WorldWideScience

Sample records for acclimated complex source

  1. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Varese Giovanna C

    2010-02-01

    Full Text Available Abstract Background The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure via enrichment (i.e., serial growth transfers on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. Results In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms on Diesel (G1 and HiQ Diesel (G2, respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30°C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20°C for several months. Conclusions ENZ-G1 and ENZ-G2 are very similar highly enriched consortia

  2. Intensification of the aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs through bioaugmentation with a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Fava Fabio

    2006-03-01

    Full Text Available Abstract Background The biotreatability of actual-site polychlorinated biphenyl (PCB-contaminated soils is often limited by their poor content of autochthonous pollutant-degrading microorganisms. In such cases, inoculation might be the solution for a successful bioremediation. Some pure and mixed cultures of characterized PCB degrading bacteria have been tested to this purpose. However, several failures have been recorded mostly due to the inability of inoculated microbes to compete with autochthonous microflora and to face the toxicity and the scarcity of nutrients occurring in the contaminated biotope. Complex microbial systems, such as compost or sludge, normally consisting of a large variety of robust microorganisms and essential nutrients, would have better chances to succeed in colonizing degraded contaminated soils. However, such sources of microorganisms have been poorly applied in soil bioremediation and in particular in the biotreatment of soil with PCBs. Thus, in this study the effects of Enzyveba, i.e. a consortium of non-adapted microorganisms developed from composted material, on the slurry- and solid-phase aerobic bioremediation of an actual-site, aged PCB-contaminated soil were studied. Results A slow and only partial biodegradation of low-chlorinated biphenyls, along with a moderate depletion of initial soil ecotoxicity, were observed in the not-inoculated reactors. Enzyveba significantly increased the availability and the persistence of aerobic PCB- and chlorobenzoic acid-degrading cultivable bacteria in the bioreactors, in particular during the earlier phase of treatment. It also markedly enhanced PCB-biodegradation rate and extent (from 50 to 100% as well as the final soil detoxification, in particular under slurry-phase conditions. Taken together, data obtained suggest that Enzyveba enhanced the biotreatability of the selected soil by providing exogenous bacteria and fungi able to remove inhibitory or toxic intermediates of

  3. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Ferro Orozco, A.M., E-mail: mferro@cidca.org.ar [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA) CCT La Plata CONICET - Fac. de Cs. Exactas, UNLP. 47 y 116 (B1900AJJ) La Plata (Argentina); Contreras, E.M.; Zaritzky, N.E. [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA) CCT La Plata CONICET - Fac. de Cs. Exactas, UNLP. 47 y 116 (B1900AJJ) La Plata (Argentina); Fac. de Ingenieria, UNLP. 47 y 1 (B1900AJJ) - La Plata (Argentina)

    2010-04-15

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (q{sub Cr}) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey {approx} lactose > glucose > citrate > acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  4. Segregating complex sound sources through temporal coherence.

    Directory of Open Access Journals (Sweden)

    Lakshmi Krishnan

    2014-12-01

    Full Text Available A new approach for the segregation of monaural sound mixtures is presented based on the principle of temporal coherence and using auditory cortical representations. Temporal coherence is the notion that perceived sources emit coherently modulated features that evoke highly-coincident neural response patterns. By clustering the feature channels with coincident responses and reconstructing their input, one may segregate the underlying source from the simultaneously interfering signals that are uncorrelated with it. The proposed algorithm requires no prior information or training on the sources. It can, however, gracefully incorporate cognitive functions and influences such as memories of a target source or attention to a specific set of its attributes so as to segregate it from its background. Aside from its unusual structure and computational innovations, the proposed model provides testable hypotheses of the physiological mechanisms of this ubiquitous and remarkable perceptual ability, and of its psychophysical manifestations in navigating complex sensory environments.

  5. SOURCES OF FINANCING INDUSTRIAL COMPLEX ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Anzhela Zakhitovna Namitulina

    2016-01-01

    Full Text Available Subject article is relevant because It is devoted to description of sources of financing of defense enterprises and peculiarities of selection of sources of financing enterprises of the military-industrial complex. In the first part of the article provides an overview of the financial resources and types of funding organizations and enterprises. Description of modern methods of creating a climate for innovation, supporting innovative ideas, and domestic entrepreneurship. The second part of the article describes the direction, the form of financing for companies, taking into account the peculiarities of the development and operation of defense enterprises. The first phase of the study was to identify the main sources of financing for companies in difficult socio-economic conditions of the potential customer of defense products. The second phase of the study was to determine the ranking factors the use of different sources of funding and its impact on the development of enterprises. The presented research topic is particularly relevant in connection with an increase in the role of sources of financing development of the industry for the growth of innovation activity of enterprises. The urgency of acquiring those aspects of economic relations that with the financing of new projects enterprises of the defense-industrial complex, the financing of the state defense order. In today's economic environment has the need to address financial security of the defense-industrial complex, to attract new sources of funding, development of bank lending in the defense sector and the participation of banks in the financing of projects of the enterprises of the military-industrial complex. The processes of market transformation of enterprises of the military-industrial complex (MIC have acquired a special significance in relation to defining the role of these enterprises in the country and providing security to the complexity of their adaptation to market

  6. Seawater Acclimation of Spirulina

    Institute of Scientific and Technical Information of China (English)

    Shaochen GUAN; Yixuan LI; Gan WANG; Lang QIN; Yi ZHU; Yunbo LUO

    2012-01-01

    Abstract [Objective] This study aimed to seek the cultivation method for Spirulina with seawater. [Method] Spirulina was habituated culture progressively with pre- pared seawater acclimation solution. The morphological changes of Spirulina were observed and its biochemical indicators were measured. [Result] A new algae species was obtained, which had better stability and greater average length than Spirulina in fresh water. Compared with the Spirulina in fresh water, the new al- gae species showed no significant change in chlorophyll content, but a 62.8% in- crease in the concentration of phycocyanin. [Conclusion] The method could save resources and cost, which lays the foundation for large scale production and processing of Spirulina.

  7. Foliar temperature acclimation reduces simulated carbon sensitivity to climate

    Science.gov (United States)

    Smith, Nicholas G.; Malyshev, Sergey L.; Shevliakova, Elena; Kattge, Jens; Dukes, Jeffrey S.

    2016-04-01

    Plant photosynthesis and respiration are the largest carbon fluxes between the terrestrial biosphere and the atmosphere, and their parameterizations represent large sources of uncertainty in projections of land carbon uptake in Earth system models (ESMs). The incorporation of temperature acclimation of photosynthesis and foliar respiration, commonly observed processes, into ESMs has been proposed as a way to reduce this uncertainty. Here we show that, across 15 flux tower sites spanning multiple biomes at various locations worldwide (10° S-67° N), acclimation parameterizations improve a model's ability to reproduce observed net ecosystem exchange of CO2. This improvement is most notable in tropical biomes, where photosynthetic acclimation increased model performance by 36%. The consequences of acclimation for simulated terrestrial carbon uptake depend on the process, region and time period evaluated. Globally, including acclimation has a net effect of increasing carbon assimilation and storage, an effect that diminishes with time, but persists well into the future. Our results suggest that land models omitting foliar temperature acclimation are likely to overestimate the temperature sensitivity of terrestrial carbon exchange, thus biasing projections of future carbon storage and estimates of policy indicators such as the transient climate response to cumulative carbon emissions.

  8. Independent waves in complex source point theory.

    Science.gov (United States)

    Seshadri, S R

    2007-11-01

    The full-wave generalization of the scalar Gaussian paraxial beam is determined by an analytical continuation of the field of a point source for the Helmholtz equation. The regions of validity of the analytically continued fields are investigated for the outgoing and the incoming waves. The two independent wave functions valid for the two half-spaces separating the secondary source plane are deduced.

  9. Stochastic electromagnetic radiation of complex sources

    NARCIS (Netherlands)

    Naus, H.W.L.

    2007-01-01

    The emission of electromagnetic radiation by localized complex electric charge and current distributions is studied. A statistical formalism in terms of general dynamical multipole fields is developed. The appearing coefficients are treated as stochastic variables. Hereby as much as possible a prior

  10. 多轮次胁迫驯化及多因子复合筛选丁醇高产菌%Multi-repeat stress acclimation and butanol high-yielding strain screening by multi-factor complex medium

    Institute of Scientific and Technical Information of China (English)

    刘小波; 罗玮; 顾秋亚; 余晓斌

    2012-01-01

    [Objective] The purpose of this study was to isolate a butanol-producing strain from the soil of corn field in Shiquan County, Shaanxi Province, China, and to improve its butanol tolerance and butanol yield.[Methods] Using the multi-factor complex screening and the treatment of butanol stress acclimation, the strain with a high yield and butanol tolerance was obtained.[Results] The results showed that through several batches of acclimation and screening, the mutant T64 was derived from isolated wild-type strain D64, its butanol tolerance was significantly improved and could grow well in the complex screening medium containing 20 g butanol/L.It produced 21.8 g/L total solvent (acetone, butanol, ethanol) and a butanol yield reached 15.18 g/L using 7% corn mash as fermentation medium, which was higher than that of the wild-type strain D64 (13.35 g/L).[Conclusion] In conclusion, the designed multi-factor complex screening is more effective than the mono-factor screening for obtaining high-producing butanol strain.In addition, the stress acclimation of increasing butanol concentration in long term provides new ideas to research the tolerance of butanol.%[目的]从陕西省石泉县玉米地土壤中分离获得一株产丁醇菌株并提高其丁醇耐受性和丁醇产量.[方法]采用自行设计的多因子复合筛选方法和丁醇胁迫驯化处理,在获得丁醇高产菌株的同时提高菌株的丁醇耐受性.[结果]野生菌株D64经多轮次丁醇胁迫驯化处理和多因子复合筛选,分离获得突变株T64,其丁醇耐受性明显提高,能在丁醇浓度为20 g/L的复合筛选培养基上正常生长,发酵7%玉米醪丁醇产量由13.35 g/L提高到15.18 g/L,总溶剂(丙酮、丁醇、乙醇)达到21.8 g/L.[结论]采用长时间且丁醇浓度呈梯度渐进增加的胁迫驯化方式,可使菌种在丁醇的环境中不断进化并有效地提高菌株对丁醇的耐受性.多因子复合筛选方法较其他单一因子

  11. A novel technology for quick acclimation of an anaerobic microbial consortia used for biodegrading teraphthalic acid(TA)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The seed sludge originated from a methane fermentation reactor was enriched and acclimated with TA as sole carbon source under nitrate respiration mode first for 6 week, and then can be turned to methane fermentation conditions. After 6 weeks processing, the specific rate acclimation. Aftera total of 90 days for the enrichment and acclimation, the fermentative bacteria which originally existed in the seed sludge nearly disappeared, and instead of them, the TA reductive and cleaving bacteria group was formed in the new consortia, which was confirmed by the MPN counts and roll tube counts. Compared with the control experiment, the acclimation period can be shortened by about 50%.

  12. Source speciation resolving hydrochemical complexity of coastal aquifers.

    Science.gov (United States)

    Sonkamble, Sahebrao; Chandra, Subash; Ahmed, Shakeel; Rangarajan, R

    2014-01-15

    There is a growing concern of seawater intrusion to freshwater aquifers due to groundwater overexploitation in the eastern coastal belt of Southern India. The problem becomes complex in the regions where industrial effluents are also contaminating the freshwater aquifers. In order to understand the hydrochemical complexity of the system, topographic elevation, static water level measurements, major ion chemistry, ionic cross plots, water type contours and factor analysis were applied for 144 groundwater samples of shallow and deep sources from Quaternary and Tertiary coastal aquifers, located within the industrial zone of 25 km(2) area near Cuddalore, Southern India. The ionic cross plots indicates dissolution of halite minerals from marine sources and seawater mixing into inland aquifers up to the level of 9.3%. The factor analysis explains three significant factors totaling 86.3% of cumulative sample variance which includes varying contribution from marine, industrial effluent and freshwater sources.

  13. Locating the source of spreading in complex networks

    CERN Document Server

    Shen, Zhesi; Fan, Ying; Di, Zengru; Wang, Wen-Xu; Stanley, H Eugene

    2015-01-01

    Locating the sources that trigger a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network, such as the time at which each individual is infected in a large population. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observers. Here we develop an efficient algorithm to locate the source of a diffusion-like process and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insof...

  14. Diatom proteomics reveals unique acclimation strategies to mitigate Fe limitation.

    Directory of Open Access Journals (Sweden)

    Brook L Nunn

    acclimated (i.e., nitrate and nitrite transporters, Photosystem II and Photosystem I complexes. Acclimation of the diatom to the desired Fe conditions and the comprehensive proteomic approach provides a more robust interpretation of this dynamic proteome than previous studies.

  15. Copper complexation in wet precipitation: Impact of different ligand sources

    Science.gov (United States)

    Karavoltsos, Sotirios; Sakellari, Aikaterini; Makarona, Anna; Plavšić, Marta; Ampatzoglou, Dimitrios; Bakeas, Evangelos; Dassenakis, Manos; Scoullos, Michael

    2013-12-01

    Cu complexation in wet precipitation samples was measured by the method of differential pulse anodic stripping voltammetry (DPASV), which presumed the existence of 1:1 Cu ion-ligand complexes. The wet precipitation samples were collected throughout the rainy period (September 2011-May 2012) from four sampling stations of central and southern Greece, two of which were located in urban coastal areas of its mainland (Athens, n = 24; Elefsina, n = 11) and the other two on the island of Crete (Heraklio, n = 26; Ligortynos, n = 12), comprising different features concerning population density, urban/rural/industrial character and influence from the sea. Total Cu (TCu), total organic and inorganic carbon (TOC, IC), pH, conductivity, several inorganic macro-constituents (Cl-, Br-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+), n-alkanes and polycyclic aromatic hydrocarbons (PAHs) were determined for better characterization of the predominant sources and influences. Significant complexation of Cu ions was determined in almost all wet precipitation samples examined, with the apparent complexing capacity of Cu ions in unfiltered samples ranging between 0.07 and 1.9 μM and apparent stability constants (logKapp) in the range 6.5-9.6, which corresponds to values comparable to those deriving from a limited number of studies having a common ‘detection window'. The percentage in the mass of TOC complexed with copper was up to 4%. Among ligands, sources of terrestrial origin appear to be of particular importance. In terrestrial sources, vegetation and anthropogenic emissions seem to have a prominent impact.

  16. Which sources of flavonoids: complex diets or dietary supplements?

    Science.gov (United States)

    Egert, Sarah; Rimbach, Gerald

    2011-01-01

    There is increasing interest in the potential health benefits of dietary flavonoids. Fruits and vegetables, tea, and cocoa are rich natural sources of flavonoids. Epidemiological studies have indicated that consumption of these foods is likely to be associated with a reduced risk of cardiovascular disease, but the etiology of this benefit is not yet clearly defined. Furthermore, in some acute interventions, a positive effect of tea and cocoa on vascular function has been reported. An alternative source of flavonoids is dietary supplements, which have become increasingly popular in the recent past. In this context, it needs to be critically evaluated whether vascular health-promoting and other positive properties of flavonoid-rich diets can be replaced by purified flavonoids as dietary supplements. Plant sources of flavonoids contain a complex mixture of secondary plant metabolites and not only flavonoids per se. This complex mixture of secondary plant metabolites cannot be simply exchanged by single purified compounds as dietary supplements. If flavonoids are given as dietary supplements, toxicity issues as well as nutrient drug interactions need to be taken into account. Purified flavonoids given in high doses as dietary supplements may affect trace element, folate, and vitamin C status. Furthermore, they may exhibit antithyroid and goitrogenic activities. In this review article, the available literature on the safety issues surrounding high dose supplemental flavonoid consumption has been summarized.

  17. Acclimation, adaptation, traits and trade-offs in plankton functional type models: reconciling terminology for biology and modelling

    DEFF Research Database (Denmark)

    Flynn, Kevin J.; St. John, Michael; Raven, John A.;

    2015-01-01

    ideally only be considered for describing intra-generational interactions; in applications between generations, and certainly between unrelated species, such concepts should be avoided. We suggest that systems biology approaches, through to complex adaptive/acclimative systems modelling, with explicit...

  18. Radiation of complex and noisy sources within enclosures

    Science.gov (United States)

    Gradoni, Gabriele; Creagh, Stephen; Tanner, Gregor

    Predicting the radiation of complex electromagnetic sources inside semi-open cavities and resonators with arbitrary geometry is a challenging topic both for physics and for engineering. We have exploited a Perron-Frobenius operator to propagate field-field correlation functions of complex and extended sources in free-space. The formula is based on a phase-space picture of the electromagnetic field, using the Wigner distribution function, and naturally captures evanescent as well as diffracted waves. This approach can be extended to study the propagation of correlation functions within cavities, with the ray-dynamical map given by the geometry of the cord connecting a point of the boundary to another. While ray methods provide an efficient way to predict average values of the correlation matrix elements, the use of random matrix theory approaches allows efficient characterisation of statistical fluctuations around these averages. Universal relations are derived and tested in the presence of dissipation for quantum maps and billiard systems. The use of this formalism is discussed in the contexts of open systems with surface roughness. The theory and achieved results are of interest in the simulation of next-generation of wireless communications. Work supported by the UK Engineering and Physical Sciences Research Council.

  19. Bacterial Acclimation Inside an Aqueous Battery.

    Directory of Open Access Journals (Sweden)

    Dexian Dong

    Full Text Available Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2 and 1.4-2.1 V. Bacterial addition within 1.0×10(10 cells mL(-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  20. Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater

    Science.gov (United States)

    Christensen, A.K.; Hiroi, J.; Schultz, E.T.; McCormick, S.D.

    2012-01-01

    The alewife (Alosa pseudoharengus) is a clupeid that undergoes larval and juvenile development in freshwater preceding marine habitation. The purpose of this study was to investigate osmoregulatory mechanisms in alewives that permit homeostasis in different salinities. To this end, we measured physiological, branchial biochemical and cellular responses in juvenile alewives acclimated to freshwater (0.5p.p.t.) or seawater (35.0p.p.t.). Plasma chloride concentration was higher in seawater-acclimated than freshwater-acclimated individuals (141mmoll -1 vs 134mmoll -1), but the hematocrit remained unchanged. In seawateracclimated individuals, branchial Na +/K +-ATPase (NKA) activity was higher by 75%. Western blot analysis indicated that the abundance of the NKA subunit and a Na+/K+/2Cl- cotransporter (NKCC1) were greater in seawater-acclimated individuals by 40% and 200%, respectively. NKA and NKCC1 were localized on the basolateral surface and tubular network of ionocytes in both acclimation groups. Immunohistochemical labeling for the cystic fibrosis transmembrane conductance regulator (CFTR) was restricted to the apical crypt of ionocytes in seawater-acclimated individuals, whereas sodium/hydrogen exchanger 3 (NHE3) labeling was present on the apical surface of ionocytes in both acclimation groups. Ionocytes were concentrated on the trailing edge of the gill filament, evenly distributed along the proximal 75% of the filamental axis and reduced distally. Ionocyte size and number on the gill filament were not affected by salinity; however, the number of lamellar ionocytes was significantly lower in seawater-acclimated fish. Confocal z-series reconstructions revealed that mature ionocytes in seawater-acclimated alewives occurred in multicellular complexes. These complexes might reduce paracellular Na + resistance, hence facilitating Na+ extrusion in hypo-osmoregulating juvenile alewives after seaward migration. ?? 2012. Published by The Company of Biologists Ltd.

  1. Effects of copper, hypoxia and acute temperature shifts on mitochondrial oxidation in rainbow trout (Oncorhynchus mykiss) acclimated to warm temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Canada); Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Canada); Fast, Mark [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Canada); Siah, Ahmed [British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, British Columbia V9W 2C2 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Canada)

    2015-12-15

    Highlights: • Warm acclimation reduced the electron transport system (ETS) efficiency. • Warm acclimation altered the effects of acute temperature shift, hypoxia and Cu on ETS. • Warm acclimation increased thermal sensitivity of state 3 and reduced that of state 4. • Cu stimulated while hypoxia inhibited ETS respiratory activity. • Interactions of Cu and hypoxia on the ETS and plasma metabolites were antagonistic. - Abstract: Temperature fluctuations, hypoxia and metals pollution frequently occur simultaneously or sequentially in aquatic systems and their interactions may confound interpretation of their biological impacts. With a focus on energy homeostasis, the present study examined how warm acclimation influences the responses and interactions of acute temperature shift, hypoxia and copper (Cu) exposure in fish. Rainbow trout (Oncorhynchus mykiss) were acclimated to cold (11 °C; control) and warm (20 °C) temperature for 3 weeks followed by exposure to environmentally realistic levels of Cu and hypoxia for 24 h. Subsequently, mitochondrial electron transport system (ETS) respiratory activity supported by complexes I–IV (CI–IV), plasma metabolites and condition indices were measured. Warm acclimation reduced fish condition, induced aerobic metabolism and altered the responses of fish to acute temperature shift, hypoxia and Cu. Whereas warm acclimation decelerated the ETS and increased the sensitivity of maximal oxidation rates of the proximal (CI and II) complexes to acute temperature shift, it reduced the thermal sensitivity of state 4 (proton leak). Effects of Cu with and without hypoxia were variable depending on the acclimation status and functional index. Notably, Cu stimulated respiratory activity in the proximal ETS segments, while hypoxia was mostly inhibitory and minimized the stimulatory effect of Cu. The effects of Cu and hypoxia were modified by temperature and showed reciprocal antagonistic interaction on the ETS and plasma

  2. Deposition parameterizations for the Industrial Source Complex (ISC3) model

    Energy Technology Data Exchange (ETDEWEB)

    Wesely, Marvin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Doskey, Paul V. [Argonne National Lab. (ANL), Argonne, IL (United States); Shannon, J. D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2002-06-01

    Improved algorithms have been developed to simulate the dry and wet deposition of hazardous air pollutants (HAPs) with the Industrial Source Complex version 3 (ISC3) model system. The dry deposition velocities (concentrations divided by downward flux at a specified height) of the gaseous HAPs are modeled with algorithms adapted from existing dry deposition modules. The dry deposition velocities are described in a conventional resistance scheme, for which micrometeorological formulas are applied to describe the aerodynamic resistances above the surface. Pathways to uptake at the ground and in vegetative canopies are depicted with several resistances that are affected by variations in air temperature, humidity, solar irradiance, and soil moisture. The role of soil moisture variations in affecting the uptake of gases through vegetative plant leaf stomata is assessed with the relative available soil moisture, which is estimated with a rudimentary budget of soil moisture content. Some of the procedures and equations are simplified to be commensurate with the type and extent of information on atmospheric and surface conditions available to the ISC3 model system user. For example, standardized land use types and seasonal categories provide sets of resistances to uptake by various components of the surface. To describe the dry deposition of the large number of gaseous organic HAPS, a new technique based on laboratory study results and theoretical considerations has been developed providing a means of evaluating the role of lipid solubility in uptake by the waxy outer cuticle of vegetative plant leaves.

  3. Interferência de diferentes métodos de aclimatação na sobrevivência de pós-larvas de Litopenaeus vannamei (Boone, 1931 - DOI: 10.4025/actascibiolsci.v31i1.307 Survival of acclimated Litopenaeus vannamei postlarvae associated with acclimation method, time and water sources - DOI: 10.4025/actascibiolsci.v31i1.307

    Directory of Open Access Journals (Sweden)

    George Nilson Mendes

    2009-04-01

    Full Text Available Observou-se o impacto de três métodos de aclimatação na sobrevivência de PL10 de L. vannamei (choque direto, diluição gradativa e gotejamento, utilizando-se águas oligohalina e doce. Para verificar alterações estruturais nas brânquias das PLs aclimatadas por gotejamento, realizaram-se análises histopatológicas e histoquímicas. A correlação entre a sobrevivência, método e tempo de aclimatação e tipos de água foram analisados usando Modelos Lineares Generalizados (p The effects of different acclimation methods to freshwater and oligohalin water on L. vannamei postlarvae (PL10 survival and gills histologic and histochemical studies were analysed. Three methods of acclimation were used: direct shock, gradual diluition and dripping. Three General Linear Models and Stepwise process (p10 showed short primary filaments and rare secundary filaments. The PL16 had primary elongated filaments and secundary filaments reaching over the prolongament of the primary filament. The APS method showed a negative result and the Alcian Blue method showed positive reaction to acidglicoproteins and acidglicosaminoglicans in all postlarvae gills. The acclimation did not change the morphology of branchiae. Recommended time to acclimation of L. vannamei to freshwater was 48h by dripping and can be started at the PL10 stage.

  4. Progressive acclimation alters interaction between salinity and temperature in experimental Daphnia populations.

    Science.gov (United States)

    Loureiro, Cláudia; Cuco, Ana P; Claro, Maria Teresa; Santos, Joana I; Pedrosa, M Arminda; Gonçalves, Fernando; Castro, Bruno B

    2015-11-01

    Environmental stressors rarely act in isolation, giving rise to interacting environmental change scenarios. However, the impacts of such interactions on natural populations must consider the ability of organisms to adapt to environmental changes. The phenotypic adaptability of a Daphnia galeata clone to temperature rise and salinisation was investigated in this study, by evaluating its halotolerance at two different temperatures, along a short multigenerational acclimation scenario. Daphniids were acclimated to different temperatures (20°C and 25°C) and salinities (0gL(-1) and 1gL(-1), using NaCl as a proxy) in a fully crossed design. The objective was to understand whether acclimation to environmental stress (combinations of temperature and salinity) influenced the response to the latter exposure to these stressors. We hypothesize that acclimation to different temperature×salinity regimes should elicit an acclimation response of daphniids to saline stress or its interaction with temperature. Acute (survival time) and chronic (juvenile growth) halotolerance measures were obtained at discrete timings along the acclimation period (generations F1, F3 and F9). Overall, exposure temperature was the main determinant of the acute and chronic toxicity of NaCl: daphniid sensitivity (measured as the decrease of survival time or juvenile growth) was consistently higher at the highest temperature, irrespective of background conditions. However, this temperature-dependent effect was nullified after nine generations, but only when animals had been acclimated to both stressors (high salinity and high temperature). Such complex interaction scenarios should be taken in consideration in risk assessment practices.

  5. The temperature acclimation potential of tropical bryophytes.

    Science.gov (United States)

    Wagner, S; Zotz, G; Bader, M Y

    2014-01-01

    Bryophyte biomass and diversity in tropical moist forests decrease dramatically from higher altitudes towards the lowlands. High respiratory carbon losses at high temperatures may partly explain this pattern, if montane species are unable to acclimatise their metabolic rates to lowland temperatures. We transplanted ten bryophyte species from two altitudes (1200 and 500 m a.s.l.) to lower (warmer) altitudes (500 m and sea level) in Panama. We studied short-term temperature acclimation of CO2 exchange for 2.5 months, and survival and growth for 21 months following transplantation. Short-term acclimation did not occur, and on a longer time scale mortality was highest and growth lowest in the transplanted samples. A few transplanted samples of most species, however, survived the whole experiment and finished with growth rates similar to controls. This recovery of growth rate suggests temperature acclimation, in spite of no measurable metabolic changes in smaller random samples. This acclimation even compensated for shorter periods of CO2 uptake due to more rapid drying. Nevertheless, these species are not abundant in lowland forests, perhaps due to dispersal or establishment limitation. The apparent heterogeneity of the acclimation potential within species may allow populations to adapt locally and avoid being forced uphill under climatic warming.

  6. Complex source rate estimation for atmospheric transport and dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, L.L.

    1993-09-13

    The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate.

  7. Synthetic Source Inversion Tests with the Full Complexity of Earthquake Source Processes, Including Both Supershear Rupture and Slip Reactivation

    Science.gov (United States)

    Song, Seok Goo; Dalguer, Luis A.

    2017-03-01

    Recent studies in dynamic source modeling and kinematic source inversion show that earthquake rupture may contain greater complexity than we previously anticipated, including multiple slipping at a given point on a fault. Finite source inversion methods suffer from the nonuniqueness of solutions, and it may become more serious if we aim to resolve more complex rupture models. In this study, we perform synthetic inversion tests with dynamically generated complex rupture models, including both supershear rupture and slip reactivation, to understand the possibility of resolving complex rupture processes by inverting seismic waveform data. We adopt a linear source inversion method with multiple windows, allowing for slipping from the nucleation of rupture to the termination at all locations along a fault. We regularize the model space effectively in the Bayesian framework and perform multiple inversion tests by considering the effect of inaccurate Green's functions and station distributions. We also perform a spectral stability analysis. Our results show that it may be possible to resolve both a supershear rupture front and reactivated secondary slipping using the linear inversion method if those complex features are well separated from the main rupture and produce a fair amount of seismic energy. It may be desirable to assume the full complexity of an earthquake rupture when we first develop finite source models after a major event occurs and then assume a simple rupture model for stability if the estimated models do not show a clear pattern of complex rupture processes.

  8. Complex decision making as a source of infotainment

    NARCIS (Netherlands)

    I.A. Korthagen (Iris)

    2011-01-01

    textabstractAbstract In many policy processes nowadays a variety of actors is involved which results in complex decision making processes, since these different actors have various perspectives on the problem and the matching solutions. Such complex processes are difficult to grasp in short reports

  9. Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons.

    Directory of Open Access Journals (Sweden)

    Anneli Strobel

    Full Text Available Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen squamifrons, which share a similar ecology, but different habitat temperatures. After acclimation of L. squamifrons to 9°C and N. rossii to 7°C (normocapnic/hypercapnic, 0.2 kPa CO2/2000 ppm CO2 for 4-6 weeks, we compared the capacities of their mitochondrial respiratory complexes I (CI and II (CII, their P/O ratios (phosphorylation efficiency, proton leak capacities and mitochondrial membrane fatty acid compositions. Our results reveal reduced CII respiration rates in warm-acclimated L. squamifrons and cold hypercapnia-acclimated N. rossii. Generally, L. squamifrons displayed a greater ability to increase CI contribution during acute warming and after warm-acclimation than N. rossii. Membrane unsaturation was not altered by warm or hypercapnia-acclimation in both species, but membrane fatty acids of warm-acclimated L. squamifrons were less saturated than in warm normocapnia-/hypercapnia-acclimated N. rossii. Proton leak capacities were not affected by warm or hypercapnia-acclimation of N. rossii. We conclude that an acclimatory response of mitochondrial capacities may include higher thermal plasticity of CI supported by enhanced utilization of anaplerotic substrates (via oxidative decarboxylation reactions feeding into the citrate cycle. L. squamifrons possesses higher relative CI plasticities than N. rossii, which may facilitate the usage of energy efficient NADH-related substrates under conditions of elevated energy demand, possibly induced by ocean

  10. Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons.

    Science.gov (United States)

    Strobel, Anneli; Graeve, Martin; Poertner, Hans O; Mark, Felix C

    2013-01-01

    Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen squamifrons, which share a similar ecology, but different habitat temperatures. After acclimation of L. squamifrons to 9°C and N. rossii to 7°C (normocapnic/hypercapnic, 0.2 kPa CO2/2000 ppm CO2) for 4-6 weeks, we compared the capacities of their mitochondrial respiratory complexes I (CI) and II (CII), their P/O ratios (phosphorylation efficiency), proton leak capacities and mitochondrial membrane fatty acid compositions. Our results reveal reduced CII respiration rates in warm-acclimated L. squamifrons and cold hypercapnia-acclimated N. rossii. Generally, L. squamifrons displayed a greater ability to increase CI contribution during acute warming and after warm-acclimation than N. rossii. Membrane unsaturation was not altered by warm or hypercapnia-acclimation in both species, but membrane fatty acids of warm-acclimated L. squamifrons were less saturated than in warm normocapnia-/hypercapnia-acclimated N. rossii. Proton leak capacities were not affected by warm or hypercapnia-acclimation of N. rossii. We conclude that an acclimatory response of mitochondrial capacities may include higher thermal plasticity of CI supported by enhanced utilization of anaplerotic substrates (via oxidative decarboxylation reactions) feeding into the citrate cycle. L. squamifrons possesses higher relative CI plasticities than N. rossii, which may facilitate the usage of energy efficient NADH-related substrates under conditions of elevated energy demand, possibly induced by ocean warming and

  11. Molecular biology of cyanobacterial salt acclimation.

    Science.gov (United States)

    Hagemann, Martin

    2011-01-01

    High and changing salt concentrations represent major abiotic factors limiting the growth of microorganisms. During their long evolution, cyanobacteria have adapted to aquatic habitats with various salt concentrations. High salt concentrations in the medium challenge the cell with reduced water availability and high contents of inorganic ions. The basic mechanism of salt acclimation involves the active extrusion of toxic inorganic ions and the accumulation of compatible solutes, including sucrose, trehalose, glucosylglycerol, and glycine betaine. The kinetics of these physiological processes has been exceptionally well studied in the model Synechocystis 6803, leading to the definition of five subsequent phases in reaching a new salt acclimation steady state. Recent '-omics' technologies using the advanced model Synechocystis 6803 have revealed a comprehensive picture of the dynamic process of salt acclimation involving the differential expression of hundreds of genes. However, the mechanisms involved in sensing specific salt stress signals are not well resolved. In the future, analysis of cyanobacterial salt acclimation will be directed toward defining the functions of the many unknown proteins upregulated in salt-stressed cells, identifying specific salt-sensing mechanisms, using salt-resistant strains of cyanobacteria for the production of bioenergy, and applying cyanobacterial stress genes to improve the salt tolerance of sensitive organisms.

  12. The Golgi complex as a source for yeast autophagosomal membranes

    NARCIS (Netherlands)

    van der Vaart, Aniek; Reggiori, Fulvio

    2010-01-01

    Today, more than 50 years after the discovery of autophagy, the origin of the autophagosomal membranes remains for the most part elusive. Many sources for the lipid bilayers have been proposed, but no conclusive evidence has been found to support one particular origin. The lipids do not appear to be

  13. Unusual features of the high light acclimation of Chromera velia.

    Science.gov (United States)

    Mann, Marcus; Hoppenz, Paul; Jakob, Torsten; Weisheit, Wolfram; Mittag, Maria; Wilhelm, Christian; Goss, Reimund

    2014-11-01

    In the present study, the high light (HL) acclimation of Chromera velia (Chromerida) was studied. HL-grown cells exhibited an increased cell volume and dry weight compared to cells grown at medium light (ML). The chlorophyll (Chl) a-specific absorption spectra ([Formula: see text]) of the HL cells showed an increased absorption efficiency over a wavelength range from 400 to 750 nm, possibly due to differences in the packaging of Chl a molecules. In HL cells, the size of the violaxanthin (V) cycle pigment pool was strongly increased. Despite a higher concentration of de-epoxidized V cycle pigments, non-photochemical quenching (NPQ) of the HL cells was slightly reduced compared to ML cells. The analysis of NPQ recovery during low light (LL) after a short illumination with excess light showed a fast NPQ relaxation and zeaxanthin epoxidation. Purification of the pigment-protein complexes demonstrated that the HL-synthesized V was associated with the chromera light-harvesting complex (CLH). However, the difference absorption spectrum of HL minus ML CLH, together with the 77 K fluorescence excitation spectra, suggested that the additional V was not protein bound but localized in a lipid phase associated with the CLH. The polypeptide analysis of the pigment-protein complexes showed that one out of three known LHCr proteins was associated in higher concentration with photosystem I in the HL cells, whereas in ML cells, it was enriched in the CLH fraction. In conclusion, the acclimation of C. velia to HL illumination shows features that are comparable to those of diatoms, while other characteristics more closely resemble those of higher plants and green algae.

  14. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    Science.gov (United States)

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  15. Chaos as a Source of Complexity and Diversity in Evolution

    CERN Document Server

    Kaneko, K

    1993-01-01

    The relevance of chaos to evolution is discussed in the context of the origin and maintenance of diversity and complexity. Evolution to the edge of chaos is demonstrated in an imitation game. As an origin of diversity, dynamic clustering of identical chaotic elements, globally coupled each to other, is briefly reviewed. The clustering is extended to nonlinear dynamics on hypercubic lattices, which enables us to construct a self-organizing genetic algorithm. A mechanism of maintenance of diversity, ``homeochaos", is given in an ecological system with interaction among many species. Homeochaos provides a dynamic stability sustained by high-dimensional weak chaos. A novel mechanism of cell differentiation is presented, based on dynamic clustering. Here, a new concept -- ``open chaos" -- is proposed for the instability in a dynamical system with growing degrees of freedom. It is suggested that studies based on interacting chaotic elements can replace both top-down and bottom-up approaches.

  16. Ceramic Films via Organometallic Complex as Single Source Precursor

    Institute of Scientific and Technical Information of China (English)

    Shyu Shin-Guang; Wu Juan-Seng; Wu Chi-Chin; Chi Kal-Ming

    2004-01-01

    Fe2(CO)6(μ-S2) was used as a single source precursor in attempt to produce FeS film via MOCVD. Pyrolysis of Fe2(CO)6(μ-S2) at temperature below 500℃ produced Fe1-xS or Fe7S8 powder as indicated by its powder X-ray spectra. At 750 ℃, polycrystalline FeS powder was obtained. In film deposition, polycrystalline Fe1-xS or Fe7Ss films were obtained on Si(100) and Ag/Si(100) substrates below 500 ℃. SEM micrographs showed the film on Si(100) substrate containing whisker like grains. However, pillar like grains were obtained on Ag/Si(100) substrate.Deposition rates are also different for different substrates as evaluated by the thickness of the films, which were obtained by SEM micrographs of the cross section of the films. At 750℃, similar polycrystalline Fe1-xS or Fe7S8 film was obtained.

  17. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

    OpenAIRE

    Saikin, Semion K.; Yadana Khin; Joonsuk Huh; Moataz Hannout; Yaya Wang; Farrokh Zare; Alán Aspuru-Guzik; Joseph Kuo-Hsiang Tang

    2014-01-01

    Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for...

  18. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

    OpenAIRE

    Saikin, Semion K.; Khin, Yadana; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alán; Tang, Joseph Kuo-Hsiang

    2014-01-01

    Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures – photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for...

  19. Locating the source of diffusion in complex networks by time-reversal backward spreading

    Science.gov (United States)

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  20. Effects of cadmium exposure on the gill proteome of Cottus gobio: Modulatory effects of prior thermal acclimation

    Energy Technology Data Exchange (ETDEWEB)

    Dorts, Jennifer, E-mail: jennifer.dorts@unamur.be [Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Kestemont, Patrick [Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Thézenas, Marie-Laetitia; Raes, Martine [Research Unit in Cell Biology (URBC) (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Silvestre, Frédéric [Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2014-09-15

    Highlights: • Fish acclimated to elevated temperature were subsequently exposed to cadmium. • Interaction of both stressors on LDH activity and protein expression was complex. • Both stressors have opposite effects at branchial protein expression level. • Proteins belonging to the same functional class exhibited differing responses. • Prior acclimation to elevated temperature modulated the effects of cadmium exposure. - Abstract: Temperature and trace metals are common environmental stressors, and their importance is increasing due to global climate change and anthropogenic pollution. The aim of the present study was to investigate whether acclimation to elevated temperature affects the response of the European bullhead (Cottus gobio) to subsequent cadmium (Cd) exposure by using enzymatic and proteomic approaches. Fish acclimated to 15 (standard temperature), 18 or 21 °C for 28 days were exposed to 1 mg Cd/L for 4 days at the respective acclimation temperature. First, exposure to Cd significantly decreased the activity of the lactate dehydrogenase (LDH) in gills of fish acclimated to 15 or 18 °C. However, an acclimation to 21 °C suppressed the inhibitory effect of Cd. Second, using a proteomic analysis by 2D-DIGE, we observed that thermal acclimation was the first parameter affecting the protein expression profile in gills of C. gobio, while subsequent Cd exposure seemed to attenuate this temperature effect. Moreover, our results showed opposite effects of these two environmental stressors at protein expression level. From the 52 protein spots displaying significant interaction effects of temperature and Cd exposure, a total of 28 different proteins were identified using nano LC–MS/MS and the Peptide and Protein Prophet algorithms of Scaffold software. The identified differentially expressed proteins can be categorized into diverse functional classes, related to protein turnover, folding and chaperoning, metabolic process, ion transport, cell

  1. Costs and benefits of cold acclimation in field released Drosophila – Associating laboratory and field results.

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Sørensen, Jesper Givskov; A. Hoffmann, Ary;

    2008-01-01

    Physiological and evolutionary responses to thermal variation are often investigated under controlled laboratory conditions. However, this approach may fail to account for the complexity of natural environments. Here we investigated the costs and benefits of developmental or adult cold acclimation...... using the ability of field released Drosophila melanogaster to find a resource as a proxy of fitness. Measurements were carried out on two continents across a range of temperatures. Cold acclimation improved the flies' ability to find resources at low temperatures. However, this came at a cost at higher...... the opposite effect once conditions extend outside this range. In a second study we released 10,000 flies from a single population under cold field conditions. Flies caught at either the release or the resource station were subsequently compared with respect to cold performance. This study showed...

  2. Acoustic emission source location in complex structures using full automatic delta T mapping technique

    Science.gov (United States)

    Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys

    2016-05-01

    An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.

  3. Acclimation of subsurface microbial communities to mercury

    DEFF Research Database (Denmark)

    de Lipthay, Julia R.; Rasmussen, Lasse Dam; Oregaard, Gunnar

    2008-01-01

    We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level...... of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential...... of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging...

  4. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants

    Science.gov (United States)

    Lewis, Michael A., Robert L. Quarles, Darrin D. Dantin and James C. Moore. 2004. Evaluation of a Coastal Golf Complex as a Local and Watershed Source of Bioavailable Contaminants. Mar. Pollut. Bull. 48(3-4):254-262. (ERL,GB 1183). Contaminant fate in coastal areas impacte...

  5. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures

    Science.gov (United States)

    Wang, Hui; Wang, Bin; Dong, Wenwen; Hu, Xiaoke

    2016-10-01

    Crude oil is a complex mixture of hydrocarbons with different structures; its components vary in bioavailability and toxicity. It is important to understand how bacterial communities response to different hydrocarbons and their co-acclimation in the process of degradation. In this study, microcosms with the addition of structurally different hydrocarbons were setup to investigate the successions of bacterial communities and the interactions between different bacterial taxa. Hydrocarbons were effectively degraded in all microcosms after 40 days. High-throughput sequencing offered a great quantity of data for analyzing successions of bacterial communities. The results indicated that the bacterial communities responded dramatically different to various hydrocarbons. KEGG database and PICRUSt were applied to predict functions of individual bacterial taxa and networks were constructed to analyze co-acclimations between functional bacterial groups. Almost all functional genes catalyzing degradation of different hydrocarbons were predicted in bacterial communities. Most of bacterial taxa were believed to conduct biodegradation processes via interactions with each other. This study addressed a few investigated area of bacterial community responses to structurally different organic pollutants and their co-acclimation and interactions in the process of biodegradation. The study could provide useful information to guide the bioremediation of crude oil pollution.

  6. Study of kinetics of degradation of cyclohexane carboxylic acid by acclimated activated sludge.

    Science.gov (United States)

    Wang, Chunhua; Shi, Shuian; Chen, Hongyan

    2016-01-01

    Activated sludge contains complex microorganisms, which are highly effective biodegrading agents. In this study, the kinetics of biodegradation of cyclohexane carboxylic acid (CHCA) by an acclimated aerobic activated sludge were investigated. The results showed that after 180 days of acclimation, the activated sludge could steadily degrade >90% of the CHCA in 120 h. The degradation of CHCA by the acclimated activated sludge could be modeled using a first-order kinetics equation. The equations for the degradation kinetics for different initial CHCA concentrations were also obtained. The kinetics constant, kd, decreased with an increase in the CHCA concentration, indicating that, at high concentrations, CHCA had an inhibiting effect on the microorganisms in the activated sludge. The effects of pH on the degradation kinetics of CHCA were also investigated. The results showed that a pH of 10 afforded the highest degradation rate, indicating that basic conditions significantly promoted the degradation of CHCA. Moreover, it was found that the degradation efficiency for CHCA increased with an increase in temperature and concentration of dissolved oxygen under the experimental conditions.

  7. A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    Directory of Open Access Journals (Sweden)

    Lee Dong-Sup

    2015-01-01

    Full Text Available Independent Component Analysis (ICA, one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

  8. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    Directory of Open Access Journals (Sweden)

    Nadin Pade

    2014-12-01

    Full Text Available The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants.

  9. Salt acclimation of cyanobacteria and their application in biotechnology.

    Science.gov (United States)

    Pade, Nadin; Hagemann, Martin

    2014-12-29

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants.

  10. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    OpenAIRE

    Nadin Pade; Martin Hagemann

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanis...

  11. Transgenerational acclimation of fishes to climate change and ocean acidification.

    Science.gov (United States)

    Munday, Philip L

    2014-01-01

    There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warmer and more acidic environments across generations. Consequently, transgenerational plasticity may be a powerful mechanism by which populations of some species will be able to adjust to projected climate change. Here, I review recent advances in understanding transgenerational acclimation in fishes. Research over the past 2 to 3 years shows that transgenerational acclimation can partially or fully ameliorate negative effects of warming, acidification, and hypoxia in a range of different species. The molecular and cellular pathways underpinning transgenerational acclimation are currently unknown, but modern genetic methods provide the tools to explore these mechanisms. Despite the potential benefits of transgenerational acclimation, there could be limitations to the phenotypic traits that respond transgenerationally, and trade-offs between life stages, that need to be investigated. Future studies should also test the potential interactions between transgenerational plasticity and genetic evolution to determine how these two processes will shape adaptive responses to environmental change over coming decades.

  12. Experimental Investigation of In-Situ Chemical Oxidation of Complex DNAPL Source Zones by Permanganate

    Science.gov (United States)

    Heiderscheidt, J. L.; Illangasekare, T. H.; Siegrist, R. L.

    2005-12-01

    Remediation of aquifers contaminated with organic waste chemicals that are in the form of dense non-aqueous phase liquids pose many challenges. The contaminated source zones are naturally heterogeneous and the unstable behavior of DNAPLs results in complex entrapment architecture. Some of the remediation schemes rely on effective delivery of treating agents to the locations where the DNAPLs are entrapped. During remediation, the source zone conditions may change, thus affecting the delivery efficiency of the treating agent. One such technology of DNAPL source zone treatment, in-situ chemical oxidation is designed to speed up remediation of a contaminant source zone by inducing increased mass transfer from DNAPL sources into the aqueous phase for subsequent destruction. Individual sources may be present as pools of high saturation, regions of disconnected ganglia at residual saturation, or some combination. Oxidation using permanganate generates manganese oxide (MnO2 (s)) precipitates. Research has shown that these solids, as with other remedial technologies, can result in permeability reductions in the bulk source zone reducing the ability for oxidant to be transported to individual sources. Solids can also form at the DNAPL-water interface, decreasing contact of the oxidant with the DNAPL source. Consequently, MnO2 (s) formation may alter the mass transfer rate from DNAPL into the aqueous phase, diminishing the magnitude of any mass depletion increase induced by oxidation. A two-dimensional intermediate scale tank experiment was performed, spatially monitoring permeability changes and relating them to MnO2 (s) distribution measured through post-oxidation soil coring. Sampling of aqueous PCE, chloride, and permanganate concentrations was used to relate changes in mass flux from DNAPL residual and pool source zones to MnO2 (s) formation. For the conditions of this experiment, MnO2 (s) formation reduced aqueous permeability in and around DNAPL sources resulting in

  13. Query Evaluation in P2P Systems of Taxonomy-based Sources: Algorithms, Complexity, and Optimizations

    CERN Document Server

    Meghini, Carlo; Analyti, Anastasia

    2007-01-01

    In this study, we address the problem of answering queries over a peer-to-peer system of taxonomy-based sources. A taxonomy states subsumption relationships between negation-free DNF formulas on terms and negation-free conjunctions of terms. To the end of laying the foundations of our study, we first consider the centralized case, deriving the complexity of the decision problem and of query evaluation. We conclude by presenting an algorithm that is efficient in data complexity and is based on hypergraphs. More expressive forms of taxonomies are also investigated, which however lead to intractability. We then move to the distributed case, and introduce a logical model of a network of taxonomy-based sources. On such network, a distributed version of the centralized algorithm is then presented, based on a message passing paradigm, and its correctness is proved. We finally discuss optimization issues, and relate our work to the literature.

  14. Source complexity of the 1987 Whittier Narrows, California, earthquake from the inversion of strong motion records

    Science.gov (United States)

    Hartzell, S.; Iida, M.

    1990-01-01

    Strong motion records for the Whittier Narrows earthquake are inverted to obtain the history of slip. Both constant rupture velocity models and variable rupture velocity models are considered. The results show a complex rupture process within a relatively small source volume, with at least four separate concentrations of slip. Two sources are associated with the hypocenter, the larger having a slip of 55-90 cm, depending on the rupture model. These sources have a radius of approximately 2-3 km and are ringed by a region of reduced slip. The aftershocks fall within this low slip annulus. Other sources with slips from 40 to 70 cm each ring the central source region and the aftershock pattern. All the sources are predominantly thrust, although some minor right-lateral strike-slip motion is seen. The overall dimensions of the Whittier earthquake from the strong motion inversions is 10 km long (along the strike) and 6 km wide (down the dip). The preferred dip is 30?? and the preferred average rupture velocity is 2.5 km/s. Moment estimates range from 7.4 to 10.0 ?? 1024 dyn cm, depending on the rupture model. -Authors

  15. Electromagnetic, complex image model of a large area RF resonant antenna as inductive plasma source

    Science.gov (United States)

    Guittienne, Ph; Jacquier, R.; Howling, A. A.; Furno, I.

    2017-03-01

    A large area antenna generates a plasma by both inductive and capacitive coupling; it is an electromagnetically coupled plasma source. In this work, experiments on a large area planar RF antenna source are interpreted in terms of a multi-conductor transmission line coupled to the plasma. This electromagnetic treatment includes mutual inductive coupling using the complex image method, and capacitive matrix coupling between all elements of the resonant network and the plasma. The model reproduces antenna input impedance measurements, with and without plasma, on a 1.2× 1.2 m2 antenna used for large area plasma processing. Analytic expressions are given, and results are obtained by computation of the matrix solution. This method could be used to design planar inductive sources in general, by applying the termination impedances appropriate to each antenna type.

  16. Managing Multiple Sources of Competitive Advantage in a Complex Competitive Environment

    Directory of Open Access Journals (Sweden)

    Alexandre Howard Henry Lapersonne

    2013-12-01

    Full Text Available The aim of this article is to review the literature on the topic of sustained and temporary competitive advantage creation, specifically in dynamic markets, and to propose further research possibilities. After having analyzed the main trends and scholars’ works on the subject, it was concluded that a firm which has been experiencing erosion of its core sources of economic rent generation, should have diversified its strategy portfolio in a search for new sources of competitive advantage, ones that could compensate for the decline of profits provoked by intensive competitive environments. This review concludes with the hypothesis that firms, who have decided to enter and manage multiple competitive environments, should have developed a multiple strategies framework approach. The management of this source of competitive advantage portfolio should have allowed persistence of a firm’s superior economic performance through the management of diverse temporary advantages lifecycle and through a resilient effect, where a very successful source of competitive advantage compensates the ones that have been eroded. Additionally, the review indicates that economies of emerging countries, such as the ones from the BRIC block, should present a more complex competitive environment due to their historical nature of cultural diversity, social contrasts and frequent economic disruption, and also because of recent institutional normalization that has turned the market into hypercompetition. Consequently, the study of complex competition should be appropriate in such environments.

  17. Thermal de-acclimation: how permanent are leaf phenotypes when cold-acclimated plants experience warming?

    Science.gov (United States)

    Gorsuch, Peter A; Pandey, Subedar; Atkin, Owen K

    2010-07-01

    We quantified a broad range of Arabidopsis thaliana (Col-0) leaf phenotypes for initially warm-grown (25/20 degrees C day/night) plants that were exposed to cold (5 degrees C) for periods of a few hours to 45 d before being transferred back to the warm, where leaves were allowed to mature. This allowed us to address the following questions: (1) For how long do warm-grown plants have to experience cold before developing leaves become irreversibly cold acclimated? (2) To what extent is the de-acclimation process associated with changes in leaf anatomy and physiology? We show that leaves that experience cold for extended periods during early development exhibit little plasticity in either photosynthesis or respiration, and they do not revert to a warm-associated carbohydrate profile. The eventual expansion rate in the warm was inversely related to the duration of previous cold treatment. Moreover, cold exposure of immature/developing leaves for as little as 5 d resulted in irreversible changes in the morphology of leaves that subsequently matured in the warm, with 15 d cold being sufficient for a permanent alteration of leaf anatomy. Collectively, these results highlight the impact of transitory cold during early leaf development in determining the eventual phenotype of leaves that mature in the warm.

  18. Mathematical Modeling of Acclimation Processes of the Photosynthetic Chain

    Directory of Open Access Journals (Sweden)

    S Heidari

    2016-10-01

    Full Text Available Introduction Photosynthetic energy conversion efficiency is characteristic of a system which is determined by interactions between various components of the system. The complex process of photosynthesis has been studied as a whole system which enables in silico examination of a large number of candidate genes for genetic engineering for a higher photosynthetic energy conversion efficiency. One of the most important environmental factors which influence the photosynthesis efficiency is light regime which can cause producing ROS components. To acclimate to such fluctuations, plants have evolved adaptive mechanisms to minimize damage of the photosynthetic apparatus excess light. A fast compatibility response to high light stresses is non-photochemical quenching process (NPQ, dissipating excessive energy to heat. Light harvested state switches into a quenched state by a conformational change of light harvesting complex (LHCII that regulated by xanthophylls and the PsbS protein within seconds. Low lumen pH activates xanthophyll synthesis via a xanthophyll cycle which consists of the de-epoxidation of violaxanthin to zeaxanthin by violaxanthin de-epoxidase in high light and inversely by zeaxanthin epoxidase in low light which occurs more slowly. Materials and Methods Thale cress (Arabidopsis thaliana (Chlombia-0 were grown on soil at 25/22 °C day/night temperature, with a 16/8 h photoperiod, and 40-70% (depend of plant species relative humidity. The light intensity was 150–200 µE m-2s-1 white light. Intensity of chlorophyll fluorescence was measured with PAM-2000 fluorometer (Heinz Walz, Germany and the manufacturer’s software (PamWin v.2. Results and Discussion In the present study, a dynamic kinetics amplified mathematical model was developed based on differential equations in order to predict short-term changes in NPQ in the process of adaptation to different light conditions. We investigated the stationary and dynamic behavior of the model

  19. Short Duration Heat Acclimation in Australian Football Players

    Science.gov (United States)

    Kelly, Monica; Gastin, Paul B.; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J.

    2016-01-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac-]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac-] (all p HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key points Some minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat. The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season. Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat training session or some pre-heating prior to exercise. PMID:26957934

  20. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Carmen Espinoza

    Full Text Available In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further

  1. Performance of pond-wetland complexes as a preliminary processor of drinking water sources.

    Science.gov (United States)

    Wang, Weidong; Zheng, Jun; Wang, Zhongqiong; Zhang, Rongbin; Chen, Qinghua; Yu, Xinfeng; Yin, Chengqing

    2016-01-01

    Shijiuyang Constructed Wetland (110 hm(2)) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond-wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited.

  2. Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation.

    Science.gov (United States)

    Maryoung, Lindley A; Blunt, Brian; Tierney, Keith B; Schlenk, Daniel

    2015-04-01

    Salmonid habitats can be impacted by several environmental factors, such as salinization, which can also affect salmonid tolerance to anthropogenic stressors, such as pesticides. Previous studies have shown that hypersaline acclimation enhances the acute toxicity of certain organophosphate and carbamate pesticides to euryhaline fish; however, sublethal impacts have been far less studied. The current study aims to determine how hypersaline acclimation and exposure to the organophosphate chlorpyrifos (CPF) impact salmonid olfaction. Combined acclimation and exposure to CPF was shown to impact rainbow trout olfaction at the molecular, physiological, and behavioral levels. Concurrent exposure to hypersalinity and 0.5μg/L CPF upregulated four genes (chloride intracellular channel 4, G protein zgc:101761, calcium calmodulin dependent protein kinase II delta, and adrenergic alpha 2C receptor) that inhibit olfactory signal transduction. At the physiological level, hypersalinity and chlorpyrifos caused a decrease in sensory response to the amino acid l-serine and the bile salt taurocholic acid. Combined acclimation and exposure also negatively impacted behavior and reduced the avoidance of a predator cue (l-serine). Thus, acclimation to hypersaline conditions and exposure to environmentally relevant concentrations of chlorpyrifos caused an inhibition of olfactory signal transduction leading to a decreased response to odorants and impairment of olfactory mediated behaviors.

  3. Adaptive and acclimative responses of cyanobacteria to far-red light.

    Science.gov (United States)

    Gan, Fei; Bryant, Donald A

    2015-10-01

    Cyanobacteria use three major photosynthetic complexes, photosystem (PS) I, PS II and phycobilisomes, to harvest and convert sunlight into chemical energy. Until recently, it was generally thought that cyanobacteria only used light between 400 nm and 700 nm to perform photosynthesis. However, the discovery of chlorophyll (Chl) d in Acaryochloris marina and Chl f in Halomicronema hongdechloris showed that some cyanobacteria could utilize far-red light. The synthesis of Chl f (and Chl d) is part of an extensive acclimation process, far-red light photoacclimation (FaRLiP), which occurs in many cyanobacteria. Organisms performing FaRLiP contain a conserved set of 17 genes encoding paralogous subunits of the three major photosynthetic complexes. Far-red light photoacclimation leads to substantial remodelling of the photosynthetic apparatus and other changes in cellular metabolism through extensive changes in transcription. Far-red light photoacclimation appears to be controlled by a red/far-red photoreceptor, RfpA, as well as two response regulators (RfpB and RfpC), one of which is a DNA-binding protein. The remodelled photosynthetic complexes, including novel phycobiliproteins, absorb light above 700 nm and enable cells to grow in far-red light. A much simpler acclimation response, low-light photoacclimation (LoLiP), occurs in some cyanobacteria that contain the apcD4-apcB3-isiX cluster, which allows cells to grow under low light conditions.

  4. Freshwater fish internals as a promising source of biologically active lipid complexes

    Directory of Open Access Journals (Sweden)

    Samoilovа D. A.

    2015-12-01

    Full Text Available The research on development of technology of fat extraction from freshwater fish entrails has been carried out. The study of mass composition of freshwater fish internals has shown that the highest content of fat (averaged 13,8 % is typical for internals of fish like carp, perch, silver carp, pike. The higher content is typical for silver carp (14.4 % permitting the possibility of its use as a source of lipid complexes. The chemical composition of the internal organs of researched objects has been studied; to justify the rational modes of extracting lipid complexes from freshwater fish internals the methods of extracting fat (thermal, enzymatic and low temperature have been tested. The quality indicators of raw fat have been analyzed and the conclusion on possibility of combining the ways of oil extraction in order to increase its output and improve the quality characteristics has been made

  5. Drinking and water balance during exercise and heat acclimation

    Science.gov (United States)

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  6. STATE OF THE ART TECHNIQUES USED FOR NOISE SOURCE IDENTIFICATION ON COMPLEX BODIES

    Directory of Open Access Journals (Sweden)

    Corneliu STOICA

    2010-03-01

    Full Text Available Over the last few decades, many approaches have been undertaken in order to asses detailed noise source identification on complex bodies, i.e. aircrafts, cars, machinery. Noise source identification implies to accurately obtain the position and frequency of the dominant noise sources. There are cases where traditional testing methods can not be applied at all or their use involves some limitations. Optical systems used for near field analysis require a line of sight that may not be available. The state-of-the-art technology for this purpose is the use of a large number of microphones whose signals are acquired simultaneously, i.e. microphone phased array. Due to the excessive cost of the instruments and the data acquisition system required, the implementation of this technology was restricted to governmental agencies (NASA, DLR and big companies such as Boeing and Airbus. During the past years, this technique was developed in wind tunnels and some universities to perform noise source identification on scale airframes, main landing gear models, and aerodynamic profiles (used on airplanes, helicopter rotors and wind mills.

