WorldWideScience

Sample records for accident severity

  1. Severe accident simulation at Olkiuoto

    Tirkkonen, H.; Saarenpaeae, T. [Teollisuuden Voima Oy (TVO), Olkiluoto (Finland); Cliff Po, L.C. [Micro-Simulation Technology, Montville, NJ (United States)

    1995-09-01

    A personal computer-based simulator was developed for the Olkiluoto nuclear plant in Finland for training in severe accident management. The generic software PCTRAN was expanded to model the plant-specific features of the ABB Atom designed BWR including its containment over-pressure protection and filtered vent systems. Scenarios including core heat-up, hydrogen generation, core melt and vessel penetration were developed in this work. Radiation leakage paths and dose rate distribution are presented graphically for operator use in diagnosis and mitigation of accidents. Operating on an graphically for operator use in diagnosis and mitigation of accidents. Operating on an 486 DX2-66, PCTRAN-TVO achieves a speed about 15 times faster than real-time. A convenient and user-friendly graphic interface allows full interactive control. In this paper a review of the component models and verification runs are presented.

  2. HTGR severe accident sequence analysis

    Harrington, R.M.; Ball, S.J.; Kornegay, F.C.

    1982-01-01

    Thermal-hydraulic, fission product transport, and atmospheric dispersion calculations are presented for hypothetical severe accident release paths at the Fort St. Vrain (FSV) high temperature gas cooled reactor (HTGR). Off-site radiation exposures are calculated for assumed release of 100% of the 24 hour post-shutdown core xenon and krypton inventory and 5.5% of the iodine inventory. The results show conditions under which dose avoidance measures would be desirable and demonstrate the importance of specific release characteristics such as effective release height. 7 tables.

  3. Severe Accident Recriticality Analyses (SARA)

    Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hoejerup, F. [Risoe National Lab. (Denmark); Lindholm, I.; Miettinen, J.; Puska, E.K. [VTT Energy, Helsinki (Finland); Nilsson, Lars [Studsvik Eco and Safety AB, Nykoeping (Sweden); Sjoevall, H. [Teoliisuuden Voima Oy (Finland)

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B{sub 4}C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  4. Severe accident recriticality analyses (SARA)

    Frid, W.; Højerup, C.F.; Lindholm, I.

    2001-01-01

    Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the ...

  5. Iodine behaviour in severe accidents

    Dutton, L.M.C.; Grindon, E.; Handy, B.J.; Sutherland, L. [NNC Ltd., Knutsford (United Kingdom); Bruns, W.G.; Sims, H.E. [AEA Technology, Harwell (United Kingdom); Dickinson, S. [AEA Technology, Winfrith (United Kingdom); Hueber, C.; Jacquemain, D. [IPSN/CEA, Cadarache, Saint Paul-Lez-Durance (France)

    1996-12-01

    A description is given of analyses which identify which aspects of the modelling and data are most important in evaluating the release of radioactive iodine to the environment following a potential severe accident at a PWR and which identify the major uncertainties which affect that release. Three iodine codes are used namely INSPECT, IODE and IMPAIR, and their predictions are compared with those of the PSA code MAAP. INSPECT is a mechanistic code which models iodine behaviour in the aqueous aerosol, spray water and sump water, and the partitioning of volatile species between the aqueous phases and containment gas space. Organic iodine is not modelled. IODE and IMPAIR are semi-empirical codes which do not model iodine behaviour in the aqueous aerosol, but model organic iodine. The fault sequences addressed are based on analyses for the Sizewell `B` design. Two types of sequence have been analysed.: (a) those in which a major release of fission products from the primary circuit to the containment occur, e.g. a large LOCAS, (b) those where the release by-passes the containment, e.g. a leak into the auxiliary building. In the analysis of the LOCA sequences where the pH of the sump is controlled to be a value of 8 or greater, all three codes predict that the oxidation of iodine to produce gas phase species does not make a significant contribution to the source term due to leakage from the reactor building and that the latter is dominated by iodide in the aerosol. In the case where the pH of the sump is not controlled, it is found that the proportion of gas phase iodine increases significantly, although the cumulative leakage predicted by all three codes is not significantly different from that predicted by MAAP. The radiolytic production of nitric acid could be a major factor in determining the pH, and if the pH were reduced, the codes predict an increase in gas phase iodine species leaked from the containment. (author) 4 figs., 7 tabs., 13 refs.

  6. Severe accident analysis using dynamic accident progression event trees

    Hakobyan, Aram P.

    In present, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce and also can be phenomenologically inconsistent. One of the principal deficiencies lies in the static nature of conventional APETs. In the conventional event tree techniques, the sequence of events is pre-determined in a fixed order based on the expert judgments. The main objective of this PhD dissertation was to develop a software tool (ADAPT) for automated APET generation using the concept of dynamic event trees. As implied by the name, in dynamic event trees the order and timing of events are determined by the progression of the accident. The tool determines the branching times from a severe accident analysis code based on user specified criteria for branching. It assigns user specified probabilities to every branch, tracks the total branch probability, and truncates branches based on the given pruning/truncation rules to avoid an unmanageable number of scenarios. The function of a dynamic APET developed includes prediction of the conditions, timing, and location of containment failure or bypass leading to the release of radioactive material, and calculation of probabilities of those failures. Thus, scenarios that can potentially lead to early containment failure or bypass, such as through accident induced failure of steam generator tubes, are of particular interest. Also, the work is focused on treatment of uncertainties in severe accident phenomena such as creep rupture of major RCS components, hydrogen burn, containment failure, timing of power recovery, etc. Although the ADAPT methodology (Analysis of Dynamic Accident Progression Trees) could be applied to any severe accident analysis code, in this dissertation the approach is demonstrated by applying it to the MELCOR code [1]. A case study is presented involving station blackout with the loss of auxiliary feedwater system for a

  7. Review of Severe Accident Phenomena in LWR and Related Severe Accident Analysis Codes

    Muhammad Hashim

    2013-04-01

    Full Text Available Firstly, importance of severe accident provision is highlighted in view of Fukushima Daiichi accident. Then, extensive review of the past researches on severe accident phenomena in LWR is presented within this study. Various complexes, physicochemical and radiological phenomena take place during various stages of the severe accidents of Light Water Reactor (LWR plants. The review deals with progression of the severe accidents phenomena by dividing into core degradation phenomena in reactor vessel and post core melt phenomena in the containment. The development of various computer codes to analyze these severe accidents phenomena is also summarized in the review. Lastly, the need of international activity is stressed to assemble various severe accidents related knowledge systematically from research organs and compile them on the open knowledge base via the internet to be available worldwide.

  8. Severe accident testing of electrical penetration assemblies

    Clauss, D.B. (Sandia National Labs., Albuquerque, NM (USA))

    1989-11-01

    This report describes the results of tests conducted on three different designs of full-size electrical penetration assemblies (EPAs) that are used in the containment buildings of nuclear power plants. The objective of the tests was to evaluate the behavior of the EPAs under simulated severe accident conditions using steam at elevated temperature and pressure. Leakage, temperature, and cable insulation resistance were monitored throughout the tests. Nuclear-qualified EPAs were produced from D. G. O'Brien, Westinghouse, and Conax. Severe-accident-sequence analysis was used to generate the severe accident conditions (SAC) for a large dry pressurized-water reactor (PWR), a boiling-water reactor (BWR) Mark I drywell, and a BWR Mark III wetwell. Based on a survey conducted by Sandia, each EPA was matched with the severe accident conditions for a specific reactor type. This included the type of containment that a particular EPA design was used in most frequently. Thus, the D. G. O'Brien EPA was chosen for the PWR SAC test, the Westinghouse was chosen for the Mark III test, and the Conax was chosen for the Mark I test. The EPAs were radiation and thermal aged to simulate the effects of a 40-year service life and loss-of-coolant accident (LOCA) before the SAC tests were conducted. The design, test preparations, conduct of the severe accident test, experimental results, posttest observations, and conclusions about the integrity and electrical performance of each EPA tested in this program are described in this report. In general, the leak integrity of the EPAs tested in this program was not compromised by severe accident loads. However, there was significant degradation in the insulation resistance of the cables, which could affect the electrical performance of equipment and devices inside containment at some point during the progression of a severe accident. 10 refs., 165 figs., 16 tabs.

  9. Severe accident risks from external events

    Randall O Gauntt

    2013-01-01

    This paper reviews the early development of design requirements for seismic events in USA early developing nuclear electric generating fleet.Notable safety studies,including WASH-1400,Sandia Siting Study and the NUREG-1150 probabilistic risk study,are briefly reviewed in terms of their relevance to extreme accidents arising from seismic and other severe accident initiators.Specific characteristic about the nature of severe accidents in nuclear power plant (NPP) are reviewed along with present day state-of-art analysis methodologies (methods for estimation of leakages and consequences of releases (MELCOR) and MELCOR accident consequence code system (MACCS)) that are used to evaluate severe accidents and to optimize mitigative and protective actions against such accidents.It is the aim of this paper to make nuclear operating nations aware of the risks that accompany a much needed energy resource and to identify some of the tools,techniques and landmark safety studies that serve to make the technology safer and to maintain vigilance and adequate safety culture for the responsible management of this valuable but unforgiving technology.

  10. [Severe parachuting accident. Analysis of 122 cases].

    Krauss, U; Mischkowsky, T

    1993-06-01

    Based on a population of 122 severely injured patients the causes of paragliding accidents and the patterns of injury are analyzed. A questionnaire is used to establish a sport-specific profile for the paragliding pilot. The lower limbs (55.7%) and the lower parts of the spine (45.9%) are the most frequently injured parts of the body. There is a high risk of multiple injuries after a single accident because of the tremendous axial power. The standard of equipment is good in over 90% of the cases. Insufficient training and failure to take account of geographical and meteorological conditions are the main determinants of accidents sustained by paragliders, most of whom are young. Nevertheless, 80% of our patients want to continue paragliding. Finally some advice is given on how to prevent paragliding accidents and injuries.

  11. Severe Accident Test Station Activity Report

    Pint, Bruce A [ORNL; Terrani, Kurt A [ORNL

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  12. ANS severe accident program overview & planning document

    Taleyarkhan, R.P.

    1995-09-01

    The Advanced Neutron Source (ANS) severe accident document was developed to provide a concise and coherent mechanism for presenting the ANS SAP goals, a strategy satisfying these goals, a succinct summary of the work done to date, and what needs to be done in the future to ensure timely licensability. Guidance was received from various bodies [viz., panel members of the ANS severe accident workshop and safety review committee, Department of Energy (DOE) orders, Nuclear Regulatory Commission (NRC) requirements for ALWRs and advanced reactors, ACRS comments, world-wide trends] were utilized to set up the ANS-relevant SAS goals and strategy. An in-containment worker protection goal was also set up to account for the routine experimenters and other workers within containment. The strategy for achieving the goals is centered upon closing the severe accident issues that have the potential for becoming certification issues when assessed against realistic bounding events. Realistic bounding events are defined as events with an occurrency frequency greater than 10{sup {minus}6}/y. Currently, based upon the level-1 probabilistic risk assessment studies, the realistic bounding events for application for issue closure are flow blockage of fuel element coolant channels, and rapid depressurization-related accidents.

  13. Severe Accident Test Station Design Document

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  14. Development of the Severe Accident Analysis DB for the Severe Accident Management Expert System (I)

    Park, Soo Yong; Ahn, Kwang Il [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    This report contains analysis methodologies and calculation results of 5 initiating events of the severe accident analysis database system. The Ulchin 3,4 NPP has been selected as reference plants. Based on the probabilistic safety analysis of the corresponding plant, 54 accident scenarios, which was predicted to have more than 10-10 /ry occurrence frequency, have been analyzed as base cases for the Large loss of Coolant sequence database. The functions of the severe accident analysis database system will be to make a diagnosis of the accident by some input information from the plant symptoms, to search a corresponding scenario, and finally to provide the user phenomenological information based on the pre-analyzed results. The MAAP 4.06 calculation results in this report will be utilized as input data to develop the database system

  15. Ranking of severe accident research priorities

    Schwinges, B. [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany); Journeau, C. [CEA Cadarache, DEN STRI LMA, F-13115 St Paul Les Durance (France); Haste, T. [Paul Scherrer Inst, NES LTH, OVGA 312, CH-5232 Villigen (Switzerland); Meyer, L.; Tromm, W. [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Trambauer, K. [GRS mbH, Forschungsgelande, D-85748 Garching (Germany)

    2010-07-01

    The objectives of the SARNET network are to define common research programmes in the field of severe accidents and to develop common computer tools and methodologies for safety assessment in this field. To reach these objectives, one of the work packages, named 'Severe Accident Research Priorities' (SARP), aimed at reviewing and reassessing the priorities of research issues as a basis to harmonize and to re-orient research programmes, to define new ones, and to close - if possible - resolved issues on a common basis. The work was performed in close collaboration with 8 participating institutions, led by GRS, representing technical safety organisations, industry and utilities (IRSN, CEA, EDF, FZK, GRS, KTH, TUS, VTT). This action made use notably of (1) the outcomes of the EURSAFE project in the 5. Framework Programme, i. e. the Phenomena Identification and Ranking Tables (PIRT) on severe accidents, (2) the results of the validation and benchmarking activities on ASTEC, (3) the results of reactor calculations carried out in the other SARNET tasks, and (4) the outcome of the research performed in the three thematic sub-domains of SARNET (corium, containment and source term). The main outcome of EURSAFE was a list of 21 topics which included recommendations for experimental programmes and code developments. This list formed the basis of the work in SARP. Also the methodology applied in EURSAFE to consider both the risk potential and the severe accident issues where large uncertainties still subsist was adopted. The analyses of the progress of research and development activities considered whether (1) any research issue was resolved due to reduction of uncertainties or gain of scientific insights, (2) any new issue had to be added to the list of needed research, (3) any new process or phenomenon had to be included in the general PIRT list taking into account the safety relevance and the lack of knowledge, and (4) any new accident management program has to be

  16. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.

    Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

    2010-03-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  17. Consequences of severe nuclear accidents in Europe

    Seibert, Petra; Arnold, Delia; Mraz, Gabriele; Arnold, Nikolaus; Gufler, Klaus; Kromp-Kolb, Helga; Kromp, Wolfgang; Sutter, Philipp

    2013-04-01

    A first part of the presentation is devoted to the consequences of the severe accident in the 1986 Chernobyl NPP. It lead to a substantial radioactive contaminated of large parts of Europe and thus raised the awareness for off-site nuclear accident consequences. Spatial patterns of the (transient) contamination of the air and (persistent) contamination of the ground were studied by both measurements and model simulations. For a variety of reasons, ground contamination measurements have variability at a range of spatial scales. Results will be reviewed and discussed. Model simulations, including inverse modelling, have shown that the standard source term as defined in the ATMES study (1990) needs to be updated. Sensitive measurements of airborne activities still reveal the presence of low levels of airborne radiocaesium over the northern hemisphere which stems from resuspension. Over time scales of months and years, the distribution of radionuclides in the Earth system is constantly changing, for example relocated within plants, between plants and soil, in the soil, and into water bodies. Motivated by the permanent risk of transboundary impacts from potential major nuclear accidents, the multidisciplinary project flexRISK (see http://flexRISK.boku.ac.at) has been carried out from 2009 to 2012 in Austria to quantify such risks and hazards. An overview of methods and results of flexRISK is given as a second part of the presentation. For each of the 228 NPPs, severe accidents were identified together with relevant inventories, release fractions, and release frequencies. Then, Europe-wide dispersion and dose calculations were performed for 2788 cases, using the Lagrangian particle model FLEXPART. Maps of single-case results as well as various aggregated risk parameters were produced. It was found that substantial consequences (intervention measures) are possible for distances up to 500-1000 km, and occur more frequently for a distance range up to 100-300 km, which is in

  18. Severe Accidents in the Energy Sector

    Hirschberg, S.; Spiekerman, G.; Dones, R

    1998-11-01

    A comprehensive database on severe accidents, with main emphasis on the ones associated with the energy sector, has been established by the Paul Scherrer Institute (PSI). Fossil energy carriers, nuclear power and hydro power are covered in ENSAD (Energy related Severe Accident Database), and the scope of work includes all stages of the analysed energy chains, i.e. exploration, extraction, transports, processing, storage and waste disposal. The database has been developed using a wide variety of sources. As opposed to the previous studies the ambition of the present work has been, whenever feasible, to cover a relatively broad spectrum of damage categories of interest. This includes apart from fatalities also serious injuries, evacuations, land or water contamination, and economic losses. Currently, ENSAD covers 13,914 accidents, of which 4290 are energy related, and 1943 are considered as severe accidents. Significant effort has been directed towards the examination of the relevance of the worldwide accident records to the Swiss specific conditions, particularly in the context of nuclear and hydro power. For example, a detailed investigation of large dam failures and their consequences was carried out. Generally, while Swiss specific aspects are emphasised, the major part of the collected and analysed data, as well as the insights gained, are considered to be of general interest. In particular, three sets of the aggregated results are provided based on world wide occurrence, on OECD countries, and on non OECD countries, respectively. Significant differences exist between the aggregated, normalised damage rates assessed for the various energy carriers: On the world wide basis, the broader picture obtained by coverage of full energy chains leads to aggregated immediate fatality rates being much higher for the fossil fuels than what one would expect if power plants only were considered. The highest rates apply to LPG, followed by hydro, oil, coal, natural gas and

  19. Porosity effects during a severe accident

    Cazares R, R. I. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Posgrado en Energia y Medio Ambiente, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Espinosa P, G.; Vazquez R, A., E-mail: ricardo-cazares@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  20. Improvement of severe accident analysis method for KSNP

    Park, Jae Hong [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Cho, Song Won; Cho, Youn Soo [Korea Radiation Technology Institute Co., Taejon (Korea, Republic of)

    2002-03-15

    The objective of this study is preparation of MELCOR 1.8.5 input deck for KSNP and simulation of some major severe accidents. The contents of this project are preparation of MELCOR 1.8.5 base input deck for KSNP to understand severe accident phenomena and to assess severe accident strategy, preparation of 20 cell containment input deck to simulate the distribution of hydrogen and fission products in containment, simulation of some major severe accident scenarios such as TLOFW, SBO, SBLOCA, MBLOCA, and LBLOCA. The method for MELCOR 1.8.5 input deck preparation can be used to prepare the input deck for domestic PWRs and to simulate severe accident experiments such as ISP-46. Information gained from analyses of severe accidents may be helpful to set up the severe accident management strategy and to develop regulatory guidance.

  1. SARNET: Severe accident research network of excellence

    Albiol, T.; Van Dorsselaere, J. P. [IRSN, DPAM, F-13115 St Paul Les Durance (France); Chaumont, B. [IRSN, DSR, SAGR, F-92262 Fontenay Aux Roses (France); Haste, T. [Paul Scherrer Inst, NES, LTH, OVGA 312, CH-5232 Villigen (Switzerland); Journeau, Ch. [CEA Cadarache, DEN, STRI, LMA, F-13115 St Paul Les Durance (France); Meyer, L. [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Sehgal, Bal Raj [KTH, AlbaNova Univ Ctr, S-10691 Stockholm (Sweden); Schwinges, Bernd [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany); Beraha, D. [GRS mbH, Forschungsgelande, D-85748 Garching (Germany); Annunziato, A. [Commiss European Communities, JRC, IPSC, I-21020 Ispra, VA (Italy); Zeyen, R. [Commiss European Communities, JRC IE, IRSN DPAM DIR, F-13115 St Paul Les Durance (France)

    2010-07-01

    Fifty-one organisations network in SARNET (Severe Accident Research Network of Excellence) their research capacities in order to resolve the most important pending issues for enhancing, with regard to Severe Accidents (SA), the safety of existing and future Nuclear Power Plants (NPPs). This project. co-funded by the European Commission (EC) under the 6. Framework Programme, has been defined in order to optimise the use of the available means and to constitute sustainable research groups in the European Union. SARNET tackles the fragmentation that may exist between the different national R and D programmes, in defining common research programmes and developing common computer tools and methodologies for safety assessment. SARNET comprises most of the organisations involved in SA research in Europe, plus Canada. To reach these objectives, all the organisations networked in SARNET contributed to a joint Programme of Activities, which consisted of: Implementation of an advanced communication tool for accessing all project information, fostering exchange of information, and managing documents; Harmonization and re-orientation of the research programmes, and definition of new ones; Analysis of the experimental results provided by research programmes in order to elaborate a common understanding of relevant phenomena; Development of the ASTEC code (integral computer code used to predict the NPP behaviour during a postulated SA), which capitalizes in terms of physical models the knowledge produced within SARNET; Development of Scientific Databases in which all the results of research programmes are stored in a common format (DATANET); Development of a common methodology for Probabilistic Safety Assessment of NPPs; Development of short courses and writing a textbook on Severe Accidents for students and researchers; Promotion of personnel mobility amongst various European organisations. This paper presents the major achievements after four and a half years of operation of the

  2. ACR-1000 design provisions for severe accidents

    Popov, N.K.; Santamaura, P.; Shapiro, H.; Snell, V.G. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)]. E-mail: popovn@aecl.ca

    2006-07-01

    Atomic Energy of Canada Limited (AECL) developed the Advanced CANDU Reactor-700 (ACR-700) as an evolutionary advancement of the current CANDU 6 reactor. As a further advancement of the ACR design, AECL is currently developing the ACR-1000 for the Canadian and international market. The ACR-1000 is aimed at producing electrical power for a capital cost and a unit-energy cost significantly less than that of the current generation of operating nuclear plants, while achieving enhanced safety features, shorter construction schedule, high plant capacity factor, improved operations and maintenance, and increased operating life. The reference ACR-1000 plant design is based on an integrated two-unit plant, using enriched fuel and light-water coolant, with each unit having a nominal gross output of about 1200 MWe. The ACR-1000 design meets Canadian regulatory requirements and follows established international practice with respect to severe accident prevention and mitigation. This paper presents the ACR-1000 features that are designed to mitigate limited core damage and severe core damage states, including core retention within vessel, core damage termination, and containment integrity maintenance. While maintaining existing structures of CANDU reactors that provide inherent prevention and retention of core debris, the ACR-1000 design includes additional features for prevention and mitigation of severe accidents. Core retention within vessel in CANDU-type reactors includes both retention within fuel channels, and retention within the calandria vessel. The ACR-1000 calandria vessel design permits for passive rejection of decay heat from the moderator to the shield water. Also, the calandria vessel is designed for debris retention by minimizing penetrations at the bottom periphery and by accommodating thermal and weight loads of the core debris. The ACR-1000 containment is required to withstand external events such as earthquakes, tornados, floods and aircraft crashes

  3. Bus accident severity and passenger injury: evidence from Denmark

    Prato, Carlo Giacomo; Kaplan, Sigal

    2014-01-01

    examining occurrence of injury to bus passengers. Results Bus accident severity is positively related to (i) the involvement of vulnerable road users, (ii) high speed limits, (iii) night hours, (iv) elderly drivers of the third party involved, and (v) bus drivers and other drivers crossing in yellow or red...... principle of sustainable transit and advance the vision “every accident is one too many”. Methods Bus accident data were retrieved from the national accident database for the period 2002–2011. A generalized ordered logit model allows analyzing bus accident severity and a logistic regression enables...

  4. Comparative Assessment of Severe Accidents in the Chinese Energy Sector

    Hirschberg, S.; Burgherr, P.; Spiekerman, G.; Cazzoli, E.; Vitazek, J.; Cheng, L

    2003-03-01

    This report deals with the comparative assessment of accidents risks characteristic for the various electricity supply options. A reasonably complete picture of the wide spectrum of health, environmental and economic effects associated with various energy systems can only be obtained by considering damages due to normal operation as well as due to accidents. The focus of the present work is on severe accidents, as these are considered controversial. By severe accidents we understand potential or actual accidents that represent a significant risk to people, property and the environment and may lead to large consequences. (author)

  5. A framework for the assessment of severe accident management strategies

    Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

    1993-09-01

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

  6. Development of severe accident management and training support system

    Jeong, Kwang Sub; Kim, Ko Ryo; Jung, Won Dae; Ha, Jae Joo

    2001-04-01

    Recently, the overall severe accident management strategy is under development according to the logical flow of severe accident management guidelines in some foreign countries. In Korea, the basis of severe accident management strategy is established due to the development of Korean severe accident guideline. In the straining system, the professional information as well as the general information for severe accident should be provided to the related personnel and the function of prior simulation for plant behavior according to strategy execution should be required. Korean severe accident management guideline is chosen as the basis logic for development of support system for decision-support and training related with execution of severe accident strategy. The training simulator is developed for prior expectation of plant behavior and the severe accident computer code, MELCOR, is utilized as the engine, and it is possible to operate equipments necessary for execution of severe accident management guidelines. And also, the graphical interface is developed to provide the plant status and provide status change of major equipments dynamically.

  7. On severe accident hydrogen behaviour in Loviisa

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1996-02-01

    This study is related to the hydrogen management strategy of the Loviisa ice-condenser containments. A synthetic survey is conducted of the various parts of the subject by using compact `back-of-the-envelope` analysis methods. The analysed cases are consistent with the principal hydrogen management approaches proposed by the utility Imatran Voima Oy (IVO). The study begins by introduction of the Loviisa plant features and various severe accident types. Hydrogen generation characteristics are analysed mainly for the core degradation phase, but the hydrogen sources from molten fuel-coolant interactions and reflooding of a degraded core are discussed, as well. The hydrogen generation and release rates are compared with the overall gas convection and mixing conditions in order to estimate hydrogen concentrations in the containment. The natural convection currents are examined also from the scaling point of view, concerning the scaled-down VICTORIA tests of IVO. Finally, the potential for large deflagration loadings or local detonations is examined for the Loviisa containments. The study is concluded by preliminary subjective judgments about the most critical factors of the Loviisa hydrogen problematics and about any issues that may require additional confirmative research. (orig.) (47 refs., 4 figs., 24 tabs.).

  8. Iodine chemical forms in LWR severe accidents

    Beahm, E.C.; Weber, C.F.; Kress, T.S.; Parker, G.W.

    1991-01-01

    Calculated data from seven severe accident sequences in light-water reactor plants were used to assess the chemical forms of iodine in containment. In most of the calculations for the seven sequences, iodine entering containment from the reactor coolant system was almost entirely in the form of CsI with very small contributions of I or HI. The largest fraction of iodine in forms other than CsI was a total of 3.2% as I plus HI. Within the containment, the CsI will deposit onto walls and other surfaces, as well as in water pools, largely in the form of iodide (I{sup {minus}}). The radiation induced conversion of I{sup {minus}} in water pools into I{sub 2} is strongly dependent on pH. In systems where the pH was controlled above 7, little additional elemental iodine would be produced in the containment atmosphere. When the pH falls below 7, it may be assumed that it is not being controlled, and large fractions of iodine as I{sub 2} within the containment atmosphere may be produced. 16 refs.

  9. Summary of a workshop on severe accident management for BWRs

    Kastenberg, W.E. [ed.; Apostolakis, G.; Jae, M.; Milici, T.; Park, H.; Xing, L.; Dhir, V.K.; Lim, H.; Okrent, D.; Swider, J.; Yu, D. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering

    1991-11-01

    Severe accident management can be defined as the use of existing and/or alternative resources, systems and actions to prevent or mitigate a core-melt accident. For each accident sequence and each combination of strategies there may be several options available to the operator; and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrument behavior during an accident. During the period September 26--28, 1990, a workshop was held at the University of California, Los Angeles, to address these uncertainties for Boiling Water Reactors (BWRs). This report contains a summary of the workshop proceedings.

  10. MELCOR simulation of postulated severe accidents in OPR1000

    Lee, Seongn Yeon; Kim Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Kim, Hwan Yeol; Park, Jong Hwa [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Since the Fukushima accident in 2011, severe accidents of a nuclear power plant have been a target of big debate whether the defense in depth philosophy applied to current nuclear system is still vigorous enough to ensure the protection of the operators and the public. Thus an accurate prediction of severe accident has become a critical task for the nuclear engineers with reliable employment of Probabilistic Risk Analysis (PRA). According to a recent PRA result, Small Break Loss Of Coolant Accident (SBLOCA) without safety injection and Station Black Out (SBO) show high probability of proceeding to severe accidents. Thus, these accident scenarios need to be evaluated properly with reliable prediction tools. Song and Ahn analyzed SBO sequences in KSNP using MELCOR 1.8.5. Park and Song examined SBLOCA scenarios based on the PSA of KNSP using MAAP 4.06. Their studies utilized severe accident database. In continuation of the further analysis, several scenarios of postulated SBO and SBLOCA in OPR1000 are investigated using the severe accident database and MELCOR 1.8.6.

  11. Predicting Severity and Duration of Road Traffic Accident

    Fang Zong

    2013-01-01

    Full Text Available This paper presents a model system to predict severity and duration of traffic accidents by employing Ordered Probit model and Hazard model, respectively. The models are estimated using traffic accident data collected in Jilin province, China, in 2010. With the developed models, three severity indicators, namely, number of fatalities, number of injuries, and property damage, as well as accident duration, are predicted, and the important influences of related variables are identified. The results indicate that the goodness-of-fit of Ordered Probit model is higher than that of SVC model in severity modeling. In addition, accident severity is proven to be an important determinant of duration; that is, more fatalities and injuries in the accident lead to longer duration. Study results can be applied to predictions of accident severity and duration, which are two essential steps in accident management process. By recognizing those key influences, this study also provides suggestive results for government to take effective measures to reduce accident impacts and improve traffic safety.

  12. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    Farmer, Mitchell T. [Argonne National Lab. (ANL), Argonne, IL (United States); Bunt, R. [Southern Nuclear, Atlanta, GA (United States); Corradini, M. [Univ. of Wisconsin, Madison, WI (United States); Ellison, Paul B. [GE Power and Water, Duluth, GA (United States); Francis, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Gabor, John D. [Erin Engineering, Walnut Creek, CA (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, C. [Fauske and Associates, Burr Ridge, IL (United States); Linthicum, R. [Exelon Corp., Chicago, IL (United States); Luangdilok, W. [Fauske and Associates, Burr Ridge, IL (United States); Lutz, R. [PWR Owners Group (PWROG); Paik, C. [Fauske and Associates, Burr Ridge, IL (United States); Plys, M. [Fauske and Associates, Burr Ridge, IL (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Robb, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Wachowiak, R. [Electric Power Research Inst. (EPRI), Knovville, TN (United States)

    2015-01-31

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  13. MELCOR DB Construction for the Severe Accident Analysis DB

    Song, Y. M.; Ahn, K. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The Korea Atomic Energy Research Institute (KAERI) has been constructing a severe accident analysis database (DB) under a National Nuclear R and D Program. In particular, an MAAP (commercial code being widely used in industries for integrated severe accident analysis) DB for many scenarios including a station blackout (SBO) has been completed. This paper shows the MELCOR DB construction process with examples of SBO scenarios, and the results will be used for a comparison with the MAAP DB

  14. Source term analyses under severe accidents for KNGR

    Song, Yong Mann; Park, Soo Yong

    2001-03-01

    In this study, in-containment source term for LOFW (Loss of Feed Water), which has appeared the most frequent core melt accident, is calculated and compared with NUREG-1465 source term. This study provides not only new source term data using MELCOR1.8.4 and its state-of-the-art models but also evaluating basis of KNGR design and its mitigation capability under severe accidents. As the selected accident is identical with LOFW-S17, which has been analyzed using MAAP by KEPCO with only difference of 2 SITs, mutual comparison of the results is especially expected.

  15. Desktop Severe Accident Graphic Simulator Module for CANDU6 : PSAIS

    Park, S. Y.; Song, Y. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The ISAAC ((Integrated Severe Accident Analysis Code for CANDU Plant) code is a system level computer code capable of performing integral analyses of potential severe accident progressions in nuclear power plants, whose main purpose is to support a Level 2 probabilistic safety assessment or severe accident management strategy developments. The code has the capability to predict a severe accident progression by modeling the CANDU6- specific systems and the expected physical phenomena based on the current understanding of the unique accident progressions. The code models the sequence of accident progressions from a core heatup, pressure tube/calandria tube rupture after an uncovery from inside and outside, a relocation of the damaged fuel to the bottom of the calandria, debris behavior in the calandria, corium quenching after a debris relocation from the calandria to the calandria vault and an erosion of the calandria vault concrete floor, a hydrogen burn, and a reactor building failure. Along with the thermal hydraulics, the fission product behavior is also considered in the primary system as well as in the reactor building.

  16. First international workshop on severe accidents and their consequences. [Chernobyl Accident

    1989-07-01

    An international workshop on past severe nuclear accidents and their consequences was held in Dagomys region of Sochi, USSR on October 30--November 3, 1989. The plan of this meeting was approved by the USSR Academy of Sciences and by the USSR State Committee of the Utilization of Atomic Energy. The meeting was held under the umbrella of the ANS-SNS agreement of cooperation. Topics covered include analysis of the Chernobyl accident, safety measures for RBMK type reactors and consequences of the Chernobyl accident including analysis of the ecological, genetic and psycho-social factors. Separate reports are processed separately for the data bases. (CBS)

  17. Drug use and the severity of a traffic accident

    Smink, BE; Ruiter, B; Lusthof, KJ; de Gier, JJ; Uges, DRA; Egberts, ACG

    2005-01-01

    Several studies have showed that driving under the influence of alcohol and/or certain illicit or medicinal drugs increases the risk of a (severe) crash. Data with respect to the question whether this also leads to a more severe accident are sparse. This study examines the relationship between the u

  18. Nuclear safety in light water reactors severe accident phenomenology

    Sehgal, Bal Raj

    2011-01-01

    This vital reference is the only one-stop resource on how to assess, prevent, and manage severe nuclear accidents in the light water reactors (LWRs) that pose the most risk to the public. LWRs are the predominant nuclear reactor in use around the world today, and they will continue to be the most frequently utilized in the near future. Therefore, accurate determination of the safety issues associated with such reactors is central to a consideration of the risks and benefits of nuclear power. This book emphasizes the prevention and management of severe accidents to teach nuclear professionals

  19. Severe Accident Analysis for Combustible Gas Risk Evaluation inside CFVS

    Lee, NaRae; Lee, JinYong; Bang, YoungSuk; Lee, DooYong [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, HyeongTaek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The purpose of this study is to identify the composition of gases discharged into the containment filtered venting system by analyzing severe accidents. The accident scenarios which could be significant with respect to containment pressurization and hydrogen generation are derived and composition of containment atmosphere and possible discharged gas mixtures are estimated. In order to ensure the safety of the public and environment, the ventilation system should be designed properly by considering discharged gas flow rate, aerosol loads, radiation level, etc. One of considerations to be resolved is the risk due to combustible gas, especially hydrogen. Hydrogen can be generated largely by oxidation of cladding and decomposition of concrete. If the hydrogen concentration is high enough and other conditions like oxygen and steam concentration is met, the hydrogen can burn, deflagrate or detonate, which result in the damage the structural components. In particularly, after Fukushima accident, the hydrogen risk has been emphasized as an important contributor threatening the integrity of nuclear power plant during the severe accident. These results will be used to analyze the risk of hydrogen combustion inside the CFVS as boundary conditions. Severe accident simulation results are presented and discussed qualitatively with respect to hydrogen combustion. The hydrogen combustion risk inside of the CFVS has been examined qualitatively by investigating the discharge flow characteristics. Because the composition of the discharge flow to CFVS would be determined by the containment atmosphere, the severe accident progression and containment atmosphere composition have been investigated. Due to PAR operation, the hydrogen concentration in the containment would be decreased until the oxygen is depleted. After the oxygen is depleted, the hydrogen concentration would be increased. As a result, depending on the vent initiation timing (i.e. vent initiation pressure), the important

  20. Interactions of severe accident research and regulatory positions (ISARRP)

    Sehgal, B.R. (comp.) [Royal Inst. of Tech., Stockholm (Sweden). Nuclear Power Safety

    2001-12-01

    The work Programme of the ISARRP Project was divided into several work packages. The work was conducted in the form of presentations and discussions, held during several meetings whose character was that of workshops. Short reports were prepared by the partners assigned to each task. Work Package 1: Critical review of the SA phenomenological research. The objective of this work package was to consider the progress made world-wide in research on the resolution of the outstanding phenomenological issues posed by severe accidents. Work Package 2: Relevance of severe accident research to SAMG requirements and implementation. The objective of this work package was to relate the progress made in the resolution of the SA issues to the practical matter of what results are required or have been used for the management of severe accidents. Clearly, the SAMG is the most important avenue employed by the regulatory organizations to assure themselves of the safe (from public perspective) performance of a nuclear plant in a postulated severe accident event. Work Package 3: Relevance of severe accident research to PSA and the risk informed regulatory approach. The objectives of this work package is to relate the results obtained by the severe accident research to the requirements of a PSA and of the new trend of employing the risk informed approach in promulgating regulations. Clearly a PSA identifies vulnerabilities in the knowledge base, however, their importance is decidedly plant specific. Nevertheless the uncertainties in the phenomenology or in resolution of issues lead to uncertainties in the PSA conclusions and in the adoption of the risk informed approach. Work Package 4: Questionnaire and the evaluation of responses to the questions. The purpose of this work package is to solicit the views of the regulatory organizations towards the results of the SA research and the benefits they have derived from it in terms of regulatory actions, or in the confidence they have gained

  1. Development of Integrated Evaluation System for Severe Accident Management

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y

    2007-06-15

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs.

  2. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramic microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, Fe

  3. A Bayesian ensemble of sensitivity measures for severe accident modeling

    Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Vagnoli, Matteo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge, Fondation EDF – Electricite de France Ecole Centrale, Paris, and Supelec, Paris (France); Pourgol-Mohammad, Mohammad [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • We propose a sensitivity analysis (SA) method based on a Bayesian updating scheme. • The Bayesian updating schemes adjourns an ensemble of sensitivity measures. • Bootstrap replicates of a severe accident code output are fed to the Bayesian scheme. • The MELCOR code simulates the fission products release of LOFT LP-FP-2 experiment. • Results are compared with those of traditional SA methods. - Abstract: In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: (i) the propagation of the uncertainty in the input variables through the severe accident code; (ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of finite mixture models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; (iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley–Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the loss of fluid test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).

  4. Shipping container response to severe highway and railway accident conditions: Appendices

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    Volume 2 contains the following appendices: Severe accident data; truck accident data; railroad accident data; highway survey data and bridge column properties; structural analysis; thermal analysis; probability estimation techniques; and benchmarking for computer codes used in impact analysis. (LN)

  5. Severe accident natural circulation studies at the INEL

    Bayless, P.D.; Brownson, D.A.; Dobbe, C.A.; Jones, K.R.; O`Brien, J.E.; Pafford, D.J.; Schlenker, L.D.; Tung, V.X.

    1995-02-01

    Severe accident natural circulation flows have been investigated at the Idaho National Engineering Laboratory to better understand these flows and their potential impacts on the progression of a pressurized water reactor severe accident. Parameters affecting natural circulation in the reactor vessel and hot legs were identified and ranked based on their perceived importance. Reviews of the scaling of the 1/7-scale experiments performed by Westinghouse were undertaken. RELAP5/MOD3 calculations of two of the experiments showed generally good agreement between the calculated and observed behavior. Analyses of hydrogen behavior in the reactor vessel showed that hydrogen stratification is not likely to occur, and that an initially stratified layer of hydrogen would quickly mix with a recirculating steam flow. An analysis of the upper plenum behavior in the Three Mile Island, Unit 2 reactor concluded that vapor temperatures could have been significantly higher than the temperatures seen by the control rod drive lead screws, supporting the premise that a strong natural circulation flow was likely present during the accident. SCDAP/RELAP5 calculations of a commercial pressurized water reactor severe accident without operator actions showed that the natural circulation flows enhance the likelihood of ex-vessel piping failures long before failure of the reactor vessel lower head.

  6. Test Data for USEPR Severe Accident Code Validation

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  7. Safety against releases in severe accidents. Final report

    Lindholm, I.; Berg, Oe.; Nonboel, E. [eds.

    1997-12-01

    The work scope of the RAK-2 project has involved research on quantification of the effects of selected severe accident phenomena for Nordic nuclear power plants, development and testing of a computerised accident management support system and data collection and description of various mobile reactors and of different reactor types existing in the UK. The investigations of severe accident phenomena focused mainly on in-vessel melt progression, covering a numerical assessment of coolability of a degraded BWR core, the possibility and consequences of a BWR reactor to become critical during reflooding and the core melt behavior in the reactor vessel lower plenum. Simulant experiments were carried out to investigate lower head hole ablation induced by debris discharge. In addition to the in-vessel phenomena, a limited study on containment response to high pressure melt ejection in a BWR and a comparative study on fission product source term behaviour in a Swedish PWR were performed. An existing computerised accident management support system (CAMS) was further developed in the area of tracking and predictive simulation, signal validation, state identification and user interface. The first version of a probabilistic safety analysis module was developed and implemented in the system. CAMS was tested in practice with Barsebaeck data in a safety exercise with the Swedish nuclear authority. The descriptions of the key features of British reactor types, AGR, Magnox, FBR and PWR were published as data reports. Separate reports were issued also on accidents in nuclear ships and on description of key features of satellite reactors. The collected data were implemented in a common Nordic database. (au) 39 refs.

  8. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    R. A. Wigeland; J. E. Cahalan

    2009-12-01

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to

  9. Steam Oxidation Testing in the Severe Accident Test Station

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McMurray, Jake W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Since 2011, Oak Ridge National Laboratory (ORNL) has been conducting high temperature steam oxidation testing of candidate alloys for accident tolerant fuel (ATF) cladding. These concepts are designed to enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the US ATF community, the Severe Accident Test Station (SATS) has been evaluating candidate materials (including coatings) since 2012. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials need to offer slower oxidation kinetics and a smaller enthalpy of oxidation in order to significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models. However, prior modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. In some cases, the results have been difficult to interpret and more fundamental information is needed such as the stability of alumina in flowing steam at 1400°-1500°C. This report summarizes recent work to measure the steam oxidation kinetics of candidate alloys, the evaporation rate of alumina in steam and the development of integral data on FeCrAl compared to conventional Zr-based cladding.

  10. Development of a system of computer codes for severe accident analyses and its applications

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  11. Predictions of structural integrity of steam generator tubes under normal operating, accident, an severe accident conditions

    Majumdar, S. [Argonne National Lab., IL (United States)

    1997-02-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmed by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.

  12. Severe Accident Simulation of the Laguna Verde Nuclear Power Plant

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available The loss-of-coolant accident (LOCA simulation in the boiling water reactor (BWR of Laguna Verde Nuclear Power Plant (LVNPP at 105% of rated power is analyzed in this work. The LVNPP model was developed using RELAP/SCDAPSIM code. The lack of cooling water after the LOCA gets to the LVNPP to melting of the core that exceeds the design basis of the nuclear power plant (NPP sufficiently to cause failure of structures, materials, and systems that are needed to ensure proper cooling of the reactor core by normal means. Faced with a severe accident, the first response is to maintain the reactor core cooling by any means available, but in order to carry out such an attempt is necessary to understand fully the progression of core damage, since such action has effects that may be decisive in accident progression. The simulation considers a LOCA in the recirculation loop of the reactor with and without cooling water injection. During the progression of core damage, we analyze the cooling water injection at different times and the results show that there are significant differences in the level of core damage and hydrogen production, among other variables analyzed such as maximum surface temperature, fission products released, and debris bed height.

  13. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    Rempe, J. L. [Rempe and Associates, LLC, Idaho Falls, ID (United States); Knudson, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lutz, R. J. [Lutz Nuclear Safety Consultant, LLC, Asheville, NC (United States)

    2015-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure that critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that

  14. Severe head injury caused by motorcycle traffic accident

    李钢

    1999-01-01

    Objective To explore the characteristic and treatment of the severe head injury due to motorcycle accident.Methods Review and analysis of 27 motorcycle traffic trauma cases who were admitted to our hospital from Oct.1995 to Sep.1997.Results Young men were the main composition of these patients.Multiple injuries associated with brain ste or diffuse axonal injury were common,which were the main factors influencing the consciousness and prognosis of the patients.The wound was usually severely contaminated.Evacuation of hematomas,decompression by depleting skull flap,hypotheymia and artificial hibernation were conducted in this series.Among them,14 cases were cured ,3 cases were seriously disabled,10 cases died.Conclusions Motorcycle's weight is light so it easily loses its balance.The riders and the passengers are exposed and lack protection.Driving against traffic regulations is frquently seen.All these are the reasons why the motorcycle traffic accidents often take place. When the traffic accident happens,the patients' head generally is thrown a long distance and dashed against the barrier or the ground.The psture nd mechanism of injury were complicated and varied.The decelerated injury and rolling injury occurred frequently and they were the main reasons for brain stem or diffuse axonal injury.The patients who have surgical indication should be operated upon as soon as possible.Hibernation and low temoerature therapy are conducive to the protection of the brain function at the early stage of postinjury or postoperation.A careful epluchage is essential to reduce infection of the open injury.

  15. Development of system of computer codes for severe accident analysis and its applications

    Jang, H. S.; Jeon, M. H.; Cho, N. J. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-01-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts.

  16. Advances in operational safety and severe accident research

    Simola, K. [VTT Automation (Finland)

    2002-02-01

    A project on reactor safety was carried out as a part of the NKS programme during 1999-2001. The objective of the project was to obtain a shared Nordic view of certain key safety issues related to the operating nuclear power plants in Finland and Sweden. The focus of the project was on selected central aspects of nuclear reactor safety that are of common interest for the Nordic nuclear authorities, utilities and research bodies. The project consisted of three sub-projects. One of them concentrated on the problems related to risk-informed deci- sion making, especially on the uncertainties and incompleteness of probabilistic safety assessments and their impact on the possibilities to use the PSA results in decision making. Another sub-project dealt with questions related to maintenance, such as human and organisational factors in maintenance and maintenance management. The focus of the third sub-project was on severe accidents. This sub-project concentrated on phenomenological studies of hydrogen combustion, formation of organic iodine, and core re-criticality due to molten core coolant interaction in the lower head of reactor vessel. Moreover, the current status of severe accident research and management was reviewed. (au)

  17. Developement of integrated evaluation system for severe accident management

    Kim, Dong Ha; Kim, H. D.; Park, S. Y.; Kim, K. R.; Park, S. H.; Choi, Y.; Song, Y. M.; Ahn, K. I.; Park, J. H

    2005-04-01

    The scope of the project includes four activities such as construction of DB, development of data base management tool, development of severe accident analysis code system and FP studies. In the construction of DB, level-1,2 PSA results and plant damage states event trees were mainly used to select the following target initiators based on frequencies: LLOCA, MLOCA, SLOCA, station black out, LOOP, LOFW and SGTR. These scenarios occupy more than 95% of the total frequencies of the core damage sequences at KSNP. In the development of data base management tool, SARD 2.0 was developed under the PC microsoft windows environment using the visual basic 6.0 language. In the development of severe accident analysis code system, MIDAS 1.0 was developed with new features of FORTRAN-90 which makes it possible to allocate the storage dynamically and to use the user-defined data type, leading to an efficient memory treatment and an easy understanding. Also for user's convenience, the input (IEDIT) and output (IPLOT) processors were developed and implemented into the MIDAS code. For the model development of MIDAS concerning the FP behavior, the one dimensional thermophoresis model was developed and it gave much improvement to predict the amount of FP deposited on the SG U-tube. Also the source term analysis methodology was set up and applied to the KSNP and APR1400.

  18. An Evaluation Methodology Development and Application Process for Severe Accident Safety Issue Resolution

    Robert P. Martin

    2012-01-01

    Full Text Available A general evaluation methodology development and application process (EMDAP paradigm is described for the resolution of severe accident safety issues. For the broader objective of complete and comprehensive design validation, severe accident safety issues are resolved by demonstrating comprehensive severe-accident-related engineering through applicable testing programs, process studies demonstrating certain deterministic elements, probabilistic risk assessment, and severe accident management guidelines. The basic framework described in this paper extends the top-down, bottom-up strategy described in the U.S Nuclear Regulatory Commission Regulatory Guide 1.203 to severe accident evaluations addressing U.S. NRC expectation for plant design certification applications.

  19. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  20. Use of decision trees for evaluating severe accident management strategies in nuclear power plants

    Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclerar Engineering; Lee, Yongjin; Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of). School of Energy Systems Engineering

    2016-07-15

    Accident management strategies are defined to innovative actions taken by plant operators to prevent core damage or to maintain the sound containment integrity. Such actions minimize the chance of offsite radioactive substance leaks that lead to and intensify core damage under power plant accident conditions. Accident management extends the concept of Defense in Depth against core meltdown accidents. In pressurized water reactors, emergency operating procedures are performed to extend the core cooling time. The effectiveness of Severe Accident Management Guidance (SAMG) became an important issue. Severe accident management strategies are evaluated with a methodology utilizing the decision tree technique.

  1. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-15

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR.

  2. Evaluation of severe accident risks: Quantification of major input parameters: MAACS (MELCOR Accident Consequence Code System) input

    Sprung, J.L.; Jow, H-N (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Helton, J.C. (Arizona State Univ., Tempe, AZ (USA))

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.

  3. Influence diagrams and decision trees for severe accident management

    Goetz, W.W.J.

    1996-09-01

    A review of relevant methodologies based on Influence Diagrams (IDs), Decision Trees (DTs), and Containment Event Trees (CETs) was conducted to assess the practicality of these methods for the selection of effective strategies for Severe Accident Management (SAM). The review included an evaluation of some software packages for these methods. The emphasis was on possible pitfalls of using IDs and on practical aspects, the latter by performance of a case study that was based on an existing Level 2 Probabilistic Safety Assessment (PSA). The study showed that the use of a combined ID/DT model has advantages over CET models, in particular when conservatisms in the Level 2 PSA have been identified and replaced by fair assessments of the uncertainties involved. It is recommended to use ID/DT models complementary to CET models. (orig.).

  4. Development of ultrasonic high temperature system for severe accidents research

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Young Ro and others

    2000-07-01

    The aims of this study are to find a gap formation between corium melt and the reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at suggesting development of a new high temperature measuring system using an ultrasonic method which overcomes the limitations of the present thermocouple method used for severe accident experiments. Also, this report describes the design and manufacturing method of the ultrasonic system. At that time, the sensor element is fabricated to a reflective element using 1mm diameter and 50 mm and 80 mm long tungsten alloy wires. This temperature measuring system is intended to measure up to 2800 deg C.

  5. Factors associated with the severity of construction accidents: The case of South Australia

    Jantanee Dumrak

    2013-12-01

    Full Text Available While the causes of accidents in the construction industry have been extensively studied, severity remains an understudied area. In order to provide more evidence for the currently limited number of empirical investigations on severity, this study analysed 24,764 construction accidents reported during 2002-11 in South Australia. A conceptual model developed through literature uses personal characteristics such as age, experience, gender and language. It also employs work-related factors such as size of organization, project size and location, mechanism of accident and body location of the injury. These were shown to discriminate why some accidents result in only a minor severity while others are fatal. Factors such as time of accident, day of the week and season were not strongly associated with accident severity. When the factors affecting severity of an accident are well understood, preventive measures could be developed specifically to those factors that are at high risk.

  6. The study of core melting phenomena in reactor severe accident of PWR

    Park, Jae Hong; Jeun, Gyoo Dong; Park, Seh In; Lim, Jae Hyuck; Park, Seong Yong [Hanyang Univ., Seoul (Korea, Republic of); Bang, Kwang Hyun; Kim, Ki Yong [Korea Maritime Univ., Busan (Korea, Republic of)

    1999-03-15

    After TMI-2 accident, it has been paid much attention to severe accidents beyond the design basis accidents and the research on the progress of severe accidents and mitigation and the closure of severe accidents has been actively performed. In particular, a great deal of uncertainties yet exist in the phase of late core melt progression and thus the research on this phase of severe accident progress has a key role in obtaining confidence in severe accident mitigation and nuclear reactor safety. In the present study, physics of late core melt progression, experimental data and the major phenomenological models of computer codes are reviewed and a direction of reducing the uncertainties in the late core melt progression is proposed.

  7. A study on the late core melt progression in pressurized water reactor severe accidents

    Park, Jae Hong; Jeun Gyoo Dong; Bang, Kwang Hyun; Park, Seh In; Lim, Jae Hyuck; Park, Seong Yong [Hanyang Univ., Seoul (Korea, Republic of); Back, Hyung Hmm [Korea Maritime Univ., Busan (Korea, Republic of)

    1998-03-15

    After TMI-2 accidents, it has been paid much attention to severe accidents beyond the design basis accidents and the research on the progress of severe accidents and mitigation and the closure of severe accidents has been actively performed. In particular, a great deal of uncertainties yet exist in the phase of late core melt progression and thus the research on this phase of severe accident progress has a key role in obtaining in severe accident mitigation and nuclear reactor safety. In the present study, physics of late core melt progression, experimental data and the major phenomenological models of computer codes are reviewed and a direction of reducing the uncertainties in the late core melt progression os proposed.

  8. Analysis of hot leg natural circulation under station blackout severe accident

    2007-01-01

    Under severe accidents, natural circulation flows are important to influence the accident progression and result in a pressurized water reactor (PWR). In a station blackout accident with no recovery of steam generator (SG) auxiliary feedwater (TMLB' severe accident scenario), the hot leg countercurrent natural circulation flow is analyzed by using a severe-accident code, to better understand its potential impacts on the creep-rupture timing among the surge line, the hot leg, and SG tubes. The results show that the natural circulation may delay the failure time of the hot leg.The recirculation ratio and the hot mixing factor are also calculated and discussed.

  9. Development of the severe accident risk information database management system SARD

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies.

  10. Development of severe accident analysis code - A study on the molten core-concrete interaction under severe accidents

    Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)

  11. Severe accident research and management in Nordic Countries - A status report

    Frid, W. [Swedish Nuclear Power Inspectorate, SKI (Sweden)] (ed.)

    2002-01-01

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  12. Radiative heat transfer modelling in a PWR severe accident sequence

    Magali Zabiego; Florian Fichot [Institut de Radioprotection et de Surete Nucleaire - BP 3 - 13115 Saint-paul-Lez-Durance (France); Pablo Rubiolo [Westinghouse Science and Technology - 1344 Beulah Road - Pittsburgh - PA 15235 (United States)

    2005-07-01

    Full text of publication follows: The present study is devoted to the estimation of the radiative heat transfers during a severe accident sequence in a Pressurized Water Reactor. In such a situation, the residual nuclear power released by the fuel rods can not be evacuated and heats up the core. As a result, the cylindrical rods and the structures initially composing the core undergo a degradation process: swelling, breaking or melting of the rods and structures and eventual collapse to form a heap of fragments called a debris bed. As the solid matrix loses its original shape, the core geometry continuously evolves from standing, regularly-spaced cylinders to a non-homogeneous system including deformed remaining rods and structures and debris particles. To predict this type of sequence, the ICARE/CATHARE software [1] is developed by IRSN. Since the temperatures can reach values greater than 3000 K, it was of major interest to provide the code with an accurate radiative transfer model usable whatever the geometry of the system. Considering the size of a reactor core compared to the mean penetration length of radiation, the core can be seen as an optically thick medium. This observation led us to use the diffusion approximation to treat the radiation propagation. In this approach, the radiative flux is calculated in a way similar to thermal conduction: q{sub r} = [K{sub e}].{nabla}T where [K{sub e}] is the equivalent conductivity tensor of the system accounting for thermal and radiative transfer. An homogenization technique is applied to estimate the equivalent conductivity. Given the temperature level, the radiative contribution to the equivalent conductivity tensor quickly becomes dominant. This model was described earlier in [2] in which it was shown that an equivalent conductivity can be continuously calculated in the system when the geometry evolves from standing regular cylinder rods to swollen or broken ones, surrounded or not by a film of liquid materials, to

  13. Project on Transfer Mechanism of Radioactive Source Term Under Severe Accident

    SUN; Xue-ting; JI; Song-tao; CHEN; Lin-lin

    2012-01-01

    <正>The "Transfer mechanism of radioactive source term under severe accident" is a sub-project of the research program of "Mechanism and phenomenology of severe accident". An aerosol transfer mechanism experimental facility is built to simulate the passive containment cooling system (PCCS) of advanced pressurizer reactors to research effects to the transfer process of fission products under severe accident. An advanced CFD method is also utilized to research the effects. The objective of this project is to understand

  14. A database system for the management of severe accident risk information, SARD

    Ahn, K. I.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies.

