuclear receptor FXR (farnesoid X receptor), to regulate glucose homeostasis, BA sequestration, which interrupts the entero-hepatic circulation of BAs, constitutes a plausible action mechanism of BA sequestrants. An increase of intestinal L-cell glucagon-like peptide-1 (GLP-1) secretion upon TGR5 activation is the most commonly proposed mechanism, but recent studies also argue for a direct entero-hepatic action to enhance glucose utilization. We discuss here recent findings on the mechanisms of sequestrant-mediated glucose lowering via an increase of splanchnic glucose utilization through entero-hepatic FXR signaling.

  4. CARBON SEQUESTRATION AND LAND MANAGEMENT AT DOD INSTALLATIONS: AN EXPLORATORY STUDY

    Science.gov (United States)

    This report explores the influence of management practices such as tree harvesting, deforestation, and reforestation on carbon sequestration potential by DOD forests by performing a detailed analysis of a specific installation, Camp Shelby, Mississippi. amp Shelby was selected fo...

  5. Carbon Sequestration in Dryland and Irrigated Agroecosystems: Quantification at Different Scales for Improved Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Shashi B; Cassman, Kenneth G; Arkebauer, Timothy J; Hubbard, Kenneth G; Knops, Johannes M; Suyker, Andrew E

    2012-09-14

    The overall objective of this research is to improve our basic understanding of the biophysical processes that govern C sequestration in major rainfed and irrigated agroecosystems in the north-central USA.

  6. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.

    Science.gov (United States)

    Strand, Stuart E; Benford, Gregory

    2009-02-15

    For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean. PMID:19320149

  7. Progress report to the Iowa Department of Natural Resources : Carbon Sequestration Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a progress report on carbon sequestration studies in progress at Neal Smith National Wildlife Refuge. The objectives of the project are to: estimate carbon...

  8. Land-Use Change and Carbon Sinks: Econometric Estimation of the Carbon Sequestration Supply Function

    OpenAIRE

    Plantinga, Andrew J.; Robert N. Stavins; Ruben N. Lubowski

    2005-01-01

    When and if the United States chooses to implement a greenhouse gas reduction program, it will be necessary to decide whether carbon sequestration policies, such as those that promote forestation and discourage deforestation, should be part of the domestic portfolio of compliance activities. We investigate the cost of forest-based carbon sequestration. In contrast with previous approaches, we econometrically examine micro-data on revealed landowner preferences, modeling six major private land...

  9. Extra pulmonary sequestration with hemorrhage infection in a child: Preoperative imaging diagnosis and pathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Joo Ae; Goo, Hyun Woo [Dept. of Radiologyand Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    We describe a rare case of extralobar pulmonary sequestration with hemorrhagic infarction in a 10-year-old boy who presented with acute abdominal pain and fever. In our case, internal branching linear architecture, lack of enhancement in the peripheral portion of the lesion with internal hemorrhage, and vascular pedicle were well visualized on preoperative magnetic resonance imaging that led to successful preoperative diagnosis of extralobar pulmonary sequestration with hemorrhagic infarction probably due to torsion.

  10. Pulmonary sequestration infected with nontuberculous mycobacteria:a report of two cases and literature review

    Institute of Scientific and Technical Information of China (English)

    Won-Jung Koh; Goohyeon Hong; Kwhanmien Kim; Soomin Ahn; Joungho Han

    2012-01-01

    We report two cases of pulmonary sequestration infected with nontuberculous mycobacteria(NTM):Mycobacterium avium and Mycobacterium abscessus. Chest computed tomography showed pneumonic consolidation in the right lower lobe, which received a systemic blood supply from the descending aorta in both patients. Video-assisted thoracoscopic surgeries were successfully performed and pathological examinations revealed multiple caseating granulomas. A review of the literature revealed only seven previous case reports of pulmonary sequestration infected with NTM, and no case with Mycobacterium abscessus has been reported.

  11. An equity assessment of introducing uncertain forest carbon sequestration in EU climate policy

    International Nuclear Information System (INIS)

    Large emissions of greenhouse gases are expected to cause major environmental problems in the future. European policy makers have therefore declared that they aim to implement cost-efficient and fair policies to reduce carbon emissions. The purpose of this paper is to assess whether the cost of the EU policies for 2020 can be reduced through the inclusion of carbon sequestration as an abatement option while equity is also improved. The assessment is done by numerical calculations using a chance-constrained partial equilibrium model of the EU Emissions Trading Scheme and national effort-sharing targets, where forest sequestration is introduced as an uncertain abatement option. Fairness is evaluated by calculation of Gini-coefficients for six equity criteria to policy outcomes. The estimated Gini-coefficients range between 0.11 and 0.32 for the current policy, between 0.16 and 0.66 if sequestration is included and treated as certain, and between 0.19 and 0.38 when uncertainty about sequestration is taken into account and policy-makers wish to meet targets with at least 90 per cent probability. The results show that fairness is reduced when sequestration is included and that the impact is larger when sequestration is treated as certain. - Highlights: • We model EU's CO2 emission reduction targets to 2020 for the 27 member states. • We assess the equity of including forest carbon sequestration in EU policy with six equity criteria. • A stochastic partial equilibrium model is used, in which abatement cost is minimised. • Current burden sharing within the EU is quite fair when compared with current income inequality. • The abatement cost is reduced and inequality increased when including sequestration

  12. A Novel Strategy for Carbon Capture and Sequestration by rHLPD Processing

    OpenAIRE

    Li, Qinghua; Gupta, Surojit; Tang, Ling; Quinn, Sean; Atakan, Vahit; Riman, Richard E.

    2016-01-01

    Monoethanolamine (MEA) scrubbing is an energy-intensive process for carbon capture and sequestration (CCS) due to the regeneration of amine in stripping towers at high temperature (100–120°C) and the subsequent pressurization of CO2 for geological sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD), which is able to solidify (densify) monolithic materials without using high temperature kilns. Then, we integrate MEA-based CCS proc...

  13. A Novel Strategy of Carbon Capture and Sequestration by rHLPD Processing

    OpenAIRE

    Richard Eric Riman

    2016-01-01

    Monoethanolamine (MEA) scrubbing is an energy intensive process for Carbon Capture and Sequestration (CCS) due to the regeneration of amine in stripping towers at high temperature (100-120 ºC) and the subsequent pressurization of CO2 for geologic sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD), which is able to solidify (densify) monolithic materials without using high temperature kilns. Then we integrate MEA-based CCS proces...

  14. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    OpenAIRE

    McCarl, Bruce A.; U. Schneider; Murray, B.; Williams, J; Sands, R.

    2001-01-01

    The authors use the Agricultural Sector Model to analyze the economic potential of soil carbon sequestration as one of several agricultural greenhouse gas emission mitigation strategies, including afforestation. For low incentives on carbon emission savings, agricultural soil carbon sequestration is the most cost-efficient strategy. As incentive levels increase above $50 per ton of carbon equivalent, afforestation and biofuel production become the key strategies, while the role of soil carbon...

  15. [DNA computing].

    Science.gov (United States)

    Błasiak, Janusz; Krasiński, Tadeusz; Popławski, Tomasz; Sakowski, Sebastian

    2011-01-01

    Biocomputers can be an alternative for traditional "silicon-based" computers, which continuous development may be limited due to further miniaturization (imposed by the Heisenberg Uncertainty Principle) and increasing the amount of information between the central processing unit and the main memory (von Neuman bottleneck). The idea of DNA computing came true for the first time in 1994, when Adleman solved the Hamiltonian Path Problem using short DNA oligomers and DNA ligase. In the early 2000s a series of biocomputer models was presented with a seminal work of Shapiro and his colleguas who presented molecular 2 state finite automaton, in which the restriction enzyme, FokI, constituted hardware and short DNA oligomers were software as well as input/output signals. DNA molecules provided also energy for this machine. DNA computing can be exploited in many applications, from study on the gene expression pattern to diagnosis and therapy of cancer. The idea of DNA computing is still in progress in research both in vitro and in vivo and at least promising results of these research allow to have a hope for a breakthrough in the computer science. PMID:21735816

  16. DNA probes

    International Nuclear Information System (INIS)

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  17. CO2 plume management in saline reservoir sequestration

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2011-01-01

    A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very

  18. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  19. Enhanced Performance Assessment System (EPAS) for carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Sun, Amy Cha-Tien; McNeish, Jerry A. (Sandia National Laboratories, Livermore, CA); Dewers, Thomas A.; Hadgu, Teklu; Jove-Colon, Carlos F.

    2010-09-01

    Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Numerous factors are important in determining the overall effectiveness of long-term geologic storage of carbon, including leakage rates, volume of storage available, and system costs. Recent efforts have been made to apply an existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage (Viswanathan et al., 2008; Stauffer et al., 2009). However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support optimization of CO{sub 2} injection and real-time site monitoring as an integral part of the system design and operation. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). Under the support of Laboratory-Directed Research & Development (LDRD), a late-start LDRD project was initiated in June of Fiscal Year 2010 to explore the concept of an enhanced performance assessment system (EPAS) for carbon sequestration and storage. In spite of the tight time constraints, significant progress has been made on the project: (1) Following the general PA methodology, a preliminary Feature, Event, and Process (FEP) analysis was performed for

  20. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    Science.gov (United States)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading

  1. Hydrogeologic Modeling for Monitoring, Reporting and Verification of Geologic Sequestration

    Science.gov (United States)

    Kolian, M.; De Figueiredo, M.; Lisa, B.

    2011-12-01

    In December 2010, EPA finalized Subpart RR of the Greenhouse Gas (GHG) Reporting Program, which requires facilities that conduct geologic sequestration (GS) of carbon dioxide (CO2) to report GHG data to EPA annually. The GHG Reporting Program requires reporting of GHGs and other relevant information from certain source categories in the United States, and information obtained through Subpart RR will inform Agency decisions under the Clean Air Act related to the use of carbon dioxide capture and sequestration for mitigating GHGs. This paper examines hydrogeologic modeling necessities and opportunities in the context of Subpart RR. Under Subpart RR, facilities that conduct GS by injecting CO2 for long-term containment in subsurface geologic formations are required to develop and implement an EPA-approved site-specific monitoring, reporting, and verification (MRV) plan; and report basic information on CO2 received for injection, annual monitoring activities and the amount of CO2 geologically sequestered using a mass balance approach. The major components of the MRV plan include: identification of potential surface leakage pathways for CO2 and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways; delineation of the monitoring areas; strategy for detecting and quantifying any surface leakage of CO2; and the strategy for establishing the expected baselines for monitoring CO2 surface leakage. Hydrogeologic modeling is an integral aspect of the design of an MRV plan. In order to prepare an adequate monitoring program that addresses site specific risks over the full life of the project the MRV plan must reflect the full spatial extent of the free phase CO2 over time. Facilities delineate the maximum area that the CO2 plume is predicted to cover and how monitoring can be phased in over this area. The Maximum Monitoring Area (MMA) includes the extent of the free phase CO2 plume over the lifetime of the project plus a buffer zone of one

  2. Theoretical and Experimental on Carbon Dioxide Sequestration Degree of Steel Slag

    Institute of Scientific and Technical Information of China (English)

    LI Jian-li; ZHANG Hui-ning; XU An-jun; CUI Jian; HE Dong-feng; TIAN Nai-yuan

    2012-01-01

    The limitation and experimental CO2 sequestration degree of steel slag is the focus. The theoretical and the practical COe sequestration degree was assessed under mild operating conditions. After calculation in theory, it can be found that the CO2 sequestration limitation degree for every kilogram steel slag is about 442 g when taking magne- sium into consideration, and the experimental CO2 sequestration degree for every kilogram slag is about 77 g, under the conditions that the liquid to solid ratio is 50 L/kg, CO2 flow is 0.5 L/min and the temperature of reaction is the ambient temperature. When solution NH4Cl and CHa COOH for experiments and other conditions keep the same, the actual potential CO2 sequestration for every kilogram slag is 69.3 g and 31.20 g respectively. Thus, optimization of process parameters like granularity of slag is necessary to enhance the carbon dioxide sequestration degree for steel slag.

  3. Carbon sequestration from waste via conversion to charcoal : equipment for a small scale operation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.C. [Cenovus Energy Inc., Calgary, AB (Canada); Struyk, A. [AST Technical Services, Calgary, AB (Canada); Gilbert, D. [GTEC Consulting, Calgary, AB (Canada)

    2010-07-01

    Carbon capture and sequestration (CCS) is not very cost effective in oilsand operations. For that reason, this study examined the feasibility of using charcoal sequestration (CS) as an alternative carbon offset method to CCS. The economics of the charcoal approach depends on 2 factors, notably the cost of the feed biomass and the cost of processing. The first factor was addressed in this study by using municipal waste as feedstock which is available free of charge. Since the cost of processing depends on the apparatus and the scale of operation, a robust kiln was designed to convert waste at remote industrial camp sites to charcoal. In charcoal sequestration, carbon contained in a portion of naturally produced biomass is preserved in solid form by converting it to charcoal, thus preventing it from entering into atmosphere as carbon dioxide. The paper showed that the newly designed equipment can contribute to a reduction in waste disposal costs and that the study can serve as a demonstration and data collection project for waste-to-charcoal projects for carbon sequestration. These demo projects can also help evaluate various aspects of this novel method of sequestration, and enhance public awareness on the subject. In view of the growing per capita waste worldwide, use of municipal waste as feedstock for charcoal sequestration can be a significant measure of carbon offset at global scale. 10 refs., 7 figs.

  4. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    Science.gov (United States)

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. PMID:25764465

  5. FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter Brewer; Dr. James Barry

    2002-09-30

    We have continued to carry out creative small-scale experiments in the deep ocean to investigate the science underlying questions of possible future large-scale deep-ocean CO{sub 2} sequestration as a means of ameliorating greenhouse gas growth rates in the atmosphere. This project is closely linked to additional research funded by the DoE Office of Science, and to support from the Monterey Bay Aquarium Research Institute. The listing of project achievements here over the past year reflects these combined resources. Within the last project year we have: (1) Published a significant workshop report (58 pages) entitled ''Direct Ocean Sequestration Expert's Workshop'', based upon a meeting held at MBARI in 2001. The report is available both in hard copy, and on the NETL web site. (2) Carried out three major, deep ocean, (3600m) cruises to examine the physical chemistry, and biological consequences, of several liter quantities released on the ocean floor. (3) Carried out two successful short cruises in collaboration with Dr. Izuo Aya and colleagues (NMRI, Osaka, Japan) to examine the fate of cold (-55 C) CO{sub 2} released at relatively shallow ocean depth. (4) Carried out two short cruises in collaboration with Dr. Costas Tsouris, ORNL, to field test an injection nozzle designed to transform liquid CO{sub 2} into a hydrate slurry at {approx}1000m depth. (5) In collaboration with Prof. Jill Pasteris (Washington University) we have successfully accomplished the first field test of a deep ocean laser Raman spectrometer for probing in situ the physical chemistry of the CO{sub 2} system. (6) Submitted the first major paper on biological impacts as determined from our field studies. (7) Submitted a paper on our measurements of the fate of a rising stream of liquid CO{sub 2} droplets to Environmental Science & Technology. (8) Have had accepted for publication in Eos the first brief account of the laser Raman spectrometer success. (9) Have had two

  6. DNA data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  7. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  8. Enhanced oil recovery & carbon sequestration building on successful experience

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Fred [BEPC (United States)

    2008-07-15

    In this paper it is spoken of the experiences in the capture and sequestration of CO{sub 2} in the companies Basin Electric Power Cooperative (BEPC) and Dakota Gasification Company (DGC); their by-products are mentioned and what these companies are making to control the CO{sub 2} emissions. Their challenges to compress CO{sub 2} are presented and how they have reduced the CO{sub 2} emissions in the DGC of the 2000 to the 2008; how they use CO{sub 2} to enhance the oil recovery and which are their challenges in the CO{sub 2} transport. [Spanish] En esta ponencia se habla de las experiencias en la captura y secuestro de CO{sub 2} en las empresas Basin Electic Power Cooperative (BEPC) y Dakota Gasification Campany (DGC); se mencionan sus subproductos y que estan haciendo estas empresas para controlar las emisiones de CO{sub 2}. Se presentan sus retos para comprimir CO{sub 2} y como han reducido las emisiones de CO{sub 2} en la DGC del 2000 al 2008; como utilizan el CO{sub 2} para mejorar la recuperacion de petroleo y sus cuales son retos en el transporte de CO{sub 2}.

  9. Selective derivatization and sequestration of ribose from a prebiotic mix.

    Science.gov (United States)

    Springsteen, Greg; Joyce, Gerald F

    2004-08-11

    Observations regarding the catalytic potential of RNA and the role of RNA in biology have formed the basis for the "RNA world" hypothesis, which suggests that a genetic system based on self-replicating polyribonucleotides preceded modern biology. However, attempts to devise a realistic prebiotic synthesis of nucleic acids from simple starting materials have been plagued by problems of poor chemical selectivity, lack of stereo- and regiospecificity, and similar rates of formation and degradation of some of the key intermediates. For example, ribose would have been only a small component of a highly complex mix of sugars resulting from the condensation of formaldehyde in a prebiotic world. In addition, ribose is more reactive and degrades more rapidly compared with most other monosaccharides. This study demonstrates an approach for the preferential sequestration of ribose relative to other sugars that takes advantage of its greater reactivity. Cyanamide reacts especially rapidly with ribose to form a stable bicyclic adduct. This product crystallizes spontaneously in aqueous solution, whereas the corresponding products derived from threose, galactose, glucose, mannose, and each of the other pentoses do not. Furthermore, when employing a racemic mixture of d- and l-ribose, enantiomerically twinned crystals are formed that contain discrete homochiral domains. PMID:15291561

  10. Sensitivity of geochemical monitoring for CO2 sequestration in basalt

    Science.gov (United States)

    Zakharova, N. V.; Goldberg, D.; Herron, M.; Grau, J.

    2010-12-01

    Continental flood basalts is a promising target for carbon dioxide (CO2) storage due to high storage capacity, presence of seals, and potential for geochemical trapping which results in binding CO2 into stable carbonate minerals. The success of long-term CO2 storage in igneous rocks highly depends on our ability to monitor mineralization under in situ conditions. The direct chemistry measurements on cores are costly and typically do not provide continuous coverage. In this study we investigate the potential of borehole geochemical logging for monitoring of CO2 mineralization in basalt. Neutron-induced capture gamma ray spectroscopy tools allow obtaining in-situ concentration logs for up to 10 major elements which can be used to construct a quantitative mineralogical model. While this usually provides good bulk mineralogy estimates, detecting small-volume mineral alteration in volcanic rocks remains challenging, especially if borehole conditions are poor. We analyze Schlumberger Elemental Capture Spectroscopy logs and chemical core analysis from the pilot CO2 sequestration project in the Columbia River flood basalt. We use the geochemical spectroscopy logs and quantitative modeling to quantify their sensitivity to secondary mineralization in basalt. We apply statistical analysis to explain the variance in elemental concentrations (and other logs) and establish detection limits for various mineral alteration products in basalt. We use these results to evaluate monitoring capabilities and limitations of geochemical logging for CO2 mineralization after underground injection in basalt and suggest areas for future research.

  11. Accelerated carbonation of brucite in mine tailings for carbon sequestration.

    Science.gov (United States)

    Harrison, Anna L; Power, Ian M; Dipple, Gregory M

    2013-01-01

    Atmospheric CO(2) is sequestered within ultramafic mine tailings via carbonation of Mg-bearing minerals. The rate of carbon sequestration at some mine sites appears to be limited by the rate of CO(2) supply. If carbonation of bulk tailings were accelerated, large mines may have the capacity to sequester millions of tonnes of CO(2) annually, offsetting mine emissions. The effect of supplying elevated partial pressures of CO(2) (pCO(2)) at 1 atm total pressure, on the carbonation rate of brucite [Mg(OH)(2)], a tailings mineral, was investigated experimentally with conditions emulating those at Mount Keith Nickel Mine (MKM), Western Australia. Brucite was carbonated to form nesquehonite [MgCO(3) · 3H(2)O] at a rate that increased linearly with pCO(2). Geochemical modeling indicated that HCO(3)(-) promoted dissolution accelerated brucite carbonation. Isotopic and aqueous chemistry data indicated that equilibrium between CO(2) in the gas and aqueous phases was not attained during carbonation, yet nesquehonite precipitation occurred at equilibrium. This implies CO(2) uptake into solution remains rate-limiting for brucite carbonation at elevated pCO(2), providing potential for further acceleration. Accelerated brucite carbonation at MKM offers the potential to offset annual mine emissions by ~22-57%. Recognition of mechanisms for brucite carbonation will guide ongoing work to accelerate Mg-silicate carbonation in tailings. PMID:22770473

  12. Agricultural Encroachment: Implications for Carbon Sequestration in Tropical African Wetlands

    Science.gov (United States)

    Jones, M. B.; Saunders, M.; Kansiime, F.

    2013-12-01

    Tropical wetlands have been shown to exhibit high rates of net primary productivity and may therefore play an important role in global climate change mitigation through carbon assimilation and sequestration. Many permanently flooded areas of tropical East Africa are dominated by the highly productive C4 emergent macrophyte sedge, Cyperus papyrus L. (papyrus). However, increasing population densities around wetland margins in East Africa are reducing the extent of papyrus coverage due to the planting of subsistence crops such as Cocoyam (Colocasia esculenta). We have assessed the impact of this land use change on the carbon cycle in theis wetland environment. Eddy covariance techniques were used, on a campaign basis, to measure fluxes of carbon dioxide over both papyrus and cocoyam dominated wetlands located on the Ugandan shore of Lake Victoria. The integration of flux data over the annual cycle shows that papyrus wetlands have the potential to act as a sink for significant amounts of carbon, in the region of 10 t C ha-1 yr-1. The cocoyam vegetation was found to assimilate ~7 t C ha-1 yr-1 but when carbon exports from crop biomass removal were taken into account these wetlands represent a significant net loss of carbon of similar magnitude. The development of sustainable wetland management strategies are therefore required in order to promote the dual wetland function of crop production and the mitigation of greenhouse gas emissions especially under future climate change scenarios.

  13. Sediment transport and carbon sequestration characteristics along mangrove fringed coasts

    Institute of Scientific and Technical Information of China (English)

    TU Qiang; YANG Shengyun; ZHOU Qiulin; YANG Juan

    2015-01-01

    Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the vegetation boun-daries. To detect the effects of mangrove forests on sediment transportation and organic carbon sequestration, the granulometric and organic carbon characteristics of mangrove sediments were investigated from three vegetation zones of four typical mangrove habitats on the Leizhou Peninsula coast. Based on our results, sediment transport was often“environmentally sensitive”to the vegetation friction. A transition of the sediment transport mode from the mudflat zone to the interior/fringe zone was often detected from the cumulative frequency curve. The vegetation cover also assists the trapping of material, resulting in a significantly higher concentration of organic carbon in the interior surface sediments. However, the graphic parameters of core sediments reflected a highly temporal variability due to the sedimentation process at different locations. The sediment texture ranges widely from sand to mud, altho-ugh the sedimentary environments are restricted within the same energy level along the fluvial-marine transition zone. Based on the PCA results, the large variation was mainly attributed to either the mean grain size features or the organic carbon features. A high correlation between the depth andδ13C value also indicated an increasing storage of mangrove-derived organic carbon with time.

  14. CO2 sequestration using calcium-silicate concrete

    International Nuclear Information System (INIS)

    This study examined the feasibility of sequestering carbon dioxide (CO2) using calcium silicate while developing a strong and durable concrete building product. In addition to offering a solution for a safe, environmentally sound manner to sequester carbon dioxide, the carbonation curing of concrete has the potential to provide a permanent storage for exhaust CO2. The calcium compounds in cement react with CO2 through the early-age carbonation curing, forming geologically stable calcium carbonates. In this study, both type 10 and type 30 Portland cements were used as CO2 binders in concretes with 0, 25, 50, and 75 per cent quartz aggregates and lightweight aggregates. The sequestration took place in a chamber under 0.5 MPa pressure at ambient temperature for a duration of 2 hours. The recovered CO2 from flue gas was simulated using a 100 per cent concentration of CO2. The CO2 uptake was quantified by direct mass gain and by an infrared-based carbon analyzer. The performance of the carbonated concrete was evaluated by its strength. In 2 hours, a CO2 uptake of 9 to 16 per cent by binder mass was achieved. The carbonation curing of concrete was found to provide better strength, stability, permeability and abrasion resistance in concrete products without steel reinforcement. 10 refs., 4 tabs., 10 figs

  15. Equilibrium and kinetic factors influencing bile sequestrant efficacy.

    Science.gov (United States)

    Luner, P E; Amidon, G L

    1992-05-01

    In vitro bile salt binding equilibria and kinetic studies were performed with cholestyramine to determine how these factors influence bile sequestrant efficacy in vivo. Chloride ion at physiologic concentrations caused more than a twofold reduction in glycocholate (GCH) binding, compared to binding in the absence of salt, over a range of GCH concentrations and was also observed to displace bound GCH. In addition, chloride ion displaced from cholestyramine as a result of bile salt binding was measured using a chloride selective electrode, and the results show that bile salt binding is due to ion exchange. Comparison of the results of the equilibrium binding experiments to human data shows that the effect of anion binding competition alone cannot account for the lack of efficacy of cholestyramine. Consideration of other effects, such as additional binding competition or poor availability for binding, based on data from the literature, shows that adequate bile salt binding potential exists and that these interferences are not major factors influencing resin efficacy. In kinetic studies, both binding uptake of GCH and displacement of GCH from cholestyramine by chloride ion were relatively rapid, indicating that cholestyramine should equilibrate rapidly with bile salts in the GI tract. Based on these findings, it is suggested that the low efficacy of cholestyramine is a result mainly of its relatively poor ability to prevent bile salt reabsorption in the ileum.

  16. SEQUESTRATION AND TREATMENT OF VADOSE ZONE SOLVENTS USING EDIBLE OILS

    Energy Technology Data Exchange (ETDEWEB)

    Riha, B; Brian02 Looney, B; Richard Hall (NOEMAIL), R

    2008-03-28

    Edible oils have emerged as an effective treatment amendment for a variety of contaminants. When applied to chlorinated volatile organic compounds (cVOCs) in the saturated zone, edible oils have been shown to enhance anaerobic bioremediation and sequester the contaminants. However, edible oils have not been applied to the vadose zone for contaminant treatment. Soybean oil was injected into the vadose zone in M-Area at the Department of Energy's (DOE) Savannah River Site (SRS) as a research study to evaluate the effectiveness of edible oils for solvent sequestration and the ability to change a vadose system from aerobic to anaerobic to initiate reductive dechlorination. The proposed use of this technique would be an enhanced attenuation/transition step after active remediation. The goals of the research were to evaluate oil emplacement methods and monitoring techniques to measure oil placement, partitioning and degradation. Gas sampling was the cornerstone for this evaluation. Analyses for cVOCs and biotransformation products were performed. Overall, the cVOC concentration/flux reduction was 75-85% in this vadose zone setting. Destruction of the cVOCs by biotic or abiotic process has not yet been verified at this site. No reductive dechlorination products have been measured. The deployment has resulted in a substantial generation of light hydrocarbon gases and geochemical conditions that would support cometabolism.