  7. Influence of ozone on cold acclimation in sugar maple seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, A. [Agriculture and Agri-Food Canada, Sainte-Foy, PQ (Canada) Research Station; Robitaille, G. [Natural Resources Canada, Ste. Foy, PQ (Canada) Canadian Forest Service; Nadeau, P.; Castonguay, Y. [Agriculture and Agri-Food Canada, Sainte-Foy, PQ (Canada) Research Station

    1999-07-01

    A study was carried out with the aim of determining: a) if exposure to ozone gas induces changes in the key parts of cold acclimation in maple seedlings; and b) if the putative changes effect the process of cold acclimation. Two year old seedlings were exposed to two concentrations of ozone, ambient ozone (low ozone), and threefold ambient ozone concentrations (high ozone) from June to September. During the fall, winter and spring, the seedlings were left outdoors to acclimate to natural winter conditions. The freezing tolerance of stems and root tissues was determined for high ozone and low ozone treated seedlings over the winter period. Concomitant determination of the concentrations of starch, sucrose, raffinose, and stachyose in the sugar maple roots as well as ABA concentration in the xylem sap were carried out to assess the molecular changes associated with the cold acclimation of seedlings in the two treatments. Exposure to high concentrations of ozone did not decrease the freezing tolerance of sugar maple roots and improved the freezing tolerance of the stems in the fall. During the period of cold acclimation, an eightfold increase in sucrose concentration occurred in roots and stems, while starch concentration decreased. In roots, the accumulation of soluble sugars coincided with the period of lowest soil temperature. This showed that temperature has a major influence on the amount of sugar formed and the degree of freezing tolerance. There were no ozone treatment effects on either starch hydrolysis or sucrose accumulation in roots. Sucrose is a membrane and protein stabilizer during winter drying. In roots, the concentrations of the galactose containing oligosaccharides, raffinose and stachyose, were higher in the high ozone treatment than in the low ozone treatment, and stachyose indicated a similar response in stems. There is a relation between the increase in ABA concentration and cold acclimation in the sugar maple. 29 refs., 7 figs.

  8. Short Duration Heat Acclimation in Australian Football Players

    Directory of Open Access Journals (Sweden)

    Monica Kelly, Paul B. Gastin, Daniel B Dwyer, Simon Sostaric, Rodney J. Snow

    2016-03-01

    Full Text Available This study examined if five sessions of short duration (27 min, high intensity, interval training (HIIT in the heat over a nine day period would induce heat acclimation in Australian football (AF players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1 and randomly allocated into either a heat acclimation (Acc (n = 7 or Control (Con group (n = 7. The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH, whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH. Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% VO2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH during which VO2, blood lactate concentration ([Lac-], heart rate (HR, rating of perceived exertion (RPE, thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac-] (all p < 0.05 during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007 after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited.

  9. Infection Sources of a Common Non-tuberculous Mycobacterial Pathogen, Mycobacterium avium Complex

    Science.gov (United States)

    Nishiuchi, Yukiko; Iwamoto, Tomotada; Maruyama, Fumito

    2017-01-01

    Numerous studies have revealed a continuous increase in the worldwide incidence and prevalence of non-tuberculous mycobacteria (NTM) diseases, especially pulmonary Mycobacterium avium complex (MAC) diseases. Although it is not clear why NTM diseases have been increasing, one possibility is an increase of mycobacterial infection sources in the environment. Thus, in this review, we focused on the infection sources of pathogenic NTM, especially MAC. The environmental niches for MAC include water, soil, and dust. The formation of aerosols containing NTM arising from shower water, soil, and pool water implies that these niches can be infection sources. Furthermore, genotyping has shown that clinical isolates are identical to environmental ones from household tap water, bathrooms, potting soil, and garden soil. Therefore, to prevent and treat MAC diseases, it is essential to identify the infection sources for these organisms, because patients with these diseases often suffer from reinfections and recurrent infections with them. In the environmental sources, MAC and other NTM organisms can form biofilms, survive within amoebae, and exist in a free-living state. Mycobacterial communities are also likely to occur in these infection sources in households. Water distribution systems are a transmission route from natural water reservoirs to household tap water. Other infection sources include areas with frequent human contact, such as soil and bathrooms, indicating that individuals may carry NTM organisms that concomitantly attach to their household belongings. To explore the mechanisms associated with the global spread of infection and MAC transmission routes, an epidemiological population-wide genotyping survey would be very useful. A good example of the power of genotyping comes from M. avium subsp. hominissuis, where close genetic relatedness was found between isolates of it from European patients and pigs in Japan and Europe, implying global transmission of this bacterium

  10. Alternative 3D Modeling Approaches Based on Complex Multi-Source Geological Data Interpretation

    Institute of Scientific and Technical Information of China (English)

    李明超; 韩彦青; 缪正建; 高伟

    2014-01-01

    Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological struc-ture through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and inte-grated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline (NURBS) technique is then pre-sented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.

  11. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    Directory of Open Access Journals (Sweden)

    Emanuela eDattolo

    2013-06-01

    Full Text Available For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in the shallow (-5m and a deep (-25m portions of a single meadow, (i we generated two reciprocal EST (Expressed Sequences Tags libraries using a Suppressive Subtractive Hybridization (SSH approach, to obtain depth/specific transcriptional profiles, and (ii we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear o be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

  12. Molecular processes of transgenerational acclimation to a warming ocean

    KAUST Repository

    Veilleux, Heather D.

    2015-07-20

    Some animals have the remarkable capacity to acclimate across generations to projected future climate change1, 2, 3, 4; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity. Metabolic genes were among the most upregulated transgenerationally, suggesting shifts in energy production for maintaining performance at elevated temperatures. Furthermore, immune- and stress-responsive genes were upregulated transgenerationally, indicating a new complement of genes allowing the second generation of fish to better cope with elevated temperatures. Other differentially expressed genes were involved with tissue development and transcriptional regulation. Overall, we found a similar suite of differentially expressed genes among developmental and transgenerational treatments. Heat-shock protein genes were surprisingly unresponsive, indicating that short-term heat-stress responses may not be a good indicator of long-term acclimation capacity. Our results are the first to reveal the molecular processes that may enable marine fishes to adjust to a future warmer environment over multiple generations.

  13. Molecular processes of transgenerational acclimation to a warming ocean

    Science.gov (United States)

    Veilleux, Heather D.; Ryu, Taewoo; Donelson, Jennifer M.; van Herwerden, Lynne; Seridi, Loqmane; Ghosheh, Yanal; Berumen, Michael L.; Leggat, William; Ravasi, Timothy; Munday, Philip L.

    2015-12-01

    Some animals have the remarkable capacity to acclimate across generations to projected future climate change; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity. Metabolic genes were among the most upregulated transgenerationally, suggesting shifts in energy production for maintaining performance at elevated temperatures. Furthermore, immune- and stress-responsive genes were upregulated transgenerationally, indicating a new complement of genes allowing the second generation of fish to better cope with elevated temperatures. Other differentially expressed genes were involved with tissue development and transcriptional regulation. Overall, we found a similar suite of differentially expressed genes among developmental and transgenerational treatments. Heat-shock protein genes were surprisingly unresponsive, indicating that short-term heat-stress responses may not be a good indicator of long-term acclimation capacity. Our results are the first to reveal the molecular processes that may enable marine fishes to adjust to a future warmer environment over multiple generations.

  14. Enzymatic activity of rodents acclimated to cold and long scotophase

    Science.gov (United States)

    Fourie, F. Le R.; Haim, A.

    1980-09-01

    Rodents representative of a diurnal species ( Rhabdomys pumilio) as well as a nocturnal species ( Praomys natalensis) were acclimated to cold (Ta = 8°C) at a photoperiod of LD 12:12 and a long scotophase (LD 8; 16) at a temperature of 25° C(Ta). Control groups were kept for both species at Ta = 25° C and LD 12:12 and winter acclimated individuals were obtained during July and August to serve as further reference. Blood samples obtained from the tail were analysed for enzymes representative of three major biochemical pathways. The enzymatic activity of LDH (glycolytic pathway), MDH (Krebs cycle) and G6PDH (hexose monophosphate shunt, as an indicator of gonadal activity) were monitored to represent metabolic activity of the respective cycles. Cold acclimated as well as winter acclimatized mice revealed similar enzymatic patterns for both species and significant increases in LDH and MDH were recorded with a concurrent decrease in G6PDH activity. Specimens exposed to long scotophase exhibited similar enzymatic patterns for both species studied, but enzymatic activity was higher than those of cold acclimated individuals. From these results it is concluded that cold as well as long scotophase induce metabolic adaptations through biochemical activity in the experimental animals. The effect of long scotophase is assumed to be an important factor in the induction of winter acclimatization.

  15. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); MacDougald, Michelle [Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, Prince Philip Drive, St. John’s, NL, A1B 3V6 (Canada); Fast, Mark [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Siah, Ahmed [British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC, V9W 2C2 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada)

    2015-08-15

    Highlights: • Sequential inhibition and activation allows assessment of multiple segments of the electron transport system. • Warm acclimation and hypoxia-reoxygenation have global effects on the electron transport system. • Warm acclimation and hypoxia-reoxygenation sensitize the electron transport system to copper. • Thermal stress, hypoxia-reoxygenation and copper act additively to impair mitochondrial function. - Abstract: Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20 °C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0–20 μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I–IV (CI–IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11 → 20 °C) in temperature increased mitochondrial oxidation rates supported by CI–IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI–IV, reduced RCR for all except

  16. Low-Complexity Compression Algorithm for Hyperspectral Images Based on Distributed Source Coding

    Directory of Open Access Journals (Sweden)

    Yongjian Nian

    2013-01-01

    Full Text Available A low-complexity compression algorithm for hyperspectral images based on distributed source coding (DSC is proposed in this paper. The proposed distributed compression algorithm can realize both lossless and lossy compression, which is implemented by performing scalar quantization strategy on the original hyperspectral images followed by distributed lossless compression. Multilinear regression model is introduced for distributed lossless compression in order to improve the quality of side information. Optimal quantized step is determined according to the restriction of the correct DSC decoding, which makes the proposed algorithm achieve near lossless compression. Moreover, an effective rate distortion algorithm is introduced for the proposed algorithm to achieve low bit rate. Experimental results show that the compression performance of the proposed algorithm is competitive with that of the state-of-the-art compression algorithms for hyperspectral images.

  17. Complex sources of air-soil-water pollution processes in the Miyun reservoir region

    Institute of Scientific and Technical Information of China (English)

    YANG; Dongzhen; XU; Xiangde; LIU; Xiaoduan; XU; Qing; DING

    2005-01-01

    The comprehensive impact of atmospheric dry deposition and wet deposition and the pollution sources of farmlands, mining areas, and towns along the Baihe River on the water quality of Miyun reservoir is investigated from the angle of the complex sources of air-soil-water pollution processes, in the context of the 1990-2001 precipitation chemical data at Shangdianzi station--a WMO regional background air pollution monitoring station 15 km far from the Miyun reservoir, in conjunction with the atmospheric dry deposition and wet deposition data of the 2002-2003 Beijing City Air Pollution Observation Field Experiment (BECAPEX). Analysis results suggest that the major ions in precipitation in the Miyun reservoir region in this period were SO, NO, NH and Ca2+; wet acid deposition quantity of Miyun reservoir in the summer half year (April to September) was greater than the quantity in the winter half year (October to March), and the annual wet acid deposition in the reservoir exhibited a rising trend with the mean 1038.45 t, the maximum 1766.31 t occurred in 1996, and the minimum 604.02 t in 1994; the long-term averaged pH of atmospheric precipitation in the Miyun reservoir region was 5.20, i.e. weakly acidic, and the interannual variation of pH values displayed a falling trend. pH values of water body at various depths in the Miyun reservoir were all greater than 7.0, but they exhibited vertical and horizontal nonhomogeneity, and at the same region pH decreased vertically with depth; the 2002 and 2003 annual dustfalls in the Miyun reservoir were 13513.08 t and 3577.64 t, respectively, and the spring dustfall was the number one in a year, accounting for the 61.91% and 44.56% of the annual totals of 2002 and 2003, respectively. Because the atmospheric dry deposition and wet depositions contain multiple types heavy metal elements and harmful elements, they to some extent exacerbated the eutrophication, acidification and potential heavy metal pollution of the reservoir water

  18. Handling complex source structures in global EM induction studies: from C-responses to new arrays of transfer functions

    DEFF Research Database (Denmark)

    Puethe, Christoph; Kuvshinov, Alexey; Olsen, Nils

    2015-01-01

    approximated by a large-scale symmetric (magnetospheric) ring current, described by a single spherical harmonic. However, there is growing evidence for a more complex structure of this source. In this paper, we investigate the variability of C-responses due to sources different from the dominating large...... functions that relate the components of the magnetic variation to different spherical harmonic coefficients. These transfer functions can handle a complex spatial structure of the magnetospheric source. Compared to C-responses, we observe a significant increase in the coherencies relating input and output...

  19. Synergistic Microbial Consortium for Bioenergy Generation from Complex Natural Energy Sources

    Directory of Open Access Journals (Sweden)

    Victor Bochuan Wang

    2014-01-01

    Full Text Available Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1 : 9 (v : v significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  20. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

    Science.gov (United States)

    Wang, Victor Bochuan; Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say; Yang, Liang

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1:9 (v:v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  1. The hidden function of photosynthesis: a sensing system for environmental conditions that regulates plant acclimation responses.

    Science.gov (United States)

    Pfannschmidt, Thomas; Yang, Chunhong

    2012-06-01

    Plants convert light energy from the sun into chemical energy by photosynthesis. Since they are sessile, they have to deal with a wide range of conditions in their immediate environment. Many abiotic and biotic parameters exhibit considerable fluctuations which can have detrimental effects especially on the efficiency of photosynthetic light harvesting. During evolution, plants, therefore, evolved a number of acclimation processes which help them to adapt photosynthesis to such environmental changes. This includes protective mechanisms such as excess energy dissipation and processes supporting energy redistribution, e.g. state transitions or photosystem stoichiometry adjustment. Intriguingly, all these responses are triggered by photosynthesis itself via the interplay of its light reaction and the Calvin-Benson cycle with the residing environmental condition. Thus, besides its primary function in harnessing and converting light energy, photosynthesis acts as a sensing system for environmental changes that controls molecular acclimation responses which adapt the photosynthetic function to the environmental change. Important signalling parameters directly or indirectly affected by the environment are the pH gradient across the thylakoid membrane and the redox states of components of the photosynthetic electron transport chain and/or electron end acceptors coupled to it. Recent advances demonstrate that these signals control post-translational modifications of the photosynthetic protein complexes and also affect plastid and nuclear gene expression machineries as well as metabolic pathways providing a regulatory framework for an integrated response of the plant to the environment at all cellular levels.

  2. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

    CERN Document Server

    Saikin, Semion K; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alan; Tang, Joseph Kuo-Hsiang

    2014-01-01

    Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal ve...

  3. Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity.

    Science.gov (United States)

    Osundeko, Olumayowa; Dean, Andrew P; Davies, Helena; Pittman, Jon K

    2014-10-01

    A wastewater environment can be particularly toxic to eukaryotic microalgae. Microalgae can adapt to these conditions but the specific mechanisms that allow strains to tolerate wastewater environments are unclear. Furthermore, it is unknown whether the ability to acclimate microalgae to tolerate wastewater is an innate or species-specific characteristic. Six different species of microalgae (Chlamydomonas debaryana, Chlorella luteoviridis, Chlorella vulgaris, Desmodesmus intermedius, Hindakia tetrachotoma and Parachlorella kessleri) that had never previously been exposed to wastewater conditions were acclimated over an 8-week period in secondary-treated municipal wastewater. With the exception of C. debaryana, acclimation to wastewater resulted in significantly higher growth rate and biomass productivity. With the exception of C. vulgaris, total chlorophyll content was significantly increased in all acclimated strains, while all acclimated strains showed significantly increased photosynthetic activity. The ability of strains to acclimate was species-specific, with two species, C. luteoviridis and P. kessleri, able to acclimate more efficiently to the stress than C. debaryana and D. intermedius. Metabolic fingerprinting of the acclimated and non-acclimated microalgae using Fourier transform infrared spectroscopy was able to differentiate strains on the basis of metabolic responses to the stress. In particular, strains exhibiting greater stress response and altered accumulation of lipids and carbohydrates could be distinguished. The acclimation to wastewater tolerance was correlated with higher accumulation of carotenoid pigments and increased ascorbate peroxidase activity.

  4. Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level

    KAUST Repository

    Fanucchi, Francesca

    2012-06-01

    This study used 2DE to investigate how Arabidopsis thaliana modulates protein levels in response to freezing stress after sub-lethal exposure at - 10 °C, both in cold-acclimated and in non-acclimated plants. A map was implemented in which 62 spots, corresponding to 44 proteins, were identified. Twenty-two spots were modulated upon treatments, and the corresponding proteins proved to be related to photosynthesis, energy metabolism, and stress response. Proteins demonstrated differences between control and acclimation conditions. Most of the acclimation-responsive proteins were either not further modulated or they were down-modulated by freezing treatment, indicating that the levels reached during acclimation were sufficient to deal with freezing. Anabolic metabolism appeared to be down-regulated in favor of catabolic metabolism. Acclimated plants and plants submitted to freezing after acclimation showed greater reciprocal similarity in protein profiles than either showed when compared both to control plants and to plants frozen without acclimation. The response of non-acclimated plants was aimed at re-modulating photosynthetic apparatus activity, and at increasing the levels of proteins with antioxidant-, molecular chaperone-, or post-transcriptional regulative functions. These changes, even less effective than the acclimation strategy, might allow the injured plastids to minimize the production of non-useful metabolites and might counteract photosynthetic apparatus injuries. © 2012 Elsevier B.V. All rights reserved.

  5. SCFA lead lab technical assistance review of the Pit 7 Complex source containment

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, D.; Janeday, D.; Woodward, D.; Imrich, J.; Evans, J.; Morris, M.; Reimus, P.; Hazen, T.

    2001-01-29

    On January 29-30, 2001 a technical assistance team (TAT) met with the Pit 7 project team at Lawrence Livermore National Laboratory (LLNL) to review technologies being evaluated for remediation in the Site 300 Pit 7 Complex and the process for selecting these technologies. Specifically, the project team presented the TAT with a core need to identify technically and economically practicable technologies and methods to stabilize, contain, or control the tritium and uranium in the source areas at the Pits 3 and 5 landfill area to prevent further releases of these contaminants to groundwater and the migration of tritiated and uranium-contaminated groundwater. The approaches and needs for the systems surrounding the landfills were also presented and discussed. With encouragement from the project team, the TAT expanded its focus to include additional site characterization, a water balance model, and computational models. The TAT was comprised of leading technical and regulatory experts from around the country and was assembled by SCFA's Lead Lab in response to a technical assistance request from John Ziagos, Project Manager for the Pit 7 Area (Technical Assistance Request: LLNL No.1). A list of the TAT members is included below and contact information the TAT members and site participants is in Appendix B. To familiarize the TAT assistance team with Pit 7 Complex issues, the project team gave a presentation outlining the site geology, contaminant hydrogeology, land-use issues, stakeholder concerns, regulatory requirements, groundwater flow and transport modeling efforts, pit source characterization efforts, and remedial options. Time for clarification and questions between the TAT and the site team was integrated into the presentation schedule. On the morning of the second day, the TAT reconvened with the site team and John Evans of the TAT presented information about a helium soil gas survey method that could potentially be used to locate and characterize tritium

  6. Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata).

    Science.gov (United States)

    Zhang, Can-kui; Lang, Ping; Dane, Fenny; Ebel, Robert C; Singh, Narendra K; Locy, Robert D; Dozier, William A

    2005-03-01

    Commercial citrus varieties are sensitive to low temperature. Poncirus trifoliata is a close relative of Citrus species and has been widely used as a cold-hardy rootstock for citrus production in low-temperature environments. mRNA differential display-reverse transcription (DDRT)-PCR and quantitative relative-RT-PCR were used to study gene expression of P. trifoliata under a gradual cold-acclimation temperature regime. Eight up-regulated cDNA fragments were isolated and sequenced. These fragments showed high similarities at the amino acid level to the following genes with known functions: betaine/proline transporter, water channel protein, aldo-keto reductase, early light-induced protein, nitrate transporter, tetratricopeptide-repeat protein, F-box protein, and ribosomal protein L15. These cold-acclimation up-regulated genes in P. trifoliata are also regulated by osmotic and photo-oxidative signals in other plants.

  7. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  9. The nature of the giant diffuse non-thermal source in the A3411-A3412 complex

    CERN Document Server

    Giovannini, G; Girardi, M; Feretti, L; Govoni, F; Murgia, M

    2013-01-01

    VLA deep radio images at 1.4 GHz in total intensity and polarization reveal a diffuse non-thermal source in the interacting clusters A3411 - A3412. Moreover a small-size low power radio halo at the center of the merging cluster A3411 is found. We present here new optical and X-ray data and discuss the nature and properties of the diffuse non-thermal source. We suggest that the giant diffuse radio source is related to the presence of a large scale filamentary structure and to multiple mergers in the A3411-A3412 complex.

  10. Costs and benefits of cold acclimation in field released Drosophila

    DEFF Research Database (Denmark)

    Kristensen, Torsten N; Hoffmann, Ary A; Overgaard, Johannes

    2008-01-01

    One way animals can counter the effects of climatic extremes is via physiological acclimation, but acclimating to one extreme might decrease performance under different conditions. Here, we use field releases of Drosophila melanogaster on two continents across a range of temperatures to test...... acclimation that standard laboratory assays do not detect. Thus, although physiological acclimation may dramatically improve fitness over a narrow set of thermal conditions, it may have the opposite effect once conditions extend outside this range, an increasingly likely scenario as temperature variability...

  11. Reproductive acclimation to increased water temperature in a tropical reef fish.

    Science.gov (United States)

    Donelson, Jennifer M; McCormick, Mark I; Booth, David J; Munday, Philip L

    2014-01-01

    Understanding the capacity of organisms to cope with projected global warming through acclimation and adaptation is critical to predicting their likely future persistence. While recent research has shown that developmental acclimation of metabolic attributes to ocean warming is possible, our understanding of the plasticity of key fitness-associated traits, such as reproductive performance, is lacking. We show that while the reproductive ability of a tropical reef fish is highly sensitive to increases in water temperature, reproductive capacity at +1.5°C above present-day was improved to match fish maintained at present-day temperatures when fish complete their development at the higher temperature. However, reproductive acclimation was not observed in fish reared at +3.0°C warmer than present-day, suggesting limitations to the acclimation possible within one generation. Surprisingly, the improvements seen in reproduction were not predicted by the oxygen- and capacity-limited thermal tolerance hypothesis. Specifically, pairs reared at +1.5°C, which showed the greatest capacity for reproductive acclimation, exhibited no acclimation of metabolic attributes. Conversely, pairs reared at +3.0°C, which exhibited acclimation in resting metabolic rate, demonstrated little capacity for reproductive acclimation. Our study suggests that understanding the acclimation capacity of reproductive performance will be critically important to predicting the impacts of climate change on biological systems.

  12. Coronary lesion complexity assessed by SYNTAX score in 256-slice dual-source MDCT angiography

    Science.gov (United States)

    Yüceler, Zeyneb; Kantarcı, Mecit; Tanboğa, İbrahim Halil; Sade, Recep; Kızrak, Yeşim; Pirimoğlu, Berhan; Bayraktutan, Ümmügülsüm; Oğul, Hayri; Aksakal, Enbiya

    2016-01-01

    PURPOSE The SYNTAX Score (SS) has an important role in grading the complexity of coronary artery disease (CAD) in patients undergoing revascularization. Noninvasive determination of SS prior to invasive coronary angiography (ICA) might optimize patient management. We aimed to evaluate the agreement between ICA and multidetector computed tomography (MDCT) while testing the diagnostic effectiveness of SS-MDCT. METHODS Our study included 108 consecutive patients who underwent both MDCT angiography with a 256-slice dual-source MDCT system and ICA within 14±3 days. SS was calculated for both ICA and MDCT coronary angiography. Spearman’s rank correlation coefficient was used to evaluate the association of SS-MDCT with SS-ICA, and Bland-Altman analysis was performed. RESULTS The degree of agreement between SS-ICA and SS-MDCT was moderate. The mean SS-MDCT was 14.5, whereas the mean SS-ICA was 15.9. After dividing SS into three groups (high [≥33], intermediate [23–32], and low [≤22] subgroups), agreement analysis was repeated. There was a significant correlation between SS-MDCT and SS-ICA in the low SS group (r=0.63, P = 0.043) but no significant correlation in the high SS group (r=0.036, P = 0.677). The inter-test agreement analysis showed at least moderate agreement, whereas thrombotic lesions and the type of bifurcation lesion showed fair agreement. CONCLUSION The calculation of SS-MDCT by adapting SS-ICA parameters achieved nearly the same degree of precision as SS-ICA and was better than SS-ICA, especially in the low SS group. PMID:27328718

  13. Model of complex integrated use of alternative energy sources for highly urbanized areas

    Directory of Open Access Journals (Sweden)

    Ivanova Elena Ivanovna

    2014-04-01

    Full Text Available The increase of population and continuous development of highly urbanized territories poses new challenges to experts in the field of energy saving technologies. Only a multifunctional and autonomous system of building engineering equipment formed by the principles of energy efficiency and cost-effectiveness meets the needs of modern urban environment. Alternative energy sources, exploiting the principle of converting thermal energy into electrical power, show lack of efficiency, so it appears to be necessary for reaching a visible progress to skip this middle step. A fuel cell, converting chemical energy straight into electricity, and offering a vast diversity of both fuel types and oxidizing agents, gives a strong base for designing a complex integrated system. Regarding the results of analysis and comparison conducted among the most types of fuel cells proposed by contemporary scholars, a solid oxide fuel cell (SOFC is approved to be able to ensure the smooth operation of such a system. While the advantages of this device meet the requirements of engineering equipment for modern civil and, especially, dwelling architecture, its drawbacks do not contradict with the operating regime of the proposed system. The article introduces a model of a multifunctional system based on solid oxide fuel cell (SOFC and not only covering the energy demand of a particular building, but also providing the opportunity for proper and economical operation of several additional sub-systems. Air heating and water cooling equipment, ventilating and conditioning devices, the circle of water supply and preparation of water discharge for external use (e.g. agricultural needs included into a closed circuit of the integrated system allow evaluating it as a promising model of further implementation of energy saving technologies into architectural and building practice. This, consequently, will positively affect both ecological and economic development of urban environment.

  14. Variable Sources and Differentiation of Lavas from the Copahue-Caviahue Eruptive Complex, Neuquen Argentina

    Science.gov (United States)

    Todd, E.; Ort, M. H.

    2012-12-01

    Caldera collapse (˜180 km2) associated with a large Pliocene pyroclastic eruption and subsequent glacial erosion exposed an extensive and complex cross-section of pre-caldera volcanic history (at least 5 My) at the Copahue-Caviahue Eruptive Center (CCEC) in the Andean Southern Volcanic Zone (SVZ) of Argentina. Lava flows in wall exposures range from olivine-rich basaltic andesite to trachyte, are typically horizontal, vary in abundance and thickness at different wall exposures, and rarely correlate with flows in adjacent sections, although some lava and pyroclastic deposits from adjacent sections are similar in petrography, mineral assemblage, and geochemistry. Bulk-rock geochemical and isotopic data indicate at least two distinct primary melt types contributed to pre-caldera CCEC volcanism, and their differentiates produced a high-K and a low-K series. Incompatible element and isotope systematics suggest they are not related by differentiation of a common parental melt, and less-evolved examples of both types occur throughout the pre-caldera stratigraphic section, suggesting long-lived recharge of the local system by variably-sourced magmas. Petrographic and mineral chemistry evidence indicates that mixing of dissimilar magma types produced compositionally intermediate magmas. The location of the CCEC, rear of the volcanic front (VF), yet trenchward of regional backarc basin (BAB) volcanism, is reflected by the composition of CCEC lavas, which are transitional between local VF and BAB types. Thus, contrasting low- and high-K CCEC magmas in the SVZ rear-arc may reflect local focusing of VF-like (low-K) and BAB-like (high-K) melts.

  15. Kurtosis based blind source extraction of complex noncircular signals with application in EEG artifact removal in real-time

    Directory of Open Access Journals (Sweden)

    Soroush eJavidi

    2011-10-01

    Full Text Available A new class of complex domain blind source extraction (BSE algorithms suitable for the extraction of both circular and noncircular complex signals is proposed. This is achieved through sequential extraction based on the degree of kurtosis and in the presence of noncircular measurement noise. The existence and uniqueness analysis of the solution is followed by a study of fast converging variants of the algorithm. The performance is first assessed through simulations on well understood benchmark signals, followed by a case study on real-time artifact removal from EEG signals, verified using both qualitative and quantitative metrics. The results illustrate the power of the proposed approach in real-time blind extraction of general complex-valued sources.

  16. Integration of complex data sources to provide biologic insight into pulmonary vascular disease (2015 Grover Conference Series)

    Science.gov (United States)

    Chan, Stephen Y.

    2016-01-01

    Abstract The application of complex data sources to pulmonary vascular diseases is an emerging and promising area of investigation. The use of -omics platforms, in silico modeling of gene networks, and linkage of large human cohorts with DNA biobanks are beginning to bear biologic insight into pulmonary hypertension. These approaches to high-throughput molecular phenotyping offer the possibility of discovering new therapeutic targets and identifying variability in response to therapy that can be leveraged to improve clinical care. Optimizing the methods for analyzing complex data sources and accruing large, well-phenotyped human cohorts linked to biologic data remain significant challenges. Here, we discuss two specific types of complex data sources—gene regulatory networks and DNA-linked electronic medical record cohorts—that illustrate the promise, challenges, and current limitations of these approaches to understanding and managing pulmonary vascular disease. PMID:27683602

  17. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  18. Effect of thermal acclimation on thermal preference, resistance and locomotor performance of hatchling soft-shelled turtle

    Directory of Open Access Journals (Sweden)

    Mei-Xian WU,Ling-Jun HU, Wei DANG, Hong-Liang LU, Wei-Guo DU

    2013-12-01

    Full Text Available The significant influence of thermal acclimation on physiological and behavioral performance has been documented in many ectothermic animals, but such studies are still limited in turtle species. We acclimated hatchling soft-shelled turtles Pelodiscus sinensis under three thermal conditions (10, 20 and 30 °C for 4 weeks, and then measured selected body temperature (Tsel, critical thermal minimum (CTMin and maximum (CTMax, and locomotor performance at different body temperatures. Thermal acclimation significantly affected thermal preference and resistance of P. sinensis hatchlings. Hatchling turtles acclimated to 10 °C selected relatively lower body temperatures and were less resistant to high temperatures than those acclimated to 20 °C and 30 °C. The turtles’ resistance to low temperatures increased with a decreasing acclimation temperature. The thermal resistance range (i.e. the difference between CTMax and CTMin, TRR was widest in turtles acclimated to 20 °C, and narrowest in those acclimated to 10 °C. The locomotor performance of turtles was affected by both body temperature and acclimation temperature. Hatchling turtles acclimated to relatively higher temperatures swam faster than did those acclimated to lower temperatures. Accordingly, hatchling turtles acclimated to a particular temperature may not enhance the performance at that temperature. Instead, hatchlings acclimated to relatively warm temperatures have a better performance, supporting the “hotter is better” hypothesis [Current Zoology 59 (6 : 718–724, 2013 ].

  19. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006

  20. Bayesian Source Separation Applied to Identifying Complex Organic Molecules in Space

    CERN Document Server

    Knuth, Kevin H; Choinsky, Joshua; Maunu, Haley A; Carbon, Duane F

    2014-01-01

    Emission from a class of benzene-based molecules known as Polycyclic Aromatic Hydrocarbons (PAHs) dominates the infrared spectrum of star-forming regions. The observed emission appears to arise from the combined emission of numerous PAH species, each with its unique spectrum. Linear superposition of the PAH spectra identifies this problem as a source separation problem. It is, however, of a formidable class of source separation problems given that different PAH sources potentially number in the hundreds, even thousands, and there is only one measured spectral signal for a given astrophysical site. Fortunately, the source spectra of the PAHs are known, but the signal is also contaminated by other spectral sources. We describe our ongoing work in developing Bayesian source separation techniques relying on nested sampling in conjunction with an ON/OFF mechanism enabling simultaneous estimation of the probability that a particular PAH species is present and its contribution to the spectrum.

  1. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    Science.gov (United States)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  2. Responses and acclimation of Chinese cork oak (Quercus variabilis Bl.) to metal stress: the inducible antimony tolerance in oak trees.

    Science.gov (United States)

    Zhao, Xiulian; Zheng, Lingyu; Xia, Xinli; Yin, Weilun; Lei, Jingpin; Shi, Shengqing; Shi, Xiang; Li, Huiqing; Li, Qinghe; Wei, Yuan; Chang, Ermei; Jiang, Zeping; Liu, Jianfeng

    2015-08-01

    Antimony (Sb) pollution has become a pressing environmental problem in recent years. Trees have been proven to have great potential for the feasible phytomanagement; however, little is known about Sb retention and tolerance in trees. The Chinese cork oak (Quercus variabilis Bl.) is known to be capable of growth in soils containing high concentrations of Sb. This study explored in detail the retention and acclimation of Q. variabilis under moderate and high external Sb levels. Results revealed that Q. variabilis could tolerate and accumulate high Sb (1623.39 mg kg(-1) DW) in roots. Dynamics of Sb retention in leaves, stems, and roots of Q. variabilis were different. Leaf Sb remained at a certain level for several weeks, while in roots and stems, Sb concentrations continued to increase. Sb damaged tree's PSII reaction cores but elicited defense mechanism at the donor side of PSII. It affected the electron transport flow after QA (-) more strongly than the oxygen-evolving complex and light-harvesting pigment-protein complex II. Sb also decreased leaf chlorophyll concentrations and therefore inhibited plant growth. During acclimation to Sb toxicity, Sb concentrations in leaves, stems, and roots decreased, with photosynthetic activity and pigments recovering to normal levels by the end of the experiment. These findings suggest that Sb tolerance in Q. variabilis is inducible. Acclimation seems to be related to homeostasis of Sb in plants. Results of this study can provide useful information for trees breeding and selection of Sb phytomanagement strategies, exploiting the established ability of Q. variabilis to transport, delocalize in the leaves, and tolerate Sb pollutions.

  3. Using Multiple Sources of Information in Establishing Text Complexity. Reading Research Report. #11.03

    Science.gov (United States)

    Hiebert, Elfrieda H.

    2011-01-01

    A focus of the Common Core State Standards/English Language Arts (CCSS/ELA) is that students become increasingly more capable with complex text over their school careers. This focus has redirected attention to the measurement of text complexity. Although CCSS/ELA suggests multiple criteria for this task, the standards offer a single measure of…

  4. Sources and interpretation of channel complexity in forested subalpine streams of the Southern Rocky Mountains

    Science.gov (United States)

    Livers, Bridget; Wohl, Ellen

    2016-05-01

    We evaluate correlations between stream geomorphic complexity and characteristics of the adjacent riparian forest, valley geometry, and land use history in forested subalpine streams of the Colorado Front Range. Measures of geomorphic complexity focus on cross-sectional, planform, and instream wood piece and logjam variables. We categorize adjacent riparian forests as old-growth unmanaged forest (OU), younger unmanaged forest (YU), and younger managed forest (YM), and valley geometry as laterally confined, partly confined, or unconfined. Significant differences in geomorphic stream complexity between OU, YU, and YM result primarily from differences in wood pieces and logjams, and these differences correlate strongly with pool volume and organic matter storage. Significant differences in planform and cross-sectional complexity correlate more strongly with valley geometry, but do not explain as much of the observed variability in complexity between streams as do the wood variables. Unconfined OU streams have the largest wood loads and the greatest complexity, whereas legacy effects of logging, tie-drives, and channel simplification create lower complexity in YM streams, even relative to YU streams flowing through similarly aged forest. We find that management history of riparian forests exerts the strongest control on reduced functional stream channel complexity, regardless of riparian forest stand age.

  5. Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.

    Science.gov (United States)

    Liu, Chenlin; Wang, Xiuliang; Wang, Xingna; Sun, Chengjun

    2016-07-01

    The Antarctic green alga Chlamydomonas sp. ICE-L was isolated from sea ice. As a psychrophilic microalga, it can tolerate the environmental stress in the sea-ice brine, such as freezing temperature and high salinity. We performed a transcriptome analysis to identify freezing stress responding genes and explore the extreme environmental acclimation-related strategies. Here, we show that many genes in ICE-L transcriptome that encoding PUFA synthesis enzymes, molecular chaperon proteins, and cell membrane transport proteins have high similarity to the gens from Antarctic bacteria. These ICE-L genes are supposed to be acquired through horizontal gene transfer from its symbiotic microbes in the sea-ice brine. The presence of these genes in both sea-ice microalgae and bacteria indicated the biological processes they involved in are possibly contributing to ICE-L success in sea ice. In addition, the biological pathways were compared between ICE-L and its closely related sister species, Chlamydomonas reinhardtii and Volvox carteri. In ICE-L transcripome, many sequences homologous to the plant or bacteria proteins in the post-transcriptional, post-translational modification, and signal-transduction KEGG pathways, are absent in the nonpsychrophilic green algae. These complex structural components might imply enhanced stress adaptation capacity. At last, differential gene expression analysis at the transcriptome level of ICE-L indicated that genes that associated with post-translational modification, lipid metabolism, and nitrogen metabolism are responding to the freezing treatment. In conclusion, the transcriptome of Chlamydomonas sp. ICE-L is very useful for exploring the mutualistic interaction between microalgae and bacteria in sea ice; and discovering the specific genes and metabolism pathways responding to the freezing acclimation in psychrophilic microalgae.

  6. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  7. Estimation of plate material properties by means of a complex wavenumber fit using Hankel's functions and the image source method

    Science.gov (United States)

    Roozen, N. B.; Leclère, Q.; Ege, K.; Gerges, Y.

    2017-03-01

    This paper presents a new wave fitting approach to estimate the frequency dependent material properties of thin isotropic plate structures from an experimentally obtained vibrational field, exciting the plate at a single point. The method projects the measurement data on to an analytical image source model, in which Hankel's functions are used for a description of the wave fields emanating from the point of excitation, including the reflected wave fields from the edges of the finite plate. By minimizing the error between the projected field and the measured field, varying the complex wave number and the source strengths of the image sources, an optimum fit is searched for. Thus the source strengths of the image sources do not need to be determined theoretically, but are estimated from the fit on to the experimental data instead (thus avoiding difficulties in theoretically assessing the reflection coefficient of the edges of the plate). The approach uses a complex wavenumber fit, enabling the determination of the dynamic stiffness of the plate structure and its damping properties as function of frequency. The method is especially suited for plates with a sufficient amount of damping, excited at high frequencies.

  8. Cold resistance depends on acclimation and behavioral caste in a temperate ant

    Science.gov (United States)

    Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon

    2012-10-01

    Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.

  9. Low salinity acclimation and thyroid hormone metabolizing enzymes in gilthead seabream (Sparus auratus)

    NARCIS (Netherlands)

    Klaren, P.H.M.; Guzman, J.M.; Reutelingsperger, S.J.; Mancera, J.M.; Flik, G.

    2007-01-01

    We investigated the effect of acclimation to low salinity water of gilthead seabream (Sparus auratus), a euryhaline seawater teleost, on the activities of thyroid hormone-metabolizing enzymes in gills, kidney, and liver. Following acclimation to low salinity water, the plasma free thyroxine (T(4)) c

  10. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Radaelli, P. G.; Dhesi, S. S.

    2015-01-26

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007–2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.

  11. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    Science.gov (United States)

    Radaelli, P G; Dhesi, S S

    2015-03-06

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.

  12. Heat and cold acclimation in helium-cold hypothermia in the hamster.

    Science.gov (United States)

    Musacchia, X. J.

    1972-01-01

    A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.

  13. Light acclimation in Porphyridium purpureum (Rhodophyta): Growth, photosynthesis, and phycobilisomes

    Energy Technology Data Exchange (ETDEWEB)

    Levy, I.; Gantt, E. (Smithsonian Institution, WA (USA))

    1988-12-01

    Acclimation to three photon flux densities 10, 35, 180 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} was determined in laboratory cultures of Porphyridium purpureum Bory, Drew and Ross. Cultures grown at low, medium, and high PPFDs had compensation points of <3, 6, and 20 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1}, respectively, and saturating irradiances in the initial log phase of 90, 115, 175 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} and up to 240 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} in late log phase. High light cells had the smallest photosynthetic unit size (phycobiliproteins plus chlorophyll), the highest photosynthetic capacity, and the highest growth rates. Photosystem I reaction centers (P700) per cell remained proportional to chlorophyll at ca. 110 chl/P700. However, phycobiliprotein content decreased as did the phycobilisome number (ca. 50%) in high light cells, whereas the phycobilisome size remained the same as in medium and low light cells. We concluded that acclimation of this red alga to varied PPFDs was manifested by the plasticity of the photosystem II antennae with little, if any, affect noted on photosystem I.

  14. MAGIC reveals a complex morphology within the unidentified gamma-ray source HESS J1857+026

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Carreto, D Fidalgo; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hayashida, M; Herrera, J; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Meucci, M; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Nowak, N; Wilhelmi, E de Oña; Orito, R; Overkemping, A; Klepser, S; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zandanel, F; Zanin, R

    2014-01-01

    HESS J1857+026 is an extended TeV gamma-ray source that was discovered by H.E.S.S. as part of its Galactic plane survey. Given its broadband spectral energy distribution and its spatial coincidence with the young energetic pulsar PSR J1856+024, the source has been put forward as a pulsar wind nebula (PWN) candidate. MAGIC has performed follow-up observations aimed at mapping the source down to energies approaching 100 GeV in order to better understand its complex morphology. HESS J1857+026 was observed by MAGIC in 2010, yielding 29 hours of good quality stereoscopic data that allowed us to map the source region in two separate ranges of energy. We present an energy spectrum of the region, which bridges the gap between the GeV emission measured by Fermi-LAT and the multi-TeV emission measured by H.E.S.S., together with a detailed analysis of its energy-dependent morphology. We couple these results with archival multi-wavelength data and outline evidence in favor of a two-source scenario, whereby one source is ...

  15. High TNT-transforming activity by a mixed culture acclimated and maintained on crude-oil-containing media

    Energy Technology Data Exchange (ETDEWEB)

    Popesku, J. T.; Singh, A.; Ward, O. P. [Waterloo Univ., Dept. of Biology, Waterloo, ON (Canada); Xhao, J-S.; Hawari, J. [National Research Council, Biotechnology Research Inst., Montreal, PQ (Canada)

    2003-05-01

    Results of an investigation of the ability of a culture, which neither originated from a munitions-contaminated site, nor was preselected, nor acclimated to TNT-containing media, to rapidly transform TNT, are presented. Cultivation of a mixed culture in glucose-containing medium for 29 hours resulted in almost complete transformation of 100 ppm TNT, suggesting that some of the enzymes and/or metabolic pathways present in crude-oil-degrading micro-organism have the capacity to transform TNT. Both resting and growing cells were able to transform TNT. When sub-cultured, it was found that TNT was able to support growth of the mixed culture when supplied as sole carbon source, sole nitrogen source, or sole carbon and nitrogen source. It is suggested that high TNT-transforming ability without prior subculture on TNT-containing media may have potential applications in bioremediation of munitions-contaminated soil and wastewater. 20 refs., 3 tabs., 2 figs.

  16. Brain electric correlates of strong belief in paranormal phenomena: intracerebral EEG source and regional Omega complexity analyses.

    Science.gov (United States)

    Pizzagalli, D; Lehmann, D; Gianotti, L; Koenig, T; Tanaka, H; Wackermann, J; Brugger, P

    2000-12-22

    The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.

  17. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  18. RNA-Seq Analysis of Sulfur-Deprived Chlamydomonas Cells Reveals Aspects of Acclimation Critical for Cell Survival[W

    Science.gov (United States)

    González-Ballester, David; Casero, David; Cokus, Shawn; Pellegrini, Matteo; Merchant, Sabeeha S.; Grossman, Arthur R.

    2010-01-01

    The Chlamydomonas reinhardtii transcriptome was characterized from nutrient-replete and sulfur-depleted wild-type and snrk2.1 mutant cells. This mutant is null for the regulatory Ser-Thr kinase SNRK2.1, which is required for acclimation of the alga to sulfur deprivation. The transcriptome analyses used microarray hybridization and RNA-seq technology. Quantitative RT-PCR evaluation of the results obtained by these techniques showed that RNA-seq reports a larger dynamic range of expression levels than do microarray hybridizations. Transcripts responsive to sulfur deprivation included those encoding proteins involved in sulfur acquisition and assimilation, synthesis of sulfur-containing metabolites, Cys degradation, and sulfur recycling. Furthermore, we noted potential modifications of cellular structures during sulfur deprivation, including the cell wall and complexes associated with the photosynthetic apparatus. Moreover, the data suggest that sulfur-deprived cells accumulate proteins with fewer sulfur-containing amino acids. Most of the sulfur deprivation responses are controlled by the SNRK2.1 protein kinase. The snrk2.1 mutant exhibits a set of unique responses during both sulfur-replete and sulfur-depleted conditions that are not observed in wild-type cells; the inability of this mutant to acclimate to S deprivation probably leads to elevated levels of singlet oxygen and severe oxidative stress, which ultimately causes cell death. The transcriptome results for wild-type and mutant cells strongly suggest the occurrence of massive changes in cellular physiology and metabolism as cells become depleted for sulfur and reveal aspects of acclimation that are likely critical for cell survival. PMID:20587772

  19. Complex history as a source of planning problems: Old Belgrade fairground

    Directory of Open Access Journals (Sweden)

    Vukotić-Lazar Marta

    2006-01-01

    Full Text Available The Old Belgrade Fairground complex is the large area in the center of Belgrade that is completely isolated from other parts of Belgrade: it is one of the most devastated city areas, populated by poor inhabitants, often by those from the marginal groups, burdened with tragic history and it represents one of hardest problems for planners to solve. It is situated on the left bank of the Sava River between two bridges and downtown New Belgrade. Opposite to it, the Sava Amphitheatre slopes down the Belgrade Ridge towards the river. The complex was built in the thirties of the 20th century across the River Sava in the area that was an unpopulated swamp - Belgrade was situated on the right Sava bank. It was meant to be modern extension of oriental city, which could represent the western tendencies of the young state (Kingdom of Yugoslavia and its capital. Modern and monumental complex of exhibition and commercial pavilions was built, and started its life with national and international fairs and exhibitions. World War 2 changed its destiny: German occupation forces transformed the complex into the concentration camp, where thousands of people were tortured and killed. After the war, new republican government, both communist and antifascist, had double frustration regarding this space: it’s tragic (during the War and "capitalist" (before the War past, so complex that was absolutely ignored in the period of the postwar renewal, and the result is described at the beginning of this text. This paper discusses the possibility to conciliate historical roles of the complex, and to realize it’s potentials in the modern world. Facts of the complex’s history are presented in the first part of the paper. Further on, these facts are analyzed in the context of contemporary city development of Belgrade in particular but globally, too.. Finally, some guidelines for crossing the gap between this area and the rest of the city are presented in the third part of

  20. Gaseous Mercury Monitoring at a Complex Source: The Las Cuevas Decommissioned Mining Complex and Current Hg Storage Facility (Almadén District, Spain)

    Science.gov (United States)

    Higueras, P. L.; Esbri, J. M.; Llanos, W. R.; Oyarzun, R.; Martinez-Coronado, A.; Grupo de Estudios En Minería Y Medioambiente-Gemm

    2010-12-01

    The Las Cuevas decommissioned mining complex was the third in importance in the world’s largest mercury mining district: Almadén (south-central Spain). Mining took place during two well differentiated periods: 1. Roman time; and 2. From 1982 to 2000. In 2004 the mine was transformed into a mercury storage and handling facility, away from urban areas. Furthermore, the area served as a test site for the design and implementation of a mercury safe storage vessel, a study funded by European LIFE-Env programme (Project MERSADE, LIFE06 ENV/ES/PREP/03) (Llanos et al., 2010). On this basis, Las Cuevas site can be regarded as a complex source of atmospheric mercury for the local environmental compartments, including emissions from the plant activity, partly reclamated old mineral dumps, contaminated soils, and other minor sources, such as cavities produced by mine collapse. We studied the emissions with two LUMEX RA-915+ Hg analyzers, one LUMEX RA-915Light device and a complete TEKRAN equipment, including Mercury Speciation Unit (model 1130) and Particulate Mercury Unit (Model 1135). Data has been treated with ISC-AERMOD program, in order to obtain models for contamination plumes derived from Las Cuevas whole area. The results confirm the mercury storage facility as the main local source for mercury, releasing some 3,15 kg Hg y-1, whereas contaminated soils and reclamated dumps represent local minor sources. Over 99,9% of local atmospheric mercury is Gaseous Elemental Mercury, with Reactive Gaseous Mercury representing 0,25 per mil, and particulate bound mercury, 1,8 per mil. Citation: Llanos, W.; Higueras, P.; Oyarzun, R.; Esbrí, J.M.; López-Berdonces, M.A.; García-Noguero, E.M.; Martínez-Coronado, A. (2010) A preliminary environmental assessment at the site of the European prototype installation of a safe deposit for surplus mercury from industry: The Las Cuevas mining complex, Almadén District, Spain. Science of the Total Environment, 408: 4901-4905.

  1. Source pollution control program at the Camacari Petrochemical Complex: overall and individual improvements

    Energy Technology Data Exchange (ETDEWEB)

    Freire, P.A.; Neto, D.B.; Carvalho, D.M. [CETREL S.A., Camacari, BA (Brazil)

    1993-12-31

    Along with the technical progress experienced by the Camacari Petrochemical Complex in the last few years, new policies, following new worldwide trends, in pollution control and prevention became mandatory. This work describes some of these experiences as well as future perspectives. 3 refs., 2 fig., 13 tabs.

  2. Low complexity source and channel coding for mm-wave hybrid fiber-wireless links

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Vegas Olmos, Juan José; Pang, Xiaodan;

    2014-01-01

    performance of several encoded high-definition video sequences constrained by the channel bitrate and the packet size. We argue that light video compression and low complexity channel coding for the W-band fiber-wireless link enable low-delay multiple channel 1080p wireless HD video transmission....

  3. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    Science.gov (United States)

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  4. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Directory of Open Access Journals (Sweden)

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  5. Thermal sensitivity does not determine acclimation capacity for a tropical reef fish.

    Science.gov (United States)

    Donelson, Jennifer M; Munday, Philip L

    2012-09-01

    1. Short-term measures of metabolic responses to warmer environments are expected to indicate the sensitivity of species to regional warming. However, given time, species may be able to acclimate to increasing temperature. Thus, it is useful to determine if short-term responses provide a good predictor for long-term acclimation ability. 2. The tropical reef fish Acanthochromis polyacanthus was used to test whether the ability for developmental thermal acclimation of two populations was indicated by their short-term metabolic response to temperature. 3. While both populations exhibited similar short-term responses of resting metabolic rate (RMR) to temperature, fish from the higher-latitude population were able to fully acclimate RMR, while the lower-latitude population could only partially compensate RMR at the warmest temperature. These differences in acclimation ability are most likely due to genetic differences between the populations rather than differences in thermal regimes. 4. This research indicates that acclimation ability may vary greatly between populations and that understanding such variation will be critical for predicting the impacts of warming environmental temperatures. Moreover, the thermal metabolic reaction norm does not appear to be a good predictor of long-term acclimation ability.

  6. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Marianne Nymark

    Full Text Available Photosynthetic diatoms are exposed to rapid and unpredictable changes in irradiance and spectral quality, and must be able to acclimate their light harvesting systems to varying light conditions. Molecular mechanisms behind light acclimation in diatoms are largely unknown. We set out to investigate the mechanisms of high light acclimation in Phaeodactylum tricornutum using an integrated approach involving global transcriptional profiling, metabolite profiling and variable fluorescence technique. Algae cultures were acclimated to low light (LL, after which the cultures were transferred to high light (HL. Molecular, metabolic and physiological responses were studied at time points 0.5 h, 3 h, 6 h, 12 h, 24 h and 48 h after transfer to HL conditions. The integrated results indicate that the acclimation mechanisms in diatoms can be divided into an initial response phase (0-0.5 h, an intermediate acclimation phase (3-12 h and a late acclimation phase (12-48 h. The initial phase is recognized by strong and rapid regulation of genes encoding proteins involved in photosynthesis, pigment metabolism and reactive oxygen species (ROS scavenging systems. A significant increase in light protecting metabolites occur together with the induction of transcriptional processes involved in protection of cellular structures at this early phase. During the following phases, the metabolite profiling display a pronounced decrease in light harvesting pigments, whereas the variable fluorescence measurements show that the photosynthetic capacity increases strongly during the late acclimation phase. We show that P. tricornutum is capable of swift and efficient execution of photoprotective mechanisms, followed by changes in the composition of the photosynthetic machinery that enable the diatoms to utilize the excess energy available in HL. Central molecular players in light protection and acclimation to high irradiance have been identified.

  7. Sources

    OpenAIRE

    2015-01-01

    SOURCES MANUSCRITES Archives nationales Rôles de taille 1768/71 Z1G-344/18 Aulnay Z1G-343a/02 Gennevilliers Z1G-340/01 Ivry Z1G-340/05 Orly Z1G-334c/09 Saint-Remy-lès-Chevreuse Z1G-344/18 Sevran Z1G-340/05 Thiais 1779/80 Z1G-391a/18 Aulnay Z1G-380/02 Gennevilliers Z1G-385/01 Ivry Z1G-387b/05 Orly Z1G-388a/09 Saint-Remy-lès-Chevreuse Z1G-391a/18 Sevran Z1G-387b/05 Thiais 1788/89 Z1G-451/18 Aulnay Z1G-452/21 Chennevières Z1G-443b/02 Gennevilliers Z1G-440a/01 Ivry Z1G-452/17 Noiseau Z1G-445b/05 ...

  8. An isotopomer strategy to detect plant acclimation to increasing atmospheric CO2

    Science.gov (United States)

    Augusti, A.; Betson, T. R.; Schleucher, J.

    2009-04-01

    Abundances of deuterium (D) and 18O in precipitation carry climate signals. Both isotopes are incorporated into leaf photosynthate, and in a second step into tree rings. Strikingly, while D and 18O climate signals in precipitation are related, tree-ring records of both isotopes do not generally go in parallel. This contribution investigates this discrepancy, based on a comparison of the fractionation mechanisms for both isotopes. We present a strategy to detect plant acclimation on time scales of centuries from intramolecular deuterium distributions (D isotopomers). We showed recently that specific C-H groups of glucose units exchange with water during cellulose synthesis in tree trunks, in agreement with the biochemistry of cellulose formation. Most importantly, this result allows separating influences of source water and of D fractionations in the plant, and hence to isolate climate signals and physiological signals. NMR measurements of intramolecular D distributions of glucose demonstrate that each C-H group has a distinct abundance (each D isotopomer), corresponding to its unique biochemical history, and can serve as independent information channel. Therefore, isotopomers increase the information content of isotopes several-fold. Thus, using D isotopomers, a situation may be achieved where experimental quantities overdetermine the number of variables to be reconstructed. This increased information content can be retrieved along the following strategies. Similar to C-O groups that exchange during cellulose synthesis, D isotopomers of C-H groups which heavily exchange should adopt the D abundance of source water and associated climate signals. We will present tree-ring results that support the feasibility of this approach. C-H groups that are not affected by isotope exchange are passed from leaves to the trunk, and can therefore transmit leaf-level information to tree rings. On the leaf level, overall D abundance of photosynthate is influenced by transpiration

  9. True lemurs…true species - species delimitation using multiple data sources in the brown lemur complex

    OpenAIRE

    2013-01-01

    Background Species are the fundamental units in evolutionary biology. However, defining them as evolutionary independent lineages requires integration of several independent sources of information in order to develop robust hypotheses for taxonomic classification. Here, we exemplarily propose an integrative framework for species delimitation in the “brown lemur complex” (BLC) of Madagascar, which consists of seven allopatric populations of the genus Eulemur (Primates: Lemuridae), which were s...

  10. The Netherlands. Complex ground source heat drilling for horticultural works; Niederlande. Komplexe Erdwaermebohrung fuer Gartenbaubetriebe

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Dieter [DrillTec GUT GmbH, Deggendorf (Germany)

    2012-11-01

    For the past six months, the Dutch gardening industry looked to Honselersdijk near Rotterdam with great expectations. There, five market gardening businesses planned to heat their greenhouses with geothermal heat instead of natural gas. After technically complex drilling operations, hot water is now flowing at a rate of up to 50 litres per second; the drilling project remained fascinating to the last for everybody involved.

  11. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

    Science.gov (United States)

    Saikin, Semion K.; Khin, Yadana; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alán; Tang, Joseph Kuo-Hsiang

    2014-05-01

    Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal vents in the Pacific Ocean.

  12. Complex anthropogenic sources of platinum group elements in aerosols on Cape Cod, USA.

    Science.gov (United States)

    Sen, Indra S; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas

    2013-09-17

    Platinum group elements (PGE) of anthropogenic origin have been reported in rainwater, snow, roadside soil and vegetation, industrial waste, and urban airborne particles around the world. As recent studies have shown that PGE are bioavailable in the environment and pose health risks at chronic levels, the extent of PGE pollution is of global concern. In this study, we report PGE concentrations and osmium isotope ((187)Os/(188)Os) ratios of airborne particles (particulate matter, PM10) collected in Woods Hole, a small coastal village on Cape Cod, Massachusetts, U.S.A. The sampling site is more than 100 km away from the nearest urban centers (Boston, Providence) and has no large industrial emission center within a 30 km radius. The study reveals that, although PGE concentrations in rural airborne particulate matter are orders of magnitude lower than in urban aerosols, 69% of the total osmium is of anthropogenic origin. Anthropogenic PGE signatures in airborne particles are thus not restricted to large cities with high traffic flows and substantial industries; they can also be found in rural environments. We further conclude that the combination of Pt/Rh concentration ratios and (187)Os/(188)Os composition can be used to trace PGE sources. The Pt/Rh and (187)Os/(188)Os composition of Woods Hole aerosols indicate that the anthropogenic PGE fraction is primarily sourced from ore smelting processes, with possible minor contributions from fossil fuel burning and automobile catalyst-derived materials. Our results further substantiate the use of (187)Os/(188)Os in source apportionment studies on continental scales.

  13. Field enhancement and resonance phenomena in complex three-dimensional nanoparticles: efficient computation using the source-model technique.

    Science.gov (United States)

    Ishay, Yakir; Leviatan, Yehuda; Bartal, Guy

    2014-05-15

    We present a semi-analytical method for computing the electromagnetic field in and around 3D nanoparticles (NP) of complex shape and demonstrate its power via concrete examples of plasmonic NPs that have nonsymmetrical shapes and surface areas with very small radii of curvature. In particular, we show the three axial resonances of a 3D cashew-nut and the broadband response of peanut-shell NPs. The method employs the source-model technique along with a newly developed intricate source distributing algorithm based on the surface curvature. The method is simple and can outperform finite-difference time domain and finite-element-based software tools in both its efficiency and accuracy.

  14. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    Science.gov (United States)

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development.

  15. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516).

    Science.gov (United States)

    McKew, Boyd A; Davey, Phillip; Finch, Stewart J; Hopkins, Jason; Lefebvre, Stephane C; Metodiev, Metodi V; Oxborough, Kevin; Raines, Christine A; Lawson, Tracy; Geider, Richard J

    2013-10-01

    Mechanistic understanding of the costs and benefits of photoacclimation requires knowledge of how photophysiology is affected by changes in the molecular structure of the chloroplast. We tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in the abundances of chloroplast proteins in Emiliania huxleyi strain CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m(-2) s(-1) photon flux densities. Carbon-specific light-saturated gross photosynthesis rates were not significantly different between cells acclimated to LL and HL. Acclimation to LL benefited cells by increasing biomass-specific light absorption and gross photosynthesis rates under low light, whereas acclimation to HL benefited cells by reducing the rate of photoinactivation of PSII under high light. Differences in the relative abundances of proteins assigned to light-harvesting (Lhcf), photoprotection (LI818-like), and the photosystem II (PSII) core complex accompanied differences in photophysiology: specifically, Lhcf:PSII was greater under LL, whereas LI818:PSII was greater in HL. Thus, photoacclimation in E. huxleyi involved a trade-off amongst the characteristics of light absorption and photoprotection, which could be attributed to changes in the abundance and composition of proteins in the light-harvesting antenna of PSII.