  15. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  16. Development of a parametric containment event tree model for a severe BWR accident

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1995-04-01

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.).

  17. Development of MAAP5.0.3 Spent Fuel Pool Model for Severe Accident Analysis

    Seo, Mi Ro [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    After the Fukushima accident, the severe accident phenomena in the Spent Fuel Pool (SFP) have been the great issues in the nuclear industry. Generally, during full power operation status, the decay heat of the spent fuel in the SFP is not high enough to cause the severe accident that is the say, the melting of fuel and fuel rack. In addition to this, the SFP of the PWR is not isolated within the containment like the SFP of the old BWR plant, there are so many possible measures to prevent and mitigate severe accidents in the SFP. On the other hand, in the low power shutdown status (fuel refueling), all the core is transferred into the SFP during the refueling period. At this period, if some accidents happen such as the loss of SFP cooling and the failure of SFP integrity then the accidents may be developed into severe accident because the decay heat is high enough. So, the analysis of severe accidents in the SFP during low power shutdown state is greatly affected to the establishment of the major strategies in the severe accident management guideline (SAMG). However, the status of the domestic technical background for those analyses is very weak. it is known that the decay heat of the spent fuel in the SFP is not high enough to cause the severe accident qualitatively. However, there are some possibilities that can cause the severe accidents in the SFP if the loss of SFP cooling and integrity happens simultaneously. The severe accident phenomena in SFP themselves are not much different from those in the containment. However, since the structure of SFP cannot be isolated during the accidents like the containment, the consequence can be extremely significant. So, in terms of the establishment of the severe accident management strategy, it is necessary that the quantitative analysis for the severe accident progression in the SFP should be performed. In this study, the general behavior which can be appeared during the severe accidents in the SFP was analyzed using the

  18. Neutronic analysis of LMFBRs during severe core disruptive accidents

    Tomlinson, E.T.

    1979-01-01

    A number of numerical experiments were performed to assess the validity of diffusion theory and various perturbation methods for calculating the reactivity state of a severely disrupted liquid metal cooled fast breeder reactor (LMFBR). The disrupted configurations correspond, in general, to phases through which an LMFBR core could pass during a core disruptive accident (CDA). Two-reactor models were chosen for this study, the two zone, homogeneous Clinch River Breeder Reactor and the Large Heterogeneous Reactor Design Study Core. The various phases were chosen to approximate the CDA results predicted by the safety analysis code SAS3D. The calculational methods investigated in this study include the eigenvalue difference technique based on both discrete ordinate transport theory and diffusion theory, first-order perturbation theory, exact perturbation theory, and a new hybrid perturbation theory. Selected cases were analyzed using Monte Carlo methods. It was found that in all cases, diffusion theory and perturbation theory yielded results for the change in reactivity that significantly disagreed with both the discrete ordinate and Monte Carlo results. These differences were, in most cases, in a nonconservative direction.

  19. Accident progression event tree analysis for postulated severe accidents at N Reactor

    Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M. (Sandia National Labs., Albuquerque, NM (USA)); Medford, G.T. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-06-01

    A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied.

  20. Prediction of hydrogen concentration in containment during severe accidents using fuzzy neural network

    Kim, Dong Yeong; Kim, Ju Hyun; Yoo, Kwae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2015-03-15

    Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

  1. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    Camous, F.; Jacq, F.; Chatelard, P. [IPSN/DRS/SEMAR CE-Cadarache, St Paul Lez Durance (France)] [and others

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  2. Proceedings of the workshop on severe accident research held in Japan (SARJ-97)

    Sugimoto, Jun [ed.

    1998-05-01

    The Workshop on Severe Accident Research held in Japan (SARJ-97) was taken place at Pacifico Yokohama on October 6 - 8, 1997, and attended by 180 participants from 15 countries and one international organizations. The 59 papers, which cover wide areas of severe accident research both in experiments and analysis, such as in-vessel melt retention, fuel-coolant interaction, fission products behavior, structural integrity, containment behavior, computer simulations, and accident management, are indexed individually. (J.P.N.)

  3. Proceedings of the workshop on severe accident research held in Japan (SARJ-98)

    Sugimoto, Jun [ed.

    1999-07-01

    The Workshop on Severe Accident Research held in Japan (SARJ-98) was taken place at Hotel Lungwood on November 4-6, 1998, and attended by 181 participants from 13 countries. The 63 papers, which cover wide areas of severe accident research both in experiments and analyses, such as in-vessel melt retention, fuel-coolant interaction, fission products behavior, structural integrity, containment behavior, computer simulations, and accident management, are indexed individually. (J.P.N.)

  4. An analysis on the severe accident progression with operator recovery actions

    Vo, T.H. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejon 305-353 (Korea, Republic of); Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Song, J.H., E-mail: dosa@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejon 305-353 (Korea, Republic of); Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Kim, T.W.; Kim, D.H. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejon 305-353 (Korea, Republic of)

    2014-12-15

    Highlights: • Severe accident progression for the station blackout and SBLOCA accident. • Analyses on APR1400 using MELCOR. • Operator recovery actions for decay heat removal and inventory make up. • Determine the time allowed for the operator to prevent reactor vessel failure. • Insight for the operator recovery actions for the severe accident management. - Abstract: Analyses on the severe accident progressions for the station blackout (SBO) accident and small break LOCA (SBLOCA) initiated severe accident were performed for APR1400 by using MELCOR computer code. Operator recovery actions for decay heat removal and inventory make up using a depressurization system and safety injection pump were simulated in parallel with a simulation of the severe accident progression. Sensitivity studies on the operator actions were performed to investigate the changes in the timing of the reactor vessel failure and to determine the time allowed for the operator to prevent reactor vessel failure. Sensitivity analyses on the effect of major modeling parameters were performed additionally to quantify the uncertainties in timing. It is found that the operator has about 2 h for the recovery actions after the indication of core damage by the signal of core exit thermocouple (CET) for the SBLOCA initiated severe accident, while the operator has to take immediate actions after the indication of core damage by CET for the SBO accident.

  5. Analysis on the severe accidents in KSTAR tokamak

    Lee, Myoung Jae; Cheong, Y. H.; Choi, Y. S.; Cheon, E. J. [PlaGen, Seoul (Korea, Republic of)

    2003-11-15

    The establishment of regulatory and approval systems for KSTAR (Korea Superconducting Tokamak Advanced Research) has been demanded as the facility is targeted to be completed in the year of 2005. Such establishment can be achieved by performing adequate and in-depth analyses on safety issues covering radiological and chemical hazard materials, radiation protection, high vacuum, very low temperature, etc. The loss of coolant accidents and the loss of vacuum accident in fusion facilities have been introduced with summary of simulation results that were previously reported for ITER and JET. Computer codes that are actively used for accident simulation research are examined and their main features are briefly described. It can be stated that the safety analysis is indispensable to secure the safety of workers and individual members of the public as well as to establish the regulatory and approval systems for KSTAR tokamak.

  6. 77 FR 61446 - Proposed Revision Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors

    2012-10-09

    ... COMMISSION Proposed Revision Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors... comment on NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power..., ``Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors.'' DATES: Submit comments...

  7. 77 FR 66649 - Proposed Revision to Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors

    2012-11-06

    ... COMMISSION Proposed Revision to Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors... the Commission), issued a NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports...), Section 19.0 ``Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors.'' The NRC...

  8. The special severity of occupational accidents in the afternoon: "the lunch effect".

    Camino López, Miguel A; Fontaneda, Ignacio; González Alcántara, Oscar J; Ritzel, Dale O

    2011-05-01

    The severity of occupational accidents suffered by construction workers at different hours of the day is analyzed in this study. It may be seen that the interval of time between 13:00 and 17:00 has incomprehensibly high rates of severe and fatal accidents in comparison with any other. We associate this higher accident rate with what we have termed the "lunch effect". We studied 10,239,303 labor accidents in Spain over the period 1990-2002. The relationships between potential risk factors for occupational accidents around lunch in Spain, especially alcohol consumption are studied, using two methods: analysis of national archival data of 2,155,954 occupational accidents suffered by workers in the construction sector over the period 1990-2002 and a survey study. This study also seeks to contribute the opinions of the workers themselves regarding the causes that might explain this situation.

  9. Radiation protection issues on preparedness and response for a severe nuclear accident: experiences of the Fukushima accident.

    Homma, T; Takahara, S; Kimura, M; Kinase, S

    2015-06-01

    Radiation protection issues on preparedness and response for a severe nuclear accident are discussed in this paper based on the experiences following the accident at Fukushima Daiichi nuclear power plant. The criteria for use in nuclear emergencies in the Japanese emergency preparedness guide were based on the recommendations of International Commission of Radiological Protection (ICRP) Publications 60 and 63. Although the decision-making process for implementing protective actions relied heavily on computer-based predictive models prior to the accident, urgent protective actions, such as evacuation and sheltering, were implemented effectively based on the plant conditions. As there were no recommendations and criteria for long-term protective actions in the emergency preparedness guide, the recommendations of ICRP Publications 103, 109, and 111 were taken into consideration in determining the temporary relocation of inhabitants of heavily contaminated areas. These recommendations were very useful in deciding the emergency protective actions to take in the early stages of the Fukushima accident. However, some suggestions have been made for improving emergency preparedness and response in the early stages of a severe nuclear accident.

  10. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  11. Study of the Severity of Accidents in Tehran Using Statistical Modeling and Data Mining Techniques

    Hesamaldin Razi

    2013-01-01

    Full Text Available AbstractBackgrounds and Aims: The Tehran province was subject to the second highest incidence of fatalities due to traffic accidents in 1390. Most studies in this field examine rural traffic accidents, but this study is based on the use of logit models and artificial neural networks to evaluate the factors that affect the severity of accidents within the city of Tehran.Materials and Methods: Among the various types of crashes, head-on collisions are specified as the most serious type, which is investigated in this study with the use of Tehran’s accident data. In the modeling process, the severity of the accident is the dependent variable and defined as a binary covariate, which are non-injury accidents and injury accidents. The independent variables are parameters such as the characteristics of the driver, time of the accident, traffic and environmental characteristics. In addition to the prediction accuracy comparison of the two models, the elasticity of the logit model is compared with a sensitivity analysis of the neural network.Results: The results show that the proposed model provides a good estimate of an accident's severity. The explanatory variables that have been determined to be significant in the final models are the driver’s gender, age and education, along with negligence of the traffic rules, inappropriate acceleration, deviation to the left, type of vehicle, pavement conditions, time of the crash and street width.Conclusion: An artificial neural network model can be useful as a statistical model in the analysis of factors that affect the severity of accidents. According to the results, human errors and illiteracy of drivers increase the severity of crashes, and therefore, educating drivers is the main strategy that will reduce accident severity in Iran. Special attention should be given to a driver’s age group, with particular care taken when they are very young.

  12. Proceedings of the workshop on severe accident research, Japan (SARJ-99)

    Hashimoto, Kazuichiro [ed.

    2000-11-01

    The Workshop on Severe Accident Research, Japan (SARJ-99) was taken place at Hotel Lungwood on November 8-10, 1999, and attended by 156 participants from 12 countries. A total of 46 papers, which covered wide areas of severe accident research both in experiments and analyses, such as fuel/coolant interaction, accident analysis and modeling, in-vessel phenomena, accident management, fission product behavior, research reactors, ex-vessel phenomena, and structural integrity, were presented. The panel discussion titled 'Link of Severe Accident Research Results to Regulation: Current Status and Future Perspective' was successfully conducted, and the wide variety of opinions and views were exchanged among panelists and experts. (J.P.N.)

  13. A statistical description of the types and severities of accidents involving tractor semi-trailers

    Clauss, D.B.; Wilson, R.K. [Sandia National Labs., Albuquerque, NM (United States); Blower, D.F.; Campbell, K.L. [Univ. of Michigan Transportation Research Institute, Ann Arbor, MI (United States). Center for National Truck Statistics

    1994-06-01

    This report provides a statistical description of the types and severities of tractor semi-trailer accidents involving at least one fatality. The data were developed for use in risk assessments of hazardous materials transportation. Several accident databases were reviewed to determine their suitability to the task. The TIFA (Trucks Involved in Fatal Accidents) database created at the University of Michigan Transportation Research Institute was extensively utilized. Supplementary data on collision and fire severity, which was not available in the TIFA database, were obtained by reviewing police reports for selected TIFA accidents. The results are described in terms of frequencies of different accident types and cumulative distribution functions for the peak contact velocity, rollover skid distance, fire temperature, fire size, fire separation, and fire duration.

  14. Studies on melt-water-structure interaction during severe accidents

    Sehgal, B.R.; Dinh, T.N.; Okkonen, T.J.; Bui, V.A.; Nourgaliev, R.R.; Andersson, J. [Royal Inst. of Technology, Div. of Nucl. Power Safety, Stockholm (Sweden)

    1996-10-01

    Results of a series of studies, on melt-water-structure interactions which occur during the progression of a core melt-down accident, are described. The emphasis is on the in-vessel interactions and the studies are both experimental and analytical. Since, the studies performed resulted in papers published in proceedings of the technical meetings, and in journals, copies of a set of selected papers are attached to provide details. A summary of the results obtained is provided for the reader who does not, or cannot, venture into the perusal of the attached papers. (au).

  15. Outline of the Desktop Severe Accident Graphic Simulator Module for OPR-1000

    Park, S. Y.; Ahn, K. I. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    This paper introduce the desktop severe accident graphic simulator module (VMAAP) which is a window-based severe accident simulator using MAAP as its engine. The VMAAP is one of the submodules in SAMEX system (Severe Accident Management Support Expert System) which is a decision support system for use in a severe accident management following an incident at a nuclear power plant. The SAMEX system consists of four major modules as sub-systems: (a) Severe accident risk data base module (SARDB): stores the data of integrated severe accident analysis code results like MAAP and MELCOR for hundreds of high frequency scenarios for the reference plant; (b) Risk-informed severe accident risk data base management module (RI-SARD): provides a platform to identify the initiating event, determine plant status and equipment availability, diagnoses the status of the reactor core, reactor vessel and containment building, and predicts the plant behaviors; (c) Severe accident management simulator module (VMAAP): runs the MAAP4 code with user friendly graphic interface for input deck and output display; (d) On-line severe accident management guidance module (On-line SAMG); provides available accident management strategies with an electronic format. The role of VMAAP in SAMEX can be described as followings. SARDB contains the most of high frequency scenarios based on a level 2 probabilistic safety analysis. Therefore, there is good chance that a real accident sequence is similar to one of the data base cases. In such a case, RI-SARD can predict an accident progression by a scenario-base or symptom-base search depends on the available plant parameter information. Nevertheless, there still may be deviations or variations between the actual scenario and the data base scenario. The deviations can be decreased by using a real-time graphic accident simulator, VMAAP.. VMAAP is a MAAP4-based severe accident simulation model for OPR-1000 plant. It can simulate spectrum of physical processes

  16. Severe accident analysis of a small LOCA accident using MAAP-CANDU support level 2 PSA for the Point Lepreau station refurbishment project

    Petoukhov, S.M.; Brown, M.J.; Mathew, P.M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    A Level 2 Probabilistic Safety Assessment was performed for the Point Lepreau Generating Station. The MAAP4-CANDU code was used to calculate the progression of postulated severe core damage accidents and fission product releases. Five representative severe core damage accidents were selected: Station Blackout, Small Loss-of-Coolant Accident, Stagnation Feeder Break, Steam Generator Tube Rupture, and Shutdown State Accident. Analysis results for only the reference Small LOCA Accident scenario (which is a very low probability event) are discussed in this paper. (author)

  17. Development of Highly Survivable Power and Communication System for NPP Instruments under Severe Accident

    Yoo, Seung J.; Gu, Beom W.; Nguyen, Duy T.; Choi, Bo H.; Rim, Chun T. [KAIST, Daejeon (Korea, Republic of); Lee, So I. [KHNP CRI, Daejeon (Korea, Republic of)

    2014-10-15

    According to the detail report from the Fukushima nuclear accident, the failure of conventional instruments is mainly due to the following reasons. 1) Insufficient backup battery capacity after the station black out (SBO) 2) The malfunction or damage of instruments due to the extremely harsh ambient condition after the severe accident 3) The cut-off of power and communication cable due to the physical shocks of hydrogen explosion after the severe accident Since the current equipment qualification (EQ) for the NPP instruments is based on the design basis accident such as loss of coolant accident (LOCA), conventional instruments, which are examined under EQ condition, cannot guarantee their normal operation during the severe accident. A 7m-long-distance wireless power transfer and a radio frequency (RF) communication were introduced with conventional wired system to increase a redundancy. A heat isolation box and a harness are adopted to provide a protection from the expected physical shocks such as missiles and drastic increase of ambient temperature and pressure. A detail design principle of the highly survivable power and communication system, which has 4 sub-systems of a DCRS wireless power transfer, a Zigbee wireless communication, a GFRP harness, and a passive type router with a fly back regulator, has been presented in this paper. Each sub-system has been designed to have a robust operation characteristic regardless of the estimated physical shocks after the severe accident.

  18. Root causes and impacts of severe accidents at large nuclear power plants.

    Högberg, Lars

    2013-04-01

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long-lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities.

  19. An effect of containment filtered venting system on scale of contamination under severe accident

    Jeon, Ju young; Lee, Jai-ki [Hanyang Univ., Seoul (Korea, Republic of)

    2016-02-15

    Some countries are expected to expand the scope of the Emergency Planning Zone(EPZ) by the influence of Fukushima accident. However, if the equipment, which is able to mitigate the severe accident consequences, is installed, unnecessary costs for an expansion of emergency planning zone will be reduced. The International Nuclear Safety Advisory Group (INSAC) has suggested to mitigate severe accidents by installing The Filtered Containment Venting System (FCVS). The probabilistic assessment code MACCS2 was used to calculate the effective radiation dose with and without FCVS to determine the effective reduction by the installation of a FCVS.

  20. Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

    Wilhelm, Polina; Jobst, Matthias; Schaefer, Frank; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    In the frame of the nuclear safety research program of the Helmholtz Association HZDR performs fundamental and applied research to assess and to reduce the risks related to the nuclear fuel cycle and the production of electricity in nuclear power plants. One of the research topics focuses on the safety aspects of current and future reactor designs. This includes the development and application of methods for analyses of transients and postulated accidents, covering the whole spectrum from normal operation till severe accident sequences including core degradation. This paper gives an overview of the severe accident research activities at the Reactor Safety Division at the Institute of Resource Ecology.

  1. Ruthenium behaviour in severe nuclear accident conditions. Final report

    Backman, U.; Lipponen, M.; Auvinen, A.; Jokiniemi, J.; Zilliacus, R. [VVT Processes (Finland)

    2004-08-01

    During routine nuclear reactor operations, ruthenium will accumulate in the fuel in relatively high concentrations. In a steam atmosphere, ruthenium is not volatile, and it is not likely to be released from the fuel. However, in an air ingress accident during reactor power operation or during maintenance, ruthenium may form volatile species, which may be released into the containment. Oxide forms of ruthenium are more volatile than the metallic form. Radiotoxicity of ruthenium is high both in the short and the long term. The results of this project imply that in oxidising conditions during nuclear reactor core degradation, ruthenium release increases as oxidised gaseous species Ru03 and Ru04 are formed. A significant part of the released ruthenium is then deposited on reactor coolant system piping. However, in the presence of steam and aerosol particles, a substantial amount of ruthenium may be released as gaseous Ru04 into the containment atmosphere. (au)

  2. The study of core melting phenomena in reactor severe accident of PWR

    Jeun, Gyoo Dong; Cho, Sung Won; Bang, Kwang Hyun; Park, Shane; Park, Seong Yong; Kim, Jin Man; Lim, Jae Hyuck; Song, Myung Jin [Hanyang Univ., Seoul (Korea, Republic of)

    2000-03-15

    TMI-2 accident is more valuable than the related experiments in the point of view that it is a real accident offering huge information about the late phase of severe accident. Therefore it gives out good standards for evaluation of code performance and inputs suitableness by comparing the accident data and simulated outputs. In this study SCDAP/REALAP5/MOD3.4 was selected for accident simulation. And sensitivity analysis was performed on varied cases to find out the most proper input variable about the late phase of core meting phenomena. Other plants and experimental facilities input deck were collected and analyzed for the sensitivity study and the shortcomings proposed by SCDAP/RELAP5 peer review were considered to the simulation. As a result gamma heating fraction in the input affect the progress of core melting phenomena. About this a study on the related model itself will be carried out.

  3. The kinetics of aerosol particle formation and removal in NPP severe accidents

    Zatevakhin, Mikhail A.; Arefiev, Valentin K.; Semashko, Sergey E.; Dolganov, Rostislav A.

    2016-06-01

    Severe Nuclear Power Plant (NPP) accidents are accompanied by release of a massive amount of energy, radioactive products and hydrogen into the atmosphere of the NPP containment. A valid estimation of consequences of such accidents can only be carried out through the use of the integrated codes comprising a description of the basic processes which determine the consequences. A brief description of a coupled aerosol and thermal-hydraulic code to be used for the calculation of the aerosol kinetics within the NPP containment in case of a severe accident is given. The code comprises a KIN aerosol unit integrated into the KUPOL-M thermal-hydraulic code. Some features of aerosol behavior in severe NPP accidents are briefly described.

  4. Reactor vessel water level estimation during severe accidents using cascaded fuzzy neural networks

    Kim, Dong Yeong; Yoo, Kwae Hwan; Choi, Geon Pil; Back, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2016-06-15

    Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.

  5. SWR 1000 severe accident control through in-vessel melt retention by external RPV cooling

    Kolev, N.I. [Framatome Advanced Nuclear Power, NDSI, Erlangen (Germany)

    2001-07-01

    Framatome Advanced Nuclear Power is being designing a new generation NPP with boiling water reactor SWR1000. Besides of various of modern passive and active safety features the system is also designed for controlling of a postulated severe accident with extreme low probability of occurrence. This work presents the rationales behind the decision to select the external cooling as a safety management strategy during severe accident. Bounding scenery are analyzed regarding the core melting, melt-water interaction during relocation of the melt from the core region into the lower head and the external coolability of the lower head. The conclusion is reached that the external cooling for the SWR1000 is a valuable strategy for accident management during postulated severe accidents. (authors)

  6. Incorporation of severe accidents in the licensing of nuclear power plants

    Alvarenga, Marco Antonio Bayout; Rabello, Sidney Luiz, E-mail: bayout@cnen.gov.b, E-mail: sidney@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Severe accidents are the result of multiple faults that occur in nuclear power plants as a consequence from the combination of latent failures and active faults, such as equipment, procedures and operator failures, which leads to partial or total melting of the reactor core. Regardless of active and latent failures related to the plant management and maintenance, aspects of the latent failures related to the plant design still remain. The lessons learned from the TMI accident in the U.S.A., Chernobyl in the former Soviet Union and, more recently, in Fukushima, Japan, suggest that severe accidents must necessarily be part of design-basis of nuclear power plants. This paper reviews the normative basis of the licensing of nuclear power plants concerning to severe accidents in countries having nuclear power plants under construction or in operation. It was addressed not only the new designs of nuclear power plants in the world, but also the design changes in plants that are in operation for decades. Included in this list are the Brazilian nuclear power plants, Angra-1, Angra-2, and Angra-3. This paper also reviews the current status of licensing in Brazil and Brazilian standards related to severe accidents. It also discusses the impact of severe accidents in the emergency plans of nuclear power plants. (author)

  7. Development of Methodology for Spent Fuel Pool Severe Accident Analysis Using MELCOR Program

    Kim, Won-Tae; Shin, Jae-Uk [RETech. Co. LTD., Yongin (Korea, Republic of); Ahn, Kwang-Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The general reason why SFP severe accident analysis has to be considered is that there is a potential great risk due to the huge number of fuel assemblies and no containment in a SFP building. In most cases, the SFP building is vulnerable to external damage or attack. In contrary, low decay heat of fuel assemblies may make the accident processes slow compared to the accident in reactor core because of a great deal of water. In short, its severity of consequence cannot exclude the consideration of SFP risk management. The U.S. Nuclear Regulatory Commission has performed the consequence studies of postulated spent fuel pool accident. The Fukushima-Daiichi accident has accelerated the needs for the consequence studies of postulated spent fuel pool accidents, causing the nuclear industry and regulatory bodies to reexamine several assumptions concerning beyond-design basis events such as a station blackout. The tsunami brought about the loss of coolant accident, leading to the explosion of hydrogen in the SFP building. Analyses of SFP accident processes in the case of a loss of coolant with no heat removal have studied. Few studies however have focused on a long term process of SFP severe accident under no mitigation action such as a water makeup to SFP. USNRC and OECD have co-worked to examine the behavior of PWR fuel assemblies under severe accident conditions in a spent fuel rack. In support of the investigation, several new features of MELCOR model have been added to simulate both BWR fuel assembly and PWR 17 x 17 assembly in a spent fuel pool rack undergoing severe accident conditions. The purpose of the study in this paper is to develop a methodology of the long-term analysis for the plant level SFP severe accident by using the new-featured MELCOR program in the OPR-1000 Nuclear Power Plant. The study is to investigate the ability of MELCOR in predicting an entire process of SFP severe accident phenomena including the molten corium and concrete reaction. The

  8. Severe accident analysis of a station blackout accident using MAAP-CANDU for the Point Lepreau station refurbishment project level 2 PSA

    Brown, M.J.; Petoukhov, S.M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    A Level 2 Probabilistic Safety Assessment was performed for the Point Lepreau Generating Station, using the MAAP-CANDU code to simulate the progression of severe core damage accidents and fission product releases. Five representative severe accidents were selected: Station Blackout, Small Loss-of-Coolant, Stagnation Feeder Break, Steam Generator Tube Rupture, and Shutdown State. Analysis results for the reference station blackout accident are discussed in this paper. (author)

  9. Prediction of structural integrity of steam generator tubes under severe accident conditions

    Majumdar, S. [Argonne National Lab., IL (United States)

    1999-11-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating and design-basis accident conditions are reviewed. These rate-independent flow stress models are inadequate for predicting failure of steam generator tubes under severe accident conditions because the temperature of the tubes during such accidents can reach as high as 800 C where creep effects become important. Therefore, a creep rupture model for predicting failure was developed and validated by tests on unflawed and flawed specimens containing axial and circumferential flaws and loaded by constant as well as ramped temperature and pressure loadings. Finally, tests were conducted using pressure and temperature histories that are calculated to occur during postulated severe accidents. In all cases, the creep rupture model predicted the failure temperature and time more accurately than the flow stress models. (orig.)

  10. Reactor Core Coolability Analysis during Hypothesized Severe Accidents of OPR1000

    Lee, Yongjae; Seo, Seungwon; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of); Ha, Kwang Soon; Kim, Hwan-Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Assessment of the safety features over the hypothesized severe accidents may be performed experimentally or numerically. Due to the considerable time and expenditures, experimental assessment is implemented only to the limited cases. Therefore numerical assessment has played a major role in revisiting severe accident analysis of the existing or newly designed power plants. Computer codes for the numerical analysis of severe accidents are categorized as the fast running integral code and detailed code. Fast running integral codes are characterized by a well-balanced combination of detailed and simplified models for the simulation of the relevant phenomena within an NPP in the case of a severe accident. MAAP, MELCOR and ASTEC belong to the examples of fast running integral codes. Detailed code is to model as far as possible all relevant phenomena in detail by mechanistic models. The examples of detailed code is SCDAP/RELAP5. Using the MELCOR, Carbajo. investigated sensitivity studies of Station Black Out (SBO) using the MELCOR for Peach Bottom BWR. Park et al. conduct regulatory research of the PWR severe accident. Ahn et al. research sensitivity analysis of the severe accident for APR1400 with MELCOR 1.8.4. Lee et al. investigated RCS depressurization strategy and developed a core coolability map for independent scenarios of Small Break Loss-of-Coolant Accident (SBLOCA), SBO, and Total Loss of Feed Water (TLOFW). In this study, three initiating cases were selected, which are SBLOCA without SI, SBO, and TLOFW. The initiating cases exhibit the highest probability of transitioning into core damage according to PSA 1 of OPR 1000. The objective of this study is to investigate the reactor core coolability during hypothesized severe accidents of OPR1000. As a representative indicator, we have employed Jakob number and developed JaCET and JaMCT using the MELCOR simulation. Although the RCS pressures for the respective accident scenarios were different, the JaMCT and Ja

  11. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents.

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-11

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers' health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002-2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies.

  12. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    Rameez Rameezdeen

    2017-01-01

    Full Text Available The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS policies.

  13. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-01

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies. PMID:28085067

  14. Heat up and potential failure of BWR upper internals during a severe accident

    Robb, Kevin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.

  15. Evaluation of severe accident risks, Peach Bottom, Unit 2: Main report

    Payne, A.C.; Breeding, R.J.; Jow, H.N.; Shiver, A.W. (Sandia National Labs., Albuquerque, NM (USA)); Helton, J.C. (Arizona State Univ., Tempe, AZ (USA)); Smith, L.N. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-12-01

    In support of the Nuclear Regulatory Commission's (NRC's) assessment of the risk from severe accidents at commercial nuclear power plants in the US reported NUREG-1150, the Severe Accident Risk Reduction Program (SARRP) has completed a revised calculation of the risk to the general public from severe accidents at the Peach Bottom Atomic Power Station, Unit 2. This power plant, located in southeastern Pennsylvania, is operated by the Philadelphia Electric Company. The emphasis in this risk analysis was not on determining a so-called'' point estimate of risk. Rather, it was to determine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution. Off-site risk initiated by events both internal and external to the power station were assessed. 39 refs., 174 figs., 133 tabs.

  16. Pressure Load Analysis during Severe Accidents for the Evaluation of Late Containment Failure in OPR-1000

    Park, S. Y.; Ahn, K. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The MAAP code is a system level computer code capable of performing integral analyses of potential severe accident progressions in nuclear power plants, whose main purpose is to support a level 2 probabilistic safety assessment or severe accident management strategy developments. The code employs lots of user-options for supporting a sensitivity and uncertainty analysis. The present application is mainly focused on determining an estimate of the containment building pressure load caused by severe accident sequences. Key modeling parameters and phenomenological models employed for the present uncertainty analysis are closely related to in-vessel hydrogen generation, gas combustion in the containment, corium distribution in the containment after a reactor vessel failure, corium coolability in the reactor cavity, and molten-corium interaction with concrete. The phenomenology of severe accidents is extremely complex. In this paper, a sampling-based phenomenological uncertainty analysis was performed to statistically quantify uncertainties associated with the pressure load of a containment building for a late containment failure evaluation, based on the key modeling parameters employed in the MAAP code and random samples for those parameters. Phenomenological issues surrounding the late containment failure mode are highly complex. Included are the pressurization owing to steam generation in the cavity, molten corium-concrete interaction, late hydrogen burn in the containment, and the secondary heat removal availability. The methodology and calculation results can be applied for the optimum assessment of a late containment failure model. The accident sequences considered were a loss of coolant accidents and loss of offsite accidents expected in the OPR-1000 plant. As a result, uncertainties addressed in the pressure load of the containment building were quantified as a function of time. A realistic evaluation of the mean and variance estimates provides a more complete

  17. Causes and Severity of Fatal Injuries in Autopsies of Victims of Fatal Traffic Accidents

    F Panahi

    2010-03-01

    Full Text Available Introduction: In this retrospective study, we decided to determine the death causes and severity of injuries in traffic accidents according to reports of the forensic medical center of Yazd. Methods: A total of 251 fatalities due to traffic accidents that had undergone autopsy examinations at the Yazd forensic medicine center from2006 till 2008 were included in the study by census method. Data regarding gender, road user type, type of vehicle (car, motorcycle, autobus or minibus, consciousness level, and intensive care unit (ICU admission was gathered. For evaluation of injury severity, we used Injury Severity Score (ISS. Results: The population under study consisted of 202 men (80.5% and 49 women (19.5% with an average age of 34.1 years (range: 1-89 years. Motorcycle-pedestrian accidents were the most common type of injury (100, 39.8%. Head (220, 87.6% and face (169, 67.3% were the two most common sites of injuries. Mean (±SD of ISS was 23.2 (±10.4. According to autopsy records, the main cause of death was head trauma (146, 58.1%. Conclusion: Public awareness in terms of primary prevention of road accidents should be considered important. Also, regarding the high prevalence of brain injuries and complications associated with skull fractures, accessibility to neurosurgeons and availability of imaging devices have an important role in decreasing the mortality rate of traffic accidents.

  18. Simulation of the Lower Head Boiling Water Reactor Vessel in a Severe Accident

    Alejandro Nuñez-Carrera

    2012-01-01

    Full Text Available The objective of this paper is the simulation and analysis of the BoilingWater Reactor (BWR lower head during a severe accident. The COUPLE computer code was used in this work to model the heatup of the reactor core material that slumps in the lower head of the reactor pressure vessel. The prediction of the lower head failure is an important issue in the severe accidents field, due to the accident progression and the radiological consequences that are completely different with or without the failure of the Reactor Pressure Vessel (RPV. The release of molten material to the primary containment and the possibility of steam explosion may produce the failure of the primary containment with high radiological consequences. Then, it is important to have a detailed model in order to predict the behavior of the reactor vessel lower head in a severe accident. In this paper, a hypothetical simulation of a Loss of Coolant Accident (LOCA with simultaneous loss of off-site power and without injection of cooling water is presented with the proposal to evaluate the temperature distribution and heatup of the lower part of the RPV. The SCDAPSIM/RELAP5 3.2 code was used to build the BWR model and conduct the numerical simulation.

  19. Empirical Risk Analysis of Severe Reactor Accidents in Nuclear Power Plants after Fukushima

    Jan Christian Kaiser

    2012-01-01

    Full Text Available Many countries are reexamining the risks connected with nuclear power generation after the Fukushima accidents. To provide updated information for the corresponding discussion a simple empirical approach is applied for risk quantification of severe reactor accidents with International Nuclear and Radiological Event Scale (INES level ≥5. The analysis is based on worldwide data of commercial nuclear facilities. An empirical hazard of 21 (95% confidence intervals (CI 4; 62 severe accidents among the world’s reactors in 100,000 years of operation has been estimated. This result is compatible with the frequency estimate of a probabilistic safety assessment for a typical pressurised power reactor in Germany. It is used in scenario calculations concerning the development in numbers of reactors in the next twenty years. For the base scenario with constant reactor numbers the time to the next accident among the world's 441 reactors, which were connected to the grid in 2010, is estimated to 11 (95% CI 3.7; 52 years. In two other scenarios a moderate increase or decrease in reactor numbers have negligible influence on the results. The time to the next accident can be extended well above the lifetime of reactors by retiring a sizeable number of less secure ones and by safety improvements for the rest.

  20. Severe accident analysis in a two-loop PWR nuclear power plant with the ASTEC code

    Sadek, Sinisa; Amizic, Milan; Grgic, Davor [Zagreb Univ. (Croatia). Faculty of Electrical Engineering and Computing

    2013-12-15

    The ASTEC/V2.0 computer code was used to simulate a hypothetical severe accident sequence in the nuclear power plant Krsko, a 2-loop pressurized water reactor (PWR) plant. ASTEC is an integral code jointly developed by Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Germany) to assess nuclear power plant behaviour during a severe accident. The analysis was conducted in 2 steps. First, the steady state calculation was performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step was the calculation of the station blackout accident with a leakage of the primary coolant through degraded reactor coolant pump seals, which was a small LOCA without makeup capability. Two scenarios were analyzed: one with and one without the auxiliary feedwater (AFW). The latter scenario, without the AFW, resulted in earlier core damage. In both cases, the accident ended with a core melt and a reactor pressure vessel failure with significant release of hydrogen. In addition, results of the ASTEC calculation were compared with results of the RELAP5/SCDAPSIM calculation for the same transient scenario. The results comparison showed a good agreement between predictions of those 2 codes. (orig.)

  1. Severe accident modeling of a PWR core with different cladding materials

    Johnson, S. C. [Westinghouse Electric Company LLC, 5801 Bluff Road, Columbia, SC 29209 (United States); Henry, R. E.; Paik, C. Y. [Fauske and Associates, Inc., 16W070 83rd Street, Burr Ridge, IL 60527 (United States)

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCS rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)

  2. FN-curves: preliminary estimation of severe accident risks after Fukushima

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Costa, Antonio Carlos Lopes da, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: aclc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Doubts of whether the risks related to severe accidents in nuclear reactors are indeed very low were raised after the nuclear accident at Fukushima Daiichi in 2011. Risk estimations of severe accidents in nuclear power plants involve both probability and consequence assessment of such events. Among the ways to display risks, risk curves are tools that express the frequency of exceeding a certain magnitude of consequence. Societal risk is often represented graphically in a FN-curve, a type of risk curve, which displays the probability of having N or more fatalities per year, as a function of N, on a double logarithmic scale. The FN-curve, originally introduced for the assessment of the risks in the nuclear industry through the U.S.NRC Reactor Safety Study WASH-1400 (1975), is used in various countries to express and limit risks of hazardous activities. This first study estimated an expected rate of core damage equal to 5x10{sup -5} by reactor-year and suggested an upper bound of 3x10{sup -4} by reactor-year. A more recent report issued by Electric Power Research Institute - EPRI (2008) estimates a figure of the order of 2x10{sup -5} by reactor-year. The Fukushima nuclear accident apparently implies that the observed core damage frequency is higher than that predicted by these probabilistic safety assessments. Therefore, this paper presents a preliminary analyses of the FN-curves related to severe nuclear reactor accidents, taking into account a combination of available data of past accidents, probability modelling to estimate frequencies, and expert judgments. (author)

  3. Severe accident progression perspectives for Mark I containments based on the IPE results

    Lin, C.C.; Lehner, J.R.; Pratt, W.T. [Brookhaven National Lab., Upton, NY (United States); Drouin, M. [Nuclear Regulatory Commission, N. Bethesda, MD (United States)

    1995-12-31

    Based on level 2 analyses in IPE (Individual Plant Examination) submittals accident progression, perspectives were obtained for all containment types. These perspectives consisted of insights on containment failure modes, releases therein, and factors responsible for the results. To illustrate the types of perspectives acquired on severe accident progresssion, insights obtained for (BWR) Mark I containments are discussed here. Mark I containments have high strength but small volumes and rely on pressure suppression pools to condense steam released from the reactor coolant system during an accident. Accidents causing structural failure of the drywell shortly after the core debris melts through the reactor vessel were found to be dominant contributors to risk. Importance of individual containment failure mechanisms depends on plant features and in some cases on modeling assumptions; however the following mechanisms were found important: drywell shell melt-through caused by direct contact with core debris and drywell failure caused by rapid pressure/temperature pulses at time of vessel melt-through. Drywell failure caused by gradual pressure/temperature buildup due to gases and steam released during core/concrete interactions is important in some IPEs. In other IPEs vent was an important contributor. However, accidents that bypass containment (eg interfacing systems LOCA)or involve containment isolation failure were not important contributors to the CDF in any of the IPEs for Mark I plants. These accidents are also not important to risk (even though they can involve large fission product release) because their frequencies of occurrence are so much lower than frequencies of early structural failure caused by other accidents that dominate the CDF.

  4. Risk assessment of severe accident-induced steam generator tube rupture

    NONE

    1998-03-01

    This report describes the basis, results, and related risk implications of an analysis performed by an ad hoc working group of the U.S. Nuclear Regulatory Commission (NRC) to assess the containment bypass potential attributable to steam generator tube rupture (SGTR) induced by severe accident conditions. The SGTR Severe Accident Working Group, comprised of staff members from the NRC`s Offices of Nuclear Reactor Regulation (NRR) and Nuclear Regulatory Research (RES), undertook the analysis beginning in December 1995 to support a proposed steam generator integrity rule. The work drew upon previous risk and thermal-hydraulic analyses of core damage sequences, with a focus on the Surry plant as a representative example. This analysis yielded new results, however, derived by predicting thermal-hydraulic conditions of selected severe accident scenarios using the SCDAP/RELAP5 computer code, flawed tube failure modeling, and tube failure probability estimates. These results, in terms of containment bypass probability, form the basis for the findings presented in this report. The representative calculation using Surry plant data indicates that some existing plants could be vulnerable to containment bypass resulting from tube failure during severe accidents. To specifically identify the population of plants that may pose a significant bypass risk would require more definitive analysis considering uncertainties in some assumptions and plant- and design-specific variables. 46 refs., 62 figs., 37 tabs.

  5. Research on the improvement of nuclear safety -The development of a severe accident analysis code-

    Kim, Heui Dong; Cho, Sung Won; Park, Jong Hwa; Hong, Sung Wan; Yoo, Dong Han; Hwang, Moon Kyoo; Noh, Kee Man; Song, Yong Man [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity and is intended to improve existing models and develop analytical tools for the assessment of severe accidents. A correlation equation of the flame velocity of pre mixture gas of H{sub 2}/air/steam has been suggested and combustion flame characteristic was analyzed using a developed computer code. For the analysis of the expansion phase of vapor explosion, the mechanical model has been developed. The development of a debris entrainment model in a reactor cavity with captured volume has been continued to review and examine the limitation and deficiencies of the existing models. Pre-test calculation was performed to support the severe accident experiment for molten corium concrete interaction study and the crust formation process and heat transfer characteristics of the crust have been carried out. A stress analysis code was developed using finite element method for the reactor vessel lower head failure analysis. Through international program of PHEBUS-FP and participation in the software development, the research on the core degradation process and fission products release and transportation are undergoing. CONTAIN and MELCOR codes were continuously updated under the cooperation with USNRC and French developed computer codes such as ICARE2, ESCADRE, SOPHAEROS were also installed into the SUN workstation. 204 figs, 61 tabs, 87 refs. (Author).

  6. Development of a parametric containment event tree model of a severe PWR accident

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1996-06-01

    The study supports the development project of STUK on `Living` PSA Level 2. The main work objective is to develop review tools for the Level 2 PSA studies underway at the utilities. The SPSA (STUK PSA) code is specifically designed for the purpose. In this work, SPSA is utilized as the Level 2 programming and calculation tool. A containment event tree (CET) model is built for analysis of severe accidents at the Loviisa pressurized water reactor (PWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to include new research results, and so it facilitates the Living PSA concept on Level 2 as well. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting at a low primary system pressure. Severe accident progression from five plant damage states (PDSs) is examined, however the integration with Level 1 is deferred to more definitive, integrated, safety assessments. (34 refs., 5 figs., 9 tabs.).

  7. Risk factors associated with bus accident severity in the United States: A generalized ordered logit model

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    Introduction: Recent years have witnessed a growing interest in improving bus safety operations worldwide. While in the United States buses are considered relatively safe, the number of bus accidents is far from being negligible, triggering the introduction of the Motor-coach Enhanced Safety Act...... that accident severity increases: (i) for young bus drivers under the age of 25; (ii) for drivers beyond the age of 55, and most prominently for drivers over 65 years old; (iii) for female drivers; (iv) for very high (over 65 mph) and very low (under 20 mph) speed limits; (v) at intersections; (vi) because...

  8. Passive decay heat removal by natural air convection after severe accidents

    Erbacher, F.J.; Neitzel, H.J. [Forschungszentrum Karlsruhe Institut fur Angewandte Thermo- und Fluiddynamik, Karlsruhe (Germany); Cheng, X. [Technische Universitaet Karlsruhe Institut fur Stroemungslehre und Stroemungsmaschinen, Karlsruhe (Germany)

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  9. Severe Accidents and New Reactors. Twenty Years of Research; Accidents severos y nuevos reactores. Veinte anos de investigacion

    Lopez Jimenez, J.

    2008-07-01

    A review was done on the main activities performed by the Programme for Nuclear Safety of CIEMAT in the field of nuclear reactor safety from 1985 to 2005. It covers the areas of severe accident and source term, advanced and passive reactors, containments analyses and plant applications. It is emphasized CIEMATs participation in national and international projects mainly in those supported by CSN, OECD and the EU. At the same time, experimental and analytical capabilities set up at CIEMAT, as PECA, RECA and GIRS for simulating aerosol pool scrubbing phenomena, hydrogen catalytic recombiner and sprays are been presented, together with an Annex on Generation IV. Two chapters were added, one on the nuclear power reactors in the world and another about the safety systems and principles. (Author)

  10. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    Joy L. Rempe; Darrell L. Knudson

    2014-05-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation

  11. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    Joy L. Rempe; Darrell L. Knudson

    2013-03-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation

  12. Insoluble aerosol behavior inside the PCCS condenser tube under severe accident conditions

    Watanabe, A.; Nemoto, K.; Akinaga, M. [Toshiba Corp., Kawasaki (Japan); Oikawa, H. [Toshiba Corp., Yokohama (Japan)

    1996-07-01

    The passive containment cooling system (PCCS), which has been incorporated into the advanced light water reactor (ALWR) design, has the capability of post accident decay heat removal by means of natural force driven condensation heat transfer. Since some uncertainties remain in the PCCS performance during a severe accident especially in the amount of aerosol deposition which causes the heat transfer degradation, the experiment had been performed previously simulating single condenser tube, postulated steam and noncondensable gas flow rate using prototypical soluble aerosol (CsI). The observed aerosol deposition rate onto the condenser tube surface was quite small under steam rich condition. However, during the severe accident, insoluble aerosols such as structural material might also be released and flow into the PCCS as well as soluble aerosol, and the deposition behavior has not been clarified. Thus, the experiment using a polystyrene LATEX was conducted under the same conditions in which the soluble aerosol test was performed. The experimental results showed similar trend as that of the soluble aerosol case, and especially in case of steam rich condition, the amount of deposition was below detection limit. The deposition rate in other cases are consistent with the prediction by existing theoretical correlation. Analytical sensitivity study varying inlet flow condition indicated no significant increase of aerosol deposition. These results suggest promising performance of PCCS under severe accident condition.

  13. Regulatory Research of the PWR Severe Accident. Information Needs and Instrumentation for Hydrogen Control and Management

    Park, Gun Chul; Suh, Kune Y.; Lee, Jin Yong; Lee, Seung Dong [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2001-03-15

    The current research is concerned with generation of basic engineering data needed in the process of developing hydrogen control guidelines as part of accident management strategies for domestic nuclear power plants and formulating pertinent regulatory requirements. Major focus is placed on identification of information needs and instrumentation methods for hydrogen control and management in the primary system and in the containment, development of decision-making trees for hydrogen management and their quantification, the instrument availability under severe accident conditions, critical review of relevant hydrogen generation model and phenomena In relation to hydrogen behavior, we analyzed the severe accident related hydrogen generation in the UCN 3{center_dot}4 PWR with modified hydrogen generation model. On the basis of the hydrogen mixing experiment and related GASFLOW calculation, the necessity of 3-dimensional analysis of the hydrogen mixing was investigated. We examined the hydrogen control models related to the PAR(Passive Autocatalytic Recombiner) and performed MAAP4 calculation in relation to the decision tree to estimate the capability and the role of the PAR during a severe accident.

  14. Quantification of severe accident source terms of a Westinghouse 3-loop plant

    Lee Min [Department of Engineering and System Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec II, Kung Fu Road, Hsinchu, Taiwan (China)], E-mail: mlee@mail.ess.nthu.edu.tw; Ko, Y.-C. [Department of Engineering and System Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec II, Kung Fu Road, Hsinchu, Taiwan, ROC (China)

    2008-04-15

    Integrated severe accident analysis codes are used to quantify the source terms of the representative sequences identified in PSA study. The characteristics of these source terms depend on the detail design of the plant and the accident scenario. A historical perspective of radioactive source term is provided. The grouping of radionuclides in different source terms or source term quantification tools based on TID-14844, NUREG-1465, and WASH-1400 is compared. The radionuclides release phenomena and models adopted in the integrated severe accident analysis codes of STCP and MAAP4 are described. In the present study, the severe accident source terms for risk quantification of Maanshan Nuclear Power Plant of Taiwan Power Company are quantified using MAAP 4.0.4 code. A methodology is developed to quantify the source terms of each source term category (STC) identified in the Level II PSA analysis of the plant. The characteristics of source terms obtained are compared with other source terms. The plant analyzed employs a Westinghouse designed 3-loop pressurized water reactor (PWR) with large dry containment.

  15. CFD Analysis of Migration Mechanism of Source Term Under Severe Accident

    CHEN; Lin-lin; SUN; Xue-ting; JI; Song-tao

    2013-01-01

    The analysis of the migration of source term under severe accident is one of the important aspects of‘Studies on Migration Mechanism of the Source Term under Severe Accident’,which is a significant task of the National Large Advanced PWR Research Program.This research aims at building up a method for analyzing fission product behavior in the containment with CFD code.The effect of PCCS(Passive

  16. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  17. Qualification of data obtained during a severe accident. Illustrative examples from TMI-2 evaluations

    Rempe, Joy L. [Rempe and Associates, Idaho Falls, ID (United States); Knudson, Darrell L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. Post-TMI-2 instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. Prior efforts also focused on sensors providing data required for subsequent forensic evaluations and accident simulations. This paper provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: reactor coolant system (RCS) pressure; containment building temperature; and containment pressure. These selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are described to facilitate implementation of a similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.

  18. On-line measurement of gaseous iodine species during a PWR severe accident

    Haykal, I.; Doizi, D. [CEA, DEN, Departement de Physico-chimie, 91191 Gif sur Yvette Cedex, (France); Perrin, A. [CNRS-University of Paris Est and Paris 7, Laboratoire Inter-Universitaire des Systemes Atmospheriques, 94010 Creteil, (France); Vincent, B. [University of Burgundy, Laboratoire de physique, CNRS UMR 5027, 9, Avenue Alain Savary, BP 47870, F-21078 Dijon Cedex, (France); Manceron, L. [Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex, (France); Mejean, G. [University of Joseph Fourier in Grenoble, Laboratoire de Spectrometrie Physique-CNRS UMR 5588, 38402 Saint Martin d' Heres, (France); Ducros, G. [CEA Cadarache, CEA, DEN, Departement d' Etudes des Combustibles, 13108 Saint-Paul-lez-Durance cedex, (France)

    2015-07-01

    A long-range remote sensing of severe accidents in nuclear power plants can be obtained by monitoring the online emission of volatile fission products such as xenon, krypton, caesium and iodine. The nuclear accident in Fukushima was ranked at level 7 of the International Nuclear Event Scale by the NISA (Nuclear and Industrial Safety Agency) according to the importance of the radionuclide release and the off-site impact. Among volatile fission products, iodine species are of high concern, since they can be released under aerosols as well as gaseous forms. Four years after the Fukushima accident, the aerosol/gaseous partition is still not clear. Since the iodine gaseous forms are less efficiently trapped by the Filtered Containment Venting Systems than aerosol forms, it is of crucial importance to monitor them on-line during a nuclear accident, in order to improve the source term assessment in such a situation. Therefore, we propose to detect and quantify these iodine gaseous forms by the use of highly sensitive optical methods. (authors)

  19. Calculation of absorbed doses to water pools in severe accident sequences

    Weber, C.F. [Oak Ridge National Lab., TN (United States)

    1991-12-01

    A methodology is presented for calculating the radiation dose to a water pool from the decay of uniformly distributed nuclides in that pool. Motivated by the need to accurately model radiolysis reactions of iodine, direct application is made to fission product sources dissolved or suspended in containment sumps or pools during a severe nuclear reactor accident. Two methods of calculating gamma absorption are discussed - one based on point-kernal integration and the other based on Monte Carlo techniques. Using least-squares minimization, the computed results are used to obtain a correlation that relates absorbed dose to source energy and surface-to-volume ratio of the pool. This correlation is applied to most relevant fission product nuclides and used to actually calculate transient sump dose rate in a pressurized-water reactor (PWR) severe accident sequence.

  20. Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents

    Yamaji, Akifumi; Li, Xin

    2016-08-01

    Spreading of molten core (corium) on reactor containment vessel floor and molten corium-concrete interaction (MCCI) are important phenomena in the late phase of a severe accident for assessment of the containment integrity and managing the severe accident. The severe accident research at Waseda University has been advancing to show that simulations with moving particle semi-implicit (MPS) method (one of the particle methods) can greatly improve the analytical capability and mechanical understanding of the melt behavior in severe accidents. MPS models have been developed and verified regarding calculations of radiation and thermal field, solid-liquid phase transition, buoyancy, and temperature dependency of viscosity to simulate phenomena, such as spreading of corium, ablation of concrete by the corium, crust formation and cooling of the corium by top flooding. Validations have been conducted against experiments such as FARO L26S, ECOKATS-V1, Theofanous, and SPREAD for spreading, SURC-2, SURC-4, SWISS-1, and SWISS-2 for MCCI. These validations cover melt spreading behaviors and MCCI by mixture of molten oxides (including prototypic UO2-ZrO2), metals, and water. Generally, the analytical results show good agreement with the experiment with respect to the leading edge of spreading melt and ablation front history of concrete. The MPS results indicate that crust formation may play important roles in melt spreading and MCCI. There is a need to develop a code for two dimensional MCCI experiment simulation with MPS method as future study, which will be able to simulate anisotropic ablation of concrete.

  1. ESTIMATION OF WEIBULL PARAMETERS USING A RANDOMIZED NEIGHBORHOOD SEARCH FOR THE SEVERITY OF FIRE ACCIDENTS

    Soontorn Boonta

    2013-01-01

    Full Text Available In this study, we applied Randomized Neighborhood Search (RNS to estimate the Weibull parameters to determine the severity of fire accidents; the data were provided by the Thai Reinsurance Public Co., Ltd. We compared this technique with other frequently-used techniques: the Maximum Likelihood Estimator (MLE, the Method of Moments (MOM, the Least Squares Method (LSM and the weighted least squares method (WLSM and found that RNS estimates the parameters more accurately than do MLE, MOM, LSM or WLSM."

  2. Development of a MAAP-based Severe Accident Training Simulator using Visual System Analyzer

    Suh, Jae Seung [SENTECH, Daejeon (Korea, Republic of); Park, Soo Yong; Ahn, Kwang Il; Kim, Kyung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The recent environment of severe accident analysis requires high performance computers to simulate complicated reactor and containment phenomena. In parallel with this, rapid advances in computer technology now enable these codes to run in real or almost real time. The remaining limitation restricting their use on an even wider scale is that most of the existing codes are still subject to a complicated I/O structure. Even user-friendly graphical user interfaces (GUI) will be not likely to help better and efficient interpretation of the analysis results obtained from these codes as well as for their increased use. This situation has motivated the development of easy-to-use GUI tools for severe accident codes, such as ViSA, SNAP, MAAP4-GRAAP, SATS, and et al. For instance, ViSA enables the thermal-hydraulic system codes to be used like a conventional nuclear plant analyzer. Recently, a project for a real time simulation of results obtained using MAAP4 codes under the ViSA environment has been initiated in KAERI. Such a GUI-based interactive interface can be very useful in sharing real time analysis results obtained from the MAAP code. The purpose of this paper is to introduce the current status of a MAAP-based Severe Accident Simulator being coupled with the ViSA system

  3. Optimization of the Severe Accident Management Strategy for Domestic Plants and Validation Experiments

    Kim, S. B.; Kim, H. D.; Koo, K. M.; Park, R. J.; Hong, S. H.; Cho, Y. R.; Kim, J. T.; Ha, K. S.; Kang, K. H

    2007-04-15

    nuclear power plants, a technical basis report and computational aid tools were developed in parallel with the experimental and analytical works for the resolution of the uncertain safety issues. ELIAS experiments were carried out to quantify the boiling heat removal rate at the upper surface of a metallic layer for precise evaluations on the effect of a late in-vessel coolant injection. T-HERMES experiments were performed to examine the two-phase natural circulation phenomena through the gap between the reactor vessel and the insulator in the APR1400. Detailed analyses on the hydrogen control in the APR1400 containment were performed focused on the effect of spray system actuation on the hydrogen burning and the evaluation of the hydrogen behavior in the IRWST. To develop the technical basis report for the severe accident management, analyses using SCDAP/RELAP5 code were performed for the accident sequences of the OPR1000. Based on the experimental and analytical results performed in this study, the computational aids for the evaluations of hydrogen flammability in the containment, criteria of the in-vessel corium cooling, criteria of the external reactor vessel cooling were developed. An ASSA code was developed to validate the signal from the instrumentations during the severe accidents and to process the abnormal signal. Since ASSA can perform the signal processing from the direct input of the nuclear power plant during the severe accident, it can be platform of the computational aids. In this study, the ASSA was linked with the computaional aids for the hydrogen flammability.

