WorldWideScience

Sample records for accident reporting system

  1. Status and functioning of the European Commission's major accident reporting system

    International Nuclear Information System (INIS)

    Kirchsteiger, C.

    1999-01-01

    This paper describes the background, functioning and status of the European Commission's Major Accident Reporting System (MARS), dedicated to collect, in a consistent way, data on major industrial accidents involving dangerous substances from the Member States of the European Union, to analyse and statistically process them, and to create subsets of all non-confidential accidents data and analysis results for export to all Member States. This modern information exchange and analysis tool is made up of two connected parts: one for each local unit (i.e., for the Competent Authority of each EU Member State), and one central part for the European Commission. The local, as well as the central parts of this information network, can serve both as data logging systems and, on different levels of complexity, as data analysis tools. The central database allows complex cluster and pattern analysis, identifying and analysing the succession of the disruptive factors leading to an accident. On this basis, 'lessons learned' can be formulated for the industry for the purposes of further accident prevention. Further, results from analysing data of major industrial accidents reported to MARS are presented. It can be shown that some of the main assumptions in the new 'Seveso II Directive' can directly be validated from MARS data. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Self-reported accidents

    DEFF Research Database (Denmark)

    Møller, Katrine Meltofte; Andersen, Camilla Sloth

    2016-01-01

    The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals.......The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals....

  3. Secondary school accident reporting in one education authority.

    Science.gov (United States)

    Williams, W R; Latif, A H A; Sibert, J

    2002-01-01

    Secondary schools appear to have very different accident rates when they are compared on the basis of accident report returns. The variation may be as a result of real differences in accident rates or different reporting procedures. This study investigates accident reporting from secondary schools and, in particular, the role of the school nurse. Accident form returns covering a 2-year period were collected for statistical analysis from 13 comprehensive schools in one local education authority in Wales. School sites were visited in the following school year to obtain information about accident records held on site and accident reporting procedures. The main factors determining the number of school accident reports submitted to the education authority relate to differences in recording and reporting procedures, such as the employment of a nurse and the policy of the head teacher/safety officer on submitting accident returns. Accident and emergency department referrals from similar schools may show significant differences in specific injuries and their causes. The level of school accident activity cannot be gauged from reports submitted to the education authority. Lack of incentives for collecting good accident data, in conjunction with the degree of complacency in the current system, suggest that future accident rates and reporting activity are unlikely to change.

  4. Hydrogen-control systems for severe LWR accident conditions - a state-of-technology report

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Postma, A.K.; Jeppson, D.W.

    1983-03-01

    This report reviews the current state of technology regarding hydrogen safety issues in light water reactor plants. Topics considered in this report relate to control systems and include combustion prevention, controlled combustion, minimization of combustion effects, combination of control concepts, and post-accident disposal. A companion report addresses hydrogen generation, distribution, and combustion. The objectives of the study were to identify the key safety issues related to hydrogen produced under severe accident conditions, to describe the state of technology for each issue, and to point out ongoing programs aimed at resolving the open issues

  5. The United States Department of Energy (DOE) Computerized Accident/Incident Reporting System (CAIRS)

    International Nuclear Information System (INIS)

    Briscoe, G.J.

    1993-01-01

    The Department of Energy's (DOE) Computerized Accident/Incident Reporting System (CAIRS) is a comprehensive data base containing more than 50,000 investigation reports of injury/illness, property damage and vehicle accident cases representing safety data from 1975 to the present for more than 150 DOE contractor organizations. A special feature is that the text of each accident report is translated using a controlled dictionary and rigid sentence structure called Factor Relationship and Sequence of Events (FRASE) that enhances the ability to retrieve specific types of information and to perform detailed analyses. DOE summary and individual contractor reports are prepared quarterly and annually. In addition, ''Safety Performance Profile'' reports for individual organizations are prepared to provide advance information to appraisal teams, and special topical reports are prepared for areas of concern such as an increase in the number of security injuries or environmental releases. The data base is open to all DOE and Contractor registered users with no access restrictions other than that required by the Privacy Act

  6. 41 CFR 101-39.401 - Reporting of accidents.

    Science.gov (United States)

    2010-07-01

    ...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.4-Accidents and Claims § 101-39.401 Reporting of accidents. (a) The... manager of the GSA IFMS fleet management center issuing the vehicle; (2) The employee's supervisor; and (3... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Reporting of accidents...

  7. Improving user-insurance communication on accident reports

    OpenAIRE

    Fardoun, Habib Moussa; Alghazzawi, Daniyal M.; Paules Ciprés, Antonio

    2014-01-01

    This paper presents an easy to use methodology and system for insurance companies targeting at managing traffic accidents reports process. The main objective is to facilitate and accelerate the process of creating and finalizing the necessary accident reports in cases without mortal victims involved. The diverse entities participating in the process from the moment an accident occurs until the related final actions needed are included. Nowadays, this market is limited to the consulting platfo...

  8. Review of severe accidents and the results of accident consequence assessment in different energy systems (Contract research)

    International Nuclear Information System (INIS)

    Matsuki, Yoshio; Muramatsu, Ken

    2008-05-01

    The cases of severe accidents and the consequence assessments in different energy systems, Coal, Oil, Gas, Hydro and Nuclear, were collected, and then they were further analyzed. In this report, the information on the accidents in various energy systems were collected from the sources of the Paul Scherrer Institute (hereinafter, 'PSI') and the International Atomic Energy Agency (hereinafter, 'IAEA'). The information on the severe accidents of nuclear power plants were collected from the report of the US Presidential Commission on Catastrophic Nuclear Accidents and several relevant reports issued in the countries of the European Union, together with the reports of the PSI and the IAEA. To analyze the collected information, several parameters, which are numbers of fatalities, injuries, evacuees and the costs of the damages, were chosen to characterize those accidents in different energy systems. And then, upon the comparison of these characteristics of different accidents, the impacts of the accidents in nuclear and other energy systems were compared. Upon the results of the analysis, it is pointed out that the cost caused by the Chernobyl Accident, the severe accident in nuclear energy, tends to be higher than in the other energy systems. On the other hand, from the aspects of fatalities and injuries, it is not confirmed that the damages of the Chernobyl Accident are larger than in the other energy systems. However, it is also recognized, as the specific characteristics of the severe nuclear accident, that the impacts of the accident spread in a wider area, and stay for a longer period, in comparison with the ones in the other energy systems. (author)

  9. 49 CFR 195.50 - Reporting accidents.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Reporting accidents. 195.50 Section 195.50 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.50 Reporting accidents. An accident...

  10. 22 CFR 102.8 - Reporting accidents.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Reporting accidents. 102.8 Section 102.8... Accidents Abroad § 102.8 Reporting accidents. (a) To airline and Civil Aeronautics Administration... probably be the first to be informed of the accident, in which event he will be expected to report the...

  11. 32 CFR 644.532 - Reporting accidents.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Reporting accidents. 644.532 Section 644.532... and Improvements § 644.532 Reporting accidents. Immediately upon receipt of information of an accident... that an accident has occurred, the former using command should be requested to send qualified explosive...

  12. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation

    International Nuclear Information System (INIS)

    Tentner, A.M.; Parma, E.; Wei, T.; Wigeland, R.

    2010-01-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  13. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

    2010-03-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  14. Tsuruga unit accident from overseas report

    International Nuclear Information System (INIS)

    Kaneki, Yuji

    1981-01-01

    In the accident in Tsuruga Nuclear Power Station, Japan Atomic Power Co., the actual damage due to radioactivity did not occur, but large social reaction arose, and it increased the anxiety of the nation about nuclear power generation and resulted in hurting the trust. The cracking and the leak of coolant in a feed water heater, the overflow of waste liquid from a filter sludge storage tank, and the leak of waste liquid from a thick waste liquid storage tank were reported in dailies far behind the occurrences, and the attitude of the company concealing the accidents was blamed primarily. The overflowed waste liquid from the filter sludge storage tank leaked into a general drainage and flowed into the sea, which must not occur in any situation. Some inquiries about this accident from abroad came to the Japan Atomic Industrial Forum Inc., but the reports about this accident in the large dailies in USA, France, West Germany and Great Britain were not those attracting concern. A daily in Australia reported the Tsuruga accident allotting considerable space. The reports in foreign dailies are cited. The report concerning the accidents of atomic energy is difficult about the method of expression, and the reporters gathering news and those offering informations must be prudent. (Kako, I.)

  15. Source term assessment, containment atmosphere control systems, and accident consequences. Report to CSNI by an OECD/NEA Group of experts

    International Nuclear Information System (INIS)

    1987-04-01

    CSNI Report 135 summarizes the results of the work performed by CSNI's Principal Working Group No. 4 on the Source Term and Environmental Consequences (PWG4) during the period extending from 1983 to 1986. This document contains the latest information on some important topics relating to source terms, accident consequence assessment, and containment atmospheric control systems. It consists of five parts: (1) a Foreword and Executive Summary prepared by PWG4's Chairman; (2) a Report on the Technical Status of the Source Term; (3) a Report on the Technical Status of Filtration and Containment Atmosphere Control Systems for Nuclear Reactors in the Event of a Severe Accident; (4) a Report on the Technical Status of Reactor Accident Consequence Assessment; (5) a list of members of PWG4

  16. 50 CFR 25.72 - Reporting of accidents.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Reporting of accidents. 25.72 Section 25... Reporting of accidents. Accidents involving damage to property, injury to the public or injury to wildlife..., but in no event later than 24 hours after the accident, by the persons involved, to the refuge manager...

  17. Primary school accident reporting in one education authority.

    Science.gov (United States)

    Latif, A H A; Williams, W R; Sibert, J

    2002-02-01

    Studies have shown a correlation between increased accident rates and levels of deprivation in the community. School accident reporting is one area where an association might be expected. To investigate differences in primary school accident rates in deprived and more affluent wards, in an area managed by one education authority. Statistical analysis of accident form returns for 100 primary schools in one education authority in Wales over a two year period, in conjunction with visits to over one third of school sites. Accident report rates from schools in deprived wards were three times higher than those from schools in more affluent wards. School visits showed that this discrepancy was attributable primarily to differences in reporting procedures. One third of schools did not report accidents and approximately half did not keep records of minor accidents. The association between school accident report rates and deprivation in the community is complex. School accident data from local education authorities may be unreliable for most purposes of collection.

  18. 32 CFR 636.13 - Traffic accident investigation reports.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Traffic accident investigation reports. 636.13... Stewart, Georgia § 636.13 Traffic accident investigation reports. In addition to the requirements in § 634... record traffic accident investigations on DA Form 3946 (Military Police Traffic Accident Report) and DA...

  19. Report on a radiotherapy underdose accident

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulides, G; Christofides, S [Medical Physics Department, Nicosia General Hospital, 1450 Nicosia (Cyprus)

    1999-12-31

    Reporting information on accidents and incidents involving radiation sources provides a body of knowledge which can help to prevent accidents of a similar nature. Accident information has to be made available to users, manufacturers and regulators; An international effort to pool and analyse incident and accident information will provide more complete and reliable indicators of root causes and trends and recommendations for future accident avoidance. An accident due to human error involving a superficial x-ray therapy machine and patients treated for postoperative breast cancer is reported here. 43 women receiving radiotherapy treatment have received significantly less radiation dose than the prescribed dose. The worst dose percentage within the radiation field was 20% of the prescribed dose. The worst dose percentage on the operation scar of the breast was 52% of the prescribed radiation dose. The response to accidents/incidents in radiotherapy is discussed. (authors) 4 refs., 5 figs., 1 tabs.

  20. 43 CFR 15.13 - Report of accidents.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Report of accidents. 15.13 Section 15.13 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.13 Report of accidents. Accidents involving injury to life or property shall be reported as soon as possible...

  1. Deepwater Horizon Accident Investigation Report

    International Nuclear Information System (INIS)

    2010-09-01

    On the evening of April 20, 2010, a well control event allowed hydrocarbons to escape from the Macondo well onto Transocean's Deepwater Horizon, resulting in explosions and fire on the rig. Eleven people lost their lives, and 17 others were injured. The fire, which was fed by hydrocarbons from the well, continued for 36 hours until the rig sank. Hydrocarbons continued to flow from the reservoir through the wellbore and the blowout preventer (BOP) for 87 days, causing a spill of national significance. BP Exploration and Production Inc. was the lease operator of Mississippi Canyon Block 252, which contains the Macondo well. BP formed an investigation team that was charged with gathering the facts surrounding the accident, analyzing available information to identify possible causes and making recommendations to enable prevention of similar accidents in the future. The BP investigation team began its work immediately in the aftermath of the accident, working independently from other BP spill response activities and organizations. The ability to gather information was limited by a scarcity of physical evidence and restricted access to potentially relevant witnesses. The team had access to partial real-time data from the rig, documents from various aspects of the Macondo well's development and construction, witness interviews and testimony from public hearings. The team used the information that was made available by other companies, including Transocean, Halliburton and Cameron. Over the course of the investigation, the team involved over 50 internal and external specialists from a variety of fields: safety, operations, subsea, drilling, well control, cementing, well flow dynamic modeling, BOP systems and process hazard analysis. This report presents an analysis of the events leading up to the accident, eight key findings related to the causal chain of events and recommendations to enable the prevention of a similar accident. The investigation team worked separately

  2. Deepwater Horizon Accident Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    On the evening of April 20, 2010, a well control event allowed hydrocarbons to escape from the Macondo well onto Transocean's Deepwater Horizon, resulting in explosions and fire on the rig. Eleven people lost their lives, and 17 others were injured. The fire, which was fed by hydrocarbons from the well, continued for 36 hours until the rig sank. Hydrocarbons continued to flow from the reservoir through the wellbore and the blowout preventer (BOP) for 87 days, causing a spill of national significance. BP Exploration and Production Inc. was the lease operator of Mississippi Canyon Block 252, which contains the Macondo well. BP formed an investigation team that was charged with gathering the facts surrounding the accident, analyzing available information to identify possible causes and making recommendations to enable prevention of similar accidents in the future. The BP investigation team began its work immediately in the aftermath of the accident, working independently from other BP spill response activities and organizations. The ability to gather information was limited by a scarcity of physical evidence and restricted access to potentially relevant witnesses. The team had access to partial real-time data from the rig, documents from various aspects of the Macondo well's development and construction, witness interviews and testimony from public hearings. The team used the information that was made available by other companies, including Transocean, Halliburton and Cameron. Over the course of the investigation, the team involved over 50 internal and external specialists from a variety of fields: safety, operations, subsea, drilling, well control, cementing, well flow dynamic modeling, BOP systems and process hazard analysis. This report presents an analysis of the events leading up to the accident, eight key findings related to the causal chain of events and recommendations to enable the prevention of a similar accident. The investigation team worked

  3. Safety against releases in severe accidents. Final report

    International Nuclear Information System (INIS)

    Lindholm, I.; Berg, Oe.; Nonboel, E.