  16. Complex behavior and source model of the tremor at Arenal volcano, Costa Rica

    Science.gov (United States)

    Lesage, Philippe; Mora, Mauricio M.; Alvarado, Guillermo E.; Pacheco, Javier; Métaxian, Jean-Philippe

    2006-09-01

    Typical records of volcanic tremor and explosion quakes at Arenal volcano are analyzed with a high-resolution time-frequency method. The main characteristics of these seismic signals are: (1) numerous regularly spaced spectral peaks including both odd and even overtones; (2) frequency gliding in the range [0.9-2] Hz of the fundamental peak; (3) frequency jumps with either positive or negative increments; (4) tremor episodes with two simultaneous systems of spectral peaks affected by independent frequency gliding; (5) progressive transitions between spasmodic tremor and harmonic tremor; (6) lack of clear and systematic relationship between the occurrence of explosions and tremor. Some examples of alternation between two states of oscillation characterized by different fundamental frequencies are also observed. Some tremor and explosion codas are characterized by acoustic and seismic waves with identical spectral content and frequency gliding, which suggests a common excitation process. We propose a source model for the tremor at Arenal in which intermittent gas flow through fractures produces repetitive pressure pulses. The repeating period of the pulses is stabilized by a feedback mechanism associated with standing or traveling waves in the magmatic conduit. The pressure pulses generate acoustic waves in the atmosphere and act as excitation of the interface waves in the conduit. When the repeating period of the pulses is stable enough, they produce regularly spaced spectral peaks by the Dirac comb effect and hence harmonic tremor. When the period stability is lost, because of failures in the feedback mechanism, the tremor becomes spasmodic. The proposed source model of tremor is similar to the sound emission process of a clarinet. Fractures in the solid or viscous layer capping the lava pool in the crater act as the clarinet reed, and the conduit filled with low velocity bubbly magma is equivalent to the pipe of the musical instrument. The frequency gliding is

  17. [Model aeroplanes: a not to be ignored source of complex injuries].

    Science.gov (United States)

    Laback, C; Vasilyeva, A; Rappl, T; Lumenta, D; Giunta, R E; Kamolz, L

    2013-12-01

    With the incidence of work-related injuries decreasing, we continue to observe an unchanged trend in leisure-related accidents. As in any other hobby, model flying devices bear the risk for accidents among builders and flyers ranging from skin lacerations to complicated and even life-threatening injuries. The fast-moving razor-sharp propeller blades predominantly cause trauma to the hands and fingers resulting in typical multiple parallel skin injuries also affecting structures deep to the dermis (e. g., tendons, vessels and nerves). The resultant clinical management involves complex reconstructive surgical procedures and prolonged rehabilitative follow-up. Improving the legal framework (e. g., warnings by the manufacturer) on the one hand, providing informative action and sensitising those affected on the other, should form a basis for an altered prevention strategy to reduce model flying device-related injuries in the future.

  18. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    Science.gov (United States)

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  19. Photosynthesis-dependent physiological and genetic crosstalk between cold acclimation and cold-induced resistance to fungal pathogens in triticale (Triticosecale Wittm.).

    Science.gov (United States)

    Szechyńska-Hebda, Magdalena; Wąsek, Iwona; Gołębiowska-Pikania, Gabriela; Dubas, Ewa; Żur, Iwona; Wędzony, Maria

    2015-04-01

    The breeding for resistance against fungal pathogens in winter triticale (Triticosecale Wittm.) continues to be hindered by a complexity of the resistance mechanisms, strong interaction with environmental conditions, and dependence on the plant genotype. We showed, that temperature below 4 °C induced the plant genotype-dependent resistance against the fungal pathogen Microdochium nivale. The mechanism involved, at least, the adjustment of the reactions in the PSII proximity and photoprotection, followed by an improvement of the growth and development. The genotypes capable to develop the cold-induced resistance, showed a higher maximum quantum yield of PSII and a more efficient integration of the primary photochemistry of light reactions with the dark reactions. Moreover, induction of the photoprotective mechanism, involving at least the peroxidases scavenging hydrogen peroxide, was observed for such genotypes. Adjustment of the photosynthesis and stress acclimation has enabled fast plant growth and avoidance of the developmental stages sensitive to fungal infection. The same mechanisms allowed the quick regrow of plants during the post-disease period. In contrast, genotypes that were unable to develop resistance despite cold hardening had less flexible balancing of the photoprotection and photoinhibition processes. Traits related to: photosynthesis-dependent cold-acclimation and cold-induced resistance; biomass accumulation and growth; as well as protection system involving peroxidases; were integrated also at a genetic level. Analysing 95 lines of the mapping population SaKa3006×Modus we determined region on chromosomes 5B and 7R shared within all tested traits. Moreover, similar expression pattern of a set of the genes related to PSII was determined with the metaanalysis of the multiple microarray experiments. Comparable results for peroxidases, involving APXs and GPXs and followed by PRXs, indicated a similar function during cold acclimation and defense

  20. Norepinephrine turnover in heart and spleen of 7-, 22-, and 34 C-acclimated hamsters

    Science.gov (United States)

    Jones, S. B.; Musacchia, X. J.

    1976-01-01

    The relationship of norepinephrine (NE) concentration and endogenous turnover rates in both myocardial and spleen tissues in the golden hamster is examined as a function of chronic exposure to either high or low ambient temperatures. Changes in myocardial and spleen NE turnover values are discussed in terms of functional alterations in sympathetic nerve activity and the importance of such changes in temperature acclimation. It is found that acclimation of hamsters to 7 C for 7-10 weeks results in decreased myocardial NE concentration and an apparent increase in myocardial NE turnover. In contrast, exposure to 34 C for 6-8 weeks results in increased myocardial NE concentration and an apparent decrease in NE turnover in both myocardial and spleen tissues. The implication of altered NE synthesis is that sympathetic nerve activity is reduced with heat acclimation and is enhanced with cold acclimation.

  1. Heat shock response of the blue crab Portunus pelagicus:thermal stress and acclimation

    Institute of Scientific and Technical Information of China (English)

    Suhaila Qari

    2014-01-01

    Objective:To determine the effect of prior heat shock on the CTMax of differently acclimated Portunus pelagicus (P. pelagicus) as well as the time course of the changes in CTMax post heat shock. Methods: Crabs P. pelagicus were held in laboratory aquaria in tanks, which were supplied with filtered and aerated seawater. Crabs were acclimated at 20 °C, 25 °C, 30 °C and 35 °C for 3 weeks before their CTMax was determined. The CTMax was recorded for each crab as the median temperature during the 5 min period when a crab was not able to right itself, the average CTMax was calculated. The effect of heat shock on subsequent CTMax was measured. Crabs were heat shocked at temperature 1 °C lower than the CTMax for 20 min, followed by either 0.5 h, 1 h or 1.5 h recovery at 20 °C. The same procedure was repeated at other acclimation temperatures (25 °C, 30 °C and 35 °C). Results: Temperature acclimation of P. pelargicus from 20-35 °C progressively increased the CTMax. Acclimation at 35 °C the CTMax was 42.66 °C, whereas acclimation at 20 °C the CTMax was 39.8 °C. In P. pelagicus acclimated, at 20 °C the CTMax values after heat shock were significantly higher than crabs in control for 30 min, 1 h and 1.5 h after heat shock. In the 25 °C and 30 °C acclimated crabs, the CTMax values after heat shock were significantly higher than control only in 30 min and 1 h after heat shock. No significant differences in 35 °C acclimated crabs between control and heat shocked crabs were found after recovery for 30 min, 1 h, or 1.5 h. Conclusions: Heat shock caused significant rises in the CTMax, however, this increase was progressively reduced with longer recovery times at the acclimation temperature. For 20 °C acclimated crabs, the increased CTMax was still evident after 90 min, but for 25 °C and 30 °C crabs, the response was over after 90 min. Heat shock of 35 °C crabs was problematical, the CTMax gave no increased thermotolerance. It must be concluded that the

  2. UVR8 mediated plant protective responses under low UV-B radiation leading to photosynthetic acclimation.

    Science.gov (United States)

    Singh, Suruchi; Agrawal, S B; Agrawal, Madhoolika

    2014-08-01

    The UV-B photoreceptor UVR8 regulates the expression of several genes leading to acclimation responses in plants. Direct role of UVR8 in maintaining the photosynthesis is not defined but it is known to increase the expression of some chloroplastic proteins like SIG5 and ELIP. It provides indirect protection to photosynthesis by regulating the synthesis of secondary metabolites and photomorphogenesis. Signaling cascades controlled by UVR8 mediate many protective responses thus promotes plant acclimation against stress and secures its survival.

  3. Boreal and temperate trees show strong acclimation of respiration to warming.

    Science.gov (United States)

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  4. Distinct Testicular Steroidogenic Response Mechanisms Between Neonatal and Adult Heat-Acclimated Male Rats

    Directory of Open Access Journals (Sweden)

    Beata Kurowicka

    2015-03-01

    Full Text Available Background: In comparison to short-term gonad heat exposure, little is known about the molecular mechanisms that regulate testicular steroidogenesis during long-term whole body heat acclimation. Material and Methods: Testicular slices from neonatal (NHA and adult (AHA heat-acclimated Wistar rats were analysed in vitro to assess the mRNA expression and enzymatic activity of steroidogenic enzymes under basal and luteinising hormone (LH or prolactin (PRL stimulated conditions compared with control rats (CR. Furthermore, a de-acclimated group (DA was created by transferring adult NHA rats to control conditions. Results: Heat acclimation significantly increased plasma LH levels in the AHA group and LH and PRL in the NHA group compared with the CR group; however, after heat acclimation, the T and E2 levels did not differ from the control levels. All heat-acclimated groups showed high basal intra-testicular steroid production in vitro. Moreover, basal Cyp11a1 and Hsd3b1 levels were upregulated in vitro in the NHA and DA groups versus the CR group. LH in vitro stimulation upregulated Cyp11a1 expression in the NHA and AHA groups and PRL stimulation upregulated Cyp17a1 levels in the NHA and DA groups compared with the basal expression levels. In the AHA group, decreased basal Star and CYP11A activities but increased HSD3B1 and CYP17A1 activities were found. Conclusion: Our data revealed that despite the similar steroid levels in plasma and secreted in vitro by neonatal and adult heat-acclimated rat testicular slices, the molecular mechanisms underlying the steroidogenic response to heat acclimation during these different developmental stages were distinct.

  5. Effects of Acclimation on Poststocking Dispersal and Physiological Condition of Age-1 Pallid Sturgeon

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Eric W.; Guy, Christopher S.; Cureton, Eli S.; Webb, Molly H.; Gardner, William M.

    2011-03-28

    A propagation program for pallid sturgeon Scaphirhynchus albus in the upper Missouri River was implemented by the U. S. Fish and Wildlife Service in 1997. Preliminary research indicated that many hatchery-reared pallid sturgeon were experiencing significant downstream poststocking dispersal, negatively affecting their recruitment. Therefore, the objective of this study was to evaluate the effects of acclimation to flow and site-specific physicochemical water conditions on poststocking dispersal and physiological condition of age-1 pallid sturgeon. Fish from three acclimation treatments were radio-tagged, released at two locations (Missouri River and Marias River), and monitored using passive telemetry stations. Marias treatment was acclimated to flow and site-specific physicochemical conditions, Bozeman treatment was acclimated to flow only, and traditional treatment had no acclimation (reared under traditional protocol). During both years fish released in the Missouri River dispersed less than fish released in the Marias River. In 2005, Marias treatment dispersed less and nearly twice as many fish remained in the Missouri River reach than traditional treatment. In 2006, pallid sturgeon dispersed similarly among treatments and fish remaining in the Missouri River reach were similar among all treatments. Differences in poststocking dispersal between years may be related to fin curl. Fin curl was present in all fish in 2005 and 27% of the fish in 2006. Pallid sturgeon from all treatments in both years had a greater affinity for the lower reaches of the Missouri River than the upper reaches. Thus, habitat at release site influenced poststocking dispersal more than acclimation treatment. No difference was observed in relative growth rate among treatments in 2006. However, acclimation to flow (i.e., exercise conditioning) may reduce liver fat content. Acclimation conditions used in this study may not benefit pallid sturgeon unless physiological maladies are present

  6. Complex carbohydrates as a possible source of high energy to formulate functional feeds.

    Science.gov (United States)

    Ochoa, Leonel; Paniagua Michel, José de Jesús; Olmos-Soto, Jorge

    2014-01-01

    Carbohydrates (CHOs) are the most abundant organic compounds found in living organisms and are a great source of metabolic energy, both for plants and animals. Besides of CHOs great potential to solve animal's energy requirements and diminishing high feed cost, we first must to understand its digestibility and assimilation to avoid several inconvenients. Today, CHOs feed animal inclusions are of great concern about cost-benefits, animal's health status, and environmental pollution. In this chapter, we make a brief description about sugars (DP1-2), oligosaccharides (DP3-9), polysaccharides (DP ≥10), and their essential characteristics to understand the role of marine and terrestrial CHOs in animal nutrition. Subsequently, we talk about basic concepts, CHOs functional benefits, suggestions about their application and successful cases. This information will contribute to produce a new generation of high-quality and energetic functional feed formulations for livestock and aquaculture farms; which must be of low cost, healthy, and environmentally friendly, with the inclusion of prebiotics and probiotics.

  7. Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, George R [ORNL; Greeley Jr, Mark Stephen [ORNL; Peterson, Mark J [ORNL; Lowe, Kenneth Alan [ORNL; Ketelle, Richard H [ORNL; Floyd, Stephanie B [ORNL

    2010-02-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in

  8. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K

    2014-05-23

    Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001.

  9. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii

    Science.gov (United States)

    Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K

    2014-01-01

    Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation. DOI: http://dx.doi.org/10.7554/eLife.02286.001 PMID:24859755

  10. Toxaphene detoxification and acclimation in Daphnia magna: do cytochrome P-450 enzymes play a role?

    Science.gov (United States)

    Kashian, Donna R

    2004-01-01

    Toxaphene is a persistent environmental contaminant that has been shown to alter male production in Daphnia magna and to induce P-450 activity in mammals. Cytochrome P-450-mediated metabolism may lead to xenobiotic detoxification resulting in acclimation. To determine if D. magna acclimate to toxaphene via P-450 pathways, chronic and acute toxicity tests were conducted with D. magna exposed to toxaphene in the presence and absence of piperonyl butoxide (PBO), an inhibitor of cytochrome P-450 enzymes. Toxaphene exposure increased male production in acute but not chronic assays, indicating that D. magna may acclimate to chronic toxaphene exposure. Upon co-administration of toxaphene and PBO in chronic tests, D. magna exhibited a decline in growth rate, fecundity and survival. The observed toxaphene acclimation in chronic tests, along with its increased toxicity in the presence of a P-450 suppressor, suggests that P-450 enzymes may contribute to detoxification and subsequent acclimation of D. magna to chronic toxaphene exposure. Additional chronic toxicity tests indicated that toxaphene acclimation occurs between 7 and 12 days following initial exposure, at which time sex determination is no longer affected. Thus, sublethal toxaphene toxicity effects such as reproductive impairments may be detectable with acute but not chronic tests, potentially due to the upregulation of P-450 isozymes.

  11. Physiological and morphological acclimation to height in cupressoid leaves of 100-year-old Chamaecyparis obtusa.

    Science.gov (United States)

    Shiraki, Ayumi; Azuma, Wakana; Kuroda, Keiko; Ishii, H Roaki

    2016-10-15

    Cupressoid (scale-like) leaves are morphologically and functionally intermediate between stems and leaves. While past studies on height acclimation of cupressoid leaves have focused on acclimation to the vertical light gradient, the relationship between morphology and hydraulic function remains unexplored. Here, we compared physiological and morphological characteristics between treetop and lower-crown leaves of 100-year-old Chamaecyparis obtusa Endl. trees (~27 m tall) to investigate whether height-acclimation compensates for hydraulic constraints. We found that physiological acclimation of leaves was determined by light, which drove the vertical gradient of evaporative demand, while leaf morphology and anatomy were determined by height. Compared with lower-crown leaves, treetop leaves were physiologically acclimated to water stress. Leaf hydraulic conductance was not affected by height, and this contributed to higher photosynthetic rates of treetop leaves. Treetop leaves had higher leaf area density and greater leaf mass per area, which increase light interception but could also decrease hydraulic efficiency. We inferred that transfusion tissue flanking the leaf vein, which was more developed in the treetop leaves, contributes to water-stress acclimation and maintenance of leaf hydraulic conductance by facilitating osmotic adjustment of leaf water potential and efficient water transport from xylem to mesophyll. Our findings may represent anatomical adaptation that compensates for hydraulic constraints on physiological function with increasing height.

  12. Preliminary experimental investigation of a complex dual-band high power microwave source

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-10-15

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  13. Rockfall source characterization at high rock walls in complex geological settings by photogrammetry, structural analysis and DFN techniques

    Science.gov (United States)

    Agliardi, Federico; Riva, Federico; Galletti, Laura; Zanchi, Andrea; Crosta, Giovanni B.

    2016-04-01

    Rockfall quantitative risk analysis in areas impended by high, subvertical cliffs remains a challenge, due to the difficult definition of potential rockfall sources, event magnitude scenarios and related probabilities. For this reasons, rockfall analyses traditionally focus on modelling the runout component of rockfall processes, whereas rock-fall source identification, mapping and characterization (block size distribution and susceptibility) are over-simplified in most practical applications, especially when structurally complex rock masses are involved. We integrated field and remote survey and rock mass modelling techniques to characterize rock masses and detect rockfall source in complex geo-structural settings. We focused on a test site located at Valmadrera, near Lecco (Southern Alps, Italy), where cliffs up to 600 m high impend on a narrow strip of Lake Como shore. The massive carbonates forming the cliff (Dolomia Principale Fm), normally characterized by brittle structural associations due to their high strength and stiffness, are here involved in an ENE-trending, S-verging kilometre-scale syncline. Brittle mechanisms associated to folding strongly controlled the nature of discontinuities (bedding slip, strike-slip faults, tensile fractures) and their attributes (spacing and size), as well as the spatial variability of bedding attitude and fracture intensity, with individual block sizes up to 15 m3. We carried out a high-resolution terrestrial photogrammetric survey from distances ranging from 1500 m (11 camera stations from the opposite lake shore, 265 pictures) to 150 m (28 camera stations along N-S directed boat routes, 200 pictures), using RTK GNSS measurements for camera station geo-referencing. Data processing by Structure-from-Motion techniques resulted in detailed long-range (1500 m) and medium-range (150 to 800 m) point clouds covering the entire slope with maximum surface point densities exceeding 50 pts/m2. Point clouds allowed a detailed

  14. Molecular programs induced by heat acclimation confer neuroprotection against TBI and hypoxic insults via cross-tolerance mechanisms

    Directory of Open Access Journals (Sweden)

    Michal eHorowitz

    2015-07-01

    Full Text Available Neuroprotection following prolonged exposure to high ambient temperatures (heat acclimation HA develops via altered molecular programs such as cross-tolerance (Heat Acclimation -Neuroprotection Cross-Tolerance -HANCT. The mechanisms underlying cross-tolerance depend on enhanced on-demand protective pathways evolving during acclimation. The protection achieved is long lasting and limits the need for de novo recruitment of cytoprotective pathways upon exposure to novel stressors. Using mouse and rat acclimated phenotypes, we will focus on the impact of heat acclimation on Angiotensin II-AT2 receptors in neurogenesis and on HIF-1 as key mediators in spontaneous recovery and HANCT after traumatic brain injury (TBI. The neuroprotective consequences of heat acclimation on NMDA and AMPA receptors will be discussed using the global hypoxia model. A behavioral-molecular link will be crystallized. The differences between HANCT and consensus preconditioning will be reviewed.

  15. The Role of Phosphorylation in Redox Regulation of Photosynthesis Genes psaA and psbA during Photosynthetic Acclimation of Mustard

    Institute of Scientific and Technical Information of China (English)

    Sebastian Steiner; Lars Dietzel; Yvonne Schr(o)ter; Vidal Fey; Raik Wagner; Thomas Pfannschmidt

    2009-01-01

    The long-term response (LTR) to light-quality gradients improves performance and survival of plants in dense stands.It involves redox-controlled transcriptional regulation of the plastome-encoded genes psaAB (encoding the P700 apoproteins of photosystem I) and psbA (encoding the D1 protein of photosystem II) and requires the action of plastid-localized kinases.To study the potential impact of phosphorylation events on plastid gene expression during the LTR,we analyzed mustard seedlings acclimated to light sources favoring either photosystem I or photosystem II.Primer extension analyses of psaA transcripts indicate that the redox regulation occurs at the principal bacterial promoters,suggesting that the plastid encoded RNA polymerase (PEP) is the target for redox signals.Chloroplast protein fractions containing PEP and other DNA-binding proteins were purified from mustard via heparin-Sepharose chromatography.The biochemical prop-erties of these fractions were analyzed with special emphasis on promoter recognition and specificity,phosphorylation state,and kinase activity.The results demonstrate that the LTR involves the action of small DNA-binding proteins; three of them exhibit specific changes in the phosphorylation state.Auto-phosphorylation assays,in addition,exhibit large differ-ences in the activity of endogenous kinase activities.Chloroplast run-on transcription experiments with the kinase inhib-itor H7 and the reductant DTF indicate that phosphorylation events are essential for the mediation of redox signals toward psaA and psbA transcription initiation,but require the synergistic action of a thiol redox signal.The data support the idea that redox signals from the thylakoid membrane are linked to gene expression via phosphorylation events; however,thismediation appears to require a complex network of interacting proteins rather than a simple phosphorelay.

  16. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measur...

  17. Transcriptome characterization of Ishige okamurae (Phaeophyceae) shows strong environmental acclimation

    Institute of Scientific and Technical Information of China (English)

    QU Jieqiong; WANG Xumin; CHI Shan; WU Shuangxiu; SUN Jing; LIU Cui; CHEN Shengping; YU Jun; LIU Tao

    2014-01-01

    Ishige okamurae, with leathery branched narrow fronds consisting of cylindrical hairs, is the typical species of the genus Ishige, which is considered as one of the most basal genera in the phylogeny of the Phaeophy-ceae. Apart from great public interest from the evolutionary respect, more attention has been brought on the abundant bioactive compounds in I. okamurae for therapeutic or economic considerations, such as di-phlorethohydroxycarmalol and ishigoside. Yet little is known about related key genes or metabolic pathways involved in I. okamurae, which calls upon us to carry out global analyses of transcriptome by next generation sequencing. Altogether, we obtained 78 583 assembled scaffolds with N50 of 1 709 nucleotides, and 25 357 unigenes with significant BLAST matches (E-value cutoff of 10-5). In terms of characterization of the tran-scriptome of I. okamurae, we focused on anti-stress metabolic pathways and synthetic routes of bioactive compounds in an attempt to obtain a better understanding of the interactive organism-environment regula-tory networks. Pathway-based analysis helped us to deepen our comprehension of the interaction between I. okamurae and its surroundings, with MAPK signal pathway as an example. Furthermore, we discovered a wide range of novel putative functional proteins that could be of wide application, such as Rab family, using sequence-based transcriptome. In conclusion, transcriptome characterization of I. okamurae (Phaeophy-ceae) shows strong environmental acclimation.

  18. Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves.

    Science.gov (United States)

    Gorsuch, Peter A; Pandey, Subedar; Atkin, Owen K

    2010-02-01

    To predict the effects of temperature changes on plant growth and performance, it is crucial to understand the impact of thermal history on leaf morphology, anatomy and physiology. Here, we document a comprehensive range of leaf phenotypes in 25/20 degrees C-grown Arabidopsis thaliana plants that were shifted to 5 degrees C for up to 2 months. When warm-grown, pre-existing (PE) leaves were exposed to cold, leaf thickness increased due to an increase in mesophyll cell size. Leaves that were entirely cold-developed (CD) were twice as thick (eight cell layers) as their warm-developed (WD) counterparts (six layers), and also had higher epidermal and stomatal cell densities. After 4 d of cold, PE leaves accumulated high levels of total non-structural carbohydrates (TNC). However, glucose and starch levels declined thereafter, and after 45 d in the cold, PE leaves exhibited similar TNC to CD leaves. A similar phenomenon was observed in delta(13)C and a range of photosynthetic parameters. In cold-treated PE leaves, an increase in respiration (R(dark)) with cold exposure time was evident when measured at 25 degrees C but not 5 degrees C. Cold acclimation was associated with a large increase in the ratio of leaf R(dark) to photosynthesis. The data highlight the importance of understanding developmental thermal history in determining individual phenotypic traits.

  19. WAVE SUPERPOSITION METHOD BASED ON VIRTUAL SOURCE BOUNDARY WITH COMPLEX RADIUS VECTOR FOR SOLVING ACOUSTIC RADIATION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    XiangYu; HuangYuying; MaXiaoqiang

    2004-01-01

    By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed.Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.

  20. Combined complex-source beam and spherical-multipole analysis for the electromagnetic probing of conical structures

    Science.gov (United States)

    Klinkenbusch, Ludger; Brüns, Hendrik

    2016-11-01

    The paper addresses the combination of the spherical-multipole analysis in sphero-conal coordinates with a uniform complex-source beam (CSB) in order to analyze the scattering of a localized electromagnetic plane wave by any desired part of a perfectly conducting elliptic cone. The concept of uniform CSB is introduced and rigorously applied to the diffraction by a semi-infinite elliptic cone. The analysis takes into account the fact that the incident CSB does not satisfy the radiation condition. A new modal form of the Green's function for the elliptic cone is derived based on the principle that there is no energy loss to infinity. The numerical evaluation includes the scattered far fields of a CSB incident on the corner of a plane angular sector with different opening angles. xml:lang="fr"

  1. Optimal configuration for a finite high-temperature source heat engine cycle with the complex heat transfer law

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimal configuration of a heat engine operating between a finite high-temperature source and an infinite low-temperature reservoir is derived by using finite time thermodynamics based on a complex heat transfer law,including Newtonian heat transfer law,linear phenomenological heat transfer law,radiative heat transfer law,Dulong-Petit heat transfer law,generalized convective heat transfer law and generalized radiative heat transfer law,q ∝(△T n). In the engine model the only irreversibility of finite rate heat transfer is considered. The optimal relation between the power output and efficiency of the heat engine is also derived by using an equivalent temperature of the hot reservoir. The obtained results include those obtained in recent literature and can provide some theoretical guidance for the designs of practical engines.

  2. Optimal configuration for a finite high-temperature source heat engine cycle with the complex heat transfer law

    Institute of Scientific and Technical Information of China (English)

    LI Jun; CHEN LinGen; SUN FengRui

    2009-01-01

    The optimal configuration of a heat engine operating between a finite high-temperature source and an infinite low-temperature reservoir is derived by using finite time thermodynamics based on a complex heat transfer law, including Newtonian heat transfer law, linear phenomenological heat transfer law, radiative heat transfer law, Dulong-Petit heat transfer law, generalized convective heat transfer law and generalized radiative heat transfer law, q∝ (△Tn). In the engine model the only irreversibility of finite rate heat transfer is considered. The optimal relation between the power output and efficiency of the heat engine is also derived by using an equivalent temperature of the hot reservoir. The obtained re-sults include those obtained in recent literature and can provide some theoretical guidance for the de-signs of practical engines.

  3. Emission of near-zero energy electrons from the surface of a source with complex radionuclide composition

    CERN Document Server

    Kupryashkyin, V T; Feoktistov, O Y; Shapovalova, Y P

    2002-01-01

    The emission of near-zero energy electrons e sub 0 from the surface of a source with complex radionuclide composition is investigated by the (e gamma)-coincidence method. Yields of e sub 0 -electrons a determined in beta-decay, electron capture, and internal conversion of gamma-rays for radionuclides which were created as admixtures in the thin layer of Pt and Al substrate after irradiation by neutrons in a reactor. The density distribution of radionuclides over the thickness of the Pt layer is determined. The developed (e gamma)-coincidence method allows one to investigate e sub 0 -electron emission for admixed radionuclides whose contents are a few hundredths of percent.

  4. High-pitch dual-source CT angiography of the aortic valve-aortic root complex without ECG-synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Karlo, Christoph; Leschka, Sebastian; Goetti, Robert Paul; Feuchtner, Gudrun; Desbiolles, Lotus; Stolzmann, Paul; Marincek, Borut; Baumueller, Stephan [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Plass, Andre; Falk, Volkmar [University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Massachusetts General Hospital, Harvard Medical School, Cardiac MR PET CT Group, Boston, MA (United States)

    2011-01-15

    To compare image quality and radiation dose of high-pitch computed tomography angiography(CTA) of the aortic valve-aortic root complex with and without prospective ECG-gating compared to a retrospectively ECG-gated standard-pitch acquisition. 120 patients(mean age 68 {+-} 13 years) were examined using a 128-slice dual-source CT system using prospectively ECG-gated high-pitch(group A; n = 40), non-ECG-gated high-pitch(group B; n = 40) or retrospectively ECG-gated standard-pitch(C; n = 40) acquisition techniques. Image quality of the aortic root, valve and ascending aorta including the coronary ostia was assessed by two independent readers. Image noise was measured, radiation dose estimates were calculated. Interobserver agreement was good({kappa} = 0.64-0.78). Image quality was diagnostic in 38/40 patients(group A), 37/40(B) and 38/40(C) with no significant difference in number of patients with diagnostic image quality among all groups (p = 0.56). Significantly more patients showed excellent image quality in group A compared to groups B and C(each, p < 0.01). Average image noise was significantly different between all groups(p < 0.05). Mean radiation dose estimates in groups A and B(each; 2.4 {+-} 0.3 mSv) were significantly lower compared to group C(17.5 {+-} 4.4 mSv; p < 0.01). High-pitch dual-source CTA provides diagnostic image quality of the aortic valve-aortic root complex even without ECG-gating at 86% less radiation dose when compared to a standard-pitch ECG-gated acquisition. (orig.)

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  6. Study of the Effect of SRT on Microbial Diversity in Laboratory-scale Sequencing Batch Reactors Using Acclimated and Non-Acclimated Seed

    KAUST Repository

    Tellez, Berenice

    2011-07-07

    Solids Retention Time (SRT) is an important design parameter in activated sludge wastewater treatment systems. In this study, the effect of SRT on the bacterial community structure and diversity was examined in replicate lab-scale activated sludge sequencing batch reactors were operated for a period of 8 weeks and seeded with acclimated or non-acclimated sludge. Four SBRs (acclimated) were set up as duplicates and operated at an SRT of 2 days, and another set of four SBRs (non-acclimated) were operated at an SRT of 10 days. To characterize the microbial community in the SBRs, 16S rRNA gene pyrosequencing was used to measure biodiversity and to assess the reproducibility and stability of the bacterial community structure in replicate reactors. Diversity results showed that SBRs operated at an SRT of 10 days are more diverse than SBRs operated at an SRT of 2 days. This suggests that engineering decision could enhance diversity in activated sludge systems. Cluster analysis based on phylogenetic information revealed that the bacterial community structure was not stable and replicated SBRs evolved differently.

  7. Fresh water acclimation elicits a decrease in plasma corticosteroids in the euryhaline Atlantic stingray, Dasyatis sabina.

    Science.gov (United States)

    Evans, Andrew N; Nunez, B Scott

    2015-10-01

    It is thought that the elasmobranch corticosteroid hormone 1α-hydroxycorticosterone (1α-B) functions as both a glucocorticoid (GC) and mineralocorticoid (MC). Classical antinatriuretic MC activities would run counter to the osmoregulatory strategy of euryhaline elasmobranchs acclimating to fresh water (FW). Therefore we hypothesize that FW acclimation will be accompanied by a decrease in plasma corticosteroids in these animals. However, events that activate the "fight-or-flight" response could mask changes associated with acclimation to lower salinities. To better define the MC role of corticosteroids in elasmobranchs, we designed a transfer system that allows the acclimation of Atlantic stingrays (Dasyatis sabina) from seawater (SW) to FW over 12h while minimizing other extraneous stressors. Blood and interrenal glands were sampled from one group of stingrays 24h after FW transfer, while another group was sampled two weeks after FW transfer. Two other groups served as mock-transfer controls in that they were treated and sampled in the same way, but remained in SW for the entire period. Plasma corticosteroids, osmolality, chloride, and urea were significantly lower in FW-acclimated stingrays (compared to mock-transfer stingrays) 24h after FW transfer. This pattern remained after two weeks in FW, with the exception that plasma corticosteroids returned to pre-acclimation levels. There were no significant differences between experimental groups in interrenal levels of mRNAs encoding key steroidogenic proteins (steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme). Temporally decreased corticosteroid levels during FW acclimation are consistent with the unique strategy of euryhaline elasmobranchs, whereby lower plasma osmolality is maintained in FW vs. SW environments to reduce hydromineral gradients.

  8. Effect of thermal acclimation on action potentials and sarcolemmal K+ channels from Pacific bluefin tuna cardiomyocytes.

    Science.gov (United States)

    Galli, G L J; Lipnick, M S; Block, B A

    2009-08-01

    To sustain cardiac muscle contractility relatively independent of temperature, some fish species are capable of temporarily altering excitation-contraction coupling processes to meet the demands of their environment. The Pacific bluefin tuna, Thunnus orientalis, is a partially endothermic fish that inhabits a wide range of thermal niches. The present study examined the effects of temperature and thermal acclimation on sarcolemmal K(+) currents and their role in action potential (AP) generation in bluefin tuna cardiomyocytes. Atrial and ventricular myocytes were enzymatically isolated from cold (14 degrees C)- and warm (24 degrees C)-acclimated bluefin tuna. APs and current-voltage relations of K(+) channels were measured using the whole cell current and voltage clamp techniques, respectively. Data were collected either at the cardiomyocytes' respective acclimation temperature of 14 or 24 degrees C or at a common test temperature of 19 degrees C (to reveal the effects of acclimation). AP duration (APD) was prolonged in cold-acclimated (CA) cardiomyocytes tested at 14 degrees C compared with 19 degrees C and in warm-acclimated (WA) cardiomyocytes tested at 19 degrees C compared with 24 degrees C. This effect was mirrored by a decrease in the density of the delayed-rectifier current (I(Kr)), whereas the density of the background inward-rectifier current (I(K1)) was unchanged. When CA and WA cardiomyocytes were tested at a common temperature of 19 degrees C, no significant effects of temperature acclimation on AP shape or duration were observed, whereas I(Kr) density was markedly increased in CA cardiomyocytes. I(K1) density was unaffected in CA ventricular myocytes but was significantly reduced in CA atrial myocytes, resulting in a depolarization of atrial resting membrane potential. Our results indicate the bluefin AP is relatively short compared with other teleosts, which may allow the bluefin heart to function at cold temperatures without the necessity for thermal

  9. Mitochondrial complex II-derived superoxide is the primary source of mercury toxicity in barley root tip.

    Science.gov (United States)

    Tamás, Ladislav; Zelinová, Veronika

    2017-02-01

    Enhanced superoxide generation and significant inhibition of succinate dehydrogenase (SDH) activity followed by a strong reduction of root growth were detected in barley seedlings exposed to a 5μM Hg concentration for 30min, which increased further in an Hg dose-dependent manner. While at a 25μM Hg concentration no cell death was detectable, a 50μM Hg treatment triggered cell death in the root meristematic zone, which was markedly intensified after the treatment of roots with 100μM Hg and was detectable in the whole root tips. Generation of superoxide and H2O2 was a very rapid response of root tips occurring even after 5min of exposure to Hg. Application of an NADPH oxidase inhibitor or the inhibition of electron flow in mitochondria by the inhibition of complex I did not influence the Hg-induced H2O2 production. Treatment of roots with thenoyltrifluoroacetone, a non-competitive inhibitor of SDH, markedly reduced root growth and induced both superoxide and H2O2 production in a dose dependent manner. Similar to results obtained in intact roots, Hg strongly inhibited SDH activity in the crude mitochondrial fraction and caused a considerable increase of superoxide production, which was markedly reduced by the competitive inhibitors of SDH. These results indicate that the mitochondrial complex II-derived superoxide is the primary source of Hg toxicity in the barley root tip.

  10. Fingerprinting fluid sources in Troodos ophiolite complex orbicular glasses using high spatial resolution isotope and trace element geochemistry

    Science.gov (United States)

    Fonseca, Raúl O. C.; Kirchenbaur, Maria; Ballhaus, Chris; Münker, Carsten; Zirner, Aurelia; Gerdes, Axel; Heuser, Alexander; Botcharnikov, Roman; Lenting, Christoph

    2017-03-01

    The Troodos igneous complex (Cyprus) is a ca. 90 Ma old, well preserved supra-subduction zone ophiolite. Troodos is unique in that it shows evidence of fluid-saturation throughout the complex, from its base (i.e. podiform chromitites) to its uppermost units - the upper pillow lavas (UPL). However, it is unclear what the source of dissolved water in UPL tholeiites is, with possibilities including shallow seawater infiltration, assimilation of altered Troodos oceanic crust, recycled serpentinized oceanic crust, or subducted pelagic sediments. In order to identify and characterize these components we have carried out a detailed high-resolution study on tholeiitic lavas on orbicular structures and glasses from the UPL in Troodos. Basaltic orbicules were measured for their Sr-Nd-Hf-Pb isotope compositions, and in situ for their B isotopes using LA-MC-ICP-MS. UPL orbicules display a very narrow range in ɛ Nd and ɛ Hf (+7 to +8 and +13 to +15, respectively) indicating melting of a depleted mantle source. Lead isotopes, specifically 207Pb/204Pb vs. 206Pb/204Pb, form a mixing array with pelagic sediments. Furthermore, high-resolution characterization of individual orbicules revealed that UPL tholeiites display strong variability in 87Sr/86Sr (0.7039-0.7060) at the outcrop scale. Samples display δ11 B between -8.2 (± 0.5)‰ and +5.9 (± 1.1)‰ with an average B content of ca. 5 μg/g. Contrary to expectation, altered orbicules and their associated hyaloclastite matrixes display lower δ11 B (down to -10‰) and higher B contents (max. 200 μg/g) when compared to fresh glass. Furthermore, the orbicules studied here show little or no evidence of interaction with seawater, which is supported by their trace element contents and isotope compositions. When all isotope systems are taken into account, UPL lavas reflect melting of a depleted mantle source that was overprinted by hydrous sediment melts, and potentially, fluid-like subduction components that in part originate

  11. Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress and mixotrophic growth conditions

    Directory of Open Access Journals (Sweden)

    Marcus eLudwig

    2012-10-01

    Full Text Available Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source

  12. Studies of the source complex behaviour and of the ultrasound radiation of contact flexible multi-element transducers; Etudes du comportement complexe de source et du rayonnement ultrasonore des traducteurs multi-elements flexibles au contact

    Energy Technology Data Exchange (ETDEWEB)

    Amory, V

    2007-12-15

    This work deals with the ultrasonic nondestructive testing of parts with complex geometries using soft multi-element sensors. The different types of contact control configurations are presented first. Then, the difficulties encountered with conventional contact transducers are explained and the multi-element piezoelectric transducers technology, developed to meet these difficulties, is presented. The second chapter presents the results of finite-element calculations showing the complexity of a transducer in a condition of testing utilization. In a same configuration, the radiated far field calculated by finite-elements is compared to the measurement in order to validate the way the source behaviour is calculated. However, despite the efficiency of the finite-elements simulation, this tool is numerically too costly and cannot be used to optimize a full multi-element transducer. Therefore, a realistic source model is built and implemented in a radiation code based on high-frequency asymptotic approximations where only L and T volume waves are calculated. The incapacity of this model to reproduce the behaviour of T waves in some directions of propagation has led to give a particular attention to the fore-waves, neglected in the radiation calculation. Chapter 3 treats of the building of an exact radiation model taking into consideration the fore-waves contribution emitted by a contact transducer exerting a random space-time distribution constraint at the surface of the considered medium. A radiation model, based on the calculation of exact Green functions of the Lamb problem is proposed. The exact model is particularly interesting in the case of sensor geometries with a long length with respect to other dimensions (2D case). Field calculation results are shown for an element of the matrix network (3D case) and for a linear element (2D case). A study of different existing approached models is carried out as well. The last chapter presents some results of the field

  13. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, Bruce

    2004-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving

  14. Steady-state effects of temperature acclimation on the transcriptome of the rainbow trout heart.

    Science.gov (United States)

    Vornanen, Matti; Hassinen, Minna; Koskinen, Heikki; Krasnov, Aleksei

    2005-10-01

    Cold-acclimated (CA) phenotype of trout heart was induced by 4-wk acclimation at 4 degrees C and was characterized by 32.7% increase in relative heart mass and 49.8% increase in ventricular myocyte size compared with warm-acclimated (WA; 18 degrees C) fish (P temperature acclimation on transcriptome of the rainbow trout heart was examined using species-specific microarray chips containing 1,380 genes. After 4 wk of temperature acclimation, 8.8% (122) of the genes were differently expressed in CA and WA hearts, and most of them (82%) were upregulated in the cold (P collagen genes may be indicative of a reduced contribution of extracellular matrix to the remodeling of the CA fish heart. Temperature-related changes in transcripts of metabolic enzymes suggest that at mRNA level, glycolytic energy production from carbohydrates is compensated in the heart of CA rainbow trout, while metabolic compensation is absent in mitochondria. In addition, the analysis revealed three candidate genes: muscle LIM protein, atrial natriuretic peptide B, and myosin light chain 2, which might be central for induction and maintenance of the hypertrophic phenotype of the CA trout heart. These findings indicate that extensive modification of gene expression is needed to maintain the temperature-specific phenotype of the fish heart.

  15. Impact of acclimation methods on microbial communities and performance of anaerobic fluidized bed membrane bioreactors

    KAUST Repository

    Labarge, Nicole

    2016-10-17

    An anaerobic fluidized bed membrane bioreactor (AFMBR) is a new and effective method for energy-efficient treatment of low strength wastewater, but the factors that affect performance are not well known. Different inocula and acclimation methods of the granular activated carbon (GAC) used in the reactor were examined here to determine their impact on chemical oxygen demand (COD) removal and microbial community composition of domestic wastewater-fed AFMBRs. AFMBRs inoculated with anaerobic digester sludge (D) or domestic wastewater (W) and fed domestic wastewater, or inoculated with a microbiologically diverse anaerobic bog sediment and acclimated using methanol (M), all produced the same COD removal of 63 ± 12% using a diluted wastewater feed (100 ± 21 mg L−1 COD). However, an AFMBR with GAC inoculated with anaerobic digester sludge and acclimated using acetate (A) showed significantly increased wastewater COD removal to 84 ± 6%. In addition, feeding the AFMBR with the M-acclimated GAC with an acetate medium for one week subsequently increased COD removal to 70 ± 6%. Microbial communities enriched on the GAC included Geobacter, sulfur-reducing bacteria, Syntrophaceae, and Chlorobiaceae, with reactor A having the highest relative abundance of Geobacter. These results showed that acetate was the most useful substrate for acclimation of GAC communities, and GAC harbors unique communities relative to those in the AFMBR influent and recirculated solution.

  16. β-cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis.

    Science.gov (United States)

    Lv, Feifei; Zhou, Jun; Zeng, Lizhang; Xing, Da

    2015-08-01

    β-cyclocitral (β-CC), a volatile oxidized derivative of β-carotene, can upregulate the expression of defence genes to enhance excess light (EL) acclimation. However, the signalling cascades underlying this process remain unclear. In this study, salicylic acid (SA) is involved in alleviating damage to promote β-CC-enhanced EL acclimation. In early stages of EL illumination, β-CC pretreatment induced SA accumulation and impeded reactive oxygen species (ROS) production in the chloroplast. A comparative analysis of two SA synthesis pathways in Arabidopsis revealed that SA concentration mainly increased via the isochorismate synthase 1 (ICS1)-mediated isochorismate pathway, which depended on essential regulative function of enhanced disease susceptibility 1 (EDS1). Further results showed that, in the process of β-CC-enhanced EL acclimation, nuclear localization of nonexpressor of pathogenesis-related genes 1 (NPR1) was regulated by SA accumulation and NPR1 induced subsequent transcriptional reprogramming of gluthathione-S-transferase 5 (GST5) and GST13 implicated in detoxification. In summary, β-CC-induced SA synthesis contributes to EL acclimation response by decreasing ROS production in the chloroplast, promoting nuclear localization of NPR1, and upregulating GST transcriptional expression. This process is a possible molecular regulative mechanism of β-CC-enhanced EL acclimation.

  17. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Norman P. A. Hüner

    2013-06-01

    Full Text Available Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1 which in turn induce the expression of COLD-REGULATED (COR genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways.

  18. Partial heat acclimation of athletes with spinal cord lesion.

    Science.gov (United States)

    Castle, Paul C; Kularatne, B Pasan; Brewer, John; Mauger, Alexis R; Austen, Ross A; Tuttle, James A; Sculthorpe, Nick; Mackenzie, Richard W; Maxwell, Neil S; Webborn, Anthony D J

    2013-01-01

    Heat acclimation (HA) can improve thermoregulatory stability in able-bodied athletes in part by an enhanced sweat response. Athletes with spinal cord lesion are unable to sweat below the lesion and it is unknown if they can HA. Five paralympic shooting athletes with spinal cord lesion completed seven consecutive days HA in hot conditions (33.4 ± 0.6 °C, 64.8 ± 3.7 %rh). Each HA session consisted of 20 min arm crank exercise at 50 % [Formula: see text] followed by 40 min rest, or simulated shooting. Aural temperature (T (aur)) was recorded throughout. Body mass was assessed before and after each session and a sweat collection swab was fixed to T12 of the spine. Fingertip whole blood was sampled at rest on days 1 and 7 for estimation of the change in plasma volume. Resting T (aur) declined from 36.3 ± 0.2 °C on day 1 to 36.0 ± 0.2 °C by day 6 (P < 0.05). During the HA sessions mean, T (aur) declined from 37.2 ± 0.2 °C on day 1, to 36.7 ± 0.3 °C on day 7 (P < 0.05). Plasma volume increased from day 1 by 1.5 ± 0.6 % on day 7 (P < 0.05). No sweat secretion was detected or changes in body mass observed from any participant. Repeated hyperthermia combined with limited evaporative heat loss was sufficient to increase plasma volume, probably by alterations in fluid regulatory hormones. In conclusion, we found that although no sweat response was observed, athletes with spinal cord lesion could partially HA.

  19. Unlocking the Constraints of Cyanobacterial Productivity: Acclimations Enabling Ultrafast Growth

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; McClure, Ryan S.; Hill, Eric A.; Markillie, Lye Meng; Chrisler, William B.; Romine, Margie F.; McDermott, Jason E.; Posewitz, Matthew C.; Bryant, Donald A.; Konopka, Allan E.; Fredrickson, James K.; Beliaev, Alexander S.

    2016-07-26

    putative biological principles that allow unicellular cyanobacteria to achieve ultrahigh growth rates through photophysiological acclimation and effective management of cellular resource under different growth regimes.

  20. Acclimating international graduate students to professional engineering ethics.

    Science.gov (United States)

    Newberry, Byron; Austin, Katherine; Lawson, William; Gorsuch, Greta; Darwin, Thomas

    2011-03-01

    This article describes the education portion of an ongoing grant-sponsored education and research project designed to help graduate students in all engineering disciplines learn about the basic ethical principles, rules, and obligations associated with engineering practice in the United States. While the curriculum developed for this project is used for both domestic and international students, the educational materials were designed to be sensitive to the specific needs of international graduate students. In recent years, engineering programs in the United States have sought to develop a larger role for professional ethics education in the curriculum. Accreditation requirements, as well as pressures from the private sector, have helped facilitate this shift in focus. Almost half of all engineering graduate students in the U.S. are international students. Further, research indicates that the majority of these students will remain in the U.S. to work post-graduation. It is therefore in the interest of the profession that these students, coming from diverse backgrounds, receive some formal exposure to the professional and ethical expectations and norms of the engineering profession in the United States to help ensure that they have the knowledge and skills--non-technical as well as technical--required in today's engineering profession. In becoming acculturated to professional norms in a host country, international students face challenges that domestic students do not encounter; such as cultural competency, language proficiency, and acculturation stress. Mitigating these challenges must be a consideration in the development of any effective education materials. The present article discusses the project rationale and describes the development of on-line instructional materials aimed at helping international engineering graduate students acclimate to professional engineering ethics standards in the United States. Finally, a brief data summary of students' perceptions

  1. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006

  2. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Nymark, Marianne; Valle, Kristin C; Brembu, Tore

    2009-01-01

    Photosynthetic diatoms are exposed to rapid and unpredictable changes in irradiance and spectral quality, and must be able to acclimate their light harvesting systems to varying light conditions. Molecular mechanisms behind light acclimation in diatoms are largely unknown. We set out to investigate...... phase (3-12 h) and a late acclimation phase (12-48 h). The initial phase is recognized by strong and rapid regulation of genes encoding proteins involved in photosynthesis, pigment metabolism and reactive oxygen species (ROS) scavenging systems. A significant increase in light protecting metabolites...... occur together with the induction of transcriptional processes involved in protection of cellular structures at this early phase. During the following phases, the metabolite profiling display a pronounced decrease in light harvesting pigments, whereas the variable fluorescence measurements show...

  3. Effectiveness of exercise-heat acclimation for preventing heat illness in the workplace.

    Science.gov (United States)

    Yamazaki, Fumio

    2013-09-01

    The incidence of heat-related illness in the workplace is linked to whether or not workers have acclimated to a hot environment. Heat acclimation improves endurance work performance in the heat and thermal comfort at a given work rate. These improvements are achieved by increased sweating and skin blood flow responses, better fluid balance and cardiovascular stability. As a practical means of acclimatizing the body to heat stress, daily aerobic exercise training is recommended since thermoregulatory capacity and blood volume increase with physical fitness. In workers wearing personal protective suits in hot environments, however, little psychophysiological benefit is received from short-term exercise training and/or heat acclimation because of the ineffectiveness of sweating for heat dissipation and the aggravation of thermal discomfort with the accumulation of sweat within the suit. For a manual laborer who works under uncompensable heat stress, better management of the work rate, the work environment and health is required.

  4. [Study on biodegradation of 2,4-DCP by anaerobic sludge acclimated by mixed mono-chlorphenols].

    Science.gov (United States)

    Zhang, Wen; Chen, Ling; Ji, Jun-Ping; Xia, Si-Qing

    2007-06-01

    Purpose of this study was to determine the treatability of 2,4-dichlorophenol (2,4-DCP) by anaerobic granular sludge which was acclimated by mixed mono-chlorphenols (2-CP, 4-MCP). The characteristic of degradation of 2,4-DCP by anaerobic sludge acclimated by mixed mono-chlorphenols was investigated through shake flask study and performance of continuous flow anaerobic bioreactors. The difference of degradation of 2,4-DCP by acclimated and unacclimated sludge was also compared. 2,4-DCP was degraded at 50 h and 180 h respectively for acclimated and unacclimated sludge, which testified that acclimated sludge could more effectively degrade 2,4-DCP. Although the intermediate product 4-MCP was present in both reaction system, 4-MCP could be degraded completely after 400 h in the acclimated sludge but accumulated in the unacclimated sludge. Therefore, acclimation by the mixed mono-chlorphenols (2-CP, 4-MCP) could enhance the ability of para- and meta-dechlorination for anaerobic sludge and increase the treatability of 2,4-DCP. The results of continuous anaerobic sludge-suspended carrier bioreactor (ASSCB) indicate that inoculation of the acclimated sludge by mixed mono-chlorphenols can degrade two mono-chlorphenols simultaneously, shorten the setup period, and increase the efficiency of degrading 2,4-DCP. 2-CP was easily degraded with removal rate of over 80% . While the removal rate of 4-MCP was fluctuating within 30% - 80% with changes of its influent concentration.

  5. Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance

    KAUST Repository

    LaBarge, Nicole

    2016-09-09

    Microbial electrolysis cells (MECs) can generate methane by fixing carbon dioxide without using expensive catalysts, but the impact of acclimation procedures on subsequent performance has not been investigated. Granular activated carbon (GAC) was used to pre-enrich electrotrophic methanogenic communities, as GAC has been shown to stimulate direct transfer of electrons between different microbial species. MEC startup times using pre-acclimated GAC were improved compared to controls (without pre-acclimation or without GAC), and after three fed batch cycles methane generation rates were similar (P > 0.4) for GAC acclimated to hydrogen (22 ± 9.3 nmol cm− 3 d− 1), methanol (25 ± 9.7 nmol cm− 3 d− 1), and a volatile fatty acid (VFA) mix (22 ± 11 nmol cm− 3 d− 1). However, MECs started with GAC but no pre-acclimation had lower methane generation rates (13 ± 4.1 nmol cm− 3 d− 1), and MECs without GAC had the lowest rates (0.7 ± 0.8 nmol cm− 3 d− 1 after cycle 2). Microbes previously found in methanogenic MECs, or previously shown to be capable of exocellular electron transfer, were enriched on the GAC. Pre-acclimation using GAC is therefore a simple approach to enrich electroactive communities, improve methane generation rates, and decrease startup times in MECs. © 2016 Elsevier B.V.

  6. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types.

    Science.gov (United States)

    Slot, Martijn; Kitajima, Kaoru

    2015-03-01

    Respiration is instrumental for survival and growth of plants, but increasing costs of maintenance processes with warming have the potential to change the balance between photosynthetic carbon uptake and respiratory carbon release from leaves. Climate warming may cause substantial increases of leaf respiratory carbon fluxes, which would further impact the carbon balance of terrestrial vegetation. However, downregulation of respiratory physiology via thermal acclimation may mitigate this impact. We have conducted a meta-analysis with data collected from 43 independent studies to assess quantitatively the thermal acclimation capacity of leaf dark respiration to warming of terrestrial plant species from across the globe. In total, 282 temperature contrasts were included in the meta-analysis, representing 103 species of forbs, graminoids, shrubs, trees and lianas native to arctic, boreal, temperate and tropical ecosystems. Acclimation to warming was found to decrease respiration at a set temperature in the majority of the observations, regardless of the biome of origin and growth form, but respiration was not completely homeostatic across temperatures in the majority of cases. Leaves that developed at a new temperature had a greater capacity for acclimation than those transferred to a new temperature. We conclude that leaf respiration of most terrestrial plants can acclimate to gradual warming, potentially reducing the magnitude of the positive feedback between climate and the carbon cycle in a warming world. More empirical data are, however, needed to improve our understanding of interspecific variation in thermal acclimation capacity, and to better predict patterns in respiratory carbon fluxes both within and across biomes in the face of ongoing global warming.

  7. The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings

    Institute of Scientific and Technical Information of China (English)

    Luo Lei; Lin Shan-zhi; Zheng Hui-quan; Lei Yang; Zhang Qian; Zhang Zhi-yi

    2007-01-01

    We investigated the changes in the contents of H2O2, malonaldehyde (MDA) and endogenous antioxidants, the activities of protective enzymes and some critical enzymes involved in the ascorbate-glutathione (ASA-GSH) cycle as well as freezing resistance(expressed as LT50) and correlations mentioned above, in detail using Populus suaveolens cuttings. The purpose was to explore the physiological mechanism of the enhancement of freezing resistance induced by freezing acclimation at -20℃, and to elucidate the physiological mechanisms by which trees adapt to freezing. The results showed that freezing acclimation enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), monodehydroascorbate reductase (MDAR), ascorbate peroxidase(APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). And it increased the contents of reduced ascorbate(ASA), reduced glutathione (GSH), dehydroascorbate (DHA) and oxidized glutathione (GSSG). However, H2O2 and MDA contents and LT50 of cuttings were decreased. LT50 in cuttings was found to be closely correlated to the levels of SOD, POD, CAT, APX,DHAR, MDAR, GR, H2O2, MDA, ASA, GSH, DHA and GSSG during freezing acclimation. This suggested that the enhancement of freezing resistance of cuttings induced by freezing acclimation may relate to the distinct increase for the levels of SOD, POD, CAT,APX, DHAR, MDAR,GR,ASA, GSH, DHA, and GSSG. In addition, the observed levels of APX, DHAR, MDAR, GR, ASA, DHA,GSH and GSSG were higher than those of SOD, POD and CAT during freezing acclimation. It indicated that a higher capacity of the ASA-GSH cycle is required for H2O2 detoxification, and growth and development of cuttings. Based on the obtained results, it can be concluded that the ASA-GSH cycle plays an important role in enhancement of freezing resistance of P. suaveolens cuttings during freezing acclimation.

  8. Embryonic developmental temperatures modulate thermal acclimation of performance curves in tadpoles of the frog Limnodynastes peronii.

    Directory of Open Access Journals (Sweden)

    Frank Seebacher

    Full Text Available Performance curves of physiological rates are not fixed, and determining the extent to which thermal performance curves can change in response to environmental signals is essential to understand the effect of climate variability on populations. The aim of this study was to determine whether and how temperatures experienced during early embryonic development affect thermal performance curves of later life history stages in the frog Limnodynastes peronii. We tested the hypotheses that a the embryonic environment affects mean trait values only; b temperature at which performance of tadpoles is maximal shifts with egg incubation temperatures so that performance is maximised at the incubation temperatures, and c incubation temperatures modulate the capacity for reversible acclimation in tadpoles. Growth rates were greater in warm (25°C compared to cold (15°C acclimated (6 weeks tadpoles regardless of egg developmental temperatures (15°C or 25°C, representing seasonal means. The breadth of the performance curve of burst locomotor performance (measured at 10, 15, 20, 25, and 30°C, representing annual range is greatest when egg developmental and acclimation temperatures coincide. The mode of the performance curves shifted with acclimation conditions and maximum performance was always at higher temperatures than acclimation conditions. Performance curves of glycolytic (lactate dehydrogenase activities and mitochondrial (citrate synthase and cytochrome c oxidase enzymes were modulated by interactions between egg incubation and acclimation temperatures. Lactate dehydrogenase activity paralleled patterns seen in burst locomotor performance, but oxygen consumption rates and mitochondrial enzyme activities did not mirror growth or locomotor performance. We show that embryonic developmental conditions can modulate performance curves of later life-history stages, thereby conferring flexibilty to respond to environmental conditions later in life.

  9. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collection in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007

  10. Seasonal acclimation in metabolism reduces light requirements of eelgrass (Zostera marina)

    DEFF Research Database (Denmark)

    Stæhr, Peter A.; Borum, Jens

    2011-01-01

    We investigated the ability of eelgrass (Zostera marina) to adjust light requirements to seasonal changes in temperature, light and nutrient conditions through changes in metabolism, pigment and nutrient content. In agreement with expectations we found that rates of respiration and light saturated...... photosynthesis of summer acclimated plants peaked at higher temperatures (5 °C and 2 °C higher, respectively), and were lower than of winter acclimated plants, both at sub- and supra-optimal temperatures. Moreover respiration rates were generally more sensitive to increasing temperatures than photosynthetic...

  11. IGF-I and branchial IGF receptor expression and localization during salinity acclimation in striped bass

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbaek; Luckenbach, John Adam; Madsen, Steffen

    2007-01-01

    The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass (Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small...... in either plasma IGF-I, liver, or gill IGF-I mRNA, or gill IGF-IR mRNA levels. In a separate experiment, FW-acclimated fish were injected with saline or IGF-I prior to a 24-h SW challenge. Rapid regain of osmotic balance following SW transfer was hindered by IGF-I. Immunohistochemistry revealed...

  12. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.

    2004-01-01

    . The present study demonstrates that the internal oxygen pressure in the petioles of Rumex palustris plants under water is indeed well above the critical oxygen pressure for aerobic respiration, provided that the air-saturated water is not completely stagnant. The beneficial effect of shoot acclimation...... of this terrestrial plant species to submergence for gas exchange capacity is also shown. Shoot acclimation to submergence involved a reduction of the diffusion resistance to gases, which was not only functional by increasing diffusion of oxygen into the plant, but also by increasing influx of CO2, which enhances...

  13. Liver transcriptome changes in zebrafish during acclimation to transport-associated stress.

    Directory of Open Access Journals (Sweden)

    Anusha K S Dhanasiri

    Full Text Available Liver plays a key role during the stress acclimation, and liver transcriptome analysis of shipped zebrafish could reveal the molecular adjustments that occur in the organ. Transcriptional changes in liver were analyzed with a 44 K oligo array using total RNA from fish prior to transport and during a mock transport process--immediately after packing (0 h, at 48 and 72 h. Large numbers of genes related to a variety of biological processes and pathways were regulated, mainly during transport (at 48/72 h. Immediately after packing, transcripts of genes related to both gluconeogenesis and glycolysis were induced. During transport, induction of gluconeogenesis-linked genes and reduction of glycolysis-related genes may be supporting the increase in blood glucose levels. Inhibition of genes involved in fatty acid beta-oxidation may be pointing to the poor ability of fish to utilize energy from fatty acids, under transport conditions. Genes involved in some of the mechanisms that regulate body ammonia were also affected. Even though genes associated with certain transaminases were inhibited in liver, sustained glutamate deamination may have led to high ammonia accumulation in liver/body. Enhanced levels of gene transcripts in ubiquitination and MAPK signalling cascade and reduced levels of gene transcripts related to ROS generation via peroxisomal enzymes as well as xenobiotic metabolism may be signifying the importance of such cellular and tissue responses to maintain homeostasis. Furthermore, transcripts connected with stress and thyroid hormones were also regulated. Moreover, suppression of genes related to specific immune components may be denoting the deleterious impact of transport on fish health. Thus, this study has revealed the complex molecular adjustments that occur in zebrafish when they are transported.