  4. Experimental study of in-and-ex-vessel melt cooling during a severe accident

    Kim, Sang Baik; Yoo, K. J.; Park, C. K.; Seok, S. D.; Park, R. J.; Yi, S. J.; Kang, K. H.; Ham, Y. S.; Cho, Y. R.; Kim, J. H.; Jeong, J. H.; Shin, K. Y.; Cho, J. S.; Kim, D. H.

    1997-07-01

    After code damage during a severe accident in a nuclear reactor, the degraded core has to be cooled down and the decay heat should be removed in order to cease the accident progression and maintain a stable state. The cooling of core melt is divided into in-vessel and ex-vessel cooling depending on the location of molten core which is dependent on the timing of vessel failure. Since the cooling mechanism varies with the conditions of molten core and surroundings and related phenomena, it contains many phenomenological uncertainties so far. In this study, an experimental study for verification of in-vessel corium cooling and several separate effect experiments for ex-vessel cooling are carried out to verify in- and ex-vessel cooling phenomena and finally to develop the accident management strategy and improve engineered reactor design for the severe accidents. SONATA-IV (Simulation of Naturally Arrested Thermal Attack in Vessel) program is set up for in-vessel cooling and a progression of the verification experiment has been done, and an integral verification experiment of the containment integrity for ex-vessel cooling is planned to be carried out based on the separate effect experiments performed in the first phase. First phase study of SONATA-IV is proof of principle experiment and it is composed of LALA (Lower-plenum Arrested Vessel Attack) experiment to find the gap between melt and the lower plenum during melt relocation and to certify melt quenching and CHFG (Critical Heat Flux in Gap) experiment to certify heat transfer mechanism in an artificial gap. As separate effect experiments for ex-vessel cooling, high pressure melt ejection experiment related to the initial condition for debris layer formation in the reactor cavity, crust formation and heat transfer experiment in the molten pool and molten core concrete interaction experiment are performed. (author). 150 refs., 24 tabs., 127 figs.

  5. Evaluating the Effectiveness of Alternate Entry Condition into the Severe Accident Management Guidance

    Yoon, Hyung Seok; Lee, Su Won [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Min, Shin Jung [Korea Hydro and Nuclear Power Co. Ltd. Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, the effectiveness of the CA as an alternate means is evaluated quantitatively by utilizing the Modular Accident Analysis Program (MAAP) 5 computer code including the MAAP5-DOSE module, which can analyze the radiation level inside the containment. The effectiveness of the CA has been investigated by utilizing the MAAP5 code including the MAAP5- DOSE. The onset of core damage is considered to be a core (fuel rod cladding) condition at the time when the core exit temperature reaches the value prescribed for transition to Severe Accident Management Guidance (SAMG), which is 1200 .deg. F. However, during a shutdown state, the core exit thermocouples measurements are unavailable after lifting reactor vessel head. Thus, an alternate means to detect the onset of core damage is necessary to cover all plant operating states. In order for that, a Computational Aid (CA), 'Radiation Level as a Functional of Time after Shutdown,' has been developed. The upper containment radiation instrumentation is a gross gamma monitor, and has a reliable instrumentation range during severe accidents. It can be used for detecting onset of core damage. Thus, the radiation level can be used as alternative means of the entry condition into the SAMG. It has been shown that the SAMG entry timings determined by using the core exit thermocouple measurements and by the radiation monitoring with the CA would not be differentiated. The time difference estimates entering SAMG would be less 15 min which would not influence the operator action significantly.

  6. Chemistry aspects of the source term formation for a severe accident in a CANDU type reactor

    Constantin, A.; Constantin, M. [Institute for Nuclear Research, Pitesti (Romania)

    2013-07-15

    The progression of a severe accident in a CANDU type reactor is slow because the core is surrounded by a large quantity of heavy and light water which acts as a heat sink to remove the decay heat. Therefore, the source term formation is a complex and long process involving fission products transport and releasing in the fuel matrix, thermal hydraulics of the transport fluid in the primary heat system and containment, deposition and transport of fission products, chemistry including the interaction with the dousing system, structural materials and paints, etc. The source term is strongly dependent on initial conditions and accident type. The paper presents chemistry aspects for a severe accident in a CANDU type reactor, in terms of the retention in the primary heat system. After releasing from the fuel elements, the fission products suffer a multitude of phenomena before they are partly transferred into the containment region. The most important species involved in the deposition were identified. At the same time, the influence of the break position in the transfer fractions from the primary heat system to the containment was investigated. (orig.)

  7. Severe immune dysfunction after lethal neutron irradiation in a JCO nuclear facility accident victim.

    Nagayama, Hitomi; Ooi, Jun; Tomonari, Akira; Iseki, Tohru; Tojo, Arinobu; Tani, Kenzaburo; Takahashi, Tsuneo A; Yamashita, Naohide; Shigetaka, Asano

    2002-08-01

    The optimal treatment for the hematological toxicity of acute radiation syndrome (ARS) is not fully established, especially in cases of high-dose nonuniform irradiation by mixed neutrons and gamma-rays, because estimation of the irradiation dose (dosimetry) and prediction of autologous hematological recovery are complicated. For the treatment of ARS, we performed HLA-DRB1-mismatched unrelated umbilical cord blood transplantation (CBT) for a nuclear accident victim who received 8 to 10 GyEq mixed neutron and gamma-ray irradiation at the JCO Co. Ltd. nuclear processing facility in Tokaimura, Japan. Donor/ recipient mixed chimerism was attained; thereafter rapid autologous hematopoietic recovery was achieved in concordance with the termination of immunosuppressants. Immune function examined in vitro showed recovery of the autologous immune system was severely impaired. Although the naive T-cell fraction and the helper T-cell subtype 1 fraction were increased, the mitogenic responses of T-cells and the allogeneic mixed leukocyte reaction were severely suppressed. Endogenous immunoglobulin production was also suppressed until 120 days after the accident. Although skin transplantation for ARS was successful, the patient died of infectious complications and subsequent acute respiratory distress syndrome 210 days after the accident. These results suggest that fast neutrons in doses higher than 8 to 10 Gy cause complete abrogation of the human immune system, which may lead to fatal outcome even if autologous hematopoiesis recovers. The roles of transplantation, autologous hematopoietic recovery, chimerism, immune suppression, and immune function are discussed.

  8. Recent severe accident research synthesis of the major outcomes from the SARNET network

    Van Dorsselaere, J.-P., E-mail: jean-pierre.van-dorsselaere@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-lez-Durance (France); Auvinen, A. [VTT Technical Research Centre, Espoo (Finland); Beraha, D. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), Köln (Germany); Chatelard, P. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-lez-Durance (France); Herranz, L.E. [Centro de Investigaciones Energéticas MedioAmbientales y Tecnológicas (CIEMAT), Madrid (Spain); Journeau, C. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Paris (France); Klein-Hessling, W. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), Köln (Germany); Kljenak, I. [Jozef Stefan Institute (JSI), Ljubljana (Slovenia); Miassoedov, A. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Paci, S. [University of Pisa, Pisa (Italy); Zeyen, R. [European Commission Joint Research Centre, Institute for Energy (JRC/IET), Petten (Netherlands)

    2015-09-15

    Highlights: • SARNET network of excellence integration mid-2013 in the NUGENIA Association. • Progress of knowledge on corium behaviour, hydrogen explosion and source term. • Further development of ASTEC integral code to capitalize knowledge. • Ranking of next R&D high priority issues accounting for international research. • Dissemination of knowledge through education courses and ERMSAR conferences. - Abstract: The SARNET network (Severe Accident Research NETwork of excellence), co-funded by the European Commission from 2004 to 2013, has allowed to significantly improve the knowledge on severe accidents and to disseminate it through courses and ERMSAR conferences. The major investigated topics, involving more than 250 researchers from 22 countries, were in- and ex-vessel corium/debris coolability, molten-core–concrete-interaction, steam explosion, hydrogen combustion and mitigation in containment, impact of oxidising conditions on source term, and iodine chemistry. The ranking of the high priority issues was updated to account for the results of recent international research and for the impact of Fukushima nuclear accidents in Japan. In addition, the ASTEC integral code was further developed to capitalize the new knowledge. The network has reached self-sustainability by integration in mid-2013 into the NUGENIA Association. The main activities and outcomes of the network are presented.

  9. Integrated hydrogen control solutions for severe accidents using passive autocatalytic recombiners

    Bauer, M.; Tietsch, W.; Sabate Farnos, R.

    2012-07-01

    In a severe accident or a beyond-design-basis-accident, the reaction of water with zirconium alloy cladding, radiolysis of water, corium-concrete reactions and other corrosion phenomena generate hydrogen (H2). The detonation of this H2 in containment or in auxiliary buildings can result in damage to structures or loss of containment integrity. Identifying the generation and special distribution of hydrogen and controlling its concentration with Passive Autocatalytic Recombiners (PARs) solves this concern. Westinghouse's approach for hydrogen management starts by defining the quantities and transport/distribution of H{sub 2} in-containment and out of containment with analysis tools such as MAAP, MELCOR, GASFLOW or FATE. Based on the results of these analyses, an optimized H2 Control Strategy is proposed in terms of number and location of PARs, and efficient integration with other H{sub 2} management devices like e.g. existing igniters, H{sub 2} monitors, etc.

  10. Severe Tricuspid Regurgitation Diagnosed 13 Years after a Car Accident: A Case Report

    Burak Acar

    2015-10-01

    Full Text Available Blunt chest traumas mostly occur due to car accidents and can cause many cardiac complications such as septal rupture, free-wall rupture, coronary artery dissection or thrombosis, heart failure, arrhythmias, and chordae and papillary muscle rupture. One of the most serious complication is tricuspid regurgitation (TR, which can be simply diagnosed by physical examination and confirmed by echocardiography. We describe a 48-year-old female patient, diagnosed with severe TR 13 years after a blunt chest trauma due to a car accident. TR was diagnosed with transthoracic echocardiography and three dimensional transthoracic echocardiography had defined the exact pathology of the tricuspid valve. The patient underwent successful surgery with bioprosthetic valve implantation and was discharged at 6th postoperative day without any complication. The patient had no problem according to the follow-up one month and six months after operation

  11. A retrspective study of rescuing severe open craniocerebral injuries caused by traffic accidents

    陈长才; 宁可; 等

    1999-01-01

    Objective:To investigate the rescuing principles of severe open craniocerebral injuries caused by traffic accidents.Methods:A retrospective study was performed for 36 patients admitted to our hospital from January 1986 to December 1995,who suffered from severe open craniocerebral injuries in traffic accidents.Results:These 36 cases occupied 52.10% of all the severe open craniocerebral injuries during the same period.The clinical features included confusion of consciousness, extensive cerebral contusion and laceration,severe contamination of the wound,high incidence of intracranial hematoma and multiple system injuries.Nineteen patients.(63.34%)ecovered normal neurological function,7 were (23.33%)mild disabled,4(13.33%)severe disabled,2(5.56%) vegetative survival,and 4(11.11%)dead.Conclusions:The main principles of salvage should emphasize the importance of emergent prehospital rescue,and be transfered to a specialized hospital as soon as possible.Postoperative complications included severe brain edema,intracerebral infection,and pneumonia,Debriding thoroughly at early stage and treating complications effectively would lower the rate of mortality and disability.

  12. Analysis of Early Severe Accident Initiated by LBLOCA for Qinshan Phase II Nuclear Power Project

    Shi Xing-Wei

    2013-07-01

    Full Text Available The purpose of this study is to simulate an early Severe Accident (SA scenario more detail through transferring the thermal-hydraulic status of the plant predicted by RELAP5 computer code to SA Program (SAP. Based on the criterion of date extract time, the RELAP5 thermal-hydraulic calculation data is extracted to form a file for SAP input card at 1477K of cladding surface. Relying on the thermal-hydraulic boundary parameters calculated by RELAP5 code, analysis of early SA initiated by the Large Break Loss-of-Coolant Accident (LBLOCA without mitigation measures for Qinshan Phase II Nuclear Power Plant (QSP-II performed by SAP through finding the key events of accident sequence, estimating the amount of hydrogen generation and oxidation behavior of the cladding and evaluating the relocation order of the materials collapsed in the central region of the core. The results of this study are expected to improve the SA analysis methodology more detail through analyzing early SA scenario.

  13. Failure Assessment Methodologies for Pressure-Retaining Components under Severe Accident Loading

    J. Arndt

    2012-01-01

    Full Text Available During postulated high-pressure core melt accident scenarios, temperature values of more than 800°C can be reached in the reactor coolant line and the surge line of a pressurised water reactor (PWR, before the bottom of the reactor pressure vessel experiences a significant temperature increase due to core melting. For the assessment of components of the primary cooling circuit, two methods are used by GRS. One is the simplified method ASTOR (approximated structural time of rupture. This method employs the hypothesis of linear damage accumulation for modeling damage progression. A failure time surface which is generated by structural finite element (FE analysis of varying pressure and temperature loads serves as a basis for estimations of failure times. The second method is to perform thermohydraulic and structure mechanic calculations for the accident scenario under consideration using complex calculation models. The paper shortly describes both assessment procedures. Validation of the ASTOR method concerning a large-scale test on a pipe section with geometric properties similar to a reactor coolant line is presented as well as severe accident scenarios investigated with both methods.

  14. On-line measurements of RuO{sub 4} during a PWR severe accident

    Reymond-Laruinaz, S.; Doizi, D. [CEA, DEN, Departement de Physico-chimie, CEA/Saclay, 91191 Gif sur Yvette Cedex, (France); Manceron, L. [Societe Civile Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex, (France); MONARIS, UMR 8233, Universite Pierre et Marie Curie, 4 Place Jussieu, case 49, F-75252 Paris Cedex 05, (France); Boudon, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, F-21078 Dijon Cedex, (France); Ducros, G. [CEA, DEN, Departement d' Etudes des Combustibles, CEA/Cadarache, 13108 Saint-Paul-lez-Durance cedex, (France)

    2015-07-01

    After the Fukushima accident, it became essential to have a way to monitor in real time the evolution of a nuclear reactor during a severe accident, in order to react efficiently and minimize the industrial, ecological and health consequences of the accident. Among gaseous fission products, the tetroxide of ruthenium RuO{sub 4} is of prime importance since it has a significant radiological impact. Ruthenium is a low volatile fission product but in case of the rupture of the vessel lower head by the molten corium, the air entering into the vessel oxidizes Ru into gaseous RuO{sub 4}, which is not trapped by the Filtered Containment Venting Systems. To monitor the presence of RuO{sub 4} allows making a diagnosis of the core degradation and quantifying the release into the atmosphere. To determine the presence of RuO{sub 4}, FTIR spectrometry was selected. To study the feasibility of the monitoring, high-resolution IR measurements were realized at the French synchrotron facility SOLEIL on the infrared beam line AILES. Thereafter, theoretical calculations were done to simulate the FTIR spectrum to describe the specific IR fingerprint of the molecule for each isotope and based on its partial pressure in the air. (authors)

  15. Development of heat insulation device to protect pressure measuring instruments from high temperature under the severe accident

    Ham, Jaehyun; Shin, Sung Min; Kang, Hyun Gook [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Micro Control Unit (MCU), communication module, and power supply system are also needed to be protected for the pressure transmitter. The harsh condition in containment which is created by the severe accident are composed of five elements: high temperature, high pressure, high humidity, high radiation, and physical threats by shrapnel generated during the process of the severe accident. Among these five elements, high temperature should be focused because other elements can be solved even with the thin shield. In this study, a detailed design of the heat insulation device which will be installed in the containment based on the Min Yoo's study and a verification test are done. Development of heat insulation device which enables operator to get in-containment data for the proper mitigation process under the severe accident was done in this study. With researches for severe accident management systems which proceeding actively since the Fukushima accident, researches for reliable instrumentations of in-containment data which is necessary to operate severe accident management systems properly in harsh condition during accident also should be progressed.

  16. Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks

    Choi, Geon Pil; Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun, E-mail: magyna@chosun.ac.kr

    2016-04-15

    Highlights: • We present a hydrogen-concentration prediction method in an NPP containment. • The cascaded fuzzy neural network (CFNN) is used in this prediction model. • The CFNN model is much better than the existing FNN model. • This prediction can help prevent severe accidents in NPP due to hydrogen explosion. - Abstract: Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.

  17. Severe accident improvements for Carem-25 to arrest reactor vessel meltdown sequences

    Poier Baez, L.E.; Nunez Mac Leod, J.E.; Baron, J.H. [Cuyo National University, Engineering Faculty, Mendoza (Argentina)

    2001-07-01

    Given an accident sequence, that leads to sustained uncovering of the core, the progression of core damage involves several complex phenomena. The progression of these phenomena can lead to a breach of the reactor vessel followed by the discharge of molten core materials to the containment. Advanced nuclear reactor designs, such as the CAREM reactor, include several improvements related to safety issues either enhancing the passive safety functions or allowing plant operators more time to undertake different management actions against radioactive releases to the environment. In the development of the nuclear power plant CAREM, the possibility of including a passive metallic in-vessel container in its design is being considered, to arrest the reactor pressure vessel meltdown sequence during a core damaging event, and thereof prevent its failure. The paper comprises the first analyses, via numerical simulation, for the conceptual design of such a container type; furthermore, the paper addresses simulation model characteristics helping to establish geometrical dimensions, materials and container compatibility with power plant engineering features. The paper also presents the first model developed to analyze the complex relocation phenomena in the core of CAREM during a severe accident sequence caused by a loss of coolant. The PC version of MELCOR 1.8.4 code has been used to predict the transient behavior of core parameters. MELCOR is a fully integrated relatively fast running code that models the progression of accidents in light water reactor power plants. This paper presents reactor variables behavior during the first hours of the event being studied, giving preliminary conclusions about the use and capability of a metallic in-vessel core catcher. (authors)

  18. Use of detailed thermochemical databases to model chemical interactions in the Severe Accident codes

    Barrachin, M. [IPSN/DRS, CEA Cadarache (France)

    2001-07-01

    For the prevention, mitigation and management of severe accidents, many problems related to core melt have to be solved: fuel degradation, melting and relocation, convection in the core melt(s), coolability of the core melt(s), fission product release, hydrogen production, behavior of the materials of the protective layers, ex-vessel spreading of the core melt(s).. To solve these problems such properties like thermal conductivity, heat capacity, density, viscosity, evaporation or sublimation of melts, the solidification behavior (solid/liquid fraction), the tendency to trap or to release the fission products, the stratification of melts notably metallic and oxide, must be known. However most of these properties are delicate to measure directly at high temperature and/or in the radio-active environment produced by the fission products. Therefore some of them must be derived by calculations from the physical-chemical description of the melt: number of phases, phase compositions, proportions of solids and liquids and their respective oxidation state, miscibility of the liquids, solubility of one phase in another, etc. This information is given by the phase diagrams of the materials in presence. Since more than ten years, IPSN has developed in collaboration with THERMODATA (Grenoble, France) a very detailed thermochemical database for the complex system U-O-Zr-Fe-Ni-La-Ba-Ru-Sr-Si-Mg-Ca-Al-(H-Ar). The direct coupling between the severe accident (SA) Codes and a thermochemical code with its database is not actually possible because of the computer time consuming and the size of the database. For this reason, most of the Severe Accident codes usually have a very simplified description for the phase diagrams which are not in agreement with the status of the art. In this presentation, alternative methodologies are detailed with their respective difficulties, the goal being to build an interface between a thermochemical database and a SA Code and to get a fast, accurate and

  19. Workshop proceedings of ISAMM 2009: Implementation of severe accident management measures

    Guentay, S. (ed.) [Paul Scherrer Institute (PSI), Nuclear Energy and Safety Research Department, Laboratory for Thermal Hydraulics, ViIligen (Switzerland)

    2010-10-15

    This comprehensive report published by the Paul Scherrer Institute (PSI) in Switzerland reports on a conference and workshop held in Switzerland in October 2009 dealing with Severe Accidents Management (SAM) in nuclear power stations. The workshop provided an update on the status of severe accident management measures and their implications since the OECD/CSNI workshop held in 2001 at the PSI in Switzerland. Since the 2001 workshop, additional work has been performed to integrate emergency procedures and SAM measures into risk assessments in order to better reflect operator responses to recover a plant from a damaged state. The major focus of the workshop was to address SAM measures for both operational plants and new plant designs. Also, the integration of SAM measures into contemporary/future probabilistic risk assessments was discussed. 41 papers were presented in 8 sessions. The papers addressed the following areas: 1) Current status and insights of SAM (2 sessions); 2) Probabilistic Safety Assessment (PSA) modelling issues; 3) code analysis for supporting Serious Accident Management Guidance (SAMG, 2 sessions); 4) decision making, tools, training, risk-targets and entrance to SAM; 5) design modifications for implementation of SAM; 6) physical phenomena. The last part of the workshop was devoted to the presentation of the most striking highlights of the papers in the above areas, followed by two panellists giving presentations on human and organisational aspects of SAM, their importance in relation to technical issues and the effectiveness of current SAMG implementation. The question of how consequence analyses can be used to improve the effectiveness of SAM is discussed. The contributions were presented by representatives from Austria, Germany, Japan, France, the USA, Korea, Switzerland, Finland, Hungary, Belgium, Canada, Sweden, the Czech republic, the United kingdom, the Netherlands, Spain, Slovenia and Russia. The authors state that the overall picture

  20. Safety Implementation of Hydrogen Igniters and Recombiners for Nuclear Power Plant Severe Accident Management

    XIAO Jianjun; ZHOU Zhiwei; JING Xingqing

    2006-01-01

    Hydrogen combustion in a nuclear power plant containment building may threaten the integrity of the containment. Hydrogen recombiners and igniters are two methods to reduce hydrogen levels in containment buildings during severe accidents. The purpose of this paper is to evaluate the safety implementation of hydrogen igniters and recombiners. This paper analyzes the risk of deliberate hydrogen ignition and investigates three mitigation measures using igniters only, hydrogen recombiners only or a combination of recombiners and igniters. The results indicate that steam can effectively control the hydrogen flame acceleration and the deflagration-to-detonation transition.

  1. Insights on fission products behaviour in nuclear severe accident conditions by X-ray absorption spectroscopy

    Geiger, E.; Bès, R.; Martin, Ph; Pontillon, Y.; Ducros, G.; Solari, P. L.

    2016-04-01

    Many research programs have been carried out aiming to understand the fission products behaviour during a Nuclear Severe Accident. Most of these programs used highly radioactive irradiated nuclear fuel, which requires complex instrumentation. Moreover, the radioactive character of samples hinders an accurate chemical characterisation. In order to overcome these difficulties, SIMFUEL stand out as an alternative to perform complementary tests. A sample made of UO2 doped with 11 fission products was submitted to an annealing test up to 1973 K in reducing atmosphere. The sample was characterized before and after the annealing test using SEM-EDS and XAS at the MARS beam-line, SOLEIL Synchrotron. It was found that the overall behaviour of several fission products (such as Mo, Ba, Pd and Ru) was similar to that observed experimentally in irradiated fuels and consistent with thermodynamic estimations. The experimental approach presented in this work has allowed obtaining information on chemical phases evolution under nuclear severe accident conditions, that are yet difficult to obtain using irradiated nuclear fuel samples.

  2. Longitudinal Associations Between PTSD Symptoms and Dyadic Conflict Communication Following a Severe Motor Vehicle Accident.

    Fredman, Steffany J; Beck, J Gayle; Shnaider, Philippe; Le, Yunying; Pukay-Martin, Nicole D; Pentel, Kimberly Z; Monson, Candice M; Simon, Naomi M; Marques, Luana

    2017-03-01

    There are well-documented associations between posttraumatic stress disorder (PTSD) symptoms and intimate relationship impairments, including dysfunctional communication at times of relationship conflict. To date, the extant research on the associations between PTSD symptom severity and conflict communication has been cross-sectional and focused on military and veteran couples. No published work has evaluated the extent to which PTSD symptom severity and communication at times of relationship conflict influence each other over time or in civilian samples. The current study examined the prospective bidirectional associations between PTSD symptom severity and dyadic conflict communication in a sample of 114 severe motor vehicle accident (MVA) survivors in a committed intimate relationship at the time of the accident. PTSD symptom severity and dyadic conflict communication were assessed at 4 and 16weeks post-MVA, and prospective associations were examined using path analysis. Total PTSD symptom severity at 4weeks prospectively predicted greater dysfunctional communication at 16weeks post-MVA but not vice versa. Examination at the level of PTSD symptom clusters revealed that effortful avoidance at 4weeks prospectively predicted greater dysfunctional communication at 16weeks, whereas dysfunctional communication 4weeks after the MVA predicted more severe emotional numbing at 16weeks. Findings highlight the role of PTSD symptoms in contributing to dysfunctional communication and the importance of considering PTSD symptom clusters separately when investigating the dynamic interplay between PTSD symptoms and relationship functioning over time, particularly during the early posttrauma period. Clinical implications for the prevention of chronic PTSD and associated relationship problems are discussed.

  3. ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives

    Chatelard, P., E-mail: patrick.chatelard@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, B.250, Cadarache BP3 13115, Saint-Paul-lez-Durance, Cedex (France); Reinke, N.; Arndt, S. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50677 Köln (Germany); Belon, S.; Cantrel, L.; Carenini, L.; Chevalier-Jabet, K.; Cousin, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, B.250, Cadarache BP3 13115, Saint-Paul-lez-Durance, Cedex (France); Eckel, J. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50677 Köln (Germany); Jacq, F.; Marchetto, C.; Mun, C.; Piar, L. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, B.250, Cadarache BP3 13115, Saint-Paul-lez-Durance, Cedex (France)

    2014-06-01

    The severe accident integral code ASTEC, jointly developed since almost 20 years by IRSN and GRS, simulates the behaviour of a whole nuclear power plant under severe accident conditions, including severe accident management by engineering systems and procedures. Since 2004, the ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out in the frame of the SARNET European network of excellence. The first version of the new series ASTEC V2 was released in 2009 to about 30 organizations worldwide and in particular to SARNET partners. With respect to the previous V1 series, this new V2 series includes advanced core degradation models (issued from the ICARE2 IRSN mechanistic code) and necessary extensions to be applicable to Gen. III reactor designs, notably a description of the core catcher component to simulate severe accidents transients applied to the EPR reactor. Besides these two key-evolutions, most of the other physical modules have also been improved and ASTEC V2 is now coupled to the SUNSET statistical tool to make easier the uncertainty and sensitivity analyses. The ASTEC models are today at the state of the art (in particular fission product models with respect to source term evaluation), except for quenching of a severely damage core. Beyond the need to develop an adequate model for the reflooding of a degraded core, the main other mean-term objectives are to further progress on the on-going extension of the scope of application to BWR and CANDU reactors, to spent fuel pool accidents as well as to accidents in both the ITER Fusion facility and Gen. IV reactors (in priority on sodium-cooled fast reactors) while making ASTEC evolving towards a severe accident simulator constitutes the main long-term objective. This paper presents the status of the ASTEC V2 versions, focussing on the description of V2.0 models for water-cooled nuclear plants.

  4. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  5. Assessment of Severe Accident Depressurization Valve Activation Strategy for Chinese Improved 1000 MWe PWR

    Ge Shao

    2013-01-01

    Full Text Available To prevent HPME and DCH, SADV is proposed to be added to the pressurizer for Chinese improved 1000 MWe PWR NPP with the reference of EPR design. Rapid depressurization capability is assessed using the mechanical analytical code. Three typical severe accident sequences of TMLB’, SBLOCA, and LOFW are selected. It shows that with activation of the SADV the RCS pressure is low enough to prevent HPME and DCH. Natural circulation at upper RPV and hot leg is considered for the rapid depressurization capacity analysis. The result shows that natural circulation phenomenon results in heat transfer from the core to the pipes in RCS which may cause the creep rupture of pipes in RCS and delays the severe accident progression. Different SADV valve areas are investigated to the influence of depressurization of RCS. Analysis shows that the introduction of SADV with right valve area will delay progression of core degradation to RPV failure. Valve area is to be optimized since smaller SADV area will reduce its effect and too large valve area will lead to excessive loss of water inventory in RCS and makes core degradation progression to RPV failure faster without additional core cooling water sources.

  6. The European Research on Severe Accidents in Generation-II and -III Nuclear Power Plants

    Jean-Pierre Van Dorsselaere

    2012-01-01

    Full Text Available Forty-three organisations from 22 countries network their capacities of research in SARNET (Severe Accident Research NETwork of excellence to resolve the most important remaining uncertainties and safety issues on severe accidents in existing and future water-cooled nuclear power plants (NPP. After a first project in the 6th Framework Programme (FP6 of the European Commission, the SARNET2 project, coordinated by IRSN, started in April 2009 for 4 years in the FP7 frame. After 2,5 years, some main outcomes of joint research (modelling and experiments by the network members on the highest priority issues are presented: in-vessel degraded core coolability, molten-corium-concrete-interaction, containment phenomena (water spray, hydrogen combustion…, source term issues (mainly iodine behaviour. The ASTEC integral computer code, jointly developed by IRSN and GRS to predict the NPP SA behaviour, capitalizes in terms of models the knowledge produced in the network: a few validation results are presented. For dissemination of knowledge, an educational 1-week course was organized for young researchers or students in January 2011, and a two-day course is planned mid-2012 for senior staff. Mobility of young researchers or students between the European partners is being promoted. The ERMSAR conference is becoming the major worldwide conference on SA research.

  7. Development of highly reliable power and communication system for essential instruments under severe accidents in NPP

    Choi, Bo Hwan; Jang, Gi Chan; Shin, Sung Min; Kang, Hyun Gook; Rim, Chun Taek [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Soo Ill [I and C Group, Korea Hydro and Nuclear Power Co., Ltd, Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to 627 .deg. C and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

  8. New Solutions For Increasing Environmental Protection During Severe Accidents At Nuclear Power Plants

    Kulyukhin, Sergei A.; Mikheev, Nikolai B. [Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow (Russian Federation); Falkovskii, Leo N.; Reshetov, Leo A.; Zvetkova, Marianna Ya. [All-Russian Research Institute of Atomic Machine-Building, Moscow, Russia (Russian Federation); Yagodkin, Ivan V.; Osipov, Viktor P.; Skvortsov, Sergei S. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Berkovich, Viktor M.; Taranov, Gennadii S.; Grigor' ev, Mikhail M. [Institute ' Atomenergoproekt' , Moscow (Russian Federation); Meshkov, Vladimir M.; Noskov, Andrei A.; Mitrofanov, Mikhail I. [ROSENERGOATOM Concern, Moscow (Russian Federation)

    2008-07-01

    This paper reports new solutions for increasing environmental protection during severe accidents at NPPs. For NPPs with two protective shells and pressure release system such as WWER-1000 we suggest a new comprehensive, passive-mode environmental protection system of decontamination of the radioactive air-steam mixture from the containment and the inter-containment area, which includes the 'wet' stage (scrubbers, etc.), the 'dry' stage (sorption module), and also an ejector, which in a passive mode is capable of solving the multi-purpose task of decontamination of the air-steam mixture. For Russian WWER-440/230 NPPs we suggest three protection levels: 1) a jet-vortex condenser; 2) the spray system; 3) a sorption module. For modern designs of new generation NPPs, which do not provide for pressure release systems, we proposed a new passive filtering system together with the passive heat-removal system, which can be used during severe accidents in case all power supply units become unavailable. (authors)

  9. Correlation of Steam Generator Mixing Parameters for Severe Accident Hot-Leg Natural Circulation

    Liao, Yehong; Guentay, Salih [Paul Scherrer Institut, Villigen PSI, CH-5232 (Switzerland)

    2008-07-01

    Steam generator inlet plenum mixing phenomenon with hot-leg counter-current natural circulation during a PWR station blackout severe accident is one of the important processes governing which component will fail first as a result of thermal challenge from the circulating gas with high temperature and pressure. Since steam generator tube failure represents bypass release of fission product from the reactor to environment, study of inlet plenum mixing parameters is important to risk analysis. Probability distribution functions of individual mixing parameter should be obtained from experiments or calculated by analysis. In order to perform sensitivity studies of the synergetic effects of all mixing parameters on the severe accident-induced steam generator tube failure, the distribution and correlation of these mixing parameters must be known to remove undue conservatism in thermal-hydraulic calculations. This paper discusses physical laws governing three mixing parameters in a steady state and setups the correlation among these mixing parameters. The correlation is then applied to obtain the distribution of one of the mixing parameters that has not been given in the previous CFD analysis. Using the distributions and considering the inter-dependence of the three mixing parameters, three sensitivity cases enveloping the mixing parameter uncertainties are recommended for the plant analysis. (authors)

  10. Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code

    Gyoergy, Hunor [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques (BME NTI); Trosztel, Istvan [Hungarian Academy of Sciences, Budapest (Hungary). Centre for Energy Research (MTA EK)

    2013-09-15

    Severe accident - if no mitigation action is taken - leads to core melt. An effective severe accident management strategy can be the external reactor pressure vessel cooling for corium localization and stabilization. For some time discussion was going on, whether the in-vessel retention can be applied for the VVER-440 type reactors. It had to be demonstrated that the available space between the reactor vessel and biological protection allows sufficient cooling to keep the melted core in the vessel, without the reactor pressure vessel losing its integrity. In order to demonstrate the feasibility of the concept an experimental facility was realized in Hungary. The facility called Cooling Effectiveness on the Reactor External Surface (CERES) is modeling the vessel external surface and the biological protection of Paks NPP. A model of the CERES facility for the ATHLET TH system code was developed. The results of the ATHLET calculation agree well with the measurements showing that the vessel cooling can be insured for a long time in a VVER-440 reactor. (orig.)

  11. Spreading of Excellence in SARNET Network on Severe Accidents: The Education and Training Programme

    Sandro Paci

    2012-01-01

    Full Text Available The SARNET2 (severe accidents Research NETwork of Excellence project started in April 2009 for 4 years in the 7th Framework Programme (FP7 of the European Commission (EC, following a similar first project in FP6. Forty-seven organisations from 24 countries network their capacities of research in the severe accident (SA field inside SARNET to resolve the most important remaining uncertainties and safety issues on SA in water-cooled nuclear power plants (NPPs. The network includes a large majority of the European actors involved in SA research plus a few non-European relevant ones. The “Education and Training” programme in SARNET is a series of actions foreseen in this network for the “spreading of excellence.” It is focused on raising the competence level of Master and Ph.D. students and young researchers engaged in SA research and on organizing information/training courses for NPP staff or regulatory authorities (but also for researchers interested in SA management procedures.

  12. Regulatory research of the PWR severe accident information needs and instrumentation availability for hydrogen control and management

    Park, Jae-Hong; Park, Gun-Chul; Suh, Kune Y.; Kang, Yun-Moon; Lee, Un-Jang; Oh, Se-Chul; Lee, Jin-Yong [Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-03-15

    During the current research period, we have set forth the methodology for identification of a severe accident, developed a framework for hydrogen management decision trees, and analyzed the literature on hydrogen management and experimental data for hydrogen bum. Specifically, we have summarized me results for information needs in a severe accident obtained in the U.S. and other countries, and applied the methodology to the reference plant YGN 3 and 4 as part of severe accident management. We have also examined the existing instruments in terms of their availability and survivability during a severe accident, and identified additionally needed information needs and instruments. We have identified dominant accident sequences for me reference plant YGN 3 and 4 to construct decision trees, and extracted available data from the IPE study of the plant. Based upon the data we have performed preliminary study on the decision tree and decision node. Last, we have examined various mechanisms for hydrogen generation and reIevant experimental data to predict me amount of hydrogen generation and governing factors in me process. We have also reviewed the hydrogen generation related models in the severe accident analysis.

  13. Research and development with regard to severe accidents in pressurised water reactors: Summary and outlook

    NONE

    2011-07-01

    This document reviews the current state of research on severe accidents in France and other countries. It aims to provide an objective vision, and one that's as exhaustive as possible, for this innovative field of research. It will help in identifying R and D requirements and categorising them hierarchically. Obviously, the resulting prioritisation must be completed by a rigorous examination of needs in terms of safety analyses for various risks and physical phenomena, especially in relation to Level 2 Probabilistic Safety Assessments. PSA-2 should be sufficiently advanced so as not to obscure physical phenomena that, if not properly understood, might result in substantial uncertainty. It should be noted that neither the safety analyses nor PSA-2 are presented in this document. This report describes the physical phenomena liable to occur during a severe accident, in the reactor vessel and the containment. It presents accident sequences and methods for limiting impact. The corresponding scenarios are detailed in Chapter 2. Chapter 3 deals with in-vessel accident progression, examining core degradation (3.1), corium behaviour in the lower head (3.2), vessel rupture (3.3) and high-pressure core meltdown (3.4). Chapter 4 focuses on phenomena liable to induce early containment failure, namely direct containment heating (4.1), hydrogen risk (4.2) and steam explosions (4.3). The phenomenon that could lead to a late containment failure, namely molten core-concrete interaction, is discussed in Chapter 5. Chapter 6 focuses on problems related to in-vessel and ex-vessel corium retention and cooling, namely in-vessel retention by flooding the primary circuit or the reactor pit (6.1), cooling of the corium under water during the corium-concrete interaction (6.2), corium spreading (6.3) and ex-vessel core catchers (6.4). Chapter 7 relates to the release and transport of fission products (FP), addressing the themes of in-vessel FP release (7.1) and ex-vessel FP release (7

  14. Phenomenological and mechanistic modeling of melt-structure-water interactions in a light water reactor severe accident

    Bui, V.A

    1998-10-01

    The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance 88 refs, 54 figs, 7 tabs

  15. Response Analysis on Electrical Pulses under Severe Nuclear Accident Temperature Conditions Using an Abnormal Signal Simulation Analysis Module

    Kil-Mo Koo; Jin-Ho Song; Sang-Baik Kim; Kwang-Il Ahn; Won-Pil Baek; Kil-Nam Oh; Gyu-Tae Kim

    2012-01-01

    Unlike design basis accidents, some inherent uncertainties of the reliability of instrumentations are expected while subjected to harsh environments (e.g., high temperature and pressure, high humidity, and high radioactivity) occurring in severe nuclear accident conditions. Even under such conditions, an electrical signal should be within its expected range so that some mitigating actions can be taken based on the signal in the control room. For example, an industrial process control standard...

  16. Icare/Cathare coupling: three-dimensional thermal hydraulics of severe LWR accidents

    Guillard, V.; Fichot, F. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, Dept. de Recherches en Securite, DRS, 92 (France); Boudier, P.; Parent, M. [CEA Grenoble, Dir. des Reacteurs Nucleaires, DRN, 38 (France); Roser, R. [Communication et Systemes Systemes d' Information, CS SI, 38 - Fontaine (France)

    2001-07-01

    In the phenomenology of severe LWR accidents considered in safety studies, the accidental sequences can be divided into three phases: the initial phase, where no severe damage of fuel or control rods and structures occurs; the early core degradation phase, where limited material melting and relocation takes place; and the late core degradation phase during which substantial material relocation happens, molten pools and debris beds can form and corium may fall into the lower plenum and, in case of vessel failure, come into the containment. The CATHARE2 code is a system code which has been developed by CEA for IPSN, EDF and FRAMATOME to describe the thermal-hydraulics behavior of a whole PWR circuit during the first of these three phases, with a core degradation model limited to clad rupture. The ICARE2 code, developed by IPSN, allows the complete description of early and late core degradation phases, with a thermal-hydraulics model limited to the vessel, initial and boundary conditions being provided by a system code. The aim of this paper is to present the main features of the new version of the coupling, ICARE/CATHARE V2. First, the general characteristics of ICARE2 V3mod1 and CATHARE2 V1.5 standard codes, dealing with physical models and numerical aspects, are described. Second, the technical features of the coupling between the two codes are detailed. At last, some results of ICARE/CATHARE V2 calculations are presented which demonstrate the ability of the code to simulate a severe accident in a PWR and notably to describe multi-dimensional effects occurring in the core during the LOCA and degradation phases. (authors)

  17. The estimation of economic impacts resulting from the severe accidents of a nuclear power plant

    Jeong, Jong Tae; Jung, Won dea

    2001-03-01

    The economic impacts resulting from the severe accidents of a nuclear power plant were estimated for the different combinations of a release parameters and metrorological data. According to the cost estimation for the basic scenarios, the population dependent cost is dominant. The cost for the protective actions such as evacuation and relocation have a small portion in the total cost and show little variation from scenario to scenario. The economic cost estimation for the seasonal scenarios show very similar trend as that for the basic scenarios. There are little or small variation in the economic cost for the different scenarios for each season except for the season-5 scenario. The health effect value shows maximum in Summer and minimum in Fall. On the contrast, the economic cost shows maximum in Fall and minimum in Summer. The result will be used as basic data in the establishment of effective emergency response and in the cost/benefit analysis in developing optimum risk reduction strategies.

  18. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    Heames, T.J. (Science Applications International Corp., Albuquerque, NM (USA)); Williams, D.A.; Johns, N.A.; Chown, N.M. (UKAEA Atomic Energy Establishment, Winfrith (UK)); Bixler, N.E.; Grimley, A.J. (Sandia National Labs., Albuquerque, NM (USA)); Wheatley, C.J. (UKAEA Safety and Reliability Directorate, Culcheth (UK))

    1990-10-01

    This document provides a description of a model of the radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident. This document serves as the user's manual for the computer code called VICTORIA, based upon the model. The VICTORIA code predicts fission product release from the fuel, chemical reactions between fission products and structural materials, vapor and aerosol behavior, and fission product decay heating. This document provides a detailed description of each part of the implementation of the model into VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided. The VICTORIA code was developed upon a CRAY-XMP at Sandia National Laboratories in the USA and a CRAY-2 and various SUN workstations at the Winfrith Technology Centre in England. 60 refs.

  19. Probability and consequences of severe reactor accidents. 60th year atw

    Rasmussen, Norman Carl [Massachusetts Institute of Technology (MIT), Cambridge, MA (United States). Dept. of Nuclear Engineering

    2015-06-15

    The study carried out on behalf of former USAEC (United States Atomic Energy Commission) led by Prof. Rasmussen and published in reworked form as WASH 1400 by the USNRC (United States Nuclear Regulatory Commission) in 1975, assessed in 3,300 pages the risks that can be deducted from severe accidents in nuclear power plants. The results, often quoted and criticised, were so far the most conclusive statements to this question. In his lecture at the reactor meeting in 1976, Prof. Rasmussen tried to trace back the conclusion of the results to the question: Is the use of larger nuclear power plants, in accordance to experiences and calculations so far, acceptable? His risk assessment, related to American power plants and cites, on behalf of the BMI is currently evaluated by the IRS together with the LRA on specific occurrences within the Federal Republic of Germany.

  20. A Study on Fission Product Behavior during a Severe Accident at APR1400 Nuclear Power Plants

    Kim, Han-Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Song-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, calculations have been carried out for a SBO sequence similar to the selected scenario, but a faster one with simple assumptions. Instead, a sensitivity study was carried out to take into account the effects of such differences on the fission product behavior. Probabilistic Safety Assessment (PSA) for Shin-Kori 3·4 nuclear power plants, which are APR1400 type reactors, were reviewed. After all, the representing scenarios were determined to be the sequences with station blackout (SBO), interfacing system LOCA (ISLOCA), and steam generator tube rupture (SGTR), which are similar to those of the U.S.NRC's State-of-the-Art Reactor Consequence Analyses (SOARCA) study. Among those sequences, SBO occupies the largest portion of the risk from severe accidents, and was selected to be analyzed at first about the fission product behavior in the containment. It includes events such as failure of the alternative AC power generator following a blackout event, successful operation of turbine-driven auxiliary feed water (AFW) pump, late recovery of offsite power before containment failure, in-vessel injection and successful actuation of cavity flooding system and spray system, and failure of hydrogen mitigation system. We use MELCOR 1.8.6 with the 35- and 2-cell compartment models of the containment. Since MELCOR does not treat organic iodide, we tried to make the results up by MELCOR-RAIM which is the MELCOR code coupled with RAIM, a stand-alone code developed for evaluation of the iodine behavior. In order to investigate the fission product behavior during a severe accident at APR1400, we have selected the representing scenarios with SBO, ISLOCA and SGTR. Among them, a SBO sequence similar to the selected scenario, but a faster one with simple assumptions, was analyzed using MELCOR v1.8.6 with 35-cell models of the containment. For the sensitivity analysis, we use the 2-cell containment model and the codes with the iodine chemistry model such as MELCOR with

  1. Ruthenium release modelling in air under severe accident conditions using the MAAP4 code

    Beuzet, E.; Lamy, J.S. [EDF R and D, 1 avenue du General de Gaulle, F-92140 Clamart (France); Perron, H. [EDF R and D, Avenue des Renardieres, Ecuelles, F-77818 Moret sur Loing (France); Simoni, E. [Institut de Physique Nucleaire, Universite de Paris Sud XI, F-91406 Orsay (France)

    2010-07-01

    In a nuclear power plant (NPP), in some situations of low probability of severe accidents, an air ingress into the vessel occurs. Air is a highly oxidizing atmosphere that can lead to an enhanced core degradation affecting the release of Fission Products (FPs) to the environment (source term). Indeed, Zircaloy-4 cladding oxidation by air yields 85% more heat than by steam. Besides, UO{sub 2} can be oxidised to UO{sub 2+x} and mixed with Zr, which may lead to a decrease of the fuel melting temperature. Finally, air atmosphere can enhance the FPs release, noticeably that of ruthenium. Ruthenium is of particular interest for two main reasons: first, its high radiotoxicity due to its short and long half-life isotopes ({sup 103}Ru and {sup 106}Ru respectively) and second, its ability to form highly volatile compounds such as ruthenium gaseous tetra-oxide (RuO{sub 4}). Considering that the oxygen affinity decreases between cladding, fuel and ruthenium inclusions, it is of great need to understand the phenomena governing fuel oxidation by air and ruthenium release as prerequisites for the source term issues. A review of existing data on ruthenium release, controlled by fuel oxidation, leads us to implement a new model in the EDF version of MAAP4 severe accident code (Modular Accident Analysis Program). This model takes into account the fuel stoichiometric deviation and the oxygen partial pressure evolution inside the fuel to simulate its oxidation by air. Ruthenium is then oxidised. Its oxides are released by volatilisation above the fuel. All the different ruthenium oxides formed and released are taken into consideration in the model, in terms of their particular reaction constants. In this way, partial pressures of ruthenium oxides are given in the atmosphere so that it is possible to know the fraction of ruthenium released in the atmosphere. This new model has been assessed against an analytical test of FPs release in air atmosphere performed at CEA (VERCORS RT8). The

  2. Analysis and Simulation of Severe Accidents in a Steam Methane Reforming Plant

    MohammadJavad Jafari

    2015-10-01

    Full Text Available Severe accidents of process industries in Iran have increased significantly in recent decade. This study quantitatively analyzes the hazards of severe accidents imposed on people, equipment and building by a hydrogen production facility. A hazard identification method was applied. Then a consequence simulation was carried out using PHAST 6.54 software package and at the end, consequence evaluation was carried out based on the best-known and different criteria. Most hazardous jet fire and flash fire will be occurred in desulfurization and reformer units respectively. The most dangerous vapor cloud explosion will be caused by a rupture in desorfurizing reactor. This incident with an overpressure of 0.83 bars at a distance of 45 m will kill all people and will destroy all buildings and equipments that are located at this distance. The safety distance determined by TNO Multi-Energy model and according to the worst consequence is equal to 260 m. Vapor cloud explosion will have the longest harmful distance on both human and equipment compared to jet fire and flash fire. Atmospheric condition will have a significant influence on harmful distance, especially in vapor cloud explosion. Therefore, the hydrogen production by natural  gas  reforming  is  a  high-risk  process  and  should  always  be  accompanied  by  the  full implementation of the safety rules, personal protection and equipment fireproofing and building blast proofing against jet fire and explosions.

  3. Study on corium behavior in the reactor cavity during severe accidents

    Park, Soo Yong; Song, Y. M.; Kim, D. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The report contains following four results of studies on molten corium-concrete interaction, which has been recognized as important aspects of severe reactor accident; 1. MELCOR code modification has been performed for heat transfer model between ex-vessel molten corium and overlying water pool. The existing model do not consider debris particulation and water penetration in the ex-vessel debris cooling. The new model employs dryout heat flux in determining the heat removal from a debris bed by water penetration. 2. A parametric model which can evaluate ex-vessel concrete erosions has been developed. The model is expected to evaluate the concrete erosion in a limited error range with only a little effort. The model has been derived by the sensitivity studies using MELCOR and MAAP programs. 3. During the corium-concrete interaction, there is a temperature distribution inside basemat concrete. MELCOR calculates concrete response based on one-dimensional steady-state ablation, with no consideration given to conduction into the concrete or to decomposition in advance of the ablation front. Thus there is a necessity to improve the concrete decomposition model in MELCOR. In this report the transient conduction model and the methodology of implementation into MELCOR were suggested. 4. Major modeling assumptions and limits of MELTSPREAD-1, which is a transient one-dimensional computer code to predict the gravity-driven spreading of molten corium in the reactor cavity under severe accidents, are evaluated via review of general conservation equations and used models. The models being reviewed include heat transfer models at melt lower/upper surfaces, a concrete dryout model, and a shell heatup model. The evaluation results suggest the degree of MELTSPREAD-1 approximation compared with real spreading flow and the strong/weak points or restrictions of the code. 17 refs., 19 figs., 6 tabs. (Author)

  4. Prediction of rate and severity of adverse perioperative outcomes: "normal accidents" revisited.

    Saubermann, Albert J; Lagasse, Robert S

    2012-01-01

    The American Society of Anesthesiologists Physical Status classification system has been shown to predict the frequency of perioperative morbidity and mortality despite known subjectivity, inconsistent application, and exclusion of many perioperative confounding variables. The authors examined the relationship between the American Society of Anesthesiologists Physical Status and both the frequency and the severity of adverse events over a 10-year period in an academic anesthesiology practice. The American Society of Anesthesiologists Physical Status is predictive of not only the frequency of adverse perioperative events, but also the severity of adverse events. These nonlinear mathematical relationships can provide meaningful information on performance and risk. Calculated odds ratios allow discussion about individualized anesthesia risks based on the American Society of Anesthesiologists Physical Status because the added complexity of the surgical or diagnostic procedure, and other perioperative confounding variables, is indirectly factored into the Physical Status classification. The ability of the American Society of Anesthesiologists Physical Status to predict adverse outcome frequency and severity in a nonlinear relationship can be fully explained by applying the Normal Accident Theory, a well-known theory of system failure that relates the interactive complexity of system components to the frequency and the severity of system failures or adverse events.

  5. Effective Factors in Severity of Traffic Accident-Related Traumas; an Epidemiologic Study Based on the Haddon Matrix

    Kambiz Masoumi

    2016-04-01

    Full Text Available Introduction: Traffic accidents are the 8th cause of mortality in different countries and are expected to rise to the 3rd rank by 2020. Based on the Haddon matrix numerous factors such as environment, host, and agent can affect the severity of traffic-related traumas. Therefore, the present study aimed to evaluate the effective factors in severity of these traumas based on Haddon matrix. Methods: In the present 1-month cross-sectional study, all the patients injured in traffic accidents, who were referred to the ED of Imam Khomeini and Golestan Hospitals, Ahvaz, Iran, during March 2013 were evaluated. Based on the Haddon matrix, effective factors in accident occurrence were defined in 3 groups of host, agent, and environment. Demographic data of the patients and data regarding Haddon risk factors were extracted and analyzed using SPSS version 20. Results: 700 injured people with the mean age of 29.66 ± 12.64 years (3-82 were evaluated (92.4% male. Trauma mechanism was car-pedestrian in 308 (44% of the cases and car-motorcycle in 175 (25%. 610 (87.1% cases were traffic accidents and 371 (53% occurred in the time between 2 pm and 8 pm. Violation of speed limit was the most common violation with 570 (81.4% cases, followed by violation of right-of-way in 57 (8.1% patients. 59.9% of the severe and critical injuries had occurred on road accidents, while 61.3% of the injuries caused by traffic accidents were mild to moderate (p < 0.001. The most common mechanisms of trauma for critical injuries were rollover (72.5%, motorcycle-pedestrian (23.8%, and car-motorcycle (13.14% accidents (p < 0.001. Conclusion: Based on the results of the present study, the most important effective factors in severity of traffic accident-related traumas were age over 50, not using safety tools, and undertaking among host-related factors; insufficient environment safety, road accidents and time between 2 pm and 8 pm among environmental factors; and finally, rollover, car

  6. ASTEC V2 severe accident integral code: Fission product modelling and validation

    Cantrel, L., E-mail: laurent.cantrel@irsn.fr; Cousin, F.; Bosland, L.; Chevalier-Jabet, K.; Marchetto, C.

    2014-06-01

    One main goal of the severe accident integral code ASTEC V2, jointly developed since almost more than 15 years by IRSN and GRS, is to simulate the overall behaviour of fission products (FP) in a damaged nuclear facility. ASTEC applications are source term determinations, level 2 Probabilistic Safety Assessment (PSA2) studies including the determination of uncertainties, accident management studies and physical analyses of FP experiments to improve the understanding of the phenomenology. ASTEC is a modular code and models of a part of the phenomenology are implemented in each module: the release of FPs and structural materials from degraded fuel in the ELSA module; the transport through the reactor coolant system approximated as a sequence of control volumes in the SOPHAEROS module; and the radiochemistry inside the containment nuclear building in the IODE module. Three other modules, CPA, ISODOP and DOSE, allow respectively computing the deposition rate of aerosols inside the containment, the activities of the isotopes as a function of time, and the gaseous dose rate which is needed to model radiochemistry in the gaseous phase. In ELSA, release models are semi-mechanistic and have been validated for a wide range of experimental data, and noticeably for VERCORS experiments. For SOPHAEROS, the models can be divided into two parts: vapour phase phenomena and aerosol phase phenomena. For IODE, iodine and ruthenium chemistry are modelled based on a semi-mechanistic approach, these FPs can form some volatile species and are particularly important in terms of potential radiological consequences. The models in these 3 modules are based on a wide experimental database, resulting for a large part from international programmes, and they are considered at the state of the art of the R and D knowledge. This paper illustrates some FPs modelling capabilities of ASTEC and computed values are compared to some experimental results, which are parts of the validation matrix.

  7. Effect of water injection on hydrogen generation during severe accident in PWR

    TAO Jun; CAO Xuewu

    2009-01-01

    Effect of water injection on hydrogen generation during severe accident in a 1000 MWe pressurized water reactor was studied.The analyses were carried out with different water injection rates at different core damage stages.The core can be quenched and accident progression can be terminated by water injection at the time before cohesive core debris is formed at lower core region.Hydrogen generation rate decreases with water injection into the core at the peak core temperature of 1700 K,because the core is quenched and reflooded quickly.The water injection at the peak core temperature of 1900 K,the hydrogen generation rate increases at low injection rates of the water,as the core is quenched slowly and the core remains in uncovered condition at high temperatures for a longer time than the situation of high injection rate.At peak core temperature of 2100-2300 K,the Hydrogen generation rate increases by water injection because of the steam serving to the high temperature steam-starved core.Hydrogen generation rate increases significantly after water injection into the core at peak core temperature of 2500 K because of the steam serving to the relocating Zr-U-O mixture.Almost no hydrogen generation can be seen in base case after formation of the molten pool at the lower core region.However,hydrogen is generated if water is injected into the molten pool,because steam serves to the crust supporting the molten pool.Reactor coolant system (RCS) depressurization by opening power operated relief valves has important effect on hydrogen generation.Special attention should be paid to hydrogen generation enhancement caused by RCS depressurization.

  8. Precursors to potential severe core damage accidents: 1997 -- A status report. Volume 26

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Muhlheim, M.D. [Oak Ridge National Lab., TN (United States); Dolan, B.W.; Minarick, J.W. [Science Applications International Corp., Oak Ridge, TN (United States)

    1998-11-01

    This report describes the five operational events in 1997 that affected five commercial light-water reactors (LWRs) and that are considered to be precursors to potential severe core damage accidents. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 {times} 10{sup {minus}6}. These events were identified by first computer-screening the 1997 licensee event reports from commercial LWRs to identify those events that could be precursors. Candidate precursors were selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1996 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for the events.