    1997-12-01

    The work scope of the RAK-2 project has involved research on quantification of the effects of selected severe accident phenomena for Nordic nuclear power plants, development and testing of a computerised accident management support system and data collection and description of various mobile reactors and of different reactor types existing in the UK. The investigations of severe accident phenomena focused mainly on in-vessel melt progression, covering a numerical assessment of coolability of a degraded BWR core, the possibility and consequences of a BWR reactor to become critical during reflooding and the core melt behavior in the reactor vessel lower plenum. Simulant experiments were carried out to investigate lower head hole ablation induced by debris discharge. In addition to the in-vessel phenomena, a limited study on containment response to high pressure melt ejection in a BWR and a comparative study on fission product source term behaviour in a Swedish PWR were performed. An existing computerised accident management support system (CAMS) was further developed in the area of tracking and predictive simulation, signal validation, state identification and user interface. The first version of a probabilistic safety analysis module was developed and implemented in the system. CAMS was tested in practice with Barsebaeck data in a safety exercise with the Swedish nuclear authority. The descriptions of the key features of British reactor types, AGR, Magnox, FBR and PWR were published as data reports. Separate reports were issued also on accidents in nuclear ships and on description of key features of satellite reactors. The collected data were implemented in a common Nordic database. (au)

  4. 32 CFR 634.29 - Traffic accident investigation reports.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Traffic accident investigation reports. 634.29... records. Installation law enforcement officials will record traffic accident investigations on Service/DLA... traffic accident investigation reports pertaining to accidents investigated by military police that...

  5. A Review of Accident Modelling Approaches for Complex Critical Sociotechnical Systems

    National Research Council Canada - National Science Library

    Qureshi, Zahid H

    2008-01-01

    .... This report provides a review of key traditional accident modelling approaches and their limitations, and describes new system-theoretic approaches to the modelling and analysis of accidents in safety-critical systems...

  6. Safety against releases in severe accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, I.; Berg, Oe.; Nonboel, E. [eds.

    1997-12-01

    The work scope of the RAK-2 project has involved research on quantification of the effects of selected severe accident phenomena for Nordic nuclear power plants, development and testing of a computerised accident management support system and data collection and description of various mobile reactors and of different reactor types existing in the UK. The investigations of severe accident phenomena focused mainly on in-vessel melt progression, covering a numerical assessment of coolability of a degraded BWR core, the possibility and consequences of a BWR reactor to become critical during reflooding and the core melt behavior in the reactor vessel lower plenum. Simulant experiments were carried out to investigate lower head hole ablation induced by debris discharge. In addition to the in-vessel phenomena, a limited study on containment response to high pressure melt ejection in a BWR and a comparative study on fission product source term behaviour in a Swedish PWR were performed. An existing computerised accident management support system (CAMS) was further developed in the area of tracking and predictive simulation, signal validation, state identification and user interface. The first version of a probabilistic safety analysis module was developed and implemented in the system. CAMS was tested in practice with Barsebaeck data in a safety exercise with the Swedish nuclear authority. The descriptions of the key features of British reactor types, AGR, Magnox, FBR and PWR were published as data reports. Separate reports were issued also on accidents in nuclear ships and on description of key features of satellite reactors. The collected data were implemented in a common Nordic database. (au) 39 refs.

  7. 49 CFR 225.11 - Reporting of accidents/incidents.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reporting of accidents/incidents. 225.11 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD ACCIDENTS/INCIDENTS: REPORTS CLASSIFICATION, AND INVESTIGATIONS § 225.11 Reporting of accidents/incidents. Each railroad subject to this part shall submit to FRA...

  8. 29 CFR 1960.70 - Reporting of serious accidents.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Reporting of serious accidents. 1960.70 Section 1960.70... accidents. Agencies must provide the Office of Federal Agency Programs with a summary report of each fatal and catastrophic accident investigation. The summaries shall address the date/time of accident, agency...

  9. Accident on the gas transfer system

    International Nuclear Information System (INIS)

    Heugel, J.

    1991-10-01

    An accident has happened on the Vivitron gas transfer system on the 7 th August 1991. This report presents the context, facts and inquiries, analyses the reasons and explains also how the repairing has been effected

  10. Evaluation of severe accident risks: Quantification of major input parameters: MAACS [MELCOR Accident Consequence Code System] input

    International Nuclear Information System (INIS)

    Sprung, J.L.; Jow, H-N; Rollstin, J.A.; Helton, J.C.

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs

  11. Internal Accident Report: fill it out!

    CERN Multimedia

    2012-01-01

    It is important to report all accidents, near-misses and dangerous situations so that they can be avoided in the future.   Reporting these events allows the relevant services to take appropriate action and implement corrective and preventive measures. It should be noted that the routing of the internal accident report was recently changed to make sure that the people who need to know are informed. Without information, corrective action is not possible. Without corrective action, there is a risk that the events will recur. As soon as you experience or see something amiss, fill out an internal accident report! If you have any questions the HSE Unit will be happy to answer them. Contact us at safety-general@cern.ch. The HSE Unit

  12. 78 FR 14877 - Pipeline Safety: Incident and Accident Reports

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2013-0028] Pipeline Safety: Incident and Accident Reports AGENCY: Pipeline and Hazardous Materials... PHMSA F 7100.2--Incident Report--Natural and Other Gas Transmission and Gathering Pipeline Systems and...

  13. 25 CFR 226.41 - Accidents to be reported.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Accidents to be reported. 226.41 Section 226.41 Indians... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.41 Accidents to be reported. Lessee shall make a complete report to the Superintendent of all accidents, fires, or acts of theft and vandalism...

  14. Retrieval system for emplaced spent unreprocessed fuel (SURF) in salt bed depository: accident event analysis and mechanical failure probabilities. Final report

    International Nuclear Information System (INIS)

    Bhaskaran, G.; McCleery, J.E.

    1979-10-01

    This report provides support in developing an accident prediction event tree diagram, with an analysis of the baseline design concept for the retrieval of emplaced spent unreprocessed fuel (SURF) contained in a degraded Canister. The report contains an evaluation check list, accident logic diagrams, accident event tables, fault trees/event trees and discussions of failure probabilities for the following subsystems as potential contributors to a failure: (a) Canister extraction, including the core and ram units; (b) Canister transfer at the hoist area; and (c) Canister hoisting. This report is the second volume of a series. It continues and expands upon the report Retrieval System for Emplaced Spent Unreprocessed Fuel (SURF) in Salt Bed Depository: Baseline Concept Criteria Specifications and Mechanical Failure Probabilities. This report draws upon the baseline conceptual specifications contained in the first report

  15. Development of the severe accident risk information database management system SARD

    International Nuclear Information System (INIS)

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies

  16. Development of the severe accident risk information database management system SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies.

  17. Review of U.S. Army Unmanned Aerial Systems Accident Reports: Analysis of Human Error Contributions

    Science.gov (United States)

    2018-03-20

    within report documents. The information presented was obtained through a request to use the U.S. Army Combat Readiness Center’s Risk Management ...controlled flight into terrain (13 accidents), fueling errors by improper techniques (7 accidents), and a variety of maintenance errors (10 accidents). The...and 9 of the 10 maintenance accidents. Table 4. Frequencies Based on Source of Human Error Human error source Presence Poor Planning

  18. Research investigation report on Fukushima Daiichi nuclear accident

    International Nuclear Information System (INIS)

    2012-03-01

    This report was issued in February 2012 by Rebuild Japan Initiative Foundation's Independent Investigation Commission on the Fukushima Daiichi Nuclear Accident, which consisted of six members from the private sector in independent positions and with no direct interest in the business of promoting nuclear power. Commission aimed to determine the truth behind the accident by clarifying the various problems and reveal systematic problems behind these issues so as to create a new starting point by identifying clear lessons learned. Report composed of four chapters; (1) progression of Fukushima accident and resulting damage (accident management after Fukushima accident, and effects and countermeasure of radioactive materials discharged into the environment), (2) response against Fukushima accident (emergency response of cabinet office against nuclear disaster, risk communication and on-site response against nuclear disaster), (3) analysis of historical and structural factors (technical philosophy of nuclear safety, problems of nuclear safety regulation of Fukushima accident, safety regulatory governance and social background of 'Safety Myth'), (4) Global Context (implication in nuclear security, Japan in nuclear safety regime, U.S.-Japan relations for response against Fukushima accident, lessons learned from Fukushima accident - aiming at creation of resilience). Report could identify causes of Fukushima accident and factors related to resulting damages, show the realities behind failure to prevent the spread of damage, and analyze the overall structural and historical background behind the accidents. (T. Tanaka)

  19. Severe Accident Test Station Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL; Terrani, Kurt A [ORNL

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  20. Criticality accident alarm system

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-01-01

    The American National Standard ANSI/ANS-8.3-1986, Criticality Accident Alarm System provides guidance for the establishment and maintenance of an alarm system to initiate personnel evacuation in the event of inadvertent criticality. In addition to identifying the physical features of the components of the system, the characteristics of accidents of concern are carefully delineated. Unfortunately, this ANSI Standard has led to considerable confusion in interpretation, and there is evidence that the ''minimum accident of concern'' may not be appropriate. Furthermore, although intended as a guide, the provisions of the standard are being rigorously applied, sometimes with interpretations that are not consistent. Although the standard is clear in the use of absorbed dose in free air of 20 rad, at least one installation has interpreted the requirement to apply to dose in soft tissue. The standard is also clear in specifying the response to both neutrons and gamma rays. An assembly of uranyl fluoride enriched to 5% 235 U was operated to simulate a potential accident. The dose, delivered in a free run excursion 2 m from the surface of the vessel, was greater than 500 rad, without ever exceeding a rate of 20 rad/min, which is the set point for activating an alarm that meets the standard. The presence of an alarm system would not have prevented any of the five major accidents in chemical operations nor is it absolutely certain that the alarms were solely responsible for reducing personnel exposures following the accident. Nevertheless, criticality alarm systems are now the subject of great effort and expense. 13 refs

  1. 46 CFR 326.4 - Reports of accidents and occurrences.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Reports of accidents and occurrences. 326.4 Section 326... MARINE PROTECTION AND INDEMNITY INSURANCE UNDER AGREEMENTS WITH AGENTS § 326.4 Reports of accidents and occurrences. The Agent shall report every accident or occurrence of a P&I nature promptly to both the Director...

  2. Report about the radiological accident in Goiania

    International Nuclear Information System (INIS)

    Schrimer, H.P.; Gomes, C.A.; Recio, J.C.A.

    1997-01-01

    This work reports the activities developed by the technical groups who worked during the radiological accident in Goiania, held on September 1997. Several aspects of the accident are described. The final solution for the disposal of the radioactive wastes generated during the accident is presented, according to the Brazilian waste management policy. (author)

  3. [A monitoring system for work-related accidents in Piracicaba, São Paulo, Brazil].

    Science.gov (United States)

    Cordeiro, Ricardo; Vilela, Rodolfo Andrade Gouveia; de Medeiros, Maria Angélica Tavares; Gonçalves, Cláudia Giglio de Oliveira; Bragantini, Clarice Aparecida; Varolla, Antenor J; Celso, Stephan

    2005-01-01

    The authors report on the development of a work accident monitoring system in Piracicaba, São Paulo State, Brazil, with the following characteristics: information feeding the system is obtained in real time directly from accident treatment centers; the system has universal monitoring, covering all work-related accidents in Piracicaba, regardless of the nature of the worker's employment conditions, place of work, or place of residence; health surveillance and promotion of health initiatives are triggered by identification of sentinel events; spatial distribution analysis of work-related accidents is a basic tool in designing accident awareness strategies and accident prevention policies. The system was implemented in November 2003 and by October 2004 had identified 5,320 work-related accidents, or a 3.8% annual proportional incidence of work-related accidents in the municipal area. We illustrate spatial analysis of registered work-related accidents and present a detailed investigation of one example of a serious accident.

  4. The computer aided education and training system for accident management

    International Nuclear Information System (INIS)

    Yoneyama, Mitsuru; Kubota, Ryuji; Fujiwara, Tadashi; Sakuma, Hitoshi

    1999-01-01

    The education and training system for Accident Management was developed by the Japanese BWR group and Hitachi Ltd. The education and training system is composed of two systems. One is computer aided instruction (CAI) education system and the education and training system with computer simulations. Both systems are designed to be executed on personal computers. The outlines of the CAI education system and the education and training system with simulator are reported below. These systems provides plant operators and technical support center staff with the effective education and training for accident management. (author)

  5. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    The IAEA Safety Guide on Safety Assessment and Verification defines that the aim of the safety analysis should be by means of appropriate analytical tools to establish and confirm the design basis for the items important to safety, and to ensure that the overall plant design is capable of meeting the prescribed and acceptable limits for radiation doses and releases for each plant condition category. Practical guidance on how to perform accident analyses of nuclear power plants (NPPs) is provided by the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. The safety analyses are performed both in the form of deterministic and probabilistic analyses for NPPs. It is customary to refer to deterministic safety analyses as accident analyses. This report discusses the aspects of using the advanced accident analysis methods to carry out accident analyses in order to introduce them into the Safety Analysis Reports (SARs). In relation to the SAR, purposes of deterministic safety analysis can be further specified as (1) to demonstrate compliance with specific regulatory acceptance criteria; (2) to complement other analyses and evaluations in defining a complete set of design and operating requirements; (3) to identify and quantify limiting safety system set points and limiting conditions for operation to be used in the NPP limits and conditions; (4) to justify appropriateness of the technical solutions employed in the fulfillment of predetermined safety requirements. The essential parts of accident analyses are performed by applying sophisticated computer code packages, which have been specifically developed for this purpose. These code packages include mainly thermal-hydraulic system codes and reactor dynamics codes meant for the transient and accident analyses. There are also specific codes such as those for the containment thermal-hydraulics, for the radiological consequences and for severe accident analyses. In some cases, codes of a more general nature such

  6. Reporting and analysis of NMAs - a tool for accidents prevention (case studies)

    International Nuclear Information System (INIS)

    Chougaonkar, A.; Vincy, M.U.; Pisharody, N.N.; Varshney, Aloke; Khot, Pankaj

    2016-01-01

    Nuclear Power Corporation of India Limited (NPCIL) is a Public Sector Enterprise under Department of Atomic Energy (DAE), Government of India. NPCIL is operating 21 nuclear power plants and 5 nuclear power plants are under construction. NPCIL has an established organizational set-up to implement Industrial and Fire Safety requirements as per the applicable statutes and regulations. As part of industrial activities, sometimes there could be accidents due to unsafe conditions, unsafe acts or both. However, most of the accidents are preventable. The organization has issued a Head Quarter Instruction (HQI) for reporting and investigation of all types of accidents including Near Miss Accidents (NMAs). NMAs are the unplanned events, which have occurred, but did not result into injury or damage. It is very important that all NMAs are identified, reported, analyzed and corrective action taken to eliminate unsafe conditions or unsafe acts, which have caused these incidents. 'Reporting, analyzing and correcting the causes of NMAs' is one of such efforts enhanced in NPCIL to prevent accidents. Also, there exists a system for dissemination of information on incidents including NMAs among the NPCIL Units. This paper gives case study on some NMAs reported at NPCIL units during the year -2015 demonstrating the importance of the accidents prevention program. (author)

  7. 49 CFR 225.15 - Accidents/incidents not to be reported.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Accidents/incidents not to be reported. 225.15... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD ACCIDENTS/INCIDENTS: REPORTS CLASSIFICATION, AND INVESTIGATIONS § 225.15 Accidents/incidents not to be reported. A railroad need not report: (a) Casualties which...