  14. Effects of climate warming and declining species richness in grassland model ecosystems: acclimation of CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2006-09-01

    Full Text Available To study the effects of warming and declining species richness on the carbon balance of grassland communities, model ecosystems containing one, three or nine species were exposed to ambient and elevated (ambient +3°C air temperature. In this paper, we analyze measured ecosystem CO2 fluxes to test whether ecosystem photosynthesis and respiration had acclimated to warming after 28 months of continuous heating, and whether the degree of acclimation depended on species richness. At first sight, we found no signs of acclimation in photosynthesis or respiration. However, because plant cover was significantly higher in the heated treatment, normalization for plant cover revealed down-regulation of both photosynthesis and respiration. Although CO2 fluxes were larger in communities with higher species richness, species richness did not affect the degree of acclimation to warming. These results imply that models need to take into account thermal acclimation to simulate photosynthesis and respiration in a warmer world.

  15. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zieliński, Mateusz, E-mail: mateusz.zielinski@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Dopieralska, Jolanta, E-mail: dopieralska@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Belka, Zdzislaw, E-mail: zbelka@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Walczak, Aleksandra, E-mail: awalczak@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Siepak, Marcin, E-mail: siep@amu.edu.pl [Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań (Poland); Jakubowicz, Michal, E-mail: mjakub@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland)

    2016-04-01

    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ({sup 87}Sr/{sup 86}Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of {sup 87}Sr/{sup 86}Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows {sup 87}Sr/{sup 86}Sr values around 0.7104–0.7105. Variations in {sup 87}Sr/{sup 86}Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32 mg/L. We find that strong variations in {sup 87}Sr/{sup 86}Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high {sup 87}Sr/{sup 86}Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the “baseline” for bioavailable {sup 87}Sr/{sup 86}Sr in the past. - Highlights: • Sr isotopes fingerprint water sources and their interactions in a complex river system. • Mine waters and fertilizers are critical anthropogenic additions in the river water. • Limited usage of environmental isotopic data in archeological studies. • Sr budget of the river is dynamic and temporary.

  16. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.

    Science.gov (United States)

    Carmo-Silva, A Elizabete; Salvucci, Michael E

    2012-11-01

    The temperature optimum of photosynthesis coincides with the average daytime temperature in a species' native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO(2) assimilation rate (A) under atmospheric conditions was 30-32 °C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO(2) concentration was consistent with Rubisco limiting A at ambient CO(2). Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63 % reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35 °C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.

  17. The Role of Experience in the Information Search Process of an Early Career Information Worker: Perceptions of Uncertainty, Complexity, Construction, and Sources.

    Science.gov (United States)

    Kuhlthau, Carol Collier

    1999-01-01

    Investigates changes in perceptions of the information search process of an early career information professional as he becomes more experienced and proficient at his work. Building on earlier research, comparisons of user's perceptions of uncertainty, complexity, construction, and sources in information tasks were made over a five-year period.…

  18. Visualization of space competition and plume formation with complex potentials for multiple source flows: Some examples and novel application to Chao lava flow (Chile)

    NARCIS (Netherlands)

    Weijermars, R.

    2014-01-01

    Fluid displacement in a continuum pressured by a variable constellation of source flows can be visualized as solutions of line integrals. The algorithms are based on complex potentials that provide exact solutions of the Navier-Stokes equation and allow users to specify both the location and flux st

  19. Antioxidative responses of two marine microalgae during acclimation to static and fluctuating natural UV radiation

    NARCIS (Netherlands)

    Janknegt, Paul J.; de Graaff, C. Marco; van de Poll, Willem H.; Visser, Ronald J. W.; Walter Helbling, E.; Buma, Anita G. J.

    2009-01-01

    Photoacclimation properties were investigated in two marine microalgae exposed to four ambient irradiance conditions: static photosynthetically active radiation (PAR: 400-700 nm), static PAR + UVR (280-700 nm), dynamic PAR and dynamic PAR + UVR. High light acclimated cultures of Thalassiosira weissf

  20. Thermal Acclimation of Respiration and Photosynthesis in the Marine Macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Zou, Dinghui; Gao, Kunshan

    2013-02-01

    The responses of respiration and photosynthesis to temperature fluctuations in marine macroalgae have the potential to significantly affect coastal carbon fluxes and sequestration. In this study, the marine red macroalga Gracilaria lemaneiformis was cultured at three different temperatures (12, 19, and 26°C) and at high- and low-nitrogen (N) availability, to investigate the acclimation potential of respiration and photosynthesis to temperature change. Measurements of respiratory and photosynthetic rates were made at five temperatures (7°C-33°C). An instantaneous change in temperature resulted in a change in the rates of respiration and photosynthesis, and the temperature sensitivities (i.e., the Q10 value) for both the metabolic processes were lower in 26°C-grown algae than 12°C- or 19°C-grown algae. Both respiration and photosynthesis acclimated to long-term changes in temperature, irrespective of the N availability under which the algae were grown; respiration displayed strong acclimation, whereas photosynthesis only exhibited a partial acclimation response to changing growth temperatures. The ratio of respiration to gross photosynthesis was higher in 12°C-grown algae, but displayed little difference between the algae grown at 19°C and 26°C. We propose that it is unlikely that respiration in G. lemaneiformis would increase significantly with global warming, although photosynthesis would increase at moderately elevated temperatures.

  1. Winter wheat morphology response to cold temperature stress during autumn acclimation

    Directory of Open Access Journals (Sweden)

    Ligita Baležentienė

    2012-03-01

    Full Text Available Winter wheat (Triticum aestivum L. abilities depend on development during autumn acclimation. The plant ability of acclimation to low temperatures is closely associated with the photosynthesis level, leaf area index (LAI, root system development. This study investigated the effect of liquid humic fertilizers (LHF on biometric characteristics, namely LAI, root and shoot development. The fertilizers were applied in conventional and organic growth technologies of w. wheat to adapt to the low temperatures during autumn acclimation. Winter wheat «Širvinta 1 » was grown in different rotation fields of conventional (CF; Albi-EpihypogleyicLuvisol, LVg-p-w-ab and organic (OF; Hapli-EpihypogleyicLuvisol, LVg-p-w-ha farming of Training Farm at Aleksandras Stulginskis University (ASU during 2010–2011. The obtained results confirmed the significant LHF influence on enhancing winter wheat biometrical indices and seedling growth. Nonetheless, seed felting exhibited stronger effect on LAI (increased by 0.7-1.1 g m -1 day -1 in OF and 0.25-0.7 g m -1 day -1 in CF, root length (increased by 1166 mm in OF and 1182.55 mm in CF and area (increased by 72.45 mm 2 in OF and 588.7 mm 2 in CF during autumn acclimation rather than seedling spraying.

  2. Oxygen Consumption and Swimming Performance in Hypoxia-Acclimated Rainbow Trout Salmo Gairdneri

    DEFF Research Database (Denmark)

    BUSHNELL, PG; STEFFENSEN, JF; JOHANSEN, K

    1984-01-01

    1. Swimming performance and oxygen consumption of normoxic (control) and hypoxia-acclimated (P002=40 mmHg) rainbow trout, Salmo gairdneri Richardson, were monitored at >145, 60 and 40mmHg. 2. Maximum swimming velocity at 40mmHg was reduced from >54.8cm s-1 to 41.4cm s1 in controls and to 40.6 cm s......Hg did not significantly change oxygen consumption in control animals, although no fish (control or hypoxia acclimated) completed swimming trials at 54.8cm s-1 in 40mmHg. 5. Oxygen consumption of hypoxia-acclimated fish at 5.5cm s-1 and 40 mmHg was significantly higher than oxygen uptake in normoxia...... at the same speed. This relative increase was not maintained, however, as oxygen consumption at higher swimming speeds was similar to that in normoxia. 6. Blood studies showed that hypoxia-acclimated fish had lower ATP concentrations and P50 values. While these factors may increase the blood oxygen loading...

  3. Consequences of acclimation to Microcystis on the selective feeding behavior of the calanoid copepod Eudiaptomus gracilis

    NARCIS (Netherlands)

    Ger, K.A.; Panosso, R.; Lürling, M.F.L.L.W.

    2011-01-01

    We tested the hypothesis that calanoid copepods would adapt to extended periods of Microcystis exposure by increasing selective feeding on alternative food. Copepod (Eudiaptomus gracilis) clearance rates were compared before and after a 5-d acclimation to Microcystis aeruginosa using paired food mix

  4. Effect of acclimation temperature and pH on contraction of frog sartorius muscle.

    Science.gov (United States)

    Renaud, J M; Stevens, E D

    1981-05-01

    The effect of acclimation temperature and pH on the isometric twitch and tetanus of sartorius muscle from frog, Rana pipiens, was studied at different experimental temperatures. Seven variables were measured, namely: tension, latent period, time to maximum tension, half-relaxation time, mean rate, maximum rate, and maximum acceleration of tension development. The effect of experimental temperature was similar to that reported in the literature. The effects of acclimation temperature were small and were not compensatory. Different pH's were obtained by varying CO2 in the gas phase, while the HCO3- concentration was kept constant. The main effects of a decrease in pH on the isometric twitch and tetanus were a reduction in tension and rate of tension development and an increase in latent period. A decrease in pH had no effect on the time to maximum tension or the half-relaxation time. Analysis of variance showed that the test temperature had the greatest effect of all three treatments on each variable, the effects of test and acclimation temperature were dependent on neither the test nor the acclimation temperatures. The in vivo relationships between these three treatments are discussed.

  5. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    NARCIS (Netherlands)

    Sterck, Frank; Anten, Niels P.R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided

  6. The relationship among metabolic rate of tree shrews (Tupaia belangeri under cold acclimation

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2012-11-01

    Full Text Available Many small mammals inhabiting cold environments display enhanced capacity for seasonal changes in nonshivering thermogenesis (NST and thermoregulatory maximum metabolic rate (MMR. However, it is not known how this plasticity remains in a mammal that rarely experiences extreme cold fluctuations. In order to answer this question, we determined body mass ( Mb, basal metabolic rate (BMR, NST, and MMR on a tree shrews (Tupaia belangeri, acclimated to cold (5 ºC conditions. NST was measured as the maximum response of metabolic rate (NSTmax after injection of norepinephrine (NE in thermoneutrality minus BMR. Maximum metabolic rate was assessed in animals exposed to enhanced heat-loss atmosphere (He-O2 connected with an open-flow respirometer. Body mass and metabolic variables increased significantly after cold acclimation with respect to control group but to a high extent (BMR, 87.97%; NST, 69.77%; and MMR, 32.35%. However, aerobic scope (MMR/BMR, and calculated shivering thermogenesis (ST did not significantly change with control group. Our data suggest: 1. The body mass and the capacity of heat production in the cold acclimated group were higher; 2. The increase of BMR and MMR during cold acclimation was the main pattern of heat production in the tree shrews.

  7. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Hanssen, M.J.W.; Hoeks, J.; Brans, B.; Boekschoten, M.V.; Kersten, A.H.

    2015-01-01

    Cold exposure may be a potential therapy for diabetes by increasing brown adipose tissue (BAT) mass and activity. Here we report that 10 d of cold acclimation (14–15 °C) increased peripheral insulin sensitivity by ~43% in eight type 2 diabetes subjects. Basal skeletal muscle GLUT4 translocation mark

  8. Kurtosis-based blind source extraction of complex non-circular signals with application in EEG artifact removal in real-time.

    Science.gov (United States)

    Javidi, Soroush; Mandic, Danilo P; Took, Clive Cheong; Cichocki, Andrzej

    2011-01-01

    A new class of complex domain blind source extraction algorithms suitable for the extraction of both circular and non-circular complex signals is proposed. This is achieved through sequential extraction based on the degree of kurtosis and in the presence of non-circular measurement noise. The existence and uniqueness analysis of the solution is followed by a study of fast converging variants of the algorithm. The performance is first assessed through simulations on well understood benchmark signals, followed by a case study on real-time artifact removal from EEG signals, verified using both qualitative and quantitative metrics. The results illustrate the power of the proposed approach in real-time blind extraction of general complex-valued sources.

  9. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, Bruce

    2003-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving

  10. Does cold acclimation induce nonshivering thermogenesis in juvenile birds? Experiments with Pekin ducklings and Japanese quail chicks.

    Science.gov (United States)

    Marjoniemi, K; Hohtola, E

    2000-11-01

    The capability to produce heat in cold by nonshivering thermogenesis (NST) was studied in Pekin ducklings and Japanese quail chicks acclimated to cold for 3 weeks using indirect calorimetry (oxygen consumption) and electromyography from breast (M. pectoralis) and leg muscles (quails: M. gastrocnemius; ducklings: M. gastrocnemius, M. iliofibularis). Respiration of muscles in vitro was studied by measuring cytochrome c oxidase activity. In both species, cold acclimation induced clear morphometric and physiological changes, but no clear evidence of nonshivering thermogenesis. This was evident because increased shivering at least in one muscle coincided with increased oxygen consumption. In ducklings, however, amplitudes of shivering EMGs were low (muscles studied in both the control and cold-acclimated groups. Ducklings reacted to cold mainly by means of increasing body weight (1796 g in control, 2095 g in cold-acclimated) and circulatory changes. Acclimation did not change oxygen consumption either in vivo or in vitro. In quails, in addition to increased body weight (78.1 g control, 89.9 g cold-acclimated), improved insulation and metabolic adaptation to cold (increased respiration in vivo and in M. pectoralis in vitro) was also utilized. In Japanese quail chicks, 3 weeks of cold acclimation does not seem to induce NST, while in Pekin ducklings the existence of NST could not be totally excluded because of weak overall shivering activity.

  11. Effects of acclimation salinity on the expression of selenoproteins in the tilapia, Oreochromis mossambicus.

    Science.gov (United States)

    Seale, Lucia A; Gilman, Christy L; Moorman, Benjamin P; Berry, Marla J; Grau, E Gordon; Seale, Andre P

    2014-07-01

    Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity.

  12. Source extraction and photometry for the far-infrared and sub-millimeter continuum in the presence of complex backgrounds

    CERN Document Server

    Molinari, Sergio; Faustini, Fabiana; Pestalozzi, Michele; DiGiorgio, Anna Maria; Liu, Scige John

    2010-01-01

    (Abridged) We present a new method for detecting and measuring compact sources in conditions of intense, and highly variable, fore/background. While all most commonly used packages carry out the source detection over the signal image, our proposed method builds from the measured image a "curvature" image by double-differentiation in four different directions. In this way point-like as well as resolved, yet relatively compact, objects are easily revealed while the slower varying fore/background is greatly diminished. Candidate sources are then identified by looking for pixels where the curvature exceeds, in absolute terms, a given threshold; the methodology easily allows us to pinpoint breakpoints in the source brightness profile and then derive reliable guesses for the sources extent. Identified peaks are fit with 2D elliptical Gaussians plus an underlying planar inclined plateau, with mild constraints on size and orientation. Mutually contaminating sources are fit with multiple Gaussians simultaneously using...

  13. The effects of diel-cycling hypoxia acclimation on the hypoxia tolerance, swimming capacity and growth performance of southern catfish (Silurus meridionalis).

    Science.gov (United States)

    Yang, Han; Cao, Zhen-Dong; Fu, Shi-Jian

    2013-06-01

    To investigate the effects of diel-cycling hypoxia acclimation on the hypoxia tolerance, swimming and growth performance of juvenile southern catfish, we initially measured the critical oxygen tension (P(crit)), oxygen thresholds of aquatic surface respiration (ASR) and loss of equilibrium (LOE) of diel-cycling hypoxia-acclimated (15 d, 7:00-21:00, dissolved oxygen level (DO) = 7.0 ± 0.2 mg L(-1); 21:00-7:00, DO = 3.0 ± 0.2 mg L(-1)) and non-acclimated (15 d, DO = 7.0 ± 0.2 mg L(-1)) southern catfish at 25 °C. We then measured the critical swimming speed (U(crit)) and metabolic rate (MR) of hypoxia-acclimated and non-acclimated fish (under both hypoxic and normoxic conditions). The feeding rate (FR), feeding efficiency (FE) and specific growth rate (SGR) of fish in hypoxia-acclimated and non-acclimated groups were also measured. The P(crit), ASR and LOE of hypoxia-acclimated fish were significantly lower than those of non-acclimated fish. Hypoxia acclimation resulted in a significantly higher U(crit) when the individuals swam in hypoxia. The U(crit), maximum metabolic rate (MMR) and metabolic scope (MS) of both the hypoxia-acclimated and non-acclimated fish all decreased with the decrease of DO. However, the U(crit), MMR and MS decreased by 31, 43 and 54%, respectively, in non-acclimated fish, whereas these values decreased by 15, 28 and 29%, respectively, in hypoxia-acclimated fish, which suggests that hypoxia-acclimated fish were less sensitive to the DO decrease. The FR, FE and SGR all decreased by 21, 20 and 45%, respectively, in the hypoxia-acclimated group compared to the non-acclimated group. This result suggests that diel-cycling hypoxia acclimation improved the hypoxia tolerance and aerobic swimming performance of southern catfish, whereas impaired the growth performance. The high hypoxia tolerance and physiological plasticity to hypoxia-acclimated southern catfish may be related to its lower maintenance energy expenditure, sit-and-wait lifestyle and

  14. Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin-haptoglobin complex.

    Science.gov (United States)

    Allen, Courtni E; Schmitt, Michael P

    2015-02-01

    The use of hemin iron by Corynebacterium diphtheriae requires the DtxR- and iron-regulated ABC hemin transporter HmuTUV and the secreted Hb-binding protein HtaA. We recently described two surface anchored proteins, ChtA and ChtC, which also bind hemin and Hb. ChtA and ChtC share structural similarities to HtaA; however, a function for ChtA and ChtC was not determined. In this study, we identified additional host iron sources that are utilized by C. diphtheriae. We show that several C. diphtheriae strains use the hemoglobin-haptoglobin (Hb-Hp) complex as an iron source. We report that an htaA deletion mutant of C. diphtheriae strain 1737 is unable to use the Hb-Hp complex as an iron source, and we further demonstrate that a chtA-chtC double mutant is also unable to use Hb-Hp iron. Single-deletion mutants of chtA or chtC use Hb-Hp iron in a manner similar to that of the wild type. These findings suggest that both HtaA and either ChtA or ChtC are essential for the use of Hb-Hp iron. Enzyme-linked immunosorbent assay (ELISA) studies show that HtaA binds the Hb-Hp complex, and the substitution of a conserved tyrosine (Y361) for alanine in HtaA results in significantly reduced binding. C. diphtheriae was also able to use human serum albumin (HSA) and myoglobin (Mb) but not hemopexin as iron sources. These studies identify a biological function for the ChtA and ChtC proteins and demonstrate that the use of the Hb-Hp complex as an iron source by C. diphtheriae requires multiple iron-regulated surface components.

  15. capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55.

    Science.gov (United States)

    Berger, F; Normand, P; Potier, P

    1997-09-01

    By use of Arthrobacter globiformis SI55, a psychrotrophic bacterium capable of growth between -5 and +32 degrees C, we cloned and sequenced capA, a gene homologous to cspA encoding the major cold shock protein in Escherichia coli. The deduced protein sequence has a high level of identity with the sequences of other CspA-related proteins from various sources, and no particular residue or domain that could be specific to cold-adapted microorganisms emerged. We show that CapA was produced very rapidly following cold shock, but unlike its mesophilic counterparts, it was still expressed during prolonged growth at low temperature. Its synthesis is regulated at the translational level, and we showed that growth resumption following a temperature downshift correlated with CapA expression. Transient inhibitions in protein synthesis during the first stages of the cold shock response severely impaired the subsequent acclimation of A. globiformis SI55 to low temperature and delayed CapA expression. The cold shock response in A. globiformis SI55 is an adaptative process in which CapA may play a crucial role. We suggest that low-temperature acclimation is conditioned mainly by the ability of cells to restore an active translational machinery after cold shock in a process that may be different from that present in mesophiles.

  16. The photosynthetic acclimation response of Lolium perenne to four years growth in a free-air CO{sub 2} enrichment (FACE) facility

    Energy Technology Data Exchange (ETDEWEB)

    Creasey, R. [Univ. of Essex (United Kingdom)

    1996-11-01

    In this study, the photosynthetic responses of field grown Lolium perenne to ambient (354 {mu}mol mol{sup -1}) and elevated (600 {mu}mol mol{sup -1}) C{sub a} were measured. The experiment utilized the FACE facility at Eschikon, Switzerland; here the L. Perenne swards had been grown at two nitrogen treatments, with six cuts per year, for 4 years. The study revealed a significant decrease in Rubisco activity (Vcmax) in the low nitrogen FACE plots; this is consistent with the theories of source-sink imbalance resulting in feedback inhibition and down-regulation. Such negative acclimation was not wholly supported by diurnal investigations which revealed an average stimulation of 53.38% and 52.78% in the low and high nitrogen, respectively. However, light response curves and AI investigations also suggested down-regulation, especially in the low nitrogen. SI is expected to decrease in response to elevated C{sub a}, if any change is seen. This was indeed observed in the high nitrogen plots but for the low nitrogen a significant increase was found. Conclusions drawn from this project center around the implications of negative acclimation to future crop productivity. For instance, inter-specific differences in response to elevated C{sub a} may result in ecosystem changes and new management techniques may be necessary. However, real predictions cannot be made from leaf level studies alone as these may not represent the overall changes at the whole plant level.

  17. Unsaturated Lipids Change in Olive Tree Drupe and Seed during Fruit Development and in Response to Cold-Stress and Acclimation

    Directory of Open Access Journals (Sweden)

    Simone D’Angeli

    2016-11-01

    Full Text Available The olive tree is a plant of economic value for the oil of its drupe. It is a cultigen complex composed of genotypes with differences in cold-hardiness. About 90% of the oil is stored in oil bodies (OBs in the drupe during the oleogenic phase. Phenols and lipids contribute to oil quality, but the unsaturated fatty acid (FA fraction is emerging as the most important for quality, because of the very high content in oleic acid, the presence of ω6-linoleic acid and ω3-linolenic acid, and the very low saturated FA content. Another 10% of oil is produced by the seed. Differences in unsaturated FA-enriched lipids exist among seed coat, endosperm, and embryo. Olive oil quality is also affected by the environmental conditions during fruit growth and genotype peculiarities. Production of linoleic and α-linolenic acids, fruit growth, fruit and leaf responses to low temperatures, including cuticle formation, and cold-acclimation are related processes. The levels of unsaturated FAs are changed by FA-desaturase (FAD activities, involving the functioning of chloroplasts and endoplasmic reticulum. Cold induces lipid changes during drupe and seed development, affecting FADs, but its effect is related to the genotype capability to acclimate to the cold.

  18. The complex of SAO RAS optical instruments as an instrument for studying transient sources in the Universe

    Science.gov (United States)

    Vlasyuk, V. V.; Sokolov, V. V.

    2016-06-01

    The paper describes the optical telescopes of SAO RAS and available equipment suitable for studying transient sources. The first experience of investigation of one of the fist gamma-ray bursts (GRB 970508) dates back to 1997. The experience accumulated since then in studying transient sources is also described. Future prospects are outlined.

  19. Chandra observations of the HII complex G5.89-0.39 and TeV gamma-ray source HESSJ1800-240B

    CERN Document Server

    Hampton, E J; Hofmann, W; Horns, D; Uchiyama, Y; Wagner, S

    2016-01-01

    We present the results of our investigation, using a Chandra X-ray observation, into the stellar population of the massive star formation region G5.89-0.39, and its potential connection to the coincident TeV gamma-ray source HESSJ1800-240B. G5.89-0.39 comprises two separate HII regions G5.89-0.39A and G5.89-0.39B (an ultra-compact HII region). We identified 159 individual X-ray point sources in our observation using the source detection algorithm \\texttt{wavdetect}. 35 X-ray sources are associated with the HII complex G5.89-0.39. The 35 X-ray sources represent an average unabsorbed luminosity (0.3-10\\,keV) of $\\sim10^{30.5}$\\,erg/s, typical of B7-B5 type stars. The potential ionising source of G5.89-0.39B known as Feldt's star is possibly identified in our observation with an unabsorbed X-ray luminosity suggestive of a B7-B5 star. The stacked energy spectra of these sources is well-fitted with a single thermal plasma APEC model with kT$\\sim$5\\,keV, and column density N$_{\\rm H}=2.6\\times10^{22}$\\,cm$^{-2}$ (A...

  20. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.

    Science.gov (United States)

    Chen, Gen-Yun; Yong, Zhen-Hua; Liao, Yi; Zhang, Dao-Yun; Chen, Yue; Zhang, Hai-Bo; Chen, Juan; Zhu, Jian-Guo; Xu, Da-Quan

    2005-07-01

    Net photosynthetic rates (Pns) in leaves were compared between rice plants grown in ambient air control and free-air CO2 enrichment (FACE, about 200 micromol mol(-1) above ambient) treatment rings. When measured at the same CO2 concentration, the Pn of FACE leaves decreased significantly, indicating that photosynthetic acclimation to high CO2 occurs. Although stomatal conductance (Gs) in FACE leaves was markedly decreased, intercellular CO2 concentrations (Ci) were almost the same in FACE and ambient leaves, indicating that the photosynthetic acclimation is not caused by the decreased Gs. Furthermore, carboxylation efficiency and maximal Pn, both light and CO2-saturated Pn, were decreased in FACE leaves, as shown by the Pn-Ci curves. In addition, the soluble protein, Rubisco (ribulose-1,5-bisphosphate caboxylase/oxygenase), and its activase contents as well as the sucrose-phosphate synthase activity decreased significantly, while some soluble sugar, inorganic phosphate, chlorophyll and light-harvesting complex II (LHC II) contents increased in FACE leaves. It appears that the photosynthetic acclimation in rice leaves is related to both ribulose-1,5-bisphosphate (RuBP) carboxylation limitation and RuBP regeneration limitation.

  1. Effects of temperament and acclimation to handling on reproductive performance of Bos taurus beef females.

    Science.gov (United States)

    Cooke, R F; Bohnert, D W; Cappellozza, B I; Mueller, C J; Delcurto, T

    2012-10-01

    Two experiments evaluated the effects of temperament and acclimation to handling on reproductive performance of Bos taurus beef females. In Exp. 1, 433 multiparous, lactating Angus × Hereford cows were sampled for blood and evaluated for temperament before the breeding season. Cow temperament was assessed by chute score and exit velocity. Chute score was assessed on a 5-point scale according to behavioral responses during chute restraining. Exit score was calculated by dividing exit velocity into quintiles and assigning cows with a score from 1 to 5 (1 = slowest, 5 = fastest cows). Temperament score was calculated by averaging chute and exit scores. Cows were classified for temperament type according to temperament score (≤ 3 = adequate, > 3 = aggressive). Plasma cortisol concentrations were greater (P temperament. Cows with aggressive temperament had reduced (P ≤ 0.05) pregnancy and calving rate and tended to have reduced (P = 0.09) weaning rate compared with cows with adequate temperament. Hence, kilogram of calf born per cow was reduced (P = 0.05) and kilogram of calf weaned per cow tended to be reduced (P = 0.08) in aggressive cows. In Exp. 2, 88 Angus × Hereford heifers (initial age = 206 ± 2 d) were weighed (d 0 and 10) and evaluated for temperament score (d 10). On d 11, heifers were ranked by these variables and assigned to receive or not (control) an acclimation treatment. Acclimated heifers were processed through a handling facility 3 times weekly for 4 wk (d 11 to 39; Mondays, Wednesdays, and Fridays), whereas control heifers remained undisturbed on pasture. Heifer puberty status, evaluated via plasma progesterone concentrations, was assessed on d 0 and 10, d 40 and 50, 70 and 80, 100 and 110, 130 and 140, 160 and 170, and 190 and 200. Blood samples collected on d 10 and 40 were also analyzed for plasma concentrations of cortisol and haptoglobin. Temperament score was assessed again on d 40 and d 200. Acclimated heifers had reduced (P = 0

  2. Consequences of acclimation on the resistance to acute thermal stress: Proteomic focus on mussels from pristine site.

    Science.gov (United States)

    Péden, Romain; Rocher, Béatrice; Chan, Philippe; Vaudry, David; Poret, Agnès; Olivier, Stéphanie; Le Foll, Frank; Bultelle, Florence

    2016-10-01

    Climate change constitutes an additional threat for intertidal species that already have to cope with a challenging environment. The present study focuses on the blue mussel Mytilus edulis and aims at investigating the importance of thermal acclimation in heat stress response. Microcosm exposures were performed with mussels submitted to an identical acute thermal stress following two thermal summer acclimations standing for present or future temperature conditions. Gill proteomes were analyzed by 2DE and 96 differentially expressed proteoforms were identified. Our results show that cell integrity appears to be maintained by the rise in molecular protective systems (i.e. Heat Shock Proteins), and by the reallocation of energy production via a switch to anaerobic metabolism and the setting up of alternative energy pathways. Finally, our results indicate that the response of mussels to acute thermal stress is conditioned by the acclimation temperature with an improved response in organisms acclimated to higher temperatures.

  3. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Tomcala, Ales; Sørensen, Jesper G

    2008-01-01

    Adaptative responses of ectothermic organisms to thermal variation typically involve the reorganization of membrane glycerophospholipids (GPLs) to maintain membrane function. We investigated how acclimation at 15, 20 and 25 degrees C during preimaginal development influences the thermal tolerance...

  4. Characteristics of total gaseous mercury (TGM) concentrations in an industrial complex in South Korea: impacts from local sources

    Science.gov (United States)

    Seo, Yong-Seok; Jeong, Seung-Pyo; Holsen, Thomas M.; Han, Young-Ji; Choi, Eunhwa; Park, Eun Ha; Kim, Tae Young; Eum, Hee-Sang; Park, Dae Gun; Kim, Eunhye; Kim, Soontae; Kim, Jeong-Hun; Choi, Jaewon; Yi, Seung-Muk

    2016-08-01

    Total gaseous mercury (TGM) concentrations were measured every 5 min in Pohang, Gyeongsangbuk-do, Korea, during summer (17-23 August 2012), fall (9-17 October 2012), winter (22-29 January 2013), and spring (26 March-3 April 2013) to (1) characterize the hourly and seasonal variations of atmospheric TGM concentrations; (2) identify the relationships between TGM and co-pollutants; and (3) identify likely source directions and locations of TGM using the conditional probability function (CPF), conditional bivariate probability function (CBPF) and total potential source contribution function (TPSCF). The TGM concentration was statistically significantly highest in fall (6.7 ± 6.4 ng m-3), followed by spring (4.8 ± 4.0 ng m-3), winter (4.5 ± 3.2 ng m-3) and summer (3.8 ± 3.9 ng m-3). There was a weak but statistically significant negative correlation between the TGM concentration and ambient air temperature (r = -0.08, pindustrial activities and activation of local surface emission sources. The observed ΔTGM / ΔCO was significantly lower than that of Asian long-range transport, but similar to that of local sources in Korea and in US industrial events, suggesting that local sources are more important than those of long-range transport. CPF, CBPF and TPSCF indicated that the main sources of TGM were iron and manufacturing facilities, the hazardous waste incinerators and the coastal areas.

  5. Predictive Big Data Analytics: A Study of Parkinson’s Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations

    OpenAIRE

    2016-01-01

    Background A unique archive of Big Data on Parkinson’s Disease is collected, managed and disseminated by the Parkinson’s Progression Markers Initiative (PPMI). The integration of such complex and heterogeneous Big Data from multiple sources offers unparalleled opportunities to study the early stages of prevalent neurodegenerative processes, track their progression and quickly identify the efficacies of alternative treatments. Many previous human and animal studies have examined the relationsh...

  6. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.

    Science.gov (United States)

    Stitt, Bradley C; Burness, Gary; Burgomaster, Kirsten A; Currie, Suzanne; McDermid, Jenni L; Wilson, Chris C

    2014-01-01

    Cold-water fishes are becoming increasingly vulnerable as changing thermal conditions threaten their future sustainability. Thermal stress and habitat loss from increasing water temperatures are expected to impact population viability, particularly for inland populations with limited adaptive resources. Although the long-term persistence of cold-adapted species will depend on their ability to cope with and adapt to changing thermal conditions, very little is known about the scope and variation of thermal tolerance within and among conspecific populations and evolutionary lineages. We studied the upper thermal tolerance and capacity for acclimation in three captive populations of brook trout (Salvelinus fontinalis) from different ancestral thermal environments. Populations differed in their upper thermal tolerance and capacity for acclimation, consistent with their ancestry: the northernmost strain (Lake Nipigon) had the lowest thermal tolerance, while the strain with the most southern ancestry (Hill's Lake) had the highest thermal tolerance. Standard metabolic rate increased following acclimation to warm temperatures, but the response to acclimation varied among strains, suggesting that climatic warming may have differential effects across populations. Swimming performance varied among strains and among acclimation temperatures, but strains responded in a similar way to temperature acclimation. To explore potential physiological mechanisms underlying intraspecific differences in thermal tolerance, we quantified inducible and constitutive heat shock proteins (HSP70 and HSC70, respectively). HSPs were associated with variation in thermal tolerance among strains and acclimation temperatures; HSP70 in cardiac and white muscle tissues exhibited similar patterns, whereas expression in hepatic tissue varied among acclimation temperatures but not strains. Taken together, these results suggest that populations of brook trout will vary in their ability to cope with a

  7. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect.

    Science.gov (United States)

    Castle, Paul; Mackenzie, Richard W; Maxwell, Neil; Webborn, Anthony D J; Watt, Peter W

    2011-08-01

    The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output.

  8. Impact of resolution on regional climate modeling in the source region of Yellow River with complex terrain using RegCM3

    Science.gov (United States)

    Hui, Pinhong; Tang, Jianping; Wang, Shuyu; Wu, Jian; Niu, Xiaorui; Kang, Yue

    2016-07-01

    This paper presents results from a 20-year (1990-2009) simulation by RegCM3 with both 45- and 15-km horizontal resolutions. The research focuses on the source region of Yellow River and its surrounding area, which is located on the northeast edge of the Tibetan Plateau with its very complex topography. Driven by the ECMWF ERA-interim reanalysis data, RegCM3 displays reasonable ability to reproduce the spatial patterns, annual cycles, and the interannual variabilities of regional surface climate, though the model shows wet and cold bias. The model's performance is more close to observation for the source region of Yellow River than the other part of the analysis region, and the application of high resolution of 15 km demonstrates better skill with less bias for mean climate and larger correlation coefficients for interannual variability at most stations. However, the high-resolution simulation shows little advantage for reproducing the variations of precipitation and surface air temperature with altitude. The RegCM3 model also generally reproduces the probability distribution functions (PDFs) of surface climate and, consequently, the occurrence of climatic extremes and extreme indices. The simulation with high resolution again proves to be more reliable to generate climatic extremes over complex terrain of the source region of the Yellow River, related to its better representation of complex terrain and local processes.

  9. Hazard and risk assessment in a complex multi-source volcanic area: the example of the Campania Region, Italy

    Science.gov (United States)

    Lirer, L.; Petrosino, P.; Alberico, I.

    2010-05-01

    In order to zone the territory of Campania Region (southern Italy) with regard to the hazard related to future explosive activity of Somma-Vesuvio, Campi Flegrei, and Ischia Island, we drew a multi-source hazard map for tephra and pyroclastic flows. This map, which merges the areas possibly endangered by the three volcanic sources, takes into account a large set of tephra fall and pyroclastic flow events that have occurred in the last 10 ka. In detail, for fall products at Campi Flegrei and Somma-Vesuvio we used the dispersal of past eruption products as deduced by field surveys and their recurrence over the whole area. For pyroclastic flows, the field data were integrated with VEI = 4 simulated events; about 100 simulations sourcing from different points of the area were performed, considering the different probability of vent opening. The spatial recurrence of products of both past eruptions and simulated events was used to assign a weight to the area endangered by the single volcanic sources. The sum of these weights in the areas exposed to the activity of two sources and/or to different kinds of products was used to draw a hazard map, which highlights the spatial trend and the extent of the single equivalent classes at a regional scale. A multi-source risk map was developed for the same areas as the graphic result of the product of volcanic hazard and exposure, assessed in detail from a dasymetric map. The resulting multi-source hazard and risk maps are essential tools for communication among scientists, local authorities, and the public, and may prove highly practical for long-term regional-scale mitigation planning.

  10. Effects of climate warming and declining species richness in grassland model ecosystems: acclimation of CO2 fluxes

    Directory of Open Access Journals (Sweden)

    S. Vicca

    2007-01-01

    Full Text Available To study the effects of warming and declining species richness on the carbon balance of grassland communities, model ecosystems containing one, three or nine species were exposed to ambient and elevated (ambient +3°C air temperature. In this paper, we analyze measured ecosystem CO2 fluxes to test whether ecosystem photosynthesis and respiration had acclimated to warming after 28 months of continuous heating, and whether the degree of acclimation depended on species richness. In order to test whether acclimation occurred, short term temperature response curves were established for all communities in both treatments. At similar temperatures, lower flux rates in the heated communities as compared to the unheated communities would indicate thermal acclimation. Because plant cover was significantly higher in the heated treatment, we normalized the data for plant cover. Subsequently, down-regulation of both photosynthesis and respiration was observed. Although CO2 fluxes were larger in communities with higher species richness, species richness did not affect the degree of acclimation to warming. These results imply that models need to take thermal acclimation into account to simulate photosynthesis and respiration in a warmer world.

  11. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio)

    DEFF Research Database (Denmark)

    Boisen, A M Z; Amstrup, J; Novak, I;

    2003-01-01

    While the zebrafish is commonly used for studies of developmental biology and toxicology, very little is known about their osmoregulatory physiology. The present investigation of Na(+) and Cl(-) transport revealed that the zebrafish is able to tolerate extremely low ambient ion concentrations...... and that this is achieved at least in part by a greatly enhanced apparent uptake capacity and affinity for both ions. Zebrafish maintain plasma and whole body electrolyte concentrations similar to most other freshwater teleosts even in deionized water containing only 35 microM NaCl, i.e soft water. We recorded an extremely...... inhibitor was more variable. Differential response of Na(+) uptake to amiloride depending on acclimation medium suggests that different Na(+) transport mechanisms are employed by zebrafish acclimated to soft and hard water....

  12. Biodegradation of toluene diamine (TDA) in activated sludge acclimated with aniline and TDA.

    Science.gov (United States)

    Asakura, S; Okazaki, S

    1995-06-01

    The biodegradability of toluene diamine (TDA) which has been regarded as a "recalcitrant compound" was examined in activated sludges. In this study, a microorganic-enzyme system which metabolized TDA was obtained by acclimating the activated sludge with aniline and TDA. In the sludge subject to be 200 days' acclimation, the considerable increase in respiration rate with the addition of TDA, accompanied the sharp decrease in its concentration. This indicated that TDA was metabolized fortuitously. The rate of biodegradation of TDA in the absence of aniline was first order with respect to its concentration when the initial TDA concentration was less than about 5 mg/l. The rate constant in this relation was proportional to mixed liquor suspended solid (MLSS). However, when the initial TDA concentration exceeded 5 mg/l, the plots were deviated from a first order rate equation.

  13. Photosynthetic acclimation to enriched CO{sub 2} concentrations in Pinus Ponderosa

    Energy Technology Data Exchange (ETDEWEB)

    Torres, M.P. [California State Univ., Humbolt, CA (United States)

    1995-11-01

    By the middle of the 21st century earth`s ambient CO{sub 2} level is expected to increase two-fold ({approximately}350 umol/L). Higher levels of CO{sub 2} are expected to cause major changes in the morphological, physiological, and biochemical traits of the world`s vegetation. Therefore, we constructed an experiment designed to measure the long-term acclimation processes of Pinus Ponderosa. As a prominent forest conifer, Pinus Ponderosa is useful when assessing a large scale global carbon budget. Eighteen genetically variable families were exposed to 3 different levels of CO{sub 2} (350 umol/L, 525 umol/L, 700 umol/L), for three years. Acclimation responses were quantified by assays of photosynthetic rate, chlorophyll fluorescence, and chlorophyll pigment concentrations.

  14. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Birkeland, M. J.

    2006-01-01

    Temperature acclimation in two mesophilic microalgae, Microcystis aeruginosa (Cyanobacteriales) and Scenedesmus acutus (Chlorococcales), was studied by measuring growth rate, photosynthesis, respiration, cell size, cellular pigment content and Chl a-specific light absorption. Phytoplankton were...... grown as nutrient-replete semicontinuous cultures for 2 weeks at 5, 15 and 25°C, during which growth rate was determined from changes in Chl a. Gross photosynthesis (GP) was measured as 14C assimilation at saturating light and respiration (R) was measured as O2 uptake along a temperature gradient from 0...... to 40°C. Net photosynthesis (NP) was determined as the difference between GP and R. For both species, acclimation to increasing growth temperatures resulted in increasing growth rate, cellular pigment content and decreasing cell size and Chl a-specific light absorption. Scenedesmus acutus and M...

  15. Intraspecific variation in thermal acclimation of photosynthesis across a range of temperatures in a perennial crop

    Science.gov (United States)

    Zaka, Serge; Frak, Ela; Julier, Bernadette; Gastal, François; Louarn, Gaëtan

    2016-01-01

    Interest in the thermal acclimation of photosynthesis has been stimulated by the increasing relevance of climate change. However, little is known about intra-specific variations in thermal acclimation and its potential for breeding. In this article, we examined the difference in thermal acclimation between alfalfa (Medicago sativa) cultivars originating from contrasting origins, and sought to analyze the mechanisms in play. A series of experiments was carried out at seven growth temperatures between 5 and 35 °C using four cultivars from temperate and Mediterranean origin. Leaf traits, the photosynthetic rate at 25 °C (A40025), the photosynthetic rate at optimal temperature (A400opt), the thermal optimum of photosynthesis (Topt), and the photosynthetic parameters from the Farqhuar model were determined. Irrespective of cultivar origin, a clear shift in the temperature responses of photosynthesis was observed as a function of growth temperature, affecting thermal optimum of photosynthesis, photosynthetic rate at optimal temperature and photosynthetic rate at 25 °C. For both cultivars, Topt values increased linearly in leaves grown between 5 and 35 °C. Relative homeostasis of A40025 and A400opt was found between 10 °C and 30 °C growth temperatures, but sharp declines were recorded at 5 and 35 °C. This homeostasis was achieved in part through modifications to leaf nitrogen content, which increased at extreme temperatures. Significant changes were also recorded regarding nitrogen partitioning in the photosynthetic apparatus and in the temperature dependence of photosynthetic parameters. The cultivars differed only in terms of the temperature response of photosynthetic parameters, with Mediterranean genotypes displaying a greater sensitivity of the maximum rate of Rubisco carboxylation to elevated temperatures. It was concluded that intra-specific variations in the temperature acclimation of photosynthesis exist among alfalfa cultivars, but that

  16. Heat acclimation and physical training adaptations of young women using different contraceptive hormones.

    Science.gov (United States)

    Armstrong, Lawrence E; Maresh, Carl M; Keith, Nicole R; Elliott, Tabatha A; Vanheest, Jaci L; Scheett, Timothy P; Stoppani, James; Judelson, Daniel A; De Souza, Mary Jane

    2005-05-01

    Although endogenous and exogenous steroid hormones affect numerous physiological processes, the interactions of reproductive hormones, chronic exercise training, and heat acclimation are unknown. This investigation evaluated the responses and adaptations of 36 inactive females [age 21 +/- 3 (SD) yr] as they undertook a 7- to 8-wk program [heat acclimation and physical training (HAPT)] of indoor heat acclimation (90 min/day, 3 days/wk) and outdoor physical training (3 days/wk) while using either an oral estradiol-progestin contraceptive (ORAL, n = 15), a contraceptive injection of depot medroxyprogesterone acetate (DEPO, n = 7), or no contraceptive (EU-OV, n = 14; control). Standardized physical fitness and exercise-heat tolerance tests (36.5 degrees C, 37% relative humidity), administered before and after HAPT, demonstrated that the three subject groups successfully (P muscular endurance (i.e., sit-ups, push-ups, 4.6-km run time) and body composition characteristics. The stress of HAPT did not disrupt the menstrual cycle length/phase characteristics, ovulation, or plasma hormone concentrations of EU-OV. No between-group differences (P > 0.05) existed for rectal and skin temperatures or metabolic, cardiorespiratory, muscular endurance, or body composition variables. A significant difference post-HAPT in the onset temperature of local sweating, ORAL (37.2 +/- 0.4 degrees C) vs. DEPO (37.7 +/- 0.2 degrees C), suggested that steroid hormones influenced this adaptation. In summary, virtually all adaptations of ORAL and DEPO were similar to EU-OV, suggesting that exogenous reproductive hormones neither enhanced nor impaired the ability of women to complete 7-8 wk of strenuous physical training and heat acclimation.

  17. Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana.

    Science.gov (United States)

    Hectors, Kathleen; Van Oevelen, Sandra; Geuns, Jan; Guisez, Yves; Jansen, Marcel A K; Prinsen, Els

    2014-10-01

    Plants respond to environmental stress by synthesizing a range of secondary metabolites for defense purposes. Here we report on the effect of chronic ultraviolet (UV) radiation on the accumulation of plant secondary metabolites in Arabidopsis thaliana leaves. In the natural environment, UV is a highly dynamic environmental parameter and therefore we hypothesized that plants are continuously readjusting levels of secondary metabolites. Our data show distinct kinetic profiles for accumulation of tocopherols, polyamines and flavonoids upon UV acclimation. The lipid-soluble antioxidant α-tocopherol accumulated fast and remained elevated. Polyamines accumulated fast and transiently. This fast response implies a role for α-tocopherol and polyamines in short-term UV response. In contrast, an additional sustained accumulation of flavonols took place. The distinct accumulation patterns of these secondary metabolites confirm that the UV acclimation process is a dynamic process, and indicates that commonly used single time-point analyses do not reveal the full extent of UV acclimation. We demonstrate that UV stimulates the accumulation of specific flavonol glycosides, i.e. kaempferol and (to a lesser extent) quercetin di- and triglycosides, all specifically rhamnosylated at position seven. All metabolites were identified by Ultra Performance Liquid Chromatography (UPLC)-coupled tandem mass spectrometry. Some of these flavonol glycosides reached steady-state levels in 3-4 days, while concentrations of others are still increasing after 12  days of UV exposure. A biochemical pathway for these glycosides is postulated involving 7-O-rhamnosylation for the synthesis of all eight metabolites identified. We postulate that this 7-O-rhamnosylation has an important function in UV acclimation.

  18. Constraints to hydraulic acclimation under reduced light in two contrasting Phaseolus vulgaris cultivars.

    Science.gov (United States)

    Matzner, Steven L; Rettedal, David D; Harmon, Derek A; Beukelman, MacKenzie R

    2014-08-01

    Two cultivars of Phaseolus vulgaris L. were grown under three light levels to determine if hydraulic acclimation to light occurs in herbaceous annuals and whether intraspecific trade-offs constrain hydraulic traits. Acclimation occurred in response to reduced light and included decreased stomatal density (SD) and increased specific leaf area (SLA). Reduced light resulted in lower wood density (WD); decreased cavitation resistance, measured as the xylem pressure causing a 50 % reduction in stem conductivity (P50); and increased hydraulic capacity, measured as average leaf mass specific transpiration (E(LM)). Significant or marginally significant trade-offs between P50 and WD, WD and E(LM), and E(LM) and P50 reflected variation due to both genotype and environmental effects. A trade-off between WD and P50 within one cultivar indicated that morphological adjustment was constrained. Coordinated changes in WD, P50, and E(LM) within each cultivar in response to light were consistent with trade-offs constraining plasticity. A water-use efficiency (WUE, measured as δ(13)C) versus hydraulic capacity (E(LM)) trade-off was observed within each cultivar, further indicating that hydraulic trade-offs can constrain acclimation. Larger plants had lower hydraulic capacity (E(LM)) but greater cavitation resistance, WD, and WUE. Distinct hydraulic strategies were observed with the cultivar adapted to irrigated conditions having higher stomatal conductance and stem flow rates. The cultivar adapted to rain-fed conditions had higher leaf area and greater cavitation resistance. Hydraulic trade-offs were observed within the herbaceous P. vulgaris resulting from both genotype and environmental effects. Trade-offs within a cultivar reflected constraints to hydraulic acclimation in response to changing light.

  19. Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures.

    Science.gov (United States)

    Noyola, Javier; Caamal-Monsreal, Claudia; Díaz, Fernando; Re, Denisse; Sánchez, Adolfo; Rosas, Carlos

    2013-01-01

    Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38-0.78g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30°C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4°C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18-30°C resulted in a calculated area of 210.0°C(2). The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30°C. Maximum and minimum temperature quotients (Q10) were observed between 26-30°C and 22-26°C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México.

  20. THE RELATIONSHIP AMONG METABOLIC RATE OF TREE SHREWS (TUPAIA BELANGERI) UNDER COLD ACCLIMATION

    OpenAIRE

    Lin Zhang; Wenrong Gao; Wenxiu Jiang; Zhengkun Wang

    2012-01-01

    Many small mammals inhabiting cold environments display enhanced capacity for seasonal changes in nonshivering thermogenesis (NST) and thermoregulatory maximum metabolic rate (MMR). However, it is not known how this plasticity remains in a mammal that rarely experiences extreme cold fluctuations. In order to answer this question, we determined body mass ( Mb), basal metabolic rate (BMR), NST, and MMR on a tree shrews (Tupaia belangeri), acclimated to cold (5 ºC) conditions. NST was measured a...

  1. Growth and consumption of L-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains.

    Science.gov (United States)

    Bravo-Ferrada, Bárbara Mercedes; Hollmann, Axel; Brizuela, Natalia; La Hens, Danay Valdés; Tymczyszyn, Elizabeth; Semorile, Liliana

    2016-09-01

    Five Oenococcus oeni strains, selected from spontaneous malolactic fermentation (MLF) of Patagonic Pinot noir wine, were assessed for their use as MLF starter cultures. After the individual evaluation of tolerance to some stress conditions, usually found in wine (pH, ethanol, SO2, and lysozyme), the behavior of the strains was analyzed in MLO broth with 14 % ethanol and pH 3.5 in order to test for the synergistic effect of high ethanol level and low pH and, finally, in a wine-like medium. Although the five strains were able to grow in MLO broth under low pH and/or high ethanol, they must be acclimated to grow in a wine-like medium. Additionally, glycosidase and tannase activities were evaluated, showing differences among the strains. The potential of the strains to ferment citrate was tested and two of the five strains showed the ability to metabolize this substrate. We did not detect the presence of genes encoding histidine, tyrosine descarboxylase, and putrescine carbamoyltransferase. All the strains tested exhibited good growth capacity and ability to consume L-malic acid in a wine-like medium after cell acclimation, and each of them showed a particular enzyme profile, which might confer different organoleptic properties to the wine.

  2. Developmental plasticity and acclimation both contribute to adaptive responses to alternating seasons of plenty and of stress in Bicyclus butterflies

    Indian Academy of Sciences (India)

    Paul M Brakefield; Jeroen Pijpe; Bas J Zwaan

    2007-04-01

    Plasticity is a crucial component of the life cycle of invertebrates that live as active adults throughout wet and dry seasons in the tropics. Such plasticity is seen in the numerous species of Bicyclus butterflies in Africa which exhibit seasonal polyphenism with sequential generations of adults with one or other of two alternative phenotypes. These differ not only in wing pattern but in many other traits. This divergence across a broad complex of traits is associated with survival and reproduction either in a wet season that is favourable in terms of resources, or mainly in a dry season that is more stressful. This phenomenon has led us to examine the bases of the developmental plasticity in a model species, B. anynana, and also the evolution of key adult life history traits, including starvation resistance and longevity. We now understand something about the processes that generate variation in the phenotype, and also about the ecological context of responses to environmental stress. The responses clearly involve a mix of developmental plasticity as cued by different environments in pre-adult development, and the acclimation of life history traits in adults to their prevailing environment.

  3. Can leaf net carbon gain acclimate to keep up with global warming?

    Science.gov (United States)

    Vico, Giulia; Manzoni, Stefano; Way, Danielle; Hurry, Vaughan

    2016-04-01

    Plants are able to adjust their physiological activity to fluctuations and long-term changes in their growing environment. Nevertheless, projected increases in temperature will occur with unprecedented speed. Will global warming exceed the thermal acclimation capacity of leaves, thus reducing net CO2 assimilation? Such a reduction in net CO2 assimilation rate (Anet) in response to warming may deplete ecosystems' net primary productivity, with global impacts on the carbon cycling. Here we combine data on net photosynthetic thermal acclimation to changes in temperature with a probabilistic description of leaf temperature variability. We analytically obtain the probability distribution of the net CO2 assimilation rate as a function of species-specific leaf traits and growing conditions. Using this approach, we study the effects of mean leaf temperature and its variability on average Anet and the frequency of occurrence of sub-optimal thermal conditions. To maximize the net CO2 assimilation in warmer conditions, the thermal optimum for Anet (Topt) must track the growing temperature. Observations suggest that plants' thermal acclimation capacity is limited, so that growing temperatures cannot be tracked by the Topt. It is thus likely that net CO2 assimilation rates will decline in the future. Furthermore, for set leaf traits, large fluctuations in leaf temperature reduce average Anet and increase the frequency of occurrence of sub-optimal conditions for net CO2 assimilation.

  4. Cold acclimation induced accumulation of phenolic compounds and freezing tolerance in Ammopiptanthus mongolicus

    Institute of Scientific and Technical Information of China (English)

    Liu Mei-qin; Chen Yi-yin; Lu Cun-fu; Zhang Hui; Yin Wei-lun

    2007-01-01

    Ammopiptanthus mongolicus, the only freezing tolerant evergreen broad-leaved shrub, local species of the Alashan desert,northwest sand area of China, can survive -30℃ or even lower temperature in winter. In the present study, the secondary products phenolics in A. mongolicus cotyledons were determined to study the effects ofphenolics on cold tolerance. Cytochemical localization of phenolics in cotyledon cells was observed by electron microscopy and the content of phenolic compounds was assayed by spectrophotometric measurement. The results showed that the freezing tolerance of A. mongolicus seedlings increased after acclimation at 2-6℃ for 14 days, which accompanied the increase of the content of phenolic compounds in cotyledons. Cytochemical observation showed that phenolic deposits were mainly localized in vacuoles and in close proximity to tonoplast, and also in the cytoplasm. The amount and the size of phenolics droplets increased obviously in cytoplasm and vacuoles after cold acclimation, predominantly aggregated along membranes of vacuoles and tonoplast. No phenolic deposits were found in cell walls. As hydrogen- or electron-donating agents, phenolics may protect plant cells against reactive oxygen species formed during chilling or freezing stress and improve the freezing tolerance of cold-acclimated A. mongolicus seedlings.

  5. Acclimation and adaptation to common marine pollutants in the copepod Tigriopus californicus.

    Science.gov (United States)

    Sun, Patrick Y; Foley, Helen B; Handschumacher, Lisa; Suzuki, Amanda; Karamanukyan, Tigran; Edmands, Suzanne

    2014-10-01

    Establishing water quality criteria using bioassays is complicated by variation in chemical tolerance between populations. Two major contributors to this variation are acclimation and adaptation, which are both linked to exposure history, but differ in how long their effects are maintained. Our study examines how tolerance changes over multiple generations of exposure to two common marine pollutants, copper (Cu) and tributyltin oxide (TBTO), in a sexually reproducing marine copepod, Tigriopus californicus. Lines of T. californicus were chronically exposed to sub-lethal levels of Cu and TBTO for 12 generations followed by a recovery period of 3 generations in seawater control conditions. At each generation, the average number of offspring produced and survived to 28 d was determined and used as the metric of tolerance. Lines exposed to Cu and TBTO showed an overall increase in tolerance over time. Increased Cu tolerance arose by generation 3 in the chronically exposed lines and was lost after 3 generations in seawater control conditions. Increased TBTO tolerance was detected at generation 7 and was maintained even after 3 generations in seawater control conditions. It was concluded from this study that tolerance to Cu is consistent with acclimation, a quick gain and loss of tolerance. In contrast, TBTO tolerance is consistent with adaptation, in which onset of tolerance was delayed relative to an acclimation response and maintained in the absence of exposure. These findings illustrate that consideration of exposure history is necessary when using bioassays to measure chemical tolerance.

  6. Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Ryel, Ronald J; Tobler, Mark A; Barkley, Anne E; Wargent, Jason J

    2015-08-01

    The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.

  7. Forest trees filter chronic wind-signals to acclimate to high winds.

    Science.gov (United States)

    Bonnesoeur, Vivien; Constant, Thiéry; Moulia, Bruno; Fournier, Meriem

    2016-05-01

    Controlled experiments have shown that trees acclimate thigmomorphogenetically to wind-loads by sensing their deformation (strain). However, the strain regime in nature is exposed to a full spectrum of winds. We hypothesized that trees avoid overreacting by responding only to winds which bring information on local climate and/or wind exposure. Additionally, competition for light dependent on tree social status also likely affects thigmomorphogenesis. We monitored and manipulated quantitatively the strain regimes of 15 pairs of beech (Fagus sylvatica) trees of contrasting social status in an acclimated stand, and quantified the effects of these regimes on the radial growth over a vegetative season. Trees exposed to artificial bending, the intensity of which corresponds to the strongest wind-induced strains, enhanced their secondary growth by at least 80%. Surprisingly, this reaction was even greater - relatively - for suppressed trees than for dominant ones. Acclimated trees did not sense the different types of wind events in the same way. Daily wind speed peaks due to thermal winds were filtered out. Thigmomorphogenesis was therefore driven by intense storms. Thigmomorphogenesis is also likely to be involved in determining social status.

  8. Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana.

    Science.gov (United States)

    Degenkolbe, Thomas; Giavalisco, Patrick; Zuther, Ellen; Seiwert, Bettina; Hincha, Dirk K; Willmitzer, Lothar

    2012-12-01

    Freezing injury is a major factor limiting the geographical distribution of plant species and the growth and yield of crop plants. Plants from temperate climates are able to increase their freezing tolerance during exposure to low but non-freezing temperatures in a process termed cold acclimation. Damage to cellular membranes is the major cause of freezing injury in plants, and membrane lipid composition is strongly modified during cold acclimation. Forward and reverse genetic approaches have been used to probe the role of specific lipid-modifying enzymes in the freezing tolerance of plants. In the present paper we describe an alternative ecological genomics approach that relies on the natural genetic variation within a species. Arabidopsis thaliana has a wide geographical range throughout the Northern Hemisphere with significant natural variation in freezing tolerance that was used for a comparative analysis of the lipidomes of 15 Arabidopsis accessions using ultra-performance liquid chromatography coupled to Fourier-transform mass spectrometry, allowing the detection of 180 lipid species. After 14 days of cold acclimation at 4°C the plants from most accessions had accumulated massive amounts of storage lipids, with most of the changes in long-chain unsaturated triacylglycerides, while the total amount of membrane lipids was only slightly changed. Nevertheless, major changes in the relative amounts of different membrane lipids were also evident. The relative abundance of several lipid species was highly correlated with the freezing tolerance of the accessions, allowing the identification of possible marker lipids for plant freezing tolerance.

  9. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts, progress report

    Energy Technology Data Exchange (ETDEWEB)

    Steponkus, P L

    1993-01-01

    Our goal is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. We have utilized protoplasts isolated from leaves of winter rye (Secale cereale L. cv Puma) to study the cryobehavior of the plasma membrane during a freeze/thaw cycle. The focus of our current studies is on lesions in the plasma membrane that result from severe freeze-induced dehydration and result in the alteration of the semipermeable characteristics of the plasma membrane so that the protoplasts are osmotically unresponsive. In protoplasts isolated from non-acclimated rye leaves (NA protoplasts), injury is associated with the formation of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal II phase transitions in the plasma membrane and the subtending lamellae. However, lamellar-to-hexagonal II phase transitions are not observed following severe dehydration of protoplasts isolated from cold-acclimated rye leaves (ACC protoplasts). Rather, injury is associated with the fracture-jump lesion,'' which, in freeze-fracture electron microscopy studies, is manifested as localized deviations in the fracture face of the plasma membrane. The fracture plane jumps'' from the plasma membrane to either subtending aparticulate lamellae or aparticulate regions of various endomembranes (predominantly chloroplast envelopes) that are in close apposition with the plasma membrane.