  9. Management of a severe accident on a pressurised water reactor in France; La gestion d'un accident grave sur un reacteur a eau sous pression en France

    NONE

    2011-07-01

    This brief document defines what a severe accident is on a nuclear reactor, indicates the different failure modes which have been defined (vapour explosion in the reactor vessel, hydrogen explosion, and so on). It describes the management of a core fusion accident for pressurized water reactors, for which a guide has been designed, the GIAG (intervention guide for a severe accident situation). The principles of such an intervention are described, and then the approach for an EPR reactor

  10. Precursors to potential severe core damage accidents, 1986: A status report: Main report and Appendixes A,B, and C

    Minarick, J W; Harris, J D; Austin, P N; Cletcher, J W; Hagen, E W

    1988-05-01

    The Accident Sequence Precursor Program reviews licensee event reports of operational events that have occurred at LWRs to identify and categorize precursors to potential severe core-damage accidents. Accident sequences considered in the study are those associated with inadequate core cooling. Accident sequence precursors are events that are important elements in such sequences. Such precursors could be infrequent initiating events or equipment failures that, when coupled with one or more postulated events, could result in a plant condition with inadequate core cooling. Originally proposed in the Risk Assessment Review Group Report (Lewis Committee report) in 1978, the study - subsequently named the Accident Sequence Precursor Program - was initiated at the Nuclear Operations Analysis Center in 1979. Earlier reports by the program involved assessment of events that occurred in 1969-1981 and 1984-1985. The present report involves the assessment of events that occurred during 1986. A nuclear plant has safety systems for mitigating the consequences of accidents or off-normal initiating events that may occur during the course of plant operation. These systems are built to high-quality standards and are redundant; nonetheless, they have a nonzero probability of failing or being in a failed state when required to operate. This report uses LERs and other plant data, estimated system unavailabilities, the expected average frequency of initiating events (LOFWs, LOOPs, LOCAs), and event details to evaluate the potential impact of the following two situations.

  11. Comparison of the behaviour of two core designs for ASTRID in case of severe accidents

    Bertrand, F., E-mail: frederic.bertrand@cea.fr [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Marie, N.; Prulhière, G.; Lecerf, J. [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Seiler, J.M. [CEA, DEN, DTN, F-38054 Grenoble (France)

    2016-02-15

    Highlights: • Low void worth CFV and SFRv2 cores are compared for ASTRID pre-conceptual design. • Severe accident behaviour is assessed with a simplified calculation approach and tools. • Mitigation to limit reactivity inserted by core compaction is easier for CFV than for SFRv2 core. • When facing arbitrary reactivity ramps, CFV core would lead to lower energy release than SFRv2 core. • Time scale for core degradation is one order of magnitude larger for CFV than for SFRv2. - Abstract: The present paper is dedicated to the studies carried out during the first stage of the pre-conceptual design of the French demonstrator of fourth generation SFR reactors (ASTRID) in order to compare the behaviour of two envisaged core concepts under severe accident transients. Among the two studied core concepts, whose powers are 1500 MWth, the first one is a classical homogeneous core (called SFRv2) with large pin diameter whose the sodium overall voiding reactivity effect is 5 $. The second concept is an axially heterogeneous core (called CFV) whose global void reactivity effect is negative (−1.2 $ at the end of cycle at the equilibrium). The comparison of the cores relies on two typical accident families: a reactivity insertion (unprotected transient overpower, UTOP) and an overall loss of core cooling (unprotected loss of flow, ULOF). In the first part of the comparison, the primary phase of an UTOP is studied in order to assess typical features of the transient behaviour: power and reactivity evolutions, material heating and melting/vaporization and mechanical energy release due to fuel vapor expansion. The second part of the comparison deals with the calculation of the reactivity potential for degraded states (molten pools) representative of the secondary phase of a mild UTOP and of a strong UTOP (strong or mild qualifies the reactivity ramp inserted). According to the reactivity potential, the amount of fuel to extract from the core and the amount of absorber

  12. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun [POSTECH, Daejeon (Korea, Republic of)

    2015-10-15

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  13. Assessment of risk, damage and severity of consequences of accident into storage for LPG

    Tzenova, Zlatina

    2016-12-01

    In this work an accident scenario in store for LPG is considered and consequences - forming a toxic cloud of vapor, fire and blast are modeled through models built into the software product ALOHA. The risk assessment of contamination with certain concentration is done, provided that it is an accident. Definitions for model mixture and risk assessment using geometric probability are introduced.

  14. Characterization of PWR vessel steel tearing under severe accident condition temperatures

    Matheron, Philippe, E-mail: philippe.matheron@cea.fr [CEA, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Chapuliot, Stephane, E-mail: stephane.chapuliot@cea.fr [CEA, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Nicolas, Laetitia, E-mail: laetitia.nicolas@cea.fr [CEA, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Laboratoire de Mecanique des Structures Industrielles Durables, UMR CNRS-EDF 2832, 1 avenue du General de Gaulle, F-92141 Clamart (France); Koundy, Vincent, E-mail: vincent.koundy@irsn.fr [IRSN-DSR, Service d' evaluation des Accidents Graves et des Rejets radioactifs B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); Caroli, Cataldo, E-mail: cataldo.caroli@irsn.fr [IRSN-DSR, Service d' evaluation des Accidents Graves et des Rejets radioactifs B.P. 17, 92262 Fontenay-aux-Roses Cedex (France)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We characterized French PWR vessel steel tearing resistance at high temperatures. Black-Right-Pointing-Pointer Tearing tests on Compact Tension (CT) specimens were carried out. Black-Right-Pointing-Pointer The variability of tearing properties with PWR vessels specifications was studied. Black-Right-Pointing-Pointer We propose a tearing criterion (energy parameter Gfr) at high temperatures. - Abstract: In the event of a severe core meltdown accident in a pressurised water reactor (PWR), core material can relocate into the lower head of the vessel resulting in significant thermal and pressure loads being imposed on the vessel. In the event of reactor pressure vessel (RPV) failure there is the possibility of core material being released towards the containment. On the basis of the loading conditions and the temperature distribution, the determination of the mode, timing, and size of lower head failure is of prime importance in the assessment of core melt accidents. This is because they define the initial conditions for ex-vessel events such as core/basemat interactions, fuel/coolant interactions, and direct containment heating. When lower head failure occurs (i) the understanding of the mechanism of lower head creep deformation; (ii) breach stability and its kinetic of propagation leading to the failure; (iii) and developing predictive modelling capabilities to better assess the consequences of ex-vessel processes, are of equal importance. The objective of this paper is to present an original characterization programme of vessel steel tearing properties by carrying out high temperature tearing tests on Compact Tension (CT) specimens. The influence of metallurgical composition on the kinetics of tearing is investigated as previous work on different RPV steels has shown a possible loss of ductility at high temperatures depending on the initial chemical composition of the vessel material. Small changes in the composition can lead

  15. Making the journey safe: recognising and responding to severe sepsis in accident and emergency

    Pinnington, Sarah; Atterton, Brigid; Ingleby, Sarah

    2016-01-01

    Severe sepsis is a clinical emergency. Despite the nationwide recognition of the sepsis six treatment bundle as the first line emergency treatment for this presentation, compliance in sepsis six provision remains inadequately low. The project goals were to improve compliance with the implementation of the Sepsis Six in patients with severe sepsis and/or septic shock. In improving timely care delivery it was anticipated improvements would be made in relation to patient safety and experience, and reductions in length of stay (LoS) and mortality. The project intended to make the pathway for those presenting with sepsis safe and consistent, where sepsis is recognised and treated in a timely manner according to best practice. The aim of the project was to understand the what the barriers where to providing safe effective care for the patient presenting with severe sepsis in A&E. Using the Safer Clinical Systems (SCS) tools developed byte Health Foundation and Warwick University, the project team identified the hazards and associated risks in the septic patient pathway. The level of analysis employed enabled the project team to identify the major risks, themes, and factors of influence within this pathway. The analysis identified twenty nine possible interventions, of which six were chosen following option appraisal. Further interventions were recommended to the accident and emergency as part of a business case and further changes in process. Audits identified all severely septic patients presenting to A&E in October 2014 (n=67) and post intervention in September 2015 (n=93). Compared analysis demonstrated an increase in compliance with the implementation of the sepsis six care bundle from 7% to 41%, a reduction in LoS by 1.9 days and a decrease in 30 day mortality by 50%. Additional audit reviewed the management of 10 septic patients per week for the duration of the project to assess the real time impact of the selected interventions.

  16. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  17. Phenomenology of severe accidents in BWR type reactors. First part; Fenomenologia de accidentes severos en reactores nucleares de agua en ebullicion. Primera parte

    Sandoval V, S. [Instituto de Investigaciones Electricas, Gerencia de Energia Nuclear, Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2003-07-01

    A Severe Accident in a nuclear power plant is a deviation from its normal operating conditions, resulting in substantial damage to the core and, potentially, the release of fission products. Although the occurrence of a Severe Accident on a nuclear power plant is a low probability event, due to the multiple safety systems and strict safety regulations applied since plant design and during operation, Severe Accident Analysis is performed as a safety proactive activity. Nuclear Power Plant Severe Accident Analysis is of great benefit for safety studies, training and accident management, among other applications. This work describes and summarizes some of the most important phenomena in Severe Accident field and briefly illustrates its potential use based on the results of two generic simulations. Equally important and abundant as those here presented, fission product transport and retention phenomena are deferred to a complementary work. (Author)

  18. Numerical simulation of radioisotope's dependency on containment performance for large dry PWR containment under severe accidents

    Mehboob, Khurram, E-mail: khurramhrbeu@gmail.com [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Xinrong, Cao [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Ahmed, Raheel [College of Automation, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Ali, Majid [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China)

    2013-09-15

    Highlights: • Calculation and comparison of activity of BURN-UP code with ORIGEN2 code. • Development of SASTC computer code. • Radioisotopes dependency on containment ESFs. • Mitigation in atmospheric release with ESFs operation. • Variation in radioisotopes source term with spray flow and pH value. -- Abstract: During the core melt accidents large amount of fission products can be released into the containment building. These fission products escape into the environment to contribute in accident source term. The mitigation in environmental release is demanded for such radiological consequences. Thus, countermeasures to source term, mitigations of release of radioactivity have been studied for 1000 MWe PWR reactor. The procedure of study is divided into five steps: (1) calculation and verification of core inventory, evaluated by BURN-UP code, (2) containment modeling based on radioactivity removal factors, (3) selection of potential accidents initiates the severe accident, (4) calculation of release of radioactivity, (5) study the dependency of release of radioactivity on containment engineering safety features (ESFs) inducing mitigation. Loss of coolant accident (LOCA), small break LOCA and flow blockage accidents (FBA) are selected as initiating accidents. The mitigation effect of ESFs on source term has been studied against ESFs performance. Parametric study of release of radioactivity has been carried out by modeling and simulating the containment parameters in MATLAB, which takes BURN-UP outcomes as input along with the probabilistic data. The dependency of iodine and aerosol source term on boric and caustic acid spray has been determined. The variation in source term mitigation with the variation of containment spray flow rate and pH values have been studied. The variation in containment retention factor (CRF) has also been studied with the ESF performance. A rapid decrease in source term is observed with the increase in pH value.

  19. Measurement of buckling load for metallic plate columns in severe accident conditions

    Jo, Byeongnam, E-mail: jo@vis.t.u-tokyo.ac.jp; Sagawa, Wataru, E-mail: sagawa@vis.t.u-tokyo.ac.jp; Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp

    2014-07-01

    Highlights: • Buckling load was experimentally measured in a wide range of temperature up to 1200 °C. • Two different test methods for measuring buckling failure load were suggested and compared. • Creep buckling under compressive load was performed to explain results of buckling tests. • Reduced buckling load was explained by effects of creep buckling, geometrical imperfection, and thermal stress. • Buckling processes were visualized by a high speed camera. - Abstract: In severe accidents, a reactor pressure vessel, its components, and piping have to be under extremely high temperature and high pressure conditions, which results in failure modes like rupture by internal pressure, buckling, creep, and their combinations. In this study, buckling (failure) load was experimentally measured for metallic columns under the compressive force from room temperature up to 1200 °C. A stainless steel was chosen to be a test material to measure the buckling load. Two different test methods were employed to explore the effect of thermal history of the material on the buckling load. Particularly, the effect of creep under a compressive load was considered as a reason for the reduced buckling load at high temperatures. Additionally, finite element simulations were also conducted to predict buckling load for both an ideal column and a column with geometrical imperfection as well. Moreover, buckling process was visualized using a high speed camera to understand buckling processes.

  20. The severe accident research programme PHEBUS F.P.: First results and future tests

    Schwarz, M. [Institut de Protection et de Surete Nucleaire IPSN, Saint Paul Lez Durance (France); Hardt, P. von der [Joint Research Centre - Safety Technology Institute, Saint Paul Lez Durance (France)

    1996-03-01

    PHEBUS FP is an international programme, managed by the French Institut de Protection et de Surete Nucleaire, Electricite de France and the European Commission in close collaboration with the USNRC (US), COG (Canada), NUPEC and JAERI (Japan) and KAERI (South Korea). Its objective is to investigate through a series of in-pile integral experiments, key phenomena involved in LWR severe accident such as the degradation of core materials up to molten pool, the subsequent release of fission products and of structural materials, their transport in the cooling system and their deposition in the containment with a special emphasis on the volatility of iodine. After a general programme description, the paper focuses on the status of analysis of the first test FPT-0, which involved trace irradiated fuel and which has shown some quite unexpected results regarding fuel degradation and iodine behaviour, and on the upcoming test FPT-1 which will use irradiated fuel. The status of the preparation of the remaining tests of the programme is also presented.

  1. RAIM-A model for iodine behavior in containment under severe accident condition

    Kim, Han Chul; Cho, Yeong Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-12-15

    Following a severe accident in a nuclear power plant, iodine is a major contributor to the potential health risks for the public. Because the amount of iodine released largely depends on its volatility, iodine's behavior in containment has been extensively studied in international programs such as International Source Term Programme-Experimental Program on Iodine Chemistry under Radiation (EPICUR), Organization for Economic Co-operation and Development (OECD)-Behaviour of Iodine Project, and OECD-Source Term Evaluation and Mitigation. Korea Institute of Nuclear Safety (KINS) has joined these programs and is developing a simplified, stand-alone iodine chemistry model, RAIM (Radio-Active Iodine chemistry Model), based on the IMOD methodology and other previous studies. This model deals with chemical reactions associated with the formation and destruction of iodine species and surface reactions in the containment atmosphere and the sump in a simple manner. RAIM was applied to a simulation of four EPICUR tests and one Radioiodine Test Facility test, which were carried out in aqueous or gaseous phases. After analysis, the results show a trend of underestimation of organic and molecular iodine for the gas-phase experiments, the opposite of that for the aqueous-phase ones, whereas the total amount of volatile iodine species agrees well between the experiment and the analysis result.

  2. Reclamation of contaminated urban and rural environments following a severe nuclear accident

    Strand, P.; Skuterud, L. [eds.] [Norwegian Radiation Protection Authority (Norway); Melin, J. [ed.] [Swedish Radiation Protection Institute (Sweden)

    1997-10-01

    In the event of a severe nuclear accident releasing radioactive materials to the atmosphere, there is a potential for widespread contamination of both the urban and rural environments. In some instances of environmental contamination, natural processes may eventually reduce or eliminate the problem without man`s intervention. The situation with respect to radioactive contamination is no different except that radioactive contamination will also disappear through normal physical radioactive decay. In other cases, man is often able to mitigate potential harmful effects by cleaning, washing, abrading or by the application of chemicals. The actions taken by man to mitigate the potential harmful effects of contamination are described as countermeasures. In the case of radioactive contamination, the objective of countermeasures is to minimise radiation doses to man. This document is intended as a guide to those groups who may, at very short notice, be called upon to manage and reclaim radioactively contaminated urban and rural environments in the Nordic countries. However, much of the information and recommendations are also equally applicable in other countries. The document is divided into eight distinct parts, namely: 1. The Urban Environment; 2. The Cultivated Agricultural Environment; 3. Animals; 4. Forests; 5. Freshwater and Fish; 6. Management and Disposal of Radioactive Waste from Clean-up Operations; 7. Radiation Protection and Safety of Clean-up Operators; 8. Resources Available in Society. (EG).

  3. The Need to introduce CFD Methodology in Analyze Hydrogen Distribution for Postulated Severe Accidents

    Na, Hanbee; Park, Sukyung; Kim, Kyuntae [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Jongkwang [Hanbat National University, Daejeon (Korea, Republic of); Kwon, Sejin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    The regulatory requirements for combustible gas control systems in Korea is that mean hydrogen mole fraction shall be lower than 10 %, containment integrity shall be kept from combustion of hydrogen, and detonation and global fast turbulent combustion shall be avoided. KHNP provided some analysis which show hydrogen mole fraction is less than 10 % and detonation and global fast turbulence combustion are avoided for postulated severe accident events which covered over 90 % of CDF (core damage frequency) for each NPP. The results were from MAAP code that can simulate from the initiation of the accidents to hydrogen distribution inside containments. It is a Lumped-Parameter codes in which the transport of energy and mass is possible in only predetermined one direction. Therefore, there has been a long-history dispute whether one-dimensional LP codes could simulate the transportation of hydrogen accurately. For example, KHNP made a MAAP model to simulate hydrogen distribution in KSNP (Korean Standard Nuclear Plants), and the containment free volume is divided into 27 nodes in which it is assumed all the properties like each molecule mole fraction and temperate are uniform in each node. In addition, the maximum volume size of them is over 22,000 m{sup 3}, and it is not quite confident that the mole fraction of each molecules and temperature are uniform in the big size space. As for the stress test results of the Wolsong 1, civil experts asked KHNP to conduct hydrogen distribution analysis using Computational Fluid Dynamics (CFD) methodology, and if needed to install hydrogen ignitors in Wolsong 1 NPP. As a reviewer for KHNP's post actions to the Stress Test, the author also asked KHNP to do CFD analysis of hydrogen distribution, and KHNP finally agreed to analyze it using CFD by 2017. KHNP submitted a Shin-hanul 1 and 2 Operation License application in 2015, and the author also asked it to do CFD analysis to simulate hydrogen distribution for Shin-hanul 1 and 2

  4. Assessment of Spatial Unevenness of Road Accidents Severity as Instrument of Preventive Protection from Emergency Situations in Road Complex

    Petrov, A.; Petrova, D.

    2016-08-01

    Emergency situations in road complex are road traffic accidents (RA) with severe consequences. These are incidents connected with the death and injury of large number of people. The most common reasons for this are the collision of three or more cars, the collision of buses with trains at railroad crossings, the fall of the buses in the mountain gorge, and other similar cases. Is it possible to predict such events? How to build a preventive protection against such emergencies? We have to understand that emergencies in a road complex are qualitative expression of the quantitative processes that characterize the general state of road safety in the region. In this regard, at the level of state monitoring of emergency situations it is important to understand in general - in which region the situation is more complicated and in which is more favorable. This knowledge helps to more efficiently reallocate resources intended to solve the problems of road safety provision. The consequence of this is improvement of the quality of preventive protection from the emergencies in the road complex. The article presents quantitative values of severity of accidents in the Russian Federation regions and the Pareto chart distribution of cumulates of the accident severity for the Russian Federation. On the basis of the complex assessment of the spatial non-uniformity of the accident severity results it offers two important recommendations, implementation of which will alleviate the issue of formation of emergency situations in the road of the Russian Federation on the basis of the complex assessment of the spatial nonuniformity of the accident severity results.

  5. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  6. Coolability of corium debris under severe accident conditions in light water reactors

    Rahman, Saidur

    2013-11-15

    The debris bed which may be formed in different stages of a severe accident will be hot and heated by decay heat from the radioactive fission products. In order to establish a steady state of long-term cooling, this hot debris needs to be quenched at first. If quenching by water ingression into the dry bed is not rapid enough then heat-up by decay heat in still dry regions may again yield melting. Thus, chances of coolability must be investigated considering quenching against heat-up due to decay heat, in the context of reactor safety research. As a basis of the present investigations, models for simulation of two phase flow through porous medium were already available in the MEWA code, being under development at IKE. The objective of this thesis is to apply the code in essential phases of severe accidents and to investigate the chances, options and measures for coolability. Further, within the tasks, improvements to remove weaknesses in modeling and implementation of extensions concerning missing parts are included. It was identified previously that classical models without explicit considering the interfacial friction, can predict dryout heat flux (DHF) well under top fed condition but under-predict DHF values under bottom flooding conditions. Tung and Dhir introduced an interfacial friction term in their model, but this model has deficits for smaller particles considered as relevant for reactor conditions. Therefore, some modification of Tung and Dhir model is proposed in the present work to extent it for smaller particles. A significant improvement with the new friction description (Modified Tung and Dhir, MTD) is obtained considering the aim of a unified description for both top and bottom flooding conditions and for broad bandwidth of bed conditions. Calculations for reactor conditions are carried out in order to explore whether or to which degree coolability can be concluded, how strong the trend to coolability is and where major limits occur. The general

  7. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Main report and appendices, Volume 6, Part 1

    Brown, T.D.; Kmetyk, L.N.; Whitehead, D.; Miller, L. [Sandia National Labs., Albuquerque, NM (United States); Forester, J. [Science Applications International Corp., Albuquerque, NM (United States); Johnson, J. [GRAM, Inc., Albuquerque, NM (United States)

    1995-03-01

    Traditionally, probabilistic risk assessments (PRAS) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Recent studies and operational experience have, however, implied that accidents during low power and shutdown could be significant contributors to risk. In response to this concern, in 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The program consists of two parallel projects being performed by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). The program objectives include assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing the estimated risks with the risk associated with accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program is that of a Level-3 PRA. The subject of this report is the PRA of the Grand Gulf Nuclear Station, Unit 1. The Grand Gulf plant utilizes a 3833 MWt BUR-6 boiling water reactor housed in a Mark III containment. The Grand Gulf plant is located near Port Gibson, Mississippi. The regime of shutdown analyzed in this study was plant operational state (POS) 5 during a refueling outage, which is approximately Cold Shutdown as defined by Grand Gulf Technical Specifications. The entire PRA of POS 5 is documented in a multi-volume NUREG report (NUREG/CR-6143). The internal events accident sequence analysis (Level 1) is documented in Volume 2. The Level 1 internal fire and internal flood analyses are documented in Vols 3 and 4, respectively.

  8. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures. The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.

  9. Experiments and analyses on melt-structure-water interactions during severe accidents

    Seghal, B.R.; Dinh, T.N.; Bui, V.A.; Green, J.A.; Nourgaliev, R.R.; Okkonen, T.O.; Dinh, A.T. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1998-04-01

    This report is the final report for the research project Melt Structure Water Interactions (MSWI). It describes results of analytical and experimental studies concerning MSWI during the course of a hypothetical core meltdown accident in a LWR. Emphasis has been placed on phenomena which govern vessel failure mode and timing and the mechanisms and properties which govern the fragmentation and breakup of melt jets and droplets. It was found that: 2-D effects significantly diminished the focusing effect of an overlying metallic layer on top of an oxide melt pool. This result improves the feasibility of in-vessel retention of a melt pool through external cooling of the lower head; phenomena related to hole ablation and melt discharge, in the event of vessel failure, are affected significantly by crust formation; the jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters but also on the melt physical properties, which change as the melt cools down from liquid to solid temperature; film boiling was investigated by developing a two-phase flow model and inserting it in a multi-D fluid dynamics code. It was concluded that the thickness of the film on the surface of a melt jet would be small and that the effects of the film on the process should not be large. This conclusion is contrary to the modeling employed in some other codes. The computer codes were developed and validated against the data obtained in the MSWI Project. The melt vessel interaction thermal analysis code describes the process of melt pool formation and convection and the resulting vessel thermal loadings. In addition, several innovative models were developed to describe the melt-water interaction process. The code MELT-3D treats the melt jet as a collection of particles whose movement is described with a three-dimensional Eulerian formulation. The model (SIPHRA) tracks the melt jet with an additional equation, using the

  10. KSTAR Severe Accident Analysis using MELCOR : Ex-vessel Coolant Pipe Break with Failure of Fusion Power Termination System

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    To investigate the consequence of severe accidents in fusion reactor, a number of thermal hydraulics simulation codes were used (ECART, INTRA, ATHENA/RELAP and so on). MELCOR is chosen as the thermal hydraulics code to simulate the consequence of radioactive material release from accident in preliminary safety report. Capability of the simulation code for fusion reactor severe accident analysis is ability to simulate the hydraulic system in ITER and the transport phenomenon of radionuclides. MELCOR is a fully integrated code that models the accidents in Light Water Reactor (LWR). There are three kinds of radioactive materials in fusion reactor; tritium (or Tiritiated water: HTO), activation products (AP) of divertor or first-wall and activated corrosion products(ACP). In generic Site Safety Report (GSSR), the release guidelines for tritium and activation products are listed for normal operation, incidents, and accidents. And this guidelines presented in Table 1. Not only ITER, the KSTAR (Korea Superconducting Tokamak Advanced Research) is also developing fusion research reactor. The scale of facility is smaller than ITER but this small scale of facility offers the experimental flexibility to develop fusion technology. The major differences between KSTAR and ITER systems are presented in Table 2. Fusion source difference between KSTAR and ITER is D-D fusion reaction (Deuterium-Deuterium fusion reaction) and D-T fusion reaction (Deuterium-Tritium fusion reaction). This D-D fusion makes one tritium by 50 percent chance. The radioactivity of tritium is small to consider compared to radioactive materials in nuclear fission reactor. This reaction is presented in equation (1) In the present work, conservatively estimated tritium inventory amount in KSTAR is used with one of the most severe accident in ITER; Ex-vessel pipe break with Fusion Power Termination System (FPTS). The MELCOR KSTAR input is made by scaling down the ITER input deck. So, the detail system is not same

  11. An Entry Point of the Emergency Response Robot for Management of Severe Accident of the Nuclear Power Plant

    Cho, Jaiwan; Jeong, Kyungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this paper, from the view point of DID (defense-in depth), we discuss the entry point of the nuclear emergency response robot to cope with a nuclear disaster. A Japanese nuclear disaster preparedness robot system was developed, after the JCO criticality accident in 1999, to cope with INES (International Nuclear and Radiological Event Scale) Level 3 serious incidents. INES Level 3 means the loss of DID (defense-in-depth) functions. It also indicates that ESF (engineered safety features) and ECCS (emergency core cooling system) resources, which are used to prevent serious incidents from escalating to severe accidents (core melt-down), have been almost exhausted. In the unit 1 reactor accident of Fukushima Daiichi Nuclear Power Plant, escalation from INES Level 1 (Out of Limiting Condition for Operation) to INES Level 5 (serious core melting-down) took less than two hours. Major facts are briefly described here in based on data gathered immediately after the tsunami over Fukushima Daiichi Nuclear Power Plant. Ο 15:35 on March 11, 2nd tsunami arrived. - 15:37, SBO (station black out) Ο 15:42, Interprets as a SBO (INES Level 1) - Loss of DC power for Instrumentation (Unknown of reactor water level) Ο 16:36, Loss of ECCS function (INELS Level 5) (Entry into a BDBA status) The Moni ROBO-A robot of the Japan Nuclear Safety Technology Center (NUSTEC) was a nuclear disaster preparedness robot developed after the JCO criticality accident. It was the only robot that had been steadily maintained and was available at the time of the Fukushima Daiichi Nuclear Power Plant accident. However, it was not helpful in mitigating the accident because it is assumed to have arrived at J-Village after the accident had been escalated to INES Level 5 or higher. Based on the paper by S. Kawatsuma of JAEA and response data gathered immediately after the tsunami, it is estimated that the NUSTEC's Moni ROBO-A arrived at J-Village after the designed entry point for INES Level 3

  12. Investigation on Melt-Structure-Water Interactions (MSWI) during severe accidents

    Sehgal, B.R.; Yang, Z.L.; Dinh, T.N.; Nourgaliev, R.R.; Bui, V.A.; Haraldsson, H.O.; Li, H.X.; Konovakhin, M.; Paladino, D.; Leung, W.H [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1999-08-01

    This report is the final report for the work performed in 1998 in the research project Melt Structure Water Interactions (MSWI), under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The present report describes results of advanced analytical and experimental studies concerning melt-water-structure interactions during the course of a hypothetical severe core meltdown accident in a light water reactor (LWR). Emphasis has been placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. Many of the investigations performed in support of this project have produced papers which have been published in the proceedings of technical meetings. A short summary of the results achieved in these papers is provided in this overview. Both experimental and analytical studies were performed to improve knowledge about phenomena of melt-structure-water interactions. We believe that significant technical advances have been achieved during the course of these studies. It was found that: the solidification has a strong effect on the drop deformation and breakup. Initially appearing at the drop surface and, later, thickening inwards, the solid crust layer dampens the instability waves on the drop surface and, therefore, hinders drop deformation and breakup. The drop thermal properties also affect the thermal behavior of the drop and, therefore, have impact on its deformation behavior. The jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters, e.g. the Weber number, but also on the melt physical properties, which change as the melt cools down from the liquidus to the solidus temperature. Additionally, the crust formed on the surface of the melt jet will also reduce the propensity

  13. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Evaluation of severe accident risk during mid-loop operations. Main report. Volume 6. Part 1

    Jo, J.; Lin, C.C.; Neymotin, L. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1995-05-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. A phased approach was used in the level-1 program. In phase 1 which was completed in Fall 1991, a coarse screening analysis including internal fire and flood was performed for all plant operational states (POSs). The objective of the phase 1 study was to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenarios, and to provide a foundation for a detailed phase 2 analysis. In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. The results of the phase 2 level 2/3 study are the subject of this volume of NUREG/CR-6144, Volume 6.

  14. Determination of optimal LWR containment design, excluding accidents more severe than Class 8

    Cave, L.; Min, T.K.

    1980-04-01

    Information is presented concerning the restrictive effect of existing NRC requirements; definition of possible targets for containment; possible containment systems for LWR; optimization of containment design for class 3 through class 8 accidents (PWR); estimated costs of some possible containment arrangements for PWR relative to the standard dry containment system; estimated costs of BWR containment.

  15. Evaluation of severe accident risks and the potential for risk reduction: Surry Power Station, Unit 1: Draft report for comment

    Benjamin, A.S.; Boyd, G.J.; Kunsman, D.M.; Murfin, W.B.; Williams, D.C.

    1987-02-01

    The Severe Accident Risk Reduction Program (SARRP) has completed a rebaselining of the risks to the public from a particular pressurized water reactor with a subatmospheric containment (Surry, Unit 1). Emphasis was placed on determining the magnitude and character of the uncertainties, rather than focusing on a point estimate. The risk-reduction potential of a set of proposed safety option backfits was also studied, and their costs and benefits were also evaluated. It was found that the risks from internal events are generally lower than previously evaluated in the Reactor Safety Study (RSS). However, certain unresolved issues (such as direct containment heating) caused the top of the uncertainty band to appear at a level that is comparable with the RSS point estimate. None of the postulated safety options appears to be cost effective for the Surry power plant. This work supports the Nuclear Regulatory Commission's assessment of severe accidents in NUREG-1150.

  16. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    Heams, T J [Science Applications International Corp., Albuquerque, NM (United States); Williams, D A; Johns, N A; Mason, A [UKAEA, Winfrith, (England); Bixler, N E; Grimley, A J [Sandia National Labs., Albuquerque, NM (United States); Wheatley, C J [UKAEA, Culcheth (England); Dickson, L W [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Osborn-Lee, I [Oak Ridge National Lab., TN (United States); Domagala, P; Zawadzki, S; Rest, J [Argonne National Lab., IL (United States); Alexander, C A [Battelle, Columbus, OH (United States); Lee, R Y [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  17. Phenomenological studies on melt-structure-water interactions (MSWI) during severe accidents

    Sehgal, B.R.; Yang, Z.L.; Haraldsson, H.O.; Nourgaliev, R.R.; Konovalikhin, M.; Paladino, D.; Gubaidullin, A.A.; Kolb, G.; Theerthan, A. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    2000-05-01

    This is the annual report for the work performed in 1999 in the research project Melt-Structure-Water Interactions During Severe Accidents in LWRs, under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The emphasis of the work is placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. We believe that significant technical advances have been achieved during the course of these studies. It was found that: The coolant temperature has significant influence on the characteristics of debris fragments produced from the breakup of an oxidic melt jet. At low subcooling the fragments are relatively large and irregular compared to the smaller particles produced at high subcooling. The melt jet density has considerable effect on the fragment size produced. As the melt density increases the fragment size becomes smaller. The mass mean size of the debris changes proportionally to the square root of the coolant to melt density ratio. The melt superheat has little effect on the debris particle size distribution produced during the melt jet fragmentation. The impingement velocity of the jet has significant impact on the fragmentation process. At lower jet velocity the melt fragments agglomerate and form a cake of large size debris. When the jet velocity is increased more complete fragmentation is obtained. The scaling methodology for melt spreading, developed during 1998, has been further validated against almost all of the spreading experimental data available so far. Experimental results for the dryout heat flux of homogeneous particulate debris beds with top flooding compare well with the Lipinski correlation. For the stratified particle beds, the fine particle layer resting on the top of another particle layer dominates the dryout processes

  18. Conceptual Design of Portable Filtered Air Suction Systems For Prevention of Released Radioactive Gas under Severe Accidents of NPP

    Gu, Beom W.; Choi, Su Y.; Yim, Man S.; Rim, Chun T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    It becomes evident that severe accidents may occur by unexpected disasters such as tsunami, heavy flood, or terror. Once radioactive material is released from NPP through severe accidents, there are no ways to prevent the released radioactive gas spreading in the air. As a remedy for this problem, the idea on the portable filtered air suction system (PoFASS) for the prevention of released radioactive gas under severe accidents was proposed. In this paper, the conceptual design of a PoFASS focusing on the number of robot fingers and robot arm rods are proposed. In order to design a flexible robot suction nozzle, mathematical models for the gaps which represent the lifted heights of extensible covers for given convex shapes of pipes and for the covered areas are developed. In addition, the system requirements for the design of the robot arms of PoFASS are proposed, which determine the accessible range of leakage points of released radioactive gas. In this paper, the conceptual designs of the flexible robot suction nozzle and robot arm have been conducted. As a result, the minimum number of robot fingers and robot arm rods are defined to be four and three, respectively. For further works, extensible cover designs on the flexible robot suction nozzle and the application of the PoFASS to the inside of NPP should be studied because the radioactive gas may be released from connection pipes between the containment building and auxiliary buildings.

  19. Criticality accident in uranium fuel processing plant. Emergency medical care and dose estimation for the severely overexposed patients

    Akashi, Makoto; Ishigure, Nobuhito [National Inst. of Radiological Sciences, Chiba (Japan)

    2000-08-01

    A criticality accident occurred in JCO, a plant for nuclear fuel production in 1999 and three workers were exposed to extremely high-level radiation (neutron and {gamma}-ray). This report describes outlines of the clinical courses and the medical cares for the patients of this accident and the emergent medical system for radiation accident in Japan. One (A) of the three workers of JCO had vomiting and diarrhea within several minutes after the accident and another one (B) had also vomiting within one hour after. Based on these evidences, the exposure dose of A and B were estimated to be more than 8 and 4 GyEq, respectively. Generally, acute radiation syndrome (ARS) is assigned into three phases; prodromal phase, critical or manifestation phase and recovery phase or death. In the prodromal phase, anorexia, nausea, vomiting and diarrhea often develop, whereas the second phase is asymptotic. In the third phase, various syndromes including infection, hemorrhage, dehydration shock and neurotic syndromes are apt to occur. It is known that radiation exposure at 1 Gy or more might induce such acute radiation syndromes. Based on the clinical findings of Chernobyl accident, it has been thought that exposure at 0.5 Gy or more causes a lowering of lymphocyte level and a decrease in immunological activities within 48 hours. Lymphocyte count is available as an indicator for the evaluation of exposure dose in early phase, but not in later phase The three workers of JCO underwent chemical analysis of blood components, chromosomal analysis and analysis of blood {sup 24}Na immediately after the arrival at National Institute of Radiological Sciences via National Mito Hospital specified as the third and the second facility for the emergency medical care system in Japan, respectively. (M.N.)

  20. SiC MODIFICATIONS TO MELCOR FOR SEVERE ACCIDENT ANALYSIS APPLICATIONS

    Brad J. Merrill; Shannon M Bragg-Sitton

    2013-09-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) Light Water Reactor (LWR) Sustainability Program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. The Fuels Pathway within this program focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement (e.g. fully ceramic cladding). The DOE-NE Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) is also conducting research on materials for advanced, accident tolerant fuels and cladding for application in operating LWRs. To aide in this assessment, a silicon carbide (SiC) version of the MELCOR code was developed by substituting SiC in place of Zircaloy in MELCOR’s reactor core oxidation and material property routines. The purpose of this development effort is to provide a numerical capability for estimating the safety advantages of replacing Zr-alloy components in LWRs with SiC components. This modified version of the MELCOR code was applied to the Three Mile Island (TMI-2) plant accident. While the results are considered preliminary, SiC cladding showed a dramatic safety advantage over Zircaloy cladding during this accident.

  1. A Statistical Description of the Types and Severities of Accidents Involving Tractor Semi-Trailers, Updated Results for 1992-1996

    BLOWER,DANIEL F.; CLAUSS,DAVID B.

    1999-10-01

    This report provides a statistical description of the types and severities of tractor semi-trailer accidents involving at least one fatality. The data were developed for use in risk assessments of hazardous materials transportation. A previous study (SAND93-2580) reviewed the availability of accident data, identified the TIFA (Trucks Involved in Fatal Accidents) as the best source of accident data for accidents involving heavy trucks, and provided statistics on accident data collected between 1980 and 1990. The current study is an extension of the previous work and describes data collected for heavy truck accidents occurring between 1992 and 1996. The TIFA database created at the University of Michigan Transportation Research Institute was extensively utilized. Supplementary data on collision and fire severity, which was not available in the TIFA database, were obtained by reviewing police reports and interviewing responders and witnesses for selected TEA accidents. The results are described in terms of frequencies of different accident types and cumulative distribution functions for the peak contact velocity, rollover skid distance, effective fire temperature, fire size, fire separation, and fire duration.

  2. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi [Nuclear Power Corp. (Japan)] [and others

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed by three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.

  3. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  4. Studies of the UO 2-zircaloy chemical interaction and fuel rod relocation modes in a severe fuel damage accident

    Shiozawa, S.; Ichikawa, M.; Fujishiro, T.

    1988-06-01

    Experiments have been conducted in the Nuclear Safety Research Reactor (NSRR) at JAERI since 1975 in order to study fuel rod failure behavior under reactivity-initiated accident conditions. Recently the experiments have been focussed on fuel behavior under simulated severe fuel damage (SFD) accident conditions. UO 2-Zircaloy reaction kinetics during very rapid transients at elevated temperatures was studied from a metallurgical point of view. Equilibrium was found to be established even in very rapid transients. The reaction rate equations developed in isothermal studies can be applied to interpret the experimental results. A fuel rod relocation criterion in connection with peak temperatures, environment conditions and initial fuel rod conditions was developed. According to the test results, fuel rod melt down due to liquefaction seems unlikely below the melting temperature of β-Zircaloy.

  5. Response Analysis on Electrical Pulses under Severe Nuclear Accident Temperature Conditions Using an Abnormal Signal Simulation Analysis Module

    Kil-Mo Koo

    2012-01-01

    Full Text Available Unlike design basis accidents, some inherent uncertainties of the reliability of instrumentations are expected while subjected to harsh environments (e.g., high temperature and pressure, high humidity, and high radioactivity occurring in severe nuclear accident conditions. Even under such conditions, an electrical signal should be within its expected range so that some mitigating actions can be taken based on the signal in the control room. For example, an industrial process control standard requires that the normal signal level for pressure, flow, and resistance temperature detector sensors be in the range of 4~20 mA for most instruments. Whereas, in the case that an abnormal signal is expected from an instrument, such a signal should be refined through a signal validation process so that the refined signal could be available in the control room. For some abnormal signals expected under severe accident conditions, to date, diagnostics and response analysis have been evaluated with an equivalent circuit model of real instruments, which is regarded as the best method. The main objective of this paper is to introduce a program designed to implement a diagnostic and response analysis for equivalent circuit modeling. The program links signal analysis tool code to abnormal signal simulation engine code not only as a one body order system, but also as a part of functions of a PC-based ASSA (abnormal signal simulation analysis module developed to obtain a varying range of the R-C circuit elements in high temperature conditions. As a result, a special function for abnormal pulse signal patterns can be obtained through the program, which in turn makes it possible to analyze the abnormal output pulse signals through a response characteristic of a 4~20 mA circuit model and a range of the elements changing with temperature under an accident condition.

  6. A Study on Licensing Requirement for Severe Accident of PGSFR in Korea

    Kim, Kilyoo; Han, Sang Hoon; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Metal-fueled SFRs such as PRISM, 4S, etc. do not have serious SA research since they are inherently safe with low melting point, high boiling temperature, good thermal inertia due to good conductivity, and passive safety systems, etc. Since PGSFR is one of the metal-fueled SFRs which have been developed to overcome the SAs drawbacks of oxide fueled SFRs, there would occur no SAs in view of the then-current criteria of SAs. Unfortunately, there is no SA regulatory requirement for SFR in Korea and in USA. Thus, we can think the following two options to get the design approval for PGSFR. Option 1: Methods and strategies to prevent and mitigate SAs of PGSFR should be reported, and for which required research should be performed. After Fukushima accident, it seems that this SA perspective becomes important. Option 2: Since PGSFR or a metal-fueled SFR such as PRISM is inherently too safe, there is no SA as proved by the EBR II experiment. Thus, the issues of SAs were already solved, and SA research is not necessary. In this paper, by reviewing of the recent nuclear regulation trend in Korean and in USA, and by checking of PGSFR PSA model, which option is better in the design approval for PGSFR is discussed. Although the inherent and passive safety measures of PGSFR could satisfy with the then-current regulatory requirement used in the pre-application of PRISM, the trend in U. S and Korean nuclear regulatory after Fukushima accident shows that SA cannot be treated in residual risk category. Rather, after setting SA scenario, further SA research should be done which has not been well performed after PRISM pre-application in 1994. Especially, PGSFR should cope with the extended SBO requirement and triple failures issued in Fukushima accident. Although accurate SA scenarios for PGSFR would be identified after performing the external PSA for PGSFR, some triple faults are suggested as SA scenarios.

  7. A study of core melting phenomena in reactor severe accident of PWR

    Jeun, Gyoo Dong; Park, Shane; Kim, Jong Sun; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Man [Korea Maritime Univ., Busan (Korea, Republic of)

    2001-03-15

    In the 4th year, SCDAP/RELAP5 best estimate input data obtained from the TMI-2 accident analysis were applied to the analysis of domestic nuclear power plant. Ulchin nuclear power plant unit 3, 4 were selected as reference plant and steam generator tube rupture, station blackout SCDAP/RELAP5 calculation were performed to verify the adequacy of the best estimate input parameters and the adequacy of related models. Also, System 80+ EVSE simulation was executed to study steam explosion phenomena in the reactor cavity and EVSE load test was performed on the simplified reactor cavity geometry using TRACER-II code.

  8. Analysis of Severe Accident for the SFP under the Condition of Drainage using MELCOR

    Oh, Jung-Min; Pack, Jae-Woo [Jeju National University, Jeju (Korea, Republic of)

    2015-10-15

    This study aims to analyze the effect of a LOCA of the spent fuel pool. We use the MECORE 1.8.6 code to compute the variation of the fuel cladding temperature after a completer loss of the cooling water in the spent fuel pool. A loss of coolant accident in a typical spent fuel pool has been simulated using the MELCOR 1.8.6 code to see the variation of key parameters such as the oxygen concentration in the fuel assembly region and the cladding temperature. In a commercial nuclear power plant, highly radioactive spent fuel assemblies unloaded from the nuclear reactor core are typically stored for a period of time in the spent fuel pool to reduce the radioactivity. The spent fuel assemblies are usually placed in long square racks. It is known that in the progress of the Fukushima nuclear power plant accident, the cooling water in the spent fuel storage was completely lost and the fuel was heated up and damaged. The simulation result shows that the cladding temperature exceeds the rupture temperature in most of the fuel rods and some part of the fuel rods suffers melting of the cladding.

  9. Development and test results of the Realtime Severe Accident Model 5 (RSAM5) based on the MAAP5 For the Kori 1 simulator

    Hong, Jin Hyuk; Lee, Myeong Soo [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The Real Time Severe Accident Model (RSAM) in the Kori simulator employs the standard MAAP 5.01.1101 code (which is defined as MAAP 5.01) plus several statically linked libraries that interface with the simulator environment. The physical phenomena that can be envisioned inside the reactor vessel, the reactor coolant system (RCS), and the containment during severe accidents are comprehensively modeled by the MAAP5 code. The MAAP5 code has been known to be a reliable tool for understanding the sequence of events that occur during severe LWR accidents, evaluating the consequences of the failure of emergency systems, assessing the effects of operator interventions, and investigating the influence of design features of the RCS, containment, and safety systems on the accident consequences. The purpose of this paper is to describe the modeling of the Kori Unit 1 nuclear plant with the MAAP5 code and major outputs in the event of the SBO, SBO + SGTR, SBO + LBLOCA.

  10. Simulation technology for training in the management of severe accidents in nuclear power; Tecnologia de simulacion para entrenamiento en gestion de accidentes severos en centrales nucleares

    Gil Moya, E.; Ruiz Martin, J. A.

    2012-07-01

    The objective of the project consists of the development of a module of severe accident based on the code Thermo-hydraulic MAAP and their integration in a Spanish CN training Simulator. Currently, stimulated the tools designed by Tecnatom aimed at training and assistance in the management of emergencies, complemented by the development of a dynamic interactive guides of severe accidents, thus constituting a set of aid for the operation.

  11. The reaction between iodine and organic coatings under severe PWR accident conditions. An experimental parameter study

    Hellmann, S.; Funke, F.; Greger, G.U.; Bleier, A.; Morell, W. [Siemens AG, Power Generation Group, Erlangen (Germany)

    1996-12-01

    An extensive experimental parameter study was performed on the deposition and on the resuspension kinetics in the reaction system iodine/organically coated surfaces. Both reactions in the gas phase and in the liquid phase were investigated and kinetic rate constants suitable for modelling were derived. Previous experimental studies on the reaction of iodine with organic coated surfaces were mostly limited to temperatures below 100{sup o}C. Thus, this parameter study aims at filling a gap and providing kinetic data on heterogeneous reactions with organic surfaces in the accident-relevant temperature range of 100-160{sup o}C. Two types of laboratory experiments carried out at Siemens/KWU using coatings representative for German power plants (epoxy-tape paint), namely gas phase tests and liquid phase tests. (author) 6 figs., 6 tabs., 5 refs.

  12. Severe accident source term characteristics for selected Peach Bottom sequences predicted by the MELCOR Code

    Carbajo, J.J. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    The purpose of this report is to compare in-containment source terms developed for NUREG-1159, which used the Source Term Code Package (STCP), with those generated by MELCOR to identify significant differences. For this comparison, two short-term depressurized station blackout sequences (with a dry cavity and with a flooded cavity) and a Loss-of-Coolant Accident (LOCA) concurrent with complete loss of the Emergency Core Cooling System (ECCS) were analyzed for the Peach Bottom Atomic Power Station (a BWR-4 with a Mark I containment). The results indicate that for the sequences analyzed, the two codes predict similar total in-containment release fractions for each of the element groups. However, the MELCOR/CORBH Package predicts significantly longer times for vessel failure and reduced energy of the released material for the station blackout sequences (when compared to the STCP results). MELCOR also calculated smaller releases into the environment than STCP for the station blackout sequences.

  13. Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstance of NPPs

    Park, Soon Ho; Kim, Dae Seop; Kim, Jae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2014-06-15

    Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

  14. Size distributions of airborne radionuclides from the fukushima nuclear accident at several places in europe.

    Masson, Olivier; Ringer, Wolfgang; Malá, Helena; Rulik, Petr; Dlugosz-Lisiecka, Magdalena; Eleftheriadis, Konstantinos; Meisenberg, Olivier; De Vismes-Ott, Anne; Gensdarmes, François

    2013-10-01

    Segregation and radioactive analysis of aerosols according to their aerodynamic size were performed in France, Austria, the Czech Republic, Poland, Germany, and Greece after the arrival of contaminated air masses following the nuclear accident at the Fukushima Dai-ichi nuclear power plant in March 2011. On the whole and regardless of the location, the highest activity levels correspond either to the finest particle fraction or to the upper size class. Regarding anthropogenic radionuclides, the activity median aerodynamic diameter (AMAD) ranged between 0.25 and 0.71 μm for (137)Cs, from 0.17 to 0.69 μm for (134)Cs, and from 0.30 to 0.53 μm for (131)I, thus in the "accumulation mode" of the ambient aerosol (0.1-1 μm). AMAD obtained for the naturally occurring radionuclides (7)Be and (210)Pb ranged from 0.20 to 0.53 μm and 0.29 to 0.52 μm, respectively. Regarding spatial variations, AMADs did not show large differences from place to place compared with what was observed concerning bulk airborne levels registered on the European scale. When air masses arrived in Europe, AMADs for (131)I were about half those for cesium isotopes. Higher AMAD for cesium probably results from higher AMAD observed at the early stage of the accident in Japan. Lower AMAD for (131)I can be explained by the adsorption of gaseous iodine on particles of all sizes met during transport, especially for small particles. Additionally, weathering conditions (rain) encountered during transport and in Europe in March and April contributed to the equilibrium of the gaseous to total (131)I ratio. AMAD slightly increased with time for (131)I whereas a clear decreasing trend was observed with the AMADs for (137)Cs and (134)Cs. On average, the associated geometric standard deviation (GSD) appeared to be higher for iodine than for cesium isotopes. These statements also bear out a gaseous (131)I transfer on ambient particles of a broad size range during transport. Highest weighted activity levels were

  15. Code Development on Aerosol Behavior under Severe Accident-Aerosol Coagulation

    Ha, Kwang Soon; Kim, Sung Il; Ryu, Eun Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The behaviors of the larger aerosol particles are described usually by continuum mechanics. The smallest particles have diameters less than the mean free path of gas phase molecules and the behavior of these particles can often be described well by free molecular physics. The vast majority of aerosol particles arising in reactor accident analyses have behaviors in the very complicated regime intermediate between the continuum mechanics and free molecular limit. The package includes initial inventories, release from fuel and debris, aerosol dynamics with vapor condensation and revaporization, deposition on structure surfaces, transport through flow paths, and removal by engineered safety features. Aerosol dynamic processes and the condensation and evaporation of fission product vapors after release from fuel are considered within each MELCOR control volume. The aerosol dynamics models are based on MAEROS, a multi-section, multicomponent aerosol dynamics code, but without calculation of condensation. Aerosols can deposit directly on surfaces such as heat structures and water pools, or can agglomerate and eventually fall out once they exceed the largest size specified by the user for the aerosol size distribution. Aerosols deposited on surfaces cannot currently be resuspended.

  16. Effect of spray system on fission product distribution in containment during a severe accident in a two-loop pressurized water reactor

    Dehjourian, Mehdi; Rahgoshay, Mohammad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-08-15

    The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

  17. Effect of Spray System on Fission Product Distribution in Containment During a Severe Accident in a Two-Loop Pressurized Water Reactor

    Mehdi Dehjourian

    2016-08-01

    Full Text Available The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

  18. Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD

    Trambauer, K. [GRS, Garching (Germany)

    1997-07-01

    The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonable accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.

  19. Guide update Severe Accident Management (SAMG) of CN. Almaraz post Fukushima; Actualizacion de las Guias de Gestion de Accidente Severo (GGAS) de CN. Almaraz post Fukushima

    Martinez Fanegas, R.; Aguado Miquel, F.; Tanarro Onrubia, A.; Uruburu Rodriguez, A.

    2014-07-01

    The work is part of the activities carried out by CN. Almaraz in applying lessons learned from the Fukushima accident. The achievement of this objective requires a substantial change in the Guidelines Severe Accident Management (SAMG), starting with the adaptation of the Revision 2 of the Generic Guidelines (SAMG) Owners Group (PWROG, January 2013), which is the work is the fundamental part of this paper. (Author)

  20. Analysis of Hydrogen Risk Mitigation System for Severe Accidents of EU-APR1400 Using MAAP4 code

    Kim, Mun Soo; Suh, Jung Soo; Bae, Byoung Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    According to the EUR (European Utility Requirements for LWR Nuclear Power Plants), it is mandatory that the HMS (Hydrogen Mitigation System) of the Eu-APR1400 should be equipped with a passive or automatic hydrogen control system. Considering this requirement, a PAR (Passive Autocatalytic Recombiner) system was adopted for the HMS of the Eu-APR1400. This passive HMS should be evaluated carefully in order to ensure that the HMS has adequate capacity to control hydrogen concentrations during severe accident conditions and to show that the system can satisfy the design requirements of the EUR. In this paper, analyses were carried out to examine the effectiveness of the HMS incorporated into the Eu- APR1400 design. These analyses were performed using the MAAP (Modular Accident Analysis Program) 4 code. in order to identify whether the HMS could control the average hydrogen concentrations in the containment, such that the concentration would not exceed 10 percent by volume: the analyses also considered whether there was the possibility of inadvertent hydrogen combustion in such processes as FA (Flame Acceleration) and DDT (Deflagration to Detonation Transition)

  1. Rising and boiling of a drop of volatile liquid in a heavier one: application to the LMFBR severe accidents

    Pigny, Sylvain L.; Coste, Pierre F. [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)

    2005-07-01

    Full text of publication follows: The rising and, simultaneously the boiling, of a droplet of volatile liquid in a heavier one is computation-ally investigated. Our calculations are performed with the help of the SIMMER code, in which a specific DNS algorithm is developed, to represent surface tension between the different media in an explicit way. This is required to represent the physical contact that occurs between two liquids and the vapor from the lighter one, since interfacial heat transfers, and therefore boiling kinetics, merely depend on it. The behavior of the three fluids system is of interest as a key phenomenon related to the transition phase of LMFBR severe accidents, before the formation of a fully developed bubble column. The driven force due to the boiling of steel drops can play a major role in the relocation, and, consequently, the recriticality of UO{sub 2} fuel. The problem is investigated focusing first on analytical experiments, built-up with simulating materials, and for which accurate experimental results are provided. The dependence of results with regard to thermodynamical and physical properties is underlined. This point is of interest in view of some uncertainties in the knowledge of data concerning the materials present in the reactor at high temperature. The pressure level is a key parameter in the accident scenarios: its influence is uppermost on the volumic mass of the gas. It is also outlined. (authors)

  2. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Supporting MELCOR calculations, Volume 6, Part 2

    Kmetyk, L.N.; Brown, T.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-03-01

    To gain a better understanding of the risk significance of low power and shutdown modes of operation, the Office of Nuclear Regulatory Research at the NRC established programs to investigate the likelihood and severity of postulated accidents that could occur during low power and shutdown (LP&S) modes of operation at commercial nuclear power plants. To investigate the likelihood of severe core damage accidents during off power conditions, probabilistic risk assessments (PRAs) were performed for two nuclear plants: Unit 1 of the Grand Gulf Nuclear Station, which is a BWR-6 Mark III boiling water reactor (BWR), and Unit 1 of the Surry Power Station, which is a three-loop, subatmospheric, pressurized water reactor (PWR). The analysis of the BWR was conducted at Sandia National Laboratories while the analysis of the PWR was performed at Brookhaven National Laboratory. This multi-volume report presents and discusses the results of the BWR analysis. The subject of this part presents the deterministic code calculations, performed with the MELCOR code, that were used to support the development and quantification of the PRA models. The background for the work documented in this report is summarized, including how deterministic codes are used in PRAS, why the MELCOR code is used, what the capabilities and features of MELCOR are, and how the code has been used by others in the past. Brief descriptions of the Grand Gulf plant and its configuration during LP&S operation and of the MELCOR input model developed for the Grand Gulf plant in its LP&S configuration are given.