  17. Mineland reclamation and soil organic carbon sequestration in Ohio

    International Nuclear Information System (INIS)

    The mining industry has been continuously involved in initiatives to reduce the emission of green house gases in to atmosphere. Control measures have been introduced in all steps starting from the mining of coal to energy production. Reclamation of mined land was and is one of the eco-friendly measures adopted by the industry. Apart from the inherent benefits of reclamation to improve on and offsite environmental quality, its potential to produce biomass and enhance soil organic carbon (SOC) has not been addressed. Reclamative effects of establishing forest and pasture with (graded) and without topsoil (ungraded) application on soil quality and soil carbon sequestration was studied on mine land in Ohio. The SOC pool for 0--30 cm depth for the undisturbed control sites was 56.6 MgC/ha for forest and 66.3 MgC/ha for pasture. In comparison, the SOC pool in the forest and pasture of graded mineland for 0--30 cm depth after 25 years of reclamation was 58.9 MgC/ha and 62.7 MgC/ha respectively. In ungraded mineland, the SOC pool in the 0--30 cm depth after 30 years of reclamation was 51.5 MgC/ha in forest and 58.9 MgC/ha in the pasture

  18. The economics of soil C sequestration and agricultural emissions abatement

    Science.gov (United States)

    Alexander, P.; Paustian, K.; Smith, P.; Moran, D.

    2015-04-01

    Carbon is a critical component of soil vitality and is crucial to our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence, this is a case of significant market failure. In the design of alternative policy options, we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing the cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.

  19. Sequestration of carbon dioxide (CO2) using red mud.

    Science.gov (United States)

    Yadav, Vishwajeet S; Prasad, Murari; Khan, Jeeshan; Amritphale, S S; Singh, M; Raju, C B

    2010-04-15

    Red mud, an aluminium industry hazardous waste, has been reported to be an inexpensive and effective adsorbent. In the present work applicability of red mud for the sequestration of green house gases with reference to carbon dioxide has been studied. Red mud sample was separated into three different size fractions (RM I, RM II, RM III) of varying densities (1.5-2.2 g cm(-3)). Carbonation of each fraction of red mud was carried out separately at room temperature using a stainless steel reaction chamber at a fixed pressure of 3.5 bar. Effects of reaction time (0.5-12 h) and liquid to solid ratio (0.2-0.6) were studied for carbonation of red mud. Different instrumental techniques such as X-ray diffraction, FTIR and scanning electron microscope (SEM) were used to ascertain the different mineral phases before and after carbonation of each fraction of red mud. Characterization studies revealed the presence of boehmite, cancrinite, chantalite, hematite, gibbsite, anatase, rutile and quartz. Calcium bearing mineral phases (cancrinite and chantalite) were found responsible for carbonation of red mud. Maximum carbonation was observed for the fraction RM II having higher concentration of cancrinite. The carbonation capacity is evaluated to be 5.3 g of CO(2)/100 g of RM II. PMID:20036053

  20. Modeling of induced seismicity during mineral carbon sequestration

    Science.gov (United States)

    Yarushina, V.; Bercovici, D. A.

    2013-12-01

    Rapidly developing carbon capture and storage (CCS) technologies are a promising way of reducing the climate impact of greenhouse gases. These technologies involve injecting large amounts of CO2-bearing fluids underground, which potentially leads to high pore pressure and the conditions for seismic activity in the proximity of the injection site. Previously, we developed a simple conceptual model to estimate the seismic risk of mineral or mafic CCS operations (Yarushina & Bercovici, GRL vol.40, doi:10.1002/grl.50196, 2013). In this model, the storage reservoir is treated as a porous rock with grains that evolve during carbonation reactions. Seismic triggering occurs when local stresses at grain-grain contacts reach the Mohr-Coulomb failure criterion. We showed that injection of CO2 into reactive mafic or ultramafic rocks potentially reduces seismic risk since carbonation reactions increase the contact area between the rock grains and reduce the local stresses. Here we further develop this model and consider the effect of fluid injection flux and pressure gradients along grain boundaries on induced seismicity. Grain evolution not only changes the stress support but also alters the matrix permeability, which in turn affects the driving pressure gradients and the associated deviatoric stresses. The resulting coupled porous flow, chemical reactive grain-growth and failure model is an important step in understanding the seismic risks of carbon sequestration.

  1. Effects of organic carbon sequestration strategies on soil enzymatic activities

    Science.gov (United States)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  2. Substantial role of macroalgae in marine carbon sequestration

    Science.gov (United States)

    Krause-Jensen, Dorte; Duarte, Carlos M.

    2016-10-01

    Vegetated coastal habitats have been identified as important carbon sinks. In contrast to angiosperm-based habitats such as seagrass meadows, salt marshes and mangroves, marine macroalgae have largely been excluded from discussions of marine carbon sinks. Macroalgae are the dominant primary producers in the coastal zone, but they typically do not grow in habitats that are considered to accumulate large stocks of organic carbon. However, the presence of macroalgal carbon in the deep sea and sediments, where it is effectively sequestered from the atmosphere, has been reported. A synthesis of these data suggests that macroalgae could represent an important source of the carbon sequestered in marine sediments and the deep ocean. We propose two main modes for the transport of macroalgae to the deep ocean and sediments: macroalgal material drifting through submarine canyons, and the sinking of negatively buoyant macroalgal detritus. A rough estimate suggests that macroalgae could sequester about 173 TgC yr-1 (with a range of 61-268 TgC yr-1) globally. About 90% of this sequestration occurs through export to the deep sea, and the rest through burial in coastal sediments. This estimate exceeds that for carbon sequestered in angiosperm-based coastal habitats.

  3. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  4. Potential and economics of CO{sub 2} sequestration; Sequestration du CO{sub 2}: faisabilite et cout

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J. [CEA Saclay, 91 - Gif sur Yvette (France). Direction des Sciences de la Matiere; Ducroux, R. [Centre d' Initiative et de Recherche sur l' Energie et l' Environnement, CIRENE, 91 - Palaiseau (France)

    2001-07-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO{sub 2}. Some techniques could be used to reduced CO{sub 2} emission and stabilize atmospheric CO{sub 2} concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO{sub 2} emissions such as renewable or nuclear energy, iii) capture and store CO{sub 2} from fossil fuels combustion, and enhance the natural sinks for CO{sub 2} (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO{sub 2} and to review the various options for CO{sub 2} sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO{sub 2} and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO{sub 2} emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO{sub 2} emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO{sub 2} is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon

  5. Decomposition Analysis of the Mechanism Behind the Spatial and Temporal Patterns of Changes in Carbon Bio-Sequestration in China

    OpenAIRE

    Bin Chen; Jiao Luo; Nana Shi; Jinyan Zhan; Haiming Yan

    2012-01-01

    Great attention has been paid to carbon bio-sequestration due to increasing concerns over global warming. Understanding the relationship between carbon bio-sequestration and its influencing factors is of great significance for formulating appropriate management measures for global warming mitigation. Since change in carbon bio-sequestration is a complex process, it is difficult to take into account all of its influencing factors, while the panel data model may provide an effective way to meas...

  6. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  7. DNA and RNA sensor

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; LIN; Lin; ZHAO; Hong; JIANG; Long

    2005-01-01

    This review summarizes recent advances in DNA sensor. Major areas of DNA sensor covered in this review include immobilization methods of DNA, general techniques of DNA detection and application of nanoparticles in DNA sensor.

  8. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  9. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    Science.gov (United States)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.

  10. Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe A; O& #x27; Connor, William K.; Ideker, J.H.

    2012-10-28

    The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Class H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.

  11. DNA vaccines

    Science.gov (United States)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  12. DNA nanotechnology

    Directory of Open Access Journals (Sweden)

    Nadrian C Seeman

    2003-01-01

    We are all aware that the DNA found in cells is a double helix consisting of two antiparallel strands held together by specific hydrogen-bonded base pairs; adenine (A always pairs with thymine (T, and guanine (G always pairs with cytosine (C. The specificity of this base pairing and the ability to ensure that it occurs in this fashion (and not some other1 is key to the use of DNA in materials applications. The double helical arrangement of the two molecules leads to a linear helix axis, linear not in the geometrical sense of being a straight line, but in the topological sense of being unbranched. Genetic engineers discovered in the 1970s how to splice together pieces of DNA to add new genes to DNA molecules2, and synthetic chemists worked out convenient syntheses for short pieces of DNA (up to ∼100–150 units in the 1980s3. Regardless of the impact of these technologies on biological systems, hooking together linear molecules leads only to longer linear molecules, with circles, knots, and catenanes perhaps resulting from time to time.

  13. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the

  14. Southwestern Regional Partnership For Carbon Sequestration (Phase 2): Pump Canyon CO2-ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO2 sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO2-enhanced coalbed methane (CO2/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO2 sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO2 was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO2 movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO2. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO2 fluxes, and tracers were used to help in tracking the injected CO2. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

  15. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    Science.gov (United States)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  16. Vertically-integrated Approaches for Carbon Sequestration Modeling

    Science.gov (United States)

    Bandilla, K.; Celia, M. A.; Guo, B.

    2015-12-01

    Carbon capture and sequestration (CCS) is being considered as an approach to mitigate anthropogenic CO2 emissions from large stationary sources such as coal fired power plants and natural gas processing plants. Computer modeling is an essential tool for site design and operational planning as it allows prediction of the pressure response as well as the migration of both CO2 and brine in the subsurface. Many processes, such as buoyancy, hysteresis, geomechanics and geochemistry, can have important impacts on the system. While all of the processes can be taken into account simultaneously, the resulting models are computationally very expensive and require large numbers of parameters which are often uncertain or unknown. In many cases of practical interest, the computational and data requirements can be reduced by choosing a smaller domain and/or by neglecting or simplifying certain processes. This leads to a series of models with different complexity, ranging from coupled multi-physics, multi-phase three-dimensional models to semi-analytical single-phase models. Under certain conditions the three-dimensional equations can be integrated in the vertical direction, leading to a suite of two-dimensional multi-phase models, termed vertically-integrated models. These models are either solved numerically or simplified further (e.g., assumption of vertical equilibrium) to allow analytical or semi-analytical solutions. This presentation focuses on how different vertically-integrated models have been applied to the simulation of CO2 and brine migration during CCS projects. Several example sites, such as the Illinois Basin and the Wabamun Lake region of the Alberta Basin, are discussed to show how vertically-integrated models can be used to gain understanding of CCS operations.

  17. LARGE-SCALE CO2 TRANSPORTATION AND DEEP OCEAN SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Sarv

    1999-03-01

    Technical and economical feasibility of large-scale CO{sub 2} transportation and ocean sequestration at depths of 3000 meters or grater was investigated. Two options were examined for transporting and disposing the captured CO{sub 2}. In one case, CO{sub 2} was pumped from a land-based collection center through long pipelines laid on the ocean floor. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating structure for vertical injection to the ocean floor. In the latter case, a novel concept based on subsurface towing of a 3000-meter pipe, and attaching it to the offshore structure was considered. Budgetary cost estimates indicate that for distances greater than 400 km, tanker transportation and offshore injection through a 3000-meter vertical pipe provides the best method for delivering liquid CO{sub 2} to deep ocean floor depressions. For shorter distances, CO{sub 2} delivery by parallel-laid, subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines and tankers were 1.5 and 1.4 dollars per ton of stored CO{sub 2}, respectively. At these prices, economics of ocean disposal are highly favorable. Future work should focus on addressing technical issues that are critical to the deployment of a large-scale CO{sub 2} transportation and disposal system. Pipe corrosion, structural design of the transport pipe, and dispersion characteristics of sinking CO{sub 2} effluent plumes have been identified as areas that require further attention. Our planned activities in the next Phase include laboratory-scale corrosion testing, structural analysis of the pipeline, analytical and experimental simulations of CO{sub 2} discharge and dispersion, and the conceptual economic and engineering evaluation of large-scale implementation.

  18. Biocatalytic CO2 sequestration based on shell regeneration

    Science.gov (United States)

    Lee, S.

    2012-04-01

    Carbon dioxide, CO2, is one of the green gases, being uniformly distributed over the earth's surface. Recently, a variety of methods exists or has been proposed for pre- or post-emission capture and sequestration of CO2. However, CCS (carbon capture & storage) do not quarntee permanent treatment of CO2 and could ingenerate environment risks. Some organisms convert CO2 into exoskeleton (e.g., mollusks) or energy sources (e.g., plants) during metabolism under atmospheric conditions. One of representative biomaterials in ocean is bivalve shell to be composed of CaCO3. Calcium carbonate is not only abundant material in the world but also thermodynamically stable mineral in the capture of CO2. Bivalve has produced CaCO3 under seawater condition, in other word, near atmospheric conditions (1 atm. and around 20-25 oC). At the inorganic point, the synthesis of CaCO3 is as followed. Ca2+ + CO32- -> CaCO3 The bivalve shell plays an important role to protect bivalve's internal organs from prodetor. What will be happened if the shell is damaged and a hole is made? Bivalve must cover the hole to prevent the oxidation of internal organs as fast as possible. From in vitro crystallization test of a notched shell, rapid CaCO3 production was identified at the damaged area. The biocatalyst related to shell regeneration was purified and named as SPSR (Soluble Protein related to Shell Regeneration) that is obtained from the oyster, Crassostrea gigas. And in vitro CaCO3 crystallization test was used to calculate the crystal growth rate of SPSR on CaCO3 crystallization. The characteristics of SPRR are discussed at the point of CO2 hydration and rapid CaCO3 synthesis. To develop the bioinspired process based on shell regeneration concept, the analysis of protein structure has been studied and the immobilization has been carried out for easy recovery of SPSR.

  19. Biochar: a synthesis of its agronomic impact beyond carbon sequestration.

    Science.gov (United States)

    Spokas, Kurt A; Cantrell, Keri B; Novak, Jeffrey M; Archer, David W; Ippolito, James A; Collins, Harold P; Boateng, Akwasi A; Lima, Isabel M; Lamb, Marshall C; McAloon, Andrew J; Lentz, Rodrick D; Nichols, Kristine A

    2012-01-01

    Biochar has been heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity, and enter into future carbon trading markets. However, scientific and economic technicalties may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties due to the net result of production (e.g., feedstock and pyrolysis conditions) and postproduction factors (storage or activation). Therefore, biochar is not a single entity but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases after black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be key to meeting future global food production, food security, and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the conditions under which biochar can provide economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits. PMID:22751040

  20. DNA nanotechnology

    OpenAIRE

    Seeman, Nadrian C.

    2003-01-01

    Since Watson and Crick’s determination of its structure nearly 50 years ago, DNA has come to fill our lives in many areas, from genetic counseling to forensics, from genomics to gene therapy. These, and other ways in which DNA affects human activities, are related to its function as genetic material, not just our genetic material, but the genetic material of all living organisms. Here, we will ignore DNA’s biological role; rather, we will discuss how the properties that make it so successful ...

  1. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  2. Sequestration of organochlorine pesticides in soils of distinct organic carbon content

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Na [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); Yang Yu [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Tao Shu, E-mail: taos@urban.pku.edu.cn [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Liu Yan; Shi Kelu [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2011-03-15

    In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for {alpha}-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. - Research highlights: > Soil organic carbon content determines the OCP sequestration fraction in soil. > Magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. > The more hydrophobic compounds have relatively higher sequestration fractions in soils with SOC contents >2%. > DDD may have higher sorption by soil organic matter than DDE. - The effect of soil organic matter on the sequestration of organochlorine pesticides (HCHs and DDTs) in soils was investigated in an innovative microcosm chamber.

  3. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Joan M. Ogden

    2005-11-29

    In this final progress report, we describe research results from Phase I of a technical/economic study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the period September 2002 through August 2005 The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We carried out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  4. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  5. A systematic review of bile acid sequestrant therapy in children with familial hypercholesterolemia.

    Science.gov (United States)

    Davidson, Michael H

    2011-01-01

    Familial hypercholesterolemia, which arises as a result of a mutation in the low-density lipoprotein (LDL) receptor gene, is characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C), regardless of dietary and lifestyle modifications. Pharmacological therapy is often required to adequately control the elevated LDL-C levels associated with familial hypercholesterolemia. However, children with this genetic condition present many challenges for physicians, who must weigh the benefits of lipid-lowering therapy against the risks associated with the various treatment options. Furthermore, because familial hypercholesterolemia is a chronic condition, children will likely require long-term lipid-lowering therapy. As such, the potential effect of pharmacological treatment on development is of paramount importance in this population. Bile acid sequestrants represent a unique treatment option for children with familial hypercholesterolemia in that these agents are not systemically absorbed but rather exert their lipid-lowering effects via binding to bile acids within the gastrointestinal tract. A literature search was performed to identify clinical data related to the use of bile acid sequestrant therapy in children (sequestrant monotherapy, whereas two studies were identified that evaluated combination therapy with a bile acid sequestrant and low-dose statin. This review summarizes the clinical data regarding the efficacy and safety of bile acid sequestrants in this specialized population.

  6. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  7. A review of CO2 sequestration projects and application in China.

    Science.gov (United States)

    Tang, Yong; Yang, Ruizhi; Bian, Xiaoqiang

    2014-01-01

    In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 10(9) t for all onshore oilfields; 30.483 × 10(9) t for major gas fields between 900 m and 3500 m of depth; 143.505 × 10(9) t for saline aquifers; and 142.67 × 10(9) t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4-CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration. PMID:25302323

  8. CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE

    Energy Technology Data Exchange (ETDEWEB)

    Joan M. Ogden

    2003-12-01

    In this second semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period March 2003 through September 2003. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  9. A Review of CO2 Sequestration Projects and Application in China

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2014-01-01

    Full Text Available In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration.

  10. Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars.

    Science.gov (United States)

    Lampert, Evan C; Bowers, M Deane

    2010-10-01

    The effect of diet on sequestration of iridoid glycosides was examined in larvae of three lepidopteran species. Larvae were reared upon Plantago major, or P. lanceolata, or switched from one to the other in the penultimate instar. Junonia coenia is a specialist on iridoid glycoside-producing plants, whereas the arctiids, Spilosoma congrua and Estigmene acrea, are both polyphagous and eat iridoid-producing plants. All species sequestered iridoids. The specialist J. coenia sequestered from three to seven times the amounts sequestered by the two generalist species. Junonia coenia iridoid glycoside content depended on diet, and they sequestered from 5 to 15% dry weight iridoid glycosides. Estigmene acrea iridoid glycoside sequestration was relatively low, around 2% dry weight and did not vary with diet. Spilosoma congrua sequestration varied with diet and ranged from approximately 3 to 6% dry weight. PMID:20809144

  11. Spectrum of pulmonary sequestration: association with anomalous pulmonary venous drainage in infants.

    Science.gov (United States)

    Thilenius, O G; Ruschhaupt, D G; Replogle, R L; Bharati, S; Herman, T; Arcilla, R A

    1983-01-01

    Pulmonary sequestration is a spectrum of related lesions, each of which may be absent or present: (1) bronchial sequestration of pulmonary parenchyma; (2) arterial supply from systemic circulation; (3) anomalous pulmonary venous drainage to the right atrium; (4) communications between bronchus and esophagus; (5) defects of diaphragm; (6) gross lung anomalies, such as horseshoe lungs or hypoplasia. Any combination of these primary lesions can occur in an individual patient. Diagnosis should be directed towards each component of the spectrum. Of special importance is the venous connection, as anomalous pulmonary venous drainage can involve not only the sequestered segment but the entire ipsilateral lung, making surgical therapy far more complex. Treatment of choice is surgical resection, associated, if needed, with rerouting of the pulmonary venous return. Classification of sequestration of the lung as intra- and extralobar is of secondary importance: these 2 groups do not represent lesions of different embryological significance.

  12. Imaging diagnosis for intralobar pulmonary sequestration by subclassification of CT findings in bronchoalveolar structures

    International Nuclear Information System (INIS)

    We examined the chest CT findings in 12 cases of intralobar pulmonary sequestration. We classified 4 subtypes by evaluating bronchial and alveolar structures, thus: type A (3 cases), mild cylindrical dilatation of the bronchial structure and hyperlucent alveolar structure; type B (3 cases), marked cylindrical dilatation of the bronchial structure and hyperlucent alveolar structure; type C (2 cases), multicystic dilatation of the bronchial structure and alveolar structure without hyperlucency; and type D (4 cases), multicystic dilatation of the bronchial structure and absence of any alveolar structure. All 77 cases (present and previously reported cases) with CT-documented intralobar pulmonary sequestration could be classified into 4 subtypes: type A 9%, type B 34%, type C 19%, and type D 38%. We concluded that these 4 types were useful for the radiological diagnosis of intralobar pulmonary sequestration. (author)

  13. Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Wendy (Harvard Environmental Law and Policy, Cambridge, MA (US)); Chohen, Leah; Kostakidis-Lianos, Leah; Rundell, Sara (Harvard Law School, Cambridge, MA (US))

    2009-03-01

    Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in the absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.

  14. Pulmonary Sequestration with Renal Aplasia and Elevated SUV Level in PET/CT

    Directory of Open Access Journals (Sweden)

    Serdar Şen

    2012-01-01

    Full Text Available Extralobar sequestration with other bronchopulmonary malformations is commonly seen; however, the association of extralobar sequestration with renal aplasia is very rare. A 75-year-old female patient was admitted with back pain. Ultrasonography revealed aplasia of the left kidney and tomography showed 6×4.5 cm sized tumor in the left hemithorax at the posterobasal area. The lesion has focally increased glycolytic activity (SUVmax: 3.2 at the left upper pole on positron emission tomography scan (PET/CT. Sequestrectomy was performed after the confirmation by frozen section that the lesion was benign and of extrapulmonary sequestration. No complication occurred during postoperative and 50-month follow-up period.

  15. The NatCarb geoportal: Linking distributed data from the Carbon Sequestration Regional Partnerships

    Science.gov (United States)

    Carr, T.R.; Rich, P.M.; Bartley, J.D.

    2007-01-01

    The Department of Energy (DOE) Carbon Sequestration Regional Partnerships are generating the data for a "carbon atlas" of key geospatial data (carbon sources, potential sinks, etc.) required for rapid implementation of carbon sequestration on a broad scale. The NATional CARBon Sequestration Database and Geographic Information System (NatCarb) provides Web-based, nation-wide data access. Distributed computing solutions link partnerships and other publicly accessible repositories of geological, geophysical, natural resource, infrastructure, and environmental data. Data are maintained and enhanced locally, but assembled and accessed through a single geoportal. NatCarb, as a first attempt at a national carbon cyberinfrastructure (NCCI), assembles the data required to address technical and policy challenges of carbon capture and storage. We present a path forward to design and implement a comprehensive and successful NCCI. ?? 2007 The Haworth Press, Inc. All rights reserved.

  16. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied as potential candidates for internal pipeline coating to transport SCCO2.

  17. Cardiomyopathy induced by pulmonary sequestration in a 50-year-old man.

    Science.gov (United States)

    Chatelain, Shaun; Comp, Robert A; Grace, R Randal; Sabbath, Adam M

    2015-02-01

    A 50-year-old black man presented at the emergency department with midsternal, nonradiating chest pressure and chronic dyspnea on exertion. Four years before the current admission, he had been diagnosed with nonischemic cardiomyopathy at another facility. After our complete evaluation, we suspected that his symptoms arose from left-to-left shunting in association with pulmonary sequestration, a congenital malformation. Our preliminary diagnosis of secondary dilated cardiomyopathy was confirmed by normalization of the patient's ventricular size and function after lobectomy. To our knowledge, this patient is the oldest on record to present with cardiomyopathy consequent to pulmonary sequestration. His case is highly unusual because of his age and the rapid resolution of his symptoms after lobectomy. We believe that pulmonary sequestration should be included in the differential diagnosis of dilated cardiomyopathy.

  18. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration

    Directory of Open Access Journals (Sweden)

    Ileana Frasier

    2016-04-01

    Full Text Available The objective of the study was to evaluate the effect of a change in management on the soil microbial community and C sequestration. We conducted a 3-year field study in La Pampa (Argentina with rotation of sorghum (Sorghum bicolor in zero tillage alternating with rye (Secale cereale and vetch (Vicia villosa ssp. dasycarpa. Soil was sampled once a year at two depths. Soil organic matter fractions, dissolved organic matter, microbial biomass (MBC and community composition (DNA extraction, qPCR, and phospholipid FAME profiles were determined. Litter, aerial- and root biomass were collected and all material was analyzed for C and N. Results showed a rapid response of microbial biomass to a bacterial dominance independent of residue quality. Vetch had the highest diversity index, while the fertilized treatment had the lowest one. Vetch–sorghum rotation with high N mineralization rates and diverse microbial community sequestered more C and N in stable soil organic matter fractions than no-till sorghum alone or with rye, which had lower N turnover rates. These results reaffirm the importance of enhanced soil biodiversity for maintaining soil ecosystem functioning and services. The supply of high amounts of N-rich residues as provided by grass–legume cover crops could fulfill this objective.

  19. Comparison of carbon sequestration potential in agricultural and afforestation farming systems

    Directory of Open Access Journals (Sweden)

    Chinsu Lin

    2013-04-01

    Full Text Available In the last few decades, many forests have been cut down to make room for cultivation and to increase food or energy crops production in developing countries. In this study, carbon sequestration and wood production were evaluated on afforested farms by integrating the Gaussian diameter distribution model and exponential diameter-height model derived from sample plots of an afforested hardwood forest in Taiwan. The quantity of sequestrated carbon was determined based on aboveground biomass. Through pilot tests run on an age-volume model, an estimation bias was obtained and used to correct predicted volume estimates for a farm forest over a 20-year period. An estimated carbon sequestration of 11,254 t C was observed for a 189ha-hardwood forest which is equivalent to 41,264 t CO2. If this amount of carbon dioxide were exchanged on the Chicago Climate Exchange (CCX market, the income earned would be 821 US$ ha- 1. Carbon sequestration from rice (Oryza sativa or sugarcane (Saccharum officinarum production is discharged as a result of straw decomposition in the soil which also improves soil quality. Sugarcane production does not contribute significantly to carbon sequestration, because almost all the cane fiber is used as fuel for sugar mills. As a result of changing the farming systems to hardwood forest in this study area, carbon sequestration and carbon storage have increased at the rate of 2.98 t C ha- 1 year- 1. Net present value of afforestation for a 20-year period of carbon or wood management is estimated at around US$ 30,000 given an annual base interest rate of 3 %.