  8. Investigation report on causes of radiation underexposure accident at Yamagata University Hospital and Prevention of Similar accident

    International Nuclear Information System (INIS)

    2005-01-01

    The accident in the title was announced on February 18, 2004 by the hospital, which asked its investigation immediately. The group based on 4 academic societies concerned, thereby started investigations of the in-house reports on the accident and of subsequent hospital visit in March, which involved hearing from personnel concerned, physical/technological examinations and clinical evaluation, with respect to the hospital system for radiation treatment, flow of the treatment, accident details, estimation of the actual expose dose and classification of patients. The investigational group found for the actual number of patients underexposed to be 36 (63, in the in-house report) in 1,377. The cause of the accident was thought essentially the input error for the correct power coefficient 1.032 to be a wrong one 1.320 for 15 x 15 cm 4 MV X-ray. The error had been overlooked by the contract operator from the introduction of the treatment planning equipment in 1999. For prevention, setting up of quality assurance (QA) program by the hospital, the user itself, was pointed out necessary. Making the guideline for introducing the new equipment was conceivably an important work of the trader. (N.I.)

  9. [a Monitoring System For Work-related Accidents In Piracicaba, São Paulo, Brazil].

    OpenAIRE

    Cordeiro, Ricardo; Vilela, Rodolfo Andrade Gouveia; de Medeiros, Maria Angélica Tavares; Gonçalves, Cláudia Giglio de Oliveira; Bragantini, Clarice Aparecida; Varolla, Antenor J; Celso, Stephan

    2015-01-01

    The authors report on the development of a work accident monitoring system in Piracicaba, São Paulo State, Brazil, with the following characteristics: information feeding the system is obtained in real time directly from accident treatment centers; the system has universal monitoring, covering all work-related accidents in Piracicaba, regardless of the nature of the worker's employment conditions, place of work, or place of residence; health surveillance and promotion of health initiatives ar...

  10. The official report of the Fukushima Nuclear Accident Independent Investigation Commission

    International Nuclear Information System (INIS)

    2012-07-01

    In October 2011, the Act regarding Fukushima Nuclear Accident Independent Investigation Commission was enacted to investigate the Fukushima accident with the authority to request documents and request the legislative branch to use its investigative powers to obtain any necessary documents or evidence required. In December 2011, chairman and nine other members were appointed. After a six-month investigation, Commission had concluded. 'In order to prevent future disasters, fundamental reforms must take place covering both the structure of electric power industry and the structure of related government and regulatory agencies as well as operation processes, for both normal and emergency situations'. Main parts of report consisted of overview, conclusions and recommendations, and six findings; (1) was the accident preventable?, (2) Escalation of the accident, (3) Emergency response to the accident, (4) Spread of the damage, (5) Organizational issues in accident prevention and response and (6) the legal system. Based on the above findings, Commission made seven recommendations regarding (1) Monitoring of the nuclear regulatory body by the National Diet, (2) Reform the crisis management system, (3) Government responsibility for public health and welfare, (4) Monitoring the operators, (5) Criteria for the new regulatory body, (6) Reforming laws related to nuclear energy and (7) Develop a system of independent investigation commissions. National Diet's thorough debate and deliberate on these recommendation was highly encouraged for the future. (T. Tanaka)

  11. A System Supporting the Analysis of Motorway Traffic Accidents

    Directory of Open Access Journals (Sweden)

    Davide Anghinolfi

    2015-12-01

    Full Text Available This work presents a business intelligence tool for monitoring traffic accidents on motorways and supporting decisions relevant to road safety. The system manages information on road characteristics, traffic accidents and traffic volumes and produces reports for monitoring the evolution of key performance indicators for road safety, supporting decisions on actions for risk mitigation and safety improvements for road users. The paper illustrates the different types of analyses performed by the system. Pattern based analysis is used to evaluate safety performance indicators for the road sections matching defined patterns. Two different road segmentation algorithms, used to identify the most critical road sections according to various severity indicators, are presented and discussed. Differential analysis compares the value of selected severity indicators before and after the implementation of an intervention on a road. Finally, a graphical user interface allows the accident locations to be visualized and accidents with specific characteristics to be highlighted. The system was evaluated on the data collected between 2009 and 2011 for the A15 motorway in Italy, connecting Parma to La Spezia.

  12. Report on the radiological accident in Goiania, Goias, Brazil

    International Nuclear Information System (INIS)

    Alves, R.N.

    1988-01-01

    The report describes the radiological accident occured in Goiania, Brazil, in september 1987. The following aspects concerning the accident are presented in specific chapters: 1- evaluation of the accident and the first aids, 2- attendance to the victims of Goiania radiological accident, 3- decontamination, 4- radioactive wastes arising from the accident, 5- working personnel and technical cooperation, 6- equipments and 7- radiation protection: limits and recommendations [pt

  13. Response of Soviet VVER-440 accident localization systems to overpressurization

    International Nuclear Information System (INIS)

    Kulak, R.F.; Fiala, C.; Sienicki, J.J.

    1989-01-01

    The Soviet designed VVER-440 model V230 and VVER-440 model V213 reactors do not use full containments to mitigate the effects of accidents. Instead, these VVER-440 units employ a sealed set of interconnected compartments, collectively called the accident localization system (ALS), to reduce the release of radionuclides to the atmosphere during accidents. Descriptions of the VVER accident localization structures may be found in the report DOE NE-0084. The objective of this paper is to evaluate the structural integrity of the VVER-440 ALS at the Soviet design pressure, and to determine their response to pressure loadings beyond the design value. Complex, three-dimensional, nonlinear, finite element models were developed to represent the major structural components of the localization systems of the VVER-440 models V230 and V213. The interior boundary of the localization system was incrementally pressurized in the calculations until the prediction of gross failure. 6 refs., 9 figs

  14. Detection device for off-gas system accidents

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Tsuruoka, Ryozo; Yamanari, Shozo.

    1984-01-01

    Purpose: To rapidly isolate the off-gas system by detecting the off-gas system failure accident in a short time. Constitution: Radiation monitors are disposed to ducts connecting an exhaust gas area and an air conditioning system as a portion of a turbine building. The ducts are disposed independently such that they ventilate only the atmosphere in the exhaust gas area and do not mix the atmosphere in the turbine building. Since radioactivity issued upon off-gas accidents to the exhaust gas area is sucked to the duct, it can be detected by radiation detection monitors in a short time after the accident. Further, since the operator judges it as the off-gas system accident, the off-gas system can be isolated in a short time after the accident. (Moriyama, K.)

  15. 32 CFR 634.30 - Use of traffic accident investigation report data.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Use of traffic accident investigation report data... § 634.30 Use of traffic accident investigation report data. (a) Data derived from traffic accident... accidents (collision diagram) will be examined. (b) Law enforcement personnel and others who prepare traffic...

  16. Computerized accident management support system: development for severe accident management

    International Nuclear Information System (INIS)

    Garcia, V.; Saiz, J.; Gomez, C.

    1998-01-01

    The activities involved in the international Halden Reactor Project (HRP), sponsored by the OECD, include the development of a Computerized Accident Management Support System (CAMS). The system was initially designed for its operation under normal conditions, operational transients and non severe accidents. Its purpose is to detect the plant status, analyzing the future evolution of the sequence (initially using the APROS simulation code) and the possible recovery and mitigation actions in case of an accident occurs. In order to widen the scope of CAMS to severe accident management issues, the integration of the MAAP code in the system has been proposed, as the contribution of the Spanish Electrical Sector to the project (with the coordination of DTN). To include this new capacity in CAMS is necessary to modify the system structure, including two new modules (Diagnosis and Adjustment). These modules are being developed currently for Pressurized Water Reactors and Boiling Water REactors, by the engineering of UNION FENOSA and IBERDROLA companies (respectively). This motion presents the characteristics of the new structure of the CAMS, as well as the general characteristics of the modules, developed by these companies in the framework of the Halden Reactor Project. (Author)

  17. Accidents in the construction industry in the Netherlands: An analysis of accident reports using Storybuilder

    International Nuclear Information System (INIS)

    Ale, B.J.M.; Bellamy, L.J.; Baksteen, H.; Damen, M.; Goossens, L.H.J.; Hale, A.R.; Mud, M.; Oh, J.; Papazoglou, I.A.; Whiston, J.Y.

    2008-01-01

    As part of an ongoing effort by the Ministry of Social Affairs and Employment of the Netherlands, a research project is being undertaken to construct a causal model for occupational risk. This model should provide quantitative insight into the causes and consequences of occupational accidents. One of the components of the model is a tool to systematically classify and analyse reports of past accidents. This tool 'Storybuilder' was described in earlier papers. In this paper, Storybuilder is used to analyse the causes of accidents reported in the database of the Dutch Labour Inspectorate involving people working in the construction industry. Conclusions are drawn on measures to reduce the accident probability. Some of these conclusions are contrary to common beliefs in the industry

  18. Cause-effect analysis on Fukushima accident reports. What did McMaster undergraduate students learn?

    International Nuclear Information System (INIS)

    Nagasaki, Shinya

    2016-01-01

    In the ENG PHYS 4ES3 Course “Special Topics in Energy Systems (2014-2015)” in McMaster University, sixteen 4th-year undergraduate students studied the Fukushima accident, discussed the causes of accident and its impacts on the energy systems from the sustainability point of view, made the oral presentation and submitted the reports. In this paper, a cause-effect and causal-loop analysis was applied to the discussion in the reports, the diagram of cause-effect relationship was drawn, and the important problems were extracted from the diagram. It was found that the important problems and the diagram of cause-effect relationship McMaster undergraduate students considered were similar to the essential problems and the diagram Horii pointed out, although Interim Report of the Investigation Committee on the Accident at Fukushima Nuclear Stations of Tokyo Electric Power Company which Horii used was not adopted in the reports submitted by students. (author)

  19. A severe accident analysis for the system-integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Jung, Gunhyo; Jae, Moosung

    2015-01-01

    The System-Integrated Modular Advanced Reactor (SMART) that has been recently designed in KOREA and has acquired standard design certification from the nuclear power regulatory body (NSSC) is an integral type reactor with 330MW thermal power. It is a small sized reactor in which the core, steam generator, pressurizer, and reactor coolant pump that are in existing pressurized light water reactors are designed to be within a pressure vessel without any separate pipe connection. In addition, this reactor has much different design characteristics from existing pressurized light water reactors such as the adoption of a passive residual heat removal system and a cavity flooding system. Therefore, the safety of the SMART against severe accidents should be checked through severe accident analysis reflecting the design characteristics of the SMART. For severe accident analysis, an analysis model has been developed reflecting the design information presented in the standard design safety analysis report. The severe accident analysis model has been developed using the MELCOR code that is widely used to evaluate pressurized LWR severe accidents. The steady state accident analysis model for the SMART has been simulated. According to the analysis results, the developed model reflecting the design of the SMART is found to be appropriate. Severe accident analysis has been performed for the representative accident scenarios that lead to core damage to check the appropriateness of the severe accident management plan for the SMART. The SMART has been shown to be safe enough to prevent severe accidents by utilizing severe accident management systems such as a containment spray system, a passive hydrogen recombiner, and a cavity flooding system. In addition, the SMART is judged to have been technically improved remarkably compared to existing PWRs. The SMART has been designed to have a larger reactor coolant inventory compared to its core's thermal power, a large surface area in

  20. THE USE OF AVIATION ACCIDENT INVESTIGATION REPORTS AS EVIDENCE IN COURT

    Directory of Open Access Journals (Sweden)

    Sorana POP PĂUN

    2016-05-01

    Full Text Available Air transport is an essential part of the international society, constituting a liaison between people and continents and an important contributor to the world economy and globalization. Aircraft operation has grown in complexity needing for a safety level to be maintained and constantly grown. Along with the development of the aviation industry, the legal system in the aviation field has registered significant challenges, one of them being the claims related to air crashes which are contested. The investigation process of an accident or incident has become not only important for the safety of operations but also to the establishment of legal fault and blame. The article proposes to present the principles of conducting and accident and incident investigation, the value of the report and new developments in relation to the recent case law on the use of the accident investigation report in Court.

  1. Reported Radiation Overexposure Accidents Worldwide, 1980-2013: A Systematic Review

    Science.gov (United States)

    Coeytaux, Karen; Bey, Eric; Christensen, Doran; Glassman, Erik S.; Murdock, Becky; Doucet, Christelle

    2015-01-01

    Background Radiation overexposure accidents are rare but can have severe long-term health consequences. Although underreporting can be an issue, some extensive literature reviews of reported radiation overexposures have been performed and constitute a sound basis for conclusions on general trends. Building further on this work, we performed a systematic review that completes previous reviews and provides new information on characteristics and trends of reported radiation accidents. Methods We searched publications and reports from MEDLINE, EMBASE, the International Atomic Energy Agency, the International Radiation Protection Association, the United Nations Scientific Committee on the Effects of Atomic Radiation, the United States Nuclear Regulatory Commission, and the Radiation Emergency Assistance Center/Training Site radiation accident registry over 1980-2013. We retrieved the reported overexposure cases, systematically extracted selected information, and performed a descriptive analysis. Results 297 out of 5189 publications and reports and 194 records from the REAC/TS registry met our eligibility criteria. From these, 634 reported radiation accidents were retrieved, involving 2390 overexposed people, of whom 190 died from their overexposure. The number of reported cases has decreased for all types of radiation use, but the medical one. 64% of retrieved overexposure cases occurred with the use of radiation therapy and fluoroscopy. Additionally, the types of reported accidents differed significantly across regions. Conclusions This review provides an updated and broader view of reported radiation overexposures. It suggests an overall decline in reported radiation overexposures over 1980-2013. The greatest share of reported overexposures occurred in the medical fields using radiation therapy and fluoroscopy; this larger number of reported overexposures accidents indicates the potential need for enhanced quality assurance programs. Our data also highlights

  2. An expert system for the quantification of fault rates in construction fall accidents.

    Science.gov (United States)

    Talat Birgonul, M; Dikmen, Irem; Budayan, Cenk; Demirel, Tuncay

    2016-01-01

    Expert witness reports, prepared with the aim of quantifying fault rates among parties, play an important role in a court's final decision. However, conflicting fault rates assigned by different expert witness boards lead to iterative objections raised by the related parties. This unfavorable situation mainly originates due to the subjectivity of expert judgments and unavailability of objective information about the causes of accidents. As a solution to this shortcoming, an expert system based on a rule-based system was developed for the quantification of fault rates in construction fall accidents. The aim of developing DsSafe is decreasing the subjectivity inherent in expert witness reports. Eighty-four inspection reports prepared by the official and authorized inspectors were examined and root causes of construction fall accidents in Turkey were identified. Using this information, an evaluation form was designed and submitted to the experts. Experts were asked to evaluate the importance level of the factors that govern fall accidents and determine the fault rates under different scenarios. Based on expert judgments, a rule-based expert system was developed. The accuracy and reliability of DsSafe were tested with real data as obtained from finalized court cases. DsSafe gives satisfactory results.

  3. Nuclear accident dosimetry, Report on the Third IAEA intercomparison experiment at Vinca, Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-15

    The objective of this report is to present the results of the third IAEA intercomparison experiment held at the Boris Kidric Institute, Vinca, in May 1973. These experiments were a part of multi laboratory intercomparison programme sponsored by the IAEA for evaluation of nuclear accident dosimetry systems that ought to provide adequate information in the event of criticality accidents. This report deals with the data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation.