  10. FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in Arabidopsis thaliana.

    Science.gov (United States)

    Dyson, Beth C; Miller, Matthew A E; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G; Goodacre, Royston; Lunn, John E; Johnson, Giles N

    2016-09-01

    Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing.

  11. Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarum on the resistance to ethanol.

    Science.gov (United States)

    Bravo-Ferrada, B M; Gómez-Zavaglia, A; Semorile, L; Tymczyszyn, E E

    2015-02-01

    The aim of this work was to evaluate the changes due to acclimation to ethanol on the fatty acid composition of three oenological Lactobacillus plantarum strains and their effect on the resistance to ethanol and malic acid consumption (MAC). Lactobacillus plantarum UNQLp 133, UNQLp 65.3 and UNQLp 155 were acclimated in the presence of 6 or 10% v/v ethanol, for 48 h at 28°C. Lipids were extracted to obtain fatty acid methyl esters and analysed by gas chromatography interfaced with mass spectroscopy. The influence of change in fatty acid composition on the viability and MAC in synthetic wine was analysed by determining the Pearson correlation coefficient. Acclimated strains showed a significant change in the fatty composition with regard to the nonacclimated strains. Adaptation to ethanol led to a decrease in the unsaturated/saturated ratio, mainly resulting from an increase in the contribution of short-length fatty acid C12:0 and a decrease of C18:1. The content of C12:0 was related to a higher viability after inoculation of synthetic wine. The MAC increased at higher contents in saturated fatty acid, but its efficiency was strain dependent.

  12. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    Science.gov (United States)

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation.

  13. Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response

    NARCIS (Netherlands)

    Troch, P.A.A.; Paniconi, C.; Loon, van E.E.

    2003-01-01

    Hillslope response to rainfall remains one of the central problems of catchment hydrology. Flow processes in a one-dimensional sloping aquifer can be described by Boussinesq's hydraulic groundwater theory. Most hillslopes, however, have complex three-dimensional shapes that are characterized by thei

  14. Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation

    DEFF Research Database (Denmark)

    Kukuczka, Bernadeta; Magneschi, Leonardo; Petroutsos, Dimitris

    2014-01-01

    a mechanism compensatory for diminished CEF. On the other hand, proteins required for NPQ, such as light-harvesting complex stress-related protein1 (LHCSR1), violaxanthin de-epoxidase, and PSII subunit S, remained stable. To further investigate the interrelation between CEF and NPQ, we generated a pgrl1 npq4...... double mutant in the green alga Chlamydomonas reinhardtii lacking both PGRL1 and LHCSR3 expression. Phenotypic comparative analyses of this double mutant, together with the single knockout strains and with the P. patens pgrl1, demonstrated that PGRL1 is crucial for acclimation to high light and anoxia...... between CEF and NPQ in oxygenic photosynthesis. Given the complementarity of the energy-dependent component of NPQ (qE) and PGRL1-mediated CEF, we suggest that PGRL1 is a capacitor linked to the evolution of the PSII subunit S-dependent qE in terrestrial plants....

  15. Evaluation of a finite-element reciprocity method for epileptic EEG source localization: Accuracy, computational complexity and noise robustness

    DEFF Research Database (Denmark)

    Shirvany, Yazdan; Rubæk, Tonny; Edelvik, Fredrik

    2013-01-01

    The aim of this paper is to evaluate the performance of an EEG source localization method that combines a finite element method (FEM) and the reciprocity theorem.The reciprocity method is applied to solve the forward problem in a four-layer spherical head model for a large number of test dipoles...... noise and electrode misplacement.The results show approximately 3% relative error between numerically calculated potentials done by the reciprocity theorem and the analytical solutions. When adding EEG noise with SNR between 5 and 10, the mean localization error is approximately 4.3 mm. For the case...... with 10 mm electrode misplacement the localization error is 4.8 mm. The reciprocity EEG source localization speeds up the solution of the inverse problem with more than three orders of magnitude compared to the state-of-the-art methods.The reciprocity method has high accuracy for modeling the dipole...

  16. How Growing Complexity of Consumer Choices and Drivers of Consumption Behaviour Affect Demand for Animal Source Foods.

    Science.gov (United States)

    Perry, B D; Grace, D C

    2015-12-01

    Many societies are spoiled for choice when they purchase meat and other livestock products, and around the globe food choice has grown dramatically in the last two decades. What is more, besides the cost and obvious health concerns influencing commodity section, an increasing proportion of choices is made to contribute to the achievement of certain ideals, such as natural resource management, climate change mitigation, animal welfare concerns and personal lifestyle. At the same time, human health considerations are becoming more important for consumption choices as richer societies, and increasingly the urban poor in low- and middle-income countries, face an unprecedented epidemic of over-consumption and associated diet-related non-communicable diseases. Animal source foods are considered significant contributors to this trend. This paper reviews this complicated arena, and explores the range of considerations that influence consumers' preferences for meat and other animal source foods. This paper also argues that deeper drivers of consumption behaviour of many foods may act in opposition to the articulated preferences for choices around animal source food consumption. We review how the returns to different causes are being valued, how emerging metrics are helping to manage and influence consumption behaviours, and draw conclusions regarding options which influence food choice.

  17. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    Science.gov (United States)

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-02-14

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  18. Exercise- and methylcholine-induced sweating responses in older and younger men: effect of heat acclimation and aerobic fitness

    Science.gov (United States)

    Inoue, Y.; Havenith, George; Kenney, W. Larry; Loomis, Joseph L.; Buskirk, Elsworth R.

    The purpose of this investigation was to examine the effects of aging and aerobic fitness on exercise- and methylcholine-induced sweating responses during heat acclimation. Five younger [Y group - age: 23+/-1 (SEM) years; maximal oxygen consumption (V.O2max): 47+/-3 ml.kg-1.min-1], four highly fit older (HO group - 63+/-3 years; 48+/-4 ml.kg-1.min-1) and five normally fit older men (NO group - 67+/-3 years; 30+/-1 ml.kg-1.min-1) who were matched for height, body mass and percentage fat, were heat acclimated by daily cycle exercise ( 35% V.O2max for 90 min) in a hot (43°C, 30% RH) environment for 8 days. The heat acclimation regimen increased performance time, lowered final rectal temperature (Tre) and percentage maximal heart rate (%HRmax), improved thermal comfort and decreased sweat sodium concentration similarly in all groups. Although total body sweating rates (M.sw) during acclimation were significantly greater in the Y and HO groups than in the NO group (Pexercise) values, compared to the other groups (PHO>NO, and on the forearm Y=HO>NO. No group differences were observed for activated sweat gland density at any site. The SGO at the respective sites increased in the post-acclimation test regardless of group (Pexercised at the same relative exercise intensity. Furthermore, the changes induced by acclimation appear associated with an age-related decrease in V.O2max. However methylcholine-activated SGO and the magnitude of improvement of SGO with acclimation are related not only to V.O2max but also to aging, suggesting that sensitivity to cholinergic stimulation decreases with aging.

  19. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma)

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, D.V.; Steponkus, P.L. (Cornell Univ., Ithaca, NY (USA))

    1987-01-01

    Highly enriched plasma membrane fractions were isolated from leaves of nonacclimated (NA) and acclimated (ACC) rye (Secale cereale L. cv Puma) seedlings. Collectively, free sterols, steryl glucosides, and acylated steryl glucosides constituted > 50 mole % of the total lipid in both NA and ACC plasma membrane fractions. Glucocerebrosides containing hydroxy fatty acids constituted the major glycolipid class of the plasma membrane, accounting for 16 mole % of the total lipid. Phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidic acid, phosphatidylserine, and phosphatidylinositol, comprised only 32 mole% of the total lipid in NA samples. Following cold acclimation, free sterols increased from 33 to 44 mole %, while steryl glucosides and acylated steryl glucosides decreased from 15 to 6 mole % and 4 to 1 mole %, respectively. Sterol analyses of these lipid classes demonstrated that free {beta}-sitosterol increased from 21 to 32 mole % (accounting for the increase in free sterols as a class) at the expense of sterol derivatives containing {beta}-sitosterol. Glucocerebrosides decreased from 16 to 7 mole % of the total lipid following cold acclimation. In addition, the relative proportions of associated hydroxy fatty acids, including 22:0 (h), 24:0 (h), 22:1 (h), and 24:1 (h) were altered. The phospholipid content of the plasma membrane fraction increased to 42 mole % of the total lipid following cold acclimation. Although the relative proportions of the individual phospholipids did not change appreciably after cold acclimation, there were substantial differences in the molecular species. Di-unsaturated molecular species of phosphatidylcholine and phosphatidylethanolamine increased following acclimation. These results demonstrate that cold acclimation results in substantial changes in the lipid composition of the plasma membrane.

  20. Responses of action potential and K+ currents to temperature acclimation in fish hearts: phylogeny or thermal preferences?

    Science.gov (United States)

    Haverinen, Jaakko; Vornanen, Matti

    2009-01-01

    Electrical activity of the heart is assumed to be one of the key factors that set thermal tolerance limits for ectothermic vertebrates. Therefore, we hypothesized that in thermal acclimation--the duration of cardiac action potential and the repolarizing K+ currents that regulate action potential duration (APD)--the rapid component of the delayed rectifier K+ current (I(Kr)) and the inward rectifier K+ current (I(K1)) are more plastic in eurythermal than in stenothermal fish species. The hypothesis was tested in six freshwater teleosts representing four different fish orders (Cadiformes, Cypriniformes, Perciformes, Salmoniformes) acclimated at +4 degrees C (cold acclimation) or +18 degrees C (warm acclimation). In cold acclimation, a compensatory shortening of APD occurred in all species regardless of thermal tolerances, life styles, or phylogenies of the fish, suggesting that this response is a common characteristic of the teleost heart. The strength of the response did not, however, obey simple eurythermy-stenothermy gradation but differed among the phylogenetic groups. Salmoniformes fish showed the greatest acclimation capacity of cardiac electrical activity, whereas the weakest response appeared in the perch (Perciformes) heart. The underlying ionic mechanisms were also partly phylogeny dependent. Modification of the I(Kr) current was al- most ubiquitously involved in acclimation response of fish cardiac myocytes to temperature, while the ability to change the I(K1) current under chronic thermal stress was absent or showed inverse compensation in Salmoniformes species. Thus, in Salmoniformes fish, the thermal plasticity of APD is strongly based on I(Kr), while other fish groups rely on both I(Kr) and I(K1).

  1. Adaptive modification of membrane phospholipid fatty acid composition and metabolic thermosuppression of brown adipose tissue in heat-acclimated rats

    Science.gov (United States)

    Saha, S. K.; Ohno, T.; Tsuchiya, K.; Kuroshima, A.

    Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25+/-1°C, 50% relative humidity and heat acclimation: 32+/-0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, Pfatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.

  2. Meta-Analysis of Heterogeneous Data Sources for Genome-Scale Identification of Risk Genes in Complex Phenotypes

    DEFF Research Database (Denmark)

    Pers, Tune Hannes; Hansen, Niclas Tue; Hansen, Kasper Lage;

    2011-01-01

    Meta‐analyses of large‐scale association studies typically proceed solely within one data type and do not exploit the potential complementarities in other sources of molecular evidence. Here, we present an approach to combine heterogeneous data from genome‐wide association (GWA) studies, protein......) with an odds ratio of 1.28 [1.12–1.48], which replicates a previous case‐control study. In addition, we demonstrate our approach's general applicability by use of type 2 diabetes data sets. The method presented augments moderately powered GWA data, and represents a validated, flexible, and publicly available...

  3. Einstein and M{\\o}ller energy-momentum complexes for a new regular black hole solution with a nonlinear electrodynamics source

    CERN Document Server

    Radinschi, I; Grammenos, Th; Islam, Sayeedul

    2016-01-01

    A study about the energy and momentum distributions of a new charged regular black hole solution with a nonlinear electrodynamics source is presented. The energy and momentum are calculated using the Einstein and M{\\o}ller energy-momentum complexes. The results show that in both pseudotensorial prescriptions the expressions for the energy of the gravitational background depend on the mass $M$ and the charge $q$ of the black hole, an additional factor $\\beta $ coming from the spacetime metric considered, and the radial coordinate $r$, while in both prescriptions all the momenta vanish. Further, it is pointed out that in some limiting and particular cases the two complexes yield the same expression for the energy distribution as that obtained in the relevant literature for the Schwarzschild black hole solution.

  4. Complex trace element effects of source mixing-fractional crystallization composite processes in Kalaan granodiorite pluton along Wulungu tectonic belt,northern Xinjiang

    Institute of Scientific and Technical Information of China (English)

    刘伟; A.Masuda

    1995-01-01

    Mixing-fractional crystallization composite processes generate 6 complex patterns,which aresynthesized into 3 models,on C21/C31-C11/C31 ratio correlation plots of trace eleroents E1,E2,E3 according totheir relative incompatibility.Three of the six effects are clearly displayed on ratio-ratio correlation plots oftrace elements in the Kalaan granodiorite pluton,indicative of a source mixing-fractional crystallization compositeprocess.The overlying lithospheric mantle was modified by the subduction of oceanic plate during Palaeozoic.The incompatibility order of the 7 concerned trace elements is DTa

  5. Source Apportionment of Particulate Matter (PM10 In an Integrated Coal Mining Complex of Jharia Coalfield, Eastern India, A Review.

    Directory of Open Access Journals (Sweden)

    Debananda Roy

    2014-04-01

    Full Text Available Coal based thermal power generation accounts for 44.7% of the world's electricity and coal alone provides about 80% of the total energy demand in India. Energy-intensive industries deteriorate the air quality of the residential areas due to release of different pollutants, especially a range of deleterious heavy metals like Hg, Cd, Cu, Pb, and Cr. Near about 53.3 percent of the coal produced every year in India has been used for thermal generation. Jharia Coalfield (JCF is major contributor of coking coal in India. JCF receives particulate matter from various sources such as, opencast coal mining and its associated activities, thermal power stations, automobiles, generator sets fuel burning, construction activities, domestic coal, cooking gas burning, etc. and even the background contribution of natural dust (crustal origin can not be ruled out, particularly, in the zones having loose topsoil. Concentration of particulate matter causes harmful impacts to the society. These multiple sources are contributing to particulates pollution in the study area.

  6. Bathochromic and hyperchromic effects of aluminum salt complexation by anthocyanins from edible sources for blue color development.

    Science.gov (United States)

    Sigurdson, Gregory T; Giusti, M Monica

    2014-07-23

    Use of artificial food colorants has declined due to health concerns and consumer demand, making natural alternatives a high demand. The effects of Al(3+) salt on food source anthocyanins were evaluated with the objective to better understand blue color development of metalloanthocyanins. This is one of the first known studies to evaluate the effects of food source anthocyanin structures, including acylation, with chelation of aluminum. Cyanidin and delphinidin derivatives from different plants were treated with factorial excess of Al(3+) in pH 3-6 and evaluated by spectrophotometry and colorimetry over 28 days. Anthocyanin concentration, salt ratio, and pH determined final color and intensity. Pyrogallol moieties on delphinidin showed furthest bathochromic shifts, whereas acylation promoted higher chroma. Blue color developed at lower pH when acylated anthocyanins reacted with Al(3+); hue ∼270 occurred with acylated delphinidin at pH ≥ 2.5. Highest chelate stability was found with AlCl3100-500× anthocyanin concentration. This investigation showed anthocyanin-metal chelation can produce a variety of intense violet to blue colors under acidic pH with potential for food use.

  7. Dialkyldiselenophosphinato-metal complexes - a new class of single source precursors for deposition of metal selenide thin films and nanoparticles

    Science.gov (United States)

    Malik, Sajid N.; Akhtar, Masood; Revaprasadu, Neerish; Qadeer Malik, Abdul; Azad Malik, Mohammad

    2014-08-01

    We report here a new synthetic approach for convenient and high yield synthesis of dialkyldiselenophosphinato-metal complexes. A number of diphenyldiselenophosphinato-metal as well as diisopropyldiselenophosphinato-metal complexes have been synthesized and used as precursors for deposition of semiconductor thin films and nanoparticles. Cubic Cu2-xSe and tetragonal CuInSe2 thin films have been deposited by AACVD at 400, 450 and 500 °C whereas cubic PbSe and tetragonal CZTSe thin films have been deposited through doctor blade method followed by annealing. SEM investigations revealed significant differences in morphology of the films deposited at different temperatures. Preparation of Cu2-xSe and In2Se3 nanoparticles using diisopropyldiselenophosphinato-metal precursors has been carried out by colloidal method in HDA/TOP system. Cu2-xSe nanoparticles (grown at 250 °C) and In2Se3 nanoparticles (grown at 270 °C) have a mean diameter of 5.0 ± 1.2 nm and 13 ± 2.5 nm, respectively.

  8. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation.

    Science.gov (United States)

    Yamori, Wataru; Hikosaka, Kouki; Way, Danielle A

    2014-02-01

    Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that

  9. Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation.

    Science.gov (United States)

    McDonald, A E; Niere, J O; Plaxton, W C

    2001-11-01

    The influence of phosphite (H2PO3-) on the response of Saccharomyces cerevisiae to orthophosphate (HPO4(2-); Pi) starvation was assessed. Phosphate-repressible acid phosphatase (rAPase) derepression and cell development were abolished when phosphate-sufficient (+Pi) yeast were subcultured into phosphate-deficient (-Pi) media containing 0.1 mM phosphite. By contrast, treatment with 0.1 mM phosphite exerted no influence on rAPase activity or growth of +Pi cells. 31P NMR spectroscopy revealed that phosphite is assimilated and concentrated by yeast cultured with 0.1 mM phosphite, and that the levels of sugar phosphates, pyrophosphate, and particularly polyphosphate were significantly reduced in the phosphite-treated -Pi cells. Examination of phosphite's effects on two PHO regulon mutants that constitutively express rAPase indicated that (i) a potential target for phosphite's action in -Pi yeast is Pho84 (plasmalemma high-affinity Pi transporter and component of a putative phosphate sensor-complex), and that (ii) an additional mechanism exists to control rAPase expression that is independent of Pho85 (cyclin-dependent protein kinase). Marked accumulation of polyphosphate in the delta pho85 mutant suggested that Pho85 contributes to the control of polyphosphate metabolism. Results are consistent with the hypothesis that phosphite obstructs the signaling pathway by which S. cerevisiae perceives and responds to phosphate deprivation at the molecular level.

  10. Does acclimation at higher temperatures affect the locomotor performance of one of the southernmost reptiles in the world?

    Directory of Open Access Journals (Sweden)

    Jimena B. Fernández

    2012-12-01

    Full Text Available When an animal in the laboratory experiences a change in temperature, physiological processes are affected but they stabilize under the new temperature condition over a few weeks by a process of phenotypic plasticity called acclimation, but whether an organism can acclimate or not depends on the trait and the taxon. Liolaemus sarmientoi is one of the southernmost reptiles in the world, inhabiting the extreme and arid environment of Patagonia, Argentina, characterised by great seasonal climatic variation and cold air temperatures throughout the year (mean air temperature of 8 °C; ranging from 1.2 to 14.1 °C. However, these lizards prefer body temperatures in the laboratory ranging from 26.3 to 37.8 °C (mean Tpref = 34.4 ± 0.28 °C, temperatures that they rarely achieve in nature. Herein, we explore the effects of thermal acclimation on performance of L. sarmientoi at a temperature higher than their mean natural environmental temperature during their activity period (austral spring-summer. We analysed the speed in sprint and long runs at medium and high temperatures in the field and again after a period of acclimation of 20 days at 21 °C. Acclimation to higher and constant temperature resulted in a decrease in running speed in both long and sprint runs, suggesting potentially negative effects for natural populations if environmental temperature increases.

  11. Thermal acclimation and nutritional history affect the oxidation of different classes of exogenous nutrients in Siberian hamsters, Phodopus sungorus.

    Science.gov (United States)

    McCue, Marshall D; Voigt, Christian C; Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-11-01

    During acclimatization to winter, changes in morphology and physiology combined with changes in diet may affect how animals use the nutrients they ingest. To study (a) how thermal acclimation and (b) nutritional history affect the rates at which Siberian hamsters (Phodopus sungorus) oxidize different classes of dietary nutrients, we conducted two trials in which we fed hamsters one of three (13) C-labeled compounds, that is, glucose, leucine, or palmitic acid. We predicted that under acute cold stress (3 hr at 2°C) hamsters previously acclimated to cold temperatures (10°C) for 3 weeks would have higher resting metabolic rate (RMR) and would oxidize a greater proportion of dietary fatty acids than animals acclimated to 21°C. We also investigated how chronic nutritional stress affects how hamsters use dietary nutrients. To examine this, hamsters were fed four different diets (control, low protein, low lipid, and low-glycemic index) for 2 weeks. During cold challenges, hamsters previously acclimated to cold exhibited higher thermal conductance and RMR, and also oxidized more exogenous palmitic acid during the postprandial phase than animals acclimated to 21°C. In the nutritional stress trial, hamsters fed the low protein diet oxidized more exogenous glucose, but not more exogenous palmitic acid than the control group. The use of (13) C-labeled metabolic tracers combined with breath testing demonstrated that both thermal and nutritional history results in significant changes in the extent to which animals oxidize dietary nutrients during the postprandial period.

  12. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    Science.gov (United States)

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  13. Singular Values for Products of Complex Ginibre Matrices with a Source: Hard Edge Limit and Phase Transition

    Science.gov (United States)

    Forrester, Peter J.; Liu, Dang-Zheng

    2016-05-01

    The singular values squared of the random matrix product {Y = {Gr G_{r-1}} ldots G1 (G0 + A)}, where each {Gj} is a rectangular standard complex Gaussian matrix while A is non-random, are shown to be a determinantal point process with the correlation kernel given by a double contour integral. When all but finitely many eigenvalues of A* A are equal to bN, the kernel is shown to admit a well-defined hard edge scaling, in which case a critical value is established and a phase transition phenomenon is observed. More specifically, the limiting kernel in the subcritical regime of {0 1} with two distinct scaling rates. Similar results also hold true for the random matrix product {Tr T_{r-1} ldots T1 (G0 + A)}, with each {Tj} being a truncated unitary matrix.

  14. Development of an open-source, flexible framework for complex inter-institutional disparate data sharing and collaboration.

    Science.gov (United States)

    Kirby, Chaim; Ambros, Peter F; Billiter, David; London, Wendy B; Mendonca, Eneida; Monclair, Tom; Pearson, Andrew D J; Cohn, Susan L; Volchenboum, Samuel L

    2013-01-01

    Clinical information, "-omic" datasets, and tissue samples are difficult to harmonize and manage for data mining. We have developed a platform for storing clinical research data while providing access to associated data from other information stores. Data on 34 metrics from 11,000 neuroblastoma patients were instantiated into a database. The Django web framework was used to create a model for rapid development of tools and views with a front-end interface for generating complex queries. Working with Nationwide Children's Hospital, we can now consume their tissue inventory data through an API. The end-user sees the number of patients who both match their search and have tissue available. Since initial implementation, the current tasks revolve around developing a governance structure and the necessary data use agreements. Efforts now are to (1) update the data with 5000 more patients, and (2) link to genomic data stores, facilitating disparate data acquisition for research studies.

  15. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia.

    Science.gov (United States)

    Lavigne, Franck; Degeai, Jean-Philippe; Komorowski, Jean-Christophe; Guillet, Sébastien; Robert, Vincent; Lahitte, Pierre; Oppenheimer, Clive; Stoffel, Markus; Vidal, Céline M; Surono; Pratomo, Indyo; Wassmer, Patrick; Hajdas, Irka; Hadmoko, Danang Sri; de Belizal, Edouard

    2013-10-15

    Polar ice core records attest to a colossal volcanic eruption that took place ca. A.D. 1257 or 1258, most probably in the tropics. Estimates based on sulfate deposition in these records suggest that it yielded the largest volcanic sulfur release to the stratosphere of the past 7,000 y. Tree rings, medieval chronicles, and computational models corroborate the expected worldwide atmospheric and climatic effects of this eruption. However, until now there has been no convincing candidate for the mid-13th century "mystery eruption." Drawing upon compelling evidence from stratigraphic and geomorphic data, physical volcanology, radiocarbon dating, tephra geochemistry, and chronicles, we argue the source of this long-sought eruption is the Samalas volcano, adjacent to Mount Rinjani on Lombok Island, Indonesia. At least 40 km(3) (dense-rock equivalent) of tephra were deposited and the eruption column reached an altitude of up to 43 km. Three principal pumice fallout deposits mantle the region and thick pyroclastic flow deposits are found at the coast, 25 km from source. With an estimated magnitude of 7, this event ranks among the largest Holocene explosive eruptions. Radiocarbon dates on charcoal are consistent with a mid-13th century eruption. In addition, glass geochemistry of the associated pumice deposits matches that of shards found in both Arctic and Antarctic ice cores, providing compelling evidence to link the prominent A.D. 1258/1259 ice core sulfate spike to Samalas. We further constrain the timing of the mystery eruption based on tephra dispersal and historical records, suggesting it occurred between May and October A.D. 1257.

  16. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    Directory of Open Access Journals (Sweden)

    Laura eRay

    2015-09-01

    Full Text Available A spindle detection method was developed that: 1 extracts the signal of interest (i.e., spindle-related phasic changes in sigma relative to ongoing background sigma activity using complex demodulation, 2 accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and 3 employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile. Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles.

  17. Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2

    Science.gov (United States)

    Drewry, D. T.; Kumar, P.; Long, S.; Bernacchi, C.; Liang, X.-Z.; Sivapalan, M.

    2010-12-01

    The ability to accurately predict land-atmosphere exchange of mass, energy, and momentum over the coming century requires the consideration of plant biochemical, ecophysiological, and structural acclimation to modifications of the ambient environment. Amongst the most important environmental changes experienced by terrestrial vegetation over the last century has been the increase in ambient carbon dioxide (CO2) concentrations, with a projected doubling in CO2 from preindustrial levels by the middle of this century. This change in atmospheric composition has been demonstrated to significantly alter a variety of leaf and plant properties across a range of species, with the potential to modify land-atmosphere interactions and their associated feedbacks. Free Air Carbon Enrichment (FACE) technology has provided significant insight into the functioning of vegetation in natural conditions under elevated CO2, but remains limited in its ability to quantify the exchange of CO2, water vapor, and energy at the canopy scale. This paper addresses the roles of ecophysiological, biochemical, and structural plant acclimation on canopy-scale exchange of CO2, water vapor, and energy through the application of a multilayer canopy-root-soil model (MLCan) capable of resolving changes induced by elevated CO2 through the canopy and soil systems. Previous validation of MLCan flux estimates were made for soybean and maize in the companion paper using a record of six growing seasons of eddy covariance data from the Bondville Ameriflux site. Observations of leaf-level photosynthesis, stomatal conductance, and surface temperature collected at the SoyFACE experimental facility in central Illinois provide a basis for examining the ability of MLCan to capture vegetation responses to an enriched CO2 environment. Simulations of control (370 [ppm]) and elevated (550 [ppm]) CO2 environments allow for an examination of the vertical variation and canopy-scale responses of vegetation states and fluxes

  18. Melting of a subduction-modified mantle source: A case study from the Archean Marda Volcanic Complex, central Yilgarn Craton, Western Australia

    Science.gov (United States)

    Morris, P. A.; Kirkland, C. L.

    2014-03-01

    Subduction processes on early earth are controversial, with some suggestions that tectonics did not operate until the earth cooled to a sufficient point around the Archean-Proterozoic boundary. One way of addressing this issue is to examine well-preserved successions of Archean supracrustal rocks. Here we discuss petrography, whole-rock chemical and isotopic data combined with zircon Hf isotopes from andesites, high-magnesium andesites (HMA), dacites, high-magnesium dacites (HMD), rhyolites and coeval felsic intrusive rocks of the c. 2730 Ma Marda Volcanic Complex (MVC) in the central Yilgarn Craton of Western Australia. We demonstrate that these rocks result from melting of a metasomatized mantle source, followed by fractional crystallization in a crustal magma chamber. Contamination of komatiite by Archean crust, to produce the Marda Volcanic Complex andesites, is not feasible, as most of these crustal sources are too radiogenic to act as viable contaminants. The ɛNd(2730) of MVC andesites can be produced by mixing 10% Narryer semi-pelite with komatiite, consistent with modelling using Hf isotopes, but to achieve the required trace element concentrations, the mixture needs to be melted by about 25%. The most likely scenario is the modification of a mantle wedge above a subducting plate, coeval with partial melting, producing volcanic rocks with subduction signatures and variable Mg, Cr and Ni contents. Subsequent fractionation of cognate phases can account for the chemistry of dacites and rhyolites.

  19. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming

    KAUST Repository

    Xiao, Xi

    2015-12-02

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia–Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16–30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius’ model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  20. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei; Zhong Huan [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2009-09-14

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg{sup -1} day{sup -1}. The efflux rate constant was 0.091 day{sup -1} following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 {mu}g Cu L{sup -1} for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  1. Effect of warm-rearing and heat acclimation on pituitary-gonadal axis in male rats.

    Science.gov (United States)

    Kurowicka, B; Gajewska, A; Amarowicz, R; Kotwica, G

    2008-12-01

    Plasma gonadotrophic and testicular hormones concentrations in both immature and adult male rats exposed to 34 degrees C of ambient temperature were determined. In vitro steroidogenic ability of interstitial cells from experimental rats was also studied. Four groups of rats (n = 45) were used. Warm-reared (WR) males were housed in 34 degrees C and control-reared rats in 20 degrees C from birth to adulthood. The other groups were acclimated to 34 degrees C [warm-acclimated (WA) group] or 20 degrees C [deacclimated (DA) group] as adults. Decreased body weight and testis weight (p < 0.05) was found in heat-exposed groups, but relative testis weight was unchanged in WA and increased (p < 0.05) in WR and DA males. Plasma luteinizing hormone (LH) concentration increased in WA and DA males. Increased (p < 0.05) follicle-stimulating hormone (FSH) and prolactin plasma levels were found in DA and WR groups respectively. WA males had decreased testosterone (T) and WR rats androstenedione (A(4)) plasma concentration (p < 0.05). Interstitial cells (43% of them were Leydig cells by 3beta-hydroxysteroid dehydrogenase activity) from heat-exposed males secreted less (p < 0.05) T compared with the control group when incubated without LH (basal conditions). Androstenedione secretion decreased (p < 0.05) in WA rats. Secretion of estradiol-17beta (E(2)) was higher in WR and lower in DA cells under basal conditions. Weaker responsiveness to LH was observed in WR cells. Androgen synthesis from pregnenolone by interstitial cells increased (p < 0.05) in the WA group. We concluded that heat exposure of neonatal and adult male rats caused different pituitary-testicular axis adjustments. It seemed that long-term heat exposure of neonatal rats is less deleterious concerning the activity of pituitary-testicular axis than heat acclimation of adults.

  2. Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation.

    Directory of Open Access Journals (Sweden)

    Darby Harris

    Full Text Available Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR. Relative crystallinity index (RCI is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes.

  3. High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry.

    Science.gov (United States)

    Dwyer, Simon A; Ghannoum, Oula; Nicotra, Adrienne; von Caemmerer, Susanne

    2007-01-01

    With average global temperatures predicted to increase over the next century, it is important to understand the extent and mechanisms of C4 photosynthetic acclimation to modest increases in growth temperature. To this end, we compared the photosynthetic responses of two C4 grasses (Panicum coloratum and Cenchrus ciliaris) and one C4 dicot (Flaveria bidentis) to growth at moderate (25/20 degrees C, day/night) or high (35/30 degrees C, day/night) temperatures. In all three C4 species, CO2 assimilation rates (A) underwent significant thermal acclimation, such that when compared at growth temperatures, A increased less than what would be expected given the strong response of A to short-term changes in leaf temperature. Thermal photosynthetic acclimation was further manifested by an increase in the temperature optima of A, and a decrease in leaf nitrogen content and leaf mass per area in the high- relative to the moderate-temperature-grown plants. Reduced photosynthetic capacity at the higher growth temperature was underpinned by selective changes in photosynthetic components. Plants grown at the higher temperature had lower amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase and cytochrome f and activity of carbonic anhydrase. The activities of photosystem II (PSII) and phosphoenolpyruvate carboxylase were not affected by growth temperature. Chlorophyll fluorescence measurements of F. bidentis showed a corresponding decrease in the quantum yield of PSII (phi(PSII)) and an increase in non-photochemical quenching (phi(NPQ)). It is concluded that through these biochemical changes, C4 plants maintain the balance between the various photosynthetic components at each growth temperature, despite the differing temperature dependence of each process. As such, at higher temperatures photosynthetic nitrogen use efficiency increases more than A. Our results suggest C4 plants will show only modest changes in photosynthetic rates in response to changes in growth temperature

  4. High-temperature sensitivity and its acclimation for photosynthetic electron transport reactions of desert succulents.

    Science.gov (United States)

    Chetti, M B; Nobel, P S

    1987-08-01

    Photosynthetic electron transport reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increases in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60 degrees C. Whole chain electron transport averaged 3 degrees C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3 degrees C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30 degrees C/20 degrees C, treatment at 50 degrees C caused these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30 degrees C/20 degrees C to 45 degrees C/35 degrees C, the high temperatures where activity was inhibited 50% increased 3 degrees C to 8 degrees C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45 degrees C/35 degrees C plants treated at 60 degrees C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plant so far reported.

  5. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  6. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming.

    Directory of Open Access Journals (Sweden)

    Xi Xiao

    Full Text Available Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia-Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16-30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius' model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  7. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming

    DEFF Research Database (Denmark)

    Marchin, Renée M.; Broadhead, Alice A.; Bostic, Laura E.

    2016-01-01

    .5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing...... chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata...

  8. Cadmium (II) pyrrolidine dithiocarbamate complex as single source precursor for the preparation of CdS nanocrystals by microwave irradiation and conventional heating process

    Science.gov (United States)

    Marx Nirmal, R.; Pandian, K.; Sivakumar, K.

    2011-01-01

    The complex of cadmium with pyrrolidine dithiocarbamate Cd(pdtc)2 has been used as single source precursor for the synthesis of CdS nanoparticles. The formation of CdS nanostructures was achieved by thermal decomposition of the complex under microwave irradiation and conventional heating in presence of hexadecylamine. The CdS nanoparticles with disordered close-packed structure were obtained under microwave irradiation, whereas wurtzite hexagonal phase CdS nanorods were obtained by conventional heating method (up to 150 °C). Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and high resolution transmission electron microscopy (HRTEM) studies also were carried out to study the structure and morphology of nanoparticles. The optical property of the CdS nanoparticles was studied by UV-visible and fluorescence emission spectral studies. Fluorescence measurements on the CdS nanoparticles show a strong emission spectrum with two sub bands that are attributed to band-edge and surface-defect emissions. The reduction of a suitable cadmium metal complex is considered to be one of the single pot methods to generate CdS semiconductor nanoparticles with different shapes and high yield.

  9. Cadmium (II) pyrrolidine dithiocarbamate complex as single source precursor for the preparation of CdS nanocrystals by microwave irradiation and conventional heating process

    Energy Technology Data Exchange (ETDEWEB)

    Marx Nirmal, R. [Department of Physics, Anna University Chennai, Chennai, Tamil Nadu 600025 (India); Pandian, K. [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025 (India); Sivakumar, K., E-mail: ksivakumar@annauniv.edu [Department of Physics, Anna University Chennai, Chennai, Tamil Nadu 600025 (India)

    2011-01-15

    The complex of cadmium with pyrrolidine dithiocarbamate Cd(pdtc){sub 2} has been used as single source precursor for the synthesis of CdS nanoparticles. The formation of CdS nanostructures was achieved by thermal decomposition of the complex under microwave irradiation and conventional heating in presence of hexadecylamine. The CdS nanoparticles with disordered close-packed structure were obtained under microwave irradiation, whereas wurtzite hexagonal phase CdS nanorods were obtained by conventional heating method (up to 150 deg. C). Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and high resolution transmission electron microscopy (HRTEM) studies also were carried out to study the structure and morphology of nanoparticles. The optical property of the CdS nanoparticles was studied by UV-visible and fluorescence emission spectral studies. Fluorescence measurements on the CdS nanoparticles show a strong emission spectrum with two sub bands that are attributed to band-edge and surface-defect emissions. The reduction of a suitable cadmium metal complex is considered to be one of the single pot methods to generate CdS semiconductor nanoparticles with different shapes and high yield.

  10. Low-dose prospective ECG-triggering dual-source CT angiography in infants and children with complex congenital heart disease: first experience

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhaoping; Wang, Ximing; Duan, Yanhua; Wu, Lebin; Wu, Dawei; Chao, Baoting; Liu, Cheng; Xu, Zhuodong [Shandong University, Shandong Medical Imaging Research Institute, Jinan, Shandong (China); Li, Hongxin; Liang, Fei [Shandong Provincial Hospital, Department of Cardiovascular Surgery, Jinan, Shandong (China); Xu, Jian; Chen, Jiuhong [Siemens. Ltd. China, CT Research Collaboration, Beijing (China)

    2010-10-15

    To explore the clinical value of low-dose prospective ECG-triggering dual-source CT (DSCT) angiography in infants and children with complex congenital heart disease (CHD) compared with transthoracic echocardiography (TTE). Thirty-five patients (mean age: 16 months, range: 2 months to 6 years; male 15; mean weight: 12 kg) underwent low-dose prospective ECG-triggering DSCT angiography and TTE. Surgeries were performed in 29 patients, and conventional cardiac angiography (CCA) was performed in 8 patients. The accuracy was calculated based on the surgical and/or CCA findings. The overall imaging quality was evaluated on a five-point scale. A total of 146 separate cardiovascular deformities were confirmed. DSCT missed three atrial septal defects and a patent ductus arteriosus. The accuracy of DSCT angiography and TTE was 97.3% (142/146) and 92.5% (135/146), respectively. Overall test parameters for DSCT angiography and TTE were similar (sensitivity, 97.3% vs 92.5%; specificity, 99.8% vs 99.8%). The average subjective image quality score was 4.3 {+-} 0.7. The mean effective dose was 0.38 {+-} 0.09 mSv. Prospective ECG-triggering DSCT angiography with a very low effective radiation dose allows the accurate diagnosis of anomalies in infants and children with complex CHD compared with TTE. It has great promise to become a commonly used second-line technique for complex CHD. (orig.)

  11. The Repeatability Assessment of Three-Dimensional Capsule-Intraocular Lens Complex Measurements by Means of High-Speed Swept-Source Optical Coherence Tomography

    Science.gov (United States)

    Chang, Pingjun; Li, Jin; Savini, Giacomo; Huang, Jinhai; Huang, Shenghai; Zhao, Yinying; Liao, Na; Lin, Lei; Yu, Xiaoyu; Zhao, Yun-e

    2015-01-01

    Purpose To rebuild the three-dimensional (3-D) model of the anterior segment by high-speed swept-source optical coherence tomography (SSOCT) and evaluate the repeatability of measurement for the parameters of capsule-intraocular lens (C-IOL) complex. Methods Twenty-two pseudophakic eyes from 22 patients were enrolled. Three continuous SSOCT measurements were performed in all eyes and the tomograms obtained were used for 3-D reconstruction. The output data were used to evaluate the measurement repeatability. The parameters included postoperative aqueous depth (PAD), the area and diameter of the anterior capsule opening (Area and D), IOL tilt (IOL-T), horizontal, vertical, and space decentration of the IOL, anterior capsule opening, and IOL-anterior capsule opening. Results PAD, IOL-T, Area, D, and all decentration measurements showed high repeatability. Repeated measure analysis showed there was no statistically significant difference among the three continuous measurements (all P > .05). Pearson correlation analysis showed high correlation between each pair of them (all r >0.90, P<0.001). ICCs were all more than 0.9 for all parameters. The 95% LoAs of all parameters were narrow for comparison of three measurements, which showed high repeatability for three measurements. Conclusion SSOCT is available to be a new method for the 3-D measurement of C-IOL complex after cataract surgery. This method presented high repeatability in measuring the parameters of the C-IOL complex. PMID:26600254

  12. TH-C-BRB-02: Open Source Medical Devices: Lessons Learned From a Complex Collaborative Research Project.

    Science.gov (United States)

    Prajapati, S

    2016-06-01

    By definition, Open Source Hardware (OSH) is "hardware whose design is made publicly available so that anyone can study, modify, distribute, make, and sell the design or hardware based on that design". The advantages of OSH are multiple and the movement has been growing exponentially over the last couple years, leading to the spread and evolution of 3D printing technologies, the creation of affordable and easy to use micro-controller boards (Arduino, Raspberry Pi, etc.), as well as a plurality of other "hands-on"/DIY projects. As we have seen over the past few years with 3D printing, where the number of projects benefiting clinical practice as grown significantly, the highly educated and technology savvy Medical Physics community is positioned to take advantage of and benefit from paradigm-shifting movements. Sharing of knowledge, know-how, and technology can be a key factor in furthering the impact medical physicists can have. Whether it is to develop phantoms, applicators, detector holders or devices based on the use of motors and sensors, sharing design files significantly enables further development. Because these designs would be massively peer-reviewed through their online publication, improvements would be made, and the creators of the design would be rewarded with an increase number of citation of their work. A curated database of software and hardware projects can be an invaluable to the field, but a critical mass of contributors is likely needed to guarantee the most impact. This symposium will discuss the benefits and hurdles for such an endeavor.

  13. Effects of both ecdysone and the acclimation to low temperature, on growth and metabolic rate of juvenile freshwater crayfish Cherax quadricarinatus (Decapoda, Parastacidae

    Directory of Open Access Journals (Sweden)

    Anouk Chaulet

    2013-06-01

    Full Text Available Growth, metabolic rate, and energy reserves of Cherax quadricarinatus (von Martens, 1868 juveniles were evaluated in crayfish acclimated for 16 weeks to either 25ºC (temperature near optimum or 20ºC (marginal for the species. Additionally, the modulating effect of ecdsyone on acclimation was studied. After 12 weeks of exposure, weight gain of both experimental groups acclimated to 25ºC (control: C25, and ecdysone treated: E25 was significantly higher than that of those groups acclimated to 20ºC (C20 and E20. A total compensation in metabolic rate was seen after acclimation from 25ºC to 20ºC; for both the control group and the group treated with ecdysone. A Q10value significantly higher was only observed in the group acclimated to 20ºC and treated with ecdysone. A reduction of glycogen reserves in both hepatopancreas and muscle, as well as a lower protein content in muscle, was seen in both groups acclimated to 20ºC. Correspondingly, glycemia was always higher in these groups. Increased lipid levels were seen in the hepatopancreas of animals acclimated to 20ºC, while a higher lipid level was also observed in muscle at 20ºC, but only in ecdysone-treated crayfish.

  14. Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days without exposure to heat stress

    NARCIS (Netherlands)

    Weller, A.S.; Linnane, D.M.; Jonkman, A.G.; Daanen, H.A.M.

    2007-01-01

    Compared with the induction of heat acclimation (HA), studies investigating the decay and re-induction of HA (RA) are relatively sparse and have yielded conflicting results. Therefore, 16 semi-nude men were acclimated to dry-heat by undertaking an exercise protocol in a hot chamber (dry-bulb tempera

  15. Influence of arbuscular mycorrhizal colonization on whole-plant respiration and thermal acclimation of tropical tree seedlings.

    Science.gov (United States)

    Fahey, Catherine; Winter, Klaus; Slot, Martijn; Kitajima, Kaoru

    2016-02-01

    Symbiotic arbuscular mycorrhizal fungi (AMF) are ubiquitous in tropical forests. AMF play a role in the forest carbon cycle because they can increase nutrient acquisition and biomass of host plants, but also incur a carbon cost to the plant. Through their interactions with their host plants they have the potential to affect how plants respond to environmental perturbation such as global warming. Our objective was to experimentally determine how plant respiration rates and responses to warmer environment are affected by AMF colonization in seedlings of five tropical tree species at the whole plant level. We evaluated the interaction between AMF colonization and temperature on plant respiration against four possible outcomes; acclimation does or does not occur regardless of AMF, or AMF can increase or decrease respiratory acclimation. Seedlings were inoculated with AMF spores or sterilized inoculum and grown at ambient or elevated nighttime temperature. We measured whole plant and belowground respiration rates, as well as plant growth and biomass allocation. There was an overall increase in whole plant, root, and shoot respiration rate with AMF colonization, whereas temperature acclimation varied among species, showing support for three of the four possible responses. The influence of AMF colonization on growth and allocation also varied among plant species. This study shows that the effect of AMF colonization on acclimation differs among plant species. Given the cosmopolitan nature of AMF and the importance of plant acclimation for predicting climate feedbacks a better understanding of the patterns and mechanisms of acclimation is essential for improving predictions of how climate warming may influence vegetation feedbacks.

  16. Ascorbic Acid Biosynthesis and Brackish Water Acclimation in the Euryhaline Freshwater White-Rimmed Stingray, Himantura signifer.

    Science.gov (United States)

    Wong, Samuel Z H; Ching, Biyun; Chng, You R; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2013-01-01

    L-gulono-γ-lactone oxidase (Gulo) catalyzes the last step of ascorbic acid biosynthesis, which occurs in the kidney of elasmobranchs. This study aimed to clone and sequence gulonolactone oxidase (gulo) from the kidney of the euryhaline freshwater stingray, Himantura signifer, and to determine the effects of acclimation from freshwater to brackish water (salinity 20) on its renal gulo mRNA expression and Gulo activity. We also examined the effects of brackish water acclimation on concentrations of ascorbate, dehydroascorbate and ascorbate + dehydroascorbate in the kidney, brain and gill. The complete cDNA coding sequence of gulo from the kidney of H. signifer contained 1323 bp coding for 440 amino acids. The expression of gulo was kidney-specific, and renal gulo expression decreased significantly by 67% and 50% in fish acclimated to brackish water for 1 day and 6 days, respectively. There was also a significant decrease in renal Gulo activity after 6 days of acclimation to brackish water. Hence, brackish water acclimation led to a decrease in the ascorbic acid synthetic capacity in the kidney of H. signifer. However, there were significant increases in concentrations of ascorbate and ascorbate + dehydroascorbate in the gills (after 1 or 6 days), and a significant increase in the concentration of ascorbate and a significant decrease in the concentration of dehydroascorbate in the brain (after 1 day) of fish acclimated to brackish water. Taken together, our results indicate that H. signifer might experience greater salinity-induced oxidative stress in freshwater than in brackish water, possibly related to its short history of freshwater invasion. These results also suggest for the first time a possible relationship between the successful invasion of the freshwater environment by some euryhaline marine elasmobranchs and the ability of these elasmobranchs to increase the capacity of ascorbic acid synthesis in response to hyposalinity stress.

  17. Ascorbic Acid Biosynthesis and Brackish Water Acclimation in the Euryhaline Freshwater White-Rimmed Stingray, Himantura signifer.

    Directory of Open Access Journals (Sweden)

    Samuel Z H Wong

    Full Text Available L-gulono-γ-lactone oxidase (Gulo catalyzes the last step of ascorbic acid biosynthesis, which occurs in the kidney of elasmobranchs. This study aimed to clone and sequence gulonolactone oxidase (gulo from the kidney of the euryhaline freshwater stingray, Himantura signifer, and to determine the effects of acclimation from freshwater to brackish water (salinity 20 on its renal gulo mRNA expression and Gulo activity. We also examined the effects of brackish water acclimation on concentrations of ascorbate, dehydroascorbate and ascorbate + dehydroascorbate in the kidney, brain and gill. The complete cDNA coding sequence of gulo from the kidney of H. signifer contained 1323 bp coding for 440 amino acids. The expression of gulo was kidney-specific, and renal gulo expression decreased significantly by 67% and 50% in fish acclimated to brackish water for 1 day and 6 days, respectively. There was also a significant decrease in renal Gulo activity after 6 days of acclimation to brackish water. Hence, brackish water acclimation led to a decrease in the ascorbic acid synthetic capacity in the kidney of H. signifer. However, there were significant increases in concentrations of ascorbate and ascorbate + dehydroascorbate in the gills (after 1 or 6 days, and a significant increase in the concentration of ascorbate and a significant decrease in the concentration of dehydroascorbate in the brain (after 1 day of fish acclimated to brackish water. Taken together, our results indicate that H. signifer might experience greater salinity-induced oxidative stress in freshwater than in brackish water, possibly related to its short history of freshwater invasion. These results also suggest for the first time a possible relationship between the successful invasion of the freshwater environment by some euryhaline marine elasmobranchs and the ability of these elasmobranchs to increase the capacity of ascorbic acid synthesis in response to hyposalinity stress.

  18. Effects of acclimation to human interaction on performance, temperament, physiological responses, and pregnancy rates of Brahman-crossbred cows.

    Science.gov (United States)

    Cooke, R F; Arthington, J D; Araujo, D B; Lamb, G C

    2009-12-01

    The objective of this study was to evaluate, over 2 consecutive years, the effects of acclimation to human interaction on performance, temperament, plasma concentrations of hormones and metabolites, and pregnancy rates of Brahman-crossbred cows. A total of 160 Braford and 235 Brahman x British cows were assigned to the 2-yr study. Approximately 45 d after weaning (August 2006) in yr 1, cows were evaluated for BW, BCS, and temperament (chute score, pen score, and exit velocity), stratified by these measurements in addition to breed and age, and randomly allocated to 14 groups (Braford = 8; Brahman x British = 6). Groups were randomly assigned to the control or acclimation treatment. In yr 2, cows were reevaluated within 45 d after weaning (August 2007) for BW, BCS, and temperament, stratified, and divided into 14 groups similarly as in yr 1, but in such a way that cows received the same treatment assigned in yr 1. Cows were acclimated to human interaction from August to January, and the acclimation process consisted of the same person visiting groups twice weekly and offering approximately 0.05 kg of range cubes per cow (as-fed basis). In January of both years, cow temperament, BW, and BCS were reassessed and cows were exposed to a 90-d breeding season. Blood samples were collected at the beginning of the acclimation period (August) and breeding season (January) for determination of plasma cortisol, IGF-I, and acute phase proteins. A treatment x breed interaction was detected during yr 1 (P pregnancy analysis because acclimated Braford cows conceived earlier and at a greater percentage (P decreased linearly (P pregnancy during both years. Temperament and cortisol concentrations decreased the probability of pregnancy linearly (P pregnancy quadratically (P pregnancy rates of Braford cows during yr 1. Further, measurements and physiological responses associated with temperament influenced the probability of cows becoming pregnant during the breeding season.

  19. Effect of protective agents and previous acclimation on ethanol resistance of frozen and freeze-dried Lactobacillus plantarum strains.

    Science.gov (United States)

    Bravo-Ferrada, Bárbara Mercedes; Brizuela, Natalia; Gerbino, Esteban; Gómez-Zavaglia, Andrea; Semorile, Liliana; Tymczyszyn, E Elizabeth

    2015-12-01

    The aim of this work was to study the protective effect of sucrose, trehalose and glutamate during freezing and freeze-drying of three oenological Lactobacillus plantarum strains previously acclimated in the presence of ethanol. The efficiency of protective agents was assessed by analyses of membrane integrity and bacterial cultivability in a synthetic wine after the preservation processes. No significant differences in the cultivability, with respect to the controls cells, were observed after freezing at -80 °C and -20 °C, and pre-acclimated cells were more resistant to freeze-drying than non-acclimated ones. The results of multiparametric flow cytometry showed a significant level of membrane damage after freeze-drying in two of the three strains. The cultivability was determined after incubation in wine-like medium containing 13 or 14% v/v ethanol at 21 °C for 24 h and the results were interpreted using principal component analysis (PCA). Acclimation was the most important factor for preservation, increasing the bacterial resistance to ethanol after freezing and freeze-drying. Freeze-drying was the most drastic method of preservation, followed by freezing at -20 °C. The increase of ethanol concentration from 6 to 10% v/v in the acclimation medium improved the recovery of two of the three strains. In turn, the increase of ethanol content in the synthetic wine led to a dramatic decrease of viable cells in the three strains investigated. The results of this study indicate that a successful inoculation of dehydrated L. plantarum in wine depends not only on the use of protective agents, but also on the cell acclimation process prior to preservation, and on the ethanol content of wine.

  20. Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium.

    Science.gov (United States)

    Kimberly, David A; Salice, Christopher J

    2014-07-01

    The Intergovernmental Panel on Climate Change projects that global climate change will have significant impacts on environmental conditions including potential effects on sensitivity of organisms to environmental contaminants. The objective of this study was to test the climate-induced toxicant sensitivity (CITS) hypothesis in which acclimation to altered climate parameters increases toxicant sensitivity. Adult Physa pomilia snails were acclimated to a near optimal 22 °C or a high-normal 28 °C for 28 days. After 28 days, snails from each temperature group were challenged with either low (150 μg/L) or high (300 μg/L) cadmium at each temperature (28 or 22 °C). In contrast to the CITS hypothesis, we found that acclimation temperature did not have a strong influence on cadmium sensitivity except at the high cadmium test concentration where snails acclimated to 28 °C were more cadmium tolerant. However, snails that experienced a switch in temperature for the cadmium challenge, regardless of the switch direction, were the most sensitive to cadmium. Within the snails that were switched between temperatures, snails acclimated at 28 °C and then exposed to high cadmium at 22 °C exhibited significantly greater mortality than those snails acclimated to 22 °C and then exposed to cadmium at 28 °C. Our results point to the importance of temperature variability in increasing toxicant sensitivity but also suggest a potentially complex cost of temperature acclimation. Broadly, the type of temporal stressor exposures we simulated may reduce overall plasticity in responses to stress ultimately rendering populations more vulnerable to adverse effects.

  1. Meet Spinky: An Open-Source Spindle and K-Complex Detection Toolbox Validated on the Open-Access Montreal Archive of Sleep Studies (MASS)

    Science.gov (United States)

    Lajnef, Tarek; O’Reilly, Christian; Combrisson, Etienne; Chaibi, Sahbi; Eichenlaub, Jean-Baptiste; Ruby, Perrine M.; Aguera, Pierre-Emmanuel; Samet, Mounir; Kachouri, Abdennaceur; Frenette, Sonia; Carrier, Julie; Jerbi, Karim

    2017-01-01

    Sleep spindles and K-complexes are among the most prominent micro-events observed in electroencephalographic (EEG) recordings during sleep. These EEG microstructures are thought to be hallmarks of sleep-related cognitive processes. Although tedious and time-consuming, their identification and quantification is important for sleep studies in both healthy subjects and patients with sleep disorders. Therefore, procedures for automatic detection of spindles and K-complexes could provide valuable assistance to researchers and clinicians in the field. Recently, we proposed a framework for joint spindle and K-complex detection (Lajnef et al., 2015a) based on a Tunable Q-factor Wavelet Transform (TQWT; Selesnick, 2011a) and morphological component analysis (MCA). Using a wide range of performance metrics, the present article provides critical validation and benchmarking of the proposed approach by applying it to open-access EEG data from the Montreal Archive of Sleep Studies (MASS; O’Reilly et al., 2014). Importantly, the obtained scores were compared to alternative methods that were previously tested on the same database. With respect to spindle detection, our method achieved higher performance than most of the alternative methods. This was corroborated with statistic tests that took into account both sensitivity and precision (i.e., Matthew’s coefficient of correlation (MCC), F1, Cohen κ). Our proposed method has been made available to the community via an open-source tool named Spinky (for spindle and K-complex detection). Thanks to a GUI implementation and access to Matlab and Python resources, Spinky is expected to contribute to an open-science approach that will enhance replicability and reliable comparisons of classifier performances for the detection of sleep EEG microstructure in both healthy and patient populations. PMID:28303099

  2. Meet Spinky: An Open-Source Spindle and K-Complex Detection Toolbox Validated on the Open-Access Montreal Archive of Sleep Studies (MASS).

    Science.gov (United States)

    Lajnef, Tarek; O'Reilly, Christian; Combrisson, Etienne; Chaibi, Sahbi; Eichenlaub, Jean-Baptiste; Ruby, Perrine M; Aguera, Pierre-Emmanuel; Samet, Mounir; Kachouri, Abdennaceur; Frenette, Sonia; Carrier, Julie; Jerbi, Karim

    2017-01-01

    Sleep spindles and K-complexes are among the most prominent micro-events observed in electroencephalographic (EEG) recordings during sleep. These EEG microstructures are thought to be hallmarks of sleep-related cognitive processes. Although tedious and time-consuming, their identification and quantification is important for sleep studies in both healthy subjects and patients with sleep disorders. Therefore, procedures for automatic detection of spindles and K-complexes could provide valuable assistance to researchers and clinicians in the field. Recently, we proposed a framework for joint spindle and K-complex detection (Lajnef et al., 2015a) based on a Tunable Q-factor Wavelet Transform (TQWT; Selesnick, 2011a) and morphological component analysis (MCA). Using a wide range of performance metrics, the present article provides critical validation and benchmarking of the proposed approach by applying it to open-access EEG data from the Montreal Archive of Sleep Studies (MASS; O'Reilly et al., 2014). Importantly, the obtained scores were compared to alternative methods that were previously tested on the same database. With respect to spindle detection, our method achieved higher performance than most of the alternative methods. This was corroborated with statistic tests that took into account both sensitivity and precision (i.e., Matthew's coefficient of correlation (MCC), F1, Cohen κ). Our proposed method has been made available to the community via an open-source tool named Spinky (for spindle and K-complex detection). Thanks to a GUI implementation and access to Matlab and Python resources, Spinky is expected to contribute to an open-science approach that will enhance replicability and reliable comparisons of classifier performances for the detection of sleep EEG microstructure in both healthy and patient populations.

  3. Body mass, Thermogenesis and energy metabolism in Tupaia belangeri during cold acclimation

    Directory of Open Access Journals (Sweden)

    Wan-long Zhu

    2012-05-01

    Full Text Available In order to study the relationship between energy strategies and environmental temperature, basal metabolic rate (BMR, nonshivering thermogenesis (NST, the total protein contents, mitochondrial protein contents, state and state respiratory ability, cytochrome C oxidase activity Ⅲ Ⅳ of liver, heart, diaphragm, gastrocnemius and brown adipose tissue (BAT, serum leptin level and serum thyroid hormone levels were measured in tree shrews (Tupaia belangeri during cold exposure (5±1oC for 1 day, 7 days,14days,21 days. The results showed that body mass increased, BMR and NST increased, the change of liver mitochondrial protein content was more acutely than total protein. The mitochondrial protein content of heart and BAT were significantly increased during cold-exposed, however the skeletal muscle more moderate reaction. The state Ⅲ and state Ⅳ mitochondrial respiration of these tissues were enhanced significantly than the control. The cytochrome C oxidase activity with cold acclimation also significantly increased except the gastrocnemius. Liver, muscle, BAT, heart and other organs were concerned with thermoregulation during the thermal regulation process above cold-exposed. There is a negative correlation between leptin level and body mass. These results suggested that T. belangeri enhanced thermogenic capacity during cold acclimation, and leptin participated in the regulation of energy balance and body weight in T. belangeri.

  4. Isopods failed to acclimate their thermal sensitivity of locomotor performance during predictable or stochastic cooling.

    Directory of Open Access Journals (Sweden)

    Matthew S Schuler

    Full Text Available Most organisms experience environments that vary continuously over time, yet researchers generally study phenotypic responses to abrupt and sustained changes in environmental conditions. Gradual environmental changes, whether predictable or stochastic, might affect organisms differently than do abrupt changes. To explore this possibility, we exposed terrestrial isopods (Porcellio scaber collected from a highly seasonal environment to four thermal treatments: (1 a constant 20°C; (2 a constant 10°C; (3 a steady decline from 20° to 10°C; and (4 a stochastic decline from 20° to 10°C that mimicked natural conditions during autumn. After 45 days, we measured thermal sensitivities of running speed and thermal tolerances (critical thermal maximum and chill-coma recovery time. Contrary to our expectation, thermal treatments did not affect the thermal sensitivity of locomotion; isopods from all treatments ran fastest at 33° to 34°C and achieved more than 80% of their maximal speed over a range of 10° to 11°C. Isopods exposed to a stochastic decline in temperature tolerated cold the best, and isopods exposed to a constant temperature of 20°C tolerated cold the worst. No significant variation in heat tolerance was observed among groups. Therefore, thermal sensitivity and heat tolerance failed to acclimate to any type of thermal change, whereas cold tolerance acclimated more during stochastic change than it did during abrupt change.