  20. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    Energy Technology Data Exchange (ETDEWEB)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  1. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    Science.gov (United States)

    Elliot, T R; Celia, M A

    2012-04-01

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed. PMID:22352312

  2. Bile Acid Sequestration Reduces Plasma Glucose Levels in db/db Mice by Increasing Its Metabolic Clearance Rate

    NARCIS (Netherlands)

    Meissner, M.; Herrema, H.J.; Dijk, van Th.; Gerding, A.; Havinga, R.; Boer, T.; Müller, M.R.; Reijngoud, D.J.; Groen, A.K.; Kuipers, F.

    2011-01-01

    Aims/Hypothesis: Bile acid sequestrants (BAS) reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore

  3. Characterization of phosphate sequestration by a lanthanum modified bentonite clay: A solid-state NMR, EXAFS and PXRD study

    DEFF Research Database (Denmark)

    Dithmer, Line; Lipton, Andrew S; Reitzel, Kasper;

    2015-01-01

    Phosphate (Pi) sequestration by a lanthanum (La) exchanged clay mineral (La-Bentonite), which is extensively used in chemical lake restoration, was investigated on the molecular level using a combination of 31P and 139La solid state NMR spectroscopy (SSNMR), extended X-ray absorption spectroscopy...... formed upon Pi sequestration is in close proximity to the clay matrix....

  4. LBNL deliverable to the Tricarb carbon sequestration partnership: Final report on experimental and numerical modeling activities for the Newark Basin

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sumit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pester, Nick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Saldi, Giuseppe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beyer, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, Jim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Knauss, Kevin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-09-04

    This report presents findings for hydrological and chemical characteristics and processes relevant to large-scale geologic CO2 sequestration in the Newark Basin of southern New York and northern New Jersey. This work has been conducted in collaboration with the Tri-Carb Consortium for Carbon Sequestration — comprising Sandia Technologies, LLC; Conrad Geoscience; and Schlumberger Carbon Services.

  5. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral

  6. Private valuation of carbon sequestration in forest plantations

    Energy Technology Data Exchange (ETDEWEB)

    Guitart, A. Bussoni [Facultad de Agronomia, Universidad de la Republica. Avda. E. Garzon, 780, CP 12.900, Montevideo (Uruguay); Rodriguez, L.C. Estraviz [Escola Superior de Agricultura ' ' Luiz de Queiroz' ' , Universidad de Sao, Paulo (Brazil)

    2010-01-15

    Approval of the Clean Development Mechanism, provided for in the Kyoto Protocol, enables countries with afforested land to trade in carbon emissions reduction certificates related to carbon dioxide equivalent quantities (CO{sub 2-e}) stored within a certain forest area. Potential CO{sub 2-e} above base line sequestration was determined for two forest sites on commercial eucalyptus plantations in northern Brazil (Bahia). Compensation values for silvicultural regimes involving rotation lengths greater than economically optimal were computed using the Faustmann formula. Mean values obtained were US$8.16 (MgCO{sub 2-e}){sup -} {sup 1} and US$7.19 (MgCO{sub 2-e}){sup -} {sup 1} for average and high site indexes, respectively. Results show that carbon supply is more cost-efficient in highly productive sites. Annuities of US$18.8 Mg C{sup -} {sup 1} and US$35.1 Mg C{sup -} {sup 1} and yearly payments of US$4.4 m{sup -} {sup 3} and US$8.2 m{sup -} {sup 3} due for each marginal cubic meter produced were computed for high and average sites, respectively. The estimated value of the tonne of carbon defines minimum values to be paid to forest owners, in order to induce a change in silvicultural management regimes. A reduction of carbon supply could be expected as a result of an increase in wood prices, although it would not respond in a regular manner. For both sites, price elasticity of supply was found to be inelastic and increased as rotation length moved further away from economically optimal: 0.24 and 0.27 for age 11 years in average- and high-productivity sites, respectively. This would be due to biomass production potential as a limiting factor; beyond a certain threshold value, an increase in price does not sustain a proportional change in carbon storage supply. The environmental service valuation model proposed might be adequate for assessing potential supply in plantation forestry, from a private landowner perspective, with an economic opportunity cost. The model is

  7. Mineral Influence on Microbial Survival During Carbon Sequestration

    Science.gov (United States)

    Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

    2012-12-01

    . Growth media was allowed to flow through a sand-packed column at a constant flow rate with pulses of liquid CO2 injected directly into the column. Preliminary data of dissolved iron measured from the effluent indicates that biofilm columns show a slight increase in dissolved iron concentrations before and after CO2 exposure in comparison to abiotic columns. These findings imply the important relationship between microbes and minerals during CO2 sequestration. The ability minerals have to contribute to the selection of microbes has important consequences to the survival of different microbial populations in the subsurface and the consequent biogeochemical changes that may happen.

  8. Simplified Predictive Models for CO2 Sequestration Performance Assessment

    Science.gov (United States)

    Mishra, Srikanta; RaviGanesh, Priya; Schuetter, Jared; Mooney, Douglas; He, Jincong; Durlofsky, Louis

    2014-05-01

    We present results from an ongoing research project that seeks to develop and validate a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formation. The overall research goal is to provide tools for predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume migration. Simplified modeling approaches that are being developed in this research fall under three categories: (1) Simplified physics-based modeling (SPM), where only the most relevant physical processes are modeled, (2) Statistical-learning based modeling (SLM), where the simulator is replaced with a "response surface", and (3) Reduced-order method based modeling (RMM), where mathematical approximations reduce the computational burden. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. In the first category (SPM), we use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. In the second category (SLM), we develop statistical "proxy models" using the simulation domain described previously with two different approaches: (a) classical Box-Behnken experimental design with a quadratic response surface fit, and (b) maximin Latin Hypercube sampling (LHS) based design with a Kriging metamodel fit using a quadratic trend and Gaussian correlation structure. For roughly the same number of

  9. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  10. Diagnosis and management of intradiaphragmatic extralobar pulmonary sequestration: a report of 11 cases.

    Science.gov (United States)

    Chun, Hong; Gang, Yu; Xiaochun, Zhu; Jin, Tang; Bo, Xia; Limin, Wang; Cuifen, Lui

    2015-08-01

    Evaluate the diagnosis and management of intradiaphragmatic extralobar pulmonary sequestration (IDEPS). We retrospectively reviewed cases of bronchopulmonary sequestrations (BPS) diagnosed in our hospital from March 2011 to May 2014, in order to identify patients with IDEPS. Diagnosis of IDEPS was confirmed using prenatal Doppler ultrasound, postnatal intravascular enhanced computed tomography, and surgery. The 11 cases diagnosed with IDEPSs were confirmed with histopathology. In our first case we did not find any mass from abdominal surgery; we then turned to transthoracic surgery. Three patients underwent thoracoscopy, and seven underwent thoracotomy. IDEPS is better approached through the chest. Thoracoscopy in experienced hands a favorable approach.

  11. Actin phosphorylation correlates with actin sequestration in ATP-depleted abbit renal proximal tubules

    Institute of Scientific and Technical Information of China (English)

    Yingchun Li; Yingbin Ge; Jun Du; Rong Zhou; Jin Chen; Luo Gu

    2005-01-01

    Objective: To demonstrate the relationship between actin phosphorylation and actin sequestration in ATP-depleted rabbit renal proximal tubules. Methods: Using two-dimensional electrophoreses and Western blotting to analyze the phosphorylation state of the sequestered actin in rabbit renal proximal tubules. Results: The analytical result of the sequestered actin indicated that nearly half of the actin was phosphorylated on serine residue(s). Conclusion: Result suggested a close correlation between actin sequestration and actin phosphorylation in ATP-depleted rabbit renal proximal tubules.

  12. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay

    DEFF Research Database (Denmark)

    Dithmer, Line; Nielsen, Ulla Gro; Lundberg, Daniel;

    2016-01-01

    A laboratory scale experiment was set up to test the effect of dissolved organic carbon (DOC) as well as ageing of the La–P complex formed during phosphorus (P) sequestration by a La modified clay (Phoslock®). Short term (7 days) P adsorption studies revealed a significant negative effect of added...... DOC on the P sequestration of Phoslock®, whereas a long-term P adsorption experiment revealed that the negative effect of added DOC was reduced with time. The reduced P binding efficiency is kinetic, as evident from solid-state 31P magic-angle spinning (MAS) NMR spectroscopy, who showed that the P...

  13. Ecosystem Controls on C & N Sequestration Following Afforestation of Agricultural Lands

    Energy Technology Data Exchange (ETDEWEB)

    E.A. Paul, S.J. Morris, R.T. Conant

    2013-03-05

    In our project, we proposed to continue analysis of our available soil samples and data, and to develop new studies to answer the following objectives: Objective 1) Broaden field based studies of ecosystem C and N compartments to enhance current understanding of C and N sequestration and dynamics. Objective 2) Improve our understanding of mechanism controlling C and N stabilization and dynamics. Objective 3) Investigate the interrelated role of soil temperature and organism type and activity as controlling mechanism in SOC dynamics and sequestration.

  14. A Multi-Level Approach to Outreach for Geologic Sequestration Projects

    Science.gov (United States)

    Greenberg, S.E.; Leetaru, H.E.; Krapac, I.G.; Hnottavange-Telleen, K.; Finley, R.J.

    2009-01-01

    Public perception of carbon capture and sequestration (CCS) projects represents a potential barrier to commercialization. Outreach to stakeholders at the local, regional, and national level is needed to create familiarity with and potential acceptance of CCS projects. This paper highlights the Midwest Geological Sequestration Consortium (MGSC) multi-level outreach approach which interacts with multiple stakeholders. The MGSC approach focuses on external and internal communication. External communication has resulted in building regional public understanding of CCS. Internal communication, through a project Risk Assessment process, has resulted in enhanced team communication and preparation of team members for outreach roles. ?? 2009 Elsevier Ltd. All rights reserved.

  15. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  16. Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations

    Energy Technology Data Exchange (ETDEWEB)

    Zoback, Mark D. [Stanford Univ., CA (United States); Kovscek, Anthony R. [Stanford Univ., CA (United States); Wilcox, Jennifer [Stanford Univ., CA (United States)

    2013-09-30

    This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

  17. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    OpenAIRE

    Ogden, Joan M

    2004-01-01

    In this final progress report, we describe research results from Phase I of a technical/economic study of fossil hydrogen energy systems with CO2 sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the period September 2002 through August 2004. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H2 and electricity with CO2 sequestration. This is accomplishe...

  18. Destruction and Sequestration of H2O on Mars

    Science.gov (United States)

    Clark, Benton

    2016-07-01

    The availability of water in biologically useable form on any planet is a quintessential resource, even if the planet is in a zone habitable with temperature regimes required for growth of organisms (above -18 °C). Mars and most other planetary objects in the solar system do not have sufficient liquid water at their surfaces that photosynthesis or chemolithoautotrophic metabolism could occur. Given clear evidence of hydrous mineral alteration and geomorphological constructs requiring abundant supplies of liquid water in the past, the question arises whether this H2O only became trapped physically as ice, or whether there could be other, more or less accessible reservoirs that it has evolved into. Salts containing S or Cl appear to be ubiquitous on Mars, having been measured in soils by all six Mars landed missions, and detected in additional areas by orbital investigations. Volcanoes emit gaseous H2S, S, SO2, HCl and Cl2. A variety of evidence indicates the geochemical fate of these gases is to be transformed into sulfates, chlorides, chlorates and perchlorates. Depending on the gas, the net reaction causes the destruction of between one and up to eight molecules of H2O per atom of S or Cl (although hydrogen atoms are also released, they are lost relatively rapidly to atmospheric escape). Furthermore, the salt minerals formed often incorporate H2O into their crystalline structures, and can result in the sequestration of up to yet another six (sometimes, more) molecules of H2O. In addition, if the salts are microcrystalline or amorphous, they are potent adsorbents for H2O. In certain cases, they are even deliquescent under martian conditions. Finally, the high solubility of the vast majority of these salts (with notable exception of CaSO4) can result in dense brines with low water activity, aH, as well as cations which can be inimical to microbial metabolism, effectively "poisoning the well." The original geologic materials on Mars, igneous rocks, also provide some

  19. A preliminary study of CO2 sequestration of cement paste

    Science.gov (United States)

    Choi, Y.; Lee, H.; Hwang, J.; Oh, J.; Lee, J.

    2013-12-01

    Recently, CO2 capture and storage technologies to reduce CO2 concentration in the atmosphere have been extensively studied because global warming is a worldwide issue. Waste cement is a potential raw material for mineral carbonation. In general, carbonation refers a calcite forming reaction in hydrated cement. The carbonation of portlandite in hydrated cement is very straightforward. However, the carbonation of CSH (calcium silicate hydrate: CaO-SiO2-H2O) composing the largest portion of hydrated cement involved in complex reactions and is a key to increase the carbonation efficiency of waste cement. The present study was conducted to have basic information for utilizing waste cement as a raw material for CO2 sequestration. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized, and fine grains sizing less than 0.15mm was used for experiment. For the direct aqueous carbonation experiment, 15g of sample is reacted with 200 ml of 1M NaHCO3 in 500ml HDPE bottle. 1M NaCl and 0.25 M MgCl2 was used for additives after leaching test with 0.25, 0.5, 1.0 and 1.5M NaCl and MgCl2 solutions, and the carbonation efficiency of these additives was evaluated. After reaction, the reacted cement paste and supernatant solution were separated from centrifuging at 5000rpm. The reacted cement paste was analyzed with XRD, DSC/TGA and SEM/EDS. The supernatant solution was filtered with 0.45um membrane filter, and nitric acid was added to lower 2 for preventing calcite precipitation. Then, chemical composition of solution was analyzed with ICP-OES. The leaching of Ca ion is increased with increasing NaCl concentration and is maximized at 1M solution. Extremely small leaching of Si ion indicates that NaCl feebly affect on the carbonation of CSH. The leaching of Ca ion in MgCl2 solution is 10 times greater than in NaCl solution and is maximized at 0.5M solution. The increased Ca leaching is probably caused by the decalcification of

  20. Test/QA Plan for Verification of Isotopic Carbon Dioxide Analyzers for Carbon Sequestration Monitoring

    Science.gov (United States)

    The purpose of this verification test is to generate performance data on isotopic CO2 analyzers with a particular focus on applications relevant to GCS monitoring applications, specifically for the sequestration of CO2 from a coal-fired power plant. The data generated from this ...

  1. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  2. Assessing the economic impacts of agricultural carbon sequestration: Terraces and agroforestry in the Peruvian Andes

    NARCIS (Netherlands)

    Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O.

    2007-01-01

    There is an increasing demand for information about the economic impact of agricultural carbon (C) sequestration in the developing world, but as yet no studies have assessed the potential for farmers in the highland tropics to participate in C contracts. In this paper we show how an econometric-proc

  3. Soil Tillage Conservation and its Effect on Erosion Control, Water Management and Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    MORARU Paula Ioana

    2010-12-01

    Full Text Available Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of humanintervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered animportant intervention to limit these changes. Carbon sequestration in soil is net advantageous, improving theproductivity and sustainability. The more the organic content in soil is higher the better soil aggregation is. The soilwithout organic content is compact. This reduces its capacity to infiltrate water, nutrients solubility and productivity,and that way it reduces the soil capacity for carbon sequestration. Also it raises soil vulnerability to erosion throughwater and wind. Presently a change it is necessary concerning the concept of conservation practices and a newapproach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditionalunderstanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus toanother level concerning conservation by focusing on the soil quality. Carbon management is necessary for a complexof matters including soil, water management, field productivity, biological fuel and climatic change. Profound researchis necessary in order to establish the carbon sequestration practices and their implementation impact. Soil oxygen andcarbon dioxide concentration dynamics can be continuously monitored in the present using new generation of sensorsavailable. Systems for soil gas measurements offer crucial information regarding production, consume, and transport ofgas, with major implications in quantitative and qualitative evaluation of soil respiration and soil aeration.

  4. The Carbon Sequestration Potential of Soils: Some Data from Northern Italian Regions

    Directory of Open Access Journals (Sweden)

    Fabio Petrella

    2007-06-01

    Full Text Available It is well known that soil plays, within terrestrial ecosystems, an essential role in many biogeochemical cycles and in the regulation of greenhouse gas fluxes. Less known, and often underestimated, is the importance of carbon sequestration potential of soil, especially trough humified carbon. Even within the agro-forestry practices of the Kyoto Protocol, most of the attention is devoted to the biomass carbon storage, rather than soil carbon sequestration. The highest potentialities for carbon sequestration are related to the arable lands, that accounts for the 11% of earth surface; the increase of 0.1% of organic carbon content in the 0-30 cm layer of cultivated soils, achievable with minor adjustment of agronomic practices, is equivalent to the sequestration of 5,000 millions t of carbon. On the other hand, the conversion of a grasslands into cultivated land determine, during 50-70 years, a release of 80-150 t CO2 ha-1.Within this paper the estimate of soil organic carbon of three Northern Italian regions is presented.

  5. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper;

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two...... an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements....

  6. Modelling the transformations and sequestration of soil organic matter in two constrasting ecosystems of the Andes

    NARCIS (Netherlands)

    Pansu, M.; Sarmiento, L.; Metselaar, K.; Hervé, D.; Bottner, P.

    2007-01-01

    The mechanisms linking soil respiration to climate and soil physical properties are important for modelling transformation and sequestration of C and N in the soil. We investigated them by incubating C-14 and N-15 labelled straw in soils of the dry puna (Bolivian altiplano, semi-arid shrubland at 37

  7. Utilization of multiple waste streams for acid gas sequestration and multi-pollutant control

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Dilmore, R.M.; Hedges, S.W.; Howard, B.H.; Romanov, V. [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA (United States)

    2012-03-15

    A novel CO{sub 2} sequestration concept is reported that combines SO{sub 2} removal and CO{sub 2} capture and sequestration, using a bauxite-processing residue which is a waste product and with waste brine water from oil/gas production. The bauxite residue/brine mixture of 46/54 v/v exhibited a CO{sub 2} sequestration capacity of > 0.078 mol L{sup -1} when exposed to pure CO{sub 2} at 20 C and 2.73 MPa. At a higher temperature of 140 C, a bauxite residue/brine mixture of 80/20 v/v indicated a CO{sub 2} sequestration capacity of > 0.094 mol L{sup -1} when exposed to pure CO{sub 2} at 3.85 MPa. Under the same reaction conditions, an identical ratio of reaction mixture exposed to simulated flue gas at a similar initial pressure was capable of sequestering 0.16 mol of CO{sub 2} and > 99.9 % of the applied SO{sub 2}. Calcite formation was verified as a product of bauxite/brine mixture carbonation. The caustic bauxite residues (pH 12.5-13.5) and acidic wastewater brine (pH 3-5) are also effectively neutralized after participating as reactive reagents in the conceptual process. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Estimates of Carbon Sequestration and Storage in Tidal Coastal Wetlands Along the US East Coast

    Science.gov (United States)

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  9. Estimates of Carbon Sequestration in Tidal Coastal Wetlands Along the US east Coast

    Science.gov (United States)

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  10. Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs

    Science.gov (United States)

    Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.

    2008-12-01

    CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.

  11. Gasification biochar as soil amendment for carbon sequestration and soil quality

    DEFF Research Database (Denmark)

    Hansen, Veronika

    2014-01-01

    Thermal gasification of biomass is an efficient and flexible way to generate energy. Besides the energy, avaluable by-product, biochar, is produced. Biochar contains a considerable amount of recalcitrant carbon thathas potential for soil carbon sequestration and soil quality improvement if recycled...

  12. Colesevelam hydrochloride: usefulness of a specifically engineered bile acid sequestrant for lowering LDL-cholesterol.

    Science.gov (United States)

    Corsini, Alberto; Windler, Eberhard; Farnier, Michel

    2009-02-01

    Several recent meta-analyses of numerous lipid-lowering outcome trials confirm the direct relationship between low-density lipoprotein-cholesterol (LDL-C) lowering and cardiovascular risk reduction. As a consequence, LDL-C goals are continuously being set lower. To achieve lipid lowering, several efficient drugs are available, however, the current pharmacopoeia remains limited for some critical patient situations. Colesevelam hydrochloride is a specifically engineered bile acid sequestrant that features a more favourable tolerability and drug interaction profile than traditional bile acid sequestrants, because of a better affinity and binding capacity to bile acids. In addition, colesevelam retains the nonsystemic mode of action of bile acid sequestrants. Moreover, colesevelam lowers LDL-C by 15-19% and 10-16%, respectively, in monotherapy and in combination to various lipid-lowering drugs, such as statins, ezetimibe and fenofibrates. Along with an efficient and sustainable effect on lipid profiles, colesevelam - as other bile acid sequestrants - has been shown to lower the glycosylated haemoglobin HbA1c by 0.5% on average in patients with type 2 diabetes. Overall, colesevelam represents an interesting add-on treatment to be used in high-risk patients with hypercholesterolaemia for whom standard lipid-lowering therapies are not enough or not well tolerated.

  13. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Protection Agency 40 CFR Parts 72, 78, and 98 Mandatory Reporting of Greenhouse Gases: Injection and Geologic... 2060-AP88 Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon... regulation to require greenhouse gas monitoring and reporting from facilities that conduct...

  14. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-04-12

    ... Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases: Injection and Geologic... Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide AGENCY: Environmental... require control of greenhouse gases (GHGs), rather it requires only monitoring and reporting of CO...

  15. Mixed form of congenital cystic adenomatoid malformation and extralobar bronchopulmonary sequestration : a case report

    International Nuclear Information System (INIS)

    Bronchopulmonary sequestration (BPS) and congenital cystic adenomatoid malformation (CCAM) are rare, but both should be included in the differential diagnosis of fetal lung mass. We experienced a mixed form of Stocker type-III CCAM and extralobar BPS, and present this case, together with a review of the related literature. (author)

  16. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    Science.gov (United States)

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. PMID:25012303

  17. Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis

    Directory of Open Access Journals (Sweden)

    Nicolette Prevost

    2011-12-01

    Full Text Available Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing. Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze. A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration.

  18. Combining ocean sequestration of CO{sub 2} and OTEC; a win-win solution?

    Energy Technology Data Exchange (ETDEWEB)

    Golmen, L.G.; Masutani, S.M. [NIVA, Regional Office Bergen, Bergen (Norway). Norwegian Institute for Water Research

    2001-07-01

    OTEC (Ocean Thermal Energy Conversion) and deep CO{sub 2} ocean sequestration share several technological similarities. OTEC uses cold deep sea water as a thermal sink for a heat engine that generates clean energy while ocean sequestration uses it as a sink for anthropogenic CO{sub 2}. Both technologies have the potential for application in the future but require additional technical development. Furthermore, the economics of dedicated OTEC and CO{sub 2} sequestration systems are currently unfavourable; so that co-products that jointly utilize the relatively expensive marine systems may be necessary to offset costs. This paper describes a new concept, 'CO{sub 2}TEC', in which the two systems are combined for mutual benefit. The proposed synergy includes the sharing of platforms and equipment; addition of CO{sub 2} to the warm water OTEC intakes to prevent biofouling of pipelines and heat exchangers; and exploiting the negatively buoyant CO{sub 2} enriched sea water to drive part of the upward water transport for OTEC. In the combined system, CO{sub 2} ocean sequestration contributes to the production of clean renewable energy which may enhance its chances to gain public acceptance. 12 refs., 2 figs.

  19. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands

    NARCIS (Netherlands)

    Vries, de W.; Solberg, S.; Dobbertin, M.; Sterba, H.; Laubhann, D.; Oijen, van M.; Evans, C.; Gundersen, P.; Kros, H.; Wamelink, W.; Reinds, G.J.; Sutton, M.A.

    2009-01-01

    In this study, we present estimated ranges in carbon (C) sequestration per kg nitrogen (N) addition in above-ground biomass and in soil organic matter for forests and heathlands, based on: (i) empirical relations between spatial patterns of carbon uptake and influencing environmental factors includi

  20. Assessment of biomass and carbon sequestration potentials of standing Pongamia pinnata in Andhra University, Visakhapatnam, India

    Directory of Open Access Journals (Sweden)

    Annissa Muhammed Ahmedin, Keredin Temam Siraj,

    2013-07-01

    Full Text Available The significance of forested areas in carbon sequestration is conventional, and well renowned. But, hardly any attempts have been made to study the potential of trees in carbon sequestration from urban areas. Andhra University was selected for the study in Visakhapatnam city with the objectives of quantifying the total carbon sequestration by Pongamia pinata. Stratified random sampling was used for assessing biomass in two site and about 230 P. pinnata trees were taken. Biomass was calculated using Non-destructive allometric models. The biomass carbon content was taken as 55% of the tree biomass. Soil samples were taken from soil profile up to 40 cm depth for deep soils and up to bedrock for shallow soils at an interval of 10 and 20 cm for top and sub-soil respectively. Walkley‐Black Wet Oxidation method was applied for measuring soil organic carbon. Belowground biomass was estimated by the Root:Shoot ratio relationship. Total biomass and soil carbon was higher in Site-2 than in Site-1. Total carbon sequestration in Site-2 was found 1.59 times higher compared to Site-1 but the mean SOC stored was found higher in Site-1 than in Site-2, i.e.,14.48 tC/ha and 10.33 tC/ha, respectively.

  1. Soil sustainability as measured by carbon sequestration using carbon isotopes from crop-livestock management systems

    Science.gov (United States)

    Soil Organic Carbon (SOC) is an integral part of maintaining and measuring soil sustainability. This study was undertaken to document and better understand the relationships between two livestock-crop-forage systems and the sequestration of SOC with regards to soil sustainability and was conducted o...

  2. Carbon sequestration by fruit trees--Chinese apple orchards as an example.

    Directory of Open Access Journals (Sweden)

    Ting Wu

    Full Text Available Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits.