  4. Examining accident reports involving autonomous vehicles in California.

    Directory of Open Access Journals (Sweden)

    Francesca M Favarò

    Full Text Available Autonomous Vehicle technology is quickly expanding its market and has found in Silicon Valley, California, a strong foothold for preliminary testing on public roads. In an effort to promote safety and transparency to consumers, the California Department of Motor Vehicles has mandated that reports of accidents involving autonomous vehicles be drafted and made available to the public. The present work shows an in-depth analysis of the accident reports filed by different manufacturers that are testing autonomous vehicles in California (testing data from September 2014 to March 2017. The data provides important information on autonomous vehicles accidents' dynamics, related to the most frequent types of collisions and impacts, accident frequencies, and other contributing factors. The study also explores important implications related to future testing and validation of semi-autonomous vehicles, tracing the investigation back to current literature as well as to the current regulatory panorama.

  5. Examining accident reports involving autonomous vehicles in California.

    Science.gov (United States)

    Favarò, Francesca M; Nader, Nazanin; Eurich, Sky O; Tripp, Michelle; Varadaraju, Naresh

    2017-01-01

    Autonomous Vehicle technology is quickly expanding its market and has found in Silicon Valley, California, a strong foothold for preliminary testing on public roads. In an effort to promote safety and transparency to consumers, the California Department of Motor Vehicles has mandated that reports of accidents involving autonomous vehicles be drafted and made available to the public. The present work shows an in-depth analysis of the accident reports filed by different manufacturers that are testing autonomous vehicles in California (testing data from September 2014 to March 2017). The data provides important information on autonomous vehicles accidents' dynamics, related to the most frequent types of collisions and impacts, accident frequencies, and other contributing factors. The study also explores important implications related to future testing and validation of semi-autonomous vehicles, tracing the investigation back to current literature as well as to the current regulatory panorama.

  6. Development of instrumentation systems for severe accidents. 4. New accident tolerant in-containment pressure transducer for containment pressure monitoring system

    International Nuclear Information System (INIS)

    Oba, Masato; Teruya, Kuniyuki; Yoshitsugu, Makoto; Ikeuchi, Takeshi

    2015-01-01

    The accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (TF-1 accident) caused severe situations and resulted in a difficulty in measuring important parameters for monitoring plant conditions. Therefore, we have studied the TF-1 accident to select the important parameters that should be monitored at the severe accident and are developing the Severe Accident Instrumentations and Monitoring Systems that could measure the parameters in severe accident conditions. Mitsubishi Heavy Industries, LTD (MHI) developed a new accident tolerant containment pressure monitoring system and demonstrated that the monitoring system could endure extremely harsh environmental conditions that envelop severe accident environmental conditions inside a containment such as maximum operating temperature of up to 300degC and total integrated dose (TID) of 1 MGy gamma. The new containment pressure monitoring system comprises of a strain gage type pressure transducer and a mineral insulated (MI) cable with ceramic connectors, which are located in the containment, and a strain measuring amplifier located outside the containment. Less thermal and radiation degradation is achieved because of minimizing use of organic materials for in-containment equipment such as the transducer and connectors. Several tests were performed to demonstrate the performance and capability of the in-containment equipment under severe accident environmental conditions and the major steps in this testing were run in the following test sequences: (1) the baseline functional tests (e.g., repeatability, non-linearity, hysteresis, and so on) under normal conditions, (2) accident radiation testing, (3) seismic testing, and (4) steam/temperature test exposed to simulated severe accident environmental conditions. The test results demonstrate that the new pressure transducer can endure the simulated severe accident conditions. (author)

  7. [Hospital information system performance for road traffic accidents analysis in a hospital recruitment based area].

    Science.gov (United States)

    Jannot, A-S; Fauconnier, J

    2013-06-01

    Road traffic accidents in France are mainly analyzed through reports completed by the security forces (police and gendarmerie). But the hospital information systems can also identify road traffic accidents via specific documentary codes of the International Classification of Diseases (ICD-10). The aim of this study was therefore to determine whether hospital stays consecutive to road traffic accident were truly identified by these documentary codes in a facility that collects data routinely and to study the consistency of results from hospital information systems and from security forces during the 2002-2008 period. We retrieved all patients for whom a documentary code for road traffic accident was entered in 2002-2008. We manually checked the concordance of documentary code for road traffic accident and trauma origin in 350 patient files. The number of accidents in the Grenoble area was then inferred by combining with hospitalization regional data and compared to the number of persons injured by traffic accidents declared by the security force. These hospital information systems successfully report road traffic accidents with 96% sensitivity (95%CI: [92%, 100%]) and 97% specificity (95%CI: [95%, 99%]). The decrease in road traffic accidents observed was significantly less than that observed was significantly lower than that observed in the data from the security force (45% for security force data against 27% for hospital data). Overall, this study shows that hospital information systems are a powerful tool for studying road traffic accidents morbidity in hospital and are complementary to security force data. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Safety and Health Standard 110: Incident/accident reporting and investigation

    Energy Technology Data Exchange (ETDEWEB)

    Sones, K. [West Kootenay Power, BC (Canada)

    1999-10-01

    Incident/accident reporting requirements in effect at West Kootenay Power are discussed. Details provided include definitions of low risk, high risk, and critical events, the incidents to be reported, the nature of the reports, the timelines, the investigation to be undertaken for each type of incident/accident, counselling services available to employees involved in serious incidents, and the procedures to be followed in accidents involving serious injury to non-employees. The emphasis is on the `critical five` high risk events and the procedures relating to them.

  9. Fukushima: the Japanese report in French - 'Official report of the independent inquiry Commission on the nuclear accident in Fukushima'

    International Nuclear Information System (INIS)

    Huet, Sylvestre; Ash, Robert; Gilles, D.; Fargette, Guy; Fetet, Pierre; Girard, Odile; Payrault-Gaber, Marie-France; Royer, Jean-Marc; Thirion, Catherine

    2012-11-01

    In its first part, this report describes the (Japanese) Inquiry Commission's mandate, its expectations, what it did, what it did not do, and then describes the accident, gives a chronology of events after the earthquake and the tsunami occurred, and states and comments the following conclusions: a catastrophe with a human origin, earthquake-induced damages, an assessment of operational problems, problems met during emergency intervention, evacuation problems, unresolved public health and welfare problems, need to reform the regulators as well as the operator, laws and rules. Seven recommendations are proposed; they address the control of the nuclear regulation body, the reform of the crisis management system, the government responsibility for public health and welfare, the control of operators, criteria for a new regulator, a reform of laws related to nuclear energy, and the implementation of a system of independent inquiry commissions. Then the report comments and discusses in detail the results of the inquiry which first tried to assess whether the accident was avoidable, and studied various elements: the accident, the emergency response, the damage extent, the organisational problems in the prevention of the accident, the legal system. Results of inquiries on evacuated people and on personnel are given in appendix, as well as the content of all the Commission meetings

  10. An outline of the interim report of the investigation committee on the accident at Fukushima Nuclear Power Stations

    International Nuclear Information System (INIS)

    Yoshioka, Hitoshi

    2012-01-01

    Interim report of the Investigation Committee of the Accident at Fukushima Nuclear Power Stations (NPSs) was published in December 26, 2011. The Japanese cabinet approved ten committee members including the author in May 2011. The committee interviewed more than 400 people over a total of 900 hours of hearings with about 40 staffs consisting of administrative team and three investigation teams of social system, root causes of the accident and countermeasures to prevent damage expansion of the accident. Interim report concluded 'the accident at Fukushima NPSs was caused by failures of every provision against reactor severe accident'. The failures appeared on (1) function of supervisory system for emergency response, (2) Fukushima Daiichi NPSs on-site disaster response especially related with operation of isolation condenser of unit 1 and high-pressure coolant injection system of unit 3, (3) Fukushima Daiichi NPSs off-site disaster response such the government failed to make use of data on the radioactive plumes released from the plant for evacuations, and (4) preparedness against tsunami and severe accident management. Possible worst or best simulation cases were also discussed. With no human support available on-site, workers might not have been able to prevent the meltdowns. Final report was due at the end of July 2012. (T. Tanaka)

  11. Safety analysis of accident localization system

    International Nuclear Information System (INIS)

    1999-01-01

    A complex safety analysis of accident localization system of Ignalina NPP was performed. Calculation results obtained, results of non-destruct ing testing and experimental data of reinforced concrete testing of buildings does not revealed deficiencies of buildings of accident localization system at unit 1 of Ignalina NPP. Calculations were performed using codes NEPTUNE, ALGOR, CONTAIN

  12. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    International Nuclear Information System (INIS)

    HUNT, J.W.

    1998-01-01

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool

  13. ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2003-11-15

    This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

  14. Group unified accident reporting database (GUARD)

    International Nuclear Information System (INIS)

    Koene, W.; Waterfall, K.W.

    1991-01-01

    Significant advances have been made in recent years in enhancing the standard of safety within Shell Companies, such that safety has now been raised to a status equal to other primary business objectives. It is widely accepted that accident prevention is part of good business practice, and that a safe operation is normally an efficient operation. Safety programmes are being widely implemented which involve all employees from top management right down to the workforce including the contract staff, and the benefits are being realized. The effectiveness of any safety programme, however, must be continuously monitored, and in this respect injury and accident statistics play an important role as a prime indicator of safety performance. Statistics form part of the safety management process indicating the success of the safety programmes being implemented, and highlighting areas of weakness. Statistical information relating to the number and frequency of accidents, significant as it is, tells us little about how the accidents occur, or about how to improve the intrinsic safety of the operations. More detailed information on accident causes and lessons derived from the investigation of non-injurious accidents and near-misses is required for this, and for the setting of appropriate remedial actions. This paper concentrates on the feedback from accidents which have already occurred. This feedback plays a vital role as an indicator of safety performance upon which to judge the effectiveness of safety programmes, and also to provide important information relating to the immediate and underlying causes of accidents. To meet these requirements, however, a system for recording analyzing and communicating safety data is essential

  15. Severe accident research and management in Nordic Countries - A status report

    International Nuclear Information System (INIS)

    Frid, W.

    2002-01-01

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  16. Evaluation of severe accident risks, Grand Gulf, Unit 1: Main report

    International Nuclear Information System (INIS)

    Brown, T.D.; Breeding, R.J.; Jow, H.N.; Higgins, S.J.; Shiver, A.W.; Helton, J.C.; Amos, C.N.

    1990-12-01

    In support of the Nuclear Regulatory Commission's (NRC's) assessment of the risk from severe accidents at commercial nuclear power plants in the US report in NUREG-1150, the Severe Accident Risk Reduction Program (SARRP) has completed a revised calculation of the risk to the general public from severe accidents at the Grand Gulf Nuclear Station, Unit 1. This power plant, located in Port Gibson, Mississippi, is operated by the System Energy Resources, Inc. (SERI). The emphasis in this risk analysis was not on determining a ''so-called'' point estimate of risk. Rather, it was to determine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution. Off-site risk initiated by events internal to the power plant was assessed. 42 refs., 51 figs., 52 tabs

  17. Strategy generator in computerized accident management support system

    International Nuclear Information System (INIS)

    Sirola, M.

    1994-02-01

    An increased interest for research in the field of accident management of nuclear power plants can be noted. Several international programmes have been started in order to be able to understand the basic physical and chemical phenomena in accident conditions. A feasibility study has shown that it would be possible to design and develop a computerized support system for plant staff in accident situations. To achieve this goal the Halden Project has initiated a research programme on Computerized Accident Management Support (CAMS project). The aim is to utilize the capabilities of computerized tools to support the plant staff during the various accident stages. The system will include identification of the accident state, assessment of the future development of the accident and planning of accident mitigation strategies. A prototype is developed to support operators and the Technical Support Centre in decision making during serious accidents in nuclear power plants. A rule based system has been built to take care of the strategy generation. This system assists plant personnel in planning control proposals and mitigation strategies from normal operation to severe accident conditions. The idea of a safety objective tree and knowledge from the emergency procedures have been used. Future prediction requires good state identification of the plant status and some knowledge about the history of some critical variables. The information needs to be validated as well. Accurate calculations in simulators and a large database including all important information from the plant will help the strategy planning. (orig.). (40 refs., 20 figs.)

  18. Cirrus Airframe Parachute System and Odds of a Fatal Accident in Cirrus Aircraft Crashes.

    Science.gov (United States)

    Alaziz, Mustafa; Stolfi, Adrienne; Olson, Dean M

    2017-06-01

    General aviation (GA) accidents have continued to demonstrate high fatality rates. Recently, ballistic parachute recovery systems (BPRS) have been introduced as a safety feature in some GA aircraft. This study evaluates the effectiveness and associated factors of the Cirrus Airframe Parachute System (CAPS) at reducing the odds of a fatal accident in Cirrus aircraft crashes. Publicly available Cirrus aircraft crash reports were obtained from the National Transportation Safety Board (NTSB) database for the period of January 1, 2001-December 31, 2016. Accident metrics were evaluated through univariate and multivariate analyses regarding odds of a fatal accident and use of the parachute system. Included in the study were 268 accidents. For CAPS nondeployed accidents, 82 of 211 (38.9%) were fatal as compared to 8 of 57 (14.0%) for CAPS deployed accidents. After controlling for all other factors, the adjusted odds ratio for a fatal accident when CAPS was not deployed was 13.1. The substantial increased odds of a fatal accident when CAPS was not deployed demonstrated the effectiveness of CAPS at providing protection of occupants during an accident. Injuries were shifted from fatal to serious or minor with the use of CAPS and postcrash fires were significantly reduced. These results suggest that BPRS could play a significant role in the next major advance in improving GA accident survival.Alaziz M, Stolfi A, Olson DM. Cirrus Airframe Parachute System and odds of a fatal accident in Cirrus aircraft crashes. Aerosp Med Hum Perform. 2017; 88(6):556-564.

  19. Nuclear Reactor RA Safety Report, Vol. 16, Maximum hypothetical accident

    International Nuclear Information System (INIS)

    1986-11-01

    Fault tree analysis of the maximum hypothetical accident covers the basic elements: accident initiation, phase development phases - scheme of possible accident flow. Cause of the accident initiation is the break of primary cooling pipe, heavy water system. Loss of primary coolant causes loss of pressure in the primary circuit at the coolant input in the reactor vessel. This initiates safety protection system which should automatically shutdown the reactor. Separate chapters are devoted to: after-heat removal, coolant and moderator loss; accident effects on the reactor core, effects in the reactor building, and release of radioactive wastes [sr

  20. NIRS report of the criticality accident in a uranium conversion test plant in Tokai-mura

    International Nuclear Information System (INIS)

    2001-01-01

    This report is a detailed account of the roles that National Institute of Radiological Sciences (NIRS) played at the criticality accident in the title, which occurred at around 10:35, on Sep. 30, 1999 and resulted in death of two workers after all, and is published to discharge NIRS responsibilities in regards to the accident. The accident caused many residents concern on their health and rumors had both social and economic consequences. The report involves chapters of detailed outline of the accident; demand for acceptance of the victims and communications until the identification of the criticality'' accident; the acceptance and initial treatment; the exposure dose estimation (based on acute symptoms, on physics, on chromosomal analyses and on neutron-activated dental metals, and detailed analyses for dose distribution); decision made for therapeutic strategies; cooperation with the Network Council for Radiation Emergency and with other medical facilities; the urgent import of medicine; treatment and processes (patients, nursing system and radiation injuries); radiation protection in medical facilities; response to nearby residents of the Plant; international response; press release; Uranium Processing Plant Criticality Accident Investigation Committee and the Health Management Committee organized by the Nuclear Safety Commission; handling of information; and radiation emergency medical preparedness at the NIRS (future issues and prospect). The report is hopefully useful in preventing the occurrence of future accidents. (N.I.)