  5. The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct?

    Directory of Open Access Journals (Sweden)

    Brian Machovina

    2012-06-01

    Full Text Available In the face of ongoing and future climate change, species must acclimate, adapt or shift their geographic distributions (i.e., "migrate" in order to avoid habitat loss and eventual extinction. Perhaps nowhere are the challenges posed by climate change more poignant and daunting than in tropical forests, which harbor the majority of Earth’s species and are facing especially rapid rates of climate change relative to current spatial or temporal variability. Due to the rapid changes in climate predicted for the tropics, coupled with the apparently low capacities of tropical tree species to either acclimate or adapt to sustained changes in environmental conditions, it is believed that the greatest hope for avoiding the loss of biodiversity in tropical forest is species migrations. This is supported by the fact that topical forests responded to historic changes in climate (e.g., post glacial warming through distributional shifts. However, a great deal of uncertainty remains as to if tropical plant and tree species can migrate, and if so, if they can migrate at the rates required to keep pace with accelerating changes in multiple climatic factors in conjunction with ongoing deforestation and other anthropogenic disturbances. In order to resolve this uncertainty, as will be required to predict, and eventually mitigate, the impacts of global climate change on tropical and global biodiversity, more basic data is required on the distributions and ecologies of tens of thousands of plants species in combination with more directed studies and large-scale experimental manipulations.

  6. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men

    Science.gov (United States)

    Blondin, Denis P.; Tingelstad, Hans C.; Noll, Christophe; Frisch, Frédérique; Phoenix, Serge; Guérin, Brigitte; Turcotte, Éric E; Richard, Denis; Haman, François; Carpentier, André C.

    2017-01-01

    In rodents, brown adipose tissue (BAT) plays an important role in producing heat to defend against the cold and can metabolize large amounts of dietary fatty acids (DFA). The role of BAT in DFA metabolism in humans is unknown. Here we show that mild cold stimulation (18 °C) results in a significantly greater fractional DFA extraction by BAT relative to skeletal muscle and white adipose tissue in non-cold-acclimated men given a standard liquid meal containing the long-chain fatty acid PET tracer, 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid (18FTHA). However, the net contribution of BAT to systemic DFA clearance is comparatively small. Despite a 4-week cold acclimation increasing BAT oxidative metabolism 2.6-fold, BAT DFA uptake does not increase further. These findings show that cold-stimulated BAT can contribute to the clearance of DFA from circulation but its contribution is not as significant as the heart, liver, skeletal muscles or white adipose tissues. PMID:28134339

  7. THE RELIABILITY OF ADOLESCENT THERMOREGULATORY RESPONSES DURING A HEAT ACCLIMATION PROTOCOL

    Directory of Open Access Journals (Sweden)

    Craig A. Williams

    2009-12-01

    Full Text Available This study investigated the between trial variation of thermoregulatory measures during a heat acclimation protocol. Eight 14-16 y old boys completed three bouts of 20-min cycling at 45 % peak VO2 in a hot environment (35.1 ± 1.2 °C and 46. 4 ± 1.0 % relative humidity on two occasions separated by a minimum of 24 h. Reliability was assessed through analysis of within-subject variation, the change in the mean, and retest correlation for measurements of aural temperature (Tau, mean skin temperature (Tsk, heart rate (HR and oxygen uptake (VO2. Between trial differences were low for Tau, Tskbout1, Tskbout2and3 and HR with coefficients of variation 0.6 %, 1.5 %, 0.5 % and 4.0 %, respectively. The results demonstrate good reliability that will allow future investigators to precisely determine the extent of heat acclimation protocols in relation to the measurement error

  8. Light acclimation of leaf gas exchange in two Tunisian cork oak populations from contrasting environmental conditions

    Directory of Open Access Journals (Sweden)

    Rzigui T

    2015-10-01

    Full Text Available Due to diverse environmental conditions, Mediterranean plant populations are exposed to a range of selective pressures that may lead to phenotypic plasticity and local adaptation. We examined the effect of light acclimation on photosynthetic capacity in two Quercus suber (L. populations that are native to different ecological conditions. Low-light adapted seedlings from both populations were exposed to three light treatments: full sunlight (HL, medium light (ML, 43% sunlight and low light (LL, 15% sunlight for one month. Photosynthetic performance was monitored by measuring leaf gas exchange and chlorophyll fluorescence parameters. The light environment influences light-saturated carbon assimilation (Amax in the leaves of the population inhabiting the hot and dry region (from Gaafour. In contrast, there was no significant difference in Amax between leaves grown in high light and low light from Feija (the population native to a cold and humid climate, which suggests an inability of the Feija population to adjust its photosynthesis to respond to higher irradiance. The inability of the Feija population to adjust its photosynthesis did not result from a light acclimation failure in terms of chlorophyll content and ratio compared with the Gaafour population. Instead, it seems to be the consequence of lower stomatal conductance in the Feija population at HL compared to Gaafour.

  9. Diet affects resting, but not basal metabolic rate of normothermic Siberian hamsters acclimated to winter.

    Science.gov (United States)

    Gutowski, Jakub P; Wojciechowski, Michał S; Jefimow, Małgorzata

    2011-12-01

    We examined the effect of different dietary supplements on seasonal changes in body mass (m(b)), metabolic rate (MR) and nonshivering thermogenesis (NST) capacity in normothermic Siberian hamsters housed under semi-natural conditions. Once a week standard hamster food was supplemented with either sunflower and flax seeds, rich in polyunsaturated fatty acids (FA), or mealworms, rich in saturated and monounsaturated FA. We found that neither of these dietary supplements affected the hamsters' normal winter decrease in m(b) and fat content nor their basal MR or NST capacity. NST capacity of summer-acclimated hamsters was lower than that of winter-acclimated ones. The composition of total body fat reflected the fat composition of the dietary supplements. Resting MR below the lower critical temperature of the hamsters, and their total serum cholesterol concentration were lower in hamsters fed a diet supplemented with mealworms than in hamsters fed a diet supplemented with seeds. These results indicate that in mealworm-fed hamsters energy expenditure in the cold is lower than in animals eating a seed-supplemented diet, and that the degree of FA unsaturation of diet affects energetics of heterotherms, not only during torpor, but also during normothermy.

  10. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants.

    Science.gov (United States)

    Ziogas, Vasileios; Tanou, Georgia; Belghazi, Maya; Filippou, Panagiota; Fotopoulos, Vasileios; Grigorios, Diamantidis; Molassiotis, Athanassios

    2015-11-01

    Emerging evidence suggests that the gaseous molecules hydrogen sulfide (H2S) and nitric oxide (NO) enhances plant acclimation to stress; however, the underlying mechanism remains unclear. In this work, we explored if pretreatment of citrus roots with NaHS (a H2S donor) or sodium nitroprusside (SNP, a NO donor) for 2 days (d) could elicit long-lasting priming effects to subsequent exposure to PEG-associated drought stress for 21 d following a 5 d acclimation period. Detailed physiological study documented that both pretreatments primed plants against drought stress. Analysis of the level of nitrite, NOx, S-nitrosoglutahione reductase, Tyr-nitration and S-nitrosylation along with the expression of genes involved in NO-generation suggested that the nitrosative status of leaves and roots was altered by NaHS and SNP. Using a proteomic approach we characterized S-nitrosylated proteins in citrus leaves exposed to chemical treatments, including well known and novel S-nitrosylated targets. Mass spectrometry analysis also enabled the identification of 42 differentially expressed proteins in PEG alone-treated plants. Several PEG-responsive proteins were down-regulated, especially photosynthetic proteins. Finally, the identification of specific proteins that were regulated by NaHS and SNP under PEG conditions provides novel insight into long-term drought priming in plants and in a fruit crop such as citrus in particular.

  11. Plant acclimation impacts carbon allocation to isoprene emissions: evidence from past to future CO2 levels

    Science.gov (United States)

    de Boer, Hugo J.; van der Laan, Annick; Dekker, Stefan C.; Holzinger, Rupert

    2016-04-01

    Isoprene (C5H8) is produced in plant leaves as a side product of photosynthesis, whereby approximately 0.1-2.0% of the photosynthetic carbon uptake is released back into the atmosphere via isoprene emissions. Isoprene biosynthesis is thought to alleviate oxidative stress, specifically in warm, dry and high-light environments. Moreover, isoprene biosynthesis is influenced by atmospheric CO2 concentrations in the short term (weeks) via acclimation in photosynthetic biochemistry. In order to understand the effects of CO2-induced climate change on carbon allocation in plants it is therefore important to quantify how isoprene biosynthesis and emissions are effected by both short-term responses and long-term acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. In addition to environmental conditions, this imbalance is determined by the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (V cmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 levels representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. Plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters V cmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling

  12. Temperature acclimation of photosynthesis has only minor effects on gross primary productivity (GPP) in an Earth System Model (ESM)

    Science.gov (United States)

    Goll, Daniel; Brovkin, Victor; Kattge, Jens; Zaehle, Soenke; Reick, Christian

    2013-04-01

    The productivity of terrestrial plants influences the dynamics of atmospheric CO2. It is therefore crucial to understand and quantify productivity and predict its future responses to climate change and increasing atmospheric CO2 concentrations. Recently, Booth et al. (2012) found that the temperature dependence of photosynthesis is the most important uncertainty of the climate-carbon cycle feedback in a comprehensive ESM. Using trait data, Kattge and Knorr (2007) found that photosynthesis, in particular the acclimation of the maximum carboxylation rate (Vmax) and electron transport rate (Jmax), acclimates to prevailing temperatures. As a first attempt to address temperature acclimation of photosynthesis on global scale, we replaced the simplified exponential formulation of the temperature dependence of Vmax and Jmax in the Max Planck Institute Earth System Model (MPI-ESM) by a physiologically more plausible and justified model with short-term optimum temperature. For temperature acclimation we then implemented the acclimation descriptions by Kattge and Knorr (2007). We conducted sets of simulations on site scale driven by meteorological observations, and simulations on global scale for present day climate and for a 6 K warmer climate. The physiologically more plausible and justified model with short-term optimum temperature and temperature acclimation yields similar results as the old exponential formulation not accounting for either process. With the new model, global GPP for present day and in the warming scenario is increased by 0.7% and 0.9%, respectively. Acclimation causes a slight shift of productivity from high to low latitudes, too. A slightly larger effect on GPP has the replacement of the exponential formulation with the model with optimum temperature, resulting in a 1.2% decrease in global GPP under both climatic conditions. Acclimation thus compensates for the effects of the physiologically based temperature optimum of photosynthesis. As the effects

  13. Detection and Localization of Transient Sources: Comparative Study of Complex-Lag Distribution Concept Versus Wavelets and Spectrogram-Based Methods

    Directory of Open Access Journals (Sweden)

    Bertrand Gottin

    2009-01-01

    Full Text Available The detection and localization of transient signals is nowadays a typical point of interest when we consider the multitude of existing transient sources, such as electrical and mechanical systems, underwater environments, audio domain, seismic data, and so forth. In such fields, transients carry out a lot of information. They can correspond to a large amount of phenomena issued from the studied problem and important to analyze (anomalies and perturbations, natural sources, environmental singularities, …. They usually occur randomly as brief and sudden signals, such as partial discharges in electrical cables and transformers tanks. Therefore, motivated by advanced and accurate analysis, efficient tools of transients detection and localization are of great utility. Higher order statistics, wavelets and spectrogram distributions are well known methods which proved their efficiency to detect and localize transients independently to one another. However, in the case of a signal composed by several transients physically related and with important energy gap between them, the tools previously mentioned could not detect efficiently all the transients of the whole signal. Recently, the generalized complex time distribution concept has been introduced. This distribution offers access to highly concentrated representation of any phase derivative order of a signal. In this paper, we use this improved phase analysis tool to define a new concept to detect and localize dependant transients taking regard to the phase break they cause and not their amplitude. ROC curves are calculated to analyze and compare the performances of the proposed methods.

  14. Modeling and Simulation of Current Source Inverter Fed Synchronous Motor in Complex Frequency Domain Taking the Transition Zone From Induction Motor to Synchronous Motor Mode into Account

    Directory of Open Access Journals (Sweden)

    A.B. Chattopadhyay

    2014-02-01

    Full Text Available Modeling of synchronous motor plays a dominant role in designing complicated drive system for different applications, especially large blower fans etc for steel industries. As synchronous motor has no inherent starting torque generally it is started as an induction motor with the help of a damper winding and it pulls into synchronism under certain conditions. The present paper exactly concentrates on this particular zone of transition from induction motor to synchronous motor mode for a current source inverter fed synchronous motor drive system. Due to complexity of synchronous motor in terms of number of windings and finite amount of air gap saliency, direct modeling of such transition zone in time domain becomes cumbersome at the first instance of modeling. That is why the modeling in complex frequency domain (s-domain has been taken up using small perturbation model. Such a model clearly shows role of induction motor as noise function or disturbance function with respect to the open loop block diagram of synchronous motor. Such finding can be quantized in terms of important results and that is done in the present paper such that the results can help the designer for the successful design of a synchronous motor drive system.

  15. Tracing source terranes using U-Pb-Hf isotopic analysis of detrital zircons: provenance of the Orhanlar Unit of the Palaeotethyan Karakaya subduction-accretion complex, NW Turkey

    Science.gov (United States)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel

    2016-04-01

    Sandstones of the Late Palaeozoic-Early Mesozoic Karakaya Complex are interpreted to have accumulated along an active continental margin related to northward subduction of Palaeotethys. The age of deposition and provenance of the sandstones are currently being determined using radiometric dating of detrital zircons, coupled with dating of potential source terranes. Our previous work shows that the U-Pb-Hf isotopic characteristics of the sandstones of all but one of the main tectonostratigraphic units of the Karakaya Complex are compatible with a provenance that was dominated by Triassic and Permo-Carboniferous magmatic arc-type rocks, together with a minor contribution from Lower to Mid-Devonian igneous rocks (Ustaömer et al. 2015). However, one of the tectono-stratigraphic units, the Orhanlar Unit, which occurs in a structurally high position, differs in sedimentary facies and composition from the other units of the Karakaya Complex. Here, we report new isotopic age data for the sandstones of the Orhanlar Unit and also from an extensive, associated tectonic slice of continental metamorphic rocks (part of the regional Sakarya Terrane). Our main aim is to assess the provenance of the Orhanlar Unit sandstones in relation to the tectonic development of the Karakaya Complex as a whole. The Orhanlar Unit is composed of shales, sandstone turbidites and debris-flow deposits, which include blocks of Devonian radiolarian chert and Carboniferous and Permian neritic limestones. The sandstones are dominated by rock fragments, principally volcanic and plutonic rocks of basic-to-intermediate composition, metamorphic rocks and chert, together with common quartz, feldspar and mica. This modal composition contrasts significantly with the dominantly arkosic composition of the other Karakaya Complex sandstones. The detrital zircons were dated by the U-Pb method, coupled with determination of Lu-Hf isotopic compositions using a laser ablation microprobe attached to a multicollector

  16. Heterocyclic Bismuth(III) Dithiocarbamato Complexes as Single-Source Precursors for the Synthesis of Anisotropic Bi2 S3 Nanoparticles.

    Science.gov (United States)

    Kun, Walter N; Mlowe, Sixberth; Nyamen, Linda D; Ndifon, Peter T; Malik, Mohammad A; Munro, Orde Q; Revaprasadu, Neerish

    2016-09-05

    New complexes catena-(μ2 -nitrato-O,O')bis(piperidinedithiocarbamato)bismuth(III) (1) and tetrakis(μ-nitrato)tetrakis[bis(tetrahydroquinolinedithiocarbamato)bismuth(III)] (2) were synthesised and characterised by elemental analysis, FTIR spectroscopy and thermogravimetric analysis. The single-crystal X-ray structures of 1 and 2 were determined. The coordination numbers of the Bi(III) ion are 8 for 1 and ≥6 for 2 when the experimental electron density for the nominal 6s(2) lone pair of electrons is included. Both complexes were used as single-source precursors for the synthesis of dodecylamine-, hexadecylamine-, oleylamine and tri-n-octylphosphine oxide-capped Bi2 S3 nanoparticles at different temperatures. UV/Vis spectra showed a blueshift in the absorbance band edge characteristic of a quantum size effect. High-quality, crystalline, long and short Bi2 S3 nanorods were obtained depending on the thermolysis temperature, which was varied from 190 to 270 °C. A general trend of increasing particle breadth with increasing reaction temperature and increasing length of the carbon chain of the amine (capping agent) was observed. Powder XRD patterns revealed the orthorhombic crystal structure of Bi2 S3 .

  17. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    Science.gov (United States)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  18. Differences in acclimation potential of photosynthesis in seven isolates of the tropical to warm temperate macrophyte Valonia utricularis (Chlorophyta)

    NARCIS (Netherlands)

    Eggert, Anja; Visser, Ronald J. W.; Van Hasselt, Philip R.; Breeman, Anneke M.

    2006-01-01

    The potential to acclimate photosynthesis to sub- and supra-optimal temperatures was investigated in seven isolates of Valonia utricularis (Roth) C. Agardh, a green macrophyte with a tropical to warm-temperate distribution. Photosynthesis-light response curves were obtained by measuring chlorophyll

  19. Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China.

    Directory of Open Access Journals (Sweden)

    Yonggang Chi

    Full Text Available BACKGROUND: Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. METHODOLOGY/PRINCIPAL FINDINGS: A field manipulative experiment was conducted to elevate foliar temperature (Tleaf by 2.07°C in a temperate steppe in northern China. Rd/Tleaf curves (responses of dark respiration to Tleaf, An/Tleaf curves (responses of light-saturated net CO2 assimilation rates to Tleaf, responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (Ag to Tleaf, and foliar nitrogen (N concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year and 2011 (a wet year. Significant thermal acclimation of Rd to 6-year experimental warming was found. However, An had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of Rd was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. CONCLUSIONS/SIGNIFICANCE: Warming decreased the temperature sensitivity (Q10 of the response of Rd/Ag ratio to Tleaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.

  20. Daily Acclimation Handling Does Not Affect Hippocampal Long-Term Potentiation or Cause Chronic Sleep Deprivation in Mice

    NARCIS (Netherlands)

    Vecsey, Christopher G.; Wimmer, Mathieu E. J.; Havekes, Robbert; Park, Alan J.; Perron, Isaac J.; Meerlo, Peter; Abel, Ted

    2013-01-01

    Study Objectives: Gentle handling is commonly used to perform brief sleep deprivation in rodents. It was recently reported that daily acclimation handling, which is often used before behavioral assays, causes alterations in sleep, stress, and levels of N-methyl-D-aspartate receptor subunits prior to

  1. Influence of acclimation and exposure temperature on the acute toxicity of cadmium to the freshwater snail Potamopyrgus antipodarum (Hydrobiidae)

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, V.; Forbes, V.E.; Depledge, M.H. (Odense Univ. (Denmark). Ecotoxicology Group)

    1994-09-01

    Forty-eight-hour acute toxicity tests were performed to determine the influence of acclimation temperature (5, 15, and 20 C) and exposure temperature (5, 15, and 20 C) on the toxicity of cadmium to the freshwater gastropod Potamopyrgus antipodarum. Mortality varied with cadmium concentration and treatment conditions, but did not conform to conventional sigmoid concentration-response relationships. Because the shapes of the concentration-response curves were treatment dependent, a nontraditional approach for data analysis was employed. Regardless of acclimation temperature, mortality increased with increasing exposure temperature, and at all exposure temperatures snails acclimated at 15 C were most susceptible to cadmium toxicity. Estimated LC50 values were within 1 to 4 mg Cd/L. Although the shapes of the concentration-response curves were different for each treatment, the slopes were generally quite steep, indicating a uniform response for the whole population. At a given Cd concentration, acclimation temperature and exposure temperature accounted for 57 and 40%, respectively, of the variation in mortality, and LC50s changed by a factor of four. The results indicate that changes in environmental variables can alter both the degree of response and the response distribution of a population, and that past as well as prevailing environmental conditions can influence organismic responses to toxicants.

  2. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Vicente Castro

    Full Text Available Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control, 0.65 (medium intensity and 1.31 (high intensity body lengths s(-1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first

  3. A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa)

    Science.gov (United States)

    Laurent, Oscar; Zeh, Armin

    2015-11-01

    Combined U-Pb and Lu-Hf isotope data from zircon populations are widely used to constrain Hadean-Archean crustal evolution. Linear Hf isotope-age arrays are interpreted to reflect the protracted, internal reworking of crust derived from the (depleted) mantle during a short-lived magmatic event, and related 176Lu/177Hf ratios are used to constrain the composition of the reworked crustal reservoir. Results of this study, however, indicate that Hf isotope-age arrays can also result from complex geodynamic processes and crust-mantle interactions, as shown by U-Pb and Lu-Hf isotope analyses of zircons from well characterized granitoids of the Pietersburg Block (PB), northern Kaapvaal Craton (South Africa). Apart from scarce remnants of Paleoarchean crust, most granitoids of the PB with ages between 2.94 and 2.05 Ga (n = 32) define a straight Hf isotope-age array with low 176Lu/177Hf of 0.0022, although they show a wide compositional range, were derived from various sources and emplaced successively in different geodynamic settings. The crustal evolution occurred in five stages: (I) predominately mafic crust formation in an intra-oceanic environment (3.4-3.0 Ga); (II) voluminous TTG crust formation in an early accretionary orogen (3.0-2.92 Ga); (III) internal TTG crust reworking and subduction of TTG-derived sediments in an Andean-type setting (2.89-2.75 Ga); (IV) (post-)collisional high-K magmatism from both mantle and crustal sources (2.71-2.67 Ga); and (V) alkaline magmatism in an intra-cratonic environment (2.05-2.03 Ga). The inferred array results from voluminous TTG crust formation during stage II, and involvement of this crust during all subsequent stages by two different processes: (i) internal crust reworking through both partial melting and assimilation at 2.89-2.75 Ga, leading to the formation of biotite granites coeval with minor TTGs, and (ii) subduction of TTG-derived sediments underneath the PB, causing enrichment of the mantle that subsequently became

  4. Infective Juveniles of the Entomopathogenic Nematode, Steinernema feltiae Produce Cryoprotectants in Response to Freezing and Cold Acclimation.

    Science.gov (United States)

    Ali, Farman; Wharton, David A

    2015-01-01

    Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance.

  5. Effect of neonatal or adult heat acclimation on testicular and epididymal morphometry and sperm production in rats.

    Science.gov (United States)

    Kurowicka, B; Dietrich, G J; Kotwica, G

    2015-03-01

    The accessory gland weight, testicular and epididymal morphometry and sperm production were analyzed in four groups of rats housed at 20 or 34°C: (1) control rats (CR) kept at 20°C from birth to day 90; (2) adult heat-acclimated rats (AHA) kept at 20°C from birth to day 45 followed by 34°C to day 90; (3) neonatal heat-acclimated rats (NHA) kept at 34°C from birth to day 90 and (4) de-acclimated rats (DA) kept at 34°C from birth to day 45 followed by 20°C to day 90. In NHA and DA rats, accessory gland weight was higher than in controls. Despite the lack of differences in testicular and epididymal morphometry, curvilinear velocity of spermatozoa was lower in the NHA group compared to controls. Areas of seminiferous tubules were lower in the DA than in CR and NHA groups, however, sperm concentration and motility were not affected by the treatment in this group. In AHA rats, epithelium of approximately 20% of seminiferous tubules was degenerated and Sertoli cell number was lower in the remaining tubules. In contrast to sperm motility, epididymal duct area, area of the duct occupied by spermatozoa and cauda epididymis sperm concentration were lower in AHA rats than in the other groups. In conclusion, neonatal heat acclimation did not affect the testicular morphometry and epididymal sperm concentration, suggesting adjustment to high ambient temperature. On the contrary, adult heat acclimation of rats affected the examined parameters, leading to decreased sperm concentration.

  6. A Preliminary Assessment of Barotrauma Injuries and Acclimation Studies for Three Fish Species

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Ricardo W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-15

    Fish that pass hydro structures either through turbine passage, deep spill, or other deep pathways can experience rapid decreases in pressure that can result in barotrauma. In addition to morphology and physiology of the fish’s swim bladder, the severity of barotrauma is directly related to the volume of undissolved gas in fish prior to rapid decompression and the lowest pressure the fish experience as they pass hydro structures (termed the “nadir”). The volume of undissolved gas in fish is influenced by the depth of acclimation (the pressure at which the fish is neutrally buoyant); therefore, determining the depth where fish are neutrally buoyant is a critical precursor to determining the relationship between pressure changes and injury or mortality.

  7. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Steponkus, P.L.

    1991-01-01

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  8. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Gerber, Lucie; Madsen, Steffen S; Jensen, Frank B

    2017-01-01

    Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na(+)/K(+)-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production...... in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects....... Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle...

  9. Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass

    DEFF Research Database (Denmark)

    Abeynayake, Shamila; Etzerodt, Thomas; Jonavičienė, Kristina;

    2015-01-01

    biomass (top) and the roots, and the transcription of candidate genes involved in fructan metabolism during cold acclimation in perennial ryegrass variety ‘Veyo’ and ecotype ‘Falster’ from distinct geographical origins. We observed changes in fructan composition and induction of low-DP fructans......Perennial ryegrass (Lolium perenne L.) produces high levels of fructans as a mixture of oligomers with different degrees of polymerization (DP). The present study describes the analysis of the compositional changes in the full spectrum of fructan oligomers, fructan distribution between above ground....... The ecotype ‘Falster’, adapted to cold climates, increased total fructan content and produced more fructans (DP˃7) in the roots than the variety ‘Veyo’, adapted to warmer climates suggesting that accumulation of fructans in roots, especially the high-DP fructans as an adaptive trait for plant recovery after...

  10. No Inbreeding depression for low temperature developmental acclimation across multiple drosophila species

    DEFF Research Database (Denmark)

    Kristensen, Torsten Nygård; Loeschcke, Volker; Bilde, Trine

    2011-01-01

    is highly species specific, and differs among ecotypes (e.g., tropical and widespread species). Apart from being exposed to thermal stress many small and fragmented populations face genetic challenges due to, for example, inbreeding. Inbreeding has been shown to reduce inherent resistance levels toward......Populations are from time to time exposed to stressful temperatures. Their thermal resistance levels are determined by inherent and plastic mechanisms, which are both likely to be under selection in natural populations. Previous studies on Drosophila species have shown that inherent resistance...... stressful temperatures, but whether adaptation to thermal stress through plastic responses also is affected by inbreeding is so far not clear. In this study, we test inherent cold resistance and the ability to respond plastically to temperature changes through developmental cold acclimation in inbred...

  11. Balancing photosynthetic electron flow is critical for cyanobacterial acclimation to nitrogen limitation.

    Science.gov (United States)

    Salomon, Eitan; Bar-Eyal, Leeat; Sharon, Shir; Keren, Nir

    2013-03-01

    Nitrogen limitation forces photosynthetic organisms to reallocate available nitrogen to essential functions. At the same time, it increases the probability of photo-damage by limiting the rate of energy-demanding metabolic processes, downstream of the photosynthetic apparatus. Non-diazotrophic cyanobacteria cope with this situation by decreasing the size of their phycobilisome antenna and by modifying their photosynthetic apparatus. These changes can serve two purposes: to provide extra amino-acids and to decrease excitation pressure. We examined the effects of nitrogen limitation on the form and function of the photosynthetic apparatus. Our aim was to study which of the two demands serve as the driving force for the remodeling of the photosynthetic apparatus, under different growth conditions. We found that a drastic reduction in light intensity allowed cells to maintain a more functional photosynthetic apparatus: the phycobilisome antenna was bigger, the activity of both photosystems was higher and the levels of photosystem (PS) proteins were higher. Pre-acclimating cells to Mn limitation, under which the activity of both PSI and PSII is diminished, results in a very similar response. The rate of PSII photoinhibition, in nitrogen limited cells, was found to be directly related to the activity of the photosynthetic apparatus. These data indicate that, under our experimental conditions, photo-damage avoidance was the more prominent determinant during the acclimation process. The combinations of limiting factors tested here is by no means artificial. Similar scenarios can take place under environmental conditions and should be taken into account when estimating nutrient limitations in nature.

  12. Effect of short-term heat acclimation with permissive dehydration on thermoregulation and temperate exercise performance.

    Science.gov (United States)

    Neal, R A; Corbett, J; Massey, H C; Tipton, M J

    2016-08-01

    We examined the effect of short-term heat acclimation with permissive dehydration (STHADe) on heat acclimation (HA) and cycling performance in a temperate environment. Ten trained male cyclists [mean (SD) maximal oxygen uptake: 63.3(4.0) mL/kg/min; peak power output (PPO): 385(40) W; training: 10 (3) h/week] underwent a STHADe program consisting of 5 days of exercise (maximum 90 min/day) in a hot environment (40 °C, 50% RH) to elicit isothermic heat strain [rectal temperature 38.64(0.27) °C]. Participants abstained from fluids during, and 30 min after, HA sessions. Pre- and post-STHADe HA was evaluated during euhydrated fixed-intensity exercise (60 min) in hot conditions; the effect of STHADe on thermoregulation was also examined under temperate conditions (20 min fixed-intensity exercise; 22 °C, 60% RH). Temperate cycling performance was assessed by a graded exercise test (GXT) and 20-km time trial (TT). STHADe reduced thermal and cardiovascular strain in hot and temperate environments. Lactate threshold [Δ = 16 (17) W] and GXT PPO [Δ = 6 (7) W] were improved following STHADe (P  0.05), although there was a trend for a higher mean power (P = 0.06). In conclusion, STHADE can reduce thermal and cardiovascular strain under hot and temperate conditions and there is some evidence of ergogenic potential for temperate exercise, but longer HA regimens may be necessary for this to meaningfully influence performance.

  13. Methane production by fermentation cultures acclimated to waste from cattle fed monensin, lasalocid, salinomycin, or avoparcin

    Energy Technology Data Exchange (ETDEWEB)

    Varel, V.H.; Hashimoto, A.G.

    1982-12-01

    The ability of microorganisms to ferment waste from cattle fed monensin, lasalocid, or salinomycin to methane was determined. Continuously mixed anaerobic fermentors with 3-liter working volumes at 55 degrees C were used; fermentors were fed once per day. Initially, all fermentors were fed waste without antibiotics at 6% volatile solids (VSs, organic matter) and a 20-day retention time (RT) for 60 days. Waste from animals fed monensin, lasalocid, or salinomycin at 29, 20, and 16.5 mg per kg of feed, respectively, was added to duplicate fermentors at the above VSs, and RT. Avoparcin (5 to 45 mg/liter) was not fed to animals but was added directly to duplicate fermentors. Lasalocid and salinomycin had minimal effects of the rate of methane production at RTs of 20 days and later at 6.5 days. Avoparcin caused an increaes in organic acids from 599 to 1,672 mg/liter (as acetate) after 4 weeks, but by 6 weeks, acid concentrations declined and the rate of methane production was similar to controls at 6.5 day RT. The monensin fermentors stopped producing methane 3 weeks after antibiotic addition. However, after a 6-month acclimation period, the microorganisms apparently adapted, and methane production rates of 1.65 and 2.51 liters per liter of fermentor volume per day were obtained with 6% VSs, and RTs of 10 and 6.5 days, respectively. All fermentors that were fed waste containing antibiotics had lower pH values and ammonia and alkalinity concentrations, suggesting less buffering capacity and protein catabolism than in controls. Acclimation results obtained with fermentors at 35 degrees C were similar to those for fermentors at 55 degrees C. These studies indicate that waste from cattle fed these selected growth-promoting antibiotics can be thermophilically fermented to methane at RTs of 6.5 days or longer and VS concentrations of 6%, at rates comparable to waste without antibiotics. (Refs. 21).

  14. Morpholino gene knockdown in adult Fundulus heteroclitus: role of SGK1 in seawater acclimation.

    Directory of Open Access Journals (Sweden)

    Emily G Notch

    Full Text Available The Atlantic killifish (Fundulus heteroclitus is an environmental sentinel organism used extensively for studies on environmental toxicants and salt (NaCl homeostasis. Previous research in our laboratory has shown that rapid acclimation of killifish to seawater is mediated by trafficking of CFTR chloride channels from intracellular vesicles to the plasma membrane in the opercular membrane within the first hour in seawater, which enhances chloride secretion into seawater, thereby contributing to salt homeostasis. Acute transition to seawater is also marked by an increase in both mRNA and protein levels of serum glucocorticoid kinase 1 (SGK1 within 15 minutes of transfer. Although the rise in SGK1 in gill and its functional analog, the opercular membrane, after seawater transfer precedes the increase in membrane CFTR, a direct role of SGK1 in elevating membrane CFTR has not been established in vivo. To test the hypothesis that SGK1 mediates the increase in plasma membrane CFTR we designed two functionally different vivo-morpholinos to knock down SGK1 in gill, and developed and validated a vivo-morpholino knock down technique for adult killifish. Injection (intraperitoneal, IP of the splice blocking SGK1 vivo-morpholino reduced SGK1 mRNA in the gill after transition from fresh to seawater by 66%. The IP injection of the translational blocking and splice blocking vivo-morpholinos reduced gill SGK1 protein abundance in fish transferred from fresh to seawater by 64% and 53%, respectively. Moreover, knock down of SGK1 completely eliminated the seawater induced rise in plasma membrane CFTR, demonstrating that the increase in SGK1 protein is required for the trafficking of CFTR from intracellular vesicles in mitochondrion rich cells to the plasma membrane in the gill during acclimation to seawater. This is the first report of the use of vivo-morpholinos in adult killifish and demonstrates that vivo-morpholinos are a valuable genetic tool for this

  15. Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification.

    Science.gov (United States)

    Goncalves, Priscila; Anderson, Kelli; Thompson, Emma L; Melwani, Aroon; Parker, Laura M; Ross, Pauline M; Raftos, David A

    2016-10-01

    Marine organisms need to adapt in order to cope with the adverse effects of ocean acidification and warming. Transgenerational exposure to CO2 stress has been shown to enhance resilience to ocean acidification in offspring from a number of species. However, the molecular basis underlying such adaptive responses is currently unknown. Here, we compared the transcriptional profiles of two genetically distinct oyster breeding lines following transgenerational exposure to elevated CO2 in order to explore the molecular basis of acclimation or adaptation to ocean acidification in these organisms. The expression of key target genes associated with antioxidant defence, metabolism and the cytoskeleton was assessed in oysters exposed to elevated CO2 over three consecutive generations. This set of target genes was chosen specifically to test whether altered responsiveness of intracellular stress mechanisms contributes to the differential acclimation of oyster populations to climate stressors. Transgenerational exposure to elevated CO2 resulted in changes to both basal and inducible expression of those key target genes (e.g. ecSOD, catalase and peroxiredoxin 6), particularly in oysters derived from the disease-resistant, fast-growing B2 line. Exposure to CO2 stress over consecutive generations produced opposite and less evident effects on transcription in a second population that was derived from wild-type (nonselected) oysters. The analysis of key target genes revealed that the acute responses of oysters to CO2 stress appear to be affected by population-specific genetic and/or phenotypic traits and by the CO2 conditions to which their parents had been exposed. This supports the contention that the capacity for heritable change in response to ocean acidification varies between oyster breeding lines and is mediated by parental conditioning.

  16. Whole plant acclimation responses by finger millet to low nitrogen stress

    Directory of Open Access Journals (Sweden)

    Travis Luc Goron

    2015-08-01

    Full Text Available The small grain cereal, finger millet (FM, Eleusine coracana L. Gaertn, is valued by subsistence farmers in India and East Africa as a low-input crop. It is reported by farmers to require no added nitrogen, or only residual N, to produce grain. Exact mechanisms underlying the acclimation responses of FM to low N are largely unknown, both above and below ground. In particular, the responses of FM roots and root hairs to N or any other nutrient have not previously been reported. Given its low N requirement, FM also provides a rare opportunity to study long-term responses to N starvation in a cereal. The objective of this study was to survey the shoot and root morphometric responses of FM, including root hairs, to low N stress. Plants were grown in pails in a semi-hydroponic system on clay containing extremely low background N, supplemented with N or no N. To our surprise, plants grown without deliberately added N grew to maturity, looked relatively normal and produced healthy seed heads. Plants responded to the low N treatment by decreasing shoot, root and seed head biomass. These declines under low N were associated with decreased shoot tiller number, crown root number, total crown root length and total lateral root length, but with no consistent changes in root hair traits. Changes in tiller and crown root number appeared to coordinate the above and below ground acclimation responses to N. We discuss the remarkable ability of FM to grow to maturity without deliberately added N. The results suggest that FM should be further explored to understand this trait. Our observations are consistent with indigenous knowledge from subsistence farmers in Africa and Asia that this crop can survive extreme environments.

  17. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts

    Science.gov (United States)

    Wu, Li; Lei, Yaping; Lan, Shubin; Hu, Chunxiang

    2017-01-01

    As an important successional stage and main type of biological soil crusts (BSCs) in Shapotou region of China (southeastern edge of Tengger Desert), lichen soil crusts (LSCs) often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active radiation (PAR) gradients to study the photosynthetic acclimation of LSCs. The results showed that although desiccation leaded to the loss of photosynthetic activity in LSCs, the fluorescence parameters including Fo, Fv and Fv/Fm of LSCs could be well recovered after rehydration. After the recovery of photosynthetic activity, the effective photosynthetic efficiency ΦPSII detected by Imaging PAM had declined to nearly 0 within both the lichen thallus upper and lower layers when the PAR increased to 200 μE m-2 s-1, however the net photosynthesis detected by the CO2 gas analyzer in the LSCs still appeared when the PAR increased to 1000 μE m-2 s-1. Our results indicate that LSCs acclimating to high PAR, on the one hand is ascribed to the special structure in crust lichens, making the incident light into the lichen thallus be weakened; on the other hand the massive accumulation of photosynthetic pigments in LSCs also provides a protective barrier for the photosynthetic organisms against radiation damage. Furthermore, the excessive light energy absorbed by crust lichens is also possibly dissipated by the increasing non-photochemical quenching, therefore to some extent providing some protection for LSCs. PMID:28257469

  18. Antioxidant metabolism during acclimation of Begonia x erythrophylla to high light levels.

    Science.gov (United States)

    Burritt, David J; Mackenzie, Susan

    2003-06-01

    This study examined the influence of high light levels on antioxidant metabolism and the photosynthetic properties of Begonia x erythrophylla leaves. The pigment composition of shaded leaves and those developing in full sunlight was typical of shade- and sun-leaves, respectively. After 28 d in full sunlight, the preformed leaves of shade plants transferred to full sunlight (transferred-leaves) showed photo-bleaching with lower Chl (a + b) content and Chl a : Chl b ratios than shade-leaves, with Chl (a + b) : carotenoid ratios not significantly different. The variable/maximal fluorescence (Fv/Fm) of sun-leaves was not significantly different from that of shade-leaves, but transferred-leaves had reduced Fv : Fm ratios. Light response curves for the electron transport rate (ETR), the oxidation state of photosystem II (qP) and non-photochemical quenching (NPQ) showed significant differences between the three leaf types, with transferred-leaves not able to acclimate completely to full sunlight, having lower ETR, qP and NPQ values at high light levels than sun-leaves. Transfer to full sunlight caused a rapid increase in H2O2 and lipid hyperoxides, and a slight increase in protein oxidation. Ascorbate and glutathione levels decreased rapidly, as did the size of the total glutathione pool and, in addition to the general oxidation of proteins, rapid decreases in both the initial and total activities of chloroplastic fructose-1,6-bisphosphatase and glyceraldehyde-3-phosphate dehydrogenase were observed. These results suggest that a more oxidizing cellular environment is the likely cause of the photo-bleaching observed upon transfer of shade-leaves to full sunlight. Acclimation of transferred-leaves to full sunlight involved gradual increases in the activities of enzymes involved in antioxidant metabolism, including superoxide dismutase, catalase, glutathione reductase, ascorbate peroxidase, dehydroascorbate reductase and monodehydroascorbate reductase, but the levels of

  19. Emerging Perspectives on the Mechanisms,Regulation, and Distribution of Light Color Acclimation in Cyanobacteria

    Institute of Scientific and Technical Information of China (English)

    Andrian Gutu; David M. Kehoe

    2012-01-01

    Chromatic acclimation (CA) provides many cyanobacteria with the ability to tailor the properties of their lightharvesting antennae to the spectral distribution of ambient light.CA was originally discovered as a result of its dramatic cellular phenotype in red and green light.However,discoveries over the past decade have revealed that many pairs of light colors,ranging from blue to infrared,can trigger CA responses.The capacity to undergo CA is widespread geographically,occurs in most habitats around the world,and is found within all major cyanobacterial groups.In addition,many other cellular activities have been found to be under CA control,resulting in distinct physiological and morphological states for cells under different light-color conditions.Several types of CA appear to be the result of convergent evolution,where different strategies are used to achieve the final goal of optimizing light-harvesting antenna composition to maximize photon capture.The regulation of CA has been found to occur primarily at the level of RNA abundance.The CA-regulatory pathways uncovered thus far are two-component systems that use phytochrome-class photoreceptors with sensor-kinase domains to control response regulators that function as transcription factors.However,there is also at least one CAregulatory pathway that operates at the post-transcriptional level.It is becoming increasingly clear that large numbers of cyanobacterial species have the capacity to acclimate to a wide variety of light colors through the use of a range of different CA processes.

  20. Acclimation of photosynthetic parameters is not the icing on the cake. It is the cake.

    Science.gov (United States)

    Prentice, Iain Colin; Wang, Han; Togashi, Henrique; Keenan, Trevor; Davis, Tyler; Wright, Ian

    2015-04-01

    Photosynthesis and transpiration are tightly coupled through stomatal behaviour and therefore it is impossible to understand and parsimoniously model one without also considering the other. The ratio of leaf-internal to ambient carbon dioxide concentration (ci:ca ratio) is a measure of the "exchange rate" between water and carbon. We have shown that it is possible to predict the observed dependencies of ci:ca on environmental factors (temperature, vapour pressure deficit and atmospheric pressure) based on the "least-cost hypothesis", which states that plants minimize the sum of the unit costs (respiration per unit assimilation) of maintaining the capacities for carbon fixation (Vcmax) and water transport. Moreover, with the help of the "co-ordination hypothesis" (the long-accepted idea that Rubisco capacity and electron transport tend to co-limit photosynthesis) it is possible to predict not only how ci:ca should vary, but also how Vcmax and electron transport capacity (Jmax) should vary, in space and time. We will present empirical support for this idea based on both ecophysiological measurements at the leaf scale, and analysis of carbon dioxide flux measurements at the ecosystem scale. We conclude that acclimation of photosynthetic parameters is pervasive. This is fundamental because it predicts a quite different set of environmental responses than those that are usually applied in models that incorrectly assume constancy of parameter values with time and within plant functional types (PFTs). In addition, acclimation actually simplifies modelling because it describes universal relationships that apply across all PFTs with the C3 photosynthetic pathway, and it removes the need to specify parameters such as Vcmax and Jmax as if they were properties of PFTs.

  1. Exogenous Abscisic Acid Mimics Cold Acclimation for Cacti Differing in Freezing Tolerance.

    Science.gov (United States)

    Loik, M. E.; Nobel, P. S.

    1993-11-01

    The responses to low temperature were determined for two species of cacti sensitive to freezing, Ferocactus viridescens and Opuntia ficus-indica, and a cold hardy species, Opuntia fragilis. Fourteen days after shifting the plants from day/night air temperatures of 30/20[deg]C to 10/0[deg]C, the chlorenchyma water content decreased only for O. fragilis. This temperature shift caused the freezing tolerance (measured by vital stain uptake) of chlorenchyma cells to be enhanced only by about 2.0[deg]C for F. viridescens and O. ficus-indica but by 14.6[deg]C for O. fragilis. Also, maintenance of high water content by injection of water into plants at 10/0[deg]C reversed the acclimation. The endogenous abscisic acid (ABA) concentration was below 0.4 pmol g-1 fresh weight at 30/20[deg]C, but after 14 d at 10/0[deg]C it increased to 84 pmol g-1 fresh weight for O. ficus-indica and to 49 pmol g-1 fresh weight for O. fragilis. Four days after plants were sprayed with 7.5 x 10-5 M ABA at 30/20[deg]C, freezing tolerance was enhanced by 0.5[deg]C for F. viridescens, 4.1[deg]C for O. ficus-indica, and 23.4[deg]C for O. fragilis. Moreover, the time course for the change in freezing tolerance over 14 d was similar for plants shifted to low temperatures as for plants treated with exogenous ABA at moderate temperatures. Decreases in plant water content and increases in ABA concentration may be important for low-temperature acclimation by cacti, especially O. fragilis, which is widely distributed in Canada and the United States.

  2. Predictive Big Data Analytics: A Study of Parkinson’s Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations

    Science.gov (United States)

    Dinov, Ivo D.; Heavner, Ben; Tang, Ming; Glusman, Gustavo; Chard, Kyle; Darcy, Mike; Madduri, Ravi; Pa, Judy; Spino, Cathie; Kesselman, Carl; Foster, Ian; Deutsch, Eric W.; Price, Nathan D.; Van Horn, John D.; Ames, Joseph; Clark, Kristi; Hood, Leroy; Hampstead, Benjamin M.; Dauer, William; Toga, Arthur W.

    2016-01-01

    Background A unique archive of Big Data on Parkinson’s Disease is collected, managed and disseminated by the Parkinson’s Progression Markers Initiative (PPMI). The integration of such complex and heterogeneous Big Data from multiple sources offers unparalleled opportunities to study the early stages of prevalent neurodegenerative processes, track their progression and quickly identify the efficacies of alternative treatments. Many previous human and animal studies have examined the relationship of Parkinson’s disease (PD) risk to trauma, genetics, environment, co-morbidities, or life style. The defining characteristics of Big Data–large size, incongruency, incompleteness, complexity, multiplicity of scales, and heterogeneity of information-generating sources–all pose challenges to the classical techniques for data management, processing, visualization and interpretation. We propose, implement, test and validate complementary model-based and model-free approaches for PD classification and prediction. To explore PD risk using Big Data methodology, we jointly processed complex PPMI imaging, genetics, clinical and demographic data. Methods and Findings Collective representation of the multi-source data facilitates the aggregation and harmonization of complex data elements. This enables joint modeling of the complete data, leading to the development of Big Data analytics, predictive synthesis, and statistical validation. Using heterogeneous PPMI data, we developed a comprehensive protocol for end-to-end data characterization, manipulation, processing, cleaning, analysis and validation. Specifically, we (i) introduce methods for rebalancing imbalanced cohorts, (ii) utilize a wide spectrum of classification methods to generate consistent and powerful phenotypic predictions, and (iii) generate reproducible machine-learning based classification that enables the reporting of model parameters and diagnostic forecasting based on new data. We evaluated several

  3. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin X.; Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.; Haldrup, Kristoffer; Mara, Michael W.; Stickrath, Andrew B.; Zhu, Diling; Lemke, Henrik; Chollet, Matthieu; Hoffman, Brian M.; Li, Xiaosong

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(II) tetramesitylporphyrin (NiTMP) were successfully measured for optically excited state at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(I) (π, 3dx2-y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.

  4. Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus.

    Science.gov (United States)

    Camejo, Daymi; Martí, María del C; Nicolás, Emilio; Alarcón, Juan J; Jiménez, Ana; Sevilla, Francisca

    2007-11-01

    Seedlings of Lycopersicon esculentum Mill. var. Amalia were grown in a growth chamber under a photoperiod of 16 h light at 25 degrees C and 8 h dark at 20 degrees C. Five different treatments were applied to 30-day-old plants: Control treatment (plants maintained in the normal growth conditions throughout the experimental time), heat acclimation (plants exposed to 35 degrees C for 4 h in dark for 3 days), dark treatment (plants exposed to 25 degrees C for 4 h in dark for 3 days), heat acclimation plus heat shock (plants that previously received the heat acclimation treatment were exposed to 45 degrees C air temperature for 3 h in the light) and dark treatment plus heat shock (plants that previously received the dark treatment were exposed to 45 degrees C air temperature for 3 h in the light). Only the heat acclimation treatment increased the thermotolerance of the photosynthesis apparatus when the heat shock (45 degrees C) was imposed. In these plants, the CO(2) assimilation rate was not affected by heat shock and there was a slight and non-significant reduction in maximum carboxylation velocity of Rubisco (V(cmax)) and maximum electron transport rate contributing to Rubisco regeneration (J(max)). However, the plants exposed to dark treatment plus heat shock showed a significant reduction in the CO(2) assimilation rate and also in the values of V(cmax) and J(max). Chlorophyll fluorescence measurements showed increased thermotolerance in heat-acclimated plants. The values of maximum chlorophyll fluorescence (F(m)) were not modified by heat shock in these plants, while in the dark-treated plants that received the heat shock, the F(m) values were reduced, which provoked a significant reduction in the efficiency of photosystem II. A slight rise in the total superoxide dismutase (SOD) activity was found in the plants that had been subjected to both heat acclimation and heat shock, and this SOD activity was significantly higher than that found in the plants subjected to

  5. Probabilistic Hazard for Seismically-Induced Tsunamis in Complex Tectonic Contexts: Event Tree Approach to Seismic Source Variability and Practical Feasibility of Inundation Maps

    Science.gov (United States)

    Lorito, Stefano; Selva, Jacopo; Basili, Roberto; Romano, Fabrizio; Tiberti, Mara Monica; Piatanesi, Alessio

    2014-05-01

    Probabilistic Tsunami Hazard Analysis (PTHA) rests on computationally demanding numerical simulations of the tsunami generation and propagation up to the inundated coastline. We here focus on tsunamis generated by the co-seismic sea floor displacement, which constitute the vast majority of the observed tsunami events, i.e. on Seismic PTHA (SPTHA). For incorporating the full expected seismic source variability, aiming at a complete SPTHA, a very large number of numerical tsunami scenarios is typically needed, especially for complex tectonic contexts, where SPTHA is not dominated by large subduction earthquakes only. Here, we propose a viable approach for reducing the number of simulations for a given set of input earthquakes representing the modelled aleatory uncertainties of the seismic rupture parameters. Our approach is based on a preliminary analysis of the SPTHA of maximum offshore wave height (HMax) at a given target location, and assuming computationally cheap linear propagation. We start with defining an operational SPTHA framework in which we then introduce a simplified Event Tree approach, combined with a Green's functions approach, for obtaining a first controlled sampling and reduction of the effective source parameter space size. We then apply a two-stage filtering procedure to the 'linear' SPTHA results. The first filter identifies and discards all the sources producing a negligible contribution at the target location, for example the smallest earthquakes or those directing most of tsunami energy elsewhere. The second filter performs a cluster analysis aimed at selecting groups of source parameters producing comparable HMax profiles for each earthquake magnitude at the given test site. We thus select a limited set of sources that is subsequently used for calculating 'nonlinear' probabilistic inundation maps at the target location. We find that the optimal subset of simulations needed for inundation calculations can be obtained basing on just the

  6. Invasive cyprinid fish in Europe originate from the single introduction of an admixed source population followed by a complex pattern of spread.

    Directory of Open Access Journals (Sweden)

    Andrea Simon

    Full Text Available The Asian cyprinid fish, the topmouth gudgeon (Pseudorasbora parva, was introduced into Europe in the 1960s. A highly invasive freshwater fish, it is currently found in at least 32 countries outside its native range. Here we analyse a 700 base pair fragment of the mitochondrial cytochrome b gene to examine different models of colonisation and spread within the invasive range, and to investigate the factors that may have contributed to their invasion success. Haplotype and nucleotide diversity of the introduced populations from continental Europe was higher than that of the native populations, although two recently introduced populations from the British Isles showed low levels of variability. Based on coalescent theory, all introduced and some native populations showed a relative excess of nucleotide diversity compared to haplotype diversity. This suggests that these populations are not in mutation-drift equilibrium, but rather that the relative inflated level of nucleotide diversity is consistent with recent admixture. This study elucidates the colonisation patterns of P. parva in Europe and provides an evolutionary framework of their invasion. It supports the hypothesis that their European colonisation was initiated by their introduction to a single location or small geographic area with subsequent complex pattern of spread including both long distance and stepping-stone dispersal. Furthermore, it was preceded by, or associated with, the admixture of genetically diverse source populations that may have augmented its invasive-potential.

  7. Invasive cyprinid fish in Europe originate from the single introduction of an admixed source population followed by a complex pattern of spread.

    Science.gov (United States)

    Simon, Andrea; Britton, Robert; Gozlan, Rodolphe; van Oosterhout, Cock; Volckaert, Filip A M; Hänfling, Bernd

    2011-01-01

    The Asian cyprinid fish, the topmouth gudgeon (Pseudorasbora parva), was introduced into Europe in the 1960s. A highly invasive freshwater fish, it is currently found in at least 32 countries outside its native range. Here we analyse a 700 base pair fragment of the mitochondrial cytochrome b gene to examine different models of colonisation and spread within the invasive range, and to investigate the factors that may have contributed to their invasion success. Haplotype and nucleotide diversity of the introduced populations from continental Europe was higher than that of the native populations, although two recently introduced populations from the British Isles showed low levels of variability. Based on coalescent theory, all introduced and some native populations showed a relative excess of nucleotide diversity compared to haplotype diversity. This suggests that these populations are not in mutation-drift equilibrium, but rather that the relative inflated level of nucleotide diversity is consistent with recent admixture. This study elucidates the colonisation patterns of P. parva in Europe and provides an evolutionary framework of their invasion. It supports the hypothesis that their European colonisation was initiated by their introduction to a single location or small geographic area with subsequent complex pattern of spread including both long distance and stepping-stone dispersal. Furthermore, it was preceded by, or associated with, the admixture of genetically diverse source populations that may have augmented its invasive-potential.

  8. ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2011-08-01

    Full Text Available The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm, 2.91 eV (426 nm and 4.27 eV (290 nm for the ZnS, CdS and HgS samples respectively.

  9. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance.

    Science.gov (United States)

    Slot, Martijn; Rey-Sánchez, Camilo; Gerber, Stefan; Lichstein, Jeremy W; Winter, Klaus; Kitajima, Kaoru

    2014-09-01

    Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3 °C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25 °C (R25 ) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5-3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24°S-24°N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no-acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.

  10. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker.

    Science.gov (United States)

    Izumi, Yohei; Sonoda, Shoji; Tsumuki, Hisaaki

    2007-07-01

    Overwintering freeze-tolerant larvae of Chilo suppressalis can survive at -25 degrees C, but non-diapausing larvae cannot. We reported earlier that to prevent intracellular freezing, which causes death in overwintering larvae of the Saigoku ecotype distributed in southwestern Japan, water leaves and glycerol enters fat body cells through water channels during freezing. However, it is still unclear how diapause and low-temperature exposure are related to the acquisition of freeze tolerance. We compared the extent of tissue damage, accumulation of glycerol, and transport of glycerol and water in fat body tissues between cold-acclimated and non-acclimated non-diapausing and diapausing larvae. The tissue from cold-acclimated diapausing larvae could survive only when frozen in Grace's insect medium with 0.25 M glycerol at -20 degrees C. The protection provided by glycerol was offset by mercuric chloride, which is a water-channel inhibitor. Fat body tissue isolated from non-acclimated diapausing larvae was injured by freezing even though glycerol was added to the medium, but the level of freezing injury was significantly lower than in non-diapausing larvae. Radiotracer assays in cold-acclimated diapausing larvae showed that during freezing, water left the cells into the medium and glycerol entered the cells from the medium at the same time. Therefore, in Saigoku ecotype larvae of the rice stem borer, both diapause and cold-acclimation are essential to accumulate glycerol and activate aquaporin for the avoidance of freezing injury.

  11. Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae)

    DEFF Research Database (Denmark)

    Sogn Andersen, Guri; Pedersen, Morten Foldager; Nielsen, Søren Laurentius

    2013-01-01

    performance, fluorescence parameters, and pigment concentrations were measured. S. latissima obtained almost identical photosynthetic characteristics when grown at 10 and 15°C, indicating thermal acclimation at these temperatures. In contrast, plants grown at 20°C suffered substantial tissue deterioration......, and showed reduced net photosynthetic capacity caused by a combination of elevated respiration and reduced gross photosynthesis due to lowered pigment concentrations, altered pigment composition, and reduced functionality of Photo-system II. Our results support the hypothesis that extraordinarily high....... We investigated the potential for thermal acclimation and heat tolerance in S. latissima collected from three locations along the south coast of Norway. Plants were kept in laboratory cultures at three different growth temperatures (10, 15, and 20°C) for 4–6 weeks, after which their photosynthetic...

  12. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel;

    2008-01-01

    Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying p...... to elucidate the function of the ESKIMO1 protein and the way it modulates plant water uptake.......Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant...

  13. John Day Fall Chinook/Salmon Mitigation Plan Acclimation and Imprinting Site Feasibility Study: Summary Report : Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Fish and Wildlife Service; Sverdrup Corporation; United States. Bonneville Power Administration.

    1987-09-01

    The purpose of this Plan is to replace upriver bright fall chinook salmon which were lost by construction of the John Day Dam. This will be accomplished by releasing salmon fry and smolts, incubated in the Spring Creek and Bonneville Hatcheries, at several upriver locations. Prior to release it is desired to feed and acclimate the juvenile fish to relieve the stress of truck transport, and to imprint them to the release site. This will ultimately produce adult chinook salmon that return to their historic spawning areas through traditional common property fisheries. It will also provide sexually mature broodstock fish that can be captured and spawned to supplement continued hatchery operation. This report summarizes results of an engineering feasibility study done for 10 potential acclimation sites on the Columbia, Yakima and Walla Walla Rivers. A detailed report has been prepared for each site and each is bound separately.

  14. Cold-acclimation increases the predatory efficiency of the aphidophagous coccinellid Adalia bipunctata

    DEFF Research Database (Denmark)

    Sørensen, Christian Hougaard; Toft, Søren; Kristensen, Torsten Nygård

    2013-01-01

    Ladybirds are used in integrated pest management and augmentative biological control programs all over the world. Typically, commercial rearing of the commonly used ladybird, Adalia bipunctata, takes place at a constant temperature (25 °C) which maximizes reproductive output and survival in the l......Ladybirds are used in integrated pest management and augmentative biological control programs all over the world. Typically, commercial rearing of the commonly used ladybird, Adalia bipunctata, takes place at a constant temperature (25 °C) which maximizes reproductive output and survival...... in the laboratory. However, insects are known to acclimate via physiological adjustments to their thermal environment and performance is often higher at temperatures to which they are acclimated. Thus rearing A. bipunctata at 25 °C may not be optimal if they are to effectively manage aphid pests under different...

  15. Effect of short-term heat acclimation on endurance time and skin blood flow in trained athletes

    Directory of Open Access Journals (Sweden)

    Chen TI

    2013-06-01

    Full Text Available Tsung-I Chen,1,2 Pu-Hsi Tsai,3 Jui-Hsing Lin,4 Ning-Yuean Lee,5 Michael TC Liang61Graduate Institute of Sport Science, National Taiwan Sport University, Taoyuan, 2Center for Physical Education, Tzu Chi University, Hualien, 3Department of Sport and Leisure, National Quemoy University, Kinmen, 4Department of Physical Education, National Pingtung University of Education, Pingtung, 5College of Living Technology, Tainan University of Technology, Tainan, Taiwan; 6Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA, USABackground: To examine whether short-term, ie, five daily sessions, vigorous dynamic cycling exercise and heat exposure could achieve heat acclimation in trained athletes and the effect of heat acclimation on cutaneous blood flow in the active and nonactive limb.Methods: Fourteen male badminton and table tennis athletes (age = 19.6 ± 1.2 years were randomized into a heat acclimation (EXP, n = 7 or nonheat acclimation (CON, n = 7 group. For 5 consecutive days, the EXP group was trained using an upright leg cycle ergometer in a hot environment (38.4°C ± 0.4°C, while the CON group trained in a thermoneutral environment (24.1°C ± 0.3°C. For both groups, the training intensity and duration increased from a work rate of 10% below ventilatory threshold (VT and 25 minutes per session on day 1, to 10% above VT and 45 minutes per session on day 5. Subjects performed two incremental leg cycle exercise tests to exhaustion at baseline and post-training in both hot and thermoneutral conditions. Study outcome measurements include: maximum oxygen uptake (VO2max; exercise heart rate (HR; O2 pulse; exercise time to exhaustion (tmax; skin blood flow in the upper arm (SkBFa and quadriceps (SkBFq; and mean skin (Tsk.Results: The significant heat-acclimated outcome measurements obtained during high-intensity leg cycling exercise in the high ambient environment are: (1 56%–100% reduction in cutaneous

  16. Inter and intra-specific variation in photosynthetic acclimation response to long term exposure of elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M. [Univ. of Essex, Colchester (United Kingdom)]|[Writtle Coll. (United Kingdom)

    1996-08-01

    The response of intra and interspecific variation in photosynthetic acclimation to growth at elevated atmospheric CO{sub 2} concentration (600{micro}mol mol-l) in six important grassland species was investigated. Plants were grown in a background sward of Lolium perenne and measurements were made after four years of growth at elevated C{sub a}. Elevated CO{sub 2} was maintained using a FACE (Free-Air Carbon Enrichment) system. Significant intra and interspecific variation in acclimation response was demonstrated. The response of adaxial and abaxial stomatal conductance to elevated CO{sub 2} was also investigated. The stomatal conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated C{sub a}. Significant asymmetric responses in stomatal conductance was demonstrated in D. glomerata and T. pratense. Analysis of stomatal indices and densities indicated that the observed reductions in stomatal conductance were probably the result of changes in stomatal aperture.