  3. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Science.gov (United States)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  4. Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration

    Science.gov (United States)

    US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

  5. Carbon storage and sequestration potential of selected tree species in India

    NARCIS (Netherlands)

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    A dynamic growth model (CO2FIX) was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus (Eucalyptus Tereticornis Sm.), poplar (Populus Deltoides Marsh), and teak (Tectona Grandis Linn. f.) forests in India. The results indicate that long-term total c

  6. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere

    International Nuclear Information System (INIS)

    Northern mid-latitude forests are a larger terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition. (author)

  7. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, K. [Department of Oceanography, SOEST, University of Hawaii, Honolulu, HI (United States); Capone, D.G. [University of Southern California, Los Angeles, CA (United States). Wrigley Institute for Environmental Studies and Department of Biological Sciences; Carpenter, E.J. [San Francisco State University, Tiburon, CA (United States). Romberg Tiburon Center; Cooley, S. [University of Georgia, Athens, GA (United States). Department of Marine Sciences; Kustka, A.B. [Ruters, The State University of New Jersey, New Brunswick, NJ (United States). Institute of Marine and Coastal Sciences; Mahaffey, C. [University of Liverpool (United Kingdom). Department of Earth and Ocean Science; Montoya, J.P. [Georgia Institute of Technology, Atlanta, GA (United States). School of Biology; Sanudo-Wilhelmy, S.A. [University of Southern California, Los Angeles, CA (United States). Wrigley Institute for Environmental Studies and Department of Biological Sciences; Shipe, R. [University of California, Los Angeles, CA (United States). Department of Ecology and Evolutionary Biology and Institute of the Environment; Subramaniam, A. [Columbia University, Palisades, NY (United States). Lamont-Doherty Earth Observatory; Yager, P.L. [University of Georgia, Athens, GA (United States). Department of Marine Sciences

    2008-07-15

    The fresh water discharged by large rivers such as the Amazon is transported hundreds to thousands of kilometers away from the coast by surface plumes. The nutrients delivered by these river plumes contribute to enhanced primary production in the ocean, and the sinking flux of this new production results in carbon sequestration. Here, we report that the Amazon River plume supports N2 fixation far from the mouth and provides important pathways for sequestration of atmospheric CO2 in the western tropical North Atlantic (WTNA). We calculate that the sinking of carbon fixed by diazotrophs in the plume sequesters 1.7 Tmol of C annually, in addition to the sequestration of 0.6 Tmol of C yr-1 of the new production supported by NO3 delivered by the river. These processes revise our current understanding that the tropical North Atlantic is a source of 2.5 Tmol of C to the atmosphere [Mikaloff-Fletcher SE, et al. (2007) Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochem Cycles 21, doi:10.1029/2006GB002751]. The enhancement of N2 fixation and consequent C sequestration by tropical rivers appears to be a global phenomenon that is likely to be influenced by anthropogenic activity and climate change.

  8. Controls on soil carbon sequestration and dynamics: lessons from land-use change.

    Science.gov (United States)

    Morris, Sherri J; Conant, Richard; Mellor, Nathan; Brewer, Elizabeth; Paul, Eldor A

    2010-03-01

    Soil carbon (C) dynamics and sequestration are controlled by interactions of chemical, physical and biological factors. These factors include biomass quantity and quality, physical environment and the biota. Management can alter these factors in ways that alter C dynamics. We have focused on a range of managed sites with documented land use change from agriculture or grassland to forest. Our results suggest that interactions of soil type, plant and environment impact soil C sequestration. Above and below ground C storage varied widely across sites. Results were related to plant type and calcium on sandy soils in our Northern sites. Predictors of sequestration were more difficult to detect over the temperature range of 12.4°C in the present study. Accrual of litter under pines in the moist Mississippi site limited C storage in a similar manner to our dry Nebraska site. Pre-planting heterogeneity of agricultural fields such as found in Illinois influences C contents. Manipulation of controls on C sequestration such as species planted or amelioration of soil quality before planting within managed sites could increase soil C to provide gains in terrestrial C storage. Cost effective management would also improve soil C pools positively affecting soil fertility and site productivity. PMID:22736841

  9. Testing carbon sequestration site monitor instruments using a controlled carbon dioxide release facility

    Science.gov (United States)

    Humphries, Seth D.; Nehrir, Amin R.; Keith, Charlie J.; Repasky, Kevin S.; Dobeck, Laura M.; Carlsten, John L.; Spangler, Lee H.

    2008-02-01

    Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide (CO2) release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.0027-2.0042 μm spectral region that contains three CO2 absorption lines and is used for aboveground atmospheric CO2 concentration measurements. The second instrument also uses a temperature tunable DFB diode laser capable of accessing the 2.0032-2.0055 μm spectral region that contains five CO2 absorption lines for underground CO2 soil gas concentration measurements. The performance of these instruments for carbon sequestration site monitoring was studied using a newly developed controlled CO2 release facility. A 0.3 ton CO2/day injection experiment was performed from 3-10 August 2007. The aboveground differential absorption instrument measured an average atmospheric CO2 concentration of 618 parts per million (ppm) over the CO2 injection site compared with an average background atmospheric CO2 concentration of 448 ppm demonstrating this instrument's capability for carbon sequestration site monitoring. The underground differential absorption instrument measured a CO2 soil gas concentration of 100,000 ppm during the CO2 injection, a factor of 25 greater than the measured background CO2 soil gas concentration of 4000 ppm demonstrating this instrument's capability for carbon sequestration site monitoring

  10. DNA Microarrays

    Science.gov (United States)

    Nguyen, C.; Gidrol, X.

    Genomics has revolutionised biological and biomedical research. This revolution was predictable on the basis of its two driving forces: the ever increasing availability of genome sequences and the development of new technology able to exploit them. Up until now, technical limitations meant that molecular biology could only analyse one or two parameters per experiment, providing relatively little information compared with the great complexity of the systems under investigation. This gene by gene approach is inadequate to understand biological systems containing several thousand genes. It is essential to have an overall view of the DNA, RNA, and relevant proteins. A simple inventory of the genome is not sufficient to understand the functions of the genes, or indeed the way that cells and organisms work. For this purpose, functional studies based on whole genomes are needed. Among these new large-scale methods of molecular analysis, DNA microarrays provide a way of studying the genome and the transcriptome. The idea of integrating a large amount of data derived from a support with very small area has led biologists to call these chips, borrowing the term from the microelectronics industry. At the beginning of the 1990s, the development of DNA chips on nylon membranes [1, 2], then on glass [3] and silicon [4] supports, made it possible for the first time to carry out simultaneous measurements of the equilibrium concentration of all the messenger RNA (mRNA) or transcribed RNA in a cell. These microarrays offer a wide range of applications, in both fundamental and clinical research, providing a method for genome-wide characterisation of changes occurring within a cell or tissue, as for example in polymorphism studies, detection of mutations, and quantitative assays of gene copies. With regard to the transcriptome, it provides a way of characterising differentially expressed genes, profiling given biological states, and identifying regulatory channels.

  11. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    International Nuclear Information System (INIS)

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  12. Capture and Sequestration of CO2 at the Boise White Paper Mill

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

    2010-06-16

    This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporation’s Econamine Plus™ carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOE’s Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately

  13. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  14. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil.

    Science.gov (United States)

    Shrestha, Raj K; Lal, Rattan

    2006-08-01

    Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an

  15. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    Science.gov (United States)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  16. Carbon Sequestration in Mediterranean Tidal Wetlands: San Francisco Bay and the Ebro River Delta (Invited)

    Science.gov (United States)

    Callaway, J.; Fennessy, S.; Ibanez, C.

    2013-12-01

    Tidal wetlands accumulate soil carbon at relatively rapid rates, in large part because they build soil to counteract increases in sea-level rise. Because of the rapid rates of carbon sequestration, there is growing interest in evaluating carbon dynamics in tidal wetlands around the world; however, few measurements have been completed for mediterranean-type tidal wetlands, which tend to have relatively high levels of soil salinity, likely affecting both plant productivity and decomposition rates. We measured sediment accretion and carbon sequestration rates at tidal wetlands in two mediterranean regions: the San Francisco Bay Estuary (California, USA) and the Ebro River Delta (Catalonia, Spain). Sampling sites within each region represented a range of conditions in terms of soil salinity and plant communities, and these sites serve as potential analogs for long-term carbon sequestration in restored wetlands, which could receive credits under emerging policies for carbon management. Within San Francisco Bay, we collected six sediment cores per site at four salt marshes and two brackish tidal wetlands (two transects with three stations per transect at each site) in order to identify spatial variation both within and among wetlands in the Estuary. At the Ebro Delta, individual sediment cores were collected across 14 tidal wetland sites, including salt and brackish marshes from impounded areas, river mouths, coastal lagoon, and open bay settings. Cores were collected to 50 cm, and cores were dated using 137Cs and 210Pb. Most sites within San Francisco accreted 0.3-0.5 cm/yr, with slightly higher rates of accretion at low marsh stations; accretions rates based on 137Cs were slightly higher than those based on 210Pb, likely because of the shorter time frame covered by 137Cs dating. Accretion rates from the Ebro Delta sites were similar although more variable, with rates based on 137Cs ranging from 0.1 to 0.9 cm/yr and reflecting the wide range of conditions and management

  17. Sequestration and histopathology in Plasmodium chabaudi malaria are influenced by the immune response in an organ-specific manner.

    Science.gov (United States)

    Brugat, Thibaut; Cunningham, Deirdre; Sodenkamp, Jan; Coomes, Stephanie; Wilson, Mark; Spence, Philip J; Jarra, William; Thompson, Joanne; Scudamore, Cheryl; Langhorne, Jean

    2014-05-01

    Infection with the malaria parasite, Plasmodium, is associated with a strong inflammatory response and parasite cytoadhesion (sequestration) in several organs. Here, we have carried out a systematic study of sequestration and histopathology during infection of C57Bl/6 mice with Plasmodium chabaudi AS and determined the influence of the immune response. This parasite sequesters predominantly in liver and lung, but not in the brain, kidney or gut. Histopathological changes occur in multiple organs during the acute infection, but are not restricted to the organs where sequestration takes place. Adaptive immunity, and signalling through the IFNγ receptor increased sequestration and histopathology in the liver, but not in the lung, suggesting that there are differences in the adhesion molecules and/or parasite ligands utilized and mechanisms of pathogenesis in these two organs. Exacerbation of pro-inflammatory responses during infection by deletion of the il10 gene resultsin the aggravation of damage to lung and kidney irrespective of the degree of sequestration. The immune response therefore affected both sequestration and histopathology in an organ-specific manner. P.  chabaudi AS provides a good model to investigate the influence of the host response on the sequestration and specific organ pathology, which is applicable to human malaria.

  18. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Science.gov (United States)

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change. PMID

  19. Leucocyte sequestration in endotoxemia and the effect of low-molecular-weight dextran

    International Nuclear Information System (INIS)

    Leucocyte sequestration in various organs during endotoxin-induced shock in sheep was studied using leucocytes labelled with indium 111 oxine. A moderate dose of Escherichia coli endotoxin (10 μg/kg body weight) was slowly infused intravenously in 16 sheep, 9 of which subsequently received a continuous i.v. infusion of low-molecular-weight dextran (LMWD) given at an infusion rate of 15 ml/h over 4 h, starting 30 min after administration of the endotoxin. By that time, signs of acute lung injury had developed, thus mimicking a clinical situation. The remaining animals were untreated and served as controls. A marked increase in lung, liver and kidney leucocyte sequestration, together with a sharp, corresponding drop in splenic activity and leucocyte count in peripheral blood, occurred shortly after the endotoxin infusion in both groups. However, after 90 min there was a significantly lower leucocyte activity in the lungs, liver and kidneys of LMWD-treated animals as compared with controls. Less marked hemodynamic and respiratory alterations were also observed in animals treated with LMWD. The present study confirms previous reports that significant leucocyte sequestration in the lungs occurs early during endotoxemia. Furthermore, we found that leucocyte sequestration also occurs in the liver and kidneys, which could explain the development of multi-organ failure, frequently described in clinical sepsis. Even after injury to organs, LMWD infusion seems to be beneficial by significantly lowering leucocyte sequestration and could therefore be justified as an addition to the arsenal of interventions used in the treatment of endotoxemia. (orig.)

  20. Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Hernandez, R.; Koohafkan, P.; Antoine, J. (eds.)

    2004-07-01

    This publication presents a methodology and software tools for assessing carbon stocks and modelling scenarios of carbon sequestration that were developed and tested in pilot field studies in Mexico and Cuba. The models and tools enable the analysis of land use change scenarios in order to identify in a given area (watershed or district) land use alternatives and land management practices that simultaneously maximize food production, maximize soil carbon sequestration, maximize biodiversity conservation and minimize land degradation. The objective is to develop and implement 'win-win' options that satisfy the multiple goals of farmers, land users and other stakeholders in relation to food security, carbon sequestration, biodiversity and land conservation.

  1. A reversible metal ion fueled DNA three-way junction molecular device for ``turn-on and -off'' fluorescence detection of mercury ions (II) and biothiols respectively with high selectivity and sensitivity

    Science.gov (United States)

    Ma, Long; Wu, Guanrong; Li, Yufeng; Qin, Ping; Meng, Lingpei; Liu, Haiyan; Li, Yuyin; Diao, Aipo

    2015-10-01

    We constructed a reversible molecular device in the nanoscale based on a DNA three-way junction (3WJ) fueled by Hg2+ binding and sequestration. It is highly responsive to external stimuli, which brings about optically detectable global structural changes. Such a DNA device can serve as a novel ``turn-on and -off'' fluorescent sensor for Hg2+ and biothiol detection with high selectivity and sensitivity.We constructed a reversible molecular device in the nanoscale based on a DNA three-way junction (3WJ) fueled by Hg2+ binding and sequestration. It is highly responsive to external stimuli, which brings about optically detectable global structural changes. Such a DNA device can serve as a novel ``turn-on and -off'' fluorescent sensor for Hg2+ and biothiol detection with high selectivity and sensitivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04688b

  2. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices

    Science.gov (United States)

    Chappell, Adrian; Baldock, Jeffrey A.

    2016-09-01

    Improved management of agricultural land has the potential to reduce greenhouse gas emissions and to reduce atmospheric CO2 via soil carbon sequestration. However, SOC stocks are reduced by soil erosion which is commonly omitted from calculations of crop production, C cycling, C sequestration and C accounting. We used fields from the wind eroded dryland cropping region of Western Australia to demonstrate the global implications for C sequestration and C accounting of omitting soil erosion. For the fields we previously estimated mean net (1950s-1990) soil erosion of 1.2 ± 1.0 t ha-1 y-1. The mean net (1990-2013) soil erosion increased by nearly four times to 4.4 ± 2.1 t ha-1 y-1. Conservation agriculture has evidently not reduced wind erosion in this region. The mean net (1990-2013) SOC erosion was up to 0.2 t C ha-1 y-1 across all sampled fields and similar to measured sequestration rates in the region (up to 0.5 t C ha-1 y-1; 10 years) for many management practices recommended for building SOC stocks. The minimum detectable change (MDC; 10 years) of SOC without erosion was up to 0.2 t C ha-1 y-1 whilst the MDC of SOC with erosion was up to 0.4 t C ha-1 y-1. These results illustrate the generally applicable outcome: (i) if SOC erosion is equal to (or greater than) the increase in SOC due to management practices, the change will not be detectable (or a loss will be evident); (ii) without including soil erosion in SOC sequestration calculations, the monitoring of SOC stocks will lead to, at best the inability to detect change and, at worst the false impression that management practices have failed to store SOC. Furthermore, continued omission of soil erosion in crop production, C accounting and C sequestration will most likely undermine confidence in policy designed to encourage adoption of C farming and the attendant benefits for soil stewardship and food security.

  3. Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Hoversten, G. Michael; Gasperikova, Erika

    2003-10-31

    Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly

  4. Lessons Learned from Ongoing Field Tests of Geologic CO2 Sequestration

    Science.gov (United States)

    McPherson, B.; McColpin, G.; Rutledge, J.; Pawar, R.; Deo, M.; Rose, P.; Lee, S.; Han, W.; Lu, C.

    2008-12-01

    We present lessons learned - an attempt to describe what we know and do not know- based on ongoing field tests of geologic carbon sequestration. The Southwest Regional Partnership on Carbon Sequestration, funded by the U.S. Department of Energy and managed by DOE's National Energy Technology Laboratory, is conducting three separate field tests of geologic sequestration that include extensive monitoring and analysis of the fate of injected CO2. The CO2 injection sites include the Aneth oilfield in southern Utah, the coalbed "fairway" in the San Juan basin in northern New Mexico, and the SACROC oilfield in the Permian basin of west Texas. Results of the ongoing sequestration field tests are both encouraging and problematic. At the San Juan basin coalbed injection test, we forecasted coalbed swelling following injection to be detectable at the surface. Tiltmeter results indicated subsidence, not uplift, and poroelastic models of the site suggest that swelling is likely occurring, but cleat compaction may be responsible for the net subsidence. In a similar context, initial poroelastic models of the Aneth, Utah injection site suggested minimal rock strain would be induced by the 100,000 tons of CO2 injected over the past year, but this forecast is belied by daily microearthquakes recorded at the site (albeit very small events: M -1 to 0 ). On the other hand, our initial multiphase flow models of the Aneth site provided forecasts of CO2 migration that turned out to be extremely consistent with observed tracer test results, suggesting that our estimated permeability distributions and other model parameters were effective to some extent. These field tests suggest that probably the greatest challenges are (1) verification or confirmation of trapping mechanisms, and (2) monitoring of processes in the "intermediate zone," the section of strata above the sequestration formation topseal unit and below the upper 100 m of the section, (3) developing meaningful geologic

  5. 广东省营造碳汇林的思考%Thoughts on Carbon Sequestration Afforestation in Guangdong Province

    Institute of Scientific and Technical Information of China (English)

    李清湖; 林中大

    2014-01-01

    阐述了碳汇造林的重要意义,分析了广东省碳汇林建设的有利条件以及发展现状,指出近年来碳汇造林存在的主要问题,并提出了促进碳汇造林建设的具体对策,为广东省碳汇林业发展提供借鉴。%This paper illustrated the significance of carbon sequestration afforestation and analysed the advan-tage conditions and current status of carbon sequestration forestry construction in Guangdong province. The ma-jor problems of carbon sequestration afforestation in recent years were also pointed out. Besides,the paper pro-posed concrete countermeasures to promote the development of carbon sequestration forestry in Guangdong prov-ince.

  6. Thoughts on Carbon Sequestration Afforestation in Guangdong Province%广东省营造碳汇林的思考

    Institute of Scientific and Technical Information of China (English)

    李清湖; 林中大

    2014-01-01

    This paper illustrated the significance of carbon sequestration afforestation and analysed the advan-tage conditions and current status of carbon sequestration forestry construction in Guangdong province. The ma-jor problems of carbon sequestration afforestation in recent years were also pointed out. Besides,the paper pro-posed concrete countermeasures to promote the development of carbon sequestration forestry in Guangdong prov-ince.%阐述了碳汇造林的重要意义,分析了广东省碳汇林建设的有利条件以及发展现状,指出近年来碳汇造林存在的主要问题,并提出了促进碳汇造林建设的具体对策,为广东省碳汇林业发展提供借鉴。

  7. Carbon footprint of milk from sheep farming systems in northern Spain including soil carbon sequestration in grasslands

    DEFF Research Database (Denmark)

    Batalla, Inma M.; Knudsen, Marie Trydeman; Mogensen, Lisbeth;

    2015-01-01

    calculations. In this study, the carbon footprint of sheep milk was estimated from 12 farms in Northern Spain. Before taken into account contribution from soil carbon sequestration in the calculation, the carbon footprint values varied from 2.0 to 5.2 kg CO2 eq. per kg Fat and Protein Corrected Milk (FPCM......The link between climate change and livestock production has made carbon footprint based on life cycle assessment a world-wide indicator to assess and communicate the amount of greenhouse gases emitted per unit of product. Nevertheless, the majority of studies have not included soil carbon...... sequestration in the carbon footprint calculations. Especially in grasslands, soil carbon sequestration might be a potential sink to mitigate greenhouse gas emissions in the livestock sector. However, there is no commonly accepted methodology on how to include soil carbon sequestration in carbon footprint...

  8. Is a Clean Development Mechanism project economically justified? Case study of an International Carbon Sequestration Project in Iran.

    Science.gov (United States)

    Katircioglu, Salih; Dalir, Sara; Olya, Hossein G

    2016-01-01

    The present study evaluates a carbon sequestration project for the three plant species in arid and semiarid regions of Iran. Results show that Haloxylon performed appropriately in the carbon sequestration process during the 6 years of the International Carbon Sequestration Project (ICSP). In addition to a high degree of carbon dioxide sequestration, Haloxylon shows high compatibility with severe environmental conditions and low maintenance costs. Financial and economic analysis demonstrated that the ICSP was justified from an economic perspective. The financial assessment showed that net present value (NPV) (US$1,098,022.70), internal rate of return (IRR) (21.53%), and payback period (6 years) were in an acceptable range. The results of the economic analysis suggested an NPV of US$4,407,805.15 and an IRR of 50.63%. Therefore, results of this study suggest that there are sufficient incentives for investors to participate in such kind of Clean Development Mechanism (CDM) projects.

  9. Technical progress of CO2 geological sequestration and CO2 sequestration by antiquated mine goaf%CO2地质封存技术进展与废弃矿井采空区封存CO2

    Institute of Scientific and Technical Information of China (English)

    黄定国; 杨小林; 余永强; 梁为民

    2011-01-01

    Seas and oceans, underground are main CO2 geological sequestration places. Geological sequestration is a hot subject containing deep saline water layer sequestration, oil and gas fields sequestration ( abandoned oil and gas fields and crude displacement with CO2) , abandoned coal seams sequestration ( methane displacement with CO2), introduce the research progress of those technologies. At last, analyze the reality of the situation and advantages of CO2 sequestration by antiquated mine goaf in China, also provide some suggestions.%CO2的封存场所包括海洋和地下,其中地质封存研究较多.详细介绍了目前CO2地质封存的主要手段包括深部咸水层封存、油气田封存(废弃油气田封存和CO2驱油)以及废弃煤层封存(CO2驱气),并论述了这些封存技术的研究进展.最后研究了中国的煤矿废弃矿井采空区封存CO2的实际情况及优势,最后提出了相关的建议.

  10. SK&F 97426-A a more potent bile acid sequestrant and hypocholesterolaemic agent than cholestyramine in the hamster.

    Science.gov (United States)

    Benson, G M; Alston, D R; Bond, B C; Gee, A N; Glen, A; Haynes, C; Hickey, D M; Iqbal, S; Jackson, B; Jaxa-Chamiec, A A

    1993-06-01

    SK&F 97426-A is a novel bile acid sequestrant which was selected for comparison with cholestyramine in vivo because of its superior in vitro bile acid binding properties. The effects of the two sequestrants on faecal bile acid excretion, plasma total cholesterol, VLDL + LDL and HDL cholesterol and triglyceride concentrations and on liver enzymes involved in the synthesis and metabolism of cholesterol were investigated in normocholesterolaemic hamsters. Four studies were conducted to determine the relative potencies of the two resins using a range of doses of the sequestrants over treatment periods of up to 2 weeks. Curves fitted to the resulting data allowed common maximum responses and separate ED50s to be calculated for each sequestrant. The maximum response of both sequestrants was to increase bile acid excretion by 352% and lower plasma total cholesterol by 37-58%. LDL + VLDL and HDL cholesterol were reduced by 56-75% and 25-41%, respectively. SK&F 97426-A was 3 times more potent than cholestyramine at increasing the excretion of bile acids in the faeces and 2.1-3.4-fold and 2.3-3.2-fold more potent at lowering total plasma cholesterol and LDL plus VLDL cholesterol, respectively. In some of the experiments SK&F 97426-A was also more potent than cholestyramine at lowering HDL cholesterol. Plasma triglycerides were also lowered by both sequestrants by up to 31% after 1 week but the relative potency could not be determined. These HDL cholesterol and total triglyceride lowering effects of bile acid sequestrants in the hamster are known not to occur in people treated with cholestyramine. There were minimal differences between hamsters treated for 1 or 2 weeks in the relative potencies or ED50s calculated for the total plasma cholesterol, LDL + VLDL and HDL cholesterol. Both sequestrants may have been slightly more efficacious on these parameters after 2 weeks of treatment. Liver weights were reduced by about 15% by both sequestrants at 2% (w/w) in the diet for 1

  11. Chronic effect of oral cholestyramine, a bile salt sequestrant, and exogenous cholecystokinin on insulin release in rats.

    Science.gov (United States)

    Kogire, M; Gomez, G; Uchida, T; Ishizuka, J; Greeley, G H; Thompson, J C

    1992-01-01

    Oral cholestyramine, a bile salt sequestrant, stimulates pancreatic exocrine secretion and growth chiefly by increasing cholecystokinin (CCK) release. In this report, we examine pancreatic insulin content and insulin release from the isolated perfused pancreas in rats given oral cholestyramine (4%, wt/wt) or subcutaneous CCK-8 (1 micrograms/kg every 8 h) for 2 weeks. Cholestyramine significantly increased pancreatic weight by 32%. CCK administration significantly increased pancreatic weight by 15%. Total pancreatic content of protein and DNA were also increased significantly by cholestyramine and pancreatic protein content was increased significantly by CCK administration. Total pancreatic insulin content was not affected by cholestyramine or CCK. Both cholestyramine and CCK significantly increased the first phase of glucose (8.4 mM)-stimulated release of insulin [mean insulin output (ng/min): control, 2.0 +/- 0.1; cholestyramine, 2.7 +/- 0.2; CCK, 2.6 +/- 0.2]. Cholestyramine also significantly enhanced the second phase of glucose-stimulated release of insulin. Insulin release stimulated by CCK-8 (10(-10) M) was not affected by oral cholestyramine or CCK treatment. These findings indicate that oral cholestyramine and exogenous CCK have a stimulatory effect on beta cell function. Since pancreatic insulin content was not affected by cholestyramine and CCK treatment, cholestyramine and CCK may increase the sensitivity of beta cells to glucose. The absence of a stimulatory effect of cholestyramine and CCK administration on insulin release in response to CCK-8 may be related to a down-regulation of CCK receptors on beta cells.

  12. Sperm DNA oxidative damage and DNA adducts.

    Science.gov (United States)

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  13. Comparison of the Farming System and Carbon Sequestration between Conventional and Organic Rice Production in West Java, Indonesia

    OpenAIRE

    M. Faiz Syuaib; Masakazu Komatsuzaki

    2010-01-01

    Organic farming provides many benefits in Indonesia: it can improve soil quality, food quality and soil carbon sequestration. This study was designed to compare soil carbon sequestration levels between conventional and organic rice farming fields in west Java, Indonesia. The results from soil analysis indicate that organic farming leads to soil with significantly higher soil carbon storage capacity than conventional farming. Organic farming can also cut some farming costs, but it requires abo...