  3. 福岛第一核电厂严重事故管理研究%Research on severe accident management in Fukushima Daiichi Nuclear Power Plant

    刘凯; 王炜

    2013-01-01

    The accident of Fukushima Nuclear Power Plant led to a severe accident of core meltdown, and its process of emergency management exposed various defects which raised great concern about severe accident management in nuclear power plants. In this paper, the specifications of severe accident management that issued by IAEA and Japan were overviewed. Based on Japan specifications, the analysis of sequences and management strategies were presented on severe accident in Fukushima Daiichi Nuclear Power Plant. Following identification of defects on severe accident management, possible corrective measures for current and future plants were discussed. Finally , an approach and a frame model for severe accident management were presented, which may improve nuclear safety in current and future plants.%日本福岛核事故造成了堆芯熔毁的严重事故,应急处置过程暴露出严重事故管理的种种不足,引起对核电厂严重事故管理的关注.简述了国际原子能机构和日本关于核电厂严重事故管理的规范要求,分析了福岛第一核电厂事故序列和严重事故管理策略,讨论了严重事故管理存在的问题及其可能的改进措施,最后提出了改进核电厂严重事故管理的框架模型和方法.

  4. Recent numerical simulations and experiments on coolability of debris beds during severe accidents of light water reactors

    Starflinger, J., E-mail: joerg.starflinger@ike.uni-stuttgart.de; Buck, M.; Hartmann, A.; Kulenovic, R.; Leininger, S.; Rahman, S.; Rashid, M.

    2015-12-01

    Highlights: • Investigation on coolability of three-dimensional debris beds has been performed. • Computer code MEWA (Melt Water) is introduced and described briefly. • Validation experiments have been carried out in DEBRIS facility. • Comparison of MEWA simulations and DEBRIS experiments show good agreement. • Example simulation on reactor scale was performed to explain the analysis method. - Abstract: In the course of a severe accident in light water reactors with core degradation, so-called debris beds can be formed inside the reactor pressure vessel or in the reactor cavity. The strategy to analyse the coolability of such debris beds with both experiments and numerical simulations is discussed. The numerical simulations are carried out with MEWA (MElt WAter) code, being developed at the institute for the prediction of the thermal-hydraulic conditions inside a debris bed, including the prediction of dryout heat flux. The simulations show good agreement with experimental data of the DEBRIS experiments.

  5. In-vessel melt retention as a severe accident management strategy for the Loviisa Nuclear Power Plant

    Kymaelaeinen, O.; Tuomisto, H. [IVO International Ltd., Vantaa (Finland); Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)

    1997-02-01

    The concept of lower head coolability and in-vessel retention of corium has been approved as a basic element of the severe accident management strategy for IVO`s Loviisa Plant (VVER-440) in Finland. The selected approach takes advantage of the unique features of the plant such as low power density, reactor pressure vessel without penetrations at the bottom and ice-condenser containment which ensures flooded cavity in all risk significant sequences. The thermal analyses, which are supported by experimental program, demonstrate that in Loviisa the molten corium on the lower head of the reactor vessel is coolable externally with wide margins. This paper summarizes the approach and the plant modifications being implemented. During the approval process some technical concerns were raised, particularly with regard to thermal loadings caused by contact of cool cavity water and hot corium with the reactor vessel. Resolution of these concerns is also discussed.

  6. Optimized electricity expansions with external costs internalized and risk of severe accidents as a new criterion in the decision analysis

    Martin del Campo M, C.; Estrada S, G. J., E-mail: cmcm@fi-b.unam.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2011-11-15

    The external cost of severe accidents was incorporated as a new element for the assessment of energy technologies in the expansion plans of the Mexican electric generating system. Optimizations of the electric expansions were made by internalizing the external cost into the objective function of the WASP-IV model as a variable cost, and these expansions were compared with the expansion plans that did not internalize them. Average external costs reported by the Extern E Project were used for each type of technology and were added to the variable component of operation and maintenance cost in the study cases in which the externalises were internalized. Special attention was paid to study the convenience of including nuclear energy in the generating mix. The comparative assessment of six expansion plans was made by means of the Position Vector of Minimum Regret Analysis (PVMRA) decision analysis tool. The expansion plans were ranked according to seven decision criteria which consider internal costs, economical impact associated with incremental fuel prices, diversity, external costs, foreign capital fraction, carbon-free fraction, and external costs of severe accidents. A set of data for the calculation of the last criterion was obtained from a Report of the European Commission. We found that with the external costs included in the optimization process of WASP-IV, better electric expansion plans, with lower total (internal + external) generating costs, were found. On the other hand, the plans which included the participation of nuclear power plants were in general relatively more attractive than the plans that did not. (Author)

  7. The impact on the competence on severe accidents following the Fukushima event

    Band, Sebastian; Sonnenkalb, Martin [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany); Schaffrath, Andreas; Weiss, Frank-Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2013-09-15

    Fukushima related questions are currently being addressed at Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH within several research projects funded by the Federal Ministry for Environment, Nature Conservation and Nuclear Safety (BMU) and Federal Ministry of Economics (BMWi). In the following section first results of selected issues are presented. (orig.)

  8. Precursors to potential severe core damage accidents: 1994, a status report. Volume 22: Appendix I

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Vanden Heuvel, L.N. [Oak Ridge National Lab., TN (United States); Dolan, B.W.; Minarick, J.W. [Oak Ridge National Lab., TN (United States)]|[Science Applications International Corp., Oak Ridge, TN (United States)

    1995-12-01

    Nine operational events that affected eleven commercial light-water reactors (LWRs) during 1994 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 {times} 10{sup {minus}6}. These events were identified by computer-screening the 1994 licensee event reports from commercial LWRs to identify those that could be potential precursors. Candidate precursors were then selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1981 and 1984--1993 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for events. This document is bound in two volumes: Vol. 21 contains the main report and Appendices A--H; Vol. 22 contains Appendix 1.

  9. Precursors to potential severe core damage accidents: 1995 A status report

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A. [and others

    1997-04-01

    Ten operational events that affected 10 commercial light-water reactors during 1995 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10{sup {minus}6}. These events were identified by first computer-screening the 1995 licensee event reports from commercial light-water reactors to identify those events that could potentially be precursors. Candidate precursors were selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969-1981 and 1984-1994 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for the events.

  10. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  11. The SAM software system for modeling severe accidents at nuclear power plants equipped with VVER reactors on full-scale and analytic training simulators

    Osadchaya, D. Yu.; Fuks, R. L.

    2014-04-01

    The architecture of the SAM software package intended for modeling beyond-design-basis accidents at nuclear power plants equipped with VVER reactors evolving into a severe stage with core melting and failure of the reactor pressure vessel is presented. By using the SAM software package it is possible to perform comprehensive modeling of the entire emergency process from the failure initiating event to the stage of severe accident involving meltdown of nuclear fuel, failure of the reactor pressure vessel, and escape of corium onto the concrete basement or into the corium catcher with retention of molten products in it.

  12. Modelling of Zry-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code

    Beuzet, Emilie, E-mail: emilie.beuzet@edf.f [EDF R and D, 1 Avenue du General de Gaulle, F-92140 Clamart (France); Lamy, Jean-Sylvestre, E-mail: jean-sylvestre.lamy@edf.f [EDF R and D, 1 Avenue du General de Gaulle, F-92140 Clamart (France); Bretault, Armelle, E-mail: armelle.bretault@edf.f [EDF R and D, 1 Avenue du General de Gaulle, F-92140 Clamart (France); Simoni, Eric, E-mail: simoni@ipno.in2p3.f [Institut de Physique Nucleaire, Universite Paris Sud XI, F-91406 Orsay (France)

    2011-04-15

    In a nuclear power plant, a potential risk in some low probability situations in severe accidents is air ingress into the vessel. Air is a highly oxidizing atmosphere that can lead to an enhanced core oxidation and degradation affecting the release of Fission Products (FP), especially increasing that of ruthenium. This FP is of particular importance because of its high radio-toxicity and its ability to form highly volatile oxides. Oxygen affinity is decreasing between Zircaloy cladding, fuel and ruthenium inclusions in the fuel. It is consequently of great need to understand the phenomena governing cladding oxidation by air as a prerequisite for the source term issues. A review of existing data in the field of Zircaloy-4 oxidation in air-containing atmosphere shows that this phenomenon is quantitatively well understood. The cladding oxidation process can be divided into two kinetic regimes separated by a breakaway transition. Before transition, a protective dense zirconia scale grows following a solid state diffusion-limited regime for which experimental data are well fitted by a parabolic time dependence. For a given thickness, which depends mainly on temperature and the extent of pre-oxidation in steam, the dense scale can potentially breakdown. In case of breakaway combined with oxygen starvation, cladding oxidation can then be much faster because of the combined action of oxygen and nitrogen through a complex self sustaining nitriding-oxidation process. A review of the pre-existing correlations used to simulate zirconia scale growth under air atmospheres shows a high degree of variation from parabolic to accelerated time dependence. Variations also exist in the choice of the breakaway parameter based on zirconia phase change or oxide thickness. Several correlations and breakaway parameters found in the literature were implemented in the MAAP4.07 Severe Accident code. They were assessed by simulation of the QUENCH-10 test, which is a semi-integral test designed

  13. Cytogenetical dose estimation for 3 severely exposed patients in the JCO criticality accident in Tokai-mura.

    Hayata, I; Kanda, R; Minamihisamatsu, M; Furukawa, M; Sasaki, M S

    2001-09-01

    A dose estimation by chromosome analysis was performed on the 3 severely exposed patients in the Tokai-mura criticality accident. Drastically reduced lymphocyte counts suggested that the whole-body dose of radiation which they had been exposed to was unprecedentedly high. Because the number of lymphocytes in the white blood cells in two patients was very low, we could not culture and harvest cells by the conventional method. To collect the number of lymphocytes necessary for chromosome preparation, we processed blood samples by a modified method, called the high-yield chromosome preparation method. With this technique, we could culture and harvest cells, and then make air-dried chromosome slides. We applied a new dose-estimation method involving an artificially induced prematurely condensed ring chromosome, the PCC-ring method, to estimate an unusually high dose with a short time. The estimated doses by the PCC-ring method were in fairly good accordance with those by the conventional dicentric and ring chromosome (Dic+R) method. The biologically estimated dose was comparable with that estimated by a physical method. As far as we know, the estimated dose of the most severely exposed patient in the present study is the highest recorded among that chromosome analyses have been able to estimate in humans.

  14. COTELS project (1): overview of project to study FCI and MCCI during a severe accident

    Nagasaka, Hideo; Kato, Masami; Sakaki, Isao [Nuclear Power Engineering Corp., Tokyo (Japan). System Safety Dept.; Cherepnin, Y.; Vasilyev, Y.; Kolodeshnikov, A.; Zhdanov, V.; Zuev, V. [National Nuclear Center, Kurchatov (Kazakhstan)

    2000-05-01

    Fuel coolant interaction (FCI) and molten core concrete interaction (MCCI) have been studied experimentally within the framework of COTELS project from 1995 as a joint study between NUPEC (Japan) and NNC (Republic of Kazakhstan) using one of the testing complex at NNC. The testing complex includes three experimental facilities ''SLAVA'', ''LAVA'' and ''LAVA-M'' for debris coolability tests. Three types of experiments were carried out. To get the molten corium, the electric induction melting furnace (EMF) was used. The EMF produced {proportional_to}60 kg of corium containing UO{sub 2}, stainless steel, Zr and ZrO{sub 2}. The temperature of the produced melt was about 3200 K. The melt was discharged into the water pool in test A or onto the concrete trap in test B/C. The corium in the concrete trap was heated in test B/C by another induction melt heater. Prior to main test A and test B/C, several supporting experiments were conducted. Integrity of graphite crucible with TaC sheet during producing UO{sub 2} corium was confirmed experimentally. The induction melt heater was calibrated and the efficiency for the induction heater of ''LAVA-M'' facility was determined as 47%. The thermal conductivity and thermal diffusivity of concrete up to about 1073 K, and melting-solidification points of eutectics generated from corium components were determined experimentally. Discharge corium behavior, using UO{sub 2} corium, was also observed by speed cameras in test 01. (orig.)

  15. Neutronics aspects associated to the prevention and mitigation of severe accidents in sodium cooled reactor cores; Aspects de neutronique associes a la prevention et a la reduction des accidents graves dans les coeurs de reacteurs a caloporteur sodium

    Poumerouly, S.

    2010-12-15

    Among all the types of accidents to be considered for the safety licensing of a plant, some have a very low probability of occurrence but might have very important consequences: the severe accidents or Hypothetical Core Disruptive Accidents (HCDA). The studies on the scenario of these accidents are performed in parallel to the prevention studies. In this PhD report, two representative safety cases are studied: the Unprotected Loss Of Flow (ULOF) and the Total Instantaneous Blockage (TIB). The objectives are to understand what causes the reactivity increase during these accidents and to find means to reduce the energetic release of the scenario (ULOF) or to find ways to trigger the core prior to the propagation of the accident (TIB). At first, the accidents are studied in static calculations with the ERANOS code system. The accidents are divided into several steps and the reactivity insertions at each step are explained. This study shows the importance of the removal of the structures as well as of the radial leakage changes during the core slumping-down. The study also gives the amounts of fuel to be ejected or of absorber to be injected in both accidents. These values give tracks to the following more accurate studies, the transient studies. The transient studies were performed with the SIMMER code system, coupling thermo-hydraulics and neutronics. SIMMER data and algorithms have been improved so as to better predict ERANOS results (former discrepancies were up to 1.5$). The SIMMER reactivity calculation is improved by 0.8$ with variations of reactivity due to the motion of materials correctly predicted. A new algorithm for the {beta}-effective was implemented in SIMMER so as to be more accurate and easier to manage. SIMMER is then used to calculate the secondary phase of the ULOF, while the primary phase is calculated with ERANOS thanks to some assumptions. The assumptions are very much based on the fact that the movement of materials stops whenever the energy

  16. Calculation of Spent Fuel Pool Severe Accident With MELCOR%MELCOR 乏燃料水池严重事故计算分析

    邓坚; 向清安; 周克峰

    2014-01-01

    A calculation model was established for spent fuel pool (SFP) using MEL‐COR code to study the severe accident phenomena caused by the long term station black‐out (SBO) ,including spent fuel heatup ,zirconium cladding oxidation ,and the injection into SFP to mitigate the severe accident . The results show that the severe accident progression is slow and relates directly with the initial water level in SFP . It is illustrated that the injection into SFP is one of the best mitigated measures for the SFP severe accident .%针对长时间全厂断电(SBO)事故,采用MELCOR程序建立了乏燃料水池的计算分析模型,研究了乏燃料组件加热升温、锆包壳氧化等严重事故现象,并计算了向乏燃料水池注水缓解严重事故的效果。研究表明:乏燃料水池内的严重事故进程相对缓慢,且与乏燃料水池初始水位直接相关;向乏燃料水池注水是缓解乏燃料水池严重事故的有效手段之一。

  17. An Analysis of Station Blackout Sequences Using MELCOR1.8.5 Code for the Severe Accident Analysis DB

    Song, Y. M.; Ahn, K. I. [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    The Korea Atomic Energy Research Institute (KAERI) has been constructing severe accident analysis database (DB) under a National Nuclear R and D Program. Especially, MAAP (commercial code being widely used for industries) DB for many scenarios including station blackout (SBO) has been completed up to now. This report shows the analysis results for SBO scenarios using MELCOR code. These results will be used for the degree of completion after being compared with MAAP results. The developing strategy of MELCOR code is the same with that of MAAP DB. For the generation of data set, the Korean standard nuclear power plant (KSNP) has been selected as a reference plant and the eight SBO scenarios are chosen to be analyzed based on the PSA results (these eight scenarios accounted for 99 percent of occurrence frequency of total 197 SBO scenarios). Both thermal hydraulics (T/H) and source term analysis have been performed using MELCOR version 1.8.5 for the chosen scenarios. But only major T/H variables treated in the MAAP report are listed among the generated data set, which shows the characteristics of each scenario. These SBO results together with those of the other initiating events (to be analyzed in the future) will be used as inputs for DB construction and special value will be found in the comparing and complimentary process with MAAP DB

  18. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.

  19. A qualitative study analyzing access to physical rehabilitation for traffic accident victims with severe disability in Brazil.

    Sousa, Kelienny de Meneses; Oliveira, Wagner Ivan Fonsêca de; Melo, Laiza Oliveira Mendes de; Alves, Emanuel Augusto; Piuvezam, Grasiela; Gama, Zenewton André da Silva

    2017-03-01

    Purpose To identify access barriers to physical rehabilitation for traffic accident (TA) victims with severe disability and build a theoretical model to provide guidance towards the improvement of these services. Methods Qualitative research carried out in the city of Natal (Northeast Brazil), with semi-structured interviews with 120 subjects (19 key informer health professionals and 101 TA victims) identified in a database made available by the emergency hospital. The interviews were analyzed using Alceste software, version 4.9. Results The main barriers present in the interviews were: (1) related to services: bureaucratic administrative practises, low offer of rehabilitation services, insufficient information on rehabilitation, lack of guidelines that integrate hospital and ambulatory care and (2) related to patients: financial difficulties, functional limitations, geographic distance, little information on health, association with low education levels and disbelief in the system and in rehabilitation. Conclusion The numerous access barriers were presented in a theoretical model with causes related to organizational structure, processes of care, professionals and patients. This model must be tested by health policy-makers and managers to improve the quality of physical rehabilitation and avoid unnecessary prolongation of the suffering and disability experienced by TA survivors. Implications for rehabilitation Traffic accidents (TAs) are a global health dilemma that demands integrality of preventive actions, pre-hospital and hospital care and physical rehabilitation (PR). This study lays the foundation for improving access to PR for TA survivors, an issue of quality of care that results in preventable disabilities. The words of the patients interviewed reveal the suffering of victims, which is often invisible to society and given low priority by health policies that relegate PR to a second plan ahead of prevention and urgent care. A theoretical model of the

  20. Contribution of prototypic material tests on the Plinius platform to the study of nuclear reactor severe accident; Contribution des essais en materiaux prototypiques sur la plate-forme Plinius a l'etude des accidents graves de reacteurs nucleaires

    Journeau, Ch

    2008-01-15

    The PLINIUS experimental platform at CEA Cadarache is dedicated to the experimental study of nuclear reactor severe accidents thanks to experiments between 2000 and 3500 K with prototypic corium. Corium is the mixture that would be formed by an hypothetical core melting and its mixing with structural materials. Prototypical corium has the same chemical composition as the corium corresponding to a given accident scenario but has a different isotopic composition (use of depleted uranium,...). Research programs and test series have been performed to study corium thermophysical properties, fission product behaviour, corium spreading, solidification and interaction with concrete as well as its coolability. It was the frame of research training of many students and was realized within national, European and international collaborations. (author)

  1. A study on the overall economic risks of a hypothetical severe accident in nuclear power plant using the delphi method

    Jang, Han Ki; Kim, Joo Yeon; Lee, Jai Ki [Hanyang University, Seoul (Korea, Republic of)

    2008-12-15

    Potential economic impact of a hypothetical severe accident at a nuclear power plant(Uljin units 3/4) was estimated by applying the delphi method, which is based on the expert judgements and opinions, in the process of quantifying uncertain factor. For the purpose of this study, it is assumed that the radioactive plume directs the inland direction. Since the economic risk can be divided into direct costs and indirect effects and more uncertainties are involved in the latter, the direct costs were estimated first and the indirect effects were then estimated by applying a weighting factor to the direct cost. The delphi method however subjects to risk of distortion or discrimination of variables because of the human behavior pattern. A mathematical approach based on the Bayesian inferences was employed for data processing to improve the delphi results. For this task, a model for data processing was developed. One-dimensional Monte Carlo analysis was applied to get a distribution of values of the weighting factor. The mean and median values of the weighting factor for the indirect effects appeared to be 2.59 and 2.08, respectively. These values are higher than the value suggested by OECD/NEA, 1.25. Some factors such as small territory and public attitude sensitive to radiation could affect the judgement of panel. Then the parameters of the model for estimating the direct costs were classified as U- and V-types, and two-dimensional Monte Carlo analysis was applied to quantify the overall economic risk. The resulting median of the overall economic risk was about 3.9% of the Gross Domestic Products (GDP) of Korea in 2006. When the cost of electricity loss, the highest direct cost, was not taken into account, the overall economic risk was reduced to 2.2% of GDP. This assessment can be used as a reference for justifying the radiological emergency planning and preparedness.

  2. Review of current severe accident management approaches in Europe and identification of related modelling requirements for the computer code ASTEC V2.1

    Hermsmeyer, S. [European Commission JRC, Petten (Netherlands). Inst. for Energy and Transport; Herranz, L.E.; Iglesias, R. [CIEMAT, Madrid (Spain); and others

    2015-07-15

    The severe accident at the Fukushima-Daiichi nuclear power plant (NPP) has led to a worldwide review of nuclear safety approaches and is bringing a refocussing of R and D in the field. To support these efforts several new Euratom FP7 projects have been launched. The CESAM project focuses on the improvement of the ASTEC computer code. ASTEC is jointly developed by IRSN and GRS and is considered as the European reference code for Severe Accident Analyses since it capitalizes knowledge from the extensive Euro-pean R and D in the field. The project aims at the code's enhancement and extension for use in Severe Accident Management (SAM) analysis of the NPPs of Generation II-III presently under operation or foreseen in the near future in Europe, spent fuel pools included. The work reported here is concerned with the importance, for the further development of the code, of SAM strategies to be simulated. To this end, SAM strategies applied in the EU have been compiled. This compilation is mainly based on the public information made available in the frame of the EU ''stress tests'' for NPPs and has been complemented by information pro-vided by the different CESAM partners. The context of SAM is explained and the strategies are presented. The modelling capabilities for the simulation of these strategies in the current production version 2.0 of ASTEC are discussed. Furthermore, the requirements for the next version of ASTEC V2.1 that is supported in the CESAM project are highlighted. They are a necessary complement to the list of code improvements that is drawn from consolidating new fields of application, like SFP and BWR model enhancements, and from new experimental results on severe accident phenomena.

  3. Evaluation of severe accident risks: Methodology for the containment, source term, consequence, and risk integration analyses; Volume 1, Revision 1

    Gorham, E.D.; Breeding, R.J.; Brown, T.D.; Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Murfin, W.B. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States); Hora, S.C. [Hawaii Univ., Hilo, HI (United States)

    1993-12-01

    NUREG-1150 examines the risk to the public from five nuclear power plants. The NUREG-1150 plant studies are Level III probabilistic risk assessments (PRAs) and, as such, they consist of four analysis components: accident frequency analysis, accident progression analysis, source term analysis, and consequence analysis. This volume summarizes the methods utilized in performing the last three components and the assembly of these analyses into an overall risk assessment. The NUREG-1150 analysis approach is based on the following ideas: (1) general and relatively fast-running models for the individual analysis components, (2) well-defined interfaces between the individual analysis components, (3) use of Monte Carlo techniques together with an efficient sampling procedure to propagate uncertainties, (4) use of expert panels to develop distributions for important phenomenological issues, and (5) automation of the overall analysis. Many features of the new analysis procedures were adopted to facilitate a comprehensive treatment of uncertainty in the complete risk analysis. Uncertainties in the accident frequency, accident progression and source term analyses were included in the overall uncertainty assessment. The uncertainties in the consequence analysis were not included in this assessment. A large effort was devoted to the development of procedures for obtaining expert opinion and the execution of these procedures to quantify parameters and phenomena for which there is large uncertainty and divergent opinions in the reactor safety community.

  4. Suppression Pools: paradigm of the thermalhydraulic effect on severe accidents; Piscinas de Supresion: Paradigma del efecto de la thermohidraulica durante accidentes severos

    Herranz, L. E.; Lopez del Pra, C.

    2016-08-01

    Influence of thermal-hydrualic phenomena on severe accident unforlding is beyond question. The present paper supports this statement on two key aspects of a severe accident: preservation of containment integrity and transport of fission products once released from fuel. To illustrate them, the attention is focused on suppression pools performance and, particularly, on some recent findings stemming from authors research of Fukushima scenarios. Gas behvaior at the injection point and its later evolution, potential axial and/or azimuthal stratification of the aqueous body or water saturation state, are some of the processes tha more strongly affect the role of pools as a mass and energy sink. They are described and discussed in detail. (Author)

  5. Review of the status of validation of the computer codes used in the severe accident source term reassessment study (BMI-2104). [PWR; BWR

    Kress, T. S. [comp.

    1985-04-01

    The determination of severe accident source terms must, by necessity it seems, rely heavily on the use of complex computer codes. Source term acceptability, therefore, rests on the assessed validity of such codes. Consequently, one element of NRC's recent efforts to reassess LWR severe accident source terms is to provide a review of the status of validation of the computer codes used in the reassessment. The results of this review is the subject of this document. The separate review documents compiled in this report were used as a resource along with the results of the BMI-2104 study by BCL and the QUEST study by SNL to arrive at a more-or-less independent appraisal of the status of source term modeling at this time.

  6. Vessel-related problems in severe accidents, International Research Projects; La problematica de la vasija en los accidentes severos. Proyectos internacionales de investigacion

    Figueras, J. M. [Consejo de Seguridad Nuclear. Madrid (Spain)

    2000-07-01

    The paper describes those most relevant aspects of research programmes and projects, on the behavior of vessel during severe accidents with partial or total reactor core fusion, performed during the last twenty years or still on-going projects, by countries or international organizations in the nuclear community, presenting the most important technical aspects, in particular the results achieved, as well as the financial and organisational aspects. The paper concludes that, throughout a joint effort of the international nuclear community, in which Spain has been present via private and public organizations, actually exist a reasonable technical and experimental knowledge of the vessel in case of severe accidents, but still there are aspects not fully solved which are the basis for continuing some programmes and for proposal of new ones. (Author)

  7. Development and first application of a new tool for the simulation of the initiating phase of a severe accident on SFR

    Guyot, M.; Gubernatis, P.; Suteau, C.

    2014-06-01

    In order to improve the safety level of Sodium Fast Reactors, low probability events such as Hypothetical Core Disruptive Accident (HCDA) are analyzed for their potential consequences. The initiating phase of such accidents is of particular interest both for the prevention and the mitigation of routes leading to a large core disruption and recriticalities. Up to now, analysis of the initiating phase of HCDA has been performed with the SAS4A code. The SAS4A accident calculations are based on a multiple-channel approach, which requires that subassemblies or groups of similar subassemblies be represented together as independent channels. The SAS4A severe accident calculation scheme resorts to a simplified treatment in which an average pin is used to represent a channel. A point kinetics model coupled with a feedback reactivity model is also used to provide an estimate of the reactor power level. Both to increase the accuracy and decrease the uncertainties in the prediction of reactor safety margins, a new computational tool is currently under development at CEA Cadarache. The main features of this tool are the ability to provide a detailed sub-channel meshing of the sub-assembly as well as three-dimensional kinetics during severe accident conditions. To fulfill these goals, the fluid-dynamics SIMMER-III code has been coupled to the SNATCH solver using a MPI environment. This coupling allows both to compute the multi-phase and multi-component flows encountered in severe accident conditions and to model the power shape variation during voiding and melting of the different reactor materials. This new calculation scheme relies on a SAS-like multiple-channel treatment, where channel-to-channel heat and momentum exchanges are neglected. In this paper, an overview of the SIMMER-III/SNATCH coupled tool capabilities is provided. A first application of this new tool is also performed and compared with a SAS4A reference calculation. The new SIMMER-III/SNATCH tool proved to be

  8. Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors; Effets des materiaux sur les phenomenes multiphasiques se produisant lors des phases avancees d'accident grave de reacteur nucleaire

    Seiler, J.M.; Froment, K

    2003-07-01

    This paper reviews and presents work carried out in the French Atomic Energy Commission (CEA) on the subject of nuclear severe accidents, i.e. those which are accompanied by melting of the nuclear core material. The emphasis is on the (crucial) thermodynamic and material behaviour of corium melts in the solidus-liquidus temperature interval, which is linked to the thermal hydraulic description. A global model approach is proposed. The work is presented in the context of the overall international effort in the area. (authors)

  9. Multidisciplinary treatment for a young patient with severe maxillofacial trauma from a snowmobile accident: a case report.

    Yamano, Seiichi; Nissenbaum, Mark; Dodson, Thomas B; Gallucci, German O; Sukotjo, Cortino

    2010-01-01

    Abstract This clinical report describes the oral rehabilitation of a 15-year-old male patient who was involved in a snowmobile accident and suffered multiple mid-face and mandibular fractures. Consequences of the accident included avulsion of teeth numbers 5 to 10 and 21 to 26, and a significant amount of maxillary and mandibular anterior alveolar bone loss. The patient underwent open reduction and rigid fixation of the fractured left zygoma, comminuted LeFort I maxillary fracture, and left body of the mandible; closed reduction of the bilateral condylar fractures; autologous corticocancellous bone grafting to the maxilla and mandible; implant placement; and prosthesis fabrication. This multidisciplinary approach successfully restored function and esthetics.

  10. Research in the Ciemat on severe accidents: strategy and recent results; Investigaciones en el Ciemat sobre accidentes severos: estrategia y resultados recientes

    Herranz, L. E.

    2012-11-01

    Severe accident research is a fundamental brick in the nuclear technology wall. Its complexity entails huge challenges that require international cooperation to be overcome. CIEMAT has accumulated more than 40 years of experience in the field. By setting a structured research strategy and a continuous enhancement of theoretical an experimental capabilities, CIEMAT has recently produced the results on which this article builds up. Through them, both its working domains and its firm commitment for a continuous growth of knowledge and know-how are outlined. (Author) 24 refs.

  11. Decreasing adhesions and avoiding further surgery in a pediatric patient involved in a severe pedestrian versus motor vehicle accident

    Amanda D. Rice

    2014-02-01

    Full Text Available In this case study, we report the use of manual physical therapy in a pediatric patient experiencing complications from a life-threatening motor vehicle accident that necessitated 19 surgeries over the course of 12 months. Post-surgical adhesions decreased the patient’s quality of life. He developed multiple medical conditions including recurrent partial bowel obstructions and an ascending testicle. In an effort to avoid further surgery for bowel obstruction and the ascending testicle, the patient was effectively treated with a manual physical therapy regimen focused on decreasing adhesions. The therapy allowed return to an improved quality of life, significant decrease in subjective reports of pain and dysfunction, and apparent decreases in adhesive processes without further surgery, which are important goals for all patients, but especially for pediatric patients.

  12. Evaluation of potential severe accidents during low power and shutdown operations at Surry: Unit 1, Volume 1

    Chu, T.L.; Pratt, W.T. [eds.; Musicki, Z. [Brookhaven National Lab., Upton, NY (United States)

    1995-10-01

    This document contains a summarization of the results and insights from the Level 1 accident sequence analyses of internally initiated events, internally initiated fire and flood events, seismically initiated events, and the Level 2/3 risk analysis of internally initiated events (excluding fire and flood) for Surry, Unit 1. The analysis was confined to mid-loop operation, which can occur during three plant operational states (identified as POSs R6 and R10 during a refueling outage, and POS D6 during drained maintenance). The report summarizes the Level 1 information contained in Volumes 2--5 and the Level 2/3 information contained in Volume 6 of NUREG/CR-6144.

  13. Qualification of Daiichi Units 1, 2, and 3 Data for Severe Accident Evaluations - Process and Illustrative Examples from Prior TMI-2 Evaluations

    Rempe, Joy Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knudson, Darrell Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This initial review focused on the set of sensors deemed most important by post-TMI-2 instrumentation evaluation programs. Instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. In addition, prior efforts focused on sensors providing data required for subsequent forensic evaluations and accident simulations. To encourage the potential for similar activities to be completed for qualifying data from Daiichi Units 1, 2, and 3, this report provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: primary system pressure; containment building temperature; and containment pressure. As described within this report, sensor evaluations and data qualification required implementation of various processes, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design to instruments easily removed from the TMI-2 plant for evaluations. As documented

  14. 重大工艺爆炸事故严重度评价%SEVERITY EVALUATION OF MAJOR PROCESS EXPLOSION ACCIDENT

    王三明; 蒋军成

    2001-01-01

    Severity evaluation and models of major explosion process accident have been put forward on the basis of study on many typical hazards evaluation models. With the models the software called DANGER for severity evaluation of major process explosion accident has been developed. The design of function modules of the software has been introduced. Two evaluation cases of vapor cloud explosion and boiling liquid expanding vapor cloud explosion have been provided.%在研究分析了许多典型国内外事故危险性评价模型的基础上,总结并提出了重大工艺爆炸事故危险性分级、严重度评价方法及模型。并利用此模型开发了重大工艺爆炸事故严重度评价软件,介绍了评价软件的功能模块设计。并列举了评价软件对重大蒸气云爆炸、液化气和过热液体扩展蒸气爆炸事故的评价实例。

  15. Design Study of Nuclear Power Plant Severe Accidents Monitoring and Control System%核电厂严重事故监测和控制系统的设计研究

    杜德君; 何庆镭

    2015-01-01

    HAF102-2004 "Nuclear power plant safety requirements for quality assurance" requires: besides of design reference, nuclear power plant design must consider the specific case beyond design reference, which includes the behavior of selected severe accidents. After the Fukushima accidents, each country pays more attention to sever accidents, the prevention and mitigation of severe accidents becomes one important point for the nuclear plant design. In the third generation nuclear power plant, the severe accidents monitoring and control system should be implemented to realize the function of prevention and mitigation for severe accidents.%HAF102-2004《核动力厂设计安全规定》中要求:除了设计基准外,设计中还必须考虑核动力厂在特定的超设计基准事故包括选定的严重事故中的行为。2011年福岛事故后,各国对严重事故更加关注,严重事故的预防和缓解成为核电厂设计中的一个重点。在三代核电厂设计中,增加了专门的严重事故监测和控制系统用来实现严重事故的预防和缓解功能。

  16. Numerical analysis of grid plate melting after a severe accident in a Fast-Breeder Reactor (FBR)

    A Jasmin Sudha; K Velusamy

    2013-12-01

    Fast breeder reactors (FBRs) are provided with redundant and diverse plant protection systems with a very low failure probability (<10-6/reactor year), making core disruptive accident (CDA), a beyond design basis event (BDBE). Nevertheless, safety analysis is carried out even for such events with a view to mitigate their consequences by providing engineered safeguards like the in-vessel core catcher. During a CDA, a significant fraction of the hot molten fuel moves downwards and gets relocated to the lower plate of grid plate. The ability of this plate to resist or delay relocation of core melt further has been investigated by developing appropriate mathematical models and translating them into a computer code HEATRAN-1. The core melt is a time dependent volumetric heat source because of the radioactive decay of the fission products which it contains. The code solves the nonlinear heat conduction equation including phase change. The analysis reveals that if the bottom of grid plate is considered to be adiabatic, melt-through of grid plate (i.e., melting of the entire thickness of the plate) occurs between 800 s and 1000 s depending upon the initial conditions. Knowledge of this time estimate is essential for defining the initial thermal load on the core catcher plate. If heat transfer from the bottom of grid plate to the underlying sodium is taken into account, then melt-through does not take place, but the temperature of grid plate is high enough to cause creep failure.

  17. Severe Psychological Distress of Evacuees in Evacuation Zone Caused by the Fukushima Daiichi Nuclear Power Plant Accident: The Fukushima Health Management Survey.

    Yasuto Kunii

    Full Text Available Following the Great East Japan Earthquake on March 11, 2011, the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant has continued to affect the mental health status of residents in the evacuation zone. To examine the mental health status of evacuee after the nuclear accident, we conducted the Mental Health and Lifestyle Survey as part of the ongoing Fukushima Health Management Survey.We measured mental health status using the Kessler 6-item psychological distress scale (K6 in a total of 73,569 (response rate: 40.7% evacuees aged 15 and over who lived in the evacuation zone in Fukushima Prefecture. We then dichotomized responders using a 12/13 cutoff on the K6, and compared the proportion of K6 scores ≥13 and ≤12 in each risk factor including demographic information, socioeconomic variables, and disaster-related variables. We also performed bivariate analyses between mental health status and possible risk factors using the chi-square test. Furthermore, we performed multivariate regression analysis using modified Poisson regression models.The median K6 score was 5 (interquartile range: 1-10. The number of psychological distress was 8,717 (14.6%. We found that significant differences in the prevalence of psychological distress by almost all survey items, including disaster-related risk factors, most of which were also associated with increased Prevalence ratios (PRs. Additionally, we found that psychological distress in each evacuation zone was significantly positively associated with the radiation levels in their environment (r = 0.768, p = 0.002.The earthquake, tsunami and subsequent nuclear accident likely caused severe psychological distress among residents in the evacuation zone in Fukushima Prefecture. The close association between psychological distress and the radiation levels shows that the nuclear accident seriously influenced the mental health of the residents, which might be exacerbated by increased risk perception. To

  18. Severe Psychological Distress of Evacuees in Evacuation Zone Caused by the Fukushima Daiichi Nuclear Power Plant Accident: The Fukushima Health Management Survey

    Kunii, Yasuto; Suzuki, Yuriko; Shiga, Tetsuya; Yabe, Hirooki; Yasumura, Seiji; Maeda, Masaharu; Niwa, Shin-ichi; Otsuru, Akira; Mashiko, Hirobumi; Abe, Masafumi

    2016-01-01

    Background Following the Great East Japan Earthquake on March 11, 2011, the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant has continued to affect the mental health status of residents in the evacuation zone. To examine the mental health status of evacuee after the nuclear accident, we conducted the Mental Health and Lifestyle Survey as part of the ongoing Fukushima Health Management Survey. Methods We measured mental health status using the Kessler 6-item psychological distress scale (K6) in a total of 73,569 (response rate: 40.7%) evacuees aged 15 and over who lived in the evacuation zone in Fukushima Prefecture. We then dichotomized responders using a 12/13 cutoff on the K6, and compared the proportion of K6 scores ≥13 and ≤12 in each risk factor including demographic information, socioeconomic variables, and disaster-related variables. We also performed bivariate analyses between mental health status and possible risk factors using the chi-square test. Furthermore, we performed multivariate regression analysis using modified Poisson regression models. Results The median K6 score was 5 (interquartile range: 1–10). The number of psychological distress was 8,717 (14.6%). We found that significant differences in the prevalence of psychological distress by almost all survey items, including disaster-related risk factors, most of which were also associated with increased Prevalence ratios (PRs). Additionally, we found that psychological distress in each evacuation zone was significantly positively associated with the radiation levels in their environment (r = 0.768, p = 0.002). Conclusion The earthquake, tsunami and subsequent nuclear accident likely caused severe psychological distress among residents in the evacuation zone in Fukushima Prefecture. The close association between psychological distress and the radiation levels shows that the nuclear accident seriously influenced the mental health of the residents, which might be exacerbated by

  19. A study on the effect of containment filtered venting system to off-site under severe accident

    Jeon, Ju Young; Kwon, Tae Eun; Lee, Jai Ki [Hanyang University, Seoul (Korea, Republic of)

    2015-12-15

    The containment filtered venting system reduces the range of the contamination area around the nuclear power plant by strengthening the integrity of the containment building. In this study, the probabilistic assessment code MACCS2 was used to assess the effect of the CFVS to off-site. The accident source term was selected from a Probabilistic Safety Analysis report of SHINKORI 1 and 2 Nuclear Power Plant. The three source term categories from 19 STC were chosen to evaluate the effective dose and thyroid dose of residents around the power plant and the dose with CFVS and without CFVS were compared. The dose was calculated according to the distance from the nuclear power plant, so the damage scale based on the distance that exceeds the IAEA criteria for effective dose (100 mSv per 7 days) and thyroid dose (50 mSv per 7 days) were compared. The effective dose reduction rates of the STC-3, STC-4, STC-6 were about 95-99% in the whole range (0⁓35 km), 96-98% for the thyroid dose. There are similar results between effective dose and thyroid dose. After applying the CFVS, the damage scale that exceeds the effective dose criteria was about 1 km (mean). Especially, the STC-4 damage scale was decreased from 26 km (mean) to 1.2 km (mean) significantly. The damage scale that exceed the thyroid dose criteria was decreased to 2⁓3 km (mean). The STC-4 damage scale was also decreased significantly as compared to STC-3, STC-6 in terms of effective dose.

  20. Quantification of the ex-vessel severe accident risks for the Swedish boiling water reactors. A scoping study performed for the APRI project

    Okkonen, T.; Dinh, T.N.; Bui, V.A.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Systems Technology

    1995-07-01

    Results of a scoping study to quantify the ex-vessel severe accident risks for the Swedish BWRs are reported. The study considers that a pool of water is established in the containment prior to vessel failure, as prescribed by the accident management scheme for the newer Swedish BWRs. The integrated methodology developed and employed combines probabilistic and deterministic treatment of the various melt-structure-water interaction processes occurring in sequence. The potential steam explosion, and the melt attack on the containment basemat, are treated with enveloping analyses. Uncertain parameters in the models and the initial conditions are treated with Monte Carlo simulations. Independent models are developed for melt coolability and possible attack on the concrete basemat. It is found that, with current models, the melt discharge scenarios, in which a large amount of accumulated melt may be released from the vessel, could subject the containment to large steam explosion loads. However, the uncertainties are so large that no definite conclusion can be drawn. The assessment of ex-vessel core debris coolability is disturbed by similar phenomenological uncertainties. Presently, coolability of the core debris can not be demonstrated. 133 refs.

  1. Heating of reactor pressure vessel bottom head and penetrations in a severe reactor accident; Reaktoripaineastian pohjan ja laepivientien kuumeneminen sydaemen sulamisonnettomuudessa

    Ikonen, K. [VTT Energy, Espoo (Finland). Nuclear Energy

    1997-10-01

    The report describes the fundamentals of heat conductivity and convection and numerical methods like finite difference and control volume method for calculation of the thermal history of a reactor pressure vessel bottom head and penetrations. Phase changes from solids to liquids are considered. Time integration is performed by explicit or implicit method. Developed computer codes for thermal conductivity and convection analyses and codes for graphical visualization are described. The codes are applied to two practical cases. They deal with analyses of Swiss CORVIS-experiments and analyses of control rod and instrument penetrations in a BWR bottom head. A model for calculation of effective thermal conductivity of granular corium is developed. The work is also related to EU MVI-project (Core Melt-Pressure Vessel Interactions During a Light Water Reactor Severe Accident), whose coordinator is Prof. B. R. Sehgal at Royal Institute of Technology in Stockholm. (orig.) (11 refs.).

  2. Using the Star CCM+ software system for modeling the thermal state and natural convection in the melt metal layer during severe accidents in VVER reactors

    Kochetov, N. A.; Loktionov, V. D.; Sidorov, A. S.

    2015-09-01

    The possibility of using the Star CCM+ software system for analyzing the thermal state of the melt pool metal layer generated as a result of melt stratification during a severe accident in pressure-vessel nuclear reactors is considered. In order to verify and substantiate the possibility of using this software system for modeling the natural convection processes in the melt at high values of the Rayleigh number, test problems were solved. The obtained results were found to be in good agreement with the known solutions and with the experimental data. The behavior of the melt metal layer was subjected to a parametric analysis for different melt heating conditions, the results of which showed that certain parameters have a determining influence on the so-called focusing effect and on the specific features of current in this layer.

  3. 严重事故条件下堆芯升温模拟%Simulation of Core Heating up During Severe Accident Sequence

    王佳赟; 樊普

    2012-01-01

    The core heating up of API000 reactor during a severe accident sequence was simulated numerically by FLUENT. The objective was to study the uniformity of the heating up after the uncover but before significant melting of the core in more detail than that was possible using integral severe accident codes and obtain the temperature of shroud and baffle, also to assess the MAAP core heating up calculation. The results show that before significant core damaging, the shroud and baffle have melted causing an side relocation of the debris. Furthermore, the MAAP calculation of core heating up is also acceptable.%使用FLUENT计算流体程序数值模拟了AP1000在严重事故条件下的堆芯升温过程,目的是对堆芯裸露后并在其显著熔化前对堆芯升温的均匀程度进行比一体化事故程序MAAP更为详尽的研究,进行围筒和吊篮温度分析,同时评估MAAP程序堆芯升温计算结果.分析结果表明:在堆芯显著熔化时刻,堆芯围筒和吊篮已熔化,因此熔融堆芯将从侧面迁移进入下封头,同时对比证明MAAP程序关于堆芯升温的计算结果也是可接受的.

  4. Estimation of thermal loads on the VVER vessel under conditions of inversion of the stratified molten pool in a severe accident

    Loktionov, V. D.; Mukhtarov, E. S.

    2016-09-01

    Analysis of the thermal state of molten pools that can be formed on the vessel bottom of the VVER-600 medium-power reactor during a severe anticipated accident with melting of the core is represented. Two types of the molten pool of core materials, with the two-layer and inverse three-layer stratification, are considered. Thermal loads acting on the reactor vessel from the melt are estimated depending on its formation time. Features of the thermal state of the melt in the case of its inverse stratification are analyzed. It is shown that thermal loads on the reactor vessel exceed the critical heat flux (CHF) when forming the two-layer stratified molten pool 10 and 24 h after its shutdown, and the thermal load is close to the corresponding CHF or somewhat exceeds it in 72 h. In the case of the formation of the inverse structure of the melt, one can observe a decrease by more than 2.5 times (in comparison with the two-layer stratified structure) in the thermal load on the reactor vessel in the region of its contact with the upper layer of the steel melt. Analysis of results showed that maximum densities of heat flux to the reactor vessel from the bottom metallic layer with the melt inversion did not exceed corresponding CHFs 24 and 72 h after the reactor shutdown. Because the thermal load on the reactor vessel can be localized in the region of its bottom, where the CHF is relatively small, during the inverse stratification of the melt, there is a need to carry out further in-depth experimental and analytical investigations of conditions for formation of the stratified molten pool and to obtain corrected experimental CHFs for conditions and outlines of cooling the external surface of the VVER-600 vessel in a severe accident.

  5. Accident resistant transport container

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  6. Precursors to potential severe core damage accidents: 1992, A status report. Volume 17, Main report and Appendix A

    Cox, D.F.; Cletcher, J.W.; Copinger, D.A.; Cross-Dial, A.E.; Morris, R.H.; Vanden Heuvel, L.N. [Oak Ridge National Lab., TN (United States); Dolan, B.W.; Jansen, J.M.; Minarick, J.W. [Science Applications International Corp., Oak Ridge, TN (United States); Lau, W.; Salyer, W.D. [Reliability and Performance Associates (United States)

    1993-12-01

    Twenty-seven operational events with conditional probabilities of subsequent severe core damage of 1.0 {times} 10E-06 or higher occurring at commercial light-water reactors during 1992 are considered to be precursors to potential core damage. These are described along with associated significance estimates, categorization, and subsequent analyses. The report discusses (1) the general rationale for this study, (2) the selection and documentation of events as precursors, (3) the estimation and use of conditional probabilities of subsequent severe core damage to rank precursor events, and (4) the plant models used in the analysis process.

  7. Precursors to potential severe core damage accidents: 1994, a status report. Volume 21: Main report and appendices A--H

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Vanden Heuvel, L.N. [Oak Ridge National Lab., TN (United States); Dolan, B.W.; Minarick, J.W. [Oak Ridge National Lab., TN (United States)]|[Science Applications International Corp., Oak Ridge, TN (United States)

    1995-12-01

    Nine operational events that affected eleven commercial light-water reactors (LWRs) during 1994 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 {times} 10{sup {minus}6}. These events were identified by computer-screening the 1994 licensee event reports from commercial LWRs to identify those that could be potential precursors. Candidate precursors were then selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1981 and 1984--1993 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for events. This document is bound in two volumes: Vol. 21 contains the main report and Appendices A--H; Vol. 22 contains Appendix 1.

  8. Seismic Shaking Table Requirements and Consideration of Fluid-Structure Interaction Effect in Seismic Response Analysis Model for In-Reactor Fuel Assembly Under Severe Earthquake Accident

    Lee, Kanghee; Yoon, Kyungho; Kang, Heungsoek; Lee, Youngho; Kim, Hyungkyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dynamic response of fuel assembly can be significantly affected by added hydrodynamic mass and additional damping from the fluid and flow inside operating reactor core. Added mass or hydrodynamic virtual mass from surrounding fluid medium can be theoretically estimated by the potential flow theory. Solving Laplace equation in terms of velocity potential can leads to calculate mass components in the mass matrix of simplified fuel FE model. Additional damping from the fluid and the flow inside reactor core are originated from fluid drag and flow lift force, respectively. Lift force from axial flow can increase fuel assembly damping by twice compared to still fluid damping from the loop testing. In practice, fuel assembly damping should be measured by mockup loop testing and referred to published data in the literature. The justification is performed via time history analysis with simplified dynamic model using a group of fuel assembly in the core. Key check points in this analysis might be the integrity of intermediate spacer grids when impacting fuels into core shroud plate or into neighboring fuel assembly. Thus, dynamic displacement and impact force at grid elevations are the important structural parameters to be traced out during the analysis and the simulation testing. KAERI have a plan to develop dynamic analysis model and to setup test infrastructure for full scale and several fuel assembly rows seismic simulation testing. This paper briefly discuss on the reference earthquake accident scenario, shaking table requirements for full-scale seismic simulation testing, virtual testing issues before the hardware setup, and modelling issue related to fluid-structure interaction effect in accident core analysis.

  9. Development of a fission product transport module predicting the behavior of radiological materials during sever accidents in a nuclear power plant

    Kang, Hyung Seok; Rhee, Bo Wook; Kim, Dong Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ±6%. It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

  10. Assessment of severe accident source terms in pressurized-water reactors with a 40% mixed-oxide and 60% low-enriched uranium core using MELCOR 1.8.5.

    Gauntt, Randall O.; Goldmann, Andrew S. (Texas A& M University, College Station, TX); Wagner, Kenneth C.; Powers, Dana Auburn; Ashbaugh, Scott G.; Longmire, Pamela

    2010-04-01

    As part of a Nuclear Regulatory Commission (NRC) research program to evaluate the impact of using mixed-oxide (MOX) fuel in commercial nuclear power plants, a study was undertaken to evaluate the impact of the usage of MOX fuel on the consequences of postulated severe accidents. A series of 23 severe accident calculations was performed using MELCOR 1.8.5 for a four-loop Westinghouse reactor with an ice condenser containment. The calculations covered five basic accident classes that were identified as the risk- and consequence-dominant accident sequences in plant-specific probabilistic risk assessments for the McGuire and Catawba nuclear plants, including station blackouts and loss-of-coolant accidents of various sizes, with both early and late containment failures. Ultimately, the results of these MELCOR simulations will be used to provide a supplement to the NRC's alternative source term described in NUREG-1465. Source term magnitude and timing results are presented consistent with the NUREG-1465 format. For each of the severe accident release phases (coolant release, gap release, in-vessel release, ex-vessel release, and late in-vessel release), source term timing information (onset of release and duration) is presented. For all release phases except for the coolant release phase, magnitudes are presented for each of the NUREG-1465 radionuclide groups. MELCOR results showed variation of noble metal releases between those typical of ruthenium (Ru) and those typical of molybdenum (Mo); therefore, results for the noble metals were presented for Ru and Mo separately. The collection of the source term results can be used as the basis to develop a representative source term (across all accident types) that will be the MOX supplement to NUREG-1465.

  11. Do Cognitive Models Help in Predicting the Severity of Posttraumatic Stress Disorder, Phobia, and Depression after Motor Vehicle Accidents? A Prospective Longitudinal Study

    Ehring, Thomas; Ehlers, Anke; Glucksman, Edward

    2008-01-01

    The study investigated the power of theoretically derived cognitive variables to predict posttraumatic stress disorder (PTSD), travel phobia, and depression following injury in a motor vehicle accident (MVA). MVA survivors (N = 147) were assessed at the emergency department on the day of their accident and 2 weeks, 1 month, 3 months, and 6 months…

  12. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit-1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix I, Volume 2, Part 5

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J. [Brookhaven National Lab., Upton, NY (United States); Bley, D.; Johnson, D. [PLG Inc., Newport Beach, CA (United States); Holmes, B. [AEA Technology, Dorset (United Kingdom)] [and others

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Lab. (BNL) and Sandia National Labs. (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this volume of the report is to document the approach utilized in the level-1 internal events PRA for the Surry plant, and discuss the results obtained. A phased approach was used in the level-1 program. In phase 1, which was completed in Fall 1991, a coarse screening analysis examining accidents initiated by internal events (including internal fire and flood) was performed for all plant operational states (POSs). The objective of the phase 1 study was to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenarios, and to provide a foundation for a detailed phase 2 analysis.

  13. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit-1: Analysis of core damage frequency from internal events during mid-loop operations. Appendices F-H, Volume 2, Part 4

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J. [Brookhaven National Lab., Upton, NY (United States); Bley, D.; Johnson, D. [PLG Inc., Newport Beach, CA (United States); Holmes, B. [AEA Technology, Dorset (United Kingdom)] [and others

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. The scope of the level-1 study includes plant damage state analysis, and uncertainty analysis. Volume 1 summarizes the results of the study. Internal events analysis is documented in Volume 2. It also contains an appendix that documents the part of the phase 1 study that has to do with POSs other than mid-loop operation. Internal fire and internal flood analyses are documented in Volumes 3 and 4. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. Volume 6 documents the accident progression, source terms, and consequence analysis.

  14. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix E (Sections E.9-E.16), Volume 2, Part 3B

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Wong, S.M. [Brookhaven National Lab., Upton, NY (United States); Bley, D.; Johnson, D. [PLG Inc., Newport Beach, CA (United States)] [and others

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. The scope of the level-1 study includes plant damage state analysis, and uncertainty analysis. Volume 1 summarizes the results of the study. Internal events analysis is documented in Volume 2. It also contains an appendix that documents the part of the phase 1 study that has to do with POSs other than mid-loop operation. Internal fire and internal flood analyses are documented in Volumes 3 and 4. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. Volume 6 documents the accident progression, source terms, and consequence analysis.

  15. Bicycle accidents.

    Lind, M G; Wollin, S

    1986-01-01

    Information concerning 520 bicycle accidents and their victims was obtained from medical records and the victims' replies to questionnaires. The analyzed aspects included risk of injury, completeness of accident registrations by police and in hospitals, types of injuries and influence of the cyclists' age and sex, alcohol, fatigue, hunger, haste, physical disability, purpose of cycling, wearing of protective helmet and other clothing, type and quality of road surface, site of accident (road junctions, separate cycle paths, etc.) and turning manoeuvres.

  16. Development of a three-dimensional model and calculation code for the packed bed simulation for safety analyses of severe reactor accidents; Entwicklung eines dreidimensionalen Modells und Rechencodes zur Simulation von Schuettbetten fuer Sicherheitsanalysen von schweren Reaktorstoerfaellen

    Berkhan, Ana; Starflinger, Joerg [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)

    2013-07-01

    The computer code MEWA is used for the description of severe accident sequences in light-water reactors. During the reactor accident with core disruption the solidified core fragments are displaced into the lower plenum of the reactor pressure vessel (RPV) or in case of RPV failure into the water filled reactor sump. For the progress or cessation of the severe accident the cooling of the packed bed is of main importance. With the 3D version of the code it is possible to study spatially complex packed beds with respect to their coolability. Further extension of the MEWA code will include the optimization for the improvement of the calculation efficiency and reduction of computation time. The validation will be performed by re-calculation of experiments (for instance DEBRIS experiments at the IKE) and the comparison with results of the 2D version.