  17. The potential of the MAGIC TOM Parental accessions to explore the genetic variability in tomato acclimation to repeated cycles of water deficit and recovery

    Directory of Open Access Journals (Sweden)

    Julie eRipoll

    2016-01-01

    Full Text Available Episodes of water deficit (WD during the crop cycle of tomato may negatively impact plant growth and fruit yield, but they may also improve fruit quality. Moreover, a moderate WD may induce a plant memory effect which is known to stimulate plant acclimation and defenses for upcoming stress episodes. The objective of this study was to analyze the positive and negative impacts of repeated episodes of WD at the plant and fruit levels. Three episodes of WD (-38 %, -45 % and -55 % of water supply followed by three periods of recovery (WD treatments, were applied to the 8 parents of the Multi-Parent Advanced Generation Inter-Cross population which offers the largest allelic variability observed in tomato. Predawn and midday water potentials, chlorophyll a fluorescence, growth and fruit quality traits (contents in sugars, acids, carotenoids and ascorbic acid (AsA were measured throughout the experiment. Important genotypic variations were observed both at the plant and fruit levels and variations in fruit and leaf traits were found not to be correlated. Overall, the WD treatments were at the origin of important osmotic regulations, reduction of leaf growth, acclimation of photosynthetic functioning, notably through an increase in the chlorophyll content and in the quantum yield of the electron transport flux until PSI acceptors (J0RE1/JABS. The effects on fruit sugar, acid, carotenoid and AsA contents on a dry matter basis ranged from negative to positive to nil depending on genotypes and stress intensity. Three small fruit size accessions were richer in AsA on a fresh matter basis, due to concentration effects. So, fruit quality was improved under WD mainly through concentration effects. On the whole, two accessions, LA1420 and Criollo appeared as interesting genetic resources, cumulating adaptive traits both at the leaf and fruit levels. Our observations show that the complexity involved in plant responses, when considering a broad range of

  18. Influence of low- and high-elevation plant genomes on the regulation of autumn cold acclimation in Abies sachalinensis

    Directory of Open Access Journals (Sweden)

    Wataru eIshizuka

    2015-10-01

    Full Text Available Boreal coniferous species with wide geographic distributions show substantial variation in autumn cold acclimation among populations. To determine how this variation is inherited across generations, we conducted a progeny test and examined the development of cold hardening in open-pollinated second-generation (F2 progeny of Abies sachalinensis. The F1 parents had different genetic backgrounds resulting from reciprocal interpopulational crosses between low-elevation (L and high-elevation (H populations: L × L, L × H, H × L, and H × H. Paternity analysis of the F2 progeny using molecular genetic markers showed that 91.3% of the fathers were located in surrounding stands of the F1 planting site (i.e., not in the F1 test population. The remaining fathers were assigned to F1 parents of the L × L cross-type. This indicates that the high-elevation genome in the F1 parents was not inherited by the F2 population via pollen flow. The timing of autumn cold acclimation in the F2 progeny depended on the cross-type of the F1 mother. The progeny of H × H mothers showed less damage in freezing tests than the progeny of other cross-types. Statistical modeling supported a linear effect of genome origin. In the best model, variation in freezing damage was explained by the proportion of maternally inherited high-elevation genome. These results suggest that autumn cold acclimation was partly explained by the additive effect of the responsible maternal genome. Thus, the offspring that inherited a greater proportion of the high-elevation genome developed cold hardiness earlier. Genome-based variation in the regulation of autumn cold acclimation matched the local climatic conditions, which may be a key factor in elevation-dependent adaptation.

  19. Increased photosynthetic acclimation in alfalfa associated with arbuscular mycorrhizal fungi (AMF) and cultivated in greenhouse under elevated CO2.

    Science.gov (United States)

    Goicoechea, Nieves; Baslam, Marouane; Erice, Gorka; Irigoyen, Juan José

    2014-11-15

    Medicago sativa L. (alfalfa) can exhibit photosynthetic down-regulation when grown in greenhouse conditions under elevated atmospheric CO2. This forage legume can establish a double symbiosis with nitrogen fixing bacteria and arbuscular mycorrhizal fungi (AMF), which may increase the carbon sink effect of roots. Our aim was to assess whether the association of alfalfa with AMF can avoid, diminish or delay the photosynthetic acclimation observed in previous studies performed with nodulated plants. The results, however, showed that mycorrhizal (M) alfalfa at the end of their vegetative period had lower carbon (C) discrimination than non-mycorrhizal (NM) controls, indicating photosynthetic acclimation under ECO2 in plants associated with AMF. Decreased C discrimination was due to the acclimation of conductance, since the amount of Rubisco and the expression of genes codifying both large and small subunits of Rubisco were similar or slightly higher in M than in NM plants. Moreover, M alfalfa accumulated a greater amount of soluble sugars in leaves than NM plants, thus favoring a down-regulation effect on photosynthetic rates. The enhanced contents of sugars in leaves coincided with a reduced percentage of arbuscules in roots, suggesting decreased sink of carbohydrates from shoots to roots in M plants. The shorter life cycle of alfalfa associated with AMF in comparison with the NM controls may also be related to the accelerated photosynthetic acclimation in M plants. Further research is needed to clarify to what extent this behavior could be extrapolated to alfalfa cultivated in the field and subjected to periodic cutting of shoots under climatic change scenarios.

  20. Natural Resources Containing Arbutin. Determination of Arbutin in the Leaves of Bergenia crassifolia (L.) Fritsch. acclimated in Romania

    OpenAIRE

    Pop, Carmen; VLASE, LAURIAN; Mircea TAMAS

    2009-01-01

    Bergenia crassifolia (L.) Fritsch. is cited in literature as being one of the richest in arbutin (15-20%), an important pharmaceutical substance with disinfecting properties (in genitourinary diseases) and also depigmentation properties (skin whitening agent). The aim of this study consisted in determination of arbutin content in leaves of Bergenia crassifolia acclimated in Romania. The optimum parameters for the extraction of arbutin and the dynamics of the accumulation of arbutin in Bergeni...

  1. Products of lipid peroxidation, but not membrane susceptibility to oxidative damage, are conserved in skeletal muscle following temperature acclimation

    OpenAIRE

    Grim, Jeffrey M.; Semones, Molly C.; Kuhn, Donald E.; Kriska, Tamas; Keszler, Agnes; Crockett, Elizabeth L

    2014-01-01

    Changes in oxidative capacities and phospholipid remodeling accompany temperature acclimation in ectothermic animals. Both responses may alter redox status and membrane susceptibility to lipid peroxidation (LPO). We tested the hypothesis that phospholipid remodeling is sufficient to offset temperature-driven rates of LPO and, thus, membrane susceptibility to LPO is conserved. We also predicted that the content of LPO products is maintained over a range of physiological temperatures. To assess...

  2. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances.

    Science.gov (United States)

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012-2014) and drought treatments (2013-2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest.

  3. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Giovagnetti, Vasco; Ruban, Alexander V

    2017-03-01

    When grown under intermittent light (IL), the pennate diatom Phaeodactylum tricornutum forms 'super' non-photochemical fluorescence quenching (NPQ) in response to excess light. The current model of diatom NPQ mechanism involves two quenching sites, one of which detaches from photosystem II reaction centres (RCIIs) and aggregates into oligomeric complexes. Here we addressed how antenna reorganisation controls NPQ kinetics in P. tricornutum cells grown under continuous light (CL) and IL. Overall, IL acclimation induced: (i) reorganisation of chloroplasts, containing greater pigment pools without a strongly enhanced operation of the xanthophyll cycle, and (ii) 'super NPQ' causing a remarkable reduction of the chlorophyll excited state lifetime at Fm'. Regardless of different levels of NPQ formed in both culture conditions, its dark recovery was rapid and similar fractions of their antenna uncoupled (~50%). Although antenna detachment relieved excitation pressure, it provided a minor protective contribution equivalent to NPQ~1, while the largest NPQ was 4.4±0.2 (CL) and 13±0.8 (IL). The PSII cross-section decrease took place only at relatively low NPQ values, beyond which the cross-section remained constant whilst NPQ continued to rise. This finding suggests that the energy trapping efficiency of diatom antenna quenchers cannot over-compete that of RCIIs, similarly to what has been observed on higher plants. We conclude that such 'economic photoprotection' operates to flexibly adjust the overall efficiency of diatom light harvesting.

  4. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration

    Science.gov (United States)

    Avenhaus, Ulrike; Cabeza, Ricardo A.; Liese, Rebecca; Lingner, Annika; Dittert, Klaus; Salinas-Riester, Gabriela; Pommerenke, Claudia; Schulze, Joachim

    2016-01-01

    Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be

  5. Antioxidant Metabolism during Acclimation of Begonia × erythrophylla to High Light Levels

    Science.gov (United States)

    BURRITT, DAVID J.; MACKENZIE, SUSAN

    2003-01-01

    This study examined the influence of high light levels on antioxidant metabolism and the photosynthetic properties of Begonia × erythrophylla leaves. The pigment composition of shaded leaves and those developing in full sunlight was typical of shade‐ and sun‐leaves, respectively. After 28 d in full sunlight, the preformed leaves of shade plants transferred to full sunlight (transferred‐leaves) showed photo‐bleaching with lower Chl (a + b) content and Chl a : Chl b ratios than shade‐leaves, with Chl (a + b) : carotenoid ratios not significantly different. The variable/maximal fluorescence (Fv/Fm) of sun‐leaves was not significantly different from that of shade‐leaves, but transferred‐leaves had reduced Fv : Fm ratios. Light response curves for the electron transport rate (ETR), the oxidation state of photosystem II (qP) and non‐photochemical quenching (NPQ) showed significant differences between the three leaf types, with transferred‐leaves not able to acclimate completely to full sunlight, having lower ETR, qP and NPQ values at high light levels than sun‐leaves. Transfer to full sunlight caused a rapid increase in H2O2 and lipid hyperoxides, and a slight increase in protein oxidation. Ascorbate and glutathione levels decreased rapidly, as did the size of the total glutathione pool and, in addition to the general oxidation of proteins, rapid decreases in both the initial and total activities of chloroplastic fructose‐1,6‐bisphosphatase and glyceraldehyde‐3‐phosphate dehydrogenase were observed. These results suggest that a more oxidizing cellular environment is the likely cause of the photo‐bleaching observed upon transfer of shade‐leaves to full sunlight. Acclimation of transferred‐leaves to full sunlight involved gradual increases in the activities of enzymes involved in antioxidant metabolism, including superoxide dismutase, catalase, glutathione reductase, ascorbate peroxidase, dehydroascorbate reductase and

  6. Cryobehavior of the plasma membrane in protoplasts isolated from cold-acclimated Arabidopsis leaves is related to surface area regulation.

    Science.gov (United States)

    Yamazaki, Tomokazu; Kawamura, Yukio; Uemura, Matsuo

    2008-06-01

    Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.

  7. Modulatory effect of betaine on expression dynamics of HSPs during heat stress acclimation in goat (Capra hircus).

    Science.gov (United States)

    Dangi, Satyaveer Singh; Dangi, Saroj K; Chouhan, V S; Verma, M R; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2016-01-10

    Changing climatic scenario with expected global rise in surface temperature compelled more focus of research over decoding heat stress response mechanism of animals and mitigation of heat stress. Recently betaine, a trimethyl form of glycine has been found to ameliorate heat stress in some species of animals. To overcome deleterious effect of heat stress, an attempt was taken to investigate the effect of betaine supplementation on heat stress mitigation in goats. Eighteen female Barbari goats were taken and randomly divided into 3 groups (n=6) such as control, HS (Heat stressed), HS+B (Heat stressed administered with betaine). Except for the control group, other groups were exposed to repeated heat stress (42 °C) for 6 h for sixteen consecutive days. Blood samples were collected at the end of heat exposure on day 1 (Initial heat stress acclimation - IHSA), day 6 (Short term heat stress acclimation - STHSA) and day 16 (Long term heat stress acclimation - LTHSA). When the groups were compared between different heat stress acclimatory phases, expression of all HSPs (HSP60, HSP70, HSP90 and HSP105/110) showed a similar pattern with a first peak on IHSA, reaching a basal level on STHSA followed by second peak on LTHSA. The messenger RNA (mRNA) and protein expression of HSPs was observed to be higher (Pbetaine administration was shown to have a dwindling effect on expression of HSPs, suggesting a possible role of this chemical chaperone on heat stress amelioration.

  8. Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis.

    Science.gov (United States)

    Töpfer, Nadine; Caldana, Camila; Grimbs, Sergio; Willmitzer, Lothar; Fernie, Alisdair R; Nikoloski, Zoran

    2013-04-01

    Understanding metabolic acclimation of plants to challenging environmental conditions is essential for dissecting the role of metabolic pathways in growth and survival. As stresses involve simultaneous physiological alterations across all levels of cellular organization, a comprehensive characterization of the role of metabolic pathways in acclimation necessitates integration of genome-scale models with high-throughput data. Here, we present an integrative optimization-based approach, which, by coupling a plant metabolic network model and transcriptomics data, can predict the metabolic pathways affected in a single, carefully controlled experiment. Moreover, we propose three optimization-based indices that characterize different aspects of metabolic pathway behavior in the context of the entire metabolic network. We demonstrate that the proposed approach and indices facilitate quantitative comparisons and characterization of the plant metabolic response under eight different light and/or temperature conditions. The predictions of the metabolic functions involved in metabolic acclimation of Arabidopsis thaliana to the changing conditions are in line with experimental evidence and result in a hypothesis about the role of homocysteine-to-Cys interconversion and Asn biosynthesis. The approach can also be used to reveal the role of particular metabolic pathways in other scenarios, while taking into consideration the entirety of characterized plant metabolism.

  9. Human monocyte heat shock protein 72 responses to acute hypoxic exercise after 3 days of exercise heat acclimation.

    Science.gov (United States)

    Lee, Ben J; Mackenzie, Richard W A; Cox, Valerie; James, Rob S; Thake, Charles D

    2015-01-01

    The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% V̇O2peak in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 (P = 0.97). STHA induced an increase in basal HSP72 (P = 0.03) with no change observed in CON (P = 0.218). Basal mHSP72 remained elevated before HST2 for the STHA group (P 0.05). Percent change in mHSP72 was lower after HST2 in STHA compared to CON (P = 0.02). The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72.

  10. Lipid remodelling in the reef-building honeycomb worm, Sabellaria alveolata, reflects acclimation and local adaptation to temperature

    Science.gov (United States)

    Muir, Anna P.; Nunes, Flavia L. D.; Dubois, Stanislas F.; Pernet, Fabrice

    2016-01-01

    Acclimation and adaptation, which are key to species survival in a changing climate, can be observed in terms of membrane lipid composition. Remodelling membrane lipids, via homeoviscous adaptation (HVA), counteracts membrane dysfunction due to temperature in poikilotherms. In order to assess the potential for acclimation and adaptation in the honeycomb worm, Sabellaria alveolata, a reef-building polychaete that supports high biodiversity, we carried out common-garden experiments using individuals from along its latitudinal range. Individuals were exposed to a stepwise temperature increase from 15 °C to 25 °C and membrane lipid composition assessed. Our results suggest that S. alveolata was able to acclimate to higher temperatures, as observed by a decrease in unsaturation index and 20:5n-3. However, over the long-term at 25 °C, lipid composition patterns are not consistent with HVA expectations and suggest a stress response. Furthermore, unsaturation index of individuals from the two coldest sites were higher than those from the two warmest sites, with individuals from the thermally intermediate site being in-between, likely reflecting local adaptation to temperature. Therefore, lipid remodelling appears limited at the highest temperatures in S. alveolata, suggesting that individuals inhabiting warm environments may be close to their upper thermal tolerance limits and at risk in a changing climate. PMID:27762300

  11. Single-cell C(4) photosynthesis: efficiency and acclimation of Bienertia sinuspersici to growth under low light.

    Science.gov (United States)

    Stutz, Samantha S; Edwards, Gerald E; Cousins, Asaph B

    2014-04-01

    Traditionally, it was believed that C(4) photosynthesis required two types of chlorenchyma cells to concentrate CO(2) within the leaf. However, several species have been identified that perform C(4) photosynthesis using dimorphic chloroplasts within an individual cell. The goal of this research was to determine how growth under limited light affects leaf structure, biochemistry and efficiency of the single-cell CO(2) -concentrating mechanism in Bienertia sinuspersici. Measurements of rates of CO(2) assimilation and CO(2) isotope exchange in response to light intensity and O(2) were used to determine the efficiency of the CO(2) -concentrating mechanism in plants grown under moderate and low light. In addition, enzyme assays, chlorophyll content and light microscopy of leaves were used to characterize acclimation to light-limited growth conditions. There was acclimation to growth under low light with a decrease in capacity for photosynthesis when exposed to high light. This was associated with a decreased investment in biochemistry for carbon assimilation with only subtle changes in leaf structure and anatomy. The capture and assimilation of CO(2) delivered by the C(4) cycle was lower in low-light-grown plants. Low-light-grown plants were able to acclimate to maintain structural and functional features for the performance of efficient single-cell C(4) photosynthesis.

  12. FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in Arabidopsis thaliana1[OPEN

    Science.gov (United States)

    Dyson, Beth C.; Miller, Matthew A.E.; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G.

    2016-01-01

    Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing. PMID:27440755

  13. Archaea and Bacteria Acclimate to High Total Ammonia in a Methanogenic Reactor Treating Swine Waste

    Directory of Open Access Journals (Sweden)

    Sofia Esquivel-Elizondo

    2016-01-01

    Full Text Available Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H2 accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH3-N from 890±295 to 2040±30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4% and Methanobrevibacter (11.6%, along with acetoclastic Methanosaeta (29.3%, became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

  14. Acclimation of Pistacia integerrima trees to frost in semi-arid environments depends on autumn's drought.

    Science.gov (United States)

    Sperling, Or; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2017-03-01

    Main conclusion Cold acclimation is revealed through induced stem respiration during pre-winter frost of native Pistacia integerrima trees in continental semi-arid environments. Semi-arid environments challenge vegetation by simultaneous abiotic stresses. In this study, we examine the combined effects of water stress and frost on the physiology of Pistacia integerrima stems. This species is native to semi-arid environments where drought and frost frequently co-occur. We quantified carbohydrates and proline in P. integerrima stems responding to frost and experiencing water potentials between -0.2 and -1.8 MPa. We report that dehydrated trees (i.e., Ψstem <=-1 MPa) had more soluble sugars and proline than the well-watered trees (-0.2 MPa). The dehydrated trees also froze at lower temperatures and were less damaged by freezing. Interestingly, we observed a significant increase in stem CO2 efflux at near-freezing temperatures that could be linked to frost protection. This novel finding challenges current paradigm of plant respiration-kinetics which predicts, according to Arrhenius equation, lower respiration rates during frost. Our results support the notion that drought and frost are analogous stresses that can independently activate corresponding physiological processes in trees and amplify protection. This inevitable stress response 'collaboration' may be the key to understanding how non-dormant perennial plants survive the highly variable weather patterns of early winters in semi-arid environments.

  15. Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation.

    Science.gov (United States)

    Lei, Zhongfang; Chen, Jiayi; Zhang, Zhenya; Sugiura, Norio

    2010-06-01

    Rice straw particles were directly used as substrate for anaerobic digestion with acclimated sludge under room temperature and different levels of phosphate. Two obvious biogas production peaks were observed for all reactors, with biogas or methane yields of (0.33-0.35)m(3)/kg-VS loaded or (0.27-0.29)m(3) CH(4)/kg-VS loaded and average methane contents of 75.9-78.2%. A separated two-stage first-order kinetic model was developed in this study and showed a good fit to the experimental data when this complicated process was divided into two stages. The average biogas and methane production rate constants were (0.027-0.031)d(-1) and (0.028-0.033)d(-1), respectively, increased by 2-3 times in the second stages than those in the first. The results indicated that an adequate level of phosphate addition (465 mg-P/L) could accelerate the biogasification process: 7-13 days earlier appearance of the two peaks and shorter time needed for complete biogasification of rice straw.

  16. Changes in membrane lipids and carotenoids during light acclimation in a marine cyanobacterium Synechococcus sp.

    Indian Academy of Sciences (India)

    Olimpio Montero; Alberto Sánchez-Guijo; Luis M Lubián; Gonzalo Martínez-Rodríguez

    2012-09-01

    Time course of carotenoid and membrane lipid variation during high light (HL) acclimation (about 85 mol m−2 s−1), after transfer from low light (LL) (5–10 μmol m−2 s−1), was determined in a marine Synechococcus strain. High-performance liquid chromatography (HPLC) coupled to diode array detector (DAD) or electrospray ionization mass spectrometry (ESI-MS) was used for compound separation and detection. Myxoxanthophyll rose within a time interval of 8 h to 24 h after the onset of exposure to HL. -carotene content started to decrease after 4 h of the onset of exposure to HL. Zeaxanthin content rose with exposure to HL, but it was only significant after 24 h of exposure. Carotenoid changes are in agreement with a coordinated activity of the enzymes of the myxoxanthophyll biosynthetic pathway, with no rate-limiting intermediate steps. Lipid analysis showed all species with a C18:3/C16:0 composition increased their content, the changes of PG(18:3/16:0) and MGDG(18:3/16:0) being primarily significant. Major lipid changes were also found to occur within 24 h. These changes might suggest reduction and reorganization of the thylakoid membrane structure. Hypotheses are also drawn on the role played by lipid molecule shape and their possible effect in membrane fluidity and protein accommodation.

  17. Construction of a Miniaturized Chromatic Acclimation Sensor from Cyanobacteria with Reversed Response to a Light Signal

    Science.gov (United States)

    Nakajima, Mitsuharu; Ferri, Stefano; Rögner, Matthias; Sode, Koji

    2016-11-01

    Cyanobacteria harbor unique photoreceptors, designated as cyanobacteriochromes (CBCRs). In this study, we attempted to engineer the chromatic acclimation sensor CcaS, a CBCR derived from the cyanobacterium Synechocystis sp. PCC 6803. The wild-type CcaS induces gene expression under green light illumination and represses it under red light illumination. We focused on the domain structure of CcaS, which consists of an N-terminal transmembrane helix; a GAF domain, which serves as the sensor domain; a linker region (L1); two PAS domains; a second linker region (L2); and a C-terminal histidine kinase (HK) domain. Truncated versions of the photoreceptor were constructed by removing the L1 linker region and the two PAS domains, and fusing the GAF and HK domains with a truncated linker region. Thus constructed “miniaturized CcaSs” were grouped into four distinct categories according to their responses toward green and red light illumination, with some showing improved gene regulation compared to the wild type. Remarkably, one of the miniaturized CcaSs induced gene expression under red light and repressed it under green light, a reversed response to the light signal compared to wild type CcaS. These characteristics of engineered photoreceptors were discussed by analyzing the CcaS structural model.

  18. Toxic effects of the herbicide Roundup in the guppy Poecilia vivipara acclimated to fresh water.

    Science.gov (United States)

    Harayashiki, Cyntia Ayumi Yokota; Varela, Antonio Sergio; Machado, Anderson Abel de Souza; Cabrera, Liziara da Costa; Primel, Ednei Gilberto; Bianchini, Adalto; Corcini, Carine Dahl

    2013-10-15

    Although it is believed that glyphosate-based herbicides are relatively nontoxic to humans, its broad use in agriculture and consequent contamination of aquatic systems is a concern. In the present study, reproductive (sperm quality) and biochemical parameters (acetylcholinesterase and glutathione S-transferase activity, lipoperoxidation, and antioxidant capacity against peroxyl radicals) were evaluated in adult guppies (Poecilia vivipara) acclimated to fresh water and exposed (96 h) to environmentally realistic concentrations of glyphosate (130 and 700 μg L(-1)) as the commercial formulation Roundup. Male guppies exposed to Roundup showed a poorer sperm quality, measured as reduced plasmatic membrane integrity, mitochondrial functionality, DNA integrity, motility, motility period and concentration of spermatic cells, than those kept under control condition (no Roundup addition to the water). Most of the spermatic parameters analyzed showed strong association to each other, which may help to understand the mechanisms underlying the observed reduction in sperm quality. Exposure to Roundup did not alter the biochemical parameters analyzed, though differences between genders were observed and deserve further investigations. Findings from the present study suggest that exposure to environmentally relevant concentrations of Roundup may negatively affect at long-term the reproduction of P. vivipara, with consequent changes in fish populations inhabiting environments contaminated with the herbicide.

  19. Study on Seawater-acclimation Spirulina%海水驯化螺旋藻研究

    Institute of Scientific and Technical Information of China (English)

    关邵晨; 王璇; 李杰; 秦琅; 董仁杰; 朱毅

    2012-01-01

    [Objective] The aim was to seek Spirulina culture methods with seawater. [Method] Spirulina was habituated culture progressively with prepared seawater-acclimation solution, moreover, the morphological changes of Spirulina were observed and its biochemical indicators were measured. [Result]The new algaes was obtained, it has better stability and average length was greater than Spirulina in fresh water, its chlorophyll content was substantially unchanged, and the concentration of phycocyanin increased by 62.8% compared with Spirulina in fresh water. [Conclusion] The method can save resources and cost, which lay the foundation for large scale production and processing of Spirulina.%[目的]探寻螺旋藻的海水培养方法.[方法]用配制的海水驯化培养液对螺旋藻进行逐级驯化培养,观察螺旋藻的形态学变化并测量其生化指标.[结果]得到了平均长度大于淡水螺旋藻且稳定性良好的藻种,其叶绿素含量基本不变,藻蓝蛋白浓度较淡水培养的螺旋藻增加了62.8%.[结论]该方法可节省资源和成本,为螺旋藻的规模化生产和加工奠定了基础.

  20. Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression

    Science.gov (United States)

    Hennon, Gwenn M. M.; Ashworth, Justin; Groussman, Ryan D.; Berthiaume, Chris; Morales, Rhonda L.; Baliga, Nitin S.; Orellana, Mónica V.; Armbrust, E. V.

    2015-08-01

    Diatoms are responsible for ~40% of marine primary productivity, fuelling the oceanic carbon cycle and contributing to natural carbon sequestration in the deep ocean. Diatoms rely on energetically expensive carbon concentrating mechanisms (CCMs) to fix carbon efficiently at modern levels of CO2 (refs , , ). How diatoms may respond over the short and long term to rising atmospheric CO2 remains an open question. Here we use nitrate-limited chemostats to show that the model diatom Thalassiosira pseudonana rapidly responds to increasing CO2 by differentially expressing gene clusters that regulate transcription and chromosome folding, and subsequently reduces transcription of photosynthesis and respiration gene clusters under steady-state elevated CO2. These results suggest that exposure to elevated CO2 first causes a shift in regulation, and then a metabolic rearrangement. Genes in one CO2-responsive cluster included CCM and photorespiration genes that share a putative cAMP-responsive cis-regulatory sequence, implying these genes are co-regulated in response to CO2, with cAMP as an intermediate messenger. We verified cAMP-induced downregulation of CCM gene δ-CA3 in nutrient-replete diatom cultures by inhibiting the hydrolysis of cAMP. These results indicate an important role for cAMP in downregulating CCM and photorespiration genes under elevated CO2 and provide insights into mechanisms of diatom acclimation in response to climate change.

  1. Are sun- and shade-type anatomy required for the acclimation of Neoregelia cruenta?

    Directory of Open Access Journals (Sweden)

    FERNANDA REINERT

    2013-06-01

    Full Text Available Sun and shade plants are often discriminated by a number of sun- and shade-type anatomies. Nonetheless, we propose that among tank-bromeliads, changes in rosette architecture satisfy the requirements for coping with contrasting light levels. The tank-bromeliad Neoregelia cruenta naturally colonises sub-habitats ranging from full exposure to direct sunlight, to shaded environments in sand ridge plains. We quantified anatomical and morphological traits of leaves and rosettes of N. cruenta grown under sun and shade conditions. Cells with undulated lateral walls within the water parenchyma are for the first time described for the family. Under high light, leaf blades were wider, shorter, and yellowish. The rosette diameter of sun plants was less than half that of shade plants. Sun leaves overlapped with neighbouring leaves for most of their length, forming a cylindrical rosette where water accumulates. Shade leaves only overlapped in the centre of the rosette. Most anatomical traits were similar under both growth conditions. Stomata were absent from the base of sun leaves, which is probably explained by limited gas exchange at the base of the tight sun-type rosette. Data suggest that the ability of N. cruenta to acclimate to sun and shade is better explained by changes in rosette architecture than by leaf anatomy.

  2. Toward systems biology in brown algae to explore acclimation and adaptation to the shore environment.

    Science.gov (United States)

    Tonon, Thierry; Eveillard, Damien; Prigent, Sylvain; Bourdon, Jérémie; Potin, Philippe; Boyen, Catherine; Siegel, Anne

    2011-12-01

    Brown algae belong to a phylogenetic lineage distantly related to land plants and animals. They are almost exclusively found in the intertidal zone, a harsh and frequently changing environment where organisms are submitted to marine and terrestrial constraints. In relation with their unique evolutionary history and their habitat, they feature several peculiarities, including at the level of their primary and secondary metabolism. The establishment of Ectocarpus siliculosus as a model organism for brown algae has represented a framework in which several omics techniques have been developed, in particular, to study the response of these organisms to abiotic stresses. With the recent publication of medium to high throughput profiling data, it is now possible to envision integrating observations at the cellular scale to apply systems biology approaches. As a first step, we propose a protocol focusing on integrating heterogeneous knowledge gained on brown algal metabolism. The resulting abstraction of the system will then help understanding how brown algae cope with changes in abiotic parameters within their unique habitat, and to decipher some of the mechanisms underlying their (1) acclimation and (2) adaptation, respectively consequences of (1) the behavior or (2) the topology of the system resulting from the integrative approach.

  3. The roles of thermal transient receptor potential channels in thermotactic behavior and in thermal acclimation in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Kim, Hong Geun; Margolies, David; Park, Yoonseong

    2015-05-01

    To survive in variable or fluctuating temperature, organisms should show appropriate behavioral and physiological responses which must be mediated through properly attuned thermal sensory mechanisms. Transient receptor potential channels (TRPs) are a family of cation channels a number of which, called thermo-TRPs, are known to function as thermosensors. We investigated the potential role of thermo-TPRs that have been previously identified in the fruit fly, Drosophila melanogaster, in thermotaxis and thermal acclimation in the red flour beetle, Tribolium castaneum. Phylogenetic analysis of the trp genes showed generally one-to-one orthology between those in D. melanogaster and in T. castaneum, although there are putative gene-losses in two TRP subfamilies of D. melanogaster. With RNA interference (RNAi) of T. castaneum thermo-TRP candidates painless, pyrexia and trpA1, we measured thermal avoidance behavior. RNAi of trpA1 resulted in reduced avoidance of high temperatures, 39 and 42 °C. We also measured the effects of RNAi on heat-induced knockout and death under a short exposure to high temperature (1min at 52 °C) either with or without a 10-min acclimation period at 42 °C. Relatively short exposure to high temperature was enough to induce high temperature thermal acclimation. RNAi of trpA1 led to faster knockout at 52 °C. RNAi of painless showed lower recovery rates from heat-induced knockout after thermal acclimation, and RNAi of pyrexia showed lower long-term survivorship without thermal acclimation. Therefore, we concluded that trpA1 is important in high temperature sensing and also in enhanced tolerance to high-temperature induced knockout; painless plays a role in rapid acclimation to high temperature; and pyrexia functions in protecting beetles from acute heat stress without acclimation.

  4. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zeng, Q.; Xie, Z.; Tang, H.; Zhu, C. (Chinese Academy of Sciences. State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing (China)); Hasegawa, T. (National Institute for Agro-Environmental Sciences. Agro-Meteorology Div., Tsukuba (Japan)); Ziska, L. (Crop Systems and Global Change Lab., Beltsville, MD (United States)); Jia, X. (Chinese Academic of Sciences/Nanjing Botanical Garden Memorial Sun Yat-Sen. Jiangsu Institute of Botany, Nanjing (China))

    2012-07-15

    In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, g{sub s}, g{sub m}, C{sub i}/C{sub a}, C{sub i}/C{sub c}, V{sub cmax}, J{sub max}, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid-anthesis and the late grain-filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid-anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO{sub 2}]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non-structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO{sub 2}] appeared to enhance the rate of N degradation and senescence so that by late-grain fill, photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO{sub 2}] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation. (Author)

  5. Does Supporting Multiple Student Strategies Lead to Greater Learning and Motivation? Investigating a Source of Complexity in the Architecture of Intelligent Tutoring Systems

    Science.gov (United States)

    Waalkens, Maaike; Aleven, Vincent; Taatgen, Niels

    2013-01-01

    Intelligent tutoring systems (ITS) support students in learning a complex problem-solving skill. One feature that makes an ITS architecturally complex, and hard to build, is support for strategy freedom, that is, the ability to let students pursue multiple solution strategies within a given problem. But does greater freedom mean that students…

  6. Does supporting multiple student strategies lead to greater learning and motivation? Investigating a source of complexity in the architecture of intelligent tutoring systems

    NARCIS (Netherlands)

    Waalkens, Maaike; Aleven, Vincent; Taatgen, Niels

    2013-01-01

    Intelligent tutoring systems (ITS) support students in learning a complex problem-solving skill. One feature that makes an ITS architecturally complex, and hard to build, is support for strategy freedom, that is, the ability to let students pursue multiple solution strategies within a given problem.

  7. Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation

    Science.gov (United States)

    Wu, Zhi-Gang; Jiang, Wu; Chen, Song-Lin; Mantri, Nitin; Tao, Zheng-Ming; Jiang, Cheng-Xi

    2016-01-01

    Plant cold acclimation (CA) is a genetically complex phenomenon involving gene regulation and expression. Little is known about the cascading pattern of gene regulatroy network and the link between genes and metabolites during CA. Dendrobium officinale (DOKM) is an important medicinal and ornamental plant and hypersensitive to low temperature. Here, we used the large scale metabolomic and transcriptomic technologies to reveal the response to CA in DOKM seedlings based on the physiological profile analyses. Lowering temperature from 4 to –2°C resulted in significant increase (P antioxidant activities and electrolyte leakage (EL) during 24 h. The fitness CA piont of 0°C and control (20°C) during 20 h were firstly obtained according to physiological analyses. Subsequently, massive transcriptome and metabolome reprogramming occurred during CA. The gene to metabolite network demonstrated that the CA associated processes are highly energy demanding through activating hydrolysis of sugars, amino acids catabolism and citrate cycle. The expression levels of 2,767 genes were significantly affected by CA, including 153-fold upregulation of CBF transcription factor, 56-fold upregulation of MAPKKK16 protein kinase. Moreover, the gene interaction and regulation network analysis revealed that the CA as an active process, was regulated at the transcriptional, post-transcriptional, translational and post-translational levels. Our findings highligted a comprehensive regulatory mechanism including cold signal transduction, transcriptional regulation, and gene expression, which contributes a deeper understanding of the highly complex regulatory program during CA in DOKM. Some marker genes identified in DOKM seedlings will allow us to understand the role of each individual during CA by further functional analyses. PMID:27877182

  8. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation

    Science.gov (United States)

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Kiilerich, P.; Bjornsson, B. Th; Madsen, Steffen S.; McCormick, S.D.; Stefansson, S.O.

    2008-01-01

    The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11??-hydroxysteroid dehydrogenase type-2 (11??-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4 days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11

  9. Structural lipid changes and Na(+)/K(+)-ATPase activity of gill cells' basolateral membranes during saltwater acclimation in sea lamprey (Petromyzon marinus, L.) juveniles.

    Science.gov (United States)

    Lança, Maria João; Machado, Maria; Ferreira, Ana Filipa; Quintella, Bernardo Ruivo; de Almeida, Pedro Raposo

    2015-11-01

    Seawater acclimation is a critical period for anadromous species and a process yet to be understood in lampreys. Considering that changes in lipid composition of the gill cells' basolateral membranes may disrupt the major transporter Na(+)K(+)-ATPase, the goal of this study was to detect changes at this level during juvenile sea lamprey seawater acclimation. The results showed that saltwater acclimation has a direct effect on the fatty acid composition of gill cells basolateral membrane's phospholipids. When held in full-strength seawater, the fatty acid profile of basolateral membrane's phospholipids suffered a restructure by increasing either saturation or the ratio between oleic acid and eicosapentaenoic acid. Simultaneously, the activity of Na(+)K(+)-ATPase revealed a significant and positive correlation with basolateral membrane's cholesterol content in the presence of highest salinity. Our results pointed out for lipid adjustments involving the functional transporter present on the gill cell basolateral membranes to ensure the role played by branchial Na(+)K(+)-ATPase in ion transport during saltwater acclimation process. The responses observed contributed to the strategy adopted by gill cell's basolateral membranes to compensate for osmotic and ionic stressors, to ensure the success of the process of seawater acclimation associated with the downstream trophic migration of juvenile sea lamprey.

  10. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  11. Effect of Permissive Dehydration on Induction and Decay of Heat Acclimation, and Temperate Exercise Performance

    Science.gov (United States)

    Neal, Rebecca A.; Massey, Heather C.; Tipton, Michael J.; Young, John S.; Corbett, Jo

    2016-01-01

    Purpose: It has been suggested that dehydration is an independent stimulus for heat acclimation (HA), possibly through influencing fluid-regulation mechanisms and increasing plasma volume (PV) expansion. There is also some evidence that HA may be ergogenic in temperate conditions and that this may be linked to PV expansion. We investigated: (i) the influence of dehydration on the time-course of acquisition and decay of HA; (ii) whether dehydration augmented any ergogenic benefits in temperate conditions, particularly those related to PV expansion. Methods: Eight males [VO2max: 56.9(7.2) mL·kg−1·min−1] undertook two HA programmes (balanced cross-over design), once drinking to maintain euhydration (HAEu) and once with restricted fluid-intake (HADe). Days 1, 6, 11, and 18 were 60 min exercise-heat stress tests [HST (40°C; 50% RH)], days 2–5 and 7–10 were 90 min, isothermal-strain (Tre ~ 38.5°C), exercise-heat sessions. Performance parameters [VO2max, lactate threshold, efficiency, peak power output (PPO)] were determined pre and post HA by graded exercise test (22°C; 55%RH). Results: During isothermal-strain sessions hypohydration was achieved in HADe and euhydration maintained in HAEu [average body mass loss −2.71(0.82)% vs. −0.56(0.73)%, P exercise Tre [−0.30(0.27)°C] and exercise heart rate [−12(15) beats.min−1], increased PV [+7.2(6.4)%] and sweat-loss [+0.25(0.22) L.h−1], P exercise Tre [−0.25(0.19)°C] and exercise heart rate [−3(9) beats.min−1], P 5 days to optimize HA. PMID:27932993

  12. Head-Down Tilt with Balanced Traction as a Model for Simulating Spinal Acclimation to Microgravity

    Science.gov (United States)

    Ballard, R. E.; Styf, J. R.; Watenpaugh, D. E.; Fechner, K.; Haruna, Y.; Kahan, N. J.; Hargens, A. R.

    1994-01-01

    Astronauts experience total body height increases of 4 to 7 cm in microgravity. Thus, stretching of the spinal cord, nerve roots, and muscular and ligamentous tissues may be responsible for the hyperreflexia, back pain, and muscular atrophy associated with exposure to microgravity. Axial compression of the spine makes 6 deg. head-down tilt (HDT) an unsuitable model for spinal acclimation to microgravity. However, this axial compression may be counteracted by balanced traction consisting of 10% body weight (sin 6 deg. = 0.1) applied to the legs. Six healthy male subjects underwent 3 days each of 60 HDT with balanced traction and horizontal bed rest (HBR), with a 2 week recovery period between treatments. Total body and spine length, lumbar disc height, back pain, erector spinae intramuscular pressure, and ankle joint torque were measured before, during and after each treatment. Total body and spine (processes of L5 - C7) lengths increased significantly more during HDT with balanced traction (22 +/- 8 mm and 25 +/- 8 mm, respectively) than during HBR (16 +/- 4 mm and 14 +/- 9 mm, respectively). Back and leg pain were significantly greater during HDT with balanced traction than during HBR. The distance between the lower end plate of L4 and the upper endplate of S1, as measured by sonography, increased significantly in both treatments to the same degree (2.9 +/- 1.9 mm, HDT with balanced traction; 3.3 +/- 1.5 mm, HBR). Intramuscular pressure of the erector spinae muscles and maximal ankle joint torque were unaltered with both models. While neither model increased height to the magnitude observed in microgravity, HDT with balanced traction may be a better model for simulating the body lengthening and back pain experienced in microgravity.

  13. Photosynthetic and Respiratory Acclimation to Experimental Warming for Four Species in a Tallgrass Prairie Ecosystem

    Institute of Scientific and Technical Information of China (English)

    Xuhui Zhou; Xiaozhong Liu; Linda L. Wallace; Yiqi Luo

    2007-01-01

    Global temperature has been increased by 0.6 ℃ over the past century and is predicted to increase by 1.4-5.8 ℃ by the end of this century. It is unclear what impacts global warming will have on tallgrass species. In the present study, we examined leaf net photosynthetic rate (Pn) and leaf respiration rate in darkness (Rd) of Aster ericoides (L.)Nesom, Ambrosia psilostachya DC., Hellanthus mollis Lam., and Sorghastrum nutans (L.) Nash In response to experimental warming in a tallgrass prairie ecosystem of the Great Plains, USA, in the autumn (fall) of 2000 and through 2001. Warming has been implemented with infrared heaters since 21 November 1999. The Pn increased significantly in spring, decreased in early fall, and did not change in summer and late fall in the four species under warming compared with control. The Rd of the four species increased significantly until mid-summer and then did not change under warming. Measured temperature-response curves of Pn showed that warming increased the optimum temperature of Pn (Topt) by 2.32 and 4.59 ℃ for H. mollis and S. nutans, respectively, in August, whereas there were no changes in May and September, and A. ericoides and A. psilostachya also showed no changes in any of the 3 months. However, Pn at optimum temperature (Popt) showed downregulation in September and no regulation in May and August for all four species. The temperature-response curves of Rd illustrate that the temperature sensitivity of Rd, Q10, was lower in the warmed plots compared with the control plots, except for A. ericoides in August, whereas there were no changes in May and September for all four species. The results of the present study indicate that photosynthetic and respiratory acclimation varies with species and among seasons, occurring in the mid-growing season and not in the early and late growing seasons.

  14. Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development.

    Science.gov (United States)

    Limin, Allen; Corey, Ann; Hayes, Patrick; Fowler, D Brian

    2007-06-01

    Six barley (Hordeum vulgare L.) accessions, previously used as parents of mapping populations, were evaluated for characters potentially affecting the location of low-temperature (LT) tolerance QTLs. Three were of winter growth habit (Kompolti Korai, Nure, and Strider), one was facultative (Dicktoo) and two were spring (Morex and Tremois). Final leaf number (FLN) and LT(50 )were determined at weekly intervals from 0 to 98 days of LT acclimation/vernalization under both long day (LD) and short day (SD) photoperiods. The point of vegetative/reproductive transition was determined from measurements of double ridge (DR) formation and FLN. With the exception of Nure, SD delayed development by increasing leaf production. Dicktoo was extremely SD sensitive lengthening its vegetative phase by more than 63 days relative to the LD photoperiod. SD had the opposite effect on Nure, causing an accelerating of flowering exhibiting the characteristic of 'short day vernalization'. All accessions except Dicktoo and Kompolti Korai acclimated rapidly in the first 7 days of LT exposure, approaching their maximum LT tolerance in 14-21 days. Dicktoo and Kompolti Korai continued to slowly acclimate until reproductive transition. The results emphasize two important points: (1) the location of QTLs for LT tolerance, and as a consequence the identification of putative candidate genes, will be a function of the genotypes sampled, the experimental conditions used, and the quality of the phenotypic data and (2) the barley LT tolerance pathway reaches an early impediment relative to closely related more hardy members of the Triticeae such as wheat and rye.

  15. Leaves of the Arabidopsis maltose exporter1 mutant exhibit a metabolic profile with features of cold acclimation in the warm.

    Directory of Open Access Journals (Sweden)

    Sarah J Purdy

    Full Text Available BACKGROUND: Arabidopsis plants accumulate maltose from starch breakdown during cold acclimation. The Arabidopsis mutant, maltose excess1-1, accumulates large amounts of maltose in the plastid even in the warm, due to a deficient plastid envelope maltose transporter. We therefore investigated whether the elevated maltose level in mex1-1 in the warm could result in changes in metabolism and physiology typical of WT plants grown in the cold. PRINCIPAL FINDINGS: Grown at 21 °C, mex1-1 plants were much smaller, with fewer leaves, and elevated carbohydrates and amino acids compared to WT. However, after transfer to 4 °C the total soluble sugar pool and amino acid concentration was in equal abundance in both genotypes, although the most abundant sugar in mex1-1 was still maltose whereas sucrose was in greatest abundance in WT. The chlorophyll a/b ratio in WT was much lower in the cold than in the warm, but in mex1-1 it was low in both warm and cold. After prolonged growth at 4 °C, the shoot biomass, rosette diameter and number of leaves at bolting were similar in mex1-1 and WT. CONCLUSIONS: The mex1-1 mutation in warm-grown plants confers aspects of cold acclimation, including elevated levels of sugars and amino acids and low chlorophyll a/b ratio. This may in turn compromise growth of mex1-1 in the warm relative to WT. We suggest that elevated maltose in the plastid could be responsible for key aspects of cold acclimation.

  16. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer.

    Science.gov (United States)

    Kroner, Yulia; Way, Danielle A

    2016-08-01

    Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high-latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol(-1) ) or elevated (EC, 750 μmol mol(-1) ) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat ) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat , dark respiration (Rdark ), and light respiration (Rlight ) rates acclimated to temperature, but not CO2 : the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark , so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10-40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm-grown seedlings by 22-56%. When Rlight was modeled as a constant fraction of Rdark , modeled daily respiratory losses were 11-65% greater than when using measured values of Rlight . Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark .

  17. Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae.

    Directory of Open Access Journals (Sweden)

    Samira Khodayari

    Full Text Available Diapause is a common feature in several arthropod species that are subject to unfavorable growing seasons. The range of environmental cues that trigger the onset and termination of diapause, in addition to associated hormonal, biochemical, and molecular changes, have been studied extensively in recent years; however, such information is only available for a few insect species. Diapause and cold hardening usually occur together in overwintering arthropods, and can be characterized by recording changes to the wealth of molecules present in the tissue, hemolymph, or whole body of organisms. Recent technological advances, such as high throughput screening and quantification of metabolites via chromatographic analyses, are able to identify such molecules. In the present work, we examined the survival ability of diapausing and non-diapausing females of the two-spotted spider mite, Tetranychus urticae, in the presence (0 or 5°C or absence of cold acclimation. Furthermore, we examined the metabolic fingerprints of these specimens via gas chromatography-mass spectrophotometry (GC-MS. Partial Least Square Discriminant Analysis (PLS-DA of metabolites revealed that major metabolic variations were related to diapause, indicating in a clear cut-off between diapausing and non-diapausing females, regardless of acclimation state. Signs of metabolic depression were evident in diapausing females, with most amino acids and TCA cycle intermediates being significantly reduced. Out of the 40 accurately quantified metabolites, seven metabolites remained elevated or were accumulated in diapausing mites, i.e. cadaverine, gluconolactone, glucose, inositol, maltose, mannitol and sorbitol. The capacity to accumulate winter polyols during cold-acclimation was restricted to diapausing females. We conclude that the induction of increased cold hardiness in this species is associated with the diapause syndrome, rather than being a direct effect of low temperature. Our results

  18. Progressive enhancement in the secretory functions of the digestive system of the rat in the course of cold acclimation.

    Science.gov (United States)

    Harada, E; Kanno, T

    1976-09-01

    1. The secretory function of the exocrine pancreas and the stomach have been studied in the course of cold acclimation of rats that had been fed at an ambient temperature of 1 degree C in a climatic room. 2. The secretory responses of pancreatic enzymes evoked by continuous infusion of pancreozymin (PZ, 2-5 mu./kg. hr) and a rapid single injection of PZ (1.7 mu./kg) reached a maximum in the group of rats fed at 1 degree C for 4 weeks, and fell to the control levels after 8 weeks. The increase in the flow of pancreatic juice evoked by single injection of PZ was maximal at 4 weeks and slightly decreased after 8 weeks. 3. The insulin (3-0 i.u./kg) evoked secretion of pancreatic enzymes gradually increased after cold exposure, reached a maximum at 4 weeks and fell to the control levels after 8 weeks. The flow of pancreatic juice after insulin injection was almost the same in every group throughout the course of cold exposure. 4. The ratio of amylase to the total amount of the protein in the pancreatic juice decreased abruptly, in contrast to an increase in the ratio of protease in the process of cold acclimation. The change in the ratio of enzyme activity in the pancreatic juice may reflect parallel changes in enzyme activity in the exocrine pancreas. 5. The gastric secretion in response to insulin and bile secretion in the group fed at 1 degree C for 7 weeks was significantly higher than that in the control group. 6. It was thus concluded that the secretory activities of digestive system were enhanced by prolonged cold exposure and then returned to control level, and that the activites of the pancreatic enzymes were altered in the process of cold acclimation in rats.

  19. Changes in Osmotic Pressure and Mucilage during Low-Temperature Acclimation of Opuntia ficus-indica 1

    Science.gov (United States)

    Goldstein, Guillermo; Nobel, Park S.

    1991-01-01

    Opuntia ficus-indica, a Crassulacean acid metabolism plant cultivated for its fruits and cladodes, was used to examine chemical and physiological events accompanying low-temperature acclimation. Changes in osmotic pressure, water content, low molecular weight solutes, and extracellular mucilage were monitored in the photosynthetic chlorenchyma and the water-storage parenchyma when plants maintained at day/night air temperatures of 30/20°C were shifted to 10/0°C. An increase in osmotic pressure of 0.13 megapascal occurred after 13 days at 10/0°C. Synthesis of glucose, fructose, and glycerol accounted for most of the observed increase in osmotic pressure during the low-temperature acclimation. Extracellular mucilage and the relative apoplastic water content increased by 24 and 10%, respectively, during exposure to low temperatures. These increases apparently favor the extracellular nucleation of ice closer to the equilibrium freezing temperature for plants at 10/0°C, which could make the cellular dehydration more gradual and less damaging. Nuclear magnetic resonance studies helped elucidate the cellular processes during ice formation, such as those revealed by changes in the relaxation times of two water fractions in the chlorenchyma. The latter results suggested a restricted mobility of intracellular water and an increased mobility of extracellular water for plants at 10/0°C compared with those at 30/20°C. Increased mobility of extracellular water could facilitate extracellular ice growth and thus delay the potentially lethal intracellular freezing during low-temperature acclimation. PMID:16668536

  20. Natural Resources Containing Arbutin. Determination of Arbutin in the Leaves of Bergenia crassifolia (L. Fritsch. acclimated in Romania

    Directory of Open Access Journals (Sweden)

    Carmen POP

    2009-06-01

    Full Text Available Bergenia crassifolia (L. Fritsch. is cited in literature as being one of the richest in arbutin (15-20%, an important pharmaceutical substance with disinfecting properties (in genitourinary diseases and also depigmentation properties (skin whitening agent. The aim of this study consisted in determination of arbutin content in leaves of Bergenia crassifolia acclimated in Romania. The optimum parameters for the extraction of arbutin and the dynamics of the accumulation of arbutin in Bergenia crassifolia leaves during the four seasons were also studied. The content of arbutin varied between 17.44% and 22.59% dry weight, values which are similar to those found in literature

  1. Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile cutthroat trout

    Science.gov (United States)

    Harper, D.D.; Farag, A.M.; Brumbaugh, W.G.

    2008-01-01

    We investigated the influence of acclimation on results of in situ bioassays with cutthroat trout in metal-contaminated streams. Cutthroat trout (Oncorhynchus clarki) were held for 21 days (1) in live containers at a reference or "clean" site having dissolved metals near detection limits (0.01 ??g/L cadmium [Cd] and 2.8 ??g/L zinc [Zn]; hardness 32 mg/L as CaCO3) and (2) at a site in a mining-impacted watershed having moderately increased metals (0.07 ??g/L Cd and 38 to 40 ??g/L Zn; hardness 50 mg/L as CaCO3). The 96-hour survival of each treatment group was then tested in situ at five sites from September 5 to 9, 2002, and each group exhibited a range of metal concentrations (0.44 to 39 ??g/L arsenic [As], 0.01 to 2.2 ??g/L Cd, and 0.49 to 856 ??g/L Zn). Survival was 100% at three sites for both treatments. However, a higher percentage of metal-acclimated fish survived at the site with the second highest concentrations of Cd and Zn (0.90 and 238 ??g/L, respectively) compared with fish acclimated at the reference site (100% vs. 55%, respectively). Survival was 65% for acclimated fish and 0% for metal-nai??ve fish at the site with the largest metal concentrations (2.2 ??g/L Cd and 856 ??g/L Zn). Water collected from the site with the largest concentrations of dissolved metals (on October 30, 2002) was used in a laboratory serial dilution to determine 96-hour LC50 values. The 96-hour LC50 estimates of nai??ve fish during the in situ and laboratory experiments were similar (0.60 ??g Cd/L and 226 ??g Zn/L for in situ and 0.64 ??g Cd/L and 201 ??g Zn/L for laboratory serial dilutions). However, mortality of nai??ve cutthroat trout tested under laboratory conditions was more rapid in dilutions of 100%, 75%, and 38% site water than in situ experiments. ?? 2007 Springer Science+Business Media, LLC.

  2. Effects of Cold Acclimation on Several Enzyme Activities in Euonymus radicans 'Emorald & Gold' and Its Relation to Semi-lethal Temperature

    Institute of Scientific and Technical Information of China (English)

    Guo Huihong; Gao Shumin; Zhao Fengjun; Li Fenglan

    2004-01-01

    The changes in activities of superoxide dismutase (SOD), peroxidase (POD) and ATPase in the leaves of Euonymus radicans were studied when seedlings were cold-acclimated (at 4 ℃) for 1 week, 2 weeks, 3 weeks and then treated for 1 d under low temperature stress (at -5 ℃). The semi-lethal temperatures of acclimated and unacclimated seedlings were also investigated. The results indicated that the activities of the three enzymes in the leaves of the seedlings treated at 4 ℃ for 1, 2 and 3 weeks were all higher than those of unacclimated seedings (treated at 22 ℃ as controls). The activities of SOD and POD increased continuously with the prolongation of the time of cold acclimation, but stepped up to summits then down to the levels of the controls. The activities of SOD culminated at the first week, and the activities of POD at the second week. When acclimated and unacclimated seedlings were both treated at -5 ℃ for 1 d, the activities of the three enzymes in the leaves of acclimated seedlings were a little lower than those before stress, but higher than those of the controls. Moreover, the decrease rate of enzyme activities was greatly lower than that of the controls. The results showed that cold acclimation could enhance the stability of the three enzymes in the leaves of seedlings under low temperature stress; the semi-lethal temperature was -19.1 ℃ when the seedlings were treated at 4 ℃ for 3 weeks, but it was -5.4 ℃ when the seedlings were treated at 22 ℃. The decline of the semi-lethal temperature caused by the adaptive changes of enzyme activities was one of the foundations of enhancing the cold tolerance.

  3. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities

    OpenAIRE

    Sinha, A.K.; Rasoloniriana, R.; Dasan, A.F.; Pipralia, N.; R. Blust; De Boeck, G.

    2015-01-01

    We investigated the interactive effect of ammonia toxicity, salinity challenge and nutritional status on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to normal seawater (32 ppt), to brackish water (20 ppt and 10 ppt) and to hyposaline water (2.5 ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20 mg/L ~1.18 mM representing 50% of 96 h LC50 value for ammon...

  4. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Jian, Dong

    2011-01-01

    The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis......, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant...

  5. Isolation of intact and pure chloroplasts from leaves of Arabidopsis thaliana plants acclimated to low irradiance for studies on Rubisco regulation

    Directory of Open Access Journals (Sweden)

    Magda Grabsztunowicz

    2012-11-01

    Full Text Available A protocol is presented for low-cost and fast isolation of intact and pure chloroplasts from leaves of plants acclimated to low irradiance. The protocol is based on a differential centrifugation of cleared leaf homogenate and omits a centrifugation on Percoll gradient step. The intactness and purity of the chloroplasts isolated from leaves of low irradiance-acclimated plants by using this protocol (confirmed by phase contrast microscopy as well as enzymatic and immunological approaches allows plausible studies on low irradiance-dependent Rubisco regulation.

  6. RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules

    Science.gov (United States)

    Cabeza, Ricardo A.; Liese, Rebecca; Lingner, Annika; von Stieglitz, Ilsabe; Neumann, Janice; Salinas-Riester, Gabriela; Pommerenke, Claudia; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legume nodules are plant tissues with an exceptionally high concentration of phosphorus (P), which, when there is scarcity of P, is preferentially maintained there rather than being allocated to other plant organs. The hypothesis of this study was that nodules are affected before the P concentration in the organ declines during whole-plant P depletion. Nitrogen (N2) fixation and P concentration in various organs were monitored during a whole-plant P-depletion process in Medicago truncatula. Nodule gene expression was profiled through RNA-seq at day 5 of P depletion. Until that point in time P concentration in leaves reached a lower threshold but was maintained in nodules. N2-fixation activity per plant diverged from that of fully nourished plants beginning at day 5 of the P-depletion process, primarily because fewer nodules were being formed, while the activity of the existing nodules was maintained for as long as two weeks into P depletion. RNA-seq revealed nodule acclimation on a molecular level with a total of 1140 differentially expressed genes. Numerous genes for P remobilization from organic structures were increasingly expressed. Various genes involved in nodule malate formation were upregulated, while genes involved in fermentation were downregulated. The fact that nodule formation was strongly repressed with the onset of P deficiency is reflected in the differential expression of various genes involved in nodulation. It is concluded that plants follow a strategy to maintain N2 fixation and viable leaf tissue as long as possible during whole-plant P depletion to maintain their ability to react to emerging new P sources (e.g. through active P acquisition by roots). PMID:25151618

  7. Endogenous Hydrogen Peroxide Plays a Positive Role in the Upregulation of Heme Oxygenase and Acclimation to Oxidative Stress in Wheat Seedling Leaves

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yue Chen; Wen-Biao Shen; Xiao Ding; Sheng Xu; Ren Wang; Wei Xuan; Ze-Yu Cao; Jian Chen; Hong-Hong Wu; Mao-Bing Ye

    2009-01-01

    Pretreatment of lower H_2O_2 doses (0.05, 0.5 and 5 mM) for 24 h was able to dose-dependently attenuate lipid peroxidation In wheat seedling leaves mediated by further oxidative damage elicited by higher dose of H_2O_2 (150 mM) for 6 h, with 0.5 mM H_2O_2 being the most effective concentrations. Further results lllustrated that 0.5 mM H_2O_2 pretreatment triggered the biphasic production of H_2O_2 during a 24 h period. We also noticed that only peak Ⅰ (0.25 h) rather than peak Ⅱ (4 h) was approxlmately consistent with the enhancement of heme oxygenase (HO) activity, HO-1 gene expression. Meanwhile, enhanced superoxide dismutase (SOD) activity, Mn-SOD and Cu, Zn-SOD transcripts might be a potential source of peak I of endogenous H_2O_2. Further results confirmed that 0.5 mM H_2O_2 treatment for 0.5 h was able to upregulate HO gene expression, which was detected by enzyme activity determination, semi-quantitative reverse transcription-polymerase chain reaction and western blottlng. Meanwhile, the application of N,N'-dimethylthiourea, a trap for endogenous H_2O_2, not only blocked the upregulation of HO, but also reversed the corresponding oxidation attenuation. Together, the above results suggest that endogenous H_2O_2 production (peak I) plays a positive role in the induction of HO by enhancing its mRNA level and protein expression, thus leading to the acclimation to oxidative stress.