  14. What is Carbon? Conceptualising carbon and capabilities in the context of community sequestration projects in the global South

    OpenAIRE

    Twyman, Chasca; Smith, Thomas; Arnall, Alex

    2015-01-01

    Carbon has been described as a ‘surreal commodity.’ While carbon trading, storage, sequestration, and emissions have become a part of the contemporary climate lexicon, how carbon is understood, valued, and interpreted by actors responsible for implementing carbon sequestration projects is still unclear. In this review paper, we are concerned with how carbon has come to take on a range of meanings. In particular, we appraise what is known about the situated meanings that people involved in del...

  15. Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio

    OpenAIRE

    Ogden, Joan M; Johnson, Nils; Yang, Christopher; Ni, Jason; Lin, Zhenhong; Figueroa, José; Johnson, Joshua

    2005-01-01

    Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration DOE/NETL (CCS 2005), Arlington, VA, May 2 - 5, 2005 Researchers at the University of California, Davis, in support of the Department of Energy's Fossil Energy programs, are developing engineering/economic/geographic models of fossil hydrogen energy systems with carbon capture and sequestration. In this paper, we present initial results from an ongoing assessment of alternative transition strategies from toda...

  16. ECOLOGICAL, ECONOMIC AND SOCIAL ISSUES OF IMPLEMENTING CARBON DIOXIDE SEQUESTRATION TECHNOLOGIES IN THE OIL AND GAS INDUSTRY IN RUSSIA

    OpenAIRE

    Alexey Cherepovitsyn; Alina Ilinova

    2016-01-01

    The objective of this paper is to define the main approaches to the implementation of carbon dioxide sequestration technologies in the oil and gas industry in Russia, and also to identify ecological, economic and social issues of their usage. Promotion of the technology of carbon dioxide (CO2) sequestration by means of capturing and injecting it into underground reservoirs is a promising mechanism of reducing carbon dioxide concentration. Carbon capture and storage (CCS) technologies might be...

  17. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  18. DNA encoding a DNA repair protein

    Science.gov (United States)

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  19. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcy’s law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Green’s function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  20. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    Science.gov (United States)

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques.

  1. Severe Vesico-ureteral Reflux and Urine Sequestration: Mathematical Relations and Urodynamic Consequences

    CERN Document Server

    de Jesus, Lisieux Eyer

    2009-01-01

    Some simple mathematical formulae to calculate the volumes of proximal pyeloureteral reflexive systems are presented, and the results are compared to bladder capacity values. Using the results of the calculi, the author discusses possible implications of severe urinary sequestration in the pyeloureteral systems. Using geometrical and topological approximations we calculate the volumes of ureters and renal pelvises, applying in vivo measurements obtained from conventional ultrasound, retrograde cystourethrograms and topographic anatomic references. Approximations use 2 decimals and assumed $\\pi$ value was 3.14. Ureteral and pyelic volumes are calculated, respectively, from the mathematical formula for the cylinder and cone volumes. Dolicomegaureter are compensated using proportional calculi. Bladder volumes are estimated from conventional formulae. Proximal urinary sequestration is compared between infants and older children with VUR. Mechanisms of direct induction of bladder urodynamic failure from VUR are su...

  2. Immunohistochemical analyses of a case of extralobar pulmonary sequestration with chest pain in an adult

    Directory of Open Access Journals (Sweden)

    Yuji Ohtsuki

    2013-01-01

    Full Text Available Computed tomography of a Japanese man in his mid-forties with a complaint of right-side chest pain showed a dome-shaped smooth-surfaced mediastinal mass, which was extirpated. The cut surface was highly hemorrhagic and necrotic and not related to the original pulmonary tissues. Although routine sectioning detected bronchial cartilage, immunohistochemical analyses clearly showed the presence of alveolar type II cells; only the alveolar type II cells located at the periphery of this mass showed positive staining for cytokeratins, thyroid transcription factor 1, surfactant protein A, epithelial membrane antigen and Krebs von den Lungen-6. Thus, these analyses are useful for the detection of pulmonary components, even in severely hemorrhagic and necrotic tissues with marked sequestration. The clinical diagnosis was a rare, adult type of extralobar pulmonary sequestration accompanied by chest pain.

  3. Rare presentation of intralobar pulmonary sequestration associated with repeated episodes of ventricular tachycardia.

    Science.gov (United States)

    Rao, D Sheshagiri; Barik, Ramachandra

    2016-07-26

    Arterial supply of an intralobar pulmonary sequestration (IPS) from the coronary circulation is extremely rare. A significant coronary steal does not occur because of dual or triple sources of blood supply to sequestrated lung tissue. We present a 60-year-old woman who presented to us with repeated episodes of monomorphic ventricular tachycardia (VT) in last 3 mo. Radio frequency ablation was ineffective. On evaluation, she had right lower lobe IPS with dual arterial blood supply, i.e., right pulmonary artery and the systemic arterial supply from the right coronary artery (RCA). Stress myocardial perfusion scan revealed significant inducible ischemia in the RCA territory. Coronary angiogram revealed critical stenosis of proximal RCA just after the origin of the systemic artery supplying IPS. The critical stenosis in the RCA was stented. At 12 mo follow-up, she had no further episodes of VT or angina. PMID:27468336

  4. 信息动态%Dual poroelastic response of coal to C02 sequestration

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Geological sequestration of CO2 in coal seams shows great potential to reduce greenhouse gas emissions and has been studied worldwide in recent years. The typical dual-porosity property and organic component of coal together with the liquid state and steady property of C02, as well as methane production make coal seams a promising target.However, the C02 sequestration in coal seams involved a serial of mechanical problems such as coal deformation, the adsorption, seepage and diffusion of gas, which restricted the implement of this technology. Studied the multi-physics system which coupled the coal deformation, gas adsorption, seepage and diffusion equations on the basis of poroelastic medium, theory analysis and numerical simulation, and the following conclusions are obtained.

  5. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    Science.gov (United States)

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  6. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas

    Science.gov (United States)

    Chen, Kevin G.; Valencia, Julio C.; Lai, Barry; Zhang, Guofeng; Paterson, Jill K.; Rouzaud, François; Berens, Werner; Wincovitch, Stephen M.; Garfield, Susan H.; Leapman, Richard D.; Hearing, Vincent J.; Gottesman, Michael M.

    2006-06-01

    Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an 8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells. cancer | melanosomes | skin | tumor therapy | multidrug resistance

  7. Global potential for carbon sequestration. Geographical distribution, country risk and policy implications

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Pablo C. [Department of Economics, University of Victoria, PO Box 1700 STN CSC, Victoria, BC (Canada); McCallum, Ian; Obersteiner, Michael [Forestry Project, International Institute for Applied Systems Analysis (Austria); Yamagata, Yoshiki [National Institute for Environmental Studies (Japan)

    2007-01-15

    We have provided a framework for identifying least-cost sites for afforestation and reforestation and deriving carbon sequestration cost curves at a global level in a scenario of limited information. Special attention is given to country risk in developing countries and the sensitivity to spatial datasets. Our model results suggest that within 20 years and considering a carbon price of USD 50/tC, tree-planting activities could offset 1 year of global carbon emissions in the energy sector. However, if we account for country risk considerations-associated with political, economic and financial risks - carbon sequestration is reduced by approximately 60%. With respect to the geography of supply, illustrated by grid-scale maps, we find that most least-cost sites are located in regions of developing countries such as the Sub-Sahara, Southeast Brazil and Southeast Asia. (author)

  8. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential

    DEFF Research Database (Denmark)

    Zeng, Ning; King, Anthony W.; Zaitchik, Ben;

    2013-01-01

    emissions). Earlier estimates of the theoretical potential of wood harvest and storage (WHS) based on coarse wood production rates were 10±5 GtC y−1. Starting from this physical limit, here we apply a number of practical constraints: (1) land not available due to agriculture; (2) forest set aside...... more efficient wood use without increasing harvest, finds 0.1–0.5 GtC y−1 available for carbon sequestration. We suggest a range of 1–3 GtCy−1 carbon sequestration potential if major effort is made to expand managed forests and/or to increase harvest intensity. The implementation of such a scheme...... to be managed this way on half of the world’s forested land, or on a smaller area but with higher harvest intensity.We recommendWHS be considered part of the portfolio of climate mitigation and adaptation options that needs further research....

  9. Endovascular treatment of pulmonary sequestration in adults using Amplatzer® vascular plugs.

    Science.gov (United States)

    Leoncini, Giacomo; Rossi, Umberto G; Ferro, Carlo; Chessa, Leonardo

    2011-01-01

    Two adult patients were diagnosed with extralobar and intralobar pulmonary sequestration. One patient presented with haemoptysis. Both patients suffered from recurrent episodes of severe pulmonary infections. Both patients were treated by means of endovascular embolization using Amplatzer(®) vascular plugs (AVPs). They were discharged from hospital after 48 and 24 h and then followed up for 24 and six months, respectively. No recurrence of symptoms was observed. Computed tomography scans were obtained every six months. Persistent occlusion of vascular supply and moderate regression of the sequestered lung tissue are evident after 24 and six months in both patients. Just one case of an adult patient affected by pulmonary sequestration and treated by endovascular embolization has been reported to date. The present report is the first on the use of the AVPs in adults for this condition. The potential advantages and drawbacks of this treatment modality in adults are discussed, as well the specific benefit represented by the AVPs.

  10. Massive hemoptysis and hemothorax: a rare but fatal complication of intralobar sequestration

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-wei; LU Jiang-yang; SUN Jun-zhong; XIAO Yan; WEN Bo

    2012-01-01

    Intralobar sequestration (ILS) is an uncommon abnormality that accounts for 75% of all pulmonary sequestrations.Over the years there have been several reports of various presenting signs of which hemoptysis was commonly described,however,massive hemoptysis and hemothorax is extremely rare in literature.We present a case of a 45-year-old man who died of fatal complication from an ILS.This case report shows an uncommon presentation of ILS with massive hemoptysis and hemothorax resulting in a dramatic course of disease and a fatal outcome,and for this reason in the absence of trauma or other causes for massive hemoptysis,hemothorax,or lung hematoma,this possibility should be kept in mind so as to avoid misdiagnosis,and resection of the sequestered tissue should be considered in all patients.

  11. Direct product sequestration of a recombinant cutinase from batch fermentations of Saccharomyces cerevisiae.

    Science.gov (United States)

    Calado, C R; Hamilton, G E; Cabral, J M; Fonseca, L P; Lyddiatt, A

    2001-01-01

    The recovery of cutinase of Fusarium solani pisi produced by the yeast Saccharomyces cerevisiae was studied in a fluidised bed adsorption system directly integrated with a productive fermenter (so-called direct product sequestration; DPS). The relative efficiency of this system was compared with the one of a conventional purification process by discrete sequences of fermentation, broth clarification, ultrafiltration and fixed bed anion exchange chromatography. By direct product sequestration of the extracellular heterologous cutinase it was possible, through only one unit operation: (i) to perform broth clarification, (ii) to obtain a high cutinase concentration factor, and (iii) to recover cutinase with a specific activity that equalled that obtained with the conventional purification process. It was also possible (iv) to substantially reduce the total process time, (v) to improve the overall yield, and (vi) to increase cutinase productivity. Furthermore, the procedure outlined is suitable for large scale bioprocess exploitation.

  12. Pulmonary sequestration. A 131I whole body scintigraphy false-positive result

    International Nuclear Information System (INIS)

    A 35-year-old woman affected by a well-differentiated papillary thyroid carcinoma was referred to our hospital to perform a 131Iodine (131I) whole body scintigraphy for restaging purpose. The patient had been previously treated with total thyroidectomy and three subsequent doses of 131I for the ablation of a remnant jugular tissue and a suspected metastatic focus at the superior left hemi-thorax. In spite of the previous treatments with 131I, planar and tomographic images showed the persistence of an area of increased uptake at the superior left hemi-thorax. This finding prompted the surgical resection of the lesion. Histological examination of the surgical specimen showed the presence of a pulmonary tissue consistent with pulmonary sequestration. Even though rare, pulmonary sequestration should be included in the potential causes of false-positive results of radioiodine scans. (author)

  13. Pulmonary sequestration: a (131)I whole body scintigraphy false-positive result.

    Science.gov (United States)

    Spinapolice, Elena Giulia; Chytiris, S; Fuccio, C; Leporati, P; Volpato, G; Villani, L; Trifirò, G; Chiovato, L

    2014-08-01

    A 35-year-old woman affected by a well-differentiated papillary thyroid carcinoma was referred to our hospital to perform a (131)Iodine ((131)I) whole body scintigraphy for restaging purpose. The patient had been previously treated with total thyroidectomy and three subsequent doses of (131)I for the ablation of a remnant jugular tissue and a suspected metastatic focus at the superior left hemi-thorax. In spite of the previous treatments with (131)I, planar and tomographic images showed the persistence of an area of increased uptake at the superior left hemi-thorax. This finding prompted the surgical resection of the lesion. Histological examination of the surgical specimen showed the presence of a pulmonary tissue consistent with pulmonary sequestration. Even though rare, pulmonary sequestration should be included in the potential causes of false-positive results of radioiodine scans.

  14. Economic consequences of consideration of permanence, leakage and additionality for soil carbon sequestration projects

    International Nuclear Information System (INIS)

    This paper introduces, explains, and describes methods for addressing the issues of permanence, leakage, and additionality (PLA) of agricultural soil carbon sequestration (ASCS) activities at the project level. It is important to cast these as project-level issues, because they relate to the integrity and consistency of using location-specific ASCS projects as an offset against GHG emissions generated in other sectors (e.g., energy). The underlying objective is to understand and quantify what the net carbon benefits of an ASCS project are once we account for the fact that (1) the sequestered carbon may be stored impermanently, (2) the project may displace emissions outside the project boundaries (leakage), and (3) the project's carbon sequestration may not be entirely additional to what would have occurred anyway under business-as-usual (no project) conditions. This article evaluates methods for identifying and estimating PLA and gauges the potential magnitude of these effects on the economic returns to a project

  15. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria.

    Science.gov (United States)

    Kumar, Kanhaiya; Dasgupta, Chitralekha Nag; Nayak, Bikram; Lindblad, Peter; Das, Debabrata

    2011-04-01

    CO(2) sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO(2) in the atmosphere. They, in addition to CO(2) capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO(2) are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO(2) present in the flue gas including SO(X), NO(X). However, there are additional factors like the availability of light, pH, O(2) removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO(2) sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor. PMID:21334885

  16. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  17. Acute Splenic Sequestration Crisis in a 70-Year-Old Patient With Hemoglobin SC Disease.

    Science.gov (United States)

    Squiers, John J; Edwards, Anthony G; Parra, Alberto; Hofmann, Sandra L

    2016-01-01

    A 70-year-old African American female with a past medical history significant for chronic bilateral shoulder pain and reported sickle cell trait presented with acute-onset bilateral thoracolumbar pain radiating to her left arm. Two days after admission, Hematology was consulted for severely worsening microcytic anemia and thrombocytopenia. Examination of the patient's peripheral blood smear from admission revealed no cell sickling, spherocytes, or schistocytes. Some targeting was noted. A Coombs test was negative. The patient was eventually transferred to the medical intensive care unit in respiratory distress. Hemoglobin electrophoresis confirmed a diagnosis of hemoglobin SC disease. A diagnosis of acute splenic sequestration crisis complicated by acute chest syndrome was crystallized, and red blood cell exchange transfusion was performed. Further research is necessary to fully elucidate the pathophysiology behind acute splenic sequestration crisis, and the role of splenectomy to treat hemoglobin SC disease patients should be better defined. PMID:27047980

  18. A spatial resolution threshold of land cover in estimating terrestrial carbon sequestration in four counties in Georgia and Alabama, USA

    Science.gov (United States)

    Zhao, S.Q.; Liu, S.; Li, Z.; Sohl, T.L.

    2010-01-01

    Changes in carbon density (i.e., carbon stock per unit area) and land cover greatly affect carbon sequestration. Previous studies have shown that land cover change detection strongly depends on spatial scale. However, the influence of the spatial resolution of land cover change information on the estimated terrestrial carbon sequestration is not known. Here, we quantified and evaluated the impact of land cover change databases at various spatial resolutions (250 m, 500 m, 1 km, 2 km, and 4 km) on the magnitude and spatial patterns of regional carbon sequestration in four counties in Georgia and Alabama using the General Ensemble biogeochemical Modeling System (GEMS). Results indicated a threshold of 1 km in the land cover change databases and in the estimated regional terrestrial carbon sequestration. Beyond this threshold, significant biases occurred in the estimation of terrestrial carbon sequestration, its interannual variability, and spatial patterns. In addition, the overriding impact of interannual climate variability on the temporal change of regional carbon sequestration was unrealistically overshadowed by the impact of land cover change beyond the threshold. The implications of these findings directly challenge current continental- to global-scale carbon modeling efforts relying on information at coarse spatial resolution without incorporating fine-scale land cover dynamics.

  19. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-05-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as a major sink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied under different plantation forest ecosystems comprising of eight different tree species: Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnusnitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57±48.99tha-1 and below ground (42.47±10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera(118.37±1.49 tha-1 and minimum (36.50±9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86±10.34 tha-1 in Alnus nitida, and minimum (170.83±20.60 tha-1 in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79±2.0 tha-1. Carbon sequestration (7.91±3.4 tha-1 and CO2 mitigation potential (29.09±12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions for sustainable management of fragile hilly ecosystem.

  20. Soil carbon sequestration and the CDM. Opportunities and challenges for Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ringius, Lasse

    1999-12-17

    The agriculture sector dominates the economies of most sub-Saharan countries, contributing about one-third of the region's GDP, accounting for forty percent of the export, and employing about two-thirds of the economically active population. Moreover, some soils in sub-Saharan Africa could, by providing sinks for carbon sequestration, play an important role in managing global climate change. Improvements in agricultural techniques and land use practices could lead to higher agricultural productivity and accumulate soil carbon. Hence, soil carbon sequestration could produce local economic income as well as social and other benefits in Africa. The Clean Development Mechanism (CDM) established in the 1997 Kyoto Protocol is designed to give developed countries with high domestic abatement cost access to low-cost greenhouse gas abatement projects in developing countries, and to benefit developing countries selling projects to investors in developed countries. It is presently unclear whether the CDM will provide credit for sink enhancement and permit broader sink activities. Unfortunately, few cost estimates of soil carbon sequestration strategies presently exist. While these costs are uncertain and all input costs have not been estimated, manure-based projects in small-holdings in Kenya could increase maize yield significantly and sequester one ton of soil carbon for a net cost of -US$806. Clearly, such projects would be very attractive economically. There is presently an urgent need to launch useful long-term (>10 years) field experiments and demonstration projects in Africa. Existing data are not readily comparable, it is uncertain how large amount of carbon could be sequestered, findings are site-specific, and it is unclear how well the sites represent wider areas. To develop CDM projects, it is important that experimental trials generate reliable and comparable data. Finally, it will be important to estimate local environmental effects and economic benefits

  1. Net Carbon Sequestration Potential and Emissions in Home Lawn Turfgrasses of the United States

    Science.gov (United States)

    Selhorst, Adam; Lal, Rattan

    2013-01-01

    Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha-1 year-1 to 5.4 Mg C ha-1 year-1. Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0-96.3 ± 6.0 Mg C ha-1. Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha-1 year-1 and 45.8 ± 3.5 Mg C ha-1, respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha-1 year-1) and fertilizer use (63.6 kg Ce ha-1 year-1) for all sites totaled 254.3 kg Ce ha-1 year-1. Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year-1 under low management regimes and 7551.4 Gg Ce year-1 under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.

  2. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration.

    Science.gov (United States)

    Xiong, Xiong; Grunwald, Sabine; Myers, D Brenton; Ross, C Wade; Harris, Willie G; Comerford, Nicolas B

    2014-09-15

    Historically, Florida soils stored the largest amount of soil organic carbon (SOC) among the conterminous U.S. states (2.26 Pg). This region experienced rapid land use/land cover (LULC) shifts and climate change in the past decades. The effects of these changes on SOC sequestration are unknown. The objectives of this study were to 1) investigate the change in SOC stocks in Florida to determine if soils have acted as a net sink or net source for carbon (C) over the past four decades and 2) identify the concomitant effects of LULC, LULC change, and climate on the SOC change. A total of 1080 sites were sampled in the topsoil (0-20 cm) between 2008 and 2009 representing the current SOC stocks, 194 of which were selected to collocate with historical sites (n = 1251) from the Florida Soil Characterization Database (1965-1996) for direct comparison. Results show that SOC stocks significantly differed among LULC classes--sugarcane and wetland contained the highest SOC, followed by improved pasture, urban, mesic upland forest, rangeland, and pineland while crop, citrus and xeric upland forest remained the lowest. The surface 20 cm soils acted as a net sink for C with the median SOC significantly increasing from 2.69 to 3.40 kg m(-2) over the past decades. The SOC sequestration rate was LULC dependent and controlled by climate factors interacting with LULC. Higher temperature tended to accelerate SOC accumulation, while higher precipitation reduced the SOC sequestration rate. Land use/land cover change observed over the past four decades also favored the C sequestration in soils due to the increase in the C-rich wetland area by ~140% and decrease in the C-poor agricultural area by ~20%. Soils are likely to provide a substantial soil C sink considering the climate and LULC projections for this region. PMID:25010945

  3. Understanding Carbon Sequestration Options in the United States: Capabilities of a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Dooley, James J.; Brown, Daryl R.; Mizoguchi, Akiyoshi; Shiozaki, Mai

    2001-04-03

    While one can discuss various sequestration options at a national or global level, the actual carbon management approach is highly site specific. In response to the need for a better understanding of carbon management options, Battelle in collaboration with Mitsubishi Corporation, has developed a state-of-the-art Geographic Information System (GIS) focused on carbon capture and sequestration opportunities in the United States. The GIS system contains information (e.g., fuel type, location, vintage, ownership, rated capacity) on all fossil-fired generation capacity in the Untied States with a rated capacity of at least 100 MW. There are also data on other CO2 sources (i.e., natural domes, gas processing plants, etc.) and associated pipelines currently serving enhanced oil recovery (EOR) projects. Data on current and prospective CO2 EOR projects include location, operator, reservoir and oil characteristics, production, and CO2 source. The system also contains information on priority deep saline aquifers and coal bed methane basins with potential for sequestering CO2. The GIS application not only enables data storage, flexible map making, and visualization capabilities, but also facilitates the spatial analyses required to solve complex linking of CO2 sources with appropriate and cost-effective sinks. A variety of screening criteria (spatial, geophysical, and economic) can be employed to identify sources and sinks most likely amenable to deployment of carbon capture and sequestration systems. The system is easily updateable, allowing it to stay on the leading edge of capture and sequestration technology as well as the ever-changing business landscape. Our paper and presentation will describe the development of this GIS and demonstrate its uses for carbon management analysis.

  4. Engineering and Economic Assessment of Carbon Dioxide Sequestration in Saline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Lawrence A. [Battelle Memorial Institute, Columbus, OH (US); Gupta, Neeraj [Battelle Memorial Institute, Columbus, OH (US); Sass, Bruce M. [Battelle Memorial Institute, Columbus, OH (US); Bubenik, Thomas A. [Battelle Memorial Institute, Columbus, OH (US); Byrer, Charles [National Energy Technology Laboratory, Morgantown, WV (US); Bergman, Perry [National Energy Technology Laboratory, Pittsburgh, PA (US)

    2001-05-31

    Concern over the potential effects of greenhouse gases such as carbon dioxide (CO2) on global climate has triggered research about ways to mitigate the release of these gases to the atmosphere. A project to study the engineering feasibility and costs of sequestering CO2 in deep, saline reservoirs was completed as part of a U.S. Department of Energy (DOE) program supporting research on novel technologies to mitigate greenhouse gas emissions. Study activities included a review of the status of existing technologies that could be used for CO2 sequestration, development of a preliminary engineering concept for accomplishing the required operations, and estimation of costs for sequestration systems. The primary components of the CO2 sequestration system considered are: · Capture of the CO2 from the flue gas · Preparation of the CO2 for transportation (compression and drying) · Transportation of the CO2 through a pipeline · Injection of the CO2 into a suitable aquifer. Costs are estimated for sequestration of CO2 from two types of power plants: pulverized coal with flue gas desulphurization (PC/FGD) and integrated coal gasification combined cycle (IGCC). The sensitivity of cost to a variety of transportation and injection scenarios was also studied. The results show that the engineering aspects of the major components of CO2 capture and geologic storage are well understood through experience in related industries such as CO2 production, pipeline transport, and subsurface injection of liquids and gases for gas storage, waste disposal, and enhanced oil recovery. Capital costs for capture and compression and the operational cost for compression are the largest cost components.

  5. Carbon Sequestration and Sedimentation in Mangrove Swamps Influenced by Hydrogeomorphic Conditions and Urbanization in Southwest Florida

    Directory of Open Access Journals (Sweden)

    Daniel A. Marchio

    2016-05-01

    Full Text Available This study compares carbon sequestration rates along two independent tidal mangrove creeks near Naples Bay in Southwest Florida, USA. One tidal creek is hydrologically disturbed due to upstream land use changes; the other is an undisturbed reference creek. Soil cores were collected in basin, fringe, and riverine hydrogeomorphic settings along each of the two tidal creeks and analyzed for bulk density, total organic carbon profiles, and sediment accretion. Radionuclides 137Cs and 210Pb were used to estimate recent sediment accretion and carbon sequestration rates. Carbon sequestration rates (mean ± standard error for seven sites in the two tidal creeks on the Naples Bay (98 ± 12 g-C m−2·year−1 (n = 18 are lower than published global means for mangrove wetlands, but consistent with other estimates from the same region. Mean carbon sequestration rates in the reference riverine setting were highest (162 ± 5 g-C m−2·year−1, followed by rates in the reference fringe and disturbed riverine settings (127 ± 6 and 125 ± 5 g-C m−2·year−1, respectively. The disturbed fringe sequestered 73 ± 10 g-C m−2·year−1, while rates within the basin settings were 50 ± 4 g-C m−2·year−1 and 47 ± 4 g-C m−2·year−1 for the reference and disturbed creeks, respectively. These data support our hypothesis that mangroves along a hydrologically disturbed tidal creek sequestered less carbon than did mangroves along an adjacent undisturbed reference creek.

  6. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration

    Directory of Open Access Journals (Sweden)

    S. Zhao

    2009-03-01

    Full Text Available Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS, along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively, to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at local to global scales.