  1. Report on the accident at the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents the compilation of information obtained by various organizations regarding the accident (and the consequences of the accident) that occurred at Unit 4 of the nuclear power station at Chernobyl in the USSR on April 26, 1986. The various authors are identified in a footnote to each chapter. An overview of the report is provided. Very briefly the other chapters cover: the design of the Chernobyl nuclear station Unit 4; safety analyses for Unit 4; the accident scenario; the role of the operator; an assessment of the radioactive release, dispersion, and transport; the activities associated with emergency actions; and information on the health and environmental consequences from the accident. These subjects cover the major aspects of the accident that have the potential to present new information and lessons for the nuclear industry in general

  2. Nuclear Reactor RA Safety Report, Vol. 13, Causes of possible accidents

    International Nuclear Information System (INIS)

    1986-11-01

    This volume includes the analysis of possible accidents on the RA research reaktor. Any unwanted action causing decrease of integrity of any of the reactor safety barriers is considered to be a reactor accident. Safety barriers are: fuel element cladding, reactor vessel, biogical shield, and reactor building. Reactor accidents can be classified in four categories: (1) accidents caused by reactivity changes; (2) accidents caused by mis function of the cooling system; (3) accidents caused by errors in fuel management and auxiliary systems; (4) accidents caused by natural or other external disasters. The analysis of possible causes of reactor accidents includes the analysis of possible impacts on the reactor itself and the environment [sr

  3. Multi-phase model development to assess RCIC system capabilities under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kirkland, Karen Vierow [Texas A & M Univ., College Station, TX (United States); Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beeny, Bradley [Texas A & M Univ., College Station, TX (United States); Luthman, Nicholas [Texas A& M Engineering Experiment Station, College Station, TX (United States); Strater, Zachary [Texas A & M Univ., College Station, TX (United States)

    2017-12-23

    The Reactor Core Isolation Cooling (RCIC) System is a safety-related system that provides makeup water for core cooling of some Boiling Water Reactors (BWRs) with a Mark I containment. The RCIC System consists of a steam-driven Terry turbine that powers a centrifugal, multi-stage pump for providing water to the reactor pressure vessel. The Fukushima Dai-ichi accidents demonstrated that the RCIC System can play an important role under accident conditions in removing core decay heat. The unexpectedly sustained, good performance of the RCIC System in the Fukushima reactor demonstrates, firstly, that its capabilities are not well understood, and secondly, that the system has high potential for extended core cooling in accident scenarios. Better understanding and analysis tools would allow for more options to cope with a severe accident situation and to reduce the consequences. The objectives of this project were to develop physics-based models of the RCIC System, incorporate them into a multi-phase code and validate the models. This Final Technical Report details the progress throughout the project duration and the accomplishments.

  4. Phenomena occurring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1989-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. In the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. In contrast to normal operating conditions, severe core damage accidents are characterized by significant temporal and spatial variations in heat and mass fluxes, and by eventual geometrical changes within the RCS. Furthermore, the difficulties in describing the system in the severe accident mode are compounded by the occurrence of chemical reactions. These reactions can influence both the thermal and the mass transport behavior of the system. In addition, behavior of the reactor vessel internals and of materials released from the core region (especially the radioactive fission products) in the course of the accident likewise become of concern to the analyst. This report addresses these concerns. 9 refs., 1 tab

  5. Assessment of chemical processes for the post-accident decontamination of reactor-coolant systems. Final report

    International Nuclear Information System (INIS)

    Munson, L.F.; Card, C.J.; Divine, J.R.

    1983-02-01

    Previously used chemical decontamination processes and potentially useful new decontamination processes were examined for the usefulness following a reactor accident. Both generic fuel damage accidents and the accident at TMI-2 were considered. A total of fourteen processes were evaluated. Process evaluation included data in the following categories: technical description of the process, recorded past usage, effectiveness, process limitation, safety consideration, and waste management. These data were evaluated, and cost considerations were presented along with a description of the applicability of the process to TMI-2 and development and demonstration needs. Specific recommendations regarding a primary-system decontamination development program to support TMI-2 recovery were also presented

  6. [Self-reporting of road traffic accidents in a national survey of urban population in Peru].

    Science.gov (United States)

    Wong, Paolo; Gutiérrez, César; Romaní, Franco

    2010-06-01

    To estimate the frequency of self-reporting of road traffic accidents in the previous year in the general population and to determine the associated factors. We conducted a secondary analysis of the data of the III National Survey of Drug Use in the General Population of Peru, 2006. We measured socio-demographical variables: age, gender, place of origin, educational level and marital status. We also evaluated the use of legal, illegal and medical drugs. The independent variable was the self-reporting of a road traffic accident. We performed the descriptive, bivariate and multivariate analysis of the socio-demographical variables and the drug use (legal and illegal), together with the self-reporting of the traffic accident. The frequency of reporting of road traffic accidents in the last year according to the survey was 2.93% (95%CI: 2.92-2.94). The associated factors for self-reporting of a road traffic accident were: to live in the jungle areas (OR: 2.03; 95%CI:1.55-2.65), male gender (OR: 1.79; 95%CI: 1.46-2.22), legal drugs use in the last year (OR: 1.98, 95%CI: 1.53-2.55), alcohol consumption in the last year (OR: 1.82; 95%CI: 1.44-2.32) and medical drugs use in the last year (OR: 2.45, 95%CI 1.63-3.68). The prevalence of self-reporting of road traffic accidents in the last year was very high compared to similar studies and other reporting sources. The variables associated with having had a traffic accident were: living in the jungle area, being male, legal drug use in the last month, especially alcohol and medical drug use in the last month. It is necessary to think carefully about the information system of the road traffic accidents in order to achieve a better picture of the problem putting emphasis in the legal drugs use.

  7. URBAN TRAFFIC ACCIDENT ANALYSIS BY USING GEOGRAPHIC INFORMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Meltem SAPLIOĞLU

    2006-03-01

    Full Text Available In recent years, traffic accidents that cause more social and economic losses than that of natural disasters,have become a national problem in Turkey. To solve this problem and to reduce the casualties, road safety programs are tried to be developed. It is necessary to develop the most effective measures with low investment cost due to limited budgets allocated to such road safety programs. The most important program is to determine dangerous locations of traffic accidents and to improve these sections from the road safety view point. New Technologies are driving a cycle of continuous improvement that causes rapid changes in the traffic engineering and any engineering services within it. It is obvious that this developed services will be the potential for forward-thinking engineering studies to take a more influence role. In this study, Geographic Information System (GIS was used to identify the hazardous locations of traffic accidents in Isparta. Isparta city map was digitized by using Arcinfo 7.21. Traffic accident reports occurred between 1998-2002 were obtained from Directory of Isparta Traffic Region and had been used to form the database. Topology was set up by using Crash Diagrams and Geographic Position Reference Systems. Tables are formed according to the obtained results and interpreted.

  8. Off-gas and air cleaning systems for accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    This report surveys the design principles and strategies for mitigating the consequences of abnormal events in nuclear power plants by the use of air cleaning systems. Equipment intended for use in design basis accident and severe accident conditions is reviewed, with reference to designs used in IAEA Member States. 93 refs, 48 figs, 23 tabs

  9. Report from investigation committee on the accident at the Fukushima Nuclear Power Stations of Tokyo Electric Power Company

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2012-01-01

    Government's Investigation Committee on the Accident at Fukushima Nuclear Power Stations of Tokyo Electric Power Company published its final report on July 23, 2012. Results of investigation combined final report and interim report published on December 26, 2011. The author was head of accident accuse investigation team mostly in charge of site response, prior measure and plant behavior. This article reported author related technical investigation results focusing on site response and prior measures against tsunamis of units 1-3 of Fukushima Nuclear Power Stations. Misunderstanding of working state of isolation condenser of unit 1, unsuitability of alternative water injection at manual stop of high-pressure coolant injection (HPCI) system of unit 3 and improper prior measure against tsunami and severe accident were pointed out in interim report. Improper monitoring of suppression chamber of unit 2 and again unsuitable work for HPCI system of unit 3 were reported in final report. Thorough technical investigation was more encouraged to update safety measures of nuclear power stations. (T. Tanaka)

  10. National Differences in Reporting of Work Accidents at Sea

    DEFF Research Database (Denmark)

    Grøn, Sisse; Knudsen, Fabienne

    National Differences in Reporting of Work Accidents at Sea Grøn, S and Knudsen, F Centre for Maritime Health and Safety, University of Southern Denmark Filipinos working on Danish ships experience less work accidents than their Danish colleagues if we are to believe the various statistics available...... notification practices, and whether there are special conditions applicable to seafarers of other nationality than Danish. It will also explore the multicultural element of safety culture in selected Danish ships. There are different ways and channels for notification of an accident at sea, which means....... There are indications suggesting that this is due to differences in reporting and safety culture alike. In a new project, Safety Culture and Reporting Practice on Danish ships in the Danish International Ship Register (SADIS), we will therefore seek answers to what factors act as incentives or barriers for proper...

  11. The Fukushima Daiichi Accident. Report by the Director General [Chinese Version

    International Nuclear Information System (INIS)

    2015-08-01

    This report presents an assessment of the causes and consequences of the accident at the Fukushima Daiichi nuclear power plant in Japan, which began on 11 March 2011. Caused by a huge tsunami that followed a massive earthquake, it was the worst accident at a nuclear power plant since the Chernobyl disaster in 1986. The report considers human, organizational and technical factors, and aims to provide an understanding of what happened, and why, so that the necessary lessons learned can be acted upon by governments, regulators and nuclear power plant operators throughout the world. Measures taken in response to the accident, both in Japan and internationally, are also examined. The Fukushima Daiichi Accident consists of a Report by the IAEA Director General and five technical volumes. It is the result of an extensive international collaborative effort involving five working groups with about 180 experts from 42 Member States with and without nuclear power programmes and several international bodies. It provides a description of the accident and its causes, evolution and consequences, based on the evaluation of data and information from a large number of sources available at the time of writing. The Fukushima Daiichi Accident will be of use to national authorities, international organizations, nuclear regulatory bodies, nuclear power plant operating organizations, designers of nuclear facilities and other experts in matters relating to nuclear power, as well as the wider public. The set contains six printed parts and five supplementary CD-ROMs. Contents: Report by the Director General; Technical Volume 1/5, Description and Context of the Accident; Technical Volume 2/5, Safety Assessment; Technical Volume 3/5, Emergency Preparedness and Response; Technical Volume 4/5, Radiological Consequences; Technical Volume 5/5, Post-accident Recovery; Annexes. The Report by the Director General is also available separately in Arabic, Chinese, English, French, Russian, Spanish and

  12. The Fukushima Daiichi Accident. Report by the Director General [Japanese Version

    International Nuclear Information System (INIS)

    2015-08-01

    This report presents an assessment of the causes and consequences of the accident at the Fukushima Daiichi nuclear power plant in Japan, which began on 11 March 2011. Caused by a huge tsunami that followed a massive earthquake, it was the worst accident at a nuclear power plant since the Chernobyl disaster in 1986. The report considers human, organizational and technical factors, and aims to provide an understanding of what happened, and why, so that the necessary lessons learned can be acted upon by governments, regulators and nuclear power plant operators throughout the world. Measures taken in response to the accident, both in Japan and internationally, are also examined. The Fukushima Daiichi Accident consists of a Report by the IAEA Director General and five technical volumes. It is the result of an extensive international collaborative effort involving five working groups with about 180 experts from 42 Member States with and without nuclear power programmes and several international bodies. It provides a description of the accident and its causes, evolution and consequences, based on the evaluation of data and information from a large number of sources available at the time of writing. The Fukushima Daiichi Accident will be of use to national authorities, international organizations, nuclear regulatory bodies, nuclear power plant operating organizations, designers of nuclear facilities and other experts in matters relating to nuclear power, as well as the wider public. The set contains six printed parts and five supplementary CD-ROMs. Contents: Report by the Director General; Technical Volume 1/5, Description and Context of the Accident; Technical Volume 2/5, Safety Assessment; Technical Volume 3/5, Emergency Preparedness and Response; Technical Volume 4/5, Radiological Consequences; Technical Volume 5/5, Post-accident Recovery; Annexes. The Report by the Director General is also available separately in Arabic, Chinese, English, French, Russian, Spanish and

  13. The Fukushima Daiichi Accident. Report by the Director General [Spanish Version

    International Nuclear Information System (INIS)

    2015-08-01

    This report presents an assessment of the causes and consequences of the accident at the Fukushima Daiichi nuclear power plant in Japan, which began on 11 March 2011. Caused by a huge tsunami that followed a massive earthquake, it was the worst accident at a nuclear power plant since the Chernobyl disaster in 1986. The report considers human, organizational and technical factors, and aims to provide an understanding of what happened, and why, so that the necessary lessons learned can be acted upon by governments, regulators and nuclear power plant operators throughout the world. Measures taken in response to the accident, both in Japan and internationally, are also examined. The Fukushima Daiichi Accident consists of a Report by the IAEA Director General and five technical volumes. It is the result of an extensive international collaborative effort involving five working groups with about 180 experts from 42 Member States with and without nuclear power programmes and several international bodies. It provides a description of the accident and its causes, evolution and consequences, based on the evaluation of data and information from a large number of sources available at the time of writing. The Fukushima Daiichi Accident will be of use to national authorities, international organizations, nuclear regulatory bodies, nuclear power plant operating organizations, designers of nuclear facilities and other experts in matters relating to nuclear power, as well as the wider public. The set contains six printed parts and five supplementary CD-ROMs. Contents: Report by the Director General; Technical Volume 1/5, Description and Context of the Accident; Technical Volume 2/5, Safety Assessment; Technical Volume 3/5, Emergency Preparedness and Response; Technical Volume 4/5, Radiological Consequences; Technical Volume 5/5, Post-accident Recovery; Annexes. The Report by the Director General is also available separately in Arabic, Chinese, English, French, Russian, Spanish and

  14. The Fukushima Daiichi Accident. Report by the Director General [Russian Version

    International Nuclear Information System (INIS)

    2015-08-01

    This report presents an assessment of the causes and consequences of the accident at the Fukushima Daiichi nuclear power plant in Japan, which began on 11 March 2011. Caused by a huge tsunami that followed a massive earthquake, it was the worst accident at a nuclear power plant since the Chernobyl disaster in 1986. The report considers human, organizational and technical factors, and aims to provide an understanding of what happened, and why, so that the necessary lessons learned can be acted upon by governments, regulators and nuclear power plant operators throughout the world. Measures taken in response to the accident, both in Japan and internationally, are also examined. The Fukushima Daiichi Accident consists of a Report by the IAEA Director General and five technical volumes. It is the result of an extensive international collaborative effort involving five working groups with about 180 experts from 42 Member States with and without nuclear power programmes and several international bodies. It provides a description of the accident and its causes, evolution and consequences, based on the evaluation of data and information from a large number of sources available at the time of writing. The Fukushima Daiichi Accident will be of use to national authorities, international organizations, nuclear regulatory bodies, nuclear power plant operating organizations, designers of nuclear facilities and other experts in matters relating to nuclear power, as well as the wider public. The set contains six printed parts and five supplementary CD-ROMs. Contents: Report by the Director General; Technical Volume 1/5, Description and Context of the Accident; Technical Volume 2/5, Safety Assessment; Technical Volume 3/5, Emergency Preparedness and Response; Technical Volume 4/5, Radiological Consequences; Technical Volume 5/5, Post-accident Recovery; Annexes. The Report by the Director General is also available separately in Arabic, Chinese, English, French, Russian, Spanish and

  15. Factors correlated with traffic accidents as a basis for evaluating Advanced Driver Assistance Systems.

    Science.gov (United States)

    Staubach, Maria

    2009-09-01

    This study aims to identify factors which influence and cause errors in traffic accidents and to use these as a basis for information to guide the application and design of driver assistance systems. A total of 474 accidents were examined in depth for this study by means of a psychological survey, data from accident reports, and technical reconstruction information. An error analysis was subsequently carried out, taking into account the driver, environment, and vehicle sub-systems. Results showed that all accidents were influenced by errors as a consequence of distraction and reduced activity. For crossroad accidents, there were further errors resulting from sight obstruction, masked stimuli, focus errors, and law infringements. Lane departure crashes were additionally caused by errors as a result of masked stimuli, law infringements, expectation errors as well as objective and action slips, while same direction accidents occurred additionally because of focus errors, expectation errors, and objective and action slips. Most accidents were influenced by multiple factors. There is a safety potential for Advanced Driver Assistance Systems (ADAS), which support the driver in information assimilation and help to avoid distraction and reduced activity. The design of the ADAS is dependent on the specific influencing factors of the accident type.