  17. Study of top reflooding in case of severe accident and in particular oxidation of Uranium, Zirconium, Oxygen melts; Etude du renoyage par le haut en cas d'accident grave et en particulier oxydation des melanges (U,Zr,O)

    Brunet-Thibault, E

    2006-12-15

    In 1979, the Three Mile Island (TMI) accident occurred in United States and accelerated research activities in the field of severe accidents. Severe accident management procedures imply massive water injections to flood the core. The work of this thesis bent principally over this reflooding. The first part of the study concerns the core oxidation enhancement during the reflooding phase which leads to a rough increase of the concentration of burnable hydrogen in the containment. This is why the study carried on the analysis of the contribution of the oxidation of U-Zr-O mixtures, towards the total production of hydrogen during reflooding. In the second part, the study concerns top flooding modelling i.e.: with injection of water in the hot legs. Here, we attempted to define bases and realize a model allowing to describe this type of reflooding. These models were validated on the simulation of the parameter with MAAP4 code. (author)

  18. Impact of Aliquat {sup registered} 336 addition on organic iodine retention in containment-venting-scrubbing solutions for mitigation of severe accidents

    Stahl, A.; Zeh, P.; Buhlmann, S. [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    To mitigate severe accident situations Filtered Containment Venting Systems have been designed, internationally qualified and implemented in modern nuclear power plants (NPPs) in order to minimize radionuclide release to environment in case of containment pressure reduction via venting. Main focus was given to the reliable and efficient aerosol retention. In addition also efficient iodine retention was requested, as this element has significant activity content in nuclear fuel in combination with high volatility and radiotoxicity. Therefore, effort is made to reduce the iodine activity in venting gases. State-of-the-art containment venting scrubbing solutions use a solution of sodium hydroxide and sodium thiosulfate in order to wash out volatile iodine species. With such a solution high retention efficiencies for elemental iodine and hydrogen iodide are achieved. Nevertheless, the retention of organic iodine species in this solution is not satisfying and the search for improvements is ongoing. A possible additive presented in literature is Aliquat {sup registered} 336 promising improved retention of volatile organic iodine species in scrubbing solutions. This Aliquat {sup registered} 336 is a water insoluble quaternary ammonium chloride salt made by the methylation of mixed tri-octyl/decyl amine. The effectiveness of such an additive was tested at elevated temperatures and pressures simulating containment venting conditions. (orig.)

  19. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices E (Sections E.1--E.8). Volume 2, Part 3A

    Chu, T.L.; Musicki, Z.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. The authors recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful.

  20. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2

    Chu, T.L.; Musicki, Z.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.

  1. Physicochemical processes taking place in the reactor core under severe accident conditions. Procesos fisicoquimicos que tienen lugar en el Nucleo de un reactor en conditiones de accidente severo

    Esteban Hernandez, J.A.; Diaz Arocas, P.P.; Carrion Martin, J.G. (1-652-450 (Spain))

    1990-01-01

    Information is provided on UO[sup 2]-ZRY, ZRY steam and UO[sup 2] steam interactions. Performance of grid spacers. Integrated codes for analysis of accidents. Damage evolution of the Central module of the experiment LP-FP-2-Fission products generation. Physicochemical state of the fission products within oxide-type fuels. Solid radionuclide migration Behaviour of volatile fission products inside the fuel rods. Fission products release out of the fuel rods. Fission products behaviour under red and simulated accidents.

  2. Accident Statistics

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  3. Interface temperature between solid and liquid corium in severe accident situations: A comprehensive study of characteristic time delay needed for reaching liquidus temperature

    Combeau, H.; Appolaire, B. [Institut Jean Lamour, Departement SI2 M, CNRS - Nancy-Universite - UPV-Metz, Ecole des Mines de Nancy, Parc de Saurupt CS 14234, F-54042 Nancy Cedex (France); Seiler, J.M., E-mail: jean-marie.seiler@cea.f [CEA/DEN Grenoble, DTN/SE2T/LPTM, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2010-08-15

    T{sub liquidus} was proposed as the interface temperature, for various severe accident situations for thermalhydraulic steady state. This proposal was made on the basis of the analysis of solidification front stability in thermalhydraulic steady state for volumetrically heated corium pools and was extended to reactor transients with slow solidification rates that are controlled by the long-term decrease in residual power. The conclusions were corroborated by prototypic corium and variable solidification rates obtained by experimental approaches for corium containing small amounts of silica or none at all. When the concentration in silica increases (approximately above 10 wt%), it was concluded from the experiments that a plane-front situation could not be obtained. The present work offers a theoretical approach to the maximum time delay that is necessary for mass transfer and full phase-segregation in volumetrically heated liquid pools bounded by a crust. It is concluded that full segregation is obtained for in-vessel situations within time delays that are shorter or of the same order of magnitude as the characteristic time for the corium pool to form and evolve to a quasi-steady-state situation. The characteristic time delay for mass transfer associated with simulant material experiments is also determined. Phase segregation can also be obtained for corium-concrete interaction, provided that the silica content is less than approximately 10 wt%. However in the latter case, more complex phenomena occur at the interface due to the interaction with sparging gas (such as porous medium formation) which requires a different model approach.

  4. Sports Accidents

    Kiebel

    1972-01-01

    Le Docteur Kiebel, chirurgien à Genève, est aussi un grand ami de sport et de temps en temps médecin des classes genevoises de ski et également médecin de l'équipe de hockey sur glace de Genève Servette. Il est bien qualifié pour nous parler d'accidents de sport et surtout d'accidents de ski.

  5. SCDAP/RELAP5分析UO2-Zr板型元件严重事故的方法研究%Approach for Simulating Severe Accident of UO2-Zr Plate by SCDAP/RELAP5

    张卓华; 彭诗念; 黄善仿; 于俊崇

    2013-01-01

    SCDAP/RELAP5是一种常见的机理性严重事故分析程序,能够分析多种类型的堆芯构件.通过对比分析SCDAP/RELAP5程序模拟棒形燃料元件与板型燃料元件堆芯在严重事故下行为的分析模型,结合UO2-Zr板型状元件堆芯的特性,提出了运用并改进SCDAP/RELAP5程序模拟UO2-Zr板型元件堆芯在严重事故下行为的研究方案.对程序结构的分析结果表明,SCDAP/RELAP5程序部分结构和模型适用于对UO2-Zr板型元件进行基本的严重事故分析,但需要通过创建新部件、研究新模型,并与已有模型的重新组合搭配才能较为精准地模拟UO2-Zr板型元件严重事故的实际行为.%As a common mechanistic code for safety analysis of severe accident,SCDAP/RELAP5 can simulate many types of core components phenomenon during severe accidents.Comparison of simulation model of fuel behavior under severe accident between fuel rod and ATR plate is described in this paper and the approach for simulating severe accident of UO2-Zr plate is concluded by combining structure properties of UO2-Zr.It is concluded that the basic analysis of severe accident of UO2-Zr plate could be achieved by S/R code from the code simulation.However,new core structure,new model of fuel behavior and combination of existing model should be developed in S/R code to simulate the precise core behavior of reactor assembled with UO2-Zr plate under severe accidents.

  6. Do cognitive models help in predicting the severity of posttraumatic stress disorder, phobia and depression after motor vehicle accidents? A prospective longitudinal study

    T. Ehring; A. Ehlers; E. Glucksman

    2008-01-01

    The study investigated the power of theoretically derived cognitive variables to predict posttraumatic stress disorder (PTSD), travel phobia, and depression following injury in a motor vehicle accident (MVA). MVA survivors (N 147) were assessed at the emergency department on the day of their acciden

  7. Study on Severe Accident Induced by Total Loss of Power Supply for Small PWR%小型压水堆完全丧失电源引发的严重事故研究

    张龙飞; 舒礼伟; 陆古兵

    2012-01-01

    With the use of best estimate computer code RELAP/SCDAPS1M/MOD3. 4 of pressure water reactor severe accident, a three-channel along radial and ten-nodal along axis nuclear reactor severe accident calculation model was established based on a hypothetical small PWR. The severe accident induced by total loss of power supply was studied, and mitigation measure with 300 s continuation of the steam generator auxiliary feedwater was analyzed. The calculation results show that the steam generator auxiliary feedwater plays an important part in delaying core melt progression and mitigating severe accident consequences.%以压水堆严重事故最佳估算程序RELAP/SCDAPSIM/MOD3.4为核心软件,以假想的小型压水堆为研究对象,建立了1个径向3通道、轴向10节块的核反应堆严重事故计算模型,研究了完全丧失电源初因事件引发的严重事故过程,并对事故停堆后蒸汽发生器给水持续300 s的缓解措施进行了分析.计算结果表明:蒸汽发生器辅助给水对于延迟事故进程,缓解事故后果具有重要作用.

  8. NKS-R ExCoolSe mid-term report KTH severe accidents research relevant to the NKS-ExCoolSe project[KTH = Royal Institute of Technology, Sweden

    Hyun Sun Park; Truc-Nam Dinh [Royal Inst. of Technology (Sweden)

    2006-04-15

    The present mid-term progress report is prepared on the recent results from the KTH severe accident research program relevant to the objective of the ExCoolSe project sponsored by the NKS-R program. The previous PRE-MELT-DEL project at KTH sponsored by NKS provided an extensive assessment on the remaining issues of severe accidents in general and suggested the key issues to be resolved such as coolability and steam explosion energetics in ex-vessel which became a backbone of the ExCoolSe project in NKS. The EXCOOLSE project has been integrated with, and leveraged on, parallel research program at KTH on severe accident phenomena the MSWI project which is funded by the APRI program, SKI in Sweden and HSK in Switzerland and produced more understanding of the key remaining issues. During last year, the critical assessment of the existing knowledge and current SAMG and designs of Nordic BWRs identified the research focus and initiated the new series of research activities toward the resolution of the key remaining issues specifically pertaining to the Nordic BWRs.(au)

  9. Design analysis of the molten core confinement within the reactor vessel in the case of severe accidents at nuclear power plants equipped with a reactor of the VVER type

    Zvonaryov, Yu. A.; Budaev, M. A.; Volchek, A. M.; Gorbaev, V. A.; Zagryazkin, V. N.; Kiselyov, N. P.; Kobzar', V. L.; Konobeev, A. V.; Tsurikov, D. F.

    2013-12-01

    The present paper reports the results of the preliminary design estimate of the behavior of the core melt in vessels of reactors of the VVER-600 and VVER-1300 types (a standard optimized and informative nuclear power unit based on VVER technology—VVER TOI) in the case of beyond-design-basis severe accidents. The basic processes determining the state of the core melt in the reactor vessel are analyzed. The concept of molten core confinement within the vessel based on the idea of outside cooling is discussed. Basic assumptions and models, as well as the results of calculation of the interaction between molten materials of the core and the wall of the reactor vessel performed by means of the SOCRAT severe accident code, are presented and discussed. On the basis of the data obtained, the requirements on the operation of the safety systems are determined, upon the fulfillment of which there will appear potential prerequisites for implementing the concept of the confinement of the core melt within the reactor in cases of severe accidents at nuclear power plants equipped with VVER reactors.

  10. Precursors to potential severe core damage accidents: 1992, a status report; Volume 18: Appendices B, C, D, E, F, and G

    NONE

    1993-12-01

    This document is part of a report which documents 1992 operational events selected as accident sequence precursors. This report describes the 27 precursors identified from the 1992 licensee event reports. It also describe containment-related events; {open_quote}interesting{close_quote} events; potentially significant events that were considered impractical to analyze; copies of the licensee event reports which were cited in the cases above; and comments from the licensee and NRC in response to the preliminary reports.

  11. 中国百万千瓦级核电站严重事故下堆芯损伤评价%Core Damage Assessment for Chinese 1 000 MWe NPP Under Severe Accident Conditions

    魏玮; 周志伟

    2011-01-01

    By simulation analysis with the integral severe accident analysis code MELCOR1.8.5, the applicability of the Westinghouse Owners Group Core Damage Assessment Guidance (CDAG) to estimate the status and extent of the core damage in the early phase of the accident for a typical Chinese 1 000 MWe NPP was investigated. The preliminary analysis results show that CDAG can reasonably evaluate the core damage status and extent for the 1 000 MWe NPP in a loss of coolant accident (LOCA) without mitigation measures. The insights gained from the present study are of significant values for further studing and validating the comprehensive assessment capability and applicability of the CDAG, and for advancing the establishment of the severe accident management guidelines (SAMGs) of existing plants in China.%应用-体化严重事故分析程序MELCORL 8.5进行模拟分析,研究了由西屋公司制定、经美国NRC(Nuclear Regulatory Commission)认证的"堆芯损伤评价导则(CDAG )"应用于中国百万千瓦级核电站在严重事故初期评价堆芯损伤状态和程度的有效性.初步分析结果表明,CDAG可较好地评价百万千瓦级核电站无缓解措施的冷却剂丧失事故(LOCA)堆芯损伤状况和损伤程度,对进-步研究和验证CDAG的综合评价能力和适用性、推进现有核电厂建立严重事故管理导则具有重要的参考价值.

  12. Heat transfer and phenomenology in severe accidents in spent fuel pools with MAAP5; Transmision de calor y fenomenologia en accidentes severes en piscinas de combustible gastado con MAAP5

    Ruiz, J. A.; Gil, E.; Uruburu, A.; Rey, P.

    2013-07-01

    The code Thermo-hydraulic MAAP5 includes in their latest versions a module that allows you to analyze the evolution of an accident occurring in the pool of spent fuel from a nuclear power plant in their latest versions. This module is a preliminary version and there is interest from stations and reference centres in Spain to know in depth its capabilities.

  13. Accident: Reminder

    2003-01-01

    There is no left turn to Point 1 from the customs, direction CERN. A terrible accident happened last week on the Route de Meyrin just outside Entrance B because traffic regulations were not respected. You are reminded that when travelling from the customs, direction CERN, turning left to Point 1 is forbidden. Access to Point 1 from the customs is only via entering CERN, going down to the roundabout and coming back up to the traffic lights at Entrance B

  14. Study on severe accident for traditional PWR based on RELAP5 and MELCOR combined analysis method%基于RELAP5与MELCOR联合分析方法的压水堆严重事故研究

    王珏; 梁国兴

    2016-01-01

    针对严重事故的模拟研究,本文提出结合热工水力系统程序和严重事故一体化程序的分析方法,以典型三环路传统压水堆为对象,分别采用 RELAP5和 MELCOR程序建立模型,分析在全厂断电叠加汽动辅助给水泵失效事故下系统的瞬态响应.为了尽可能地利用 RELAP5计算早期热工水力响应,同时保证严重事故计算结果的准确性,以 MELCOR锆合金氧化模型开始工作温度的下限,即包壳温度达到1100 K作为程序衔接准则并利用RELAP5的大编辑功能,提取所需计算结果导入MELCOR输入卡作为初始参数继续模拟.计算结果表明,数据连接过程整体保持了连续性,两种方法计算得出的主冷却剂系统压力、堆芯和稳压器水位、燃料包壳温度等参数的数值以及堆芯传热恶化和压力容器失效等现象的时序存在不同程度的差异,例如堆芯熔毁时间延后了约538 s.由于采用了RELAP5计算严重事故前的系统暂态响应,联合分析方法的计算结果比单独使用 MELCOR 分析的结果更加准确,该方法可以提高传统严重事故分析的可靠性.%A combined analysis method utilizing thermal-hydraulic system code RELAP5 and severe accident integral code MELCOR is developed to study the transient response of a traditional three-loop PWR under the severe accident TMLB’scenario. In order to utilize RELAP5 to the maximum degree and guarantee the accuracy of system response before entering into severe accident situation,the minimum cutoff temperature for zircaloy oxidation model of MELCOR,default value of 1 100 K,is used as the criterion to switch RELAP5 transient calculation to MELCOR severe accident analysis. Required data to initiate MELCOR will be extracted through the major edit of RELAP5 output. The results show that the data transferring process is relatively continuous. As observed in combined calculation,differences to varying degree are concluded

  15. Use of open source software in estimating the effects of a severe accident on the Mark II containment; Uso de software de fuente abierta en la estimacion de los efectos de un accidente severo sobre la contencion Mark II

    Sainz, E.; Arguelles, R., E-mail: eduardo.sainz@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    Because the spectrum of scenarios of severe accident before which must verify the integrity of the containment can be very broad, it arises here a calculation methodology to estimate the structural response of the containment without incurring in high costs for commercial software licenses, or in times and calculation excessive requirements. The capabilities of computer programs with license of open source, OpenFOAM for CFD calculations and Salome-Meca for thermal and mechanical calculations were tested. The methodology begins of the venting of mass and energy that are postulated inside the container and the values of the thermal and mechanical fields are obtained through the walls. (Author)

  16. 压水堆严重事故后安全壳内辐射环境计算分析%Calculation and Analysis for the Radiation Condition in the Containment of PWR after Severe Accident

    王晓霞; 张普忠; 刘新建

    2013-01-01

    In order to mitigate severe accident effectively,validation of equipment and instrument after severe accident need to be evaluated.The temperature,pressure,humidity and radiation are key parameters for the validation evaluation.For the source term released from the molten core to the containment,NUREG-1465 was adopted for PWR.Effect of spray and leakage on concentrations of radioactive nuclides in the containment was ignored.In this paper,γ and 3 radiation condition in the containment after severe accident were calculated and analyzed,which is very important to validation evaluation of equipment and instrument after severe accident.%为了确保有效的缓解严重事故,需要对用于缓解和监测严重事故进程的重要设备、仪表在严重事故环境下的可用性进行评估.而温度、压力、湿度、辐射等参数是可用性评估的重要输入条件.本文针对百万千瓦级压水堆核电机组,参考美国核管会发布的《轻水堆核电厂事故源项》(NUREG-1465)关于严重事故后放射性物质的释放阶段和释放份额的假设,计算出事故后由堆芯释放到安全壳内的放射性源项.对于放射性物质在安全壳内的分布,不考虑喷淋和泄漏的影响,计算并分析了严重事故后安全壳内的γ和β辐射环境条件,并与APl000的设备鉴定源项进行了对比分析.本文的计算对于设备和仪表在严重事故后的可用性分析以及其所需耐受的辐射条件具有重要的参考意义.

  17. Oxidation kinetics of innovative carbon materials with respect to severe air ingress accidents in HTRs and graphite disposal or processing; Oxidationskinetik innovativer Kohlenstoffmaterialien hinsichtlich schwerer Lufteinbruchstoerfaelle in HTR's und Graphitentsorgung oder Aufbereitung

    Schloegel, Baerbel

    2010-07-01

    Currently future nuclear reactor concepts of the Fourth Generation (Gen IV) are under development. To some extend they apply with new, innovative materials developed just for this purpose. This thesis work aims at a concept of Generation IV Very High Temperature Reactors (VHTR) in the framework of the European project RAPHAEL (ReActor for Process heat, Hydrogen And ELectricity generation). The concept named ANTARES (AREVA New Technology based on advanced gas-cooled Reactors for Energy Supply) was developed by AEVA NP. It is a helium cooled, graphite moderated modular reactor for electricity and hydrogen production, by providing the necessary process heat due to its high working temperature. Particular attention is given here to oxidation kinetics of newly developed carbon materials (NBG-17) with still unknown but needed information in context of severe air ingress accident in VHTR's. Special interest is paid to the Boudouard reaction, the oxidation of carbon by CO{sub 2}. In case of an air ingress accident, carbon dioxide is produced in the primary reaction of atmospheric oxygen with reflector graphite. From there CO{sub 2} could flow into the reactor core causing further damage by conversion into CO. The purpose of this thesis is to ascertain if and to what degree this could happen. First of all oxidation kinetic data of the Boudouard reaction with NBG-17 is determined by experiments in a thermo gravimetric facility. The measurements are evaluated and converted into a common formula and a Langmuir-Hinshelwood similar oxidation kinetic equation, as input for the computer code REACT/THERMIX. This code is then applied to analyse severe air ingress accidents for several air flow rates. The results are discussed for two accident situations, in which a certain graphite burn off is achieved. All cases show much more damage to the graphite bottom reflector than to the reactor core. Thus the bottom reflector will lose its structural integrity much earlier than the

  18. Development of a shell finite element. Application to the thermo-viscoplastic behaviour of a PWR vessel during a severe accident; Developpement d`un element fini coque. Application au comportement thermo-viscoplastique d`une cuve de reacteur nucleaire (REP) en situation d`accident grave

    Diaz, V

    1998-10-07

    The aim of this study is to develop a model for the thermo-viscoplastic behaviour of he power water reactor lower head during a severe accident, so as to implement it in codes representing the whole accident progress (scenario codes). So it has to give a precise solution in a short cpu-time. The main loadings are the internal pressure and the strong longitudinal and transverse thermal gradients. To deal with this problem, the idea is to develop a new shell element with variable mechanical parameters with the temperature. This is possible in taking advantage of the properties of the bending center line, called neutral fiber. Besides, this new shell element has the particularity to be able to melt without modifying the initial dimensions of the structure. Then, we have developed a complete program to study the mechanical resistance of the vessel. The visco-plastic behaviour is considered as a loading (so it is placed in the second member of the system to be solved) and represented by a Norton law whose parameters depend on the temperature, the law is integrated explicitly which necessitates the introduction of criteria limiting the time step. The rupture criterion by creep is defined by a damage law whereas the rupture criterion by plasticity is based on the exceeding of the mean limit stress in the thickness. Then the model was validated by comparing the results with those of a Castem 2000 volume mesh (finite element code). Finally the model was coupled with the scenario codes ICARE2 and MAAP4 and tested on two typical severe accidents. The results are very satisfactory both on accuracy and cpu-time execution. (author) 113 refs.

  19. Self-reported accidents

    Møller, Katrine Meltofte; Andersen, Camilla Sloth

    2016-01-01

    The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals.......The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals....

  20. A Severe Accident Caused by an Ocellate River Stingray (Potamotrygon motoro) in Central Brazil: How Well Do We Really Understand Stingray Venom Chemistry, Envenomation, and Therapeutics?

    da Silva, Nelson Jorge; Ferreira, Kalley Ricardo Clementino; Pinto, Raimundo Nonato Leite; Aird, Steven Douglas

    2015-06-18

    Freshwater stingrays cause many serious human injuries, but identification of the offending species is uncommon. The present case involved a large freshwater stingray, Potamotrygon motoro (Chondrichthyes: Potamotrygonidae), in the Araguaia River in Tocantins, Brazil. Appropriate first aid was administered within ~15 min, except that an ice pack was applied. Analgesics provided no pain relief, although hot compresses did. Ciprofloxacin therapy commenced after ~18 h and continued seven days. Then antibiotic was suspended; however, after two more days and additional tests, cephalosporin therapy was initiated, and proved successful. Pain worsened despite increasingly powerful analgesics, until debridement of the wound was performed after one month. The wound finally closed ~70 days after the accident, but the patient continued to have problems wearing shoes even eight months later. Chemistry and pharmacology of Potamotrygon venom and mucus, and clinical management of freshwater stingray envenomations are reviewed in light of the present case. Bacterial infections of stingray puncture wounds may account for more long-term morbidity than stingray venom. Simultaneous prophylactic use of multiple antibiotics is recommended for all but the most superficial stingray wounds. Distinguishing relative contributions of venom, mucus, and bacteria will require careful genomic and transcriptomic investigations of stingray tissues and contaminating bacteria.

  1. A Severe Accident Caused by an Ocellate River Stingray (Potamotrygon motoro in Central Brazil: How Well Do We Really Understand Stingray Venom Chemistry, Envenomation, and Therapeutics?

    Nelson Jorge da Silva

    2015-06-01

    Full Text Available Freshwater stingrays cause many serious human injuries, but identification of the offending species is uncommon. The present case involved a large freshwater stingray, Potamotrygon motoro (Chondrichthyes: Potamotrygonidae, in the Araguaia River in Tocantins, Brazil. Appropriate first aid was administered within ~15 min, except that an ice pack was applied. Analgesics provided no pain relief, although hot compresses did. Ciprofloxacin therapy commenced after ~18 h and continued seven days. Then antibiotic was suspended; however, after two more days and additional tests, cephalosporin therapy was initiated, and proved successful. Pain worsened despite increasingly powerful analgesics, until debridement of the wound was performed after one month. The wound finally closed ~70 days after the accident, but the patient continued to have problems wearing shoes even eight months later. Chemistry and pharmacology of Potamotrygon venom and mucus, and clinical management of freshwater stingray envenomations are reviewed in light of the present case. Bacterial infections of stingray puncture wounds may account for more long-term morbidity than stingray venom. Simultaneous prophylactic use of multiple antibiotics is recommended for all but the most superficial stingray wounds. Distinguishing relative contributions of venom, mucus, and bacteria will require careful genomic and transcriptomic investigations of stingray tissues and contaminating bacteria.

  2. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Summary of results. Volume 1

    Whitehead, D.W. [ed.; Staple, B.D.; Daniel, S.L. [and others

    1995-07-01

    During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to examine the potential risks during low power and shutdown operations. Two plants, Surry and Grand Gulf, were selected as the plants to be studied by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). This report documents the work performed during the analysis of the Grand Gulf plant. A phased approach was used for the overall study. In Phase 1, the objectives were to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenario frequencies and risks, and to provide a foundation for a detailed Phase 2 analysis. It was in Phase 1 that the concept of plant operational states (POSs) was developed to allow the analysts to better represent the plant as it transitions from power operation to nonpower operation than was possible with the traditional technical specification divisions of modes of operation. This phase consisted of a coarse screening analysis performed for all POSs, including seismic and internal fire and flood for some POSs. In Phase 2, POS 5 (approximately cold shutdown as defined by Grand Gulf Technical Specifications) during a refueling outage was selected as the plant configuration to be analyzed based on the results of the Phase 1 study. The scope of the Level 1 study includes plant damage state analysis and uncertainty analysis and is documented in a multi-volume NUREG/CR report (i.e., NUREG/CR-6143). The internal events analysis is documented in Volume 2. Internal fire and internal flood analyses are documented in Volumes 3 and 4, respectively. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. The Level 2/3 study of the traditional internal events is documented in Volume 6, and a summary of the results for all analyses is documented in Volume 1.

  3. IVR-ERVC effectiveness assessment for large size advanced PWR under severe accident%严重事故下大功率先进压水堆IVR-ERVC有效性分析

    金越; 刘晓晶; 程旭; 陈薇

    2016-01-01

    通过压力容器外部冷却(ERVC)以实现堆内熔融物滞留(IVR)作为反应堆严重事故缓解管理的一项重要举措一直以来广泛受到关注和研究.本文使用严重事故分析程序 MELCOR,从瞬态角度对大型先进压水堆进行了 IVR-ERVC相关研究.过程中重点关注了堆芯熔毁和重新定位,熔池形成、生长及其传热过程,并且对压力容器外部流动传热进行了分析.MELCOR计算所得下封头热流密度分布的瞬态结果与临界热流密度(CHF)比较和分析表明,1700 MWe 大功率压水堆发生严重事故后在 IVR-ERVC条件下能够保证压力容器的完整性,即,IVR-ERVC 能够有效带出下封头熔融物的衰变热量,缓解严重事故后果.%As a key severe accident management strategy for light water reactors (LWRs),in-vessel retention (IVR)through external reactor vessel cooling (ERVC)has been the focus of relevant studies for decades. This paper addressed the IVR-ERVC issues from a transient perspective using the severe accident code MELCOR for large size advanced passive power plant. Current analysis was mainly focused on the transients in severe accident including core degradation and relocation,molten pool formation,growth and heat transfer within,together with external flow and heat transfer analysis. MELCOR calculations for lower head heat flux were then compared with critical heat flux (CHF)of lower head to assess the effectiveness of IVR-ERVC. The results suggest that lower head heat flux is well below the CHF value. Thus,the IVR-ERVC strategy is considered to be physically effective.

  4. Radioactive materials transport accident analysis

    McSweeney, T.I.; Maheras, S.J.; Ross, S.B. [Battelle Memorial Inst. (United States)

    2004-07-01

    Over the last 25 years, one of the major issues raised regarding radioactive material transportation has been the risk of severe accidents. While numerous studies have shown that traffic fatalities dominate the risk, modeling the risk of severe accidents has remained one of the most difficult analysis problems. This paper will show how models that were developed for nuclear spent fuel transport accident analysis can be adopted to obtain estimates of release fractions for other types of radioactive material such as vitrified highlevel radioactive waste. The paper will also show how some experimental results from fire experiments involving low level waste packaging can be used in modeling transport accident analysis with this waste form. The results of the analysis enable an analyst to clearly show the differences in the release fractions as a function of accident severity. The paper will also show that by placing the data in a database such as ACCESS trademark, it is possible to obtain risk measures for transporting the waste forms along proposed routes from the generator site to potential final disposal sites.

  5. 概率安全评价在CPR1000机组严重事故预防与缓解措施分析中的应用%Application of Probabilistic Safety Assessment in CPR1000 Severe Accident Prevention and Mitigation Analysis

    刘萍萍; 张宁

    2011-01-01

    The relationship between probabilistic safety assessment (PSA) and severe accident study was discussed. Also how to apply PSA in severe accident prevention and mitigation was elaborated. PSA can find the plant vulnerabilities of severe accidents prevention and mitigation. Some modifications or improvements focusing on these vulnerabilities can be put forward. PSA also can assess the efficient of these actions for decision-making. According to CPR1000 unit severe accident analysis, an example for the process and method on how to use PSA to enhance the ability to deal with severe accident prevention and mitigation was set forth.%文章阐述了概率安全评价(PSA)与严重事故分析之间的关系,介绍了PSA在严重事故预防与缓解措施分析中的应用过程与方法,通过PSA分析,发现了核电厂严重事故预防与缓解的薄弱环节,提出相应的改进措施,并从核安全风险角度对这些措施的有效性进行评价.文章结合CPR1000机组严重事故预防与缓解措施的研究,说明了PSA在严重事故研究中的应用.

  6. Research progress on assessment of reactor vessel integrity under severe accident conditions%严重事故条件下压力容器完整性评价的研究进展

    文青龙; 陈军; 卢冬华; 赵华

    2011-01-01

    堆芯熔融物堆内滞留(In-Vessel Retention,IVR)是以AP1000为代表的第三代轻水反应堆严重事故管理的重要策略之一,也是严重事故条件下保证压力容器完整性(Reactor Vessel Integrity,RVI)的典型方法之一.该文综述了国外在严重事故条件下压力容器完整性试验研究和理论分析的现状,总结了相关的试验装置、试验方法以及基于试验数据拟合得到的经验关联式,评价了严重事故条件下压力容器完整性数值分析的工具和方法,以第三代压水堆热工水力技术为工程背景,探讨了严重事故条件下压力容器完整性热工水力基础研究的方向.%As a representative method of reactor vessel integrity (RVI) under severe accident conditions, In-vessel retention of molten core debris (IVR) is an important severe accident management strategy employed in the API000 generation-3 Pressuried Water Reactor. In this paper, research progress on the test and theoretical analysis based on RVI is reviewed. Test facilities and techniques, as well as the modeling are summarized. In addition, tools for numerical simulation for RVI are evaluated. Finally, based on the applications in thermal hydraulic technology for the generation-3 Pressuried Water Reactor in China, the potential research direction of thermal-hydraulics under RVI conditions are discussed.

  7. Development of A Compact Severe Accident Simulator for PWR Nuclear Power Plants%压水堆核电站严重事故紧凑型仿真机开发

    唐钢; 张森如; 江光明; 傅霄华

    2001-01-01

    为了缓解压水堆核电站可能发生的严重事故的后果,也为了满足安全分析工程师和概率风险评价人员的需求,并在与国际原子能机构合作框架协议内,研制开发了紧凑型的严重事故仿真分析机 MELSIM-PC。该仿真系统主要由仿真核心程序、同步通讯程序、人机界面程序等几个部分组成,可以工作在一台普通的微型计算机上,成功地实现 MELCOR程序变量的运行数据库管理、电站动态图形显示、仿真计算控制、再启动和仿真重演等重要功能。%In order to alleviate the consequence of a possible severe accident in PWR Nuclear Power Plants and in response to the demands of safety analysis engineers and Probabilistic Safety Assessment(PSA) specialists,a compact severe accident simulator has been developed under an IAEA TC project.The PC-based simulator consists of the database engine MELCOR code,the man-machine interface modules MANAGER & DISPLAY,the communication module SERVER and the supplementary modules.It can be used successfully to realize some very important functions,such as the variable database management of MELCOR code,the plant mimic screens,simulation computation control,restart and replay,etc.

  8. Hydrogen Concentration Distribution Simulation During Severe Accidents in Pressurizer Relief Tank Compartment of NPP Containment%严重事故下安全壳卸压箱隔间氢气浓度场模拟

    郭强; 陈耀东

    2012-01-01

    根据MELCOR程序对全厂断电诱发的严重事故下安全壳内各隔间的氢气浓度分布的计算结果,参考美国联邦法规关于氢气控制和风险分析的标准,分析安全壳内氢气的燃烧风险.结果表明:安全壳内平均氢气浓度不会导致整体性氢气燃烧,但存在局部燃烧的风险.通过CFD程序对氢气浓度较高的卸压箱隔间进行氢气释放和空间气体流动过程的模拟,得到更细致的卸压箱隔间内氢气浓度场分布,给出氢气聚集区域的准确位置,为采取严重事故缓解措施,设计氢复合器布置方案提供了参考依据.%Based on the analysis by MELCOR for hydrogen concentration distributions in compartments of NPP containment during severe accidents which is induced by station blackout, the hydrogen combustion risk was investigated. According to the hydrogen control and risk analysis standard of US, the results show that the average hydrogen concentration will not bring on global deflagration, but local deflagration may occur. By application of CFD code, further simulation of hydrogen release and flow process in pressurizer relief tank compartment was performed. More details of hydrogen distribution and hydrogen accumulation zone were showed. Through the results, some insights were given as references for severe accident mitigation measures and hydrogen recombines arrangement design.

  9. Fukushima accident study using MELCOR

    Randall O Gauntt

    2013-01-01

    The accidents at the Fukushima Daiichi nuclear power station stunned the world as the sequences played out over severals days and videos of hydrogen explosions were televised as they took place.The accidents all resulted in severe damage to the reactor cores and releases of radioactivity to the environment despite heroic measures had taken by the operating personnel.The following paper provides some background into the development of these accidents and their root causes,chief among them,the prolonged station blackout conditions that isolated the reactors from their ultimate heat sink — the ocean.The interpretations given in this paper are summarized from a recently completed report funded by the United States Department of Energy (USDOE).

  10. Performance of the primary containment of a BWR during a severe accident whit the code RELAP/SCDAPSIM; Comportamiento del contenedor primario de un reactor BWR durante un accidente severo con el codigo RELAP/SCDAPSIM

    Castillo G, F.

    2015-07-01

    In this thesis work, it was developed a model of the vacuum breaker valves and down comers for a BWR Mark II primary containment for the code RELAP/SCDAPSIM Mod. 3.4. This code was used to simulate a Station Blackout (Sbo) that evolves to a severe accident scenario. To accomplish this task, the vacuum breaker valves and down comers were included in a simplified model of the primary containment that includes both wet well and dry well, which was coupled with a model of the Nuclear Steam Supply System (NSSS), in order to study the behavior of the primary containment during the evolution of the accident scenario. In the analysis of the results of the simulation, the behavior of the wet well and dry well during the event was particularly monitored, by analyzing the evolution of temperature and pressure profiles in such volumes, this to determine the impact of the inclusion of the breaker vacuum valves and down comers. The results show that the effect of this extension of the model is that more conservative results are obtained, i.e., higher pressures are reached in both wet well and dry well than when it is used a containment model that does not include neither the vacuum valves nor the down comers. The most relevant results obtained show that the Rcic alone is able to keep the core fully covered, but even in such a case, it evaporates about 15% of the initial inventory of liquid water in the Pressure Suppression Pool (Psp). When the Rcic operation is lost, 20% more of the liquid water inventory in the Psp is further reduced within four to twelve hours (approximately), time at which the simulation crashed. Besides, there is a significant increase of pressure in the containment. As the accident evolves, the pressure in the containment continues increasing, but there is still considerable margin to reach the design pressure of the containment. At the end of the simulation, the results show a gauge pressure value of 224,550 Pa in the Psp and 187,482 Pa in the wet well

  11. Characterizing the Severe Turbulence Environments Associated With Commercial Aviation Accidents: A Real-Time Turbulence Model (RTTM) Designed for the Operational Prediction of Hazardous Aviation Turbulence Environments

    Kaplan, Michael L.; Lux, Kevin M.; Cetola, Jeffrey D.; Huffman, Allan W.; Riordan, Allen J.; Slusser, Sarah W.; Lin, Yuh-Lang; Charney, Joseph J.; Waight, Kenneth T.

    2004-01-01

    Real-time prediction of environments predisposed to producing moderate-severe aviation turbulence is studied. We describe the numerical model and its postprocessing system designed for said prediction of environments predisposed to severe aviation turbulence as well as presenting numerous examples of its utility. The numerical model is MASS version 5.13, which is integrated over three different grid matrices in real time on a university work station in support of NASA Langley Research Center s B-757 turbulence research flight missions. The postprocessing system includes several turbulence-related products, including four turbulence forecasting indices, winds, streamlines, turbulence kinetic energy, and Richardson numbers. Additionally, there are convective products including precipitation, cloud height, cloud mass fluxes, lifted index, and K-index. Furthermore, soundings, sounding parameters, and Froude number plots are also provided. The horizontal cross-section plot products are provided from 16 000 to 46 000 ft in 2000-ft intervals. Products are available every 3 hours at the 60- and 30-km grid interval and every 1.5 hours at the 15-km grid interval. The model is initialized from the NWS ETA analyses and integrated two times a day.

  12. Source Term Analysis in Severe Accident Induced by Large Break Loss of Coolant Accident Coincident With Ship Blackout for Ship Reactor%船用堆大破口失水叠加全船断电严重事故源项分析

    张彦招; 张帆; 赵新文; 郑映峰

    2013-01-01

    以某船用压水堆为研究对象,采用M ELCOR程序建立事故分析模型,研究大破口失水事故叠加全船断电严重事故下放射性裂变产物的行为,着重分析了惰性气体和CsI的释放、迁移、滞留特点及在堆舱内的分布。结果表明,83.12%惰性气体从堆芯释放出来,并主要存在于堆舱的气空间;83.08%的CsI从堆芯释放出来,其中,72.66%滞留在堆坑熔融物与一回路内,27.34%释放到堆舱内,并主要溶解于舱底水池中。本文分析结果可为舱室剂量评估、核应急管理提供依据。%Using MELCOR code ,the accident analysis model was established for a ship reactor .The behaviors of radioactive fission products were analyzed in the case of severe accident induced by large break loss of coolant accident coincident with ship blackout . The research mainly focused on the behaviors of release ,transport ,retention and the final distribution of inert gas and CsI . T he results show that 83.12% of inert gas releases from the core , and the most of inert gas exists in the containment . About 83.08% of CsI release from the core ,72.66% of w hich is detained in the debris and the primary system ,and 27.34% releases into the containment . The results can give a reference for the evaluation of cabin dose and nuclear emergency management .

  13. The case for research into the zero accident vision

    Zwetsloot, G.I.J.M.; Aaltonen, M.; Wybo,J.L.; Saari, J.; Kines, P.; Beeck, R. op de

    2013-01-01

    This discussion paper is written out of a concern. We noticed that many companies with a good safety reputation have adopted a zero accident vision, yet there is very little scientific research in this field. The zero accident vision addresses the accidents causing deaths and severe injuries among c

  14. Road characteristics and bicycle accidents.

    Nyberg, P; Björnstig, U; Bygren, L O

    1996-12-01

    In Umeå, Sweden, defects in the physical road surface contributed to nearly half of the single bicycle accidents. The total social cost of these injuries to people amount to at least SEK 20 million (SEK 60,000 or about USD 8,500 per accident), which corresponds to the estimated loss of "eight life equivalents a year". Improved winter maintenance seems to have the greatest injury prevention potential and would probably reduce the number of injuries considerably, whereas improved road quality and modification of kerbs would reduce the most severe injuries. A local traffic safety program should try to prevent road accidents instead of handling the consequences of them. In accordance with Parliament decisions on traffic we would like to see increased investment in measures favoring bicycle traffic, where cycling is seen as a solution, not as a problem.

  15. Analysis of Several ABS Accidents Based on Vehicle Road Test%基于整车道路测试的几次ABS事故分析

    张鹏程; 吴波勇; 安钟福; 李祥; 杨爱民; 薛家胜; 赵俊; 杨浩

    2014-01-01

    Several ABS test data was investigated, pointed out that the difference of wheel speed can lead to failure of ABS test. When left wheel speed was faster or slower than right wheel, vehicle would transverse sway and slip out from the initial lane. When rear wheel speed was slower than front wheel, the braking stability would be deteriorated and vehicle was prone to whipping. According to the test data and the subjective evaluation of driver, an evaluation method of road test and some suggestion were given out.%分析了几次ABS测试不合格的试验数据,指出轮速差异过大是造成ABS不合格的主要原因。主要体现为两方面:左右轮速差异对车辆横摆有不利影响,易造成车辆滑出规定的车道宽度;前后轮速差异中的后轮过度制动则会恶化车辆的制动稳定性,易造成甩尾等严重事故。根据积累的各种数据和驾驶员主观感受,提出整车道路测试时的风险评估方法,并给出几起ABS不合格的改进建议。

  16. Development of a severe accident module of a nuclear power plant based in the MELCOR nuclear code and its incorporation to the room simulator; Desarrollo del modulo de accidentes severos de una central nucleoelectrica basado en el codigo nuclear MELCOR y su incorporacion al simulador de aula

    Cortes M, F.S.; Ramos P, J.C.; Nelson E, P.; Chavez M, C. [Facultad de Ingenieria, Division de Ingenieria Electrica, Grupo de Ingenieria Nuclear, UNAM, Ciudad Universitaria, Distrito Federal (Mexico)]. E-mail: samuelcortes@correo.unam.mx

    2004-07-01

    This work describes the development of the Severe Accidents Module (MAS) based on the Code MELCOR and its incorporation to the Simulator of Classroom of the Group of Nuclear Engineering of the Engineering Faculty (GrINFI) of the National Autonomous University of Mexico (UNAM). The module of Severe Accidents has the purpose of counting with installed and operational capacity for the simulation of accident sequences with capacitation purposes, training, analysis and design. A shallow description of SimAula is presented, and the philosophy used to obtain the interactive version of MELCOR are discussed, as well as its implementation in the atmosphere of SimAula. Finally, after confirming the correct operation of the development of the tool, some possible topics are discussed for specific applications of the MAS. (Author)

  17. Severe accident research in the core degradation area: An example of effective international cooperation between the European Union (EU) and the Commonwealth of Independent States (CIS) by the International Science and Technology Center

    Bottomley, D., E-mail: paul.bottomley@ec.europa.eu [ITU Institut fuer Transurane, PO box 2340, 76125 Karlsruhe (Germany); Stuckert, J.; Hofmann, P. [KIT Campus Nord, Hermann-von-Helmholtz Pl. 1, 76344 Eggenstein-Leopoldshafen (Germany); Tocheny, L. [ISTC Krasnoproletarskaya 32-34, PO Box 20, 127473 Moscow (Russian Federation); Hugon, M. [European Commission DG - Research and Tech. Development, Sq. de Meeus, B-1049 Brussels (Belgium); Journeau, C. [CEA, DEN, Cadarache, F13108 St Paul lez Durance (France); Clement, B. [IRSN PSN-RES/SAG Cadarache, BP3 F13115, St Paul lez Durance (France); Weber, S. [GRS Muenchen, Thermal Hydraulics Div., Garching 85748,Germany (Germany); Guentay, S. [PSI NES/LTH OHSA C11, 5232 Villigen (Switzerland); Hozer, Z. [AEKI Fuel Department, P.O. Box 49, Budapest H-1525 (Hungary); Herranz, L. [CIEMAT, Energy -Nuclear Fission Division, Complutense 40, 28040 Madrid (Spain); Schumm, A. [EDF - R and D, SINETICS, Avenue du General de Gaulle 1, Clamart 92140 (France); Oriolo, F. [Pisa University, Ing. Mecc. Nucl. Prod., Largo Lazarino 2, Pisa 56126 (Italy); Altstadt, E. [HZDR Structural Matls, Rossendorf, Postfach 51 01 19, 01314 Dresden (Germany); Krause, M. [AECL - Reactor Safety, Chalk River, Ontario, Canada K0J 1J0 (Canada); Fischer, M. [AREVA NP GMBH, Dept. PEPA-G, 91058 Erlangen (Germany); Khabensky, V.B. [Alexandrov Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Bechta, S.V. [Kungliga Tekniska Hoegskolan (KTH), AlbaNova University Centre, Roslagstullsbacken 21, SE-106 91 Stockholm (Sweden); Veshchunov, M.S. [Nuclear Safety Institute (IBRAE), Russian Academy of Sciences, 52 B. Tulskaya, Moscow 115191 (Russian Federation); Palagin, A.V. [KIT Campus Nord, Hermann-von-Helmholtz Pl. 1, 76344 Eggenstein-Leopoldshafen (Germany); and others

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer ISTC supported successful nuclear safety projects between EU and Russian institutes. Black-Right-Pointing-Pointer Two-tier project monitoring has proved to be very successful and flexible. Black-Right-Pointing-Pointer Examples are reactor degradation, corium steel corrosion, and corium thermodynamics. - Abstract: The International Science and Technology Center (ISTC) was set up in Moscow to support non-proliferation of sensitive knowledge and technologies in biological, chemical and nuclear domains by engaging scientists in peaceful research programmes with a broad international cooperation. The paper has two following objectives: Bullet to describe the organization of complex, international, experimental and analytical research of material processes under extreme conditions similar to those of severe accidents in nuclear reactors and, Bullet to inform briefly about some results of these studies. The main forms of ISTC activity are Research Projects and Supporting Programs. In the Research Projects informal contact expert groups (CEGs) were set up by ISTC to improve coordination between adjacent projects and to encourage international collaboration. The European Commission was the first to use this. The CEG members - experts from the national institutes and industry - evaluated and managed the projects' scientific results from initial stage of proposal formulation until the final reporting. They were often involved directly in the project's details by joining the Steering Committees of the project. The Contact Expert Group for Severe Accidents and Management (CEG-SAM) is one of these groups, five project groups from this area from the total of 30 funded projects during 10 years of activity are detailed to demonstrate this: (1) QUENCH-VVER from RIAR, Dimitrovgrad and IBRAE, Moscow, and PARAMETER projects (SF1-SF4) from LUCH, Podolsk and IBRAE, Moscow; these concerned a detailed study of bundle quenching from high

  18. Water Reflooding Effectiveness Assessment for 1 000 MWe PWR under Severe Accident Condition%百万千瓦级压水堆严重事故后再注水的有效性评价

    胡啸; 黄挺; 裴杰; 陈炼

    2015-01-01

    根据现有的设计资料,使用一体化严重事故分析程序 MELCOR1.8.6建立了核电厂一、二回路系统,非能动堆芯冷却系统和安全壳系统的模型,并模拟冷段2英寸(5.08 cm)小破口叠加重力注入失效的严重事故发生后,将冷却剂注入堆芯的情形,分析其对严重事故进程的缓解能力。本文选取3个严重事故的不同阶段,将冷却剂分别以小流量(10 kg/s)、中流量(50 kg/s)和大流量(200 kg/s)的速率注入堆芯,通过比较氢气产生量、堆芯放射性产生量及堆芯温度等数据来评估在严重事故不同阶段再注水的可行性。结果表明:在堆芯损伤初期,可认为10 kg/s以上的流量足以冷却百万千瓦级事故安全。而当严重事故发展到堆芯开始坍塌阶段,200 kg/s的注水流量可认为是基本可行的,而小于此流量的注水应慎重考虑。%The MELCOR1.8.6 code was applied to a severe accident model of a 1 000 MWe PWR which includes primary system,secondary system,passive core cool-ing system and containment system.For the transient case,a small break LOCA with 2 inch (5.08 cm)break at the cold leg concurrent with failure of gravity injection was selected.After the core was damaged due to the failure of gravity inj ection,it was assumed that the coolant was inj ected into the pressure vessel,and then the water reflooding effectiveness was evaluated and analyzed.In this calculation,the coolant injection into reactor core with the small (10 kg/s),medium (50 kg/s)and large (200 kg/s)mass flow rates respectively at 3 different time stages of the severe accident was simulated.The effectiveness of water reflooding was assessed through hydrogen production,radioactive materials released from core,and core temperature.The results show that the mass flow rate above 10 kg/s is believed to be efficient for cooling a 1 000 MWe reactor at the beginning of core damage.However,with the accident devel-oping to core relocation,a large mass flow

  19. Decision Tree Model for Non-Fatal Road Accident Injury

    Fatin Ellisya Sapri

    2017-02-01

    Full Text Available Non-fatal road accident injury has become a great concern as it is associated with injury and sometimes leads to the disability of the victims. Hence, this study aims to develop a model that explains the factors that contribute to non-fatal road accident injury severity. A sample data of 350 non-fatal road accident cases of the year 2016 were obtained from Kota Bharu District Police Headquarters, Kelantan. The explanatory variables include road geometry, collision type, accident time, accident causes, vehicle type, age, airbag, and gender. The predictive data mining techniques of decision tree model and multinomial logistic regression were used to model non-fatal road accident injury severity. Based on accuracy rate, decision tree with CART algorithm was found to be more accurate as compared to the logistic regression model. The factors that significantly contribute to non-fatal traffic crashes injury severity are accident cause, road geometry, vehicle type, age and collision type.

  20. [Clinical examinations for the traffic accident patients].

    Hitosugi, Masahito

    2008-11-30

    Traffic accident is a leading cause of unintentional death and about six-thousands annually died in Japan. As about one-million of persons suffer from traffic injuries, most of them seek medical attention. Therefore, medical staffs have to find the injuries accurately and treat immediately. Furthermore, the cause of accident should also be considered; why the accident was occurred, human error of the driver? To solve these problems, clinical examinations were needed. Medical staffs have to understand the characteristics of the traffic injuries: severe and multiple blunt injuries, popular injuries can be estimated with considering the pattern of the accident. Because some of the accidents are occurred when the driver is under the influence of alcohol and other drugs, screening of these subjects should be performed. Because the public is largely unaware of the preventable nature of traffic injuries, in addition to diagnose and treat accurately, we medical staffs have to attend on the primary prevention of the traffic injuries.

  1. EPR Containment Radiation Shielding Calculation in Case of Severe Accident%EPR堆芯严重事故下安全壳内的辐射屏蔽计算

    曾君; 刘书焕; 翟良

    2012-01-01

    By using MCNP code,containment radiation levels of EPR could be calculated in a way of particle transport or diffusion equation.An accurate 3D model of EPR was built based on MCNP Version 5 and its nuclear databases CCC-710 in this paper.The γ-ray dose rate of EPR containment in case of severe accident were performed,which can also provide information for core damage judgment and response to the nuclear emergency.%MCNP程序可以从粒子输运、扩散方程的角度来模拟计算堆芯在严重事故下安全壳内的辐射剂量水平。文章以EPR堆芯为例,采用MCNP 5程序及其核数据库CCC-710建立了精确的三维蒙特卡罗模型,在此基础上对EPR严重事故下安全壳内的辐射剂量率进行了计算分析,为判断堆芯情况和制定应急防护行动提供了数据参考。

  2. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Numerical simulation of fundamental process of vapor explosion using particle method. JAERI's nuclear research promotion program, H10-027-5. Contract research

    Koshizuka, Seiichi; Ikeda, Hirokazu; Liu, Jie; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokai, Ibaraki (Japan)

    2002-03-01

    A vapor explosion may happen when the hot liquid of the molten core contacts with the cold fluid of the coolant in severe accidents. Water jet impingement on a molten tin drop, which appears at collapse of a vapor film surrounding the hot drop, is analyzed in three dimensions using a particle method to investigate the fundamental processes is vapor explosions. As the result, the melt is extruded from the drop like filaments, which is the same behavior observed in the X-ray photographs obtained by Ciccarelli and Frost. Rapid boiling caused by spontaneous nucleation is necessary for strong fragmentation as shown in the X-ray photographs. In the case of the molten core, the interface temperature falls below the solidification temperature after direct contact with the water jets. Therefore, the rapid fragmentation is unlikely and a strong vapor explosion is unlikely as well. A one-dimensional code for propagation of pressure waves is developed. A spontaneous nucleation model is employed for thermal fragmentation. A one-dimensional test calculation of propagation of a pressure wave is carried out. The present result agrees with the past calculations in references. (author)

  3. MELCOR analysis of the TMI-2 accident

    Boucheron, E.A.

    1990-01-01

    This paper describes the analysis of the Three Mile Island-2 (TMI-2) standard problem that was performed with MELCOR. The MELCOR computer code is being developed by Sandia National Laboratories for the Nuclear Regulatory Commission for the purpose of analyzing severe accident in nuclear power plants. The primary role of MELCOR is to provide realistic predictions of severe accident phenomena and the radiological source team. The analysis of the TMI-2 standard problem allowed for comparison of the model predictions in MELCOR to plant data and to the results of more mechanistic analyses. This exercise was, therefore valuable for verifying and assessing the models in the code. The major trends in the TMI-2 accident are reasonably well predicted with MELCOR, even with its simplified modeling. Comparison of the calculated and measured results is presented and, based on this comparison, conclusions can be drawn concerning the applicability of MELCOR to severe accident analysis. 5 refs., 10 figs., 3 tabs.

  4. APRI-6. Accident Phenomena of Risk Importance

    Garis, Ninos; Ljung, J (eds.) (Swedish Radiation Safety Authority, Stockholm (Sweden)); Agrenius, Lennart (ed.) (Agrenius Ingenjoersbyraa AB, Stockholm (Sweden))

    2009-06-15

    Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident.

  5. Iodine chemistry at severe accidents. A review and evaluation of the state-of-the-art in the field. APRI 5 report. Part I: Iodine chemistry at hypothetical severe accidents. A review of the state-of-the-art 2003. Part II: A comparison of our knowledge on iodine chemistry and fission products with the current models used in MAAP 4.0.5; Jodkemi under svaara haverier. En sammanstaellnig och vaerdering av kunskapslaeget inom omraadet. APRI 5 rapport. Del I: Jodkemi vid hypotetiska svaara haverier. En genomgaang av kunskapslaeget aar 2003. Del II: Jaemfoerelse av kunskapslaeget om jodkemi och fissionsprodukter med aktuella modeller i MAAP 4.0.5

    Liljenzin, Jan-Olov [Liljenzins data och kemikonsult, Goeteborg (Sweden)

    2005-01-01

    The current report tries to summarize and analyze the state-of-the-art on Iodine chemistry relevant to the conditions expected during severe accidents in nuclear power plants. This has made it necessary to compare a considerable amount of data, new as well as old, in order to try to find the reasons behind some changes in the expected chemical behaviour of Iodine. In a few cases this has been far from simple. Many numerical values are given in this report. However, me numbers given should not be used in a non-critical way because they are often deduced from measurements whose interpretation depends on various kinds of systematic differences and assumptions with regard to technique, 'known' constants, and models applied. The most important observation today is that one can no longer uncritically assume that iodine is only released and transported as cesium iodide. The considerable effect that control rod material (including other construction materials) can have on the way in which an accident develops and on its iodine chemistry is clearly seen from the results of the experiments performed within the PHEBUS FP project. The second part of the report evaluates new knowledge on Iodine chemistry and Iodine behaviour of importance in severe nuclear reactor accidents. Also some new information regarding the behaviour and chemistry of other fission products has been collected. In the light of this information, the current modelling of Iodine behaviour in the MAAP code version 4.0.5 has been investigated. No modelling errors have been found. However, some of the equations used to calculate the vapour pressure of the components in the AlC-alloy used in PWR control rods give questionable results. An error in the MAAP manual was found which should be corrected. Finally, some suggestions are given for future improvements in the modelling of severe accidents used in MAAP for both BWRs and PWRs.

  6. Laser accidents: Being Prepared

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  7. [Accidents with the "paraglider"].

    Lang, T H; Dengg, C; Gabl, M

    1988-09-01

    With a collective of 46 patients we show the details and kinds of accidents caused by paragliding. The base for the casuistry of the accidents was a questionnaire which was answered by most of the injured persons. These were questions about the theoretical and practical training, the course of the flight during the different phases, and the subjective point of view of the course of the accident. The patterns of the injuries showed a high incidence of injuries of the spinal column and high risks for the ankles. At the end, we give some advice how to prevent these accidents.