  7. Conservation Agriculture and Soil Carbon Sequestration; Between Myth and Farmer Reality

    International Nuclear Information System (INIS)

    Improving food security, environmental preservation and enhancing livelihood should be the main targets of the innovators of today's farming systems. Conservation agriculture (CA), based on minimum tillage, crop residue retention and crop rotations, has been proposed as an alternative system combining benefits for the farmer with advantages for the society. This paper reviews the potential impact of CA on C sequestration by synthesizing the knowledge of carbon and nitrogen cycling in agriculture, summarizing the influence of tillage, residue management and crop rotation on soil organic carbon stocks and compiling the existing case study information. To evaluate the C sequestration capacity of farming practices, their influence on emissions from farming activities should be considered together with their influence on soil C stocks. The largest contribution of CA to reducing emissions from farming activities is made by the reduction of tillage operations. The soil C case study results are not conclusive. In 7 of the 78 cases withheld, the soil C stock was lower in zero compared to conventional tillage, in 40 cases it was higher and in 31 of the cases there was no significant difference. The mechanisms that govern the balance between increased or no sequestration after conversion to zero tillage are not clear, although some factors that play a role can be distinguished e.g. root development and rhizodeposits, baseline soil C content, bulk density and porosity, climate, landscape position and erosion/deposition history. Altering crop rotation can influence soil C stocks by changing quantity and quality of organic matter input. More research is needed, especially in the tropical areas where good quantitative information is lacking. However, even if C sequestration is questionable in some areas and cropping systems, CA remains an important technology that improves soil processes, controls soil erosion and reduces tillage-related production costs. (author)

  8. Video-assisted thoracic surgery for pulmonary sequestration: a safe alternative procedure

    Science.gov (United States)

    Wang, Lu-Ming; Cao, Jin-Lin

    2016-01-01

    Background Pulmonary sequestration (PS), a rare congenital anatomic anomaly of the lung, is usually treated through resection by a conventional thoracotomy procedure. The efficacy and safety of video-assisted thoracic surgery (VATS) in PS treatment has seldom been evaluated. To address this research gap, we assessed the efficacy and safety of VATS in the treatment of PS in a large Chinese cohort. Methods We retrospectively reviewed 58 patients with PS who had undergone surgical resection in our department between January 2003 and April 2014. Of these patients, 42 (72.4%) underwent thoracotomy, and 16 (27.6%) underwent attempted VATS resection. Clinical and demographic data, including patients’ age, sex, complaints, sequestration characteristics, approach and procedures, operative time, resection range, blood loss, drainage volume, chest tube duration, hospital stay, and complications were collected, in addition to short-term follow-up data. Results Of the 58 participating patients, 55 accepted anatomic lobectomy, 2 accepted wedge resection, and 1 accepted left lower lobectomy combined with lingular segmentectomy. All lesions were located in the lower lobe, with 1–4 aberrant arteries, except one right upper lobe sequestration. Three cases (18.8%) in the VATS group were converted to thoracotomy because of dense adhesion (n=1), hilar fusion (n=1), or bleeding (n=1). No significant differences in operative time, postoperative hospital stay, or perioperative complications were observed between the VATS and thoracotomy groups, although the VATS patients had less blood loss (P=0.032), a greater drainage volume (P=0.001), and a longer chest tube duration (P=0.001) than their thoracotomy counterparts. Conclusions VATS is a viable alternative procedure for PS in some patients. Simple sequestration without a thoracic cavity or hilum adhesion is a good indication for VATS resection, particularly for VATS anatomic lobectomy. Thoracic cavity and hilum adhesion remain a

  9. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    Science.gov (United States)

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (pdensity and the environmental/anthropogenic factors (R(2)=0.59). The soil pH, land use, and elevation are the most important factors for determining SOC dynamics. In contrast, the effect of the reclamation age on the SOC density is negligible, where SOC content in the land reclaimed during years 1047-1724 is as low as that reclaimed during years 1945-2004. The scenario analysis results indicate that the carbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year. PMID:27196991

  10. Dissolution and carbonation of mechanically activated olivine-Investigating CO2 sequestration possibilities

    OpenAIRE

    Haug, Tove Anette

    2010-01-01

    Mineral carbonation used for CO2 sequestration faces three main challenges: increasing the overall carbonation rate, handle large amounts of feedstock and products, and developing a practical process with commercially acceptable energy consumption. High intensity milling, also called mechanical activation, has been found to increase the extraction rate of metals in the metallurgical industry. The focus of this PhD study has been the use of mechanical activation as a pre-treatment method withi...

  11. Dissolution and carbonation of mechanically activated olivine-Investigating CO2 sequestration possibilities

    OpenAIRE

    Haug, Tove Anette

    2010-01-01

    Mineral carbonation used for CO2 sequestration faces three main challenges: increasing the overall carbonation rate, handle large amounts of feedstock and products, and developing a practical process with commercially acceptable energy consumption.High intensity milling, also called mechanical activation, has been found to increase the extraction rate of metals in the metallurgical industry. The focus of this PhD study has been the use of mechanical activation as a pre-treatment method within...

  12. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration.

    Science.gov (United States)

    Xiong, Xiong; Grunwald, Sabine; Myers, D Brenton; Ross, C Wade; Harris, Willie G; Comerford, Nicolas B

    2014-09-15

    Historically, Florida soils stored the largest amount of soil organic carbon (SOC) among the conterminous U.S. states (2.26 Pg). This region experienced rapid land use/land cover (LULC) shifts and climate change in the past decades. The effects of these changes on SOC sequestration are unknown. The objectives of this study were to 1) investigate the change in SOC stocks in Florida to determine if soils have acted as a net sink or net source for carbon (C) over the past four decades and 2) identify the concomitant effects of LULC, LULC change, and climate on the SOC change. A total of 1080 sites were sampled in the topsoil (0-20 cm) between 2008 and 2009 representing the current SOC stocks, 194 of which were selected to collocate with historical sites (n = 1251) from the Florida Soil Characterization Database (1965-1996) for direct comparison. Results show that SOC stocks significantly differed among LULC classes--sugarcane and wetland contained the highest SOC, followed by improved pasture, urban, mesic upland forest, rangeland, and pineland while crop, citrus and xeric upland forest remained the lowest. The surface 20 cm soils acted as a net sink for C with the median SOC significantly increasing from 2.69 to 3.40 kg m(-2) over the past decades. The SOC sequestration rate was LULC dependent and controlled by climate factors interacting with LULC. Higher temperature tended to accelerate SOC accumulation, while higher precipitation reduced the SOC sequestration rate. Land use/land cover change observed over the past four decades also favored the C sequestration in soils due to the increase in the C-rich wetland area by ~140% and decrease in the C-poor agricultural area by ~20%. Soils are likely to provide a substantial soil C sink considering the climate and LULC projections for this region.

  13. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  14. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-07-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as amajorsink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied underdifferent plantation forest ecosystems comprising of eight different tree species viz. Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnus nitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57 ą 48.99 tha-1 and below ground (42.47 ą 10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera (118.37 ą 1.49 tha-1 and minimum (36.50 ą 9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86ą 10.34 tha-1 in Alnus nitida, and minimum (170.83ą 20.60 tha-1in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79 ą 2.0 tha-1. Carbon sequestration (7.91ą 3.4 tha-1 and CO2 mitigation potential (29.09 ą 12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions forsustainable management of fragile hilly ecosystem. 

  15. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature.

    Science.gov (United States)

    Rushendra Revathy, T D; Palanivelu, K; Ramachandran, A

    2016-04-01

    Rapid increase of CO2 concentration in the atmosphere has forced the international community towards adopting actions to restrain from the impacts of climate change. Moreover, in India, the dependence on fossil fuels is projected to increase in the future, implying the necessity of capturing CO2 in a safe manner. Alkaline solid wastes can be utilized for CO2 sequestration by which its disposal issues in the country could also be met. The present work focuses to study direct mineral carbonation of steelmaking slag (SS) at room temperature and low-pressure conditions (carbonation of SS was carried out in a batch reactor with pure CO2 gas. The process parameters that may influence the carbonation of SS, namely, CO2 gas pressure, liquid to solid ratio (L/S) and reaction time were also studied. The results showed that maximum sequestration of SS was attained in the aqueous route with a capacity of 82 g of CO2/kg (6 bar, L/S ratio of 10 and 3 h). In the gas-solid route, maximum sequestration capacity of about 11.1 g of CO2/kg of SS (3 bar and 3 h) was achieved indicating that aqueous route is the better one under the conditions studied. These findings demonstrate that SS is a promising resource and this approach could be further developed and used for CO2 sequestration in the country. The carbonation process was evidenced using FT-IR, XRD, SEM and TG analysis. PMID:26681331

  16. Carbon sequestration for different management alternatives in sweet chestnut coppice in northern Spain

    OpenAIRE

    Prada, Marta; Bravo Oviedo, Felipe; Berdasco, Lorena; Canga, Elena; Martínez Alonso, Celia

    2016-01-01

    This paper provides an innovative approach to assessing carbon sequestration in sweet chestnut coppice taking into account the importance of carbon fluxes in the whole forest-industry value chain in the mitigation of climate change. The goals of this study were: to evaluate the baseline carbon capture of sweet chestnut forest in the north of Spain; to assess the effect of thinning and extending the rotation period on carbon storage; and to evaluate the substitution effect of using...

  17. Carbon capture and sequestration: how much does this uncertain option affect near-term policy choices?

    OpenAIRE

    Bosetti, Valentina; Gilotte, Laurent

    2006-01-01

    Policy makers as well as many economists recognize geological Carbon Capture and Sequestration (CCS) as a key option to avoid costly emission reduction. While an extreme perspective is to envision CCS as a magic bullet to solve the issue of climate change, the economics perspective is more balanced and see it as a part of a portfolio of mitigation actions. Besides, as any novel mitigation technology, CCS can be implemented with a twofold purpose; on one side it can substitute some other techn...

  18. Small-scale dissolution, precipitation, deformation and fracturing during CO2 sequestration (Invited)

    Science.gov (United States)

    Meakin, P.; Austrheim, H.; Huang, H.; Malthe-Sorenssen, A.

    2010-12-01

    The coupling between solute transport, geochemistry and geomechanical processes is critically important in subsurface CO2 sequestration. A better understanding of these processes at small scales could play an important role in the evaluation of large-scale CO2 sequestration reservoir performance and the development of improved CO2 sequestration technology. Insights obtained from the analysis of rock specimens from sites at which natural CO2 sequestration is occurring (the Oman ophiolite, the Solund Basin, Norway and the Snake River Plain), laboratory experiments and computer simulations of dissolution and growth with level set interface capturing and of fracturing due to volume changing solid-solid transformations with discrete element models will be presented. Our results suggest that the coupling between volume changing geochemical processes, deformation and fracturing plays an important role in the weathering of mafic and ultramafic rocks, and that these coupled processes also have an important impact on their CO2 storage capacity. While the growth of solid carbonates and other minerals from supersaturated solutions occludes pore volumes, reducing both permeability and porosity, the disjoining pressure associate with thin liquids films allows growth to continue in mineral filled pores, and the force of crystallization associated with this growth becomes large enough to cause fracturing. Our results suggest that fracturing due to volume increasing, solvent mediated, solid-solid transitions generates new reactive surfaces (surfaces at which dissolution can occur). This accelerates serpentinization and the formation of carbonates in mafic and ultramafic rocks, and increases the extent of reaction (formation of serpentine or carbonates). The characteristic mesh texture associated with serpentinization is attributed to force of crystallization fracturing coupled with growth.

  19. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    Science.gov (United States)

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  20. Economic impacts of carbon sequestration in reforestation: examples from boreal and moist tropical conditions.

    OpenAIRE

    Niskanen, Anssi; Saastamoinen, Olli; Rantala, Tapio

    1996-01-01

    Part I Climate Change The impact of carbon sequestration on the financial profitability of four tree plantation cases in Finland and the Philippines were examined. On the basis of stem wood growth; the accumulation of carbon in forest biomass, the formation and decomposition of litter, and the carbon flows in wood-based products were assessed for each reforestation case representing boreal (Finland) and moist tropical conditions (the Philippines). Using different unit values for carbon seq...

  1. Seagrass Restoration Enhances “Blue Carbon” Sequestration in Coastal Waters

    OpenAIRE

    Jill T Greiner; Karen J McGlathery; John Gunnell; McKee, Brent A.

    2013-01-01

    Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as “blue carbon,” accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zostera marina , restoration in carbon storage in ...

  2. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks

    OpenAIRE

    Marbà, Núria; Arias-Ortiz, Ariane; Masqué, Pere; Kendrick, Gary A.; Mazarrasa, Inés; Bastyan, Geoff R.; García-Orellana, Jordi; Duarte, Carlos M.

    2015-01-01

    © 2015 British Ecological Society. Seagrass meadows are sites of high rates of carbon sequestration and they potentially support 'blue carbon' strategies to mitigate anthropogenic CO2 emissions. Current uncertainties on the fate of carbon stocks following the loss or revegetation of seagrass meadows prevent the deployment of 'blue carbon' strategies. Here, we reconstruct the trajectories of carbon stocks associated with one of the longest monitored seagrass restoration projects globally. We d...

  3. Sequestrating giant complex odontoma: a case report and review of the literature.

    Science.gov (United States)

    Perumal, C J; Mohamed, A; Singh, A; Noffke, C E E

    2013-12-01

    Odontomas are the most common benign tumours of odontogenic origin. Due to their hamartomatous nature, they are usually asymptomatic but can cause impaction of one or more teeth. They consist microscopically of all the tissue types found in a developed tooth. We present a case of a large sequestrating complex odontoma resulting in facial asymmetry, cellulitis, pain and partial loss of function. This case has significance, as odontomas of this large size have rarely been reported.

  4. Construction of antibody-like nanoparticles for selective protein sequestration in living cells

    Science.gov (United States)

    Liu, Yibin; Fang, Simin; Zhai, Junqiu; Zhao, Meiping

    2015-04-01

    We demonstrate the successful construction of fluorescently labeled magnetic antibody-like nanoparticles (ANPs) via a facile one-step surface-initiated in situ molecular imprinting approach over silica coated magnetite (Fe3O4@SiO2) core-shell nanocomposites. The as-prepared ANPs had a highly compact structure with an overall size of 83 +/- 5 nm in diameter and showed excellent aqueous dispersion stability. With the predetermined high specificity to the target protein and high biocompatibility, the ANPs enabled rapid, efficient, selective and optically trackable sequestration of target proteins within living cells. This work represents the first example of fully artificially engineered multifunctional ANPs for the intracellular protein-sequestration without disruption of the cells. The established approach may be further extended to generate ANPs for various proteins of interest and provide useful tools for related biological research and biomedical applications.We demonstrate the successful construction of fluorescently labeled magnetic antibody-like nanoparticles (ANPs) via a facile one-step surface-initiated in situ molecular imprinting approach over silica coated magnetite (Fe3O4@SiO2) core-shell nanocomposites. The as-prepared ANPs had a highly compact structure with an overall size of 83 +/- 5 nm in diameter and showed excellent aqueous dispersion stability. With the predetermined high specificity to the target protein and high biocompatibility, the ANPs enabled rapid, efficient, selective and optically trackable sequestration of target proteins within living cells. This work represents the first example of fully artificially engineered multifunctional ANPs for the intracellular protein-sequestration without disruption of the cells. The established approach may be further extended to generate ANPs for various proteins of interest and provide useful tools for related biological research and biomedical applications. Electronic supplementary information (ESI

  5. Simulating the effects of forest managements on carbon sequestration: TREPLEX- Management model development

    Science.gov (United States)

    Wang, W.; Peng, C.; Lei, X.; Zhang, T.; Kneeshaw, D.; Larocque, G.

    2009-05-01

    With common concern surrounding the impact of increased atmospheric CO2 on global climate change, the role of forest management (i.e. thinning) on carbon sequestration is growing as a hotspot in the post Kyoto period. However, the combination strategies between forest management and carbon management are less established. Jack pine is one of the most important commercial and reforestation species in lake states of the United States and Canada, and the specie was reported to show stronger response to forest management like thinning. Obviously, there is an urgent need for understanding how harvesting intensity (i.e., thinning) affects C sequestration in jack pine stands. The aim of this study is to quantify and predict the biomass and carbon sequestration in thinned jack pine stands in eastern Canada. TRIPLEX is a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. The TRIPLEX-Management concept model was developed. The following carbon components were considered: above ground live biomass carbon, standing dead biomass carbon, harvested wood product carbon and soil organic carbon. Thinning was linked with LAI (Leaf Area Index), stand density and soil conditions and included in NPP and biomass production and allocation models. The model was also integrated with DBH distribution models, biomass allometric models, and wood products C models as well as the established height-diameter models. It is expected to optimize thinning regimes for carbon and forest management in order to mitigate climate change impacts.

  6. Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA

    International Nuclear Information System (INIS)

    Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of carbon stocks, such as vegetation type and management regime, and to some degree, on economic incentives. However, the actual potential for carbon sequestration critically depends on who owns the land and additional land management decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the 'carbon stewardship landscape'-that is, the decision making context for carbon sequestration. We examine the carbon stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use management to help mitigate carbon emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.

  7. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    Science.gov (United States)

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions. PMID:26915193

  8. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report is the summary first year report covering the reporting period 1 October 2000 to 30 September 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  9. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Steven M. Masutani

    2001-08-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  10. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-07-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  11. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    Energy Technology Data Exchange (ETDEWEB)

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  12. Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition

    Directory of Open Access Journals (Sweden)

    Takashi Onikubo

    2015-03-01

    Full Text Available Nucleoplasmin (Npm is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

  13. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    International Nuclear Information System (INIS)

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO(sub 2) from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO(sub 2) sequestration. University of Hawaii initiated effort on system optimization of the CO(sub 2) sequestration system

  14. Trade-Offs Associated with Soil Carbon Sequestration in ecosystems as Climate Change Mitigation (Invited)

    Science.gov (United States)

    Six, J. W.; Kong, A. Y.

    2010-12-01

    Ecosystems, especially agroecosystems, have been proposed to have the potential to mitigate anthropogenic contributions to climate change through management. It has been suggested that the adoption of agricultural soil management practices that decrease disturbance and/or increase C inputs to soils can transform soils from C ‘sources’ to C ‘sinks’. However, for these management practices to genuinely mitigate climate change, they must slow the increase of atmospheric CO2 levels by establishing a net transfer of C from atmospheric CO2 to the soil or vegetation. Furthermore, a change in land management must not increase the emission of any other greenhouse gases (e.g., nitrous oxide). Here, we expose the global warming ‘costs’ - tradeoffs - associated with management options that have been promoted as soil C sequestration strategies, but may not always achieve their goals of climate change mitigation. We also discuss fundamental mechanistic potentials and constraints to the sequestration of C in soils, which allow but also limit the potential of soil C sequestration as a means of climate change mitigation. Only by using a whole (agro)ecosystems approach that addresses the linked cycles of C, nitrogen, and phosphorous in soils, can management practices genuinely contribute to climate change mitigation.

  15. Estimating the carbon sequestration capacity of shale formations using methane production rates.

    Science.gov (United States)

    Tao, Zhiyuan; Clarens, Andres

    2013-10-01

    Hydraulically fractured shale formations are being developed widely for oil and gas production. They could also represent an attractive repository for permanent geologic carbon sequestration. Shales have a low permeability, but they can adsorb an appreciable amount of CO2 on fracture surfaces. Here, a computational method is proposed for estimating the CO2 sequestration capacity of a fractured shale formation and it is applied to the Marcellus shale in the eastern United States. The model is based on historical and projected CH4 production along with published data and models for CH4/CO2 sorption equilibria and kinetics. The results suggest that the Marcellus shale alone could store between 10.4 and 18.4 Gt of CO2 between now and 2030, which represents more than 50% of total U.S. CO2 emissions from stationary sources over the same period. Other shale formations with comparable pressure-temperature conditions, such as Haynesville and Barnett, could provide significant additional storage capacity. The mass transfer kinetic results indicate that injection of CO2 would proceed several times faster than production of CH4. Additional considerations not included in this model could either reinforce (e.g., leveraging of existing extraction and monitoring infrastructure) or undermine (e.g., leakage or seismicity potential) this approach, but the sequestration capacity estimated here supports continued exploration into this pathway for producing carbon neutral energy.

  16. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil

    Institute of Scientific and Technical Information of China (English)

    Qian Kuimei; Wang Liping; Yin Ningning

    2012-01-01

    A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycorrhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil.A complex substrate of coal gangue,fly ash and sludge was used as reclaimed mine soil,and ryegrass was planted with AMF inoculation to construct a plant-complex substrate-microbe ecological restoration system.The changes to the soil organic carbon (SOC),activities of soil enzymes and glomalin-related soil protein (GRSP) were measured and the effects of AMF on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil were analyzed.The results show that the contents of GRSP (total glomalin (TG) and easily extractable glomalin (EEG)),SOC and activities of enzymes increased,and the increments were higher in the AMF inoculation treated plant-complex substrate-microbe ecological restoration systems than those with no AMF inoculated treatments after 12 months of ryegrass growth.TG,EEG and soil enzyme activity have a significant positive correlation,and the correlative coefficient was 0.427-0.573; SOC and TG,EEG have a significant positive correlation (p < 0.01 ),indicating that AMF plays an important role in carbon sequestration of reclaimed mine soils.

  17. Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX network. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.

  18. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  19. Carbon Sequestration in Tropical and Subtropical Plant Species in Collaborative and Community Forests of Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar Mandal

    2016-01-01

    Full Text Available Different plant species have different capacity of carbon sequestration but it is not assessed yet in Nepal. Therefore, this study was done to assess the species-wise carbon sequestration in two periods in forests. Three collaborative and three community forests were selected for the study. The selected forests were surveyed using GPS and mapped and stratified into tree, pole, and regeneration. Specifically 32, 33, and 31 samples were collected from Banke-Maraha, Tuteshwarnath, and Gadhanta-Bardibash collaborative forests, respectively, while 30, 25, and 22 samples were collected from Chureparwati, Buddha, and Chyandanda community forests correspondingly. The sample plots were of 25 m × 20 m for tree strata. The diameter and height of plants were measured and samples were collected for three consecutive years. The estimated carbon stock of Shorea robusta was the highest 35.93 t ha−1 in 2011 which was slightly decreased to 34.43 t ha−1 in 2012 and reached 32.02 t ha−1 in 2013 in Banke-Maraha collaborative forest but it was the least 7.97, 8.92, and 10.29 t ha−1 in 2011, 2012, and 2013, respectively, in Chyandanda community forest. The highest carbon sequestration was recorded about 5.02 t ha−1 of Shorea robusta in Chyandanda community forest in between t2013 and t2012.

  20. Application of an Expanded Sequestration Estimate to the Domestic Energy Footprint of the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Bernadette O’Regan

    2010-08-01

    Full Text Available The need for global comparability has led to the recent standardization of ecological footprint methods. The use of global averages and necessary methodological assumptions has questioned the ability of the ecological footprint to represent local or national specific concerns. This paper attempts to incorporate greater national relevancy by expanding the sequestration estimate used to calculate the annual carbon footprint of domestic Irish energy use. This includes expanding existing study boundaries to include additional carbon pools such as the litter, dead and soil pools. This generated an overall estimate of 4.38 tonnes of carbon per hectare per year (t C/ha/yr, resulting in an ecological footprint estimate of 0.49 hectares per capita (ha/cap The method employed in this paper also incorporated the potential role of grassland as a carbon sink. The caveat that the resultant value is dependent on the choice of study boundary is discussed. Including the lateral movement of carbon embodied in farm products (effectively placing the boundary around the farm gate reduces the estimate of grassland carbon sequestration by approximately 44% to 1.82 t C/ha/yr. When a footprint calculated using an overall sequestration estimate (based on the distribution of Irish grassland and forestry is translated into global hectares (gha, the standardized value is reduced by 35%.

  1. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States

    Science.gov (United States)

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C.; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m2 compared to 16.2 kg C/m2 in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on 137Cs and 210Pb dating of soil cores, ranged from 41 to 152 g/m2/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  2. Quantification of soil organic carbon sequestration potential in cropland:A model approach

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Agroecosystems have a critical role in the terrestrial carbon cycling process.Soil organic carbon(SOC) in cropland is of great importance for mitigating atmospheric carbon dioxide increases and for global food security.With an understanding of soil carbon saturation,we analyzed the datasets from 95 global long-term agricultural experiments distributed across a vast area spanning wide ranges of temperate,subtropical and tropical climates.We then developed a statistical model for estimating SOC sequestration potential in cropland.The model is driven by air temperature,precipitation,soil clay content and pH,and explains 58% of the variation in the observed soil carbon saturation(n=76).Model validation using independent data observed in China yielded a correlation coefficient R2 of 0.74(n=19,P<0.001).Model sensitivity analysis suggested that soils with high clay content and low pH in the cold,humid regions possess a larger carbon sequestration potential than other soils.As a case study,we estimated the SOC sequestration potential by applying the model in Henan Province.Model estimations suggested that carbon(C) density at the saturation state would reach an average of 32 t C ha-1 in the top 0-20 cm soil depth.Using SOC density in the 1990s as a reference,cropland soils in Henan Province are expected to sequester an additional 100 Tg C in the future.

  3. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  4. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura

    2003-05-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, PSI conducted preparation work on direct feeding of coal combustion gas to microalgae and developed a design concept for photobioreactors for biofixation of CO{sub 2} and photovoltaic power generation. Aquasearch continued their effort on characterization of microalgae suitable for CO{sub 2} sequestration and preparation for pilot scale demonstration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  5. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Directory of Open Access Journals (Sweden)

    Irene Criscuoli

    Full Text Available The addition of pyrogenic carbon (C in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2 with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2. After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  6. GS3: A Knowledge Management Architecture for Collaborative Geologic Sequestration Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gorton, Ian; Black, Gary D.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; Wurstner, Signe K.; Hui, Peter SY

    2010-01-10

    Modern scientific enterprises are inherently knowledge-intensive. In general, scientific studies in domains such as groundwater, climate, and other environmental modeling as well as fundamental research in chemistry, physics, and biology require the acquisition and manipulation of large amounts of experimental and field data in order to create inputs for large-scale computational simulations. The results of these simulations must then be analyzed, leading to refinements of inputs and models and further simulations. In this paper we describe our efforts in creating a knowledge management platform to support collaborative, wide-scale studies in the area of geologic sequestration. The platform, known as GS3 (Geologic Sequestration Software Suite), exploits and integrates off-the-shelf software components including semantic wikis, content management systems and open source middleware to create the core architecture. We then extend the wiki environment to support the capture of provenance, the ability to incorporate various analysis tools, and the ability to launch simulations on supercomputers. The paper describes the key components of GS3 and demonstrates its use through illustrative examples. We conclude by assessing the suitability of our approach for geologic sequestration modeling and generalization to other scientific problem domains

  7. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    Science.gov (United States)

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions.

  8. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  9. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet.