  16. Examining accident reports involving autonomous vehicles in California

    Science.gov (United States)

    Nader, Nazanin; Eurich, Sky O.; Tripp, Michelle; Varadaraju, Naresh

    2017-01-01

    Autonomous Vehicle technology is quickly expanding its market and has found in Silicon Valley, California, a strong foothold for preliminary testing on public roads. In an effort to promote safety and transparency to consumers, the California Department of Motor Vehicles has mandated that reports of accidents involving autonomous vehicles be drafted and made available to the public. The present work shows an in-depth analysis of the accident reports filed by different manufacturers that are testing autonomous vehicles in California (testing data from September 2014 to March 2017). The data provides important information on autonomous vehicles accidents’ dynamics, related to the most frequent types of collisions and impacts, accident frequencies, and other contributing factors. The study also explores important implications related to future testing and validation of semi-autonomous vehicles, tracing the investigation back to current literature as well as to the current regulatory panorama. PMID:28931022

  17. The report of the criticality accident in a uranium conversion test plant in Tokai-mura

    International Nuclear Information System (INIS)

    Murata, Hajime; Akashi, Makoto

    2002-03-01

    The criticality accident in the title occurred at around 10:35, on Sep. 30, 1999, cost the lives of two workers and caused many residents concern on their health. Moreover, rumors had both social and economic consequences. This report is a detailed account of the roles that many individuals and groups in the National Institute of Radiological Sciences (NIRS) performed in a range of the areas, and is published to discharge NIRS responsibilities in regards to the accident. The report involves chapters of detailed outline of the accident; acceptance of the victims and communications until the identification of the ''criticality'' accident; initial treatment; dose estimation (medical, hematological, physical and biological ones and that by dental metals activated by the neutron); decision making for therapeutic strategies; cooperation with the Network Council for Radiation Emergency Medicine and other medical facilities; emergency importation of medical supplies; treatment and progress (nursing system and radiation injuries); protection from radiation in medical facilities; response to nearby residents of the Plant; international response; press release; Uranium Processing Plant Criticality Accident Investigation Committee and the Health Management Committee organized by the Nuclear Safety Commission; handling of information; and radiation emergency medical preparedness at the NIRS (future issues and prospect). The report is hoped to be useful in preventing the occurrence of future accidents. (K.H.)

  18. Development of a totally integrated severe accident training system

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Park, Sun Hee; Choi, Young; Kim, Dong Ha

    2006-01-01

    Recently KAERI has developed the severe accident management guidance to establish the Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, which uses the MELCOR code as the simulation engine. The simulator SATS graphically displays and simulates the severe accidents with interactive user commands. Especially the control capability of SATS could make a severe accident training course more interesting and effective. In this paper we will describe the development and functions of the electrical guidance module, HyperKAMG, and the SATS-HyperKAMG linkage system designed for a totally integrated and automated severe accident training. (author)

  19. Noble gas control room accident filtration system for severe accident conditions N-CRAFT. System design

    International Nuclear Information System (INIS)

    Hill, Axel

    2014-01-01

    Severe accidents might cause the release of airborne radioactive substances to the environment of the NPP. This can either be due to leakages of the containment or due to a filtered containment venting in order to ensure the overall integrity of the containment. During the containment venting process aerosols and iodine can be retained by the FCVS which prevents long term ground contamination. Noble gases are not retainable by the FCVS. From this it follows that a large amount of radioactive noble gases (e.g. xenon, krypton) might be present in the nearby environment of the plant dominating the activity release, depending on the venting procedure and the weather conditions. Accident management measures are necessary in case of severe accidents and the prolonged stay of staff inside the main control room (MCR) or emergency response center (ERC) is essential. Therefore, the in leakage and contamination of the MRC and ERC with airborne activity has to be prevented. The radiation exposure of the crises team needs to be minimized. The entrance of noble gases cannot be sufficiently prevented by the conventional air filtration systems such as HEPA filters and iodine absorbers. With the objective to prevent an unacceptable contamination of the MCR/ERC atmosphere by noble gases AREVA GmbH has developed a noble gas retention system. The noble gas control room accident filtration system CRAFT is designed for this case and provides supply of fresh air to the MCR/ERC without time limitation. The retention process of the system is based on the dynamic adsorption of noble gases on activated carbon. The system consists of delay lines (carbon columns) which are operated by a continuous and simultaneous adsorption and desorption process. These cycles ensure a periodic load and flushing of the delay lines retaining the noble gases from entering the MCR. CRAFT allows a minimization of the dose rate inside MCR/ERC and ensures a low radiation exposure to the staff on shift maintaining

  20. Reactor accident diagnostic expert system: DISKET

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Yokobayashi, Masao

    1989-11-01

    A reactor accident diagnostic system DISKET has been developed to identify the cause and the type of an abnormal transient of a nuclear power plant. The system is based on the knowledge engineering and consists of an inference engine IERIAS and a knowledge base. The main features of DISKET are the following: Time-varying characteristics of transient can be treated and knowledge base can be divided into several knowledge units to handle a lot of rules effectively. This report has been provided for the convenience of DISKET's users and consists of three parts. The first part is the description of the whole system, the details of the knowledge base of DISKET are described in the second part, and how to use the DISKET system is explained in the third part. (author)

  1. Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase

    2013-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and

  2. Preliminary report about nuclear accident of Chernobylsk reactor

    International Nuclear Information System (INIS)

    Oliveira, A.R. de.

    1986-07-01

    The preliminary report of nuclear accident at Chernobyl, in URSS is presented. The Chernobyl site is located geographically and the RBMK type reactors - initials of russian words which mean high power pressure tube reactors are described. The conditions of reactor operation in beginning of accident, the events which lead to reactor destruction, the means to finish the fire, the measurements adopted by Russian in the accident location, the estimative of radioactive wastes, the meteorological conditions during the accident, the victims and medical assistence, the sanitary aspects and consequences for population, the evaluation of radiation doses received at small and medium distance and the estimative of reffered doses by population attained are presented. The official communication of Russian Minister Council and the declaration of IAEA general manager during a collective interview in Moscou are annexed. (M.C.K.) [pt

  3. Feature article. Fukushima Daiichi NPP accident

    International Nuclear Information System (INIS)

    Ekarinai, Masashi; Ake, Yutaka; Narabayashi, Tadashi

    2011-01-01

    This special feature article consisted of five reports and the minutes of emergency discussion meeting on Fukushima Daiichi Nuclear Power Plant (NPP) accident. Effects of the accident on future electricity supply of electric utilities and also on business development of nuclear industries were discussed. Activities of senior network team of atomic energy society of Japan (AESJ) to conduct severe accident analysis and early restoration from the accident were introduced. Circulating injection reactor cooling system and zeolite decontamination system of accumulated contaminated water was proposed. Effects of the accident on overseas reaction on nuclear development were also reported as well as personal experience of the professor in the US west coast on communications. (T. Tanaka)

  4. [Occupational accidents in an oil refinery in Brazil].

    Science.gov (United States)

    Souza, Carlos Augusto Vaz de; Freitas, Carlos Machado de

    2002-10-01

    Work in oil refineries involves the risk of minor to major accidents. National data show the impact of accidents on this industry. A study was carried out to describe accident profile and evaluate the adequacy of accident reporting system. Data on all accidents reported in an oil refinery in the state of Rio de Janeiro for the year 1997 were organized and analyzed. The study population consisted of 153 injury cases, 83 hired and 69 contracted workers. The variables were: type of accident, operation mode and position of the worker injured. Among hired workers, minor accidents predominated (54.2%) and they occurred during regular operation activities (62.9%). Among contracted workers, there also predominated minor accidents (75.5%) in a higher percentage, but they occurred mainly during maintenance activities (96.8%). The study results showed that there is a predominance of accidents in lower hierarchy workers, and these accidents occur mainly during maintenance activities. There is a need to improve the company's accident reporting system and accident investigation procedures.

  5. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shigemori, Yuji; Seki, Akiyuki

    2009-07-01

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC - INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC - DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  6. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  7. The aviation safety reporting system

    Science.gov (United States)

    Reynard, W. D.

    1984-01-01

    The aviation safety reporting system, an accident reporting system, is presented. The system identifies deficiencies and discrepancies and the data it provides are used for long term identification of problems. Data for planning and policy making are provided. The system offers training in safety education to pilots. Data and information are drawn from the available data bases.

  8. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  9. Development of an accident management expert system for containment assessment

    International Nuclear Information System (INIS)

    Nelson, W.R.; Sebo, D.E.; Haney, L.N.

    1987-01-01

    The United States Nuclear Regulatory Commission (USNRSC) is sponsoring a program at the Idaho National Engineering Laboratory (INEL) to develop an accident management expert system. The intended users of the system are the personnel of the NRC Operations Center in Washington, D.C. The expert system will be used to help NRC personnel monitor and evaluate the status and management of the containment during a severe reactor accident. The knowledge base will include severe accident knowledge regarding the maintenance of the critical safety functions, especially containment integrity, during an accident. This paper summarizes the concepts that have been developed for the accident management expert system, and the plans that have been developed for its implementation

  10. [Accidents and injuries in the EU. Results of the EuroSafe Reports].

    Science.gov (United States)

    Bauer, R; Steiner, M; Kisser, R; Macey, S M; Thayer, D

    2014-06-01

    in the rates of fatal and nonfatal injuries; these differences can be interpreted as a measure of the potential for prevention and as an indication of targeted measures in the countries with higher accident rates. The report also includes snapshots of the eight priority themes for injury prevention, as defined in the Recommendation of the European Council on Injury Prevention and Safety Promotion in 2007: children, adolescents and older people, vulnerable road users, sports, the use of products and services, violence, and self-injury. The implementation of the IDB has proven to be feasible and useful for the participating countries, especially for data-based accident prevention in the important areas of home, leisure, and sports accidents. In the framework of the EU project JAMIE (2011-2014, Joint Action for Injury Monitoring in Europe), the IDB partners are currently working on further improving the IDB standards and quality criteria as well as the recruitment of further IDB countries. The medium-term goal is to integrate the EU IDB in the Eurostat Statistical System and to put the collection of IDB data on a statutory footing.

  11. Development of Highly Survivable Power and Communication System for NPP Instruments under Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung J.; Gu, Beom W.; Nguyen, Duy T.; Choi, Bo H.; Rim, Chun T. [KAIST, Daejeon (Korea, Republic of); Lee, So I. [KHNP CRI, Daejeon (Korea, Republic of)

    2014-10-15

    According to the detail report from the Fukushima nuclear accident, the failure of conventional instruments is mainly due to the following reasons. 1) Insufficient backup battery capacity after the station black out (SBO) 2) The malfunction or damage of instruments due to the extremely harsh ambient condition after the severe accident 3) The cut-off of power and communication cable due to the physical shocks of hydrogen explosion after the severe accident Since the current equipment qualification (EQ) for the NPP instruments is based on the design basis accident such as loss of coolant accident (LOCA), conventional instruments, which are examined under EQ condition, cannot guarantee their normal operation during the severe accident. A 7m-long-distance wireless power transfer and a radio frequency (RF) communication were introduced with conventional wired system to increase a redundancy. A heat isolation box and a harness are adopted to provide a protection from the expected physical shocks such as missiles and drastic increase of ambient temperature and pressure. A detail design principle of the highly survivable power and communication system, which has 4 sub-systems of a DCRS wireless power transfer, a Zigbee wireless communication, a GFRP harness, and a passive type router with a fly back regulator, has been presented in this paper. Each sub-system has been designed to have a robust operation characteristic regardless of the estimated physical shocks after the severe accident.

  12. Development of Highly Survivable Power and Communication System for NPP Instruments under Severe Accident

    International Nuclear Information System (INIS)

    Yoo, Seung J.; Gu, Beom W.; Nguyen, Duy T.; Choi, Bo H.; Rim, Chun T.; Lee, So I.

    2014-01-01

    According to the detail report from the Fukushima nuclear accident, the failure of conventional instruments is mainly due to the following reasons. 1) Insufficient backup battery capacity after the station black out (SBO) 2) The malfunction or damage of instruments due to the extremely harsh ambient condition after the severe accident 3) The cut-off of power and communication cable due to the physical shocks of hydrogen explosion after the severe accident Since the current equipment qualification (EQ) for the NPP instruments is based on the design basis accident such as loss of coolant accident (LOCA), conventional instruments, which are examined under EQ condition, cannot guarantee their normal operation during the severe accident. A 7m-long-distance wireless power transfer and a radio frequency (RF) communication were introduced with conventional wired system to increase a redundancy. A heat isolation box and a harness are adopted to provide a protection from the expected physical shocks such as missiles and drastic increase of ambient temperature and pressure. A detail design principle of the highly survivable power and communication system, which has 4 sub-systems of a DCRS wireless power transfer, a Zigbee wireless communication, a GFRP harness, and a passive type router with a fly back regulator, has been presented in this paper. Each sub-system has been designed to have a robust operation characteristic regardless of the estimated physical shocks after the severe accident

  13. Technical bases for estimating fission product behavior during LWR accidents. Technical report

    International Nuclear Information System (INIS)

    1981-06-01

    The objective of this report is to provide the Nuclear Regulatory Commission and the public with a description of the best technical information currently available for estimating the release of radioactive material during postulated reactor accidents, and to identify where gaps exist in our knowledge. This report focuses on those low probability-high consequence accidents involving severe damage to the reactor core and core meltdown that dominate the risk to the public. Furthermore, in this report particular emphasis is placed on the accident behavior of radioactive iodine, as (1) radioiodine is predicted to be a major contributor to public exposure, (2) current regulatory accident analysis procedures focus on iodine, and (3) several technical issues have been raised recently about the magnitude of iodine release. The generation, transport, and attenuation of aerosols were also investigated in some detail to assess their effect on fission product release estimates and to determine the performance of engineered safety features under accident conditions exceeding their design bases

  14. Human factors analysis of incident/accident report

    International Nuclear Information System (INIS)

    Kuroda, Isao

    1992-01-01

    Human factors analysis of accident/incident has different kinds of difficulties in not only technical, but also psychosocial background. This report introduces some experiments of 'Variation diagram method' which is able to extend to operational and managemental factors. (author)

  15. Preliminary evaluation of the Accident Response Mobile Manipulation System for accident site salvage operations

    International Nuclear Information System (INIS)

    Trujillo, J.M.; Morse, W.D.; Jones, D.P.