  8. Severe Accident Simulation and Analysis for Fukushima NPS Unit 3%福岛核电厂3号机组严重事故模拟分析

    陈耀东; 周拥辉; 石俊英; 柴国旱

    2012-01-01

    In the paper the simulation of severe accident progression within first 3 days for Fukushima Daiichi NPP unit 3 was performed with application of MELCOR code. The detailed modeling of the whole plant system was made to achieve it. The resulted parameters were compared with those monitored. The major physical phenomena from the accident initiation to reactor core degradation until hydrogen explosion were reproduced in simulation. The simulation results based on assumption as defined agree well with those measured. The results indicate that the reactor water level drops down to top of core active part at 36 h since the earthquake. Operators fail to depressurize the containment and reactor at an earlier time, by the time water injection into reactor through fire pump, the core claddings are already severely oxidized, and ruptures of claddings bring up release of volatile fission product at 40. 7 h. Suspended supply of fire pump water (55. 5-63. 2 h) leads to further degradation and relocation of core materials. Upon slumping of debris into lower plenum, more H2 from Zr-water (or metal-water) reaction releases and accumulates over upper space of reactor building, finally results in H2 detonation; up to 72 h,around 50% of zircalloy is oxidized, and the lower head of RPV is intact from rupture.%本文应用MELCOR程序,通过建立全厂详细的模型,对福岛第一核电厂3号机组在地震发生后3d内的严重事故进程进行了模拟分析并与电厂实测数据进行了比较,再现了从事故开始到堆芯失效坍塌直至氢气爆炸在内的主要严重事故现象.基于文中假设的模拟计算得到的趋势与电厂现有实测数据较为一致,结果表明:地震发生后约36 h反应堆水位降至堆芯活性区顶部.操纵员未能及时成功对安全壳和反应堆进行快速卸压,以在堆芯底部出现裸露前向反应堆补充冷却水,使得堆芯出现严重的锆水反应,大部分燃料包壳已破损而导致易挥发的放

  9. 内陆核电厂严重事故时放射性烟羽造成水源污染的估算%Estimation of Water Pollution by Domestic In-land Nuclear Power Plant under Severe Accident

    李红; 方晟; 方栋

    2013-01-01

    针对内陆核电厂周围人口稠密、濒临大型水体的特点,给出了核电厂严重事故时放射性烟羽释放造成水源污染的可能情景和有关的计算模式,并对假想的位于南方滨湖(库)厂址进行计算.结果表明,事故释放后,干湿沉积和地面径流途径对核电厂周围水体造成的放射性污染短时间的核素浓度远高于GB 18871-2002规定的食品通用行动水平,对公众所致的剂量是不可接受的.%In-land nuclear power plant sites of China are usually located in densely populated area and are close to large surface water.This paper proposed scenarios and corresponding calculation models for water contamination caused by radioactive plume release after a severe accident.The models were applied to an imaginary lake (reservoir)-adjacent site in the south of China.The results showed that,the shorttime concentration of radioactivity in the lake due to dry and wet deposition and runoff was higher than the generic action levels for foodstuffs in GB 18871-2002,and the public dose resulted was unacceptable.

  10. 核电厂严重事故下卸压对氢气产生的影响分析%Effect of Depressurization on Hydrogen Generation During Severe Accident in PWR Nuclear Power Plant

    陶俊; 李京喜; 佟立丽; 曹学武

    2011-01-01

    研究了1 000 MWe压水堆核电厂在典型的高压严重事故序列下卸压对氢气产生的影响.分析结果表明,开启1列、2列和3列卸压阀进行一回路卸压均会在堆芯熔化进程的3个阶段导致氢气产生率的明显增大:1)堆芯温度1 500~2 100 K;2)堆芯温度2 500~2 800 K;3)从形成由硬壳包容的熔融池(2 800 K)到熔融物向压力容器下封头下落.开启卸压阀的列数越多,氢气产生率的增大越明显.%The effect of depressurization on hydrogen generation during a typical high pressure severe accident sequence in a 1 000 MWe pressurized water reactor (PWR) nuclear power plant was analyzed. Analyses results indicate that the hydrogen generation rate is obviously increased by the reactor coolant system depressurization of opening one, two or three power operated relief valves (PORVs) at three core damage states.The first is peak core temperature from 1 500 K to 2 100 K. The second is peak core temperature from 2 500 K to 2 800 K. The third is from formation of molten pool supported by crust to slumping of molten materials into reactor pressure vessel lower head.The more PORVs are opened the more increment of hydrogen generation rate.

  11. Study on Natural Deposition of Fission Product Aerosol in Severe Accidents%严重事故下裂变产物气溶胶自然沉积现象研究

    黄高峰; 曹学武; 佟立丽

    2012-01-01

    以600 MW压水堆核电厂为研究对象,在一体化安全分析模型的基础上建立重力沉降、扩散电泳、惯性碰撞和热电泳4种裂变产物气溶胶的自然沉积模型,选取典型的严重事故序列,分析严重事故下裂变产物气溶胶的自然沉积现象.将MELCOR程序的重力沉降模型植入本文的一体化分析模型,对重力沉降份额进行比较.研究表明,重力沉降对气溶胶沉积的贡献最大;本文采用的重力沉降模型比MELCOR程序重力沉降模型的沉降效应稍强.%Aerosol natural deposition model of gravitational sedimentation, diffusionphoresis, inertial impaction and thermophoresis are established based on integrated safety analysis model for 600 MW pressurized water reactor. Typical severe accidents are chosen, and natural deposition phenomenon of fission product aerosol is analyzed. Additionally, gravitational sedimentation model of MELOCR is coupled into integrated safety analysis model, and fraction of gravitational sedimentation is compared. The results show that gravitational sedimentation is the most important deposition mechanism, and deposition effect of gravitational sedimentation model in this paper is stronger than MELCOR.

  12. Study of the ruthenium fission-product behavior in the containment, in the case of a nuclear reactor severe accident; Etude du comportement du produit de fission ruthenium dans l'enceinte de confinement d'un reacteur nucleaire, en cas d'accident grave

    Mun, Ch

    2007-03-15

    Ruthenium tetroxide is an extremely volatile and highly radio-toxic species. During a severe accident with air ingress in the reactor vessel, ruthenium oxides may reach the reactor containment building in significant quantities. Therefore, a better understanding of the RuO{sub 4}(g) behaviour in the containment atmosphere is of primary importance for the assessment of radiological consequences, in the case of potential releases of this species into the environment. A RuO{sub 4}(g) decomposition kinetic law was determined. Steam seems to play a catalytic role, as well as the presence of ruthenium dioxide deposits. The temperature is also a key parameter. The nature of the substrate, stainless steel or paint, did not exhibit any chemical affinities with RuO{sub 4}(g). This absence of reactivity was confirmed by XPS analyses, which indicate the presence of the same species in the Ru deposits surface layer whatever the substrates considered. It has been concluded that RuO{sub 4}(g) decomposition corresponds to a bulk gas phase decomposition. The ruthenium re-volatilization phenomenon under irradiation from Ru deposits was also highlighted. An oxidation kinetic law was determined. The increase of the temperature and the steam concentration promote significantly the oxidation reaction. The establishment of Ru behavioural laws allowed making a modelling of the Ru source term. The results of the reactor calculations indicate that the values obtained for {sup 106}Ru source term are closed to the reference value considered currently by the IRSN, for 900 MWe PWR safety analysis. (author)

  13. An analysis of aircraft accidents involving fires

    Lucha, G. V.; Robertson, M. A.; Schooley, F. A.

    1975-01-01

    All U. S. Air Carrier accidents between 1963 and 1974 were studied to assess the extent of total personnel and aircraft damage which occurred in accidents and in accidents involving fire. Published accident reports and NTSB investigators' factual backup files were the primary sources of data. Although it was frequently not possible to assess the relative extent of fire-caused damage versus impact damage using the available data, the study established upper and lower bounds for deaths and damage due specifically to fire. In 12 years there were 122 accidents which involved airframe fires. Eighty-seven percent of the fires occurred after impact, and fuel leakage from ruptured tanks or severed lines was the most frequently cited cause. A cost analysis was performed for 300 serious accidents, including 92 serious accidents which involved fire. Personal injury costs were outside the scope of the cost analysis, but data on personnel injury judgements as well as settlements received from the CAB are included for reference.

  14. Road accidents and business cycles in Spain.

    Rodríguez-López, Jesús; Marrero, Gustavo A; González, Rosa Marina; Leal-Linares, Teresa

    2016-11-01

    This paper explores the causes behind the downturn in road accidents in Spain across the last decade. Possible causes are grouped into three categories: Institutional factors (a Penalty Point System, PPS, dating from 2006), technological factors (active safety and passive safety of vehicles), and macroeconomic factors (the Great recession starting in 2008, and an increase in fuel prices during the spring of 2008). The PPS has been blessed by incumbent authorities as responsible for the decline of road fatalities in Spain. Using cointegration techniques, the GDP growth rate, the fuel price, the PPS, and technological items embedded in motor vehicles appear to be statistically significantly related with accidents. Importantly, PPS is found to be significant in reducing fatal accidents. However, PPS is not significant for non-fatal accidents. In view of these results, we conclude that road accidents in Spain are very sensitive to the business cycle, and that the PPS influenced the severity (fatality) rather than the quantity of accidents in Spain. Importantly, technological items help explain a sizable fraction in accidents downturn, their effects dating back from the end of the nineties.

  15. Communication and industrial accidents

    As, Sicco van

    2001-01-01

    This paper deals with the influence of organizational communication on safety. Accidents are actually caused by individual mistakes. However the underlying causes of accidents are often organizational. As a link between these two levels - the organizational failures and mistakes - I suggest the conc

  16. Accidents - personal factors

    Zaitsev, S.L.; Tsygankov, A.V.

    1982-03-01

    This paper evaluates influence of selected personal factors on accident rate in underground coal mines in the USSR. Investigations show that so-called organizational factors cause from 80 to 85% of all accidents. About 70% of the organizational factors is associated with social, personal and economic features of personnel. Selected results of the investigations carried out in Donbass mines are discussed. Causes of miner dissatisfaction are reviewed: 14% is caused by unsatisfactory working conditions, 21% by repeated machine failures, 16% by forced labor during days off, 14% by unsatisfactory material supply, 16% by hard physical labor, 19% by other reasons. About 25% of miners injured during work accidents are characterized as highly professionally qualified with automatic reactions, and about 41% by medium qualifications. About 60% of accidents is caused by miners with less than a 3 year period of service. About 15% of accidents occurs during the first month after a miner has returned from a leave. More than 30% of accidents occurs on the first work day after a day or days off. Distribution of accidents is also presented: 19% of accidents occurs during the first 2 hours of a shift, 36% from the second to the fourth hour, and 45% occurs after the fourth hour and before the shift ends.

  17. Accident investigation and analysis

    Kampen, J. van; Drupsteen, L.

    2013-01-01

    Many organisations and companies take extensive proactive measures to identify, evaluate and reduce occupational risks. However, despite these efforts things still go wrong and unintended events occur. After a major incident or accident, conducting an accident investigation is generally the next ste

  18. Analysis of National Major Work Safety Accidents in China, 2003–2012

    YE, Yunfeng; ZHANG, Siheng; RAO, Jiaming; WANG, Haiqing; LI, Yang; WANG, Shengyong; DONG, Xiaomei

    2016-01-01

    Background: This study provides a national profile of major work safety accidents in China, which cause more than 10 fatalities per accident, intended to provide scientific basis for prevention measures and strategies to reduce major work safety accidents and deaths. Methods: Data from 2003–2012 Census of major work safety accidents were collected from State Administration of Work Safety System (SAWS). Published literature and statistical yearbook were also included to implement information. We analyzed the frequency of accidents and deaths, trend, geographic distribution and injury types. Additionally, we discussed the severity and urgency of emergency rescue by types of accidents. Results: A total of 877 major work safety accidents were reported, resulting in 16,795 deaths and 9,183 injuries. The numbers of accidents and deaths, mortality rate and incidence of major accidents have declined in recent years. The mortality rate and incidence was 0.71 and 1.20 per 106 populations in 2012, respectively. Transportation and mining contributed to the highest number of major accidents and deaths. Major aviation and railway accidents caused more casualties per incident, while collapse, machinery, electrical shock accidents and tailing dam accidents were the most severe situation that resulted in bigger proportion of death. Conclusion: Ten years’ major work safety accident data indicate that the frequency of accidents and number of eaths was declined and several safety concerns persist in some segments. PMID:27057515

  19. Ruthenium release from fuel in accident conditions

    Brillant, G.; Marchetto, C.; Plumecocq, W. [Inst. de Radioprotection et de Surete Nucleaire, DPAM, SEMIC, LETR and LIMSI, Saint-Paul-Lez-Durance (France)

    2010-07-01

    During a hypothetical nuclear power plant accident, fission products may be released from the fuel matrix and then reach the containment building and the environment. Ruthenium is a very hazardous fission product that can be highly and rapidly released in some accident scenarios. The impact of the atmosphere redox properties, temperature, and fuel burn-up on the ruthenium release is discussed. In order to improve the evaluation of the radiological impact by accident codes, a model of the ruthenium release from fuel is proposed using thermodynamic equilibrium calculations. In addition, a model of fuel oxidation under air is described. Finally, these models have been integrated in the ASTEC accident code and validation calculations have been performed on several experimental tests. (orig.)

  20. The epidemiology of bicyclist's collision accidents

    Larsen, L. B.

    1994-01-01

    of bicyclists and risk situations. The findings should make a basis for preventive programmes in order to decrease the number and severity of bicyclists collision accidents. Data from the emergency room in a 2 year period was combined with data from questionnaires. The study group consisted of 1021 bicyclists...... group of accidents were the collisions with the 'soft' road users (bicyclists, mopeds, and pedestrians) and another group were the collisions with the 'hard' road users (motor vehicles, motorcycles). Preventive measures have to be directed at both these groups of accidents. To decrease the number...... of collision accidents with motor vehicles it is necessary to separate the bicyclists from the 'hard road traffic' especially at crossings. Preventive measures must also be directed at the bicyclists. Information must be given to warn the bicyclists against the risks, not only for collisions with motor...

  1. [Prevention of bicycle accidents].

    Zwipp, H; Barthel, P; Bönninger, J; Bürkle, H; Hagemeister, C; Hannawald, L; Huhn, R; Kühn, M; Liers, H; Maier, R; Otte, D; Prokop, G; Seeck, A; Sturm, J; Unger, T

    2015-04-01

    For a very precise analysis of all injured bicyclists in Germany it would be important to have definitions for "severely injured", "seriously injured" and "critically injured". By this, e.g., two-thirds of surgically treated bicyclists who are not registered by the police could become available for a general analysis. Elderly bicyclists (> 60 years) are a minority (10 %) but represent a majority (50 %) of all fatalities. They profit most by wearing a helmet and would be less injured by using special bicycle bags, switching on their hearing aids and following all traffic rules. E-bikes are used more and more (145 % more in 2012 vs. 2011) with 600,000 at the end of 2011 and are increasingly involved in accidents but still have a lack of legislation. So even for pedelecs 45 with 500 W and a possible speed of 45 km/h there is still no legislative demand for the use of a protecting helmet. 96 % of all injured cyclists in Germany had more than 0.5 ‰ alcohol in their blood, 86 % more than 1.1 ‰ and 59 % more than 1.7 ‰. Fatalities are seen in 24.2 % of cases without any collision partner. Therefore the ADFC calls for a limit of 1.1 ‰. Some virtual studies conclude that integrated sensors in bicycle helmets which would interact with sensors in cars could prevent collisions or reduce the severity of injury by stopping the cars automatically. Integrated sensors in cars with opening angles of 180° enable about 93 % of all bicyclists to be detected leading to a high rate of injury avoidance and/or mitigation. Hanging lamps reduce with 35 % significantly bicycle accidents for children, traffic education for children and special trainings for elderly bicyclists are also recommended as prevention tools. As long as helmet use for bicyclists in Germany rates only 9 % on average and legislative orders for using a helmet will not be in force in the near future, coming up campaigns seem to be necessary to be promoted by the Deutscher

  2. Persistence of airline accidents.

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation.

  3. Accidents with sulfuric acid

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  4. 二代改进型核电厂严重事故下一回路卸压时机敏感性研究%Sensitivity Analysis on Time of Reactor Coolant System Depressurization under Severe Accident for Generation II+ Nuclear Power Plants

    种毅敏; 杨志义; 石雪垚; 张佳佳; 李春; 倪曼; 徐雨婷

    2015-01-01

    Reactor coolant system (RCS)depressurization is necessary measure for nuclear power plant to mitigate the severe accident,as well as a significant part of the severe accident management guidelines (SAMG).Difference may exist on the time of RCS depressurization in different NPPs.In this paper,based on MAAP4,the sensitivity analysis of time to implement RCS depressurization is performed.A typical integrated computer program,and different effects on mitigation of severe accident are compared.The simulation scenario is typical drill situation of generation II + NPPs,and conclusions can be reference for similar NPPs to implement severe accident management strategy.%一回路卸压是核电厂缓解严重事故的必要手段,也是严重事故管理导则(SAMG)的重要内容,国内核电厂严重事故管理中对一回路卸压的要求并不相同,本文基于典型二代改进型核电厂 SAMG 演练的场景,使用一体化计算程序 MAAP4,对一回路卸压时机进行敏感性分析,比较不同卸压时机对缓解严重事故效果的影响,所给出的结论可为相同类型核电厂制定严重事故管理策略时提供参考。

  5. [Multicenter paragliding accident study 1990].

    Lautenschlager, S; Karli, U; Matter, P

    1992-01-01

    During the period from 1.1.90 until 31.12.90, 86 injuries associated with paragliding were analyzed in a prospective study in 12 different Swiss hospitals with reference to causes, patterns, and frequencies. The injuries showed a mean score of over 2 and were classified as severe. Most frequent spine injuries (36%) and lesions of the lower extremity (35%) with a high risk of the ankles were diagnosed. One accident was fatal. 60% of the accidents happened during landing, 26% during launching and 14% during flight. Half of the pilots were affected during their primary training course. Most accidents were caused by inflight error of judgement--especially incorrect estimation of wind conditions--and further the choice of unfavourable landing sites. In contrast to previous injury-reports, only one equipment failure could be noted, but often the equipment was not corresponding with the experience and the weight of the pilot. To reduce the frequency of paragliding-injuries an accurate choice of equipment and an increased attention to environmental factors is mandatory. Furthermore an education-program regarding the attitude and intelligence of the pilot should be included in training courses.

  6. Boating Accident Statistics

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  7. 广西柳州市酒后驾驶致严重道路交通事故的现况分析%Analysis on status of severe traffic accidents induced by driving under the influence of alcohol in motor vehicle drivers in Liuzhou city in Guangxi

    殷凯; 佘桂松; 蒙进怀; 张俊华; 袁和; 李少旦; 赵红军

    2012-01-01

    目的 了解柳州市机动车驾驶员酒后驾驶行为在严重道路交通事故中的比例,为制定预防和控制酒后驾驶行为的政策和干预措施提供依据.方法 2007年1月1日至2007年6月30日,共发生严重道路交通事故100起,连续对所有导致至少有一人严重受伤或死亡的道路交通事故的机动车驾驶员(包括摩托车驾驶员)进行问卷调查和血液酒精含量测试.结果 酒后驾驶事故48起,事故主要发生在晚上21时至凌晨2时,共30起;以30~39岁为高发年龄,占46%;驾龄越长,酒后驾驶事故发生比例越高;非职业驾驶员发生酒后驾驶事故的比例高于职业驾驶员;摩托车驾驶员发生酒后驾驶事故的比例高于轿车驾驶员和客车驾驶员.结论 酒后驾驶是导致柳州市严重道路交通事故的最主要原因之一,必须采取广泛而有效的干预措施来降低酒后驾驶的发生率.%Objective To study and analysis the status of severe traffic accidents induced by driving under the influence (DUI) among drivers in Liuzhou city and provide reference for relative governmental policy and preventive measures for preventing and controlling driving under influence of alcohol and drunk driving.Methods The questionnaire was designed to investigate the motor vehicle drivers (including motorcycle drivers) in 100 cases of severe traffic accident including at least one person badly injured by DUI and drivers' blood alcohol concentration (BAC) were also tested and analyzed in Liuzhou city from January 1 of 2007 to June 30 of 2007.Results It was found that the constituent ratio of severe traffic accidents attributing to DUI was 48.00%,and the total accidents was 100 including 48 ones of DUI.The incidence rate of the traffic accidents induced by DUI from 21:00 to 03:00 of the next day was 62.5%,and group of aged 30 was accounting for 46%.The longer the age of driving was,the higher incident rate of traffic accidents by DUI was.Among alcohol

  8. Accidents with sulfuric acid

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  9. CURRENT FACTORS OF ROAD ACCIDENTS IN ISFAHAN

    B AMINMAN SOUR

    2000-06-01

    Full Text Available

    Introduction. Car accident mortality is the third order causes of death in the USA, following cardiovascular diseases and cancers. Given present survival and outcome Iranian data, more than 14,000 patients die annually in road accidents. Having a valid and reliable data could be useful in reduce mortality and morbidity reduction.
    Methods. Twenty five percent of total traumatic patients in Isfahan were selected (N=2809 at the time of study (1997-1998. Forty five percent of them with car accident were asked about causes of accidents and risk factors for the severity and type of injuries were recorded based on International Classification of Disease 10.
    Results. Most of the victims were young (10-20 years old, students and industrial workers. Statistically unreasonable numbers of cars without extension of roads and high ways, using old and unsafe cars will affects on accidents.
    Discussion. In comparison with European and some Asian countries, Iran has unacceptable road accidents and it seems necessary to pay more attention to stop the current increasing data.

     

  10. Risk-based Analysis of Construction Accidents in Iran During 2007-2011-Meta Analyze Study

    Mehran Amiri; Abdollah Ardeshir; Mohammad Hossein Fazel Zarandi

    2014-01-01

    Abstract Background The present study aimed to investigate the characteristics of occupational accidents and frequency and severity of work related accidents in the construction industry among Iranian insured workers during the years 20072011. Methods The Iranian Social Security Organization (ISSO) accident database containing 21,864 cases between the years 2007-2011 was applied in this study. In the next step, Total Accident Rate (TRA), Total Severity Index (TSI), and Risk Factor (RF) were d...

  11. Accidents in nuclear ships

    Oelgaard, P.L. [Risoe National Lab., Roskilde (Denmark)]|[Technical Univ. of Denmark, Lyngby (Denmark)

    1996-12-01

    This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events in considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10{sup -3} per ship reactor years. It if finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. It is emphasized that some of the information on which this report is based, may not be correct. Consequently some of the results of the assessments made may not be correct. (au).

  12. Prediction of vehicle traffic accidents using Bayesian networks

    Seyed Shamseddin Alizadeh

    2014-06-01

    Full Text Available Every year, thousands of vehicle accidents occur in Iran and result thousands of deaths, injuries and material damage in country. Various factors such as driver characteristics, road characteristics, vehicle characteristics and atmospheric conditions affect the injuries severity of these accidents. In order to reduce the number and severity of these accidents, their analysis and prediction is essential. Currently, the accidents related data are collected which can be used to predict and prevent them. New technologies have enabled humans to collect the large volume of data in continuous and regular ways. One of these methods is to use Bayesian networks. Using the literature review, in this study a new method for analysis and prediction of vehicle traffic accidents is presented. These networks can be used for classification of traffic accidents, hazardous locations of roads and factors affecting accidents severity. Using of the results of the analysis of these networks will help to reduce the number of accidents and their severity. In addition, we can use the results of this analysis for developing of safety regulations.

  13. Risks of potential accidents of nuclear power plants in Europe

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed

  14. Risks of potential accidents of nuclear power plants in Europe

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed o

  15. [Accidents of fulguration].

    Virenque, C; Laguerre, J

    1976-01-01

    Fulguration, first electric accident in which the man was a victim, is to day better known. A clap of thunder is decomposed in two elements: lightning, and thunder. Lightning is caused by an electrical discharge, either within a cloud, or between two clouds, or, above all, between a cloud and the surface of the ground. Experimental equipments owned by the French Electricity Company and by the Atomic Energy Commission, have allowed to photograph lightnings and to measure certain physical characteristics (Intensity variable between 25 to 100 kA, voltage variable between 20 to 1 000 kV). The frequency of storms was learned: the isokeraunic level, in France, is about 20, meaning that thunder is heard twenty days during one year. Man may be stricken by thunder by direct hit, by sudden bursting, by earth current, or through various conductors. The electric charge which reached him may go to the earth directly by contact with the ground or may dissipate in the air through a bony promontory (elbow). The total number of victims, "wounded" or deceased, is not now known by statistics. Death comes by insulation breakdown of one of several anatomic cephalic formations: skull, meninx, brain. Many various lesions may happen in survivors: loss of consciousness, more or less long, sensorial or motion deficiencies. All these signs are momentary and generally reversible. Besides one may observe much more intense lesions on the skin: burns and, over all, characteristic aborescence (skin effect by high frequency current). The heart is protected, contrarily to what happens with industrial electrocution. The curative treatment is merely symptomatic : reanimation, surgery for burns or associated traumatic lesions. A prevention is researched to help the lonely man, in the country or in the mountains in the houses (lightning conductor, Faraday cage), in vehicles (aircraft, cars, ships). The mysterious and unforseeable character of lightning still stays, leaving a door opened for numerous

  16. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    Budnitz, R.J. [Future Resources Associates, Inc., Berkeley, CA (United States); Davis, P.R. [PRD Consulting (United States); Ravindra, M.K.; Tong, W.H. [EQE International, Inc., Irvine, CA (United States)

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10{sup {minus}7}/year.

  17. An application of probabilistic safety assessment methods to model aircraft systems and accidents

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1998-08-01

    A case study modeling the thrust reverser system (TRS) in the context of the fatal accident of a Boeing 767 is presented to illustrate the application of Probabilistic Safety Assessment methods. A simplified risk model consisting of an event tree with supporting fault trees was developed to represent the progression of the accident, taking into account the interaction between the TRS and the operating crew during the accident, and the findings of the accident investigation. A feasible sequence of events leading to the fatal accident was identified. Several insights about the TRS and the accident were obtained by applying PSA methods. Changes proposed for the TRS also are discussed.

  18. Analysis of Maximum Reasonably Foreseeable Accidents for the Yucca Mountain Draft Environmental Impact Statement (DEIS)

    S.B. Ross; R.E. Best; S.J. Maheras; T.I. McSweeney

    2001-08-17

    Accidents could occur during the transportation of spent nuclear fuel and high-level radioactive waste. This paper describes the risks and consequences to the public from accidents that are highly unlikely but that could have severe consequences. The impact of these accidents would include those to a collective population and to hypothetical maximally exposed individuals (MEIs). This document discusses accidents with conditions that have a chance of occurring more often than 1 in 10 million times in a year, called ''maximum reasonably foreseeable accidents''. Accidents and conditions less likely than this are not considered to be reasonably foreseeable.

  19. [Drivers of advanced age in traffic accidents].

    Bilban, Marjan

    2002-12-01

    The elderly are vulnerable and potentially unpredictable active participants in traffic who deserve special attention. Longer life expectancy entails a greater number of senior drivers, that is, persons with various health problems and difficulties accompanying old age. At the turn of the millennium, the share of population aged 65 or more in Slovenia was around 13%, and in 25 years it will be near as much as 19%. The share of drivers from this age group was 28% a year ago, and it is expected to reach about 54%. Numerous studies have shown that there are many differences in driving attitude between the young and the elderly. The young are by large active victims, and their main offense and cause of accident is speeding, while the elderly are more passive and their main offense is ignoring and enforcing the right of way. This paper focuses on the differences in the occurrence and type of injuries between the young and the elderly drivers, based on an analysis of all road accidents in Slovenia in the period between 1998-2000. Older people (over 65) caused only 4.7% of all road accidents (16.7% of all accidents involving pedestrians, 11.5% of all involving cyclists, 2.7% involving motorcyclists and 5% of all accidents involving car drivers). Of all accidents, 89.3% were without injuries, and the fatal outcome was registered in 0.4% accidents. Among the elderly (65-74 years of age), however, this share was 1%, and rising to 2.7% with the age 75 and above. By calculating the weight index, which discriminates between minor and severe injuries, and the fatal outcome, it was established that age groups 65-74 and > or = 75 cause three and five times greater damage, respectively than age groups from 18 to 54 years. With years, psychophysical changes lead to a drop in driving ability, which in turn increases the risk of road accidents. It is true that elderly people cause less traffic accidents (and also drive less) than the young, but when they are involved in an accident

  20. Station Blackout Severe Accident Analysis of Spent Fuel Pool of 600 MWe NPP by Using MELCOR Code%用 MELCOR 程序分析600 MWe 核电厂乏燃料水池失去厂内外电源严重事故

    张应超; 季松涛; 魏严凇; 史晓磊; 许倩

    2016-01-01

    Using MELCOR code ,the spent fuel pool (SFP) of 600 MWe nuclear power plant (NPP) was modeled ,and the station blackout severe accidents were calculated when the SFP was under normal condition ,refuelling condition and the reactor accident condition .The calculation results show that fuel assemblies will melt down and hydro‐gen will generate ,due to zirconium‐water reaction ,after the half height of fuel assem‐blies is uncovered .The influence of injection or spray on SFP accidents was analysed , and the results show that SFP accidents will be terminated and the water level of SFP will return up before fuel cladding damage if water is injected or sprayed into the SFP with the boiling evaporation mass rate .%利用MELCOR程序建立了600 MWe核电厂乏燃料水池计算模型,分别计算了在正常储存、正常换料和反应堆事故工况下,乏燃料水池失去厂内外电源严重事故序列。计算结果表明,燃料组件大约裸露一半后,锆水反应导致燃料熔化并产生大量氢气。分析了喷淋和注水对乏燃料水池事故的影响,分析结果表明,在燃料包壳失效前,以沸腾蒸发速率注水或喷淋能中止事故发展,并能使乏燃料水池水位缓慢回升。

  1. Accidents due to falls from roof slabs

    Bruno Alves Rudelli

    Full Text Available CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%. Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%, and flying a kite was the most prevalent game (37.9%. In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  2. Road Traffic Accident Analysis of Ajmer City Using Remote Sensing and GIS Technology

    Bhalla, P.; Tripathi, S.; Palria, S.

    2014-12-01

    With advancement in technology, new and sophisticated models of vehicle are available and their numbers are increasing day by day. A traffic accident has multi-facet characteristics associated with it. In India 93% of crashes occur due to Human induced factor (wholly or partly). For proper traffic accident analysis use of GIS technology has become an inevitable tool. The traditional accident database is a summary spreadsheet format using codes and mileposts to denote location, type and severity of accidents. Geo-referenced accident database is location-referenced. It incorporates a GIS graphical interface with the accident information to allow for query searches on various accident attributes. Ajmer city, headquarter of Ajmer district, Rajasthan has been selected as the study area. According to Police records, 1531 accidents occur during 2009-2013. Maximum accident occurs in 2009 and the maximum death in 2013. Cars, jeeps, auto, pickup and tempo are mostly responsible for accidents and that the occurrence of accidents is mostly concentrated between 4PM to 10PM. GIS has proved to be a good tool for analyzing multifaceted nature of accidents. While road safety is a critical issue, yet it is handled in an adhoc manner. This Study is a demonstration of application of GIS for developing an efficient database on road accidents taking Ajmer City as a study. If such type of database is developed for other cities, a proper analysis of accidents can be undertaken and suitable management strategies for traffic regulation can be successfully proposed.

  3. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    S.O. Bader

    1999-10-18

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be

  4. Accidents involving off-road motor vehicles in a northern community.

    Hasselback, P; Wilding, H R

    1987-01-01

    The increasing number of accidents associated with off-road motor vehicles used for recreational purposes prompted this prospective study. During 1985 the records of victims of all motor vehicle accidents who were seen at the Hudson Bay Union Hospital, Hudson Bay, Sask., were studied; patients involved in on-road vehicle accidents were included for comparison. Emphasis was placed on age, vehicle type, mechanism of accident, injury severity and the use of safety features. Almost half of the vi...

  5. Development of Parameter Network for Accident Management Applications

    Pak, Sukyoung; Ahemd, Rizwan; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jung Taek; Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    When a severe accident happens, it is hard to obtain the necessary information to understand of internal status because of the failure or damage of instrumentation and control systems. We learned the lessons from Fukushima accident that internal instrumentation system should be secured and must have ability to react in serious conditions. While there might be a number of methods to reinforce the integrity of instrumentation systems, we focused on the use of redundant behavior of plant parameters without additional hardware installation. Specifically, the objective of this study is to estimate the replaced value which is able to identify internal status by using set of available signals when it is impossible to use instrumentation information in a severe accident, which is the continuation of the paper which was submitted at the last KNS meeting. The concept of the VPN was suggested to improve the quality of parameters particularly to be logged during severe accidents in NPPs using a software based approach, and quantize the importance of each parameter for further maintenance. In the future, we will continue to perform the same analysis to other accident scenarios and extend the spectrum of initial conditions so that we are able to get more sets of VPNs and ANN models to predict the behavior of accident scenarios. The suggested method has the uncertainty underlain in the analysis code for severe accidents. However, In case of failure to the safety critical instrumentation, the information from the VPN would be available to carry out safety management operation.

  6. CPR1000全厂断电叠加蒸汽发生器安全阀误开启事故引起的严重事故分析%Analysis of CPR1000 Severe Accident Induced by SBO With SG Safety Valve Stuck Open

    李龙泽; 王明军; 田文喜; 苏光辉; 秋穗正

    2014-01-01

    The CPR1000 severe accident caused by station blackout (SBO) with the SG safety valve stuck open was modeled and analyzed using MELCOR code ,and the simula-tion of CPR1000 severe accident process was preliminarily achieved . Three assump-tions ,namely without shaft sealing leakage and auxiliary feed water ,with shaft sealing leakage and auxiliary feed water ,and with shaft sealing leakage but without auxiliary feed water ,were analyzed .The results imply that SG safety valve stuck open has great influence on the accident sequences .According to the calculation results ,without shaft sealing leakage and auxiliary feed water ,pressure vessel will fail at 9 576 s .When auxil-iary feed water supplies ,pressure vessel failure delays nearly 30 000 s .When the leak-age of the shaft sealing system exists ,pressure vessel failure will delay about 50 s .The results show that the auxiliary feed water and the leakage of the shaft sealing system have great mitigation effect on the severe accident induced by SBO with SG safety valve stuck open .%利用MELCOR程序对CPR1000全厂断电叠加蒸汽发生器(SG)安全阀误开启事故引发的严重事故进行建模与分析,初步实现了对CPR1000严重事故进程的仿真计算与模拟。文中重点分析了无轴封泄漏和辅助给水、有轴封泄漏和辅助给水、有轴封泄漏但无辅助给水3种不同假设条件下CPR1000全厂断电严重事故的响应进程和结果。计算结果显示,SG安全阀误开启对事故进程有重要影响。在无轴封泄漏和辅助给水的情况下,压力容器在9576 s失效;当存在辅助给水时,压力容器失效延后近30000 s;而当存在轴封泄漏时,压力容器失效延后50 s左右。结果证明了发生全场断电叠加SG安全阀误开启事故情况下辅助给水和轴封泄漏对事故起到有效缓解作用。

  7. Chernobyl accident and its consequences

    Gittus, J.H.

    1987-06-01

    The paper concerns the Chernobyl reactor accident, with emphasis on the design of the RBMK reactor and nuclear safety. A description is given of the Chernobyl nuclear power plant, including details of the RMBK reactor and safety systems. Comments on the design of the RBMK by UK experts prior to the accident are summarized, along with post-accident design changes to improve RBMK safety. Events of the Chernobyl accident are described, as well as design deficiencies highlighted by the accident. Differences between the USSR and UK approaches to nuclear safety are commented on. Finally source terms, release periods and environmental consequences are briefly discussed.

  8. Occupational accidents aboard merchant ships

    Hansen, H.L.; Nielsen, D.; Frydenberg, Morten

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may...... be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were...... rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious...

  9. MDCT findings in sports and recreational accidents

    Bensch, Frank V; Koivikko, Mika P; Koskinen, Seppo K (Dept. of Radiology, Toeoeloe Hospital, Helsinki (Finland)), email: frank.bensch@hus.fi

    2011-12-15

    Background. Sports and recreational accidents involving critical areas of the body occur commonly in the general population. Reports on their demographics and recommendations for screening procedures are, however, few. Purpose. To assess injuries of the craniofacial area, spine, and torso resulting from sports and recreational accidents with multidetector computed tomography (MDCT) as primary imaging method in a Level I trauma center. Material and Methods. All emergency room CT requests over a time span of 105 months were reviewed retrospectively for trauma mechanism and injury. Patients were identified using an electronic picture archiving and communications system (PACS), and MDCT studies interpreted by two radiologists independently. Results. Of a total of 5898 patients, 492 patients (301 boys/men, 191 girls/women, age range 2-76 years, mean 33.5 years, median 29.5 years) with sports or recreational accidents emerged. A total of 102 traumatic findings were diagnosed, thereof 72 (71%) serious. The three most commonly encountered serious injuries were intracranial injury, fractures of facial bones, and vertebral injuries. The three most common injury mechanisms were bicycling, horseback riding, and team ball sports. Patients from recreational activities were on average significantly younger (29.2 years) than those from sports accidents (36.9 years; P < 0.001). Only age groups <21 years and 41-50 years differed in injury severity from the other age groups (P = 0.004 and P = 0.063, respectively). Of all trauma mechanisms, only bicycling had a significantly increased risk of injury (P < 0.001). Conclusion. Injuries in sports and recreational accidents presented with an overall incidence of 21%, of which 71% are serious. The most common mechanisms of injury were bicycling, horseback riding, and team ball sports. The largest incidence of serious injury involved bicycling. Because of the high probability of a serious injury and the high energies that are often involved

  10. [Drowning accidents in childhood].

    Krandick, G; Mantel, K

    1990-09-30

    This is a report on five boys aged between 1 and 5 years who, after prolonged submersion in cold water, were treated at our department. On being taken out of the water, all the patients were clinically dead. After 1- to 3-hour successful cardiopulmonary resuscitation, with a rectal temperature of about 27 degrees C, they were rewarmed at a rate of 1 degree/hour. Two patients died within a few hours after the accident. One patient survived with an apallic syndrome, 2 children survived with no sequelae. In the event of a water-related accident associated with hypothermia, we consider suitable resuscitation to have preference over rewarming measures. The most important treatment guidelines and prognostic factors are discussed.

  11. Dementia and Traffic Accidents

    Petersen, Jindong Ding; Siersma, Volkert; Nielsen, Connie Thurøe;

    2016-01-01

    BACKGROUND: As a consequence of a rapid growth of an ageing population, more people with dementia are expected on the roads. Little is known about whether these people are at increased risk of road traffic-related accidents. OBJECTIVE: Our study aims to investigate the risk of road traffic......-related accidents for people aged 65 years or older with a diagnosis of dementia in Denmark. METHODS: We will conduct a nationwide population-based cohort study consisting of Danish people aged 65 or older living in Denmark as of January 1, 2008. The cohort is followed for 7 years (2008-2014). Individual's personal...... data are available in Danish registers and can be linked using a unique personal identification number. A person is identified with dementia if the person meets at least one of the following criteria: (1) a diagnosis of the disease in the Danish National Patient Register or in the Danish Psychiatric...

  12. RENEB accident simulation exercise

    Brzozowska, Beata; Ainsbury, Elizabeth; Baert, Annelot; Beaton-Green, Lindsay; Barrios, Leonardo; Barquinero, Joan Francesc; Bassinet, Celine; Beinke, Christina; Benedek, Anett; Beukes, Philip; Bortolin, Emanuela; Buraczewska, Iwona; Burbidge, Christopher; De Amicis, Andrea; De Angelis, Cinzia

    2017-01-01

    Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Materials and methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results ob...

  13. The survey of occupational accidents in Yazd gas agency (2013

    Amir Hossein Khoshakhlagh

    2016-10-01

    Full Text Available Background: Existence of coordinated and professional safety system to prevent occurrence of accidents and potential hazards seem to be essential in installing networks of gas distribution projects. Objective: To survey work-related accidents and safety performance indices in project implementation unit of Yazd gas agency. Methods: This analytical study was conducted on 197 of workforce in Yazd gas agency in 2013 that were selected by census and they were male. Demographic and accident information were gathered using a self-made questionnaire and face- to- face interview, and required information obtained from dossier to determine the safety performance indicators. Safety performance indicators were calculated in separately of 13 types occupations in project implementation unit of gas agency and data were analyzed using T-test. Findings: The highest accident frequency and severity rate were related to digging occupation and then metal line welding. Consequences of accidents were cuts (%56.7 and soreness (%14.9. The causes of accidents were related to uselessness of personal protective equipment (%25.2 and lack of precision in the task (%19.3. The highest rate of accident was observed among the age group 20-29 years with work experience of 4-6 years. Conclusion: According to the findings of this study and the risk of gas processes, it seems to be necessary the implementation of integrated management systems and training of workers about safety rules to improve the safety culture and prevent accidents.

  14. Measuring Risk Aversion for Nuclear Power Plant Accident: Results of Contingent Valuation Survey in Korea

    Lee, Sang Hun; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Within the evaluation of the external cost of nuclear energy, the estimation of the external cost of nuclear power plant (NPP) severe accident is one of the major topics to be addressed. For the evaluation of the external cost of NPP severe accident, the effect of public risk averse behavior against the group accidents, such as NPP accident, dam failure, must be addressed. Although the equivalent fatalities from a single group accident are not common and its risk is very small compared to other accidents, people perceive the group accident more seriously. In other words, people are more concerned about low probability/high consequence events than about high probability/low consequence events having the same mean damage. One of the representative method to integrate the risk aversion in the external costs of severe nuclear reactor accidents was developed by Eeckoudt et al., and he used the risk aversion coefficient, mainly based on the analysis of financial risks in the stock markets to evaluate the external cost of nuclear severe accident. However, the use of financial risk aversion coefficient to nuclear severe accidents is not appropriate, because financial risk and nuclear severe accident risk are entirely different. In this paper, the individual-level survey was conducted to measure the risk aversion coefficient and estimate the multiplication factor to integrate the risk aversion in the external costs of NPP severe accident. This study propose an integrated framework on estimation of the external cost associated with severe accidents of NPP considering public risk aversion behavior. The theoretical framework to estimate the risk aversion coefficient/multiplication factor and to assess economic damages from a hypothetical NPP accident was constructed. Based on the theoretical framework, the risk aversion coefficient can be analyzed by conducting public survey with a carefully designed lottery questions. Compared to the previous studies on estimation of the

  15. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  16. ROAD ACCIDENT AND SAFETY STUDY IN SYLHET REGION OF BANGLADESH

    B. K. BANIK

    2011-08-01

    Full Text Available Roads, highways and streets are fundamental infrastructure facilities to provide the transportation for passenger travel and goods movement from one place to another in Sylhet, north–eastern division of Bangladesh with rapid growth of road vehicle, being comparatively developed economic tourist prone area faces severe road traffic accident. Such severe road accidents cause harsh safety hazards on the roads of Sylhet area. This research work presents an overview of the road traffic accident and degraded road safety situation in Sylhet zone which in particular, discusses the key road accident problem characteristics identifying the hazardous roads and spots, most responsible vehicles and related components, conditions of drivers and pedestrians, most victims of accident, effects of accident on society, safety priorities and options available in Sylhet. In this regard, a comprehensive questionnaire survey was conducted on the concerned groups of transportation and detailed accident data was collected from a popular local newspaper. Analysis of the study reveals that Dhaka- Sylhet highway is the most hazardous in road basis and Sylhet Sador thana is the most vulnerable in thana basis in Sylhet region.

  17. ECONOMIC COSTS ASSOCIATED WITH MOTORBIKE ACCIDENTS IN KATHMANDU, NEPAL

    Diksha Sapkota

    2016-12-01

    Full Text Available Background: Road traffic accidents, considered as global tragedies, are in increasing trend however, the safety situation is very severe in developing countries incurring substantial amount of human, economic and social costs. Motorcycle crashes, the commonest form, occur mostly on economically active population. However, there is limited coverage of studies on economic burden of motorcycle crashes. This study aims to estimate the total cost and DALYs lost due to motorbike accidents among victims of Kathmandu Valley.Materials and Methods: Retrospective cross-sectional study was conducted among the patients having history of motorbike accidents within past twelve months and at least 3 months from the date of data collection. Interview was conducted using proforma among 100 victims of accidents and their care giver in case of death from November 15, 2014 to May 15, 2015. Cost estimation of motorbike accident was done based on human capital approach. Data collection tool was pretested and collected data were analyzed by SPSS and Microsoft excel. Results: Males (79% belonging to the economically productive age group shared the highest proportion among total accidents victims. Most common reason for accidents was reported to be poor road condition (41%. Indirect cost was found to be significantly higher than direct costs highlighting its negative impact on economy of family and nation due to productivity loss. Total Disability Adjusted Life Years (DALYs lost per person was found to be 490 years and national estimation showed large burden of motorbike accidents due to huge DALY loss.Conclusions: For low resource countries like Nepal, high economic costs of motorbike accidents can pose additional burden to the fragile health system. These accidents can be prevented, and their consequences can be alleviated. There is an urgent need for reinforcement of appropriate interventions and legislation to decrease the magnitude of it and its associated grave

  18. Commercial SNF Accident Release Fractions

    J. Schulz

    2004-11-05

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the

  19. Radiological Consequence Analysis of Annulus Ventilation System with Delayed Operation under Severe Accident of Nuclear Power Plants%核电厂严重事故下双层安全壳环形空间通风系统延迟投运的放射性后果影响分析

    吴楠; 黄树明; 刘新建

    2016-01-01

    During severe accidents, forthenuclear power plants ( NPPs) with double⁃containment design, ifa sub⁃atmospheric pressure cannot be built or the accident filter cannot be activated when annulus ventila⁃tion system is failed to operate normally, the control function of fission⁃product releaseof dual containment would be weakened�With focus on the double⁃containment design adopted by most of the Gen-ⅢNPPs in the world, this paper firstly calculates the release amountof radioactive materialsinto environment under different delay scenarios of annulus ventilation systemoperation, with the consideration of the intact con⁃tainment and using NUREG-1465 source term� Then the Criteria for Limited Impact ( CLI) provided in European Utility Requirements ( EUR) areare applied to evaluateradiological consequence of severe acci⁃dent, and the relationship between the delay of annulus ventilation systemoperation and “large release” is analyzed� The results could beareference for the emergency response actions and radiological consequence estimation in the context of severe accidents.%核电厂严重事故工况下,对于具有双层安全壳设计的核电机组,若环形空间通风系统不能正常运转,无法形成负压或无法启动事故过滤器,双层安全壳对放射性物质释放的控制效果将被削弱。鉴于此,本文针对目前国际上多个第三代核电机组采用的双层安全壳设计,考虑安全壳完整并选用NUREG-1465源项作为严重事故源项,计算环形空间通风系统在不同延迟投运场景下放射性物质的环境释放量,同时采用“欧洲用户要求( EUR)”文件提出的有限影响准则对严重事故的放射性后果进行评价,分析环形空间通风系统的延迟投运同“大量释放”间的关系。研究结果可为严重事故下的应急响应行动及放射性后果评价提供参考。

  20. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions

    Ott, L. J.; Robb, K. R.; Wang, D.

    2014-05-01

    Following the severe accidents at the Japanese Fukushima Daiichi Nuclear Power Station in 2011, the US Department of Energy initiated research and development on the enhancement of the accident tolerance of light water reactors by the development of fuels/cladding that, in comparison with the standard UO2/Zircaloy (Zr) system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations. Analyses are presented that illustrate the impact of these new candidate fuel/cladding materials on the fuel performance at normal operating conditions and on the reactor system under DB and BDB accident conditions.

  1. Consideration of Command and Control Performance during Accident Management Process at the Nuclear Power Plant

    Ahmed, Nisrene M. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Sok Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The accident at the Fukushima Daiichi nuclear power plants shifted the nuclear safety paradigm from risk management to on-site management capability during a severe accident. The kernel of on-site management capability during an accident at a nuclear power plant is situation awareness and agility of command and control. However, little consideration has been given to accident management. After the events of September 11, 2001 and the catastrophic Fukushima nuclear disaster, agility of command and control has emerged as a significant element for effective and efficient accident management, with many studies emphasizing accident management strategies, particularly man-machine interface, which is considered a key role in ensuring nuclear power plant safety during severe accident conditions. This paper proposes a conceptual model for evaluating command and control performance during the accident management process at a nuclear power plant. Communication and information processing while responding to an accident is one of the key issues needed to mitigate the accident. This model will give guidelines for accurate and fast communication response during accident conditions.

  2. Traffic Accident Analysis Using Decision Trees and Neural Networks

    Chong, Miao M.; Abraham, Ajith; Paprzycki, Marcin

    2004-01-01

    The costs of fatalities and injuries due to traffic accident have a great impact on society. This paper presents our research to model the severity of injury resulting from traffic accidents using artificial neural networks and decision trees. We have applied them to an actual data set obtained from the National Automotive Sampling System (NASS) General Estimates System (GES). Experiment results reveal that in all the cases the decision tree outperforms the neural network. Our research analys...

  3. International transferability of accident modification functions for horizontal curves.

    Elvik, Rune

    2013-10-01

    Studies of the relationship between characteristics of horizontal curves and accident rate have been reported in several countries. The characteristic most often studied is the radius of a horizontal curve. Functions describing the relationship between the radius of horizontal curves and accident rate have been developed in Australia, Canada, Denmark, Germany, Great Britain, New Zealand, Norway, Portugal, Sweden, and the United States. Other characteristics of horizontal curves that have been studied include deflection angle, curve length, the presence of transition curves, super-elevation in curves and distance to adjacent curves. This paper assesses the international transferability of mathematical functions (accident modification functions) that have been developed to relate the radius of horizontal curves to their accident rate. The main research problem is whether these functions are similar, which enhances international transferability, or dissimilar, which reduces international transferability. Accident modification functions for horizontal curve radius developed in the countries listed above are synthesised. The sensitivity of the functions to other characteristics of curves than radius is examined. Accident modification functions developed in different countries have important similarities. The functions diverge with respect to accident rate in the sharpest curves.

  4. Pre-hospital emergency treatment and prognosis analysis of patients with severe brain injury accidents: a report of 1107 cases%交通事故性重型颅脑损伤院前急救与预后关联分析(附1107例报告)

    胡明军; 杭军; 温大平; 徐如祥; 姜晓丹; 蔡颖谦; 罗成义; 宋国忠; 王学文; 王钢; 崔健

    2011-01-01

    Objective To analyze the importance of pre-hospital emergency treatment in patients with severe head injury in traffic accidents in terms of time and explore the general rule of severe head injury in traffic accidents to provide some evidence for relevant authority making the prevention and control measures of acute traumatic brain injury. Methods The patients were selected according to "statistical table of severe head injury in a traffic accident" established by our department; their correlated data were statistically analyzed. Based on the time intervals between receiving telephone time asking for first-aid and arriving to location of incidence, and time intervals between time of giving first-aid and injured time, the regularity of prognosis was analyzed.Results With the prolonged time intervals between time of giving first-aid and injured time, the mortality and disability rates gradually increased,followed by poor prognosis, which indicated that the prognosis was negatively correlated to the delayed time on the way and the on-site rescue time (rs=-0.10,P=0.002; rs=-0.06,P=0.034). Conclusion Prevention and control center for acute brain injury should be built and the roles for pre-hospital emergency treatment and transportation should be established to decrease the injured time (the delayed time on the way and the on-site rescue time) to improve the quality of care, and to reduce the death and disability in patients with severe head injury in traffic accidents.%目的 探讨院前急救在时间环节上对交通事故性重型颅脑损伤预后的重要性,为我国相关部门制定预防和控制措施提供参考依据.方法 根据珠江医院神经外科制定的严格筛选出合格病例,对其相关资料进行统计学分析,主要分析急救接报时间与到达现场时间差的不同时间段以及现场抢救中不同时间段与患者预后的相关性.结果 急救接报到到达现场时间段以及现场抢救时间段与患者预

  5. Learning from incidents and accidents

    Drupsteen, L.; Kampen, J. van

    2014-01-01

    There are many different definitions for what constitutes an incident or an accident, however the focus is always on unintended and often unforeseen events that cause unintended consequences. This article is focused on the process of learning from incidents and accidents. The focus is on making sure

  6. [Practical management of CPB accident].

    Depoix, J-P; Fenet, L; Provenchere, S

    2012-05-01

    Accident of CPB is a reality. It is important to be prepared for discussion with the family, with the hospital administration, eventually with the justice. But we have also to support perfusionnist and anesthetic team in charge of the patient during accident.

  7. Industrial accidents triggered by lightning.

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents.

  8. Traffic Accidents on Slippery Roads

    Fonnesbech, J. K.; Bolet, Lars

    2014-01-01

    Police registrations from 65 accidents on slippery roads in normally Danish winters have been studied. The study showed: • 1 accident per 100 km when using brine spread with nozzles • 2 accidents per 100 km when using pre wetted salt • 3 accidents per 100 km when using kombi spreaders The results...... of accidents in normally Danish winter seasons are remarkable alike the amount of salt used in praxis in the winter 2011/2012. • 2.7 ton NaCl/km when using brine spread with nozzles • 5 ton NaCl/km when using pre wetted salt. • 5.7 ton NaCl/km when using kombi spreaders The explanation is that spreading...

  9. Network-level accident-mapping: Distance based pattern matching using artificial neural network.

    Deka, Lipika; Quddus, Mohammed

    2014-04-01

    The objective of an accident-mapping algorithm is to snap traffic accidents onto the correct road segments. Assigning accidents onto the correct segments facilitate to robustly carry out some key analyses in accident research including the identification of accident hot-spots, network-level risk mapping and segment-level accident risk modelling. Existing risk mapping algorithms have some severe limitations: (i) they are not easily 'transferable' as the algorithms are specific to given accident datasets; (ii) they do not perform well in all road-network environments such as in areas of dense road network; and (iii) the methods used do not perform well in addressing inaccuracies inherent in and type of road environment. The purpose of this paper is to develop a new accident mapping algorithm based on the common variables observed in most accident databases (e.g. road name and type, direction of vehicle movement before the accident and recorded accident location). The challenges here are to: (i) develop a method that takes into account uncertainties inherent to the recorded traffic accident data and the underlying digital road network data, (ii) accurately determine the type and proportion of inaccuracies, and (iii) develop a robust algorithm that can be adapted for any accident set and road network of varying complexity. In order to overcome these challenges, a distance based pattern-matching approach is used to identify the correct road segment. This is based on vectors containing feature values that are common in the accident data and the network data. Since each feature does not contribute equally towards the identification of the correct road segments, an ANN approach using the single-layer perceptron is used to assist in "learning" the relative importance of each feature in the distance calculation and hence the correct link identification. The performance of the developed algorithm was evaluated based on a reference accident dataset from the UK confirming that

  10. Effect of In-Vessel Retention Strategies under Postulated SGTR Accidents of OPR1000

    Choi, Wonjun; Lee, Yongjae; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of); Kim, Hwan-Yeol; Park, Rae-Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, MELCOR code was used to simulate the severe accident of the OPR1000. MELCOR code is computer code which enables to simulate the progression of the severe accident for light water reactors. It has been developed by Sandia National Laboratories for plant risk assessment and source term analysis since 1982. According to the probabilistic safety analysis (PSA) Level 1 of OPR1000, typical severe accident scenarios of high probability of a transition to severe accident for OPR1000 were identified as Small Break Loss of Coolant Accident (SBLOCA), Station Black out (SBO), Total Loss of Feed Water (TLOFW), and Steam Generator Tube Rupture. While the first three accidents are expected to result in the generation and transportation of the radioactive nuclides within the containment building as consequence of the core damage and subsequent reactor pressure vessel (RPV) failure, the latter accident scenario may be progressed with possible direct release of the radioactive nuclides to the environment by bypassing the containment building. Thus it is of significance to investigate the SGTR accident with a sophisticated severe accident code. This code can simulate the whole phenomena of a severe accident such as thermal-hydraulic response, core heat-up, oxidation and relocation, and fission product release and transport. Thus many researchers have used MELCOR in severe accident studies. In this study, in-vessel retention strategies were applied for postulated SGTR accidents. Mitigation effect and adverse effect of in-vessel strategies was studied in aspect of RPV failure, fission product release and containment thermal-hydraulic and hydrogen behavior. Base case of SGTR accident and three mitigation cases were simulated using MELCOR code 1.8.6. For each mitigation cases, mitigation effect and adverse effect were investigated. Conclusions can be summarized as follows: (1) RPV failure of SGTR base case occurred at 5.62 hours and fission product of RCS released to

  11. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts

    Steinhauser, Georg, E-mail: georg.steinhauser@colostate.edu; Brandl, Alexander; Johnson, Thomas E.