    Science.gov (United States)

    Petschenka, Georg; Agrawal, Anurag A

    2015-11-01

    Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium-potassium pump (Na(+)/K(+)-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na(+)/K(+)-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na(+)/K(+)-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na(+)/K(+)-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na(+)/K(+)-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na(+)/K(+)-ATPase, but had systematically reduced effects on Na(+)/K(+)-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na(+)/K(+)-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects.

  10. A Finite-Element Model for Simulation of Carbon Dioxide Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2014-09-01

    Herein, we present a coupled thermal-hydro-mechanical model for geological sequestration of carbon dioxide followed by the stress, deformation, and shear-slip failure analysis. This fully coupled model considers the geomechanical response, fluid flow, and thermal transport relevant to geological sequestration. Both analytical solutions and numerical approach via finite element model are introduced for solving the thermal-hydro-mechanical model. Analytical solutions for pressure, temperature, deformation, and stress field were obtained for a simplified typical geological sequestration scenario. The finite element model is more general and can be used for arbitrary geometry. It was built on an open-source finite element code, Elmer, and was designed to simulate the entire period of CO2 injection (up to decades) both stably and accurately—even for large time steps. The shear-slip failure analysis was implemented based on the numerical results from the finite element model. The analysis reveals the potential failure zone caused by the fluid injection and thermal effect. From the simulation results, the thermal effect is shown to enhance well injectivity, especially at the early time of the injection. However, it also causes some side effects, such as the appearance of a small failure zone in the caprock. The coupled thermal-hydro-mechanical model improves prediction of displacement, stress distribution, and potential failure zone compared to the model that neglects non-isothermal effects, especially in an area with high geothermal gradient.

  11. A Novel Strategy of Carbon Capture and Sequestration by rHLPD Processing

    Directory of Open Access Journals (Sweden)

    Richard Eric Riman

    2016-01-01

    Full Text Available Monoethanolamine (MEA scrubbing is an energy intensive process for Carbon Capture and Sequestration (CCS due to the regeneration of amine in stripping towers at high temperature (100-120 ºC and the subsequent pressurization of CO2 for geologic sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD, which is able to solidify (densify monolithic materials without using high temperature kilns. Then we integrate MEA-based CCS processing and mineral carbonation by using rHLPD technology. This integration is designated as rHLPD-Carbon Sequestration (rHLPD-CS process. Our results show that the CO2 captured in the MEA-CO2 solution was sequestered by the mineral (wollastonite CaSiO3 carbonation at a low operating temperature (60 ºC and simultaneously monolithic materials with a compressive strength of ~121 MPa were formed. This suggests that the use of rHLPD-CS technology eliminates the energy consumed for CO2-MEA stripping and CO2 compression and also sequesters CO2 to form value-added products, which have a potential to be utilized as construction and infrastructure materials. In contrast to the high energy requirements and excessive greenhouse gas emissions from conventional Portland cement manufacturing, our calculations show that the integration of rHLPD and CS technologies provides a low energy alternative to production of traditional cementitious binding materials.

  12. Optimization of capillary trapping for application in geological carbon dioxide sequestration

    Science.gov (United States)

    Harper, E.; Wildenschild, D.; Armstrong, R. T.; Herring, A. L.

    2011-12-01

    Geological carbon sequestration, as a method of atmospheric greenhouse gas reduction, is at the technological forefront of the climate change movement. Sequestration is achieved by capturing carbon dioxide (CO2) gas effluent from coal fired power plants and injecting it into saline aquifers. In an effort to fully understand and optimize CO2 trapping efficiency, the capillary trapping mechanisms that immobilize subsurface CO2 were analyzed at the pore scale. Pairs of analogous fluids representing the range of in situ supercritical CO2 and brine conditions were used during experimentation. The two fluids (identified as wetting and non wetting) were imbibed and drained from a flow cell apparatus containing a sintered glass bead column. Experimental and fluid parameters, such as interfacial tension, non-wetting fluid viscosity and flow rate, were altered to characterize their impact on capillary trapping. Through the use of computed x-ray microtomography (CMT), we were able to quantify distinct differences between initial (post NW phase imbibition) and residual (post wetting fluid flood) non-wetting phase saturations. Observed trends will be used to identify optimal conditions for trapping CO2 during subsurface sequestration.

  13. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    Science.gov (United States)

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  14. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2003-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started the first full scale carbon sequestration tests with propane combustion gases. Aquasearch started to model the costs associated with biomass harvest from different microalgal strains. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  15. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Nakamura

    2004-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  16. Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA

    Science.gov (United States)

    Failey, Elisabeth L.; Dilling, Lisa

    2010-04-01

    Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of carbon stocks, such as vegetation type and management regime, and to some degree, on economic incentives. However, the actual potential for carbon sequestration critically depends on who owns the land and additional land management decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the 'carbon stewardship landscape'—that is, the decision making context for carbon sequestration. We examine the carbon stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use management to help mitigate carbon emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.

  17. Impact of sedimentation on wetland carbon sequestration in an agricultural watershed.

    Science.gov (United States)

    McCarty, Gregory; Pachepsky, Yakov; Ritchie, Jerry

    2009-01-01

    Landscape redistribution of soil C is common within agricultural ecosystems. Little is known about the effects of upland sediment deposition on C dynamics within riparian wetlands. To assess sedimentation impact, we obtained profile samples of wetland soil and used the combination of (137)Cs, (210)Pb, and (14)C chronological markers to determine rates of C sequestration and mineral deposition over the history of a wetland within a first-order catchment under agricultural management in the coastal plains of the United States. Substantial post settlement deposition in the wetland soil was evidenced in places by a 20- to 40-cm layer of mineral soil that buried the original histosol. Soil profiles contained a minimum in C content within the top 35 cm of the profile which originated from a rapid deposition from low C upland soils. Radiocarbon and radioisotope dating showed that increases in C above this minimum were the result of C sequestered in the past approximately 50 yr. Modeling the kinetics of modern C dynamics using the (137)Cs and (210)Pb markers within these surface profiles provides strong evidence for accelerated C sequestration associated with mineral sediment deposition in the ecosystem. These findings indicate that at the landscape scale, dilution of ecosystem C by import of low C upland sediment into wetlands stimulates C sequestration by pulling soil C content below some pedogenic equilibrium value for the ecosystem. They also indicate that over the history of the wetland, rates of C accretion may be linked to mineral soil deposition.

  18. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per;

    2006-01-01

    for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils......An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...

  19. DNA loops and semicatenated DNA junctions

    Directory of Open Access Journals (Sweden)

    Strauss François

    2000-07-01

    Full Text Available Abstract Background Alternative DNA conformations are of particular interest as potential signals to mark important sites on the genome. The structural variability of CA microsatellites is particularly pronounced; these are repetitive poly(CA · poly(TG DNA sequences spread in all eukaryotic genomes as tracts of up to 60 base pairs long. Many in vitro studies have shown that the structure of poly(CA · poly(TG can vary markedly from the classical right handed DNA double helix and adopt diverse alternative conformations. Here we have studied the mechanism of formation and the structure of an alternative DNA structure, named Form X, which was observed previously by polyacrylamide gel electrophoresis of DNA fragments containing a tract of the CA microsatellite poly(CA · poly(TG but had not yet been characterized. Results Formation of Form X was found to occur upon reassociation of the strands of a DNA fragment containing a tract of poly(CA · poly(TG, in a process strongly stimulated by the nuclear proteins HMG1 and HMG2. By inserting Form X into DNA minicircles, we show that the DNA strands do not run fully side by side but instead form a DNA knot. When present in a closed DNA molecule, Form X becomes resistant to heating to 100°C and to alkaline pH. Conclusions Our data strongly support a model of Form X consisting in a DNA loop at the base of which the two DNA duplexes cross, with one of the strands of one duplex passing between the strands of the other duplex, and reciprocally, to form a semicatenated DNA junction also called a DNA hemicatenane.

  20. Performance assessment of producing Mg(OH)2 for CO2 mineral sequestration

    International Nuclear Information System (INIS)

    Highlights: ► Producing Mg(OH)2 for CO2 mineral sequestration was assessed. ► Reactor properties, reaction temperature and time affect Mg extraction. ► A 100% efficient CO2 mineral sequestration process avoids 567 CO2e/t-CO2 net. ► The process avoids 51% life cycle CO2 emissions of a NGCC power plant. ► The process reduces the net power of a NGCC power plant by 20%-points. - Abstract: This study presents the energy and environmental performance assessment of producing magnesium hydroxide (Mg(OH)2) from Mg–silicates for CO2 mineral sequestration applied to a natural gas combined cycle (NGCC) power plant. Mg(OH)2 produced via a closed loop reaction of serpentinite and ammonium sulfate (AS), precipitation of Mg(OH)2 and AS looping/recovery binds CO2 into a thermodynamically stable, environmentally benign and leak-free magnesium carbonate (MgCO3). We used results from laboratory, modeling and life cycle assessment (LCA) studies to determine the extent to which magnesium (Mg) from serpentinite rock can be converted to Mg(OH)2, the effects of reaction parameters, scalability and the associated life cycle greenhouse gas emissions (GHGs). We found that reaction temperature positively affects Mg extraction from serpentinite, reaching a maximum yield at different temperatures depending on the reaction time. Also, the reactor properties affect the extraction results as the optimal extraction yield and conditions reported for different reactors differ. While the process of producing Mg(OH)2 is promising, it also possesses a level of energy and environmental burden that cannot be ignored when considering large scale implementation. At 100% conversion and recovery of reagent, the CO2 mineralization process has a life cycle global warming potential (GWP) of 433 kg CO2 equivalents per ton CO2 (CO2e/t-CO2). This value increases by 82, 7 and 0.4 kg CO2e/t-CO2 for every %-point efficiency loss of AS recovery, Mg(OH)2 production and Mg(OH)2 carbonation respectively

  1. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenju; Xu, Minggang [Chinese Academy of Agricultural Sciences, Beijing (China). Ministry of Agriculture Key Lab. of Crop Nutrition and Fertilization; Wang, Xiujun [Chinese Academy of Sciences, Urumqi (China). Xinjiang Inst. of Ecology and Geography; Maryland Univ., College Park, MD (United States). Earth System Science Interdisciplinary Centre; Huang, Qinhai [National Engineering and Technology Research Center for Red Soil Improvement, Jinxian (China). Jiangxi Inst. of Red Soils; Nie, Jun [Soil and Fertilizer Institute of Hunan Province, Changsha (China); Li, Zuzhang [Jiangxi Academy of Agricultural Sciences, Nanchang (China). Inst. of Soils and Fertilizers and Agricultural Resources; Li, Shuanglai [Hubei Academy of Agricultural Sciences, Wuhan (China). Inst. of Plant Protection and Soil Science; Hwang, Seon Woong; Lee, Kyeong Bo [National Institute of Crop Sciences, Iksan (Korea, Republic of). Dept. of Rice and Winter Cereal Crop

    2012-04-15

    Purpose: Although organic amendments have been recommended as one of the practices for crop production and soil carbon sequestration, little has been done to evaluate soil organic carbon (SOC) dynamics following long-term application of organic amendments. The objective of this research were to (1) assess the effect of long-term organic amendments on SOC dynamics in rice-based systems; (2) evaluate the relationship between soil carbon sequestration and carbon input based on various mineral and organic fertilization treatments. Materials and methods: A multi-sites analysis was conducted on four long-term experiments with double-rice (three sites) and rice-wheat (one site) cropping systems which started in the 1980s in Southern China. We selected three groups of treatments in common at each site: (1) control (no fertilizer), (2) mineral nitrogen-phosphorus with and without potassium (NPK/NP), and (3) the combined treatments of mineral NP/NPK with pig manure (M), green manure (G, Astragalus sinicus L.), rice straw (S), and/or their combinations. Harvestable crop biomass was annually recorded for all plots. SOC in topsoil was determined in 1-5 yearly intervals after rice harvest. Results and discussion: Analysis showed that organic amendments sustained or significantly increased carbon biomass, but had little effects on the coefficient of variance (CV) of the carbon biomass production compared with the mineral NPK/NP treatments. With additional carbon input, organic amendments increased SOC significantly by 7-45% after 25-28 years of fertilization compared with the mineral treatments. These combined treatments sequestered carbon at a rate from 0.20 to 0.48 tha{sup -1} year{sup -1} under the double-rice and 0.70 to 0.88 t ha{sup -1} year{sup -1} under rice-wheat cropping system. The estimated annual SOC decomposition rate ranged from 0.15 to 0.82 tha{sup -1} at these studied sites. Our analyses revealed strong positive correlations between soil carbon sequestration and

  2. Adsorption Hysteresis and its Effect on CO2 Sequestration and Enhanced Coalbed Methane Recovery

    Science.gov (United States)

    Seto, C. J.; Tang, G. T.; Jessen, K.; Kovscek, A. R.; Orr, F. M.

    2006-12-01

    CO2 sequestration in coal reservoirs is a promising technology for reducing atmospheric CO2 concentrations. Of the candidates for geological sequestration, the physics of transport and sequestration in coal is the least well understood. Adsorption hysteresis has been observed for pure gas adsorption on some coals. It is manifest as desorption curves where the loading of gas on coal surfaces is greater than sorption at the same pressure. Current simulation technology does not have the functionality to incorporate this phenomenon that has a potentially great effect on sequestration in coalbeds. Understanding the interplay between adsorption and desorption of gas species, phase behaviour and convection is paramount to designing safe and effective sequestration projects. Our work integrates experiments and theory development. Isotherms of CH4, N2 and CO2 were measured on a sample of coal from the Powder River Basin, WY, for adsorption and desorption paths. Hysteresis was observed for all gases. Likewise, the displacment of methane by various mixtures of N2 and CO2 was also measured. Simultaneously, a model was developed to solve for the dispersion-free limit of convective transport in multiphase systems with adsorption, including the effects of volume change as components transfer from vapour to liquid and solid phases. Analytical solutions were obtained using the method of characteristics. These solutions were compared against corresponding solutions without adsorption hysteresis. For pure gas injection, in which the amount of adsorbed injected gas increases monotonically and the amount of adsorbed initial gas decreases monotonically, hysteresis effects were not observed. For injection gas mixtures of N2-CO2 displacing CH4, CO2 and N2 separated chromatographically and hysteresis effected breakthrough and bank arrival times as well as shifted overall component concentrations as the displacement progressed. When injection gas mixtures were rich in N2, the structures

  3. DOE Ocean Carbon Sequestration Research Workshop 2005 - May 26th thru 27th

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L.; Chavez, Francisco; Maltrud, Matthew; Adams, Eric; Arrigo, Kevin; Barry, James; Carmen, Kevin; Bishop, James; Bleck, Rainer; Gruber, Niki; Erickson, David; Kennett, James; Tsouris, Costas; Tagliabue, Alessandro; Paytan, Adina; Repeta, Daniel; Yeager, Patricia; Marshall, John; Gnanadesikan, Anand

    2007-01-11

    The purpose of this workshop was to bring together the principal investigators of all the projects that were being funded under the DOE ocean carbon sequestration research program. The primary goal of the workshop was to interchange research results, to discuss ongoing research, and to identify future research priorities. In addition, we hoped to encourage the development of synergies and collaborations between the projects and to write an EOS article summarizing the results of the meeting. The primary outcome of the meeting was a decision to write two papers for the reviewed literature on carbon sequestration by iron fertilization, and on carbon sequestration by deep sea injection and to examine the possibility of an overview article in EOS on the topic of ocean carbon sequestration. There has been significant progress on several of these goals since the meeting: (1) Review of carbon sequestration by iron fertilization: One of the most interesting results of the meeting was a presentation by John Marshall of iron fertilization simulations carried out at MIT that suggested a much higher efficiency of CO2 uptake from the atmosphere with a newer generation model (since published by Dutkiewicz, et al., 2006]) than earlier studies had found with an older generation model (cf., Gnanadesikan, et al., 2003). The decision was made that this finding should be investigated with a new set of simulations using other newer generation models with realistic parameterization of biological processes. This research has progressed considerably, with the modeling groups of MIT, Princeton University, UCLA, Stanford University, and Los Alamos National Laboratory participating. A follow up meeting of the principal participants was held on September 11-15, 2006, using remaining funds from the original grant, and three manuscripts are now in an advanced state of preparation: Chavez, F., et al., in preparation. A review of iron fertilization Jin, X., N. Gruber, and H. Frenzel, in

  4. DNA extraction by zinc.

    OpenAIRE

    Kejnovský, E; Kypr, J

    1997-01-01

    A fast, very simple and efficient method of DNA extraction is described which takes advantage of DNA sedimentation induced by millimolar concentrations of ZnCl2. The zinc-induced sedimentation is furthermore strongly promoted by submillimolar phosphate anion concentrations. Within 90% of DNA irrespective of whether a plasmid DNA or short oligonucleotides are the extracted material. The method works with plasmid DNA and oligonucleotide concentrations as low as 100 ng/ml and 10 microg/ml, respe...

  5. Multiple Targets on the Gln3 Transcription Activator Are Cumulatively Required for Control of Its Cytoplasmic Sequestration

    Directory of Open Access Journals (Sweden)

    Rajendra Rai

    2016-05-01

    Full Text Available A remarkable characteristic of nutritional homeostatic mechanisms is the breadth of metabolite concentrations to which they respond, and the resolution of those responses; adequate but rarely excessive. Two general ways of achieving such exquisite control are known: stoichiometric mechanisms where increasing metabolite concentrations elicit proportionally increasing responses, and the actions of multiple independent metabolic signals that cumulatively generate appropriately measured responses. Intracellular localization of the nitrogen-responsive transcription activator, Gln3, responds to four distinct nitrogen environments: nitrogen limitation or short-term starvation, i.e., nitrogen catabolite repression (NCR, long-term starvation, glutamine starvation, and rapamycin inhibition of mTorC1. We have previously identified unique sites in Gln3 required for rapamycin-responsiveness, and Gln3-mTor1 interaction. Alteration of the latter results in loss of about 50% of cytoplasmic Gln3 sequestration. However, except for the Ure2-binding domain, no evidence exists for a Gln3 site responsible for the remaining cytoplasmic Gln3-Myc13 sequestration in nitrogen excess. Here, we identify a serine/threonine-rich (Gln3477–493 region required for effective cytoplasmic Gln3-Myc13 sequestration in excess nitrogen. Substitutions of alanine but not aspartate for serines in this peptide partially abolish cytoplasmic Gln3 sequestration. Importantly, these alterations have no effect on the responses of Gln3-Myc13 to rapamycin, methionine sulfoximine, or limiting nitrogen. However, cytoplasmic Gln3-Myc13 sequestration is additively, and almost completely, abolished when mutations in the Gln3-Tor1 interaction site are combined with those in Gln3477–493 cytoplasmic sequestration site. These findings clearly demonstrate that multiple individual regulatory pathways cumulatively control cytoplasmic Gln3 sequestration.

  6. [Estimation of Topsoil Carbon Sequestration Potential of Cropland Through Different Methods: A Case Study in Zhuanglang County, Gansu Province].

    Science.gov (United States)

    Shi, Chen-di; Xu, Ming-xiang; Qiu, Yu-jie

    2016-03-15

    By analyzing the sampled data and the SOC data of the second national soil survey by the mid 80s and the national cultivated land quality evaluation in 2006 in Zhuanglang County, the article studied the cropland topsoil organic carbon sequestration potential estimation using several different methods. The results showed that: (1) There was no significant difference among different estimation methods about cropland carbon sequestration potential in the same region. Taking cropland carbon sequestration potential in Zhuanglang County for example, the theoretical values estimated by maximum value method and classification grading method were 1. 13 Mt and 1.09 Mt, respectively. (2) The real values estimated by classification grading method, saturation method, weighting method were 0.37 Mt, 0.32 Mt, 0.28 Mt, respectively, which were about 1/3 of the theoretical value. (3) The SOC density increments to reach the real level of carbon sequestration potential estimated by classification grading method, saturation method and weighting method were 6.76 t · hm⁻², 5.21 t · hm⁻², 4.56 t · hm⁻² respectively. According to the topsoil carbon sequestration rate of cropland in Zhuanglang county in the recent 30 a, it would need about 24-34 a to achieve the real level. (4) At the county scale, the weighted method was superior to the saturation value method, and the saturation value method was better than the classification grading method in the actual carbon sequestration potential estimation. The classification grading method was better than the maximum value method in the ideal carbon sequestration potential estimation.

  7. DNA polymerase δ and DNA repair: DNA repair synthesis in human fibroblasts requires DNA polymerase δ

    International Nuclear Information System (INIS)

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernate of similarly treated HeLa cells. Monoclonal antibody to KB cell DNA polymerase α, while binding to HeLa DNA polymerase α, did not bind to the HeLa DNA polymerase δ. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGT) and 2(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase α, but did not inhibit the DNA polymerase δ. Neither purified DNA polymerase α nor β could promote repair DNA synthesis in the permeabilized cells. Furthermore, if monoclonal antibodies to DNA polymerase α BuPdGTP, or BuAdATP was added to the reconstituted system, there was no significant inhibition

  8. Development of an assessment methodology for hydrocarbon recovery potential using carbon dioxide and associated carbon sequestration-Workshop findings

    Science.gov (United States)

    Verma, Mahendra K.; Warwick, Peter D.

    2011-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.

  9. Biogeochemical Modeling of Wetland Carbon Sequestration and Greenhouse Gas Emission Factors for the U.S. Temperate Prairie Ecoregions

    Science.gov (United States)

    Abdul-Aziz, O.; WU, Y.; Liu, S.; Grangaard, L.; Liu, J.

    2011-12-01

    Wetlands are known to play a critical role in carbon sequestration and major greenhouse gas (GHG) emissions. They are important depositional systems interfacing the terrestrial and aquatic ecosystems. We included a wetland component into the well-known terrestrial soil organic carbon dynamics model, CENTURY IV to simulate/predict carbon sequestration and emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from wetland ecosystems. The CENTURY-Wetland package was incorporated into a generalized ensemble biogeochemical modeling system (GEMS) to develop a regional-scale wetland biogeochemical model. We applied the regional CENTURY-Wetland to simulate major GHG emissions and carbon sequestration of the wetlands in the U.S. Temperate Prairie Ecoregions (i.e., US EPA Level II Ecoregion 9.2). The simulations are analyzed to develop regional emissions factors of wetland CO2, CH4, and N2O under historical, as well as different land use/cover and IPCC climate change scenarios. This research is a part of the USGS efforts to quantify 'biological' carbon sequestrations under a changing climate, land use/cover, and policy scenarios. The CENTURY-Wetland will be applied to other U.S. ecoregions for quantifying the wetland carbon sequestration and GHG emissions from the continental United States.

  10. Effect of the bile-acid sequestrant colestipol on postprandial serum bile-acid concentration: evaluation by bioluminescent enzymic analysis.

    Science.gov (United States)

    Rossi, S S; Wayne, M L; Smith, R B; Wright, C E; Andreadis, N A; Hofmann, A F

    1989-02-01

    Chronic ingestion of bile-acid sequestrants has been shown to decrease the serum cholesterol concentration and coronary events in hypercholesterolaemic patients. To develop improved sequestrants, a rapid, convenient method for testing the bile-acid binding efficacy of sequestrants is needed. Serum bile-acid concentrations could be used to detect bile-acid binding by an administered sequestrant, since the serum bile-acid concentration is determined largely by the rate of intestinal absorption in healthy individuals. To test this, serum bile-acid concentrations were measured at frequent intervals over 24 h in five otherwise healthy hypercholesterolaemic subjects during the ingestion of three standard meals, with or without the addition of 5 g colestipol granules administered 30 min before each meal. Total serum bile-acid concentration was measured with a previously reported bioluminescent enzymic assay, that uses a 3 alpha-hydroxysteroid dehydrogenase, an oxido-reductase, and a bacterial luciferase co-immobilized on to Sepharose beads. Bile acids in 1 ml of serum were isolated by solid-phase extraction chromatography with reversed-phase C18 cartridges. Colestipol lowered the postprandial elevation of serum bile acids by one half, with a subsequent decrease in the cumulative area under the curve. The data suggest that measurement of serum bile-acid concentrations by bioluminescence is a rapid, simple way to document the efficacy of bile-acid sequestrants.

  11. Effect of mature blood-stage Plasmodium parasite sequestration on pathogen biomass in mathematical and in vivo models of malaria.

    Science.gov (United States)

    Khoury, David S; Cromer, Deborah; Best, Shannon E; James, Kylie R; Kim, Peter S; Engwerda, Christian R; Haque, Ashraful; Davenport, Miles P

    2014-01-01

    Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection. PMID:24144725

  12. Two adult cases of extralobar pulmonary sequestration: A non-complicated case and a necrotic case with torsion

    International Nuclear Information System (INIS)

    This case report describes two cases of extralobar pulmonary sequestration in adults with and without torsion/necrosis. Non-complicated extralobar pulmonary sequestration was found incidentally in a 50-year-old asymptomatic woman (Case 1), diagnosed with the presence of a branching structure in a mass lesion and blood supply from the right inferior phrenic artery. Another case of a 38-year-old woman presented with a sudden onset of back pain caused by extralobar pulmonary sequestration with torsion/necrosis (Case 2). A 4-cm fusiform mass in the paravertebral region showed enhancement in the peripheral rim only, and no feeding artery. These were the same as it had been reported typical findings in extralobar pulmonary sequestration with necrosis. On magnetic resonance imaging, the masses in both cases showed inhomogeneous low signal and branching high signal on T2-weighted images. That was characteristic for a stroma without dilated alveoli as a solid part and dilated alveoli as fluid regions. By comparing those two cases, we came to a conclusion that only T2-weighted imaging reflects the native structure, even after infarction. Although differentiation from a cystic tumor with hemorrhage or infection can be problematic, inhomogeneous low signal and branching high signal on T2-weighted images may help us distinguish extralobar pulmonary sequestration from other cystic lesions

  13. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China.

    Science.gov (United States)

    Niu, Li; Manxia, Chen; Xiumei, Gao; Xiaohua, Long; Hongbo, Shao; Zhaopu, Liu; Zed, Rengel

    2016-10-15

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in guream(-2)): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419gCkg(-1). Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0-10cm than 10-20cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. PMID:27317133

  14. DNA repair and replication fork helicases are differentially affected by alkyl phosphotriester lesion.

    Science.gov (United States)

    Suhasini, Avvaru N; Sommers, Joshua A; Yu, Stephen; Wu, Yuliang; Xu, Ting; Kelman, Zvi; Kaplan, Daniel L; Brosh, Robert M

    2012-06-01

    DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions. PMID:22500020

  15. Carbon sequestration potential in aboveground biomass of Thong Pha Phum National Forest, Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Terakunpisut, J. [Kasetsart Univ. Kamphaeng Saen, Nakornpratom (Thailand). Faculty of Liberal Arts and Science; Gajaseni, N.; Ruankawe, N. [Chulalongkorn Univ., Bangkok (Thailand). Biology Dept.