  8. Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light.

    Science.gov (United States)

    Ho, Ming-Yang; Gan, Fei; Shen, Gaozhong; Bryant, Donald A

    2017-02-01

    Phycobilisomes (PBS) are antenna complexes that harvest light for photosystem (PS) I and PS II in cyanobacteria and some algae. A process known as far-red light photoacclimation (FaRLiP) occurs when some cyanobacteria are grown in far-red light (FRL). They synthesize chlorophylls d and f and remodel PS I, PS II, and PBS using subunits paralogous to those produced in white light. The FaRLiP strain, Leptolyngbya sp. JSC-1, replaces hemidiscoidal PBS with pentacylindrical cores, which are produced when cells are grown in red or white light, with PBS with bicylindrical cores when cells are grown in FRL. This study shows that the PBS of another FaRLiP strain, Synechococcus sp. PCC 7335, are not remodeled in cells grown in FRL. Instead, cells grown in FRL produce bicylindrical cores that uniquely contain the paralogous allophycocyanin subunits encoded in the FaRLiP cluster, and these bicylindrical cores coexist with red-light-type PBS with tricylindrical cores. The bicylindrical cores have absorption maxima at 650 and 711 nm and a low-temperature fluorescence emission maximum at 730 nm. They contain ApcE2:ApcF:ApcD3:ApcD2:ApcD5:ApcB2 in the approximate ratio 2:2:4:6:12:22, and a structural model is proposed. Time course experiments showed that bicylindrical cores were detectable about 48 h after cells were transferred from RL to FRL and that synthesis of red-light-type PBS continued throughout a 21-day growth period. When considered in comparison with results for other FaRLiP cyanobacteria, the results here show that acclimation responses to FRL can differ considerably among FaRLiP cyanobacteria.

  9. Effects of temperature and thermal acclimation on locomotor performance of Macrobiotus hufelandi Schultze (Tardigrada: Macrobiotidae)%温度和热驯化对胡氏大生熊虫运动行为的影响

    Institute of Scientific and Technical Information of China (English)

    李晓晨; 王立志

    2005-01-01

    The beneficial acclimation hypothesis (BAH) predicts that animals acclimated to a particular temperature have enhanced performance or fitness at that temperature in comparison with animals acclimated to other temperatures. The BAH has been tested by a variety of empirical examinations, and was rejected by some of them. In order to provide new evidences for the BAH, the effects of acute and acclimation temperature (AT) on locomotor performance of Macrobiotus hufelandi (Tardigrada: Macrobiotidae) were investigated. The tardigrades were collected from Nanwutai, Qinling Mountains which traverse from west to east in central China. The subjects were acclimated to either 2℃ or 22℃ for 2 weeks. The animal was transferred onto a frosted slide and allowed to walk freely at the performance temperature (PT) 2℃ or 22℃. Only one individual was tested per test bout, which lasted from three to five minutes. To avoid occurrence of thermal acclimation effect, the standard adaptation time was limited to 1.5 min. Each subject was tested for once at the same PT, and was tested only at one PT. A total of 25 individuals were tested and measured at the same PT. The locomotor performance of the animals was recorded with a digital video camera mounted on a microscope at 4×10 amplification and replayed on a PC. Every subject was identified. Walking speed (WS) and percentage of time moving (PTM) at both PTs (2℃ or 22℃) were selected as the rate parameters of locomotor performance. The two-way repeated measures ANOVA with a significance level of α= 0.05 and Duncan multiple range test were used to analyze the data. WS of the animals acclimated to and tested at the same temperatures was significantly faster than that for animals acclimated to and tested at the different temperatures, similarly, PTM of the animals acclimated to 22℃ and tested at 22℃ was significantly greater than PTM of animals acclimated to 22℃ and tested at 2℃, which indicated that the animals acclimated

  10. Improved Automotive NO (x) Aftertreatment System: Metal Ammine Complexes as NH3 Source for SCR Using Fe-Containing Zeolite Catalysts

    DEFF Research Database (Denmark)

    Johannessen, Tue; Schmidt, Henning; Frey, Anne Mette

    2009-01-01

    Ammonia storage is a challenge in the selective catalytic reduction of NO (x) in vehicles. We propose a new system, based on metal ammines as the ammonia source. In combination with iron containing zeolites as the SCR catalyst it should be possible to obtain a low temperature system for NO (x...

  11. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.

    Science.gov (United States)

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-12-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm(3) cm(-2), control: 1.77 ± 0.30 mm(3) cm(-2)). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in

  12. Derivation of Mortal Injury Metric for Studies of Rapid Decompression of Depth-Acclimated Physostomous Fish

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, Craig A.; Carlson, Thomas J.; Brown, Richard S.

    2007-11-05

    In 2005 the U.S. Army Corps of Engineers (USACE) began a study to investigate the response of hatchery and run-of-the-river (ROR) juvenile Chinook salmon to the effects of rapid decompression during passage through mainstem Federal Columbia River Power System (FCRPS) Kaplan turbines. In laboratory studies conducted by Pacific Northwest National Laboratory (PNNL) for USACE since 2005, juvenile fish have been exposed to rapid decompression in a barometric pressure chamber. An initial study considered the response of juvenile Chinook salmon bearing radio transmitters to rapid decompression resulting from exposure to a pressure time history simulating the worst case condition that might be experienced during passage through an operating turbine. The study in 2005 found that acclimation depth was a very important treatment factor that greatly influenced the significantly higher incidence of injury and mortality of rapidly decompressed Chinook salmon bearing radio telemetry devices. In 2006 we initiated a statistical investigation using data in hand into derivation of a new end-point measure for assessment of the physiological response of juvenile Chinook salmon to rapid decompression. Our goal was a measure that would more fully utilize both mortality and injury data while providing a better assessment of the most likely survival outcome for juvenile physostomous fish exposed to rapid decompression. The conclusion of the analysis process was to classify fish as mortally injured when any of the 8 injuries are present, regardless of whether the fish was last observed alive or not. The mortally injured classification has replaced mortality as the end point metric for our rapid decompression studies. The process described in this report is an example of how a data set may be analyzed to identify decision criterion for objective classification of test fish to a specific end-point. The resulting list of 8 mortal injuries is applicable to assess injuries from rapid

  13. Body temperature regulation during acclimation to cold and hypoxia in rats.

    Science.gov (United States)

    Cadena, V; Tattersall, G J

    2014-12-01

    Extreme environmental conditions present challenges for thermoregulation in homoeothermic organisms such as mammals. Such challenges are exacerbated when two stressors are experienced simultaneously and each stimulus evokes opposing physiological responses. This is the case of cold, which induces an increase in thermogenesis, and hypoxia, which suppresses metabolism conserving oxygen and preventing hypoxaemia. As an initial approach to understanding the thermoregulatory responses to cold and hypoxia in a small mammal, we explored the effects of acclimation to these two stressors on the body temperature (Tb) and the daily and ultradian Tb variations of Sprague-Dawley rats. As Tb is influenced by sleep-wake cycles, these Tb variations reflect underlying adjustments in set-point and thermosensitivity. The Tb of rats decreased precipitously during initial hypoxic exposure which was more pronounced in cold (Tb=33.4 ± 0.13) than in room temperature (Tb=35.74 ± 0.17) conditions. This decline was followed by an increase in Tb stabilising at a new level ~0.5°C and ~1.4°C below normoxic values at room and cold temperatures, respectively. Daily Tb variations were blunted during hypoxia with a greater effect in the cold. Ultradian Tb variations exhibited daily rhythmicity that disappeared under hypoxia, independent of ambient temperature. The adjustments in Tb during hypoxia and/or cold are in agreement with the hypothesis that an initial decrease in the Tb set-point is followed by its partial re-establishment with chronic hypoxia. This rebound of the Tb set-point might reflect cellular adjustments that would allow animals to better deal with low oxygen conditions, diminishing the drive for a lower Tb set-point. Cold and hypoxia are characteristic of high altitude environments. Understanding how mammals cope with changes in oxygen and temperature will shed light into their ability to colonize new environments along altitudinal clines and increase our understanding of how

  14. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N.

    Directory of Open Access Journals (Sweden)

    Marine J Briand

    Full Text Available A wide investigation was conducted into the main organic matter (OM sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef, different associated ecosystems (mangroves and seagrass beds and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM were sampled. Isotopic signatures (C and N of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰ and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰. Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰ whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰. The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is

  15. The DnaJ-like zinc finger domain protein PSA2 affects light acclimation and chloroplast development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yan-Wen eWang

    2016-03-01

    Full Text Available The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development.

  16. Tests of the contribution of acclimation to geographic variation in water loss rates of the West Indian lizard Anolis cristatellus.

    Science.gov (United States)

    Gunderson, Alex R; Siegel, Jeremy; Leal, Manuel

    2011-10-01

    Phenotypic plasticity can contribute to the process of adaptive radiation by facilitating population persistence in novel environments. West Indian Anolis lizards provide a classic example of an adaptive radiation, in which divergence has occurred along two primary ecological axes: structural microhabitat and climate. Adaptive plasticity in limb morphology is hypothesized to have facilitated divergence along the structural niche axis in Anolis, but very little work has explored plasticity in physiological traits. Here, we experimentally ask whether Puerto Rican Anolis cristatellus from mesic and xeric habitats differ in desiccation rates, and whether these lizards exhibit an acclimation response to changes in relative humidity. We first present microclimatic data collected at lizard perch sites that demonstrate that abiotic conditions experienced by lizards differ between mesic and xeric habitat types. In Experiment 1, we measured desiccation rates of lizards from both habitats maintained under identical laboratory conditions. This experiment demonstrated that desiccation rates differ between populations; xeric lizards lose water more slowly than mesic lizards. In Experiment 2, lizards from each habitat were either maintained under the conditions of Experiment 1, or under extremely low relative humidity. Desiccation rates did not differ between lizards from the same habitat maintained under different treatments and xeric lizards maintained lower desiccation rates than mesic lizards within each treatment. Our results demonstrate that A. cristatellus does not exhibit an acclimation response to abrupt changes of hydric conditions, and suggest that tropical Anolis lizards might be unable to exhibit physiological plasticity in desiccation rates in response to varying climatic conditions.

  17. Soluble Sugars and Sucrose-Metabolizing Enzymes Related to Cold Acclimation of Sweet Cherry Cultivars Grafted on Different Rootstocks

    Directory of Open Access Journals (Sweden)

    Ece Turhan

    2012-01-01

    Full Text Available The bark tissues were collected from 4-year-old sweet cherry trees cvs. 0900 Ziraat and Lambert grafted on Gisela 5 and Mazzard rootstocks in cold-acclimated (CA and nonacclimated (NA stages. Bark tissues subjected to 4°C and −5°C injured to a limited extent in both stages. However, more than 50% injury occurred by temperatures equal to or colder than −15°C only in NA period. Total soluble sugar (TSS, reducing sugars, and sucrose contents were higher in CA than those in NA stages in all samples. The activities of acid invertase (EC 3.2.1.26 and sucrose synthase (SS (EC 2.4.2.13 enzymes were higher in NA stage than those in CA stage. Considering the rootstocks, reducing sugars were higher in both cultivars grafted on Gisela 5 whereas sucrose contents were higher in both cultivars grafted on Mazzard. However, the enzyme activities of both cultivars were higher on Mazzard rootstock than on Gisela 5. In conclusion, cold hardiness of sweet cherry graft combinations was suggested by increasing their TSS, reducing sugars, and sucrose contents significantly in the CA stage. Moreover, acid invertase and SS are down regulated during cold acclimation. Indeed the results suggested that Mazzard is more cold-hardy rootstock than Gisela 5.

  18. Intracerebroventricular administration of leptin increase physical activity but has no effect on thermogenesis in cold-acclimated rats.

    Science.gov (United States)

    Tang, Gang-Bin; Tang, Xiang-Fang; Li, Kui; Wang, De-Hua

    2015-06-08

    Most small homotherms display low leptin level in response to chronic cold exposure. Cold-induced hypoleptinemia was proved to induce hyperphagia. However, it is still not clear whether hypoleptinemia regulates energy expenditure in cold condition. We try to answer this question in chronic cold-acclimated rats. Results showed that 5-day intracerebroventricular(ICV) infusion of leptin (5 μg/day) had no effects on basal and adaptive thermogenesis and uncoupling protein 1 expression. Physical activity was increased by leptin treatment. We further determined whether ghrelin could reverse the increasing effect of leptin on physical activity. Coadministration of ghrelin (1.2 μg/day) completely reversed the effect of leptin on physical activity. Collectively, this study indicated the regulation of leptin on energy expenditure during cold acclimation may be mainly mediated by physical activity but not by thermogenesis. Our study outlined behavioral role of leptin during the adaptation to cold, which adds some new knowledge to promote our understanding of cold-induced metabolic adaptation.

  19. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves

    Science.gov (United States)

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-01-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298

  20. De Novo Synthesis and Degradation of Lx and V Cycle Pigments during Shade and Sun Acclimation in Avocado Leaves1

    Science.gov (United States)

    Förster, Britta; Osmond, C. Barry; Pogson, Barry J.

    2009-01-01

    The photoprotective role of the universal violaxanthin cycle that interconverts violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z) is well established, but functions of the analogous conversions of lutein-5,6-epoxide (Lx) and lutein (L) in the selectively occurring Lx cycle are still unclear. We investigated carotenoid pools in Lx-rich leaves of avocado (Persea americana) during sun or shade acclimation at different developmental stages. During sun exposure of mature shade leaves, an unusual decrease in L preceded the deepoxidation of Lx to L and of V to A+Z. In addition to deepoxidation, de novo synthesis increased the L and A+Z pools. Epoxidation of L was exceptionally slow, requiring about 40 d in the shade to restore the Lx pool, and residual A+Z usually persisted overnight. In young shade leaves, the Lx cycle was reversed initially, with Lx accumulating in the sun and declining in the shade. De novo synthesis of xanthophylls did not affect α- and β-carotene pools on the first day, but during long-term acclimation α-carotene pools changed noticeably. Nonetheless, the total change in α- and β-branch carotenoid pools was equal. We discuss the implications for regulation of metabolic flux through the α- and β-branches of carotenoid biosynthesis and potential roles for L in photoprotection and Lx in energy transfer to photosystem II and explore physiological roles of both xanthophyll cycles as determinants of photosystem II efficiency. PMID:19060099

  1. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity.

    Science.gov (United States)

    Tanou, Georgia; Job, Claudette; Rajjou, Loïc; Arc, Erwann; Belghazi, Maya; Diamantidis, Grigorios; Molassiotis, Athannasios; Job, Dominique

    2009-12-01

    Hydrogen peroxide (H(2)O(2)) and nitric oxide (*NO) are key reactive species in signal transduction pathways leading to activation of plant defense against biotic or abiotic stress. Here, we investigated the effect of pre-treating citrus plants (Citrus aurantium L.) with either of these two molecules on plant acclimation to salinity and show that both pre-treatments strongly reduced the detrimental phenotypical and physiological effects accompanying this stress. A proteomic analysis disclosed 85 leaf proteins that underwent significant quantitative variations in plants directly exposed to salt stress. A large part of these changes was not observed with salt-stressed plants pre-treated with either H(2)O(2) or sodium nitroprusside (SNP; a *NO-releasing chemical). We also identified several proteins undergoing changes either in their oxidation (carbonylation; 40 proteins) and/or S-nitrosylation (49 proteins) status in response to salinity stress. Both H(2)O(2) and SNP pre-treatments before salinity stress alleviated salinity-induced protein carbonylation and shifted the accumulation levels of leaf S-nitrosylated proteins to those of unstressed control plants. Altogether, the results indicate an overlap between H(2)O(2)- and *NO-signaling pathways in acclimation to salinity and suggest that the oxidation and S-nitrosylation patterns of leaf proteins are specific molecular signatures of citrus plant vigour under stressful conditions.

  2. Enhanced drought tolerance of a soil-dwelling springtail by pre-acclimation to a mild drought stress.

    Science.gov (United States)

    Sjursen, H; Bayley, M; Holmstrup, M

    2001-09-01

    The springtail Folsomia candida has a highly permeable cuticle, but is able to survive several weeks at 98.2%RH. This corresponds to a water potential deficit of about 17bars between the environment and the normal osmotic pressure of the body fluids of this animal. Recent studies have shown a water vapour absorption mechanism by accumulation of sugars and polyols (SP) in F. candida, which explains how this species can survive dehydrating conditions. In the present study, adult F. candida were pre-acclimated at 98.2%RH to induce the accumulation of SP, and were subsequently exposed for additional desiccating conditions from 98 to 94%RH. Activity level, water content, osmotic pressure of body fluids and SP composition were investigated. After the desiccation period, the animals were rehydrated at 100%RH and survival was assessed. The results showed that F. candida survived a more severe drought stress when it had been pre-acclimated to 98.2%RH before exposure to lower humidity. This species was able to maintain hyperosmosity to the surroundings at 95.5%RH, suggesting that it can absorb water vapour down to this limit. Below this limit, trehalose levels increased while myo-inositol levels decreased. We propose that this is a change of survival strategy where F. candida at mild desiccation levels seek to retain water by colligative means (remain hyperosmotic), but at severe desiccation levels switches to an anhydrobiotic strategy.

  3. Acclimation of croton and hibiscus seedlings in response to the application of indobultiric acid and humic acid for rooting

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2015-06-01

    Full Text Available The vegetative propagation of ornamental plants can be accelerated by applying plant growth regulators. Amongst them, the use of auxins, plant hormones with physiological effects on cell elongation and rooting have stood out. Alternatively, the application of humic acids, bioactive fraction of soil organic matter, also results in increases in rooting cuttings of ornamental plants. The objective of this work was to study the growth characteristics and the nutritional contents of croton and hibiscus plants during acclimation of seedlings in response to different concentrations of indolebutyric acid (IBA and humic acid (HA applied to cuttings for rooting. The experiment was conducted in greenhouse, and the apical stem cuttings were treated with solutions with concentrations of 0, 250, 500, 1000 and 2000 mg L-1of IBA and 0, 10, 20, 30 and 40 mg L-1 of C from HA. At 45 days of rooting in carbonized rice husk, they were individually transferred to plastic bags of 2.0 dm3 containing a mixture of soil: sand: manure (2: 1: 1 as substrate. At 90 days of acclimation, the plants were collected for measurement of growth and nutritional variables. The results showed that the application of the IBA stimulates the absorption of nutrients and growth of croton cuttings and transplanted hibiscus, contributing to formation of vigorous seedlings. A similar response occurred with the application of HA in hibiscus cuttings

  4. Assessment of Barotrauma Resulting from Rapid Decompression of Depth Acclimated Juvenile Chinook Salmon Bearing Radio Telemetry Transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.; Stephenson, John R.; Abernethy, Cary S.; McKinstry, Craig A.; Theriault, Marie-Helene

    2007-09-06

    A multifactor study was conducted by Battelle for the US Army Corps of Engineers to assess the significance of the presence of a radio telemetry transmitter on the effects of rapid decompression from simulated hydro turbine passage on depth acclimated juvenile run-of-the-river Chinook salmon. Study factors were: (1) juvenile chinook salmon age;, subyearling or yearling, (2) radio transmitter present or absent, (3) three transmitter implantation factors: gastric, surgical, and no transmitter, and (4) four acclimation depth factors: 1, 10, 20, and 40 foot submergence equivalent absolute pressure, for a total of 48 unique treatments. Exposed fish were examined for changes in behavior, presence or absence of barotrauma injuries, and immediate or delayed mortality. Logistic models were used to test hypotheses that addressed study objectives. The presence of a radio transmitter was found to significantly increase the risk of barotrauma injury and mortality at exposure to rapid decompression. Gastric implantation was found to present a higher risk than surgical implantation. Fish were exposed within 48 hours of transmitter implantation so surgical incisions were not completely healed. The difference in results obtained for gastric and surgical implantation methods may be the result of study design and the results may have been different if tested fish had completely healed surgical wounds. However, the test did simulate the typical surgical-release time frame for in-river telemetry studies of fish survival so the results are probably representative for fish passing through a turbine shortly following release into the river. The finding of a significant difference in response to rapid decompression between fish bearing radio transmitters and those not implies a bias may exist in estimates of turbine passage survival obtained using radio telemetry. However, the rapid decompression (simulated turbine passage) conditions used for the study represented near worst case exposure

  5. 复杂信号环境下的辐射源定位技术%Radiation source location technology in complex environment

    Institute of Scientific and Technical Information of China (English)

    贾依菲; 连震

    2012-01-01

    简述了辐射源定位技术的作用、发展方向以及各种基本定位方法的优缺点。介绍了一种基于TDOA和DD进行定位的新型定位方法;该方法利用辐射源信号到达两架飞机的时间差(TDOA)和时间差的变化率(DD)来对该辐射源进行定位。%The role, development of radiation source location technology and the advantages and disadvantages of various basic location methods are introduced. A new location method based on TDOA and DD is presented. The method used emitter signal arrival time difference between two planes (TDOA) and rate of change of the time difference (DD) to locate the radiation source.

  6. Constraints on the source of resurgent doming inferred from analogue and numerical modeling - Implications on the current feeding system of the Yenkahe dome-Yasur volcano complex (Vanuatu)

    Science.gov (United States)

    Brothelande, E.; Peltier, A.; Got, J.-L.; Merle, O.; Lardy, M.; Garaebiti, E.

    2016-08-01

    Resurgence, defined as the post-collapse long-term uplift of a caldera floor, is commonly attributed to a renewed rise of magma. The Yenkahe dome (Vanuatu) exhibits a common morphology - elongated with a graben on top - among resurgent domes, and is also one of the most active structures of the kind. In this study, we performed a joint analysis based on analogue and finite element numerical models to (1) constrain the width and depth of the long-term deformation intrusive source of the Yenkahe dome and (2) discuss the close association between the Yenkahe dome and the active Yasur cone. We consider the resurgent deformation at the surface to be driven by the uplift of a magma reservoir roof in depth. As the edifice deformation response depends on the medium and the source properties, the mechanical behavior of the upper crust and the nature of the source are modeled using two very different sets of hypotheses. Analogue modeling uses silicone putty, an analogue for a large viscous magma body, intruding a sand-plaster mixture reproducing a Mohr-Coulomb behavior for the crust. Numerical models consider the vertical displacement of a rigid indenter, allowing the conservation of a flat-shaped roof, into an elastoplastic material. Numerical and analogue models show different resurgent dome structures at depth but similar dome and graben morphologies in the surface. Inverse faults - or equivalent shearing zones - delimiting the dome provide an explanation for the confined nature of resurgent doming and the persistent volcanic activity on the dome border represented by the Yasur volcano. Analogue and numerical models together provide an estimation range of 1-1.8 km for the intrusive deformation source depth, and 1.3-2 km for its width. The proposed association between the Yenkahe dome and the Yasur volcano is compatible with such a shallow depth of the magma reservoir, and argues for a discontinuous resurgence process.

  7. Discovery of a Plains Caldera Complex and Extinct Lava Lake in Arabia Terra, Mars: Implications for the Discovery of Additional Highland Volcanic Source Regions

    Science.gov (United States)

    Bleacher, Jacob; Michalski, Joseph

    2012-01-01

    Several irregularly shaped topographic depressions occur near the dichotomy boundary in northern Arabia Terra, Mars. The geomorphology of these features suggests that they formed by collapse, opposed to meteor impact. At least one depression (approx.55 by 85 km) displays geologic features indicating a complex, multi-stage collapse history. Features within and around the collapse structure indicate volcanic processes. The complex occurs within Hesperian ridged plains of likely volcanic origin and displays no crater rim or evidence for ejecta. Instead the depression consists of a series of circumferential graben and down-dropped blocks which also display upper surfaces similar to ridged plain lavas. Large blocks within the depression are tilted towards the crater center, and display graben that appear to have originally been linked with circumferential graben outside of the complex related to earlier collapse events. A nearly 700 m high mound exists along a graben within the complex that might be a vent. The deepest depression displays two sets of nearly continuous terraces, which we interpret as high-stands of a drained lava lake. These features appear similar to the black ledge described during the Kilauea Iki eruption in 1959. A lacustrine origin for the terraces seems unlikely because of the paucity of channels found in or around the depression that could be linked to aqueous surface processes. In addition, there is no obvious evidence for lacustrine sediments within the basin. Together with the presence of significant faulting that is indicative of collapse we conclude that this crater complex represents a large caldera formed in the Late Noachian to Early Hesperian. Other linear and irregular depressions in the region also might be linked to ancient volcanism. If that hypothesis is correct, it suggests that northern Arabia Terra could contain a large, previously unrecognized highland igneous province. Evacuation of magma via explosive and effusive activity

  8. [Complex control of the source of infection in sepsis : Extracorporeal membrane oxygenation (ECMO) as a bridging concept for tracheal fistula repair in sepsis-associated ARDS].

    Science.gov (United States)

    Weiterer, S; Schmidt, K; Deininger, M; Ulrich, A; Tochtermann, U; Eberhardt, R; Hofer, S; Weigand, M A; Brenner, T

    2016-09-01

    Here, we present a case of a tracheal fistula due to an anastomotic insufficiency following abdominothoracic esophageal resection. Despite immediate discontinuity resection, the tracheal fistula could not be surgically closed, resulting in incomplete control of the source of infection and an alternative treatment concept in the form of interventional fistula closure using a Y-tracheal stent. However, owing to existing severe acute respiratory distress syndrome (ARDS), which is associated with a considerable risk of peri-interventional hypoxia, a temporary bridging concept using venovenous extracorporeal membrane oxygenation (ECMO) was implemented successfully.

  9. Pre-anthesis high temperature acclimation alleviates the negative effects of postanthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Liu, Fulai

    2012-01-01

    The potential role of pre-anthesis high temperature acclimation in alleviating the negative effects of post-anthesis heat stress on stem stored carbohydrate remobilization and grain starch accumulation in wheat was investigated. The treatments included no heat-stress (CC), heat stress at pre-anth...

  10. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME.

    Science.gov (United States)

    Korac, Aleksandra; Buzadzic, Biljana; Petrovic, Vesna; Vasilijevic, Ana; Jankovic, Aleksandra; Korac, Bato

    2008-01-01

    The aim of the present study was to explore the effect of nitric oxide on leptin immunoexpression and innervation in interscapular brown adipose tissue (IBAT) of room- and cold- acclimated rats. Animals acclimated both to room-temperature (22 +/- 1 degrees C) and cold (4 +/- 1 degrees C) were treated with L-arginine, a substrate for nitric oxide synthases (NOSs), or N?-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOSs, for 45 days. Leptin expression and localization in brown adipocytes was studied by immunohistochemistry, and innervation stained by the Bodian method. Strong leptin immunopositivity was observed in brown adipocytes cytoplasm of all room-acclimated groups, but nuclear leptin positivity was found only in L-NAME treated rats. In cold-acclimated control and L-NAME treated rats leptin immunopositivity was absent, while L-arginine treatment reversed the cold-induced suppression of leptin expression. Comparing to control, L-arginine, and even more L-NAME, at 22 +/- 1 degrees C induced greater innervation. In conclusion, L-arginine treatment changes leptin expression pattern on cold in rat IBAT.

  11. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME.

    Directory of Open Access Journals (Sweden)

    Bato Korac

    2008-02-01

    Full Text Available The aim of the present study was to explore the effect of nitric oxide on leptin immunoexpression and innervation in interscapular brown adipose tissue (IBAT of room- and cold- acclimated rats. Animals acclimated both to room-temperature (22 +/- 1 degrees C and cold (4 +/- 1 degrees C were treated with L-arginine, a substrate for nitric oxide synthases (NOSs, or N?-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOSs, for 45 days. Leptin expression and localization in brown adipocytes was studied by immunohistochemistry, and innervation stained by the Bodian method. Strong leptin immunopositivity was observed in brown adipocytes cytoplasm of all room-acclimated groups, but nuclear leptin positivity was found only in L-NAME treated rats. In cold-acclimated control and L-NAME treated rats leptin immunopositivity was absent, while L-arginine treatment reversed the cold-induced suppression of leptin expression. Comparing to control, L-arginine, and even more L-NAME, at 22 +/- 1 degrees C induced greater innervation. In conclusion, L-arginine treatment changes leptin expression pattern on cold in rat IBAT.

  12. Source contribution and risk assessment of airborne toxic metals by neutron activation analysis in Taejeon industrial complex area - Concentration analysis and health risk assessment of airborne toxic metals in Taejeon 1,2 industrial Complex

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Jang, M. S.; Nam, B. H.; Yun, M. J. [Chungnam National Univ., Taejeon (Korea)

    2000-04-01

    The study centers on one-year continual concentration analysis using ICP-MS and on health risk assessment of 15 airborne toxic metals in Taejeon 1,2 industrial complex. About 1-year arithmetic mean of human carcinogen, arsenic, hexavalent chromium and nickel subsulfide is 6.05, 2.40 and 2.81 ng/m{sup 3} while the mean of probable human carcinogen, beryllium, cadmium and lead is 0.06, 3.92, 145.99 ng/m{sup 3}, respectively. And the long-term arithmetic mean concentration of non-carcinogenic metal, manganese is 44.60 ng/m{sup 3}. The point risk estimate for the inhalation of carcinogenic metals is 7.0 X10{sup -5}, which is higher than a risk standard of 10{sup -5}. The risk from human carcinogens is 6.2X10{sup -5}, while that from probable human carcinogens is 8.0X10{sup -6}, respectively. About 86 % of the cancer risk is due to the inhalation of human carcinogens, arsenic and hexavalent chromium. Thus, it is necessary to properly manage both arsenic and hexavalent chromium risk in Taejeon 1,2 industrial complex. 37 refs., 13 figs., 9 tabs. (Author)

  13. Complexity, Systems, and Software

    Science.gov (United States)

    2014-08-14

    complex ( Hidden issues; dumbs down operator) 11 Complexity, Systems, and Software Sarah Sheard August 14, 2014 © 2014 Carnegie...August 14, 2014 © 2014 Carnegie Mellon University Addressing Complexity in SoSs Source: SEBOK Wiki System Con truer Strateglc Context

  14. The genetic legacy of polyploid Bolivian Daphnia: the tropical Andes as a source for the North and South American D. pulicaria complex.

    Science.gov (United States)

    Mergeay, Joachim; Aguilera, Ximena; Declerck, Steven; Petrusek, Adam; Huyse, Tine; De Meester, Luc

    2008-04-01

    We investigated genetic variation in asexual polyploid members of the water flea Daphnia pulex complex from a set of 12 Bolivian high-altitude lakes. We used nuclear microsatellite markers to study genetic relationships among all encountered multilocus genotypes, and combined this with a phylogenetic approach using DNA sequence data of three mitochondrial genes. Analyses of mitochondrial gene sequence divergence showed the presence of three very distinct clades that likely represent cryptic undescribed species. Our phylogenetic results suggest that the Daphnia pulicaria group, a complex of predominantly North American species that has diversified rapidly since the Pleistocene, has its origin in South America, as specific tests of topology indicated that all three South American lineages are ancestral to the North American members of this species group. A comparison between variation of nuclear and mitochondrial markers revealed that closely related polyploid nuclear genotypes sometimes belonged to very divergent mitochondrial lineages, while distantly related nuclear genotypes often belonged to the same mitochondrial lineage. This discrepancy suggests that these South American water fleas originated through reciprocal hybridization between different endemic, sexually reproducing parental lineages. It is also likely that polyploidy of the investigated lineages resulted from this hybridization. Nevertheless, no putative diploid parental lineages were found in the studied region.

  15. Are sun- and shade-type anatomy required for the acclimation of Neoregelia cruenta?

    Directory of Open Access Journals (Sweden)

    FERNANDA REINERT

    2013-06-01

    Full Text Available Sun and shade plants are often discriminated by a number of sun- and shade-type anatomies. Nonetheless, we propose that among tank-bromeliads, changes in rosette architecture satisfy the requirements for coping with contrasting light levels. The tank-bromeliad Neoregelia cruenta naturally colonises sub-habitats ranging from full exposure to direct sunlight, to shaded environments in sand ridge plains. We quantified anatomical and morphological traits of leaves and rosettes of N. cruenta grown under sun and shade conditions. Cells with undulated lateral walls within the water parenchyma are for the first time described for the family. Under high light, leaf blades were wider, shorter, and yellowish. The rosette diameter of sun plants was less than half that of shade plants. Sun leaves overlapped with neighbouring leaves for most of their length, forming a cylindrical rosette where water accumulates. Shade leaves only overlapped in the centre of the rosette. Most anatomical traits were similar under both growth conditions. Stomata were absent from the base of sun leaves, which is probably explained by limited gas exchange at the base of the tight sun-type rosette. Data suggest that the ability of N. cruenta to acclimate to sun and shade is better explained by changes in rosette architecture than by leaf anatomy.Plantas de sol e sombra são frequentemente distinguíveis por diversos aspectos anatômicos. Não obstante, propomos que entre bromélias-tanque, mudanças na arquitetura da roseta satisfazem os requerimentos que permitem habitar extremos de luminosidade. A bromélia-tanque, Neoregelia cruenta naturalmente coloniza microhabitats que variam da exposição direta ao sol, a ambientes sombreados sob o dossel da vegetação de restinga. Quantifi camos aspectos anatômicos e morfológicos das folhas e rosetas de N. cruenta crescida sob sol e sombra. Células com paredes onduladas no parênquima aquífero são pela primeira vez descritas na fam

  16. Blood flow and muscle bio-energetics by 31P-nuclear magnetic resonance after local cold acclimation.

    Science.gov (United States)

    Savourey, G; Clerc, L; Vallerand, A L; Leftheriotis, G; Mehier, H; Bittel, J H

    1992-01-01

    To clarify the origin of local cold adaptation and to define precisely its influence on muscle bio-energetics during local exercise, five subjects were subjected to repeated 5 degrees C cold water immersion of the right hand and forearm. The first aim of our investigation was therefore carried out by measuring local skin temperatures and peripheral blood flow during a cold hand test (5 degrees C, 5 min) followed by a 10-min recovery period. The 31P by nuclear magnetic resonance (31PNMR) muscle bio-energetic changes, indicating possible heat production changes, were measured during the recovery period. The second aim of our investigation was carried out by measuring 31PNMR muscle bioenergetics during handgrip exercise (10% of the maximal voluntary contraction for 5 min followed by a 10-min recovery period) performed both at a comfortable ambient temperature (22 degrees C; E) and after a cold hand test (EC), before and after local cold adaptation. Local cold adaptation, confirmed by warmer skin temperatures of the extremities (+30%, P less than 0.05), was related more to an increased peripheral blood flow, as shown by the smaller decrease in systolic peak [-245 (SEM 30) Hz vs -382 (SEM 95) Hz, P less than 0.05] than to a change in local heat production, because muscle bioenergetics did not vary. Acute local cold immersion decreased the inorganic phosphate:phosphocreatine (PC) ratio during EC compared to E [+0.006 (SEM 0.010) vs +0.078 (SEM 0.002) before acclimation and +0.029 (SEM 0.002) vs +0.090 (SEM 0.002) after acclimation respectively, P less than 0.05] without significant change in the PC:beta-adenosine triphosphate ratio and pH. Local adaptation did not modify these results statistically. The recovery of PC during E increased after acclimation [9.0 (SEM 0.2) min vs 3.0 (SEM 0.4) min, P less than 0.05]. These results suggested that local cold adaptation is related more to peripheral blood flow changes than to increased metabolic heat production in the muscle.

  17. The effects of thermal acclimation on lethal temperatures and critical thermal limits in the green vegetable bug, Nezara viridula (L. (Hemiptera: Pentatomidae

    Directory of Open Access Journals (Sweden)

    Pol eChanthy

    2012-12-01

    Full Text Available According to geographical distribution, Nezara viridula (Heteroptera: Pentatomidae can be found across tropical, subtropical and temperate regions and this pattern is assumed to reflect differences in thermal adaptation, particularly in cold tolerance. Here the lethal temperature and critical thermal limits (thermal tolerance are examined for N. viridula. The upper lethal temperature for N. viridula at two contrasting climate locations (Breeza and Grafton, New South Wales, Australia was 40.3ºC with 20% survival under the stress of high temperature. The lower lethal temperature did not differ between these two populations and was -8.0ºC with 20% survival under low temperature stress. Survival of N. viridula increased after acclimation at high temperature for seven days. In contrast, when acclimated at lower temperatures (10 and 15ºC, survival of Breeza and Grafton N. viridula was lower than 20% at -8.0ºC.Control-reared N. viridula adults (25ºC had a mean CTMinOnset (cold stupor of 1.3 ± 2.1ºC and a mean CTMax (heat coma of 45.9 ± 0.9ºC. After 7 days of acclimation at 10, 20, 30, or 35ºC, N. viridula adults exhibited a 1ºC change in CTMax and a ~ 1.5ºC change in CTMinOnset. CTMax and CTMinOnset of Breeza and Grafton N. viridula populations did not differ across acclimation temperatures. These results suggest that short-term temperature acclimation is more important than provenance for determining lethal temperatures and critical thermal limits in N. viridula.

  18. The effects of thermal acclimation on lethal temperatures and critical thermal limits in the green vegetable bug, Nezara viridula (L.) (Hemiptera: Pentatomidae).

    Science.gov (United States)

    Chanthy, Pol; Martin, Robert J; Gunning, Robin V; Andrew, Nigel R

    2012-01-01

    According to geographical distribution, Nezara viridula (Heteroptera: Pentatomidae) can be found across tropical, subtropical, and temperate regions and this pattern is assumed to reflect differences in thermal adaptation, particularly in cold tolerance. Here the lethal temperature (LT) and critical thermal limits (CTL) (thermal tolerance) are examined for N. viridula. The upper LT for N. viridula at two contrasting climate locations (Breeza and Grafton, New South Wales, Australia) was 40.3°C with 20% survival under the stress of high temperature. The lower LT did not differ between these two populations and was -8.0°C with 20% survival under low temperature stress. Survival of N. viridula increased after acclimation at high temperature for 7 days. In contrast, when acclimated at lower temperatures (10 and 15°C), survival of Breeza and Grafton N. viridula was lower than 20% at -8.0°C. Control-reared N. viridula adults (25°C) had a mean CT(MinOnset) (cold stupor) of 1.3 ± 2.1°C and a mean CT(Max) (heat coma) of 45.9 ± 0.9°C. After 7 days of acclimation at 10, 20, 30, or 35°C, N. viridula adults exhibited a 1°C change in CT(Max) and a ~1.5°C change in CT(MinOnset). CT(Max) and CT(MinOnset) of Breeza and Grafton N. viridula populations did not differ across acclimation temperatures. These results suggest that short-term temperature acclimation is more important than provenance for determining LTs and CTL in N. viridula.

  19. Effects of exercise-heat acclimation on fluid, electrolyte, and endocrine responses during tilt and +Gz acceleration in women and men.

    Science.gov (United States)

    Greenleaf, J E; Brock, P J; Sciaraffa, D; Polese, A; Elizondo, R

    1985-07-01

    Plasma fluid, electrolyte, protein, renin, and vasoactive hormone (epinephrine, norepinephrine, vasopressin) responses were measured in six women (21-23 yr) and four men (21-38 yr) before and immediately following an orthostatic tolerance test (70 degrees head-up tilt) and a +Gz (head-to-foot) acceleration tolerance test (0.5 G X min-1 linear ramp to grayout). These tests were conducted before and after 12 consecutive days of exercise-heat acclimation when the subjects exercised on a cycle ergometer at a relative oxygen uptake of 44% to 49% peak oxygen uptake in a hot environment (Ta = 40 degrees C, 42% rh). During acclimation plasma volume increased by 10.6% (p less than 0.05) in the women and by 11.9% (p less than 0.05) in the men; in both groups exercise heart rate decreased significantly. After acclimation, acceleration tolerance was unchanged in both groups (range 3.1 to 3.4 G); the women's tilt tolerance was unchanged (range 33.6 to 39.5 min), but the men's tilt tolerance increased from 30.4 min before to 58.3 min (delta = 91%, p less than 0.05) after acclimation. Since the pattern of fluid, electrolyte, and protein shifts and acceleration tolerances in the women and men were virtually the same, the hormone responses were highly variable, and the men's tilt tolerance increased significantly after acclimation, it is clear that responses to tilting cannot be used to predict responses to acceleration. Analysis of data from the present study and the literature suggests that current exercise training regimes should be unrestricted for astronauts who have not previously been highly endurance trained.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    Science.gov (United States)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  1. Synthesis of Co9S8 and CoS nanocrystallites using Co(II) thiosemicarbazone complexes as single-source precursors

    Indian Academy of Sciences (India)

    Amol S Pawar; Shivram S Garje

    2015-12-01

    Cubic Co9S8 and hexagonal CoS nanocrystallites were prepared by pyrolysis and solvothermal decomposition methods using Co(LH)2Cl2 and CoL2 (where LH = thiosemicarbazones of furfuraldehyde, cinnamaldehyde and 4-fluoro-acetophenone) as single-source precursors. These nanocrystallites were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), selected area electron diffraction, UV–Vis, PL and Raman spectroscopic techniques. From TEM images, the average grain size of asprepared cobalt sulphide nanocrystallites was found to be 7–10 nm. Depending on experimental conditions, various morphologies such as spherical, pyramidal, hollow spheres, etc. are observed in the TEM images.

  2. INHIBITION KINETICS DURING THE OXIDATION OF BINARY MIXTURES OF PHENOL WITH CATECHOL, RESORCINOL AND HYDROQUINONE BY PHENOL ACCLIMATED ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    C. C. Lobo

    Full Text Available Abstract In this work the aerobic degradation of phenol (PH, catechol (CA, resorcinol (RE, hydroquinone (HY and of the binary mixtures PH+CA, PH+RE, PH+HY by phenol-acclimated activated sludge was studied. Single substrate experiments show a Haldane-type dependence of the respiration rate on PH, RE and HY, while CA corresponded to the Monod model. Binary substrate experiments demonstrated that the presence of a second substrate only affected the kinetics, but not the stoichiometry of the oxidation of the compounds tested. While CA inhibited the oxidation of PH, PH inhibited the oxidation of RE and HY. A mathematical model was developed to represent the aerobic biodegradation of the phenolic compounds tested. The agreement between the proposed model and the experimental data indicates that the proposed model can be useful for predicting substrate and dissolved oxygen concentrations in bioreactors treating phenolic wastewaters.

  3. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues.

    Science.gov (United States)

    Hansen, Ida R; Jansson, Kim M; Cannon, Barbara; Nedergaard, Jan

    2014-12-01

    Based on results from a signal sequence trap, we investigated chemerin gene expression in brown adipose tissue. Male NMRI mice were exposed to 30, 22 or 4 °C for 3 weeks, or were fed control (chow) diet, cafeteria diet or high-fat diet at thermoneutrality for the same time. In brown adipose tissue, cold acclimation strongly diminished chemerin gene expression, whereas obesogenic diets augmented expression. Qualitatively, changes in expression were paralleled in brite/beige adipose tissues (e.g. inguinal), whereas white adipose tissue (epididymal) and muscle did not react to these cues. Changes in tissue expression were not directly paralleled by alterations in plasma levels. Both these intact animal studies and brown adipocyte cell culture studies indicated that the gene expression regulation was not congruent with a sympathetic/adrenergic control. The data are discussed in relation to suggested endocrine, paracrine and autocrine effects of chemerin.

  4. Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation

    Directory of Open Access Journals (Sweden)

    Rowland Lisa J

    2012-04-01

    Full Text Available Abstract Background There has been increased consumption of blueberries in recent years fueled in part because of their many recognized health benefits. Blueberry fruit is very high in anthocyanins, which have been linked to improved night vision, prevention of macular degeneration, anti-cancer activity, and reduced risk of heart disease. Very few genomic resources have been available for blueberry, however. Further development of genomic resources like expressed sequence tags (ESTs, molecular markers, and genetic linkage maps could lead to more rapid genetic improvement. Marker-assisted selection could be used to combine traits for climatic adaptation with fruit and nutritional quality traits. Results Efforts to sequence the transcriptome of the commercial highbush blueberry (Vaccinium corymbosum cultivar Bluecrop and use the sequences to identify genes associated with cold acclimation and fruit development and develop SSR markers for mapping studies are presented here. Transcriptome sequences were generated from blueberry fruit at different stages of development, flower buds at different stages of cold acclimation, and leaves by next-generation Roche 454 sequencing. Over 600,000 reads were assembled into approximately 15,000 contigs and 124,000 singletons. The assembled sequences were annotated and functionally mapped to Gene Ontology (GO terms. Frequency of the most abundant sequences in each of the libraries was compared across all libraries to identify genes that are potentially differentially expressed during cold acclimation and fruit development. Real-time PCR was performed to confirm their differential expression patterns. Overall, 14 out of 17 of the genes examined had differential expression patterns similar to what was predicted from their reads alone. The assembled sequences were also mined for SSRs. From these sequences, 15,886 blueberry EST-SSR loci were identified. Primers were designed from 7,705 of the SSR-containing sequences

  5. Controlling Mercury Release from Source Zones to Surface Water: Initial Results of Pilot Tests at the Y-12 National Security Complex

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, George R [ORNL; Brooks, Scott C [ORNL; Peterson, Mark J [ORNL; Bogle, Mary Anna [ORNL; Miller, Carrie L [ORNL; Liang, Liyuan [ORNL; Elliott, Mike [Y-12 National Security Complex

    2009-01-01

    This report presents initial results obtained during year 2008 and satisfies a deliverable listed in the work breakdown structure (WBS) element OR081301. Broad objectives of the multi-year project are: (1) evaluation of remediation technologies for waterborne mercury, (2) development of treatment methods for soil mercury, and (3) source identification, characterization and analyses to improve mass balance on mercury estimates. This report presents the results of pilot tests, conducted in summer and fall 2008, which focused on remediation of waterborne mercury. The goal of this task is to develop strategies and treatment technologies that reduce the concentration and loading of waterborne mercury discharges to the UEFPC, thus minimizing mercury uptake by fish. The two specific studies are: (1) reducing flow augmentation in UEFPC to lessen mercury mobilization from contaminated stream sediments, and (2) treatment of contaminated source waters with a chemical reductant to convert dissolved mercury to a volatile form that can be removed by air stripping or natural evasion. Diversion of 50% of the flow currently added to UEFPC by the flow management system appeared to reduce mercury inputs from a localized, highly contaminated streambed by 0.6-1.5 grams per day (g/d). A reduction of 0.6 g/d represents {approx} 7-10% decrease in mercury input to UEFPC. Mercury concentrations within UEFPC did not rise proportionately with the loss of dilution, in part because of the reduction in input from the streambed source and in part because of reduced flow from the Y-12 NSC storm drain system. A longer-term test that includes seasonal variability will be the next step to validate these initial field observations of the flow diversion experiment. Preliminary laboratory experiments show that a large fraction ({approx} 90%) of the mercury can be chemically reduced to Hg(0) by addition of low concentrations of tin, Sn(II). Conversion of mercury to volatile Hg(0) in UEFPC was also

  6. Acclimation of tree function and structure to climate change and implications to forest carbon and nutrient balances

    Energy Technology Data Exchange (ETDEWEB)

    Hari, P.; Nissinen, A.; Berninger, F. [Helsinki Univ. (Finland). Dept. of Forest Ecology] [and others

    1996-12-31

    Before large-scale anthropogenetic emissions the environmental factors have been rather stable for thousands of years, varying yearly, seasonally and daily in rather regular manners around some mean values. In this century the emissions of CO{sub 2}, sulphur and nitrogen from society to atmosphere are changing both atmospheric and soil environment at rates not experienced before. The fluxes to soil affect the contents of plant available nutrients and solubility of toxic compounds in the forest soil. Additionally, the chemical state of soil environment is coupled to tree growth, litter production and nutrient uptake as well as to the activity of biological organisms in soil, which decompose litter and release nutrients from it. Trees have developed effective regulation systems to cope with the environment during the evolution. The resulting acclimations improve the functioning of the trees if the environmental factors remain within their range of variation during the evolution. Outside the range the results of the regulation are unpredictable. The acclimative changes caused by the action of the regulation system may considerably change the response of trees to present environmental change. The analysis of the effects of present environmental change on forests requires simultaneous treatment of the atmosphere, forest soils and trees. Each of these components is dominated by its own features. The analyze of material and energy fluxes connect them to each other. The aim of this research is to analyse changes in the forest soils and reactions of trees to changes in the atmosphere and forest soils under a common theoretical framework, enabling combination of the obtained results into a holistic analysis of the response of forests to the present environmental change

  7. Acclimation of killifish to thermal extremes of hot spring: Transcription of gonadal and liver heat shock genes.

    Science.gov (United States)

    Akbarzadeh, Arash; Leder, Erica H

    2016-01-01

    In this study, we explored the hypothesis that killifish acclimate to thermal extremes through regulation of genes involved in stress and metabolism. We examined the liver and gonadal transcription of heat shock proteins (hsp70, hsp90a, hsp90b), glucokinase (gck), and high mobility group b1 (hmgb1) protein in wild killifish species from hot springs and rivers using quantitative real-time PCR. Moreover, we exposed a river killifish species to a long-term thermal regime of hot spring (37-40°C) and examined the liver transcription of the heat shock genes. Our results showed that hot spring killifish showed a significant, strong upregulation of liver hsp90a. Moreover, the testicular transcript levels of hsp90a, hsp90b, and hsp70 were higher in hot spring killifish than the river ones. The results of the common garden experiments showed that the transcripts of hsp70, hsp90b, and hmgb1 were mildly induced (> twofold) at the time when temperature reached to 37-40°C, while the transcripts of hsp90a were strongly induced (17-fold increase). The level of hsp90a was dramatically more upregulated when fish were maintained in thermal extreme (42-fold change higher than in ambient temperature). Moreover, a significant downregulation of gck transcripts was observed at the time when temperature was raised to 37-40°C (80-fold decrease) and during exposure to long-term thermal extreme (56-fold decrease). It can be concluded that the regulation of heat shock genes particularly hsp90a might be a key factor of the acclimation of fish to high temperature environments like hot springs.

  8. Evaluation of o-xylene and other volatile organic compounds removal using a xylene-acclimated biotrickling filter.

    Science.gov (United States)

    Wang, Xiang-Qian; Lu, Bi-Hong; Zhou, Xue-Xia; Li, Wei

    2013-01-01

    In this study, performance evaluation for the gas-phase o-xylene removal using a xylene-acclimated biotrickling filter (BTF) was conducted. Substrate interactions during aerobic biodegradation of three poorly soluble compounds, both individually and in paired mixtures (namely, o-xylene and ethyl acetate, o-xylene and dichloromethane, which are common solvents used by pharmaceutical industry), were also investigated. Experimental results indicate that a maximum elimination capacity of 99.3 g x m(-3) x h(-1) (70% removal) was obtained at an o-xylene loading rate of 143.0 g x m(-3) x h(-1), while the top packing layer (one-third height of the three packing layers) only contributed about 13% to the total elimination capacity. Kinetic constants for o-xylene biodegradation and the pattern of o-xylene removal performance along the height of the BTF were obtained through the modified Michaelis-Menten kinetics and convection-diffusion reaction model, respectively. A reduction of removal efficiency in o-xylene (83.2-74.5% removal at a loading rate of 40.3 g x m(-3) x h(-1) for the total volatile organic compound (VOC) loading rate of 79 g x m(-3) x h(-1)) in the presence of ethyl acetate (100% removal) was observed, while enhanced o-xylene removal efficiency (71.6-78.6% removal at a loading rate of 45.1 g x m(-3) x h(-1) for the total VOC loading rate of 90 g x m(-3) x h(-1)) was achieved in the presence of dichloromethane (35.6% removal). This work shows that a BTF with xylene-acclimated microbial consortia has the ability to remove several poorly soluble compounds, which would advance the knowledge on the treatment of pharmaceutical VOC emissions.

  9. Noise Source Location Optimization

    Directory of Open Access Journals (Sweden)

    Ed O’Keefe

    1994-01-01

    Full Text Available This article describes a method to determine locations of noise sources that minimize modal coupling in complex acoustic volumes. Using the acoustic source scattering capabilities of the boundary element method, predictions are made of mode shape and pressure levels due to various source locations. Combining knowledge of the pressure field with a multivariable function minimization technique, the source location generating minimum pressure levels can be determined. The analysis also allows for an objective comparison of “best/worst” locations. The technique was implemented on a personal computer for the U.S. Space Station, predicting 5–10 dB noise reduction using optimum source locations.

  10. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane Complex as a Pt Source for Pt/SnO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Agnieszka Martyla

    2014-01-01

    Full Text Available This paper presents new preparation method of Pt/SnO2, an important catalytic system. Besides of its application as a heterogenic industrial catalyst, it is also used as a catalyst in electrochemical processes, especially in fuel cells. Platinum is commonly used as an anode catalyst in low temperature fuel cells, fuelled with alcohols of low molecular weight such as methanol. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was used as a precursor of metallic phase. The aim of the research was to obtain a highly active in electrochemical system Pt/SnO2 catalyst with low metal load. Considering small size of Pt crystallites, it should result in high activity of Pt/SnO2 system. The presented method of SnO2 synthesis allows for obtaining support consisting of nanoparticles. The effect of the thermal treatment on activity of Pt/SnO2 gel was demonstrated. The system properties were investigated using TEM, FTIR (ATR, and XRD techniques to describe its thermal structural evolution. The results showed two electrocatalytical activity peaks for drying at a temperature of 430 K and above 650 K.

  11. Exploitation of the complexation reaction of ortho-dihydroxylated anthocyanins with aluminum(III) for their quantitative spectrophotometric determination in edible sources.

    Science.gov (United States)

    Bernal, Freddy A; Orduz-Diaz, Luisa L; Coy-Barrera, Ericsson

    2015-10-15

    Anthocyanins are natural pigments known for their color and antioxidant activity. These properties allow their use in various fields, including food and pharmaceutical ones. Quantitative determination of anthocyanins had been performed by non-specific methods that limit the accuracy and reliability of the results. Therefore, a novel, simple spectrophotometric method for the anthocyanins quantification based on a formation of blue-colored complexes by the known reaction between catechol- and pyrogallol-containing anthocyanins and aluminum(III) is presented. The method demonstrated to be reproducible, repetitive (RSDanthocyanins (LOD = 0.186 μg/mL). Compliance with Beer's law was also evident in a range of concentrations (2-16 μg/mL for cyanidin 3-O-glucoside). Good recoveries (98.8-103.3%) were calculated using anthocyanin-rich plant samples. The described method revealed direct correlation to pH differential method results for several common anthocyanin-containing fruits indicating its great analytical potential. The presented method was successfully validated.

  12. Design of the Seawater Source Heat Pump and Ice Thermal Storage Complex System for A Certain Residential Section%某住宅小区海水源热泵与冰蓄冷复合系统设计

    Institute of Scientific and Technical Information of China (English)

    谢文利; 罗苏瑜

    2015-01-01

    According to the seawater source heat pump and ice thermal storage complex system designs, the paper in-troduced the selection of the system’s major equipment, the operation strategy of the ice thermal storage air-condition system under different load factors, design of the seawater source heat pump water intake and heat exchange system, economic analysis of the system, which provide theoretical and practical templet for large-scale heating and cooling construction of the seawater source heat pump and ice thermal storage system.%本文通过海水源热泵与冰蓄冷复合系统设计实例,介绍了系统主要设备选型、不同负荷率下冰蓄冷空调系统的运行策略、海水源热泵取水及其换热系统设计、系统经济性分析。为实施大型海水源热泵与冰蓄冷复合系统工程供热供冷提供理论和实践样板。

  13. Complex rupture source of the 12 January 2010 Léogâne, Haiti earthquake derived from geologic, geodetic, and seismologic observations

    Science.gov (United States)

    Briggs, R. W.; Hayes, G. P.; Sladen, A.; Fielding, E. J.; Prentice, C. S.; Hudnut, K. W.; Mann, P.; Taylor, F. W.; Crone, A. J.; Gold, R. D.; Ito, T.; Simons, M.; Jean, P.

    2010-12-01

    by standard paleoseismic studies. This suggests that prehistoric earthquake records in transpressive tectonic environments, such as the San Andreas fault through the Transverse Ranges of California, may be missing similarly complex earthquakes.

  14. The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae).

    Science.gov (United States)

    Allen, Jessica L; Clusella-Trullas, Susana; Chown, Steven L

    2012-05-01

    Critical thermal limits provide an indication of the range of temperatures across which organisms may survive, and the extent of the lability of these limits offers insights into the likely impacts of changing thermal environments on such survival. However, investigations of these limits may be affected by the circumstances under which trials are undertaken. Only a few studies have examined these effects, and typically not for beetles. This group has also not been considered in the context of the time courses of acclimation and its reversal, both of which are important for estimating the responses of species to transient temperature changes. Here we therefore examine the effects of rate of temperature change on critical thermal maxima (CT(max)) and minima (CT(min)), as well as the time course of the acclimation response and its reversal in two beetle species, Tenebrio molitor and Cyrtobagous salviniae. Increasing rates of temperature change had opposite effects on T. molitor and C. salviniae. In T. molitor, faster rates of change reduced both CT(max) (c. 2°C) and CT(min) (c. 3°C), while in C. salviniae faster rates of change increased both CT(max) (c. 6°C) and CT(min) (c. 4°C). CT(max) in T. molitor showed little response to acclimation, while the response to acclimation of CT(min) was most pronounced following exposure to 35°C (from 25°C) and was complete within 24 h. The time course of acclimation of CT(max) in C. salviniae was 2 days when exposed to 36°C (from c. 26°C), while that of CT(min) was less than 3 days when exposed to 18°C. In T. molitor, the time course of reacclimation to 25°C after treatments at 15°C and 35°C at 75% RH was longer than the time course of acclimation, and varied from 3-6 days for CT(max) and 6 days for CT(min). In C. salviniae, little change in CT(max) and CT(min) (molitor and C. salviniae may be restricted in their ability to respond to transient temperature changes at short-time scales, and instead may have to rely on

  15. Low-O₂ acclimation shifts the hypoxia avoidance behaviour of snapper (Pagrus auratus) with only subtle changes in aerobic and anaerobic function.

    Science.gov (United States)

    Cook, Denham G; Iftikar, Fathima I; Baker, Daniel W; Hickey, Anthony J R; Herbert, Neill A

    2013-02-01

    It was hypothesised that chronic hypoxia acclimation (preconditioning) would alter the behavioural low-O(2) avoidance strategy of fish as a result of both aerobic and anaerobic physiological adaptations. Avoidance and physiological responses of juvenile snapper (Pagrus auratus) were therefore investigated following a 6 week period of moderate hypoxia exposure (10.2-12.1 kPa P(O(2)), 21 ± 1 °C) and compared with those of normoxic controls (P(O(2))=20-21 kPa, 21 ± 1 °C). The critical oxygen pressure (P(crit)) limit of both groups was unchanged at ~7 kPa, as were standard, routine and maximum metabolic rates. However, hypoxia-acclimated fish showed increased tolerances to hypoxia in behavioural choice chambers by avoiding lower P(O(2)) levels (3.3 ± 0.7 vs 5.3 ± 1.1 kPa) without displaying greater perturbations of lactate or glucose. This behavioural change was associated with unexpected physiological adjustments. For example, a decrease in blood O(2) carrying capacity was observed after hypoxia acclimation. Also unexpected was an increase in whole-blood P(50) following acclimation to low O(2), perhaps facilitating Hb-O(2) off-loading to tissues. In addition, cardiac mitochondria measured in situ using permeabilised fibres showed improved O(2) uptake efficiencies. The proportion of the anaerobic enzyme lactate dehydrogenase, at least relative to the aerobic marker enzyme citrate synthase, also increased in heart and skeletal red muscle, indicating enhanced anaerobic potential, or in situ lactate metabolism, in these tissues. Overall, these data suggest that a prioritization of O(2) delivery and O(2) utilisation over O(2) uptake during long-term hypoxia may convey a significant survival benefit to snapper in terms of behavioural low-O(2) tolerance.

  16. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Stefan Timm

    Full Text Available BACKGROUND: Photorespiratory carbon metabolism was long considered as an essentially closed and nonregulated pathway with little interaction to other metabolic routes except nitrogen metabolism and respiration. Most mutants of this pathway cannot survive in ambient air and require CO(2-enriched air for normal growth. Several studies indicate that this CO(2 requirement is very different for individual mutants, suggesting a higher plasticity and more interaction of photorespiratory metabolism as generally thought. To understand this better, we examined a variety of high- and low-level parameters at 1% CO(2 and their alt