    2014-02-01

    The environmental impacts of the nuclear accidents of Chernobyl and Fukushima are compared. In almost every respect, the consequences of the Chernobyl accident clearly exceeded those of the Fukushima accident. In both accidents, most of the radioactivity released was due to volatile radionuclides (noble gases, iodine, cesium, tellurium). However, the amount of refractory elements (including actinides) emitted in the course of the Chernobyl accident was approximately four orders of magnitude higher than during the Fukushima accident. For Chernobyl, a total release of 5300 PBq (excluding noble gases) has been established as the most cited source term. For Fukushima, we estimated a total source term of 520 (340–800) PBq. In the course of the Fukushima accident, the majority of the radionuclides (more than 80%) was transported offshore and deposited in the Pacific Ocean. Monitoring campaigns after both accidents reveal that the environmental impact of the Chernobyl accident was much greater than of the Fukushima accident. Both the highly contaminated areas and the evacuated areas are smaller around Fukushima and the projected health effects in Japan are significantly lower than after the Chernobyl accident. This is mainly due to the fact that food safety campaigns and evacuations worked quickly and efficiently after the Fukushima accident. In contrast to Chernobyl, no fatalities due to acute radiation effects occurred in Fukushima. - Highlights: • The environmental effects of Chernobyl and Fukushima are compared. • Releases of radionuclides from Chernobyl exceeded Fukushima by an order of magnitude. • Chernobyl caused more severe radiation-related health effects. • Overall, Chernobyl was a much more severe nuclear accident than Fukushima. • Psychological effects are neglected but important consequences of nuclear accidents.

  12. Typologie des Accidents Cyclistes

    Amoros, Emmanuelle; BILLOT-GRASSET, Alice; Hours, Martine

    2015-01-01

    L'usage du vélo est en hausse en ville ; cette pratique est encouragée dans le cadre du développement durable et de la lutte contre la sédentarité. Pour accompagner cela, il faut réduire les risques d'accident, et pour ce faire, mieux les connaître. Nous utilisons le Registre des victimes de la circulation routière du Rhône, basé sur les services hospitaliers (dont les urgences) ; il est quasi-exhaustif : env. 1100 blessés à vélo/an versus 120 dans les données officielles. L'ensemble des cycl...

  13. Comparative Assessment Of Natural Gas Accident Risks

    Burgherr, P.; Hirschberg, S

    2005-01-01

    The study utilizes a hierarchical approach including (1) comparative analyses of different energy chains, (2) specific evaluations for the natural gas chain, and (3) a detailed overview of the German situation, based on an extensive data set provided by Deutsche Vereinigung des Gas- und Wasserfaches (DVGW). According to SVGW-expertise DVGW-data can be regarded as fully representative for Swiss conditions due to very similar technologies, management, regulations and safety culture, but has a substantially stronger statistical basis because the German gas grid is about 30 times larger compared to Switzerland. Specifically, the following tasks were carried out by PSI to accomplish the objectives of this project: (1) Consolidation of existing ENSAD data, (2) identification and evaluation of additional sources, (3) comparative assessment of accident risks, and (4) detailed evaluations of specific issues and technical aspects for severe and smaller accidents in the natural gas chain that are relevant under Swiss conditions. (author)

  14. Pattern extraction for high-risk accidents in the construction industry: a data-mining approach.

    Amiri, Mehran; Ardeshir, Abdollah; Fazel Zarandi, Mohammad Hossein; Soltanaghaei, Elahe

    2016-09-01

    Accidents involving falls and falling objects (group I) are highly frequent accidents in the construction industry. While being hit by a vehicle, electric shock, collapse in the excavation and fire or explosion accidents (group II) are much less frequent, they make up a considerable proportion of severe accidents. In this study, multiple-correspondence analysis, decision tree, ensembles of decision tree and association rules methods are employed to analyse a database of construction accidents throughout Iran between 2007 and 2011. The findings indicate that in group I, there is a significant correspondence among these variables: time of accident, place of accident, body part affected, final consequence of accident and lost workdays. Moreover, the frequency of accidents in the night shift is less than others, and the frequency of injury to the head, back, spine and limbs are more. In group II, the variables time of accident and body part affected are mostly related and the frequency of accidents among married and older workers is more than single and young workers. There was a higher frequency in the evening, night shifts and weekends. The results of this study are totally in line with the previous research.

  15. Accidents on ships in the Danish International Ship register

    Ádám, Balázs; Rasmussen, Hanna Barbara

    Safety has been in the focus of seafaring during the past decade that observed a gradual reduction of reported work injuries in Danish ships. The injuries are, however, unevenly distributed in the maritime workforce, depending on various factors, the nationality of seafarer among them. The aim of...... the occurrence as well as the reporting of accidents is crucial to construct effective preventive measures for risk management....... to report accidents causing at least one day off work beyond the day of accident but the first source contains several accidents not fulfilling this criterion, too. Radio Medical is an independent service where all Danish ships may seek medical advice. The data sets were merged by identification number...... Western European seafarers compared to South East Asian (mostly Filipino) employees. The results highlight a favourable level of reported injuries in the Danish maritime sector but also point out detectable differences between groups of employees. The identification of factors that determine...

  16. Revised accident source terms for light-water reactors

    Soffer, L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  17. Chernobyl accident and its consequences

    Gittus, J.H.; Bonell, P.G.; Hicks, D.

    1987-01-01

    The USSR power reactor programme is first described. The reasons for the accident at the Chernobyl-4 RBMK nuclear reactor on 26 April 1986, the sequence of events that took place, and the immediate and long-term consequences are considered. A description of the RBMK-type reactors is given and the design changes resulting from the experience of the accident are explained. The source terms describing the details of the radioactivity release associated with the accident and the environmental consequences are covered in the last two sections of the report. Throughout the text comments referring to the UK Nuclear Installations Inspectorate Safety assessment principles have been inserted. (U.K.).

  18. Traffic accident or dumping? - Striking results of a traffic accident reconstruction.

    Nerger, Eric; Bayer, Ronny; Gärtner, Tobias; Dreßler, Jan; Ondruschka, Benjamin

    2017-01-01

    An atypical traffic accident scenario should be investigated directly at the crash site from all concerned professions, especially police men, forensic pathologists and technical experts, to get a personal overview and impression of the situation and the opportunity for interdisciplinary discussion. We present the rare case of a fatal traffic accident on a German motorway which was initially thought to be an accidental discovery of dumping a corpse. Based on autopsy findings, the technical investigation and the accident reconstruction, this case was solved as a spectacular form of a collision between a pedestrian and a bonnet-front car, which was not described elsewhere in scientific literature to the best of our knowledge. The pedestrian was hit in an upright body position, was lifted up by the car, smashed the windscreen and flew over the car with several body rotations. His flight curve ends directly at the roof of the car during brake processing, where the body touched the roof, smashed the rear-window and landed in the trunk. Based on the technical investigation, the driver of the car was not able to hide the accident. However, the pedestrian could have avoided the collision if he did not cross the motorway on foot.

  19. Three Mile Island Accident Data

    National Oceanic and Atmospheric Administration, Department of Commerce — Three Mile Island Accident Data consists of mostly upper air and wind observations immediately following the nuclear meltdown occurring on March 28, 1979, near...

  20. Organic chemistry and radiochemistry: study of chemical interactions between iodine and paint of French nuclear reactor in a severe accident situation; Chimie organique et radiochimie. Etude des interactions chimiques iode-peinture dans un reacteur nucleaire (de type R.E.P.) en situation d'accident grave

    Aujollet, Y. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France)

    2005-01-01

    In Phebus (French in pile facility; PWR scale 1/5000) experiments, performed by the Institut de Radioprotection et de Surete Nucleaire, few quantities of organic iodides were registered after interaction between iodine and reactor containment paint. This study concerns all mechanisms of chemical reactions between iodine and the polymer of the paint in order to estimate the organic iodides released from the paint. At first, all the paint components had been identified. Several models of chemical sites of the polymer were synthesized and tested with iodine in different conditions of temperature and radiation. These experiments showed interactions between iodine and secondary or tertiary amines by charge transfer. In few cases, the complex of tertiary amines creates oxidation reactions. (author)

  1. Nuclear fuel cycle facility accident analysis handbook

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  2. Paragliding accidents in remote areas.

    Fasching, G; Schippinger, G; Pretscher, R

    1997-08-01

    Paragliding is an increasingly popular hobby, as people try to find new and more adventurous activities. However, there is an increased and inherent danger with this sport. For this reason, as well as the inexperience of many operators, injuries occur frequently. This retrospective study centers on the helicopter rescue of 70 individuals in paragliding accidents. All histories were examined, and 43 patients answered a questionnaire. Nineteen (42%) pilots were injured when taking off, 20 (44%) during the flight, and six (13%) when landing. Routine and experience did not affect the prevalence of accident. Analysis of the causes of accident revealed pilot errors in all but three cases. In 34 rescue operations a landing of the helicopter near the site of the accident was possible. Half of the patients had to be rescued by a cable winch or a long rope fixed to the helicopter. Seven (10%) of the pilots suffered multiple trauma, 38 (54%) had injuries of the lower extremities, and 32 (84%) of them sustained fractures. Injuries to the spine were diagnosed in 34 cases with a fracture rate of 85%. One patient had an incomplete paraplegia. Injuries to the head occurred in 17 patients. No paraglider pilot died. The average hospitalization was 22 days, and average time of working inability was 14 weeks. Fourteen (34%) patients suffered from a permanent damage to their nerves or joints. Forty-three percent of the paragliders continued their sport despite the accident; two of them had another accident. An improved training program is necessary to lower the incidence of paragliding accidents. Optimal equipment to reduce injuries in case of accidents is mandatory. The helicopter emergency physician must perform a careful examination, provide stabilization of airways and circulation, give analgesics, splint fractured extremities, and transport the victim on a vacuum mattress to the appropriate hospital.

  3. Occupational accidents with piercing and cutting instruments in hospital nurses

    Maria Helena Palucci Marziale

    2004-02-01

    Full Text Available Goals: To identify factors associated with occupational accidents caused by piercing and cutting instruments and to identify the consequences of these accidents.Methods: Descriptive field research. Data were obtained through semi-structured interviews with nurses who suffered accidents during one year in four hospitals at São Paulo State - Brazil. Results: factors associated with accidents were: work overload, poor quality material, inadequate disposal materials, professional negligence, clients’ aggressiveness, lack of attention and use of unsheathed needles. The accidents caused financial damages to the institutions as well as emotional and physical impairments to workers. Conclusions: There are several factors associated with accidents with piercing and cutting instruments. Therefore, preventive measures must be implemented according to the peculiarities of each work environment. Better care should be taken with the preparation of the professionals as well as with the information on risks from exposure to body/blood fluids they are given. A specific legislation is needed in our country in order to minimize this problem.

  4. Accident Tolerant Fuel Analysis

    Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional “accident-tolerant” (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and

  5. Accident tolerant fuel analysis

    Smith, Curtis [Idaho National Laboratory; Chichester, Heather [Idaho National Laboratory; Johns, Jesse [Texas A& M University; Teague, Melissa [Idaho National Laboratory; Tonks, Michael Idaho National Laboratory; Youngblood, Robert [Idaho National Laboratory

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant

  6. Truck Drivers' Experiences and Perspectives Regarding Factors Influencing Traffic Accidents: A Qualitative Study.

    Karimi Moonaghi, Hossein; Ranjbar, Hossein; Heydari, Abbas; Scurlock-Evans, Laura

    2015-08-01

    Traffic accidents are a major public health problem, leading to death and disability. Although pertinent studies have been conducted, little data are available in Iran. This study explored the experiences of truck drivers and their perspectives regarding factors contributing to traffic accidents. Eighteen truck drivers, purposively sampled, participated in semi-structured interviews. Data were analyzed using qualitative content analysis. A main theme, lack of ability to control stress, emerged as a factor influencing the incidence of traffic accidents. This main theme was found to have three subthemes: poor organization of the job, lack of workplace facilities and proper equipment, and unsupportive environment. Although several factors were found to contribute to traffic accidents, their effects were not independent, and all were considered significant. Identifying factors that contribute to traffic accidents requires a systematic and holistic approach. Findings could be used by the transportation industry and community health centers to prevent traffic accidents.

  7. Differences in Characteristics of Aviation Accidents during 1993-2012 Based on Flight Purpose

    Evans, Joni K.

    2016-01-01

    Usually aviation accidents are categorized and analyzed within flight conduct rules (Part 121, Part 135, Part 91) because differences in accident rates within flight rules have been demonstrated. Even within a particular flight rule the flights have different purposes. For many, Part 121 flights are synonymous with scheduled passenger transport, and indeed this is the largest group of Part 121 accidents. But there are also non-scheduled (charter) passenger transport and cargo flights. The primary purpose of the analysis reported here is to examine the differences in aviation accidents based on the purpose of the flight. Some of the factors examined are the accident severity, aircraft characteristics and accident occurrence categories. Twenty consecutive years of data were available and utilized to complete this analysis.

  8. Progress in accident analysis of the HYLIFE-II inertial fusion energy power plant design

    Reyes, S; Latkowski, J F; Gomez del Rio, J; Sanz, J

    2000-10-11

    The present work continues our effort to perform an integrated safety analysis for the HYLIFE-II inertial fusion energy (IFE) power plant design. Recently we developed a base case for a severe accident scenario in order to calculate accident doses for HYLIFE-II. It consisted of a total loss of coolant accident (LOCA) in which all the liquid flibe (Li{sub 2}BeF{sub 4}) was lost at the beginning of the accident. Results showed that the off-site dose was below the limit given by the DOE Fusion Safety Standards for public protection in case of accident, and that his dose was dominated by the tritium released during the accident.

  9. Train accidents involving pedestrians, motor vehicles, and motorcycles.

    Goldberg, B A; Mootha, R K; Lindsey, R W

    1998-04-01

    In the United States, train-related accidents account for more than 18,000 injuries and 1,200 fatalities annually, yet there is a paucity of literature pertaining to this unique injury. We reviewed the medical records of 98 of 135 cases of train-related trauma treated at Ben Taub General Hospital, Baylor College of Medicine, Houston, Texas, from 1990 to 1995. There were 50 train-pedestrian accidents, 47 train-automobile accidents, and 1 train-motorcycle accident, with a mean patient age of 30.1 years (range, 2 to 66 years). Eighteen patients (18%) were pronounced dead on arrival or died shortly after admission. Of the other 80 patients, 27 (34%) were discharged from the emergency department after minor medical treatment, while 53 (66%) were hospitalized, of whom 10 (13%) later expired. The mean Injury Severity Score (ISS) was 11.9 (discharged, 1.8; hospitalized, 14.3; expired, 29.2). Forty-five patients (56%) sustained 57 extremity fractures, and 30 patients (38%) required 40 amputations. Mean Mangled Extremity Severity Score (MESS) for all injured extremities was 5.2 (amputation, 7.7; no amputation, 2.8). On average, the hospitalization cost per patient was greater than $18,698, while the reimbursement from the patients was $2,261, leaving the hospital with a net deficit of approximately 2 million dollars. Surprisingly, train accidents do not always result in serious injury. However, when serious injury is sustained, it is often of high morbidity (amputation) and mortality, which appears to correlate well with the initial MESS and ISS. Extrapolating our cost data to include all train-related accident injuries and deaths indicates that the direct costs to society may exceed 300 million dollars annually. Greater public awareness and preventive measures may reduce the tremendous human and financial costs of train-related accidents.

  10. The willingness to pay of parties to traffic accidents for loss of productivity and consolation compensation.

    Jou, Rong-Chang; Chen, Tzu-Ying

    2015-12-01

    In this study, willingness to pay (WTP) for loss of productivity and consolation compensation by parties to traffic accidents is investigated using the Tobit model. In addition, WTP is compared to compensation determined by Taiwanese courts. The modelling results showed that variables such as education, average individual monthly income, traffic accident history, past experience of severe traffic accident injuries, the number of working days lost due to a traffic accident, past experience of accepting compensation for traffic accident-caused productivity loss and past experience of accepting consolation compensation caused by traffic accidents have a positive impact on WTP. In addition, average WTP for these two accident costs were obtained. We found that parties to traffic accidents were willing to pay more than 90% of the compensation determined by the court in the scenario of minor and moderate injuries. Parties were willing to pay approximately 80% of the compensation determined by the court for severe injuries, disability and fatality. Therefore, related agencies can use our study findings as the basis for determining the compensation that parties should pay for productivity losses caused by traffic accidents of different types.

  11. Nuclear accident dosimetry intercomparison studies.

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  12. Accident knowledge and emergency management

    Rasmussen, B.; Groenberg, C.D.

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs.

  13. 1 Case of Severe Bedsore Secondary to Cervical Spine Fracture and High Paraplegia Caused by Car Accident were Treated Mainly with Rehabilitation of TCM%中医康复为主治疗车祸致颈椎骨折并高位截瘫继发重度褥疮一例

    柯炎斌

    2013-01-01

    1 patient with severe bedsore secondary to cervical spine fracture and high paraplegia caused by car accident was successfully recovered by comprehensively applying rehabilitation ther-apy of TCM and modern medical therapy. Author realized that slick applying TCM therapy (tradi-tional Chinese medicine, acupuncture, massage, etc.) according to the practical situation and proper-ly supplementing modern medical therapy can increase the curative effect.%  笔者通过综合运用中医康复疗法为主,辅以现代医学治疗方法,成功地家庭康复了1例车祸致颈椎骨折并高位截瘫合并重度褥疮患者,体会到中医疗法(包括中药、针灸、推拿等)在临床中根据实际情况灵活运用,并适当辅以现代医学治疗方法,可使疗效倍增。

  14. Evaluation of severe accident risks: Quantification of major input parameters

    Harper, F.T.; Payne, A.C.; Breeding, R.J.; Gorham, E.D.; Brown, T.D.; Rightley, G.S.; Gregory, J.J. (Sandia National Labs., Albuquerque, NM (USA)); Murfin, W. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Amos, C.N. (Science Applications International Corp., Albuquerque, NM (USA))

    1991-04-01

    This report records part of the vast amount of information received during the expert judgment elicitation process that took place in support of the NUREG-1150 effort sponsored by the U.S. Nuclear Regulatory Commission. The results of the Containment Loads and Molten Core/Containment Interaction Expert Panel Elicitation are presented in this part of Volume 2 of NUREG/CR-4551. The Containment Loads Expert Panel considered seven issues: (1) hydrogen phenomena at Grand Gulf; (2) hydrogen burn at vessel breach at Sequoyah; (3) BWR reactor building failure due to hydrogen; (4) Grand Gulf containment loads at vessel breach; (5) pressure increment in the Sequoyah containment at vessel breach; (6) loads at vessel breach: Surry; and (7) pressure increment in the Zion containment at vessel breach. The report begins with a brief discussion of the methods used to elicit the information from the experts. The information for each issue is then presented in five sections: (1) a brief definition of the issue, (2) a brief summary of the technical rationale supporting the distributions developed by each of the experts, (3) a brief description of the operations that the project staff performed on the raw elicitation results in order to aggregate the distributions, (4) the aggregated distributions, and (5) the individual expert elicitation summaries. The Molten Core/Containment Interaction Panel considered three issues. The results of the following two of these issues are presented in this document: (1) Peach Bottom drywell shell meltthrough; and (2) Grand Gulf pedestal erosion. 89 figs., 154 tabs.

  15. Statistical modelling of the frequency and severity of road accidents

    Janstrup, Kira Hyldekær

    the barriers for the intention to report a bicycle incident can help in designing policy measures for improving the reporting rate for bicycle incidents and in that connection also the traffic safety for bicyclist (Paper 3). 6) A new and innovative method is found to evaluate the service quality and is tested...... the literature about under-reporting and gives new and innovative knowledge which can contribute to new policy measures for improving the reporting rate. For that reason this thesis should be used as an important tool whenever addressing the under-reporting challenge....... to the authorities. These kinds of studies have never been conducted within the field of transport. Furthermore, in other fields of incident reporting literature has documented that distrust to the police or to other authorities has an influence on the reporting rate. Even though a few studies have focused...

  16. The child accident repeater: a review.

    Jones, J G

    1980-04-01

    The child accident repeater is defined as one who has at least three accidents that come to medical attention within a year. The accident situation has features in common with those of the child who has a single accident through simple "bad luck", but other factors predispose him to repeated injury. In the child who has a susceptible personality, a tendency for accident repetition may be due to a breakdown in adjustment to a stressful environment. Prevention of repeat accidents should involve the usual measures considered appropriate for all children as well as an attempt to provide treatment of significant maladjustment and modification of a stressful environment.

  17. Hindsight Bias in Cause Analysis of Accident

    Atsuo Murata; Yasunari Matsushita

    2014-01-01

    It is suggested that hindsight becomes an obstacle to the objective investigation of an accident, and that the proper countermeasures for the prevention of such an accident is impossible if we view the accident with hindsight. Therefore, it is important for organizational managers to prevent hindsight from occurring so that hindsight does not hinder objective and proper measures to be taken and this does not lead to a serious accident. In this study, a basic phenomenon potentially related to accidents, that is, hindsight was taken up, and an attempt was made to explore the phenomenon in order to get basically insights into the prevention of accidents caused by such a cognitive bias.

  18. Bathtub immersion accidents involving children.

    Pearn, J; Nixon, J

    1977-02-12

    A review of 19 consecutive serious bathtub immersion accidents (11 survivals, 8 fatalities) is presented. In all instances, consciousness was lost in the water. Unlike other childhood accidents which usually show a male predominance, the sexes are equally affected. The modal age is 11 months. Six separate causes of bath drownings and near-drownings have been identified, and in 14 of the 19 accidents, two or more causes were operating concurrently. Median estimated immersion time for survivals was four minutes, and five minutes for fatalities. The median depth of water was eight inches. An 'at risk' profile for home bathtub drownings is presented; this includes the youngest or second youngest child of a large family, a family of grade 4 to 7 sociooccupational status (congalton) and a family in which routine is temporarily broken.

  19. Internal Accident Report on EDH

    SC Department

    2006-01-01

    The A2 Safety Code requires that, the Internal Accident Report form must be filled in by the person concerned or any witness to ensure that all the relevant services are informed. Please note that an electronic version of this form has been elaborated in collaboration with SC-IE, HR-OPS-OP and IT-AIS. Whenever possible, the electronic form shall be used. The relative icon is available on the EDH Desktop, Other tasks page, under the Safety heading, or directly here: https://edh.cern.ch/Document/Accident/. If you have any questions, please contact the SC Secretariat, tel. 75097 Please notice that the Internal Accident Report is an integral part of the Safety Code A2 and does not replace the HS50.

  20. Study on virtual redundancy among process parameters for accident management applications

    Ahmed, Rizwan; Pak, Sukyoung; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jungtaek; Park, Soo Yong; Ahn, Kwangil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The research at this point can be divided into three streams, focused on the development of self powered sensors and instrumentation, developing intelligent systems that can diagnose and accident type and developing indirect ways that is, methods to assess the safety critical parameters from other statistically related parameters. This first approach is quite expensive, second approach suffers from the limitation that infinite number of accident scenarios cannot be simulated. However, the only way to access the parameters during severe accidents is through simulation codes. Even-though, the process parameters data contain uncertainty, this is the only thing to start with severe accident management. International Nuclear Energy Research Initiative (Inert) project has started research to address various aspects of safety management during severe accidents. As a part of Inert team, we are investigating correlations among process parameters in such a way that safety critical information could be secured by means of other non-safety or virtual parameters during a severe accident. This is known as virtual redundancy of information. This will improve the availability of information in case one channel for information is lost. In this paper, we will discuss methodology, preliminary results and directions for further study. We found that several process parameters exhibit distinct variation pattern for a particular accident and several other parameters can also have the similar trends which strengthens the possibility of having virtual redundancy of information.

  1. [With the introduction of Infection Control Committees in mid-sized private hospitals, cutting-edge accident prevention methods and solutions will be utilized to reduce the impact of needlestick accidents].

    Hatano, Yoshiji

    2012-10-01

    Exposure to medical equipment, such as needles and other sharp objects, can accidentally cause injury or transmit an infectious blood-borne disease. Because the risk of infection due to needlestick injury accidents is always a possibility it is important to inform medical staff of the best ways to reduce the possible risks and the appropriate measures to take when an accident occurs, in order to reduce the frequency or seriousness of an accident; however, it is extremely difficult to completely prevent accidents. Therefore, when needlestick accidents do occur, steps need to be taken to ease the psychological burden and reduce the severity of accidents. Contingency measures for needlestick and related injuries will be introduced in private and mid-sized hospital facilities. This will be accomplished by taking measure against exposure and emergent accidents. Introducing an Infection Committee will change administrative procedures.

  2. How mobile robots have helped at Chernobyl and other accidents

    Meieran, H.B.

    1988-04-01

    The use of mobile robots at several recent accidents including Chernobyl is described. The robots assumed, with varying degrees of success, many of the tasks and missions that are normally conducted by the emergency response team. Lessons learned from the experiences, together with operational and performance problems are discussed. (U.K.).

  3. Radiation dose assessment of ACP hot cell in accident

    Kook, D. H.; Jeong, W. M.; Koo, J. H.; Jeo, I. J.; Lee, E. P.; Ryu, K. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The Advanced spent fuel Condition in Process(ACP) is under development for the effective management of spent fuel which had been generated in nuclear plants. The ACP needs a hot cell where most operations will be performed. To give priority to the environments safety, radiation doses evaluations for the radioactive nuclides in accident cases were preliminarily performed with the meteorological data around facility site. Fire accident prevails over several accidnets. Internal Dose and External Dose evaluation according to short dispersion data for that case show a safe margin for regulation limits and SAR limit of IMEF where this facility will be constructed.

  4. Traffic dynamics around weaving section influenced by accident: Cellular automata approach

    Kong, Lin-Peng; Li, Xin-Gang; Lam, William H. K.

    2015-07-01

    The weaving section, as a typical bottleneck, is one source of vehicle conflicts and an accident-prone area. Traffic accident will block lanes and the road capacity will be reduced. Several models have been established to study the dynamics around traffic bottlenecks. However, little attention has been paid to study the complex traffic dynamics influenced by the combined effects of bottleneck and accident. This paper presents a cellular automaton model to characterize accident-induced traffic behavior around the weaving section. Some effective control measures are proposed and verified for traffic management under accident condition. The total flux as a function of inflow rates, the phase diagrams, the spatial-temporal diagrams, and the density and velocity profiles are presented to analyze the impact of accident. It was shown that the proposed control measures for weaving traffic can improve the capacity of weaving section under both normal and accident conditions; the accidents occurring on median lane in the weaving section are more inclined to cause traffic jam and reduce road capacity; the capacity of weaving section will be greatly reduced when the accident happens downstream the weaving section.

  5. Woodworking injuries: a comparative study of work-related and hobby-related accidents.

    Loisel, F; Bonin, S; Jeunet, L; Pauchot, J; Tropet, Y; Obert, L

    2014-10-01

    The primary objective of this study was to describe the injury characteristics and demographics of patients injured during woodworking activities, upon their arrival to the emergency department in a regional of France where this industry is prevalent. The secondary objective was to compare patient and injury characteristics for work-related and hobby-related accidents. A cohort of 87 patients who had suffered a woodworking accident over a two-year period was evaluated; 79 were available for follow-up. The context and circumstances of the accident, nature and location of the injuries and patient demographics were recorded. Hobby-related accidents accounted for two-thirds of the accidents (51/79). Most of the injured workers were either loggers (35%) or carpenters (46%). The hand was injured in 53 cases (67%). Work-related accidents resulted in significantly more serious consequences in terms of hospital stay, work stoppage, resumption of work or retraining than hobby-related accidents. For the workplace accidents, 86% occurred on new machines; more than 25% of the machines involved in accidents at home were over 15 years. Sixty-eight per cent of workers were wearing their safety gear, while only 31% of those injured during recreational woodworking wore the appropriate gear. Several elements of prevention should be improved: information about the need to maintain the equipment, protect the worker with suitable clothing, and learn which maneuvers are considered hazardous. Safety gear should be regularly inspected in the workplace.

  6. The Possibility of Building Nuclear Power Plant Free from Severe Accident Risk PWR NPP with advanced all passive safety cooling systems (AAP SCS)%发展无严重事故风险核电站的曙光具有完全非能动安全冷却系统的压水堆核电站

    肖宏才

    2013-01-01

    A complete set of advanced all passive safety cooling systems (AAP SCS) for PWR NPP,actuated by natural force has been put forward in the article.Here the natural force mainly means the fore,which created by change of pressure distribution in the first loop of PWR as a result of operational regime conversion from one to another,including occurrence of accident situation.Correspondent safety cooling system will be actuated naturally and then put it into passive operation after occurring some kind of accident,so accidental situation will be mitigated right after it's occurrence and core residual heat will be naturally moved from the active core to the ultimate heat sink.There is no need to rely on automatic control system,any active equipment and human actions in all working process of the AAP SCS,which can reduce the probability of severe accident to zero,so as to exclude the need of evacuation plan around AAP nuclear power plant and eliminate the public's concern and doubt about nuclear power safety.Implementation of the AAP SCS concept is only based on use of evolutionary measures and state-of-the-art technology.So at present time it can be used for design of new-type third generation PWR nuclear power plant without severe accident risk,and for modernization of existing second generation nuclear power plant.%本文提出了用自然力直接触发启动压水堆核电站一整套完全非能动的停堆安全冷却系统.这里的自然力主要是指一回路运行工况转换时由于其压力分布变化所形成的压差力.在这一系统中,当进行停堆或发生某种一回路事故工况时,相应的安全冷却系统便自然地投入运行,立即缓解事故后果,将事故时一回路释放的能量及堆芯余热非能动地排入最终热阱.在全过程中不依靠自动控制系统、能动设备及任何人为因素的介入,即可确保对堆芯余热无限期的安全冷却能力,完全避免压水堆核电站发生向环境泄漏放射性物

  7. Fukushima nuclear power plant accident was preventable

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One

  8. How to reduce the number of accidents

    2012-01-01

    Among the safety objectives that the Director-General has established for CERN in 2012 is a reduction in the number of workplace accidents.   The best way to prevent workplace accidents is to learn from experience. This is why any accident, fire, instance of pollution, or even a near-miss, should be reported using the EDH form that can be found here. All accident reports are followed up. The departments investigate all accidents that result in sick leave, as well as all the more common categories of accidents at CERN, essentially falls (slipping, falling on stairs, etc.), regardless of whether or not they lead to sick leave. By studying the accident causes that come to light in this way, it is possible to take preventive action to avoid such accidents in the future. If you have any questions, the HSE Unit will be happy to answer them. Contact us at safety-general@cern.ch. HSE Unit

  9. [Paragliding accidents--a prospective analysis in Swiss mountain regions].

    Lautenschlager, S; Karli, U; Matter, P

    1993-01-01

    During the period from 1.1 to 31.12.90, 86 injuries associated with paragliding were analysed in a prospective study in 12 different Swiss hospitals with reference to causes, patterns, and frequencies. Spine injuries (36%) and lesions of the lower extremities (35%) were diagnosed most frequently. Surprisingly no neurological complications occurred, which is possibly explained by the solitary axial trauma. In 15 cases very severe malleolar fractures required surgical intervention. One accident was fatal due to a lung rupture. 60% of all accidents happened during the landing phase, 26% at launching and 14% at flight. Half of the pilots were affected in their primary training course. Most accidents were due to an in-flight error of judgement, such as incorrect estimation of wind conditions and a choice of unfavourable landing sites. In contrast to early reports of hang-gliding injuries, only one accident was due to an equipment failure, namely a ruptured steering line. In more than a third of all accidents, the used paraglider was not in correct correlation with the pilot's weight and experience. Inspired by the desire for a long flight, gliders of too large surface-areas were often used, leading to a more unstable flight. To reduce the frequency of paragliding injuries, an accurate choice of equipment and increased attention to environmental factors is mandatory. Furthermore education-programs should focus more on intensifying the pilot's mental and practical skills.

  10. Substance use among Iranian drivers involved in fatal road accidents

    Shervin eAssari

    2014-08-01

    Full Text Available Background: Although the problem of substance use among drivers is not limited to a special part of the world, most published epidemiological reports on this topic is from industrial world.Aim: To determine drug use among Iranian adults who were imprisoned for vehicle accidents with fatality. Methods: This study enrolled 51 Iranian adults who were imprisoned for vehicle accidents with fatality. This sample came from a national survey of prisoners. Data was collected at entry to prisons during the last 4 months of 2008 in 7 prisons in different parts of the country. Self reported drug use was registered. Commercial substance use screening tests were also done. Results: Drug test was positive for opioids, cannabis and both in 37.3%, 2.0% and 13.7%, respectively. 29.4% tested positive for benzodiazepines. Using test introduced 23.5% of our sample as drug users, who had declined to report any drug use. Conclusion: Opioids are the most used illicit drug in the case of vehicle accidents with fatality, however, 20% of users do not declare their use. This high rate of drug use in vehicle accidents with fatality reflects the importance of drug use control as a part of injury prevention in Iran. There might be a need for drug screening after severe car accidents.

  11. Trismus: An unusual presentation following road accident

    Thakur Jagdeep

    2007-01-01

    Full Text Available Trismus due to trauma usually follows road accidents leading to massive faciomaxillary injury. In the literature there is no report of a foreign body causing trismus following a road accident, this rare case is an exception. We present a case of isolated presentation of trismus following a road accident. This case report stresses on the thorough evaluation of patients presenting with trismus following a road accident.

  12. Detection and analysis of accident black spots with even small accident figures.

    Oppe, S.

    1982-01-01

    Accident black spots are usually defined as road locations with high accident potentials. In order to detect such hazardous locations we have to know the probability of an accident for a traffic situation of some kind, or the mean number of accidents for some unit of time. In almost all procedures

  13. Corporate Cost of Occupational Accidents

    Rikhardsson, Pall M.; Impgaard, M.

    2004-01-01

    The systematic accident cost analysis (SACA) project was carried out during 2001 by The Aarhus School of Business and PricewaterhouseCoopers Denmark with financial support from The Danish National Working Environment Authority. Its focused on developing and testing a method for evaluating...

  14. New technology for accident prevention

    Byne, P. [Shiftwork Solutions, Vancouver, BC (Canada)

    2006-07-01

    This power point presentation examined the effects of fatigue in the workplace and presented 3 technologies designed to prevent or monitor fatigue. The relationship between mental fatigue, circadian rhythms and cognitive performance was explored. Details of vigilance related degradations in the workplace were presented, as well as data on fatigue-related accidents and a time-line of meter-reading errors. It was noted that the direct cause of the Exxon Valdez disaster was sleep deprivation. Fatigue related accidents during the Gulf War were reviewed. The effects of fatigue on workplace performance include impaired logical reasoning and decision-making; impaired vigilance and attention; slowed mental operations; loss of situational awareness; slowed reaction time; and short cuts and lapses in optional or self-paced behaviours. New technologies to prevent fatigue-related accidents include (1) the driver fatigue monitor, an infra-red camera and computer that tracks a driver's slow eye-lid closures to prevent fatigue related accidents; (2) a fatigue avoidance scheduling tool (FAST) which collects actigraphs of sleep activity; and (3) SAFTE, a sleep, activity, fatigue and effectiveness model. refs., tabs., figs.

  15. Work Accidents and Professional Diseases

    Doru Hauptmann

    2009-10-01

    Full Text Available The major accident is defined as “any event occurred, like an emission of dangerous materials or agents, which emerges from uncontrolled evolutions along the exploitation of any objective that leads to the immediate or delayed occurrence of serious dangers with impact over human health or over the environment, inside or outside the objective in which are involved one or more than one dangerous materials”.The dangerous phenomenon is a potential source of harms. In the ambit of industrial risks of accidental origins, this expression more frequently refers to physical phenomena like conflagrations, explosions, toxic gases dispersion, etc.Any accident scenario relates itself to the potential effects at the level of environmental “targets”. In the case of major accidents, we can distinguish the following categories of “targets”: human (employees of the objective, working or resident people in the nearby of the emplacement; the installation or equipments that may stay at the origin of the accidents (dangerous equipments; certain all-important equipments to ensure the safety level of the installation (critical security equipments: control rooms, civil fire brigade headquarters, etc; goods and structures situated in the installation’ environment (ground water, rivers, soil, flora, fauna.

  16. Radionuclides release possibility analysis of MSR at various accident conditions

    Lee, Choong Wie; Kim, Hee Reyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There are some accidents which go beyond our expectation such as Fukushima Daiichi nuclear disaster and amounts of radionuclides release to environment, so more effort and research are conducted to prevent it. MSR (Molten Salt Reactor) is one of GEN-IV reactor types, and its coolant and fuel are mixtures of molten salt. MSR has a schematic like figure 1 and it has different features with the solid fuel reactor, but most important and interesting feature of MSR is its many safety systems. For example, MSR has a large negative void coefficient. Even though power increases, the reactor slows down soon. Radionuclides release possibility of MSR was analyzed at various accident conditions including Chernobyl and Fukushima ones. The MSR was understood to prevent the severe accident by the negative reactivity coefficient and the absence of explosive material such as water at the Chernobyl disaster condition. It was expected to contain fuel salts in the reactor building and not to release radionuclides into environment even if the primary system could be ruptured or broken and fuel salts would be leaked at the Fukushima Daiichi nuclear disaster condition of earthquake and tsunami. The MSR, which would not lead to the severe accident and therefore prevents the fuel release to the environment at many expected scenarios, was thought to have priority in the aspect of accidents. A quantitative analysis and a further research are needed to evaluate the possibility of radionuclide release to the environment at the various accident conditions based on the simple comparison of the safety feature between MSR and solid fuel reactor.

  17. Global risk of radioactive fallout after major nuclear reactor accidents

    Lelieveld, J.; Kunkel, D.; Lawrence, M. G.

    2012-05-01

    Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7), using particulate 137Cs and gaseous 131I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  18. Global risk of radioactive fallout after major nuclear reactor accidents

    J. Lelieveld

    2012-05-01

    Full Text Available Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7, using particulate 137Cs and gaseous 131I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  19. [Diagnosis and treatment of diving accidents. New German guidelines for diving accidents 2014-2017].

    Jüttner, B; Wölfel, C; Liedtke, H; Meyne, K; Werr, H; Bräuer, T; Kemmerer, M; Schmeißer, G; Piepho, T; Müller, O; Schöppenthau, H

    2015-06-01

    In 2015 the German Society for Diving and Hyperbaric Medicine (GTÜM) and the Swiss Underwater and Hyperbaric Medical Society (SUHMS) published the updated guidelines on diving accidents 2014-2017. These multidisciplinary guidelines were developed within a structured consensus process by members of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI), the Sports Divers Association (VDST), the Naval Medical Institute (SchiffMedInst), the Social Accident Insurance Institution for the Building Trade (BG BAU), the Association of Hyperbaric Treatment Centers (VDD) and the Society of Occupational and Environmental Medicine (DGAUM). This consensus-based guidelines project (development grade S2k) with a representative group of developers was conducted by the Association of Scientific Medical Societies in Germany. It provides information and instructions according to up to date evidence to all divers and other lay persons for first aid recommendations to physician first responders and emergency physicians as well as paramedics and all physicians at therapeutic hyperbaric chambers for the diagnostics and treatment of diving accidents. To assist in implementing the guideline recommendations, this article summarizes the rationale, purpose and the following key action statements: on-site 100% oxygen first aid treatment, still patient positioning and fluid administration are recommended. Hyperbaric oxygen (HBO) recompression remains unchanged the established treatment in severe cases with no therapeutic alternatives. The basic treatment scheme recommended for diving accidents is hyperbaric oxygenation at 280 kPa. For quality management purposes there is a need in the future for a nationwide register of hyperbaric therapy.

  20. 48 CFR 836.513 - Accident prevention.

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Accident prevention. 836... prevention. The contracting officer must insert the clause at 852.236-87, Accident Prevention, in solicitations and contracts for construction that contain the clause at FAR 52.236-13, Accident Prevention....

  1. 48 CFR 1836.513 - Accident prevention.

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Accident prevention. 1836... 1836.513 Accident prevention. The contracting officer must insert the clause at 1852.223-70, Safety and Health, in lieu of FAR clause 52.236-13, Accident Prevention, and its Alternate I....

  2. 48 CFR 636.513 - Accident prevention.

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Accident prevention. 636... CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 636.513 Accident prevention. (a) In... contracting activities shall insert DOSAR 652.236-70, Accident Prevention, in lieu of FAR clause...

  3. Barriers to learning from incidents and accidents

    Dechy, N.; Dien, Y.; Drupsteen, L.; Felicio, A.; Cunha, C.; Roed-Larsen, S.; Marsden, E.; Tulonen, T.; Stoop, J.; Strucic, M.; Vetere Arellano, A.L.; Vorm, J.K.J. van der; Benner, L.

    2015-01-01

    This document provides an overview of knowledge concerning barriers to learning from incidents and accidents. It focuses on learning from accident investigations, public inquiries and operational experience feedback, in industrial sectors that are exposed to major accident hazards. The document disc

  4. Analysing truck position data to study roundabout accident risk

    Kamla, Jwan Jameel Shekh Mohammed

    2016-01-01

    In order to reduce accident risk, highway authorities prioritise maintenance budgets partly based upon previous accident history. However, as accident rates have continued to fall in most contexts, this approach has become problematic as accident ‘black spots’ have been treated and the number of accidents at any individual site has fallen. Another way of identifying sites of higher accident risk might be to identify near-miss accidents (where an accident nearly happened, but was avoided), whi...

  5. Jet Substructure by Accident

    Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong

    2012-01-01

    We propose a new search strategy for high-multiplicity hadronic final states. When new particles are produced at threshold, the distribution of their decay products is approximately isotropic. If there are many partons in the final state, it is likely that several will be clustered into the same large-radius jet. The resulting jet exhibits substructure, even though the parent states are not boosted. This "accidental" substructure is a powerful discriminant against background because it is more pronounced for high-multiplicity signals than for QCD multijets. We demonstrate how to take advantage of accidental substructure to reduce backgrounds without relying on the presence of missing energy. As an example, we present the expected limits for several R-parity violating gluino decay topologies. This approach allows for the determination of QCD backgrounds using data-driven methods, which is crucial for the feasibility of any search that targets signatures with many jets and suppressed missing energy.

  6. The relationship between benzodiazepine use and traffic accidents: A systematic literature review.

    Smink, Beitske E; Egberts, Antoine C G; Lusthof, Klaas J; Uges, Donald R A; de Gier, Johan J

    2010-08-01

    In many countries, benzodiazepines are the most commonly used and misused psychoactive medicinal drugs. Results of epidemiological studies investigating the association between benzodiazepine use and traffic accidents seem to be inconclusive or inconsistent at first sight. However, the outcome of epidemiological studies may be influenced by several methodological factors like study design, study population, exposure measurement, outcome definitions and possible confounders. Our objective was to conduct a systematic literature review of epidemiological studies that investigated the association between benzodiazepine use and traffic accidents, including related outcomes like culpability and injury or accident severity. We searched EMBASE, PubMed and Forensic Science Abstracts 3/0 (FORS) for references included in these databases at 1 June 2009 using the term 'benzodiazepines' in combination with 'driving performance' or 'accident risk' or 'traffic accident'. For inclusion in this review, the study design had to be comparative, include road users involved in accidents and provide specific data about benzodiazepines. Sixty-six studies were included in the review. The study populations varied from the general (driving) population, accident-involved road users with or without injury and persons admitted to a hospital to fatally injured accident-involved drivers. Exposure assessment was performed by using toxicological results, prescription data or questionnaires. The divergent study populations and comparison groups and the variety of methods used to express the outcome of interest hampered comparison between results. Evidence is growing that exposure to benzodiazepines is related to increased accident risk. The literature indicates that the greatest accident risk is associated with the use of long half-life benzodiazepines, increasing dosage and the first few weeks of use of benzodiazepines. Clear evidence of increased culpability associated with benzodiazepine use is

  7. MELCOR modeling of Fukushima unit 2 accident

    Sevon, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2014-12-15

    A MELCOR model of the Fukushima Daiichi unit 2 accident was created in order to get a better understanding of the event and to improve severe accident modeling methods. The measured pressure and water level could be reproduced relatively well with the calculation. This required adjusting the RCIC system flow rates and containment leak area so that a good match to the measurements is achieved. Modeling of gradual flooding of the torus room with water that originated from the tsunami was necessary for a satisfactory reproduction of the measured containment pressure. The reactor lower head did not fail in this calculation, and all the fuel remained in the RPV. 13 % of the fuel was relocated from the core area, and all the fuel rods lost their integrity, releasing at least some volatile radionuclides. According to the calculation, about 90 % of noble gas inventory and about 0.08 % of cesium inventory was released to the environment. The release started 78 h after the earthquake, and a second release peak came at 90 h. Uncertainties in the calculation are very large because there is scarce public data available about the Fukushima power plant and because it is not yet possible to inspect the status of the reactor and the containment. Uncertainty in the calculated cesium release is larger than factor of ten.

  8. [Hanggliding accidents. Distribution of injuries and accident analysis].

    Ballmer, F T; Jakob, R P

    1989-12-01

    Paragliding--a relatively new sport to Switzerland--brought 23 patients with 48 injuries (38% lower limb and 29% spinal) within a period of 8 months to the Inselspital University hospital in Berne. The aim of the study in characterizing these injuries is to formulate some guidelines towards prevention. With over 90% of accidents occurring at either take off or landing, emphasis on better training for the beginner is proposed with strict guidelines for the more experienced pilot flying in unfavourable conditions.

  9. Cerebrovascular Accidents In Myopathies

    Farzad Fatehi

    2017-02-01

    Full Text Available Several types of stroke in myopathies are described: ischemic, metabolic, or cryptogenic. Ischemic stroke may be categorized as cardioembolic, angiopathic, hemodynamic, or thrombophilic. Cardiac involvement in the form of atrial fibrillation/flutter, dilated cardiomyopathy, or non-compaction Cardioembolic could ensue in stroke. Angiopathic stroke occurs provided that there is atherosclerosis or mitochondrial disorders. Thrombophilic stroke may happen in polymyositis or dermatomyositis along with anti-phospholipid syndrome. Metabolic stroke usually manifests as stroke-like episode and is a distinct feature of various mitochondrial disorders, principally MELAS syndrome. The clinical manifestations are as a result of a vasogenic edema, demonstrating as hyperintensity on T2, DWI, and apparent diffusion coefficient mapping. Differentiation between ischemic and metabolic stroke is essential in terms of diagnosis, therapy, and prognosis. In conclusion, ischemic stroke attributable to cardioembolism, arteriopathy, or thrombophilia are occasional events in myopathies, but metabolic stroke is a frequent feature of mitochondrial disorders.

  10. Exploratory analysis of Spanish energetic mining accidents.

    Sanmiquel, Lluís; Freijo, Modesto; Rossell, Josep M

    2012-01-01

    Using data on work accidents and annual mining statistics, the paper studies work-related accidents in the Spanish energetic mining sector in 1999-2008. The following 3 parameters are considered: age, experience and size of the mine (in number of workers) where the accident took place. The main objective of this paper is to show the relationship between different accident indicators: risk index (as an expression of the incidence), average duration index for the age and size of the mine variables (as a measure of the seriousness of an accident), and the gravity index for the various sizes of mines (which measures the seriousness of an accident, too). The conclusions of this study could be useful to develop suitable prevention policies that would contribute towards a decrease in work-related accidents in the Spanish energetic mining industry.

  11. A preliminary study for the implementation of general accident management strategies

    Yang, Soo Hyung; Kim, Soo Hyung; Jeong, Young Hoon; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of each strategy are also investigated. 11 refs., 3 figs., 3 tabs. (Author)

  12. A New Cultivation-Evolution Technology of Accident Immune Function for a Petrochemical Enterprise

    Yang Zhenhong; Zhang Xuhua; Wang Xiangyao; Wang Zhihu; Liu Yan; Zhang Xuan

    2007-01-01

    For the purpose of developing an immune function on production accidents in a petrochemical enterprise, a new cultivation-evolution approach of preventive mechanism is suggested by analyzing various factors relating to immune deficiency syndrome and by referring to immunity genetic algorithm and relevant concepts applied in medicine science. Accident-immunity system for highly hazardous petrochemical enterprise, which is made up of its productive system's Safety Organ and Safety Organization, is typically an evolution-cultivation progress for immune function, The new B immune cell is generated after several layers' screening, clone expanding, receptor editing, organizing in immune system of work accident in petrochemical enterprise. There is a B immune cell with high appetency and a manipulative function chain for accident-immunity. Taking the antigen of accidents in industry as the target function and the immune antibody as the solution, the authors carried out a computation diagram for prediction of appetency between the antigen and antibody.

  13. A System Supporting the Analysis of Motorway Traffic Accidents

    Davide Anghinolfi

    2015-12-01

    Full Text Available This work presents a business intelligence tool for monitoring traffic accidents on motorways and supporting decisions relevant to road safety. The system manages information on road characteristics, traffic accidents and traffic volumes and produces reports for monitoring the evolution of key performance indicators for road safety, supporting decisions on actions for risk mitigation and safety improvements for road users. The paper illustrates the different types of analyses performed by the system. Pattern based analysis is used to evaluate safety performance indicators for the road sections matching defined patterns. Two different road segmentation algorithms, used to identify the most critical road sections according to various severity indicators, are presented and discussed. Differential analysis compares the value of selected severity indicators before and after the implementation of an intervention on a road. Finally, a graphical user interface allows the accident locations to be visualized and accidents with specific characteristics to be highlighted. The system was evaluated on the data collected between 2009 and 2011 for the A15 motorway in Italy, connecting Parma to La Spezia.

  14. Psychosomatic health status of children exposed to the Chernobyl accident

    Korol, N. [Scientific Center for Radiation Medicine, Kiev (Ukraine); Shibata, Yoshisada; Nakane, Yoshibumi

    1998-12-01

    Childhood victims were investigated focussing on the psychosomatic disorders. The subjects were some of the 3834 children who evacuated from the Chernobyl zone to Kiev (evacuees) and 200 children who have been living in Kiev since prior to the accident (comparison group). A psychological test administered to 504 evacuees aged 12-14 years at the time of the accident and the comparison group indicated that the frequencies of neutroticism, high level of anxiety and conflicts were significantly higher in the evacuees than in the comparison group (p<0.001). Another psychological test administered at puberty to the 504 evacuees and 200 other evacuees exposed to the accident at 4-6 years of age indicated that the psycho-emotional portrait of evacuated teenagers significantly changed with time since the accident. The effects of the Chernobyl accident on the health of the vegetative dystonia observed in 1987-1990 and 1990-1995 were higher in the evacuees than in the comparison group, although they were not statistically significant. Furthermore, a significant (p<0.001) association of the vegetative dystonia with peptic and cardiovascular disorders was observed. The present study indicates that the vegetative dystonia is still highly prevalent among childhood victims and deems to support that the vegetative dystonia may be a precursor of several diseases such as cardiovascular and peptic disorders. It should be emphasized that a health promotion program to produce a change in psychological and social problems after the Chernobyl accident is necessary to decrease the health impact among Ukrainian people. (author)

  15. Fatal motorcycle accidents and alcohol

    Larsen, C F; Hardt-Madsen, M

    1987-01-01

    A series of fatal motorcycle accidents from a 7-year period (1977-1983) has been analyzed. Of the fatalities 30 were operators of the motorcycle, 11 pillion passengers and 8 counterparts. Of 41 operators 37% were sober at the time of accident, 66% had measurable blood alcohol concentration (BAC......); 59% above 0.08%. In all cases where a pillion passenger was killed, the operator of the motorcycle had a BAC greater than 0.08%. Of the killed counterparts 2 were non-intoxicated, 2 had a BAC greater than 0.08%, and 4 were not tested. The results advocate that the law should restrict alcohol...... consumption by pillion passengers as well as by the motorcycle operator. Suggestions made to extend the data base needed for developing appropriate alcohol countermeasures by collecting sociodemographic data on drivers killed or seriously injured should be supported....

  16. [Medical peculiarities and social effects of accidents with motorcycles].

    Tittel, K; Fichtner, K; Schauwecker, F

    1987-12-01

    During the period 1976 until 1982, 133 accident patients with two-cycle motor vehicles were treated at the traumatological Department of the Dr. Horst Schmidt Hospital. 80% of those patients were below or 21 years of age, 58.5% were undergoing training for professional work. 23.3% had suffered severe injuries (according to the Gögler scheme), 6.8% died as a result. Six out of nine dead patients were caused by severe head injuries, five of whom did not wear protective helmets. 37.7% cover all head injuries 5% more than injuries of the lower extremities (thigh and shins). The result of these accidents causes an enormous impact on those concerned as well as on the society. 32.3% interruptions and extensions of training periods and change of training for the youth became necessary. Treatment after admissions as in-patient (for minor injuries costs ca. DM 1000, for major injuries DM 20,000) costs about DM719,368,000 excluding costs for rents and auxiliary requirements which have not been taken into consideration. The invaluation of treatment of 133 accident cases with motorcycles has resulted in the following consideration: 1. Yearly publication of motor cycle accidents and its death tolls including cost sustained or prospective costs involved. 2. Strict rules concerning covering clothing. 3. Rigorous accident theching during driving lesions. 4. Security measures and its execution enforced by law to control the construction of motorized two cycle in consideration of optical and technical performance criteria. 5. Severe criticism of advertisers in usage of words like speed, performance and freedom which influence the youth without indicating the risks of the two-cycle vehicles.

  17. Practical approaches in accident analysis

    Stock, M.

    An accident analysis technique based on successive application of structural response, explosion dynamics, gas cloud formation, and plant operation failure mode models is proposed. The method takes into account the nonideal explosion characteristic of a deflagration in the unconfined cloud. The resulting pressure wave differs significantly from a shock wave and the response of structures like lamp posts and walls can differ correspondingly. This gives a more realistic insight into explosion courses than a simple TNT-equivalent approach.

  18. Medical consequences of Chernobyl accident

    Galstyan I.A.

    2015-12-01

    Full Text Available Aim: to study the long-term effects of acute radiation syndrome (ARS, developed at the victims of the Chernobyl accident. Material and Methods. 237 people were exposed during the accident, 134 of them were diagnosed with ARS. Dynamic observation implies a thorough annual examination in a hospital. Results. In the first 1.5-2 years after the ARS mean group indices of peripheral blood have returned to normal. However, many patients had transient expressed moderate cytopenias. Granulocytopenia, thrombocytopenia, lymphopenia and erythropenia were the most frequently observed things during the first 5 years after the accident. After 5 years their occurences lowered. In 11 patients the radiation cataract was detected. A threshold dose for its development is a dose of 3.2 Gy Long-term effects of local radiation lesions (LRL range from mild skin figure smoothing to a distinct fibrous scarring, contractures, persistently recurrent late radiation ulcers. During all years of observation we found 8 solid tumors, including 2 thyroid cancers. 5 hematologic diseases were found. During 29 years 26 ARS survivors died of various causes. Conclusion. The health of ones with long-term ARS effects is determined by the evolution of the LRL effects on skin, radiation cataracts, hema-tological diseases and the accession of of various somatic diseases, not caused by radiation.

  19. [Accidents in travellers - the hidden epidemic].

    Walz, Alexander; Hatz, Christoph

    2013-06-01

    The risk of malaria and other communicable diseases is well addressed in pre-travel advice. Accidents are usually less discussed. Thus, we aimed at assessing accident figures for the Swiss population, based on data of the register from 2004 to 2008 of the largest Swiss accident insurance organization (SUVA). More than 139'000 accidents over 5 years showed that 65 % of the accidents overseas are injuries, and 24 % are caused by poisoning or harm by cold, heat or air pressure. Most accidents happened during leisure activities or sports. More than one third of the non-lethal and more than 50 % of the fatal accidents happened in Asia. More than three-quarters of non-lethal accidents take place in people between 25 and 54 years. One out of 74 insured persons has an accident abroad per year. Despite of many analysis short-comings of the data set with regard to overseas travel, the figures document the underestimated burden of disease caused by accidents abroad and should affect the given pre-health advice.

  20. Relação entre a gravidade do trauma e padrões de analgesia utilizados em acidentados