    2007-07-01

    Increasingly convincing evidence shows that the Earth is getting warmer and in the future warming could have serious effects on humans. Atmospheric concentration of carbon dioxide (CO{sub 2}), the primary and best studied greenhouse gas, has increased by about 30% from the start of the industrial revolution to 1992 due to fossil fuel combustion and changes in land use. The ultimate objective of the United Nations Framework, in which Thailand is a member, is to stabilize the atmospheric greenhouse gas concentrations at a level that will not cause dangerous anthropogenic interference with the climate system. The emission reduction of greenhouse gases from members of industrialized countries is called for in the Kyoto Protocol. Thailand ratified the Kyoto Protocol August 28, 2002, and therefore will voluntarily participate in CO{sub 2} reduction. There are two alternatives to reduce CO{sub 2}: decreasing carbon source and increasing carbon sink. The world's forests are prominent sites to study climate change, not only in terms of total net carbon emissions but also in terms of global storage capacity, important for climatic regulation. This study assessed the potential of carbon sequestration on aboveground biomass in the different forest ecosystems in Thong Pha Phum National Forest, Thailand. The assessment was based on a total inventory for woody stem at {>=}4.5 cm diameter at breast height (DBH). Aboveground biomass was estimated using allometric equation and aboveground carbon stock was calculated by multiplying the 0.5 conversion factor to the biomass. As the results, carbon sequestration showed varied in different types of forests. Tropical rain forest (Ton Mai Yak station) higher carbon stock than dry evergreen forest (KP 27 station) and mixed deciduous forest (Pong Phu Ron station) as 137.73 {+-} 48.07, 70.29 {+-} 7.38 and 48.14 {+-} 16.72 tonne C/ha, respectively. Habitat variability caused differences of biomass accumulation, species composition and the

  16. DNA fragmentation in apoptosis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cleavage of chromosomal DNA into oligonucleosomal size fragments is an integral part of apoptosis. Elegant biochemical work identified the DNA fragmentation factor (DFF) as a major apoptotic endonuclease for DNA fragmentation in vitro. Genetic studies in mice support the importance of DFF in DNA fragmentation and possibly in apoptosis in vivo. Recent work also suggests the existence of additional endonucleases for DNA degradation. Understanding the roles of individual endonucleases in apoptosis, and how they might coordinate to degrade DNA in different tissues during normal development and homeostasis, as well as in various diseased states, will be a major research focus in the near future.

  17. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  18. Soil organic carbon sequestration in cotton production systems of the southeastern United States: a review.

    Science.gov (United States)

    Causarano, H J; Franzluebbers, A J; Reeves, D W; Shaw, J N

    2006-01-01

    Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated. PMID:16825457

  19. Using CaO- and MgO-rich industrial waste streams for carbon sequestration

    International Nuclear Information System (INIS)

    To prevent rapid climate change, it will be necessary to reduce net anthropogenic CO2 emissions drastically. This likely will require imposition of a tax or tradable permit scheme that creates a subsidy for negative emissions. Here, we examine possible niche markets in the cement and steel industries where it is possible to generate a limited supply of negative emissions (carbon storage or sequestration) cost-effectively. Ca(OH)2 and CaO from steel slag or concrete waste can be dissolved in water and reacted with CO2 in ambient air to capture and store carbon safely and permanently in the form of stable carbonate minerals (CaCO3). The kinetics of Ca dissolution for various particle size fractions of ground steel slag and concrete were measured in batch experiments. The majority of available Ca was found to dissolve on a time scale of hours, which was taken to be sufficiently fast for use in an industrial process. An overview of the management options for steel slag and concrete waste is presented, which indicates how their use for carbon sequestration might be integrated into existing industrial processes. Use of the materials in a carbon sequestration scheme does not preclude subsequent use and is likely to add value by removing the undesirable qualities of water absorption and expansion from the products. Finally, an example scheme is presented which could be built and operated with current technology to sequester CO2 with steel slag or concrete waste. Numerical models and simple calculations are used to establish the feasibility and estimate the operating parameters of the scheme. The operating cost is estimated to be US$8/t-CO2 sequestered. The scheme would be important as an early application of technology for capturing CO2 directly from ambient air

  20. Carbon Sequestration Potential in Aboveground Biomass of Hybrid Eucalyptus Plantation Forest

    Directory of Open Access Journals (Sweden)

    Siti Latifah

    2013-04-01

    Full Text Available Forests are a significant part of the global carbon cycle. Forests sequester carbon by conducting photosynthesis, which is the process of converting light energy to chemical energy and storing it in the chemical bonds of sugar. Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.  The present investigation was carried out to determine carbon sequestration potential of hybrid Eucalyptus. This study was conducted primarily to develop a prediction model of carbon storage capacity for plantation forest of hybrid Eucalyptus in Aek Nauli, Simalungun District, North Sumatera. Models were tested and assessed for statistical validity and accuracy in predicting biomass and carbon, based on determination coefficient (R and correlation coefficient (r, aggregative deviation percentage (AgD, and the average deviation percentage (AvD. The best general model to estimate the biomass of hybrid Eucalyptus was Y = 1351,09x^0,876. e^(0,094.  Results showed that hybrid Eucalyptus had an average above-ground biomass in year 0 (the land without the eucalyptus trees up to year 3 as large as 1.36, 11.56, 43.18, and 63.84 t ha. The carbon content of hybrid Eucalyptus were 0.61, 5.2, 19.43 t^(-1, and 28,73  t^(-1 C ha while the carbon sequestration potential were 2.23, 19.08, 71.31, and 105.43 t^(-1 CO  ha^(-1 respectively.Keywords: biomass, carbon stock, model, hybrid Eucalyptus, plantation forest

  1. Hydroxycholesterols in serum from hypercholesterolaemic patients with and without bile acid sequestrant therapy.

    Science.gov (United States)

    van Doormaal, J J; Smit, N; Koopman, B J; van der Molen, J C; Wolthers, B G; Doorenbos, H

    1989-05-31

    To assess the effect of bile acid sequestrant therapy on bile acid precursors in plasma, we determined hydroxycholesterols in serum from patients with primary hypercholesterolaemia. Compared with a group of 5 male and 12 female patients without any lipid-lowering drug therapy, which has normal to slightly elevated 7 alpha-hydroxycholesterol, normal 7 beta-hydroxycholesterol and high normal to elevated 26-hydroxycholesterol levels, a group of 5 male and 9 female patients, using colestipol had higher 7 alpha-hydroxycholesterol without overlap, and higher 7 beta-hydroxycholesterol levels, but similar levels of 26-hydroxycholesterol. In the latter group, the ratio between 7 alpha-hydroxycholesterol and total cholesterol in serum was also higher without overlap. Both groups did not differ for age, body weight, body mass index and serum lipid levels. In the group of patients without lipid-lowering drug therapy, 7 alpha-hydroxycholesterol correlated positively with total and low-densitylipoprotein cholesterol, 7 beta-hydroxycholesterol negatively with body weight and body mass index, and 26-hydroxycholesterol positively with body weight. In both groups, 7 alpha-hydroxycholesterol correlated positively with 7 beta-hydroxycholesterol. These results suggest that (1) bile acid sequestrants enhance bile acid synthesis via the 7 alpha-hydroxylation but not via the 26-hydroxylation pathway, (2) serum 7 alpha-hydroxycholesterol level and the ratio between this hydroxycholesterol and total cholesterol in serum might be suitable parameters to check intake of bile acid sequestrants irrespective of dose, and (3) 7 beta-hydroxycholesterol is unlikely to be the result of cholesterol auto-oxidation in vitro.

  2. A feasibility study of geological CO2 sequestration in the Ordos Basin, China

    Science.gov (United States)

    Jiao, Z.; Surdam, R.C.; Zhou, L.; Stauffer, P.H.; Luo, T.

    2011-01-01

    The Shaanxi Province/Wyoming CCS Partnership (supported by DOE NETL) aims to store commercial quantities of CO2 safely and permanently in the Ordovician Majiagou Formation in the northern Ordos Basin, Shaanxi Province, China. This objective is imperative because at present, six coal-to-liquid facilities in Shaanxi Province are capturing and venting significant quantities of CO2. The Wyoming State Geological Survey and the Shaanxi Provincial Institute of Energy Resource and Chemical Engineering conducted a feasibility study to determine the potential for geological CO2 sequestration in the northern Ordos Basin near Yulin. The Shaanbei Slope of the Ordos Basin is a huge monoclinal structure with a high-priority sequestration reservoir (Majiagou Formation) that lies beneath a 2,000+ meter-thick sequence of Mesozoic rocks containing a multitude of lowpermeability lithologies. The targeted Ordovician Majiagou Formation in the location of interest is more than 700 meters thick. The carbonate reservoir is located at depths where pressures and temperatures are well above the supercritical point of CO2. The targeted reservoir contains high-salinity brines (20,000-50,000 ppm) that have little or no economic value. The targeted reservoir is continuous as inferred from well logs, and cores show that porosity ranges from 1 to 15% with average measured porosity of 8%, and that permeability ranges from 1-35 md. This paper focuses on calculations that will help evaluate the capacity estimates through the use of high-resolution multiphase numerical simulation models, as well as a more simple volumetric approach. The preliminary simulation results show that the Ordovician Majiagou Formation in the Ordos Basin has excellent potential for geological CO2 sequestration and could store the CO2 currently emitted by coal-to-liquid facilities in Shaanxi Province for hundreds of years (i.e., 9 Mt/year CO2; 450 Mt over a 50-year period at one injection site). ?? 2011 Published by Elsevier Ltd.

  3. Recovery Act: Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Domenico

    2013-05-31

    The main objective of this project is to provide training opportunities for two graduate students in order to improve the human capital and skills required for implementing and deploying carbon capture and sequestration (CCS) technologies. The graduate student effort will be geared towards the formulation and implementation of an integrated simulation-optimization framework to provide a rigorous scientific support to the design CCS systems that, for any given site: (a) maximize the amount of carbon storage; (b) minimize the total cost associated with the CCS project; (c) minimize the risk of CO2 upward leakage from injected formations. The framework will stem from a combination of data obtained from geophysical investigations, a multiphase flow model, and a stochastic multi-objective optimization algorithm. The methodology will rely on a geostatistical approach to generate ensembles of scenarios of the parameters that are expected to have large sensitivities and uncertainties on the model response and thus on the risk assessment, in particular the permeability properties of the injected formation and its cap rock. The safety theme will be addressed quantitatively by including the risk of CO2 upward leakage from the injected formations as one the objectives that should be minimized in the optimization problem. The research performed under this grant is significant to academic researchers and professionals weighing the benefits, costs, and risks of CO2 sequestration. Project managers in initial planning stages of CCS projects will be able to generate optimal tradeoff surfaces and with corresponding injection plans for potential sequestration sites leading to cost efficient preliminary project planning. In addition, uncertainties concerning CCS have been researched. Uncertainty topics included Uncertainty Analysis of Continuity of Geological Confining Units using Categorical Indicator Kriging (CIK) and the Influence of Uncertain Parameters on the Leakage of CO2 to

  4. Variation of soil fertility and carbon sequestration by planting Hevea brasiliensis in Hainan Island, China

    Institute of Scientific and Technical Information of China (English)

    CHENG Chun-man; WANG Ru-song; JIANG Ju-sheng

    2007-01-01

    The development of rubber industry depends on the sustainable management of rubber plantation.To evaluate the environmental effects of planting Hevea brasiliensis on a subsystem of tropical forest ecosystem,the variation of soil fertility and carbon sequestration under rubber plantation within 30-year life period were investigated in Hainan Island.Results showed that(1)with the increase of stand age of rubber plantation.soil fertility decreased all along.From 1954 to 1995,soil organic matter,total N,available K and available P decreased by 48.2%.54.1%.56.7%and 64.1%,respectively.(2)If the complete return of litters was considered without additional fertilizer application to the soil of the rubber plantations,the consumption periods for P,N,K,Mg were only 825 years,329 years,94 years and 65 years.respectively.To improve soil fertility iS essential for rubber plantation development.(3)The C sequestration of rubber trees per hectare accounts for 272.08 t wimin 30-year life period and 57.91%of them was fixed in 1itters.In comparison with C sequestration by rain forest(234-305 t/hm2)and by secondary rain forest(150.203 t/hm2),rubber forest has more potentials for C fixation.On the base of above results.the following measures would benefit the maintenance of soil fertility and the development of rubber industry,including applying fertilizer to maintain the balance of soil nutrients,intercropping leguminous plant to improve soil fertility,reducing the collection of litters,optimizing soil properties to improve element P availability such as applying CaCO3.The information gathered from the study can be used as baseline data for the sustainable management of rubber plantation elsewhere.

  5. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical

  6. Limits to the potential of bio-fuels and bio-sequestration of carbon

    International Nuclear Information System (INIS)

    This document examines bio-physical limits of bio-fuels and bio-sequestration of carbon by examining available solar radiation and observed efficiencies with which natural ecosystems and agricultural systems convert that energy to biomass. It compares these energy/carbon exchanges with national levels of energy use and carbon emissions for Australia, Brazil, China, Japan, Republic of Korea, New Zealand, Papua New Guinea, Singapore, Sweden, United Kingdom and United States. Globally primary energy consumption (related carbon emissions) is currently equivalent to ∼0.06% of the incident solar energy, and 43% of the energy (carbon) captured by photosynthesis. The nations fall into three categories. Those with primary energy consumption that is: 1–10% (Japan, Korea and Singapore); ∼0.1% (China, UK and the US) and; 0.1–0.01% (Australia, Brazil, Papua New Guinea, New Zealand and Sweden) of incident solar radiation. The percentage of energy captured in biomass follows this pattern, but generally lower by ∼3 orders of magnitude. The energy content of traded wheat, corn and rice represents conversion efficiencies of solar radiation of 0.08–0.17% and for sugar close to 1%, ignoring energy use in production and conversion of biomass to fuels. The study implies that bio-fuels or bio-sequestration can only be a small part of an inclusive portfolio of actions towards a low carbon future and minimised net emissions of carbon to the atmosphere. - Highlights: • Global energy consumption is ∼0.06% of solar; 43% of net primary production. • 11 nations studied fall into 3 groups: consumption/solar=1–10%; ∼0.1%; 0.1–0.01%. • % of energy captured in biomass is lower by ∼3 orders of magnitude. • Crops and natural ecosystems capture 0.1–0.3% and sugar 1% of solar energy. • Significant bio-energy/carbon sequestration via biomass is unrealistic

  7. Using Silviculture to Influence Carbon Sequestration in Southern Appalachian Spruce-Fir Forests

    Directory of Open Access Journals (Sweden)

    Patrick T. Moore

    2012-06-01

    Full Text Available Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled. We explicitly considered C stored in standing forest stocks and the fate of forest products derived from harvesting. Over a 100-year simulation period the even-aged scenario (250 Mg C ha1 outperformed the no-action scenario (241 Mg C ha1 in total carbon (TC sequestered. The uneven-aged scenario approached 220 Mg C ha1, but did not outperform the no-action scenario within the simulation period. While the average annual change in C (AAC of the no-action scenario approached zero, or carbon neutral, during the simulation, both the even-aged and uneven-aged scenarios surpassed the no-action by year 30 and maintained positive AAC throughout the 100-year simulation. This study demonstrates that silvicultural treatment of forest stands can increase potential C storage, but that careful consideration of: (1 accounting method (i.e., TC versus AAC; (2 fate of harvested products and; (3 length of the planning horizon (e.g., 100 years will strongly influence the evaluation of C sequestration.

  8. Carbon stocks and soil sequestration rates of riverine mangroves and freshwater wetlands

    Science.gov (United States)

    Adame, M. F.; Santini, N. S.; Tovilla, C.; Vázquez-Lule, A.; Castro, L.

    2015-01-01

    Deforestation and degradation of wetlands are important causes of carbon dioxide emissions to the atmosphere. Accurate measurements of carbon (C) stocks and sequestration rates are needed for incorporating wetlands into conservation and restoration programs with the aim for preventing carbon emissions. Here, we assessed whole ecosystem C stocks (trees, soil and downed wood) and soil N stocks of riverine wetlands (mangroves, marshes and peat swamps) within La Encrucijada Biosphere Reserve in the Pacific coast of Mexico. We also estimated soil C sequestration rates of mangroves on the basis of soil accumulation. We hypothesized that riverine wetlands have large C stocks, and that upland mangroves have larger C and soil N stocks compared to lowland mangroves. Riverine wetlands had large C stocks with a mean of 784.5 ± 73.5 Mg C ha-1 for mangroves, 722.2 ± 83.4 Mg C ha-1 for peat swamps, and 336.5 ± 38.3 Mg C ha-1 for marshes. C stocks and soil N stocks were in general larger for upland (833.0 ± 7.2 Mg C ha-1; 26.4 ± 0.5 Mg N ha-1) compared to lowland mangroves (659.5 ± 18.6 Mg C ha-1; 13.8 ± 2.0 Mg N ha-1). Soil C sequestration values were 1.3 ± 0.2 Mg C ha-1 yr-1. The Reserve stores 32.5 Mtons of C or 119.3 Mtons of CO2, with mangroves sequestering (via soil accumulation) 27 762 ± 0.5 Mg C ha-1 every year.

  9. Carbon stocks and soil sequestration rates of riverine mangroves and freshwater wetlands

    Directory of Open Access Journals (Sweden)

    M. F. Adame

    2015-01-01

    Full Text Available Deforestation and degradation of wetlands are important causes of carbon dioxide emissions to the atmosphere. Accurate measurements of carbon (C stocks and sequestration rates are needed for incorporating wetlands into conservation and restoration programs with the aim for preventing carbon emissions. Here, we assessed whole ecosystem C stocks (trees, soil and downed wood and soil N stocks of riverine wetlands (mangroves, marshes and peat swamps within La Encrucijada Biosphere Reserve in the Pacific coast of Mexico. We also estimated soil C sequestration rates of mangroves on the basis of soil accumulation. We hypothesized that riverine wetlands have large C stocks, and that upland mangroves have larger C and soil N stocks compared to lowland mangroves. Riverine wetlands had large C stocks with a mean of 784.5 ± 73.5 Mg C ha-1 for mangroves, 722.2 ± 83.4 Mg C ha-1 for peat swamps, and 336.5 ± 38.3 Mg C ha-1 for marshes. C stocks and soil N stocks were in general larger for upland (833.0 ± 7.2 Mg C ha-1; 26.4 ± 0.5 Mg N ha-1 compared to lowland mangroves (659.5 ± 18.6 Mg C ha-1; 13.8 ± 2.0 Mg N ha-1. Soil C sequestration values were 1.3 ± 0.2 Mg C ha-1 yr-1. The Reserve stores 32.5 Mtons of C or 119.3 Mtons of CO2, with mangroves sequestering (via soil accumulation 27 762 ± 0.5 Mg C ha-1 every year.

  10. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean

    OpenAIRE

    Kennedy, Martin J.; Wagner, Thomas

    2011-01-01

    The majority of carbon sequestration at the Earth’s surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m2 g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% ...

  11. A Review of CO2 Sequestration Projects and Application in China

    OpenAIRE

    Yong Tang; Ruizhi Yang; Xiaoqiang Bian

    2014-01-01

    In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission ...

  12. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Repasky, Kevin [Montana State Univ., Bozeman, MT (United States)

    2014-02-01

    A fiber sensor array for sub-surface CO2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO2} absorption features where a transmission measurement is made allowing the CO2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO2/day began on July 10, 2012. The elevated subsurface CO2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project

  13. The Potential for Triggered Seismicity Associated With Geologic Sequestration of CO2 in Saline Aquifers (Invited)

    Science.gov (United States)

    Zoback, M. D.

    2010-12-01

    It is well known that for geologic sequestration of CO2 to play a significant role in greenhouse gas reduction it must operate at enormous scale. (Pacala and Socolow, Science 2004) pointed to a number options that could lead, by mid-century, to stabilization of CO2 in the atmosphere at about 550 ppm (roughly twice pre-industrial levels). For geologic sequestration of CO2 to play a significant role in a global strategy for greenhouse gas reduction, it must account for about a billion tons of carbon per year - about the same mass as total annual global oil production. A number of reports have addressed the expense associated with such an undertaking. In addition to the high capital and operating costs associated with equipping thousands of industrial plants with CO2 separation and capture equipment (coal burning power plants, refineries, cement plants, etc.), the transport, injection and long-term monitoring costs associated with large scale CO2 sequestration are formidable. Beyond economics, there is a potentially serious geological issue that threatens the viability of large scale CO2 sequestration which may not be technically solvable, at any cost - the likelihood that injection of enormous volumes of CO2 into the subsurface will trigger intraplate earthquakes. A number of lines of evidence indicate that to first-order, the Earth's brittle crust, even in intraplate regions, is in a state of frictional failure equilibrium. Earthquakes occur almost everywhere in intraplate areas around the world in response to regional plate-driving forces. At any given intraplate site, expected natural earthquakes that might be small enough and infrequent enough that it is safe for critical facilities such as nuclear power plants to operate for periods on the order of 50-100 years. Because there have been so many documented cases where fluid injection has disturbed the frictional-equilibrium of the crust and triggered earthquakes almost always relatively small. While the seismic

  14. Effective CO2 sequestration monitoring using joint inversion result of seismic and electromagnetic data

    Science.gov (United States)

    Noh, K.; Jeong, S.; Seol, S. J.; Byun, J.; Kwon, T.

    2015-12-01

    Man-made carbon dioxide (CO2) released into the atmosphere is a significant contributor to the greenhouse gas effect and related global warming. Sequestration of CO2 into saline aquifers has been proposed as one of the most practical options of all geological sequestration possibilities. During CO2 geological sequestration, monitoring is indispensable to delineate the change of CO2 saturation and migration of CO2 in the subsurface. Especially, monitoring of CO2 saturation in aquifers provides useful information for determining amount of injected CO2. Seismic inversion can provide the migration of CO2 plume with high resolution because velocity is reduced when CO2 replaces the pore fluid during CO2 injection. However, the estimation of CO2 saturation using the seismic method is difficult due to the lower sensitivity of the velocity to the saturation when the CO2 saturation up to 20%. On the other hand, marine controlled-source EM (mCSEM) inversion is sensitive to the resistivity changes resulting from variations in CO2 saturation, even though it has poor resolution than seismic method. In this study, we proposed an effective CO2 sequestration monitoring method using joint inversion of seismic and mCSEM data based on a cross-gradient constraint. The method was tested with realistic CO2 injection models in a deep brine aquifer beneath a shallow sea which is selected with consideration for the access convenience for the installation of source and receiver and an environmental safety. Resistivity images of CO2 plume by the proposed method for different CO2 injection stages have been significantly improved over those obtained from individual EM inversion. In addition, we could estimate a reliable CO2 saturation by rock physics model (RPM) using the P-wave velocity and the improved resistivity. The proposed method is a basis of three-dimensional estimation of reservoir parameters such as porosity and fluid saturation, and the method can be also applied for detecting a

  15. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  16. Congenital bronchial atresia coexistent with intralobar pulmonary sequestration: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young Min; Ku, Ja Hong; Lee, Dong Keun; Chung, Kyung Ho; Kim, Chong Soo; Sohn, Myung Hee; Choi, Ki Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    1995-02-15

    Bronchial atresia coexistent with intralobar pulmonary sequestration is so rare that only two cases have been reported in the literature. We report a case of congential bronchial atresia coexistent with intralobar pulmonary sequestation in a 51-year-old woman. Computed tomography showed the branching mass with hyperinflation of adjacent pulmonary parenchyma in the medial segment of the right middle lobe and a large thin-walled cystic mass with air-fluid levels in the medial basal segment of the right lower lobe. Selective inferior phrenic arteriography showed two aberrant arteries supplying the large cystic mass in the right lower lobe. The venous drainage was through the right pulmonary vein.

  17. Unified model for sorption, sequestration and degradation in soils and sediments

    DEFF Research Database (Denmark)

    Trapp, Stefan; Mayer, Philipp; Rein, Arno

    kinetics minus decay (maintenance) rate, degradation is due to bacterial maintenance or growth. The evolving non-linear differential equations are solved numerically. The model is formulated in activity notation and implemented in Matlab. Comparison to the analytical Best equation gave (for suitable...... scenarios) full agreement, which is a verification of the model structure, mathematics and implementation of the numerical model. Validation by comparison to experimental studies is underway (see Rein et al., this session). The unified model allows the simulation of sorption, sequestration, bacterial growth...

  18. Unified model for sorption, sequestration and degradation in soils and sediments

    DEFF Research Database (Denmark)

    Trapp, Stefan; Mayer, P. M.; Rein, Arno

    2011-01-01

    kinetics minus decay (maintenance) rate, degradation is due to bacterial maintenance or growth. The evolving non-linear differential equations are solved numerically. The model is formulated in activity notation and implemented in Matlab. Comparison to the analytical Best equation gave (for suitable...... scenarios) full agreement, which is a verification of the model structure, mathematics and implementation of the numerical model. Validation by comparison to experimental studies is underway (see Rein et al., this session). The unified model allows the simulation of sorption, sequestration, bacterial growth...

  19. Oak (Quercus Floribunda): A Prominent Indigenous Multipurpose Tree for Carbon Storage and Sequestration Potential

    OpenAIRE

    Pandey, K. K.; T. A. Bhosale; Awasthi, A. K.; Garima Gupta; Deepak Maurya

    2015-01-01

    A dynamic growth model (CO2FIX) has been used for estimating the carbon sequestration potential of Oak (Quercus floribunda), an indigenous multipurpose tree used for timber, fuel wood, fiber and specially fodder in addition to its ability of soil binder. The present study has been carried out in the campus of V.C.S.G. College of Horticulture, U.U.H.F., Bharsar, Pauri Garhwal, Uttarakhand. It is capable of thriving on snow and heavy rainfall condition. CO2FIX was parameterized for a simulation...

  20. Conservation and sequestration of carbon: The potential of forest and agroforest management practices

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.K.; Winjum, J.K.; Schroeder, P.E.

    1993-01-01

    Forests play a major role in the Earth's carbon cycle through assimilation, storage, and emission of CO2. Establishment and management of boreal, temperate, and tropical forest and agroforest systems could potentially enhance sequestration of carbon in the terrestrial biosphere. A biologic and economic analysis of forest establishment and management options from 94 nations revealed that forestation, agroforestry, and silviculture could be employed to conserve and sequester one gigaton (Gt) of carbon annually over a 50 year period. The marginal cost of implementing these options to sequester 55 Gt of carbon would be approximately $10/ton.