    1994-01-01

    This paper describes and evaluates operational experiences with the Accident Response Mobile Manipulation System (ARMMS) during simulated accident site salvage operations which might involve nuclear weapons. The ARMMS is based upon a teleoperated mobility platform with two Schilling Titan 7F Manipulators

  16. Improvements in the nuclear accident response system in Brazil

    International Nuclear Information System (INIS)

    Estrada, J.J.S.; Azevedo, E.M.; Knofel, T.M.J.; Recio, J.C.A.; Alves, R.N.

    1998-01-01

    The National Commission on Nuclear Energy has been making outstanding effort to improve its nuclear and radiological accident response systems since the tragic accident in Goiania. Most of this effort is related to nuclear area although the radiological accident has been also considered. This paper describes the improvements in the CNEN response system structure, discusses several topics involving those related to emergency planning and preparedness, and points out some deficiencies that need to be corrected also. The situation during the Goiania accident was more disadvantageous than nowadays, so it is believed that none of the actual deficiencies are sufficient to guess that the population and the environment will not be protected in case of a nuclear or radiological accident

  17. Lifetime followup of the 1976 americium accident victim: [Final report

    International Nuclear Information System (INIS)

    Breitenstein, B.D. Jr.; Palmer, H.E.

    1988-05-01

    This report describes the 11 year medical course of Harold R. McCluskey, a Hanford nuclear chemical operator, who, at age 64, was involved in an accident in an americium recovery facility in August 1976. As a result of the accident, he was heavily contaminated with americium (Am-241), sustained a substantial internal deposition of this isotope, and was burned with concentrated nitric acid and injured by flying debris about the face and neck. The immediate and long-term medical care is summarized, including decontamination procedures, chelation therapy, and routine and special clinical laboratories studies. The estimates of the operator's Am-241 deposition, post accident and during the remainder of his life and the special techniques and equipment used to make the estimates, are reported. Post-accident, the total amount of Am-241 excreted in his urine and feces was 41 MBq (1.1 mCi). He died of complications of chronic coronary artery disease on August 17, 1987. 20 refs., 2 figs

  18. Accident progression event tree analysis for postulated severe accidents at N Reactor

    International Nuclear Information System (INIS)

    Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M.; Medford, G.T.

    1990-06-01

    A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied

  19. Compendium of ECCS [Emergency Core Cooling Systems] research for realistic LOCA [loss-of-coolant accidents] analysis: Final report

    International Nuclear Information System (INIS)

    1988-12-01

    In the United States, Emergency Core Cooling Systems (ECCS) are required for light water reactors (LWRs) to provide cooling of the reactor core in the event of a break or leak in the reactor piping or an inadvertent opening of a valve. These accidents are called loss-of-coolant accidents (LOCA), and they range from small leaks up to a postulated full break of the largest pipe in the reactor cooling system. Federal government regulations provide that LOCA analysis be performed to show that the ECCS will maintain fuel rod cladding temperatures, cladding oxidation, and hydrogen production within certain limits. The NRC and others have completed a large body of research which investigated fuel rod behavior and LOCA/ECCS performance. It is now possible to make a realistic estimate of the ECCS performance during a LOCA and to quantify the uncertainty of this calculation. The purpose of this report is to summarize this research and to serve as a general reference for the extensive research effort that has been performed. The report: (1) summarizes the understanding of LOCA phenomena in 1974; (2) reviews experimental and analytical programs developed to address the phenomena; (3) describes the best-estimate computer codes developed by the NRC; (4) discusses the salient technical aspects of the physical phenomena and our current understanding of them; (5) discusses probabilistic risk assessment results and perspectives, and (6) evaluates the impact of research results on the ECCS regulations. 736 refs., 412 figs., 66 tabs

  20. Neural network-based expert system for severe accident management

    International Nuclear Information System (INIS)

    Klopp, G.T.; Silverman, E.B.

    1992-01-01

    This paper presents the results of the second phase of a three-phase Severe Accident Management expert system program underway at Commonwealth Edison Company (CECo). Phase I successfully demonstrated the feasibility of Artificial Neural Networks to support several of the objectives of severe accident management. Simulated accident scenarios were generated by the Modular Accident Analysis Program (MAAP) code currently in use by CECo as part of their Individual Plant Evaluations (IPE)/Accident Management Program. The primary objectives of the second phase were to develop and demonstrate four capabilities of neural networks with respect to nuclear power plant severe accident monitoring and prediction. The results of this work would form the foundation of a demonstration system which included expert system performance features. These capabilities included the ability to: (1) Predict the time available prior to support plate (and reactor vessel) failure; (2) Calculate the time remaining until recovery actions were too late to prevent core damage; (3) Predict future parameter values of each of the MAAP parameter variables; and (4) Detect simulated sensor failure and provide best-value estimates for further processing in the presence of a sensor failure. A variety of accident scenarios for the Zion and Dresden plants were used to train and test the neural network expert system. These included large and small break LOCAs as well as a range of transient events. 3 refs., 1 fig., 1 tab

  1. The computer aided education and training system for accident management

    International Nuclear Information System (INIS)

    Yoneyama, Mitsuru; Masuda, Takahiro; Kubota, Ryuji; Fujiwara, Tadashi; Sakuma, Hitoshi

    2000-01-01

    Under severe accident conditions of a nuclear power plant, plant operators and technical support center (TSC) staffs will be under a amount of stress. Therefore, those individuals responsible for managing the plant should promote their understanding about the accident management and operations. Moreover, it is also important to train in ordinary times, so that they can carry out accident management operations effectively on severe accidents. Therefore, the education and training system which works on personal computers was developed by Japanese BWR group (Tokyo Electric Power Co.,Inc., Tohoku Electric Power Co. ,Inc., Chubu Electric Power Co. ,Inc., Hokuriku Electric Power Co.,Inc., Chugoku Electric Power Co.,Inc., Japan Atomic Power Co.,Inc.), and Hitachi, Ltd. The education and training system is composed of two systems. One is computer aided instruction (CAI) education system and the other is education and training system with a computer simulation. Both systems are designed to execute on MS-Windows(R) platform of personal computers. These systems provide plant operators and technical support center staffs with an effective education and training tool for accident management. TEPCO used the simulation system for the emergency exercise assuming the occurrence of hypothetical severe accident, and have performed an effective exercise in March, 2000. (author)

  2. Status Report on Spent Fuel Pools under Loss-of-Cooling and Loss-of-Coolant Accident Conditions - Final Report

    International Nuclear Information System (INIS)

    Adorni, M.; Esmaili, H.; Grant, W.; Hollands, T.; Hozer, Z.; Jaeckel, B.; Munoz, M.; Nakajima, T.; Rocchi, F.; Strucic, M.; ); Tregoures, N.; Vokac, P.; Ahn, K.I.; Bourgue, L.; Dickson, R.; Douxchamps, P.A.; Herranz, L.E.; Jernkvist, L.O.; Amri, A.; Kissane, M.P.; )

    2015-01-01

    Following the 2011 accident at the Fukushima Daiichi Nuclear Power Station, the Nuclear Energy Agency Committee on the Safety of Nuclear Installations decided to launch several high-priority activities to address certain technical issues. Among other things, it was decided to prepare a status report on spent fuel pools (SFPs) under loss of cooling accident conditions. This activity was proposed jointly by the CSNI Working Group on Analysis and Management of Accidents (WGAMA) and the Working Group on Fuel Safety (WGFS). The main objectives, as defined by these working groups, were to: - Produce a brief summary of the status of SFP accident and mitigation strategies, to better contribute to the post-Fukushima accident decision making process; - Provide a brief assessment of current experimental and analytical knowledge about loss of cooling accidents in SFPs and their associated mitigation strategies; - Briefly describe the strengths and weaknesses of analytical methods used in codes to predict SFP accident evolution and assess the efficiency of different cooling mechanisms for mitigation of such accidents; - Identify and list additional research activities required to address gaps in the understanding of relevant phenomenological processes, to identify where analytical tool deficiencies exist, and to reduce the uncertainties in this understanding. The proposed activity was agreed and approved by CSNI in December 2012, and the first of four meetings of the appointed writing group was held in March 2013. The writing group consisted of members of the WGAMA and the WGFS, representing the European Commission and the following countries: Belgium, Canada, Czech Republic, France, Germany, Hungary, Italy, Japan, Korea, Spain, Sweden, Switzerland and the USA. This report mostly covers the information provided by these countries. The report is organised into 8 Chapters and 4 Appendices: Chapter 1: Introduction; Chapter 2: Spent fuel pools; Chapter 3: Possible accident

  3. 49 CFR 837.3 - Published reports, material contained in the public accident investigation dockets, and accident...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Published reports, material contained in the... OF RECORDS IN LEGAL PROCEEDINGS § 837.3 Published reports, material contained in the public accident... submitted, in writing, to the Public Inquiries Branch. Demands for specific published reports and studies...

  4. Thermal and hydraulic behaviour of CANDU cores under severe accident conditions - final report. Vol. 1

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1984-06-01

    This report gives the results of a study of the thermo-hydraulic aspects of severe accident sequences in CANDU reactors. The accident sequences considered are the loss of the moderator cooling system and the loss of the moderator heat sink, each following a large loss-of-coolant accident accompanied by loss of emergency coolant injection. Factors considered include expulsion and boil-off of the moderator, uncovery, overheating and disintegration of the fuel channels, quenching of channel debris, re-heating of channel debris following complete moderator expulsion, formation and possible boiling of a molten pool of core debris and the effectiveness of the cooling of the calandria wall by the shield tank water during the accident sequences. The effects of these accident sequences on the reactor containment are also considered. Results show that there would be no gross melting of fuel during moderator expulsion from the calandria, and for a considerable time thereafter, as quenched core debris re-heats. Core melting would not begin until about 135 minutes after accident initiation in a loss of the moderator cooling system and until about 30 minutes in a loss of the moderator heat sink. Eventually, a pool of molten material would form in the bottom of the calandria, which may or may not boil, depending on property values. In all cases, the molten core would be contained within the calandria, as long as the shield tank water cooling system remains operational. Finally, in the period from 8 to 50 hours after the initiation of the accident, the molten core would re-solidify within the calandria. There would be no consequent damage to containment resulting from these accident sequences, nor would there be a significant increase in fission product releases from containment above those that would otherwise occur in a dual failure LOCA plus LOECI

  5. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2000-09-15

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR).

  6. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    International Nuclear Information System (INIS)

    WILLIAMS, J.C.

    2000-01-01

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR)

  7. Status report on the EPRI fuel cycle accident risk assessment

    International Nuclear Information System (INIS)

    Erdmann, R.C.; Fullwood, R.R.; Garcia, A.A.; Mendoza, Z.T.; Ritzman, R.L.; Stevens, C.A.

    1979-07-01

    This report summarizes and extends the work reported in five unpublished draft reports: the accidental radiological risk of reprocessing spent fuel, mixed oxide fuel fabrication, the transportation of materials within the fuel cycle, and the disposal of nuclear wastes, and the routine atmospheric radiological risk of mining and milling uranium-bearing ore. Results show that the total risk contribution of the fuel cycle is only about 1% of the accident risk of the power plant and hence, with little error, the accident risk of nuclear electric power is that of the power plant itself. The power plant risk, assuming a very large usage of nuclear power by the year 2005, is only about 0.5% of the radiological risk of natural background. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihoods and estimated errors. The primary probabilistic estimation tool is fault tree analysis with the release source terms calculated using physical--chemical processes. Doses and health effects are calculated with the CRAC code. No evacuation or mitigation is considered: source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/T) and short cooling (90 to 150 d); HEPA filter efficiencies are derived from experiments

  8. Report on the accident at the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    1987-12-01

    This report presents the compilation of information obtained by various organizations regarding the accident (and the consequences of the accident) that occurred at Unit 4 of the nuclear power station at Chernobyl in the USSR on April 26, 1986. Each organization has independently accepted responsibility for one or more chapters. The specific responsibility of each organization is indicated. The various authors are identified in a footnote to each chapter. Very briefly the other chapters cover: the design of the Chernobyl nuclear station Unit 4; safety analyses for Unit 4; the accident scenario; the role of the operator; an assessment of the radioactive release, dispersion, and transport; the activities associated with emergency actions; and information on the health and environmental consequences from the accident. These subjects cover the major aspects of the accident that have the potential to present new information and lessons for the nuclear industry in general. The task of evaluating the information obtained in these various areas and the assessment of the potential implications has been left to each organization to pursue according to the relevance of the subject to their organization. Those findings will be issued separately by the cognizant organizations. The basic purpose of this report is to provide the information upon which such assessments can be made

  9. Diamond Fire: Serious Accident Investigation Report

    Science.gov (United States)

    John Waconda; Ivan Pupulidy; Leonard Diaz; Robin Broyles; Roberta Junge; James Saveland

    2012-01-01

    This incident is effectively two studies. The first study, and the reason the Serious Accident Investigation Team was assembled, was due to a fatality, which the autopsy later determined to have been caused by a heart attack. The team was not aware of the cause of death for over 4 weeks after the incident occurred. However, the observed and reported cases of heat...

  10. Analyses of systems availability and operator actions to support the development of severe accident procedures

    International Nuclear Information System (INIS)

    Lutz, R.J. Jr.; Scobel, J.H.

    1989-01-01

    This paper reports on traditional analyses of severe accidents, such as those presented in Probabilistic Risk Assessment (PRA) studies of nuclear power stations, that have generally been performed on the assumption that all means of cooling the reactor core are lost and that no operator actions to mitigate the consequences or progression of the severe accident are performed. The assumption to neglect the availability of safety systems and operator actions which do not prevent core melting can lead to erroneous conclusions regarding the plant severer accident profile. Recent work in severe accident management has identified the need to perform analyses which consider all systems availabilities and operator actions, irrespective of their contribution to the prevention of core melting. These new analyses indicate that the traditional analyses result in overfly pessimistic predictions of the time of core melting and the subsequent potential for recovery of core cooling prior to core melting. Additionally, since the traditional analyses do not model all of the operator actions which are prescribed, the impact of additional severe accident operator actions on the progression and consequences of the accident cannot be reliably identified. Further, the more detailed analysis can change the focus of the importance of various system to the prevention of core damage and the mitigation of severe accident consequences. Finally, the simplicity of the traditional analyses can have a considerable impact on severe accident decision making, particularly in the evaluation of alternate plant design features and the priorities for research studies

  11. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System

    Science.gov (United States)

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal

  12. Guidelines for system modeling: pre-accident human errors, rev.0

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Jung, W. D.; Lee, Y. H.; Hwang, M. J.; Yang, J. E

    2004-01-01

    The evaluation results of Human Reliability Analysis (HRA) of pre-accident human errors in the probabilistic safety assessment (PSA) for the Korea Standard Nuclear Power Plant (KSNP) using the ASME PRA standard show that more than 50% of 10 items to be improved are related to the identification and screening analysis for them. Thus, we developed a guideline for modeling pre-accident human errors for the system analyst to resolve some items to be improved for them. The developed guideline consists of modeling criteria for the pre-accident human errors (identification, qualitative screening, and common restoration errors) and detailed guidelines for pre-accident human errors relating to testing, maintenance, and calibration works of nuclear power plants (NPPs). The system analyst use the developed guideline and he or she applies it to the system which he or she takes care of. The HRA analyst review the application results of the system analyst. We applied the developed guideline to the auxiliary feed water system of the KSNP to show the usefulness of it. The application results of the developed guideline show that more than 50% of the items to be improved for pre-accident human errors of auxiliary feed water system are resolved. The guideline for modeling pre-accident human errors developed in this study can be used for other NPPs as well as the KSNP. It is expected that both use of the detailed procedure, to be developed in the future, for the quantification of pre-accident human errors and the guideline developed in this study will greatly enhance the PSA quality in the HRA of pre-accident human errors.

  13. Guidelines for system modeling: pre-accident human errors, rev.0

    International Nuclear Information System (INIS)

    Kang, Dae Il; Jung, W. D.; Lee, Y. H.; Hwang, M. J.; Yang, J. E.

    2004-01-01

    The evaluation results of Human Reliability Analysis (HRA) of pre-accident human errors in the probabilistic safety assessment (PSA) for the Korea Standard Nuclear Power Plant (KSNP) using the ASME PRA standard show that more than 50% of 10 items to be improved are related to the identification and screening analysis for them. Thus, we developed a guideline for modeling pre-accident human errors for the system analyst to resolve some items to be improved for them. The developed guideline consists of modeling criteria for the pre-accident human errors (identification, qualitative screening, and common restoration errors) and detailed guidelines for pre-accident human errors relating to testing, maintenance, and calibration works of nuclear power plants (NPPs). The system analyst use the developed guideline and he or she applies it to the system which he or she takes care of. The HRA analyst review the application results of the system analyst. We applied the developed guideline to the auxiliary feed water system of the KSNP to show the usefulness of it. The application results of the developed guideline show that more than 50% of the items to be improved for pre-accident human errors of auxiliary feed water system are resolved. The guideline for modeling pre-accident human errors developed in this study can be used for other NPPs as well as the KSNP. It is expected that both use of the detailed procedure, to be developed in the future, for the quantification of pre-accident human errors and the guideline developed in this study will greatly enhance the PSA quality in the HRA of pre-accident human errors

  14. Severe accident tests and development of domestic severe accident system codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  15. Severe accident tests and development of domestic severe accident system codes

    International Nuclear Information System (INIS)

    2013-01-01

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  16. Detection of criticality accidents. The Intertechnique EDAC II system

    International Nuclear Information System (INIS)

    Prigent, R.

    1991-01-01

    The chief aim of the new generation of EDAC II criticality accidents detection system is to reduce the risks associated to the handling of fissile material by providing a swift and safe warning of the development of any criticality accident. To this function already devolving on the EDAC system of the previous generation, the EDAC II adds the possibility of storing in memory the characteristics of the accident, providing a daily follow-up of the striking events in the system through the print-out of a log book and providing assistance to the operators during the periodical tests. (Author)

  17. The Chernobyl accident and the Spanish nuclear power plants. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-11-15

    On the morning of April 26, 1986, Unit 4 of the Chernobyl Nuclear Power Plant (Ukraine, USSR) suffered an accident of the greatest magnitude among those which have taken place in nuclear energy installations employed for peaceful uses. The accident reached a degree of severity unknown up to now in nuclear energy generating plants, both with respect to the loss of human lives and the effects caused to the neighboring population (as well as to other nations within a wide radius of radioactivity dispersal), and also with respect to the damage caused in the nuclear plant itself. In the light of the anxiety created internationally, the USSR State Committee for the Utilization of Atomic Energy prepared a report (1), based on the conclusions of the Governmental Commission entrusted to study the causes of the accident, which was presented at the international meeting of experts held at the International Atomic Energy Agency (IAEA) headquarters in Vienna from August 25 to 29, 1986. The present technical report has been prepared by the Spanish nuclear power plants within the framework of UNIDAD ELECTRICA, S.A. (UNESA) - the Association of Spanish electric utilities - in collaboration with EMPRESARIOS AGRUPADOS, S.A. The report reflects the utilities' analyses of the causes and consequences of the accident and, based on similarities and differences with Spanish plants under construction and in operation, intends to: a. Evaluate the possibility of an accident with similar consequences occurring in a Spanish plant b. Identify possible design and operation modifications indicated by the lessons learned from this accident.

  18. The Chernobyl accident and the Spanish nuclear power plants. Technical report

    International Nuclear Information System (INIS)

    1986-11-01

    On the morning of April 26, 1986, Unit 4 of the Chernobyl Nuclear Power Plant (Ukraine, USSR) suffered an accident of the greatest magnitude among those which have taken place in nuclear energy installations employed for peaceful uses. The accident reached a degree of severity unknown up to now in nuclear energy generating plants, both with respect to the loss of human lives and the effects caused to the neighboring population (as well as to other nations within a wide radius of radioactivity dispersal), and also with respect to the damage caused in the nuclear plant itself. In the light of the anxiety created internationally, the USSR State Committee for the Utilization of Atomic Energy prepared a report (1), based on the conclusions of the Governmental Commission entrusted to study the causes of the accident, which was presented at the international meeting of experts held at the International Atomic Energy Agency (IAEA) headquarters in Vienna from August 25 to 29, 1986. The present technical report has been prepared by the Spanish nuclear power plants within the framework of UNIDAD ELECTRICA, S.A. (UNESA) - the Association of Spanish electric utilities - in collaboration with EMPRESARIOS AGRUPADOS, S.A. The report reflects the utilities' analyses of the causes and consequences of the accident and, based on similarities and differences with Spanish plants under construction and in operation, intends to: a. Evaluate the possibility of an accident with similar consequences occurring in a Spanish plant b. Identify possible design and operation modifications indicated by the lessons learned from this accident

  19. Regulatory impact of nuclear reactor accident source term assumptions. Technical report

    International Nuclear Information System (INIS)

    Pasedag, W.F.; Blond, R.M.; Jankowski, M.W.

    1981-06-01

    This report addresses the reactor accident source term implications on accident evaluations, regulations and regulatory requirements, engineered safety features, emergency planning, probabilistic risk assessment, and licensing practice. Assessment of the impact of source term modifications and evaluation of the effects in Design Basis Accident analyses, assuming a change of the chemical form of iodine from elemental to cesium iodide, has been provided. Engineered safety features used in current LWR designs are found to be effective for all postulated combinations of iodine source terms under DBA conditions. In terms of potential accident consequences, it is not expected that the difference in chemical form between elemental iodine and cesium iodide would be significant. In order to account for the current information on source terms, a spectrum of accident scenerios is discussed to realistically estimate the source terms resulting from a range of potential accident conditions

  20. Chernobyl - system accident or human error?

    International Nuclear Information System (INIS)

    Stang, E.

    1996-01-01

    Did human error cause the Chernobyl disaster? The standard point of view is that operator error was the root cause of the disaster. This was also the view of the Soviet Accident Commission. The paper analyses the operator errors at Chernobyl in a system context. The reactor operators committed errors that depended upon a lot of other failures that made up a complex accident scenario. The analysis is based on Charles Perrow's analysis of technological disasters. Failure possibility is an inherent property of high-risk industrial installations. The Chernobyl accident consisted of a chain of events that were both extremely improbable and difficult to predict. It is not reasonable to put the blame for the disaster on the operators. (author)

  1. Review of current status for designing severe accident management support system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sub

    2000-05-01

    The development of operator support system (OSS) is ongoing in many other countries due to the complexity both in design and in operation for nuclear power plant. The computerized operator support system includes monitoring of some critical parameters, early detection of plant transient, monitoring of component status, plant maintenance, and safety parameter display, and the operator support system for these areas are developed and are being used in some plants. Up to now, the most operator support system covers the normal operation, abnormal operation, and emergency operation. Recently, however, the operator support system for severe accident is to be developed in some countries. The study for the phenomena of severe accident is not performed sufficiently, but, based on the result up to now, the operator support system even for severe accident will be developed in this study. To do this, at first, the current status of the operator support system for normal/abnormal/emergency operation is reviewed, and the positive aspects and negative aspects of systems are analyzed by their characteristics. And also, the major items that should be considered in designing the severe accident operator support system are derived from the review. With the survey of domestic and foreign operator support systems, they are reviewed in terms of the safety parameter display system, decision-making support system, and procedure-tracking system. For the severe accident, the severe accident management guideline (SAMG) which is developed by Westinghouse is reviewed; the characteristics, structure, and logical flow of SAMG are studied. In addition, the critical parameters for severe accident, which are the basis for operators decision-making in severe accident management and are supplied to the operators and the technical support center, are reviewed, too.

  2. Review of current status for designing severe accident management support system

    International Nuclear Information System (INIS)

    Jeong, Kwang Sub

    2000-05-01

    The development of operator support system (OSS) is ongoing in many other countries due to the complexity both in design and in operation for nuclear power plant. The computerized operator support system includes monitoring of some critical parameters, early detection of plant transient, monitoring of component status, plant maintenance, and safety parameter display, and the operator support system for these areas are developed and are being used in some plants. Up to now, the most operator support system covers the normal operation, abnormal operation, and emergency operation. Recently, however, the operator support system for severe accident is to be developed in some countries. The study for the phenomena of severe accident is not performed sufficiently, but, based on the result up to now, the operator support system even for severe accident will be developed in this study. To do this, at first, the current status of the operator support system for normal/abnormal/emergency operation is reviewed, and the positive aspects and negative aspects of systems are analyzed by their characteristics. And also, the major items that should be considered in designing the severe accident operator support system are derived from the review. With the survey of domestic and foreign operator support systems, they are reviewed in terms of the safety parameter display system, decision-making support system, and procedure-tracking system. For the severe accident, the severe accident management guideline (SAMG) which is developed by Westinghouse is reviewed; the characteristics, structure, and logical flow of SAMG are studied. In addition, the critical parameters for severe accident, which are the basis for operators decision-making in severe accident management and are supplied to the operators and the technical support center, are reviewed, too

  3. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System

    OpenAIRE

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Background Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives The aim of this study was to create an extracorporeal circulation system (herein...

  4. Investigation of air cleaning system response to accident conditions

    International Nuclear Information System (INIS)

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.; Gregory, W.S.; Horak, H.L.; Idar, E.S.; Martin, R.A.; Ricketts, C.I.; Smith, P.R.; Tang, P.K.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported

  5. Accident analysis for nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    calculation results. This safety report also discusses various factors that need to be considered to ensure that the accident analysis is of an acceptable quality. The report is intended for use primarily by analyses coordinating, performing or reviewing accident analyses for NPPs, on both the utility and regulatory sides. The report will also be of use as a background document for relevant IAEA activities, such as training courses and workshops. While the main body of the report does not focus exclusively on a single reactor type, the examples provided in the annexes are related mostly to the accident analysis of NPPs with pressurized water reactors. The report: Applies to both NPPs being built and operating plants; deals with internal events in reactors or in their associated process systems; thus the emphasis is on the physical transient behaviour of reactors and their systems, including reactor containment; discusses both best estimate and conservative accident analyses; covers design basis accidents as well as beyond design basis accidents, although the design basis accidents are covered in greater detail; focuses on thermohydraulic aspects of safety analysis; neutronic, structural and radiological aspects are also covered to some extent; covers the course of an accident from the initiating event up to source term estimation. The main body of the report is intended to be as generally applicable as possible to all reactor types

  6. 75 FR 75911 - Adjustment of Monetary Threshold for Reporting Rail Equipment Accidents/Incidents for Calendar...

    Science.gov (United States)

    2010-12-07

    ..., Notice No. 3] RIN 2130-ZA04 Adjustment of Monetary Threshold for Reporting Rail Equipment Accidents... (DOT). ACTION: Final rule. SUMMARY: This rule increases the rail equipment accident/incident reporting threshold from $9,200 to $9,400 for certain railroad accidents/incidents involving property damage that...

  7. Under-reporting of accidents involving biological material by nursing professionals at a Brazilian emergency hospital.

    Science.gov (United States)

    Facchin, Luiza Tayar; Gir, Elucir; Pazin-Filho, Antonio; Hayashida, Miyeko; da Silva Canini, Silvia Rita Marin

    2013-01-01

    Pathogens can be transmitted to health professionals after contact with biological material. The exact number of infections deriving from these events is still unknown, due to the lack of systematic surveillance data and under-reporting. A cross-sectional study was carried out, involving 451 nursing professionals from a Brazilian tertiary emergency hospital between April and July 2009. Through an active search, cases of under-reporting of occupational accidents with biological material by the nursing team were identified by means of individual interviews. The Institutional Review Board approved the research project. Over half of the professionals (237) had been victims of one or more accidents (425 in total) involving biological material, and 23.76% of the accidents had not been officially reported using an occupational accident report. Among the underreported accidents, 53.47% were percutaneous and 67.33% were bloodborne. The main reason for nonreporting was that the accident had been considered low risk. The under-reporting rate (23.76%) was low in comparison with other studies, but most cases of exposure were high risk.

  8. A2 Code - Internal Accident Report. Does it ring a bell?

    CERN Document Server

    HSE Unit

    2015-01-01

    A2 Code* - It is under this designation (used by the CERN community) that the form for internal accident reports is hidden. More specifically it refers to the CERN Safety Code A2 “Reporting of Accidents and Near Misses” (EDMS: 335502 or here via the official Safety Rules website).   Which events should be declared? All accidental events, which cause or could have caused injuries or damage to property or the environment, must be reported especially if they involve: a) a member of the personnel, visitor, temporary labourer or contractor if it occurred on the CERN site or between sites. b) a member of the personnel if it occurred while commuting or during duty travel. Who can fill in the report? The reporting of occurred accidents or near misses should be made by the person involved or by any direct or indirect witness of the event as soon as possible after the event. Contribute to the improvement of Safety within the Organizatio...

  9. Report by the 'Fukushima Dai-Ichi major accident' nuclear subgroup

    International Nuclear Information System (INIS)

    Brezin, Edouard; Balibar, Sebastien; Candel, Sebastien; Cesarsky, Catherine; Dautray, Robert; Gratias, Denis; Guillaumont, Robert; Laval, Guy; Quere, Yves; Tissot, Bernard; Zaoui, Andre; Brechet, Yves; Carpentier, Alain; Duplessy, Jean-Claude; Jerome, Denis; Bamberger, Yves; Barre, Bertrand; Comets, Marie-Pierre; Jamet, Philippe; Schwarz, Michel; Baumont, David; Guilhem, Gilbert; Repussard, Jacques; Billot, Philippe; Boullis, Bernard; Gauche, Francois; Zaetta, Alan; Pouget-Abadie, Xavier

    2011-06-01

    This report comprises a description of the succession of events in the Fukushima-Dai-Ichi power plant, a discussion of the situation of the nuclear industry and energy in France after this accident (French nuclear stock, security organisation), and a discussion on the fuel cycle and on future opportunities (comparison with EPR - Gen II safety measures, perspectives beyond the EPR). Numerous appendices are proposed, made of documents from different bodies involved in nuclear industry, energy and safety. They deal with the Fukushima accident, with light water and pressurized water reactors, with severe accidents in PWRs, and so on

  10. Limitations of systemic accident analysis methods

    Directory of Open Access Journals (Sweden)

    Casandra Venera BALAN

    2016-12-01

    Full Text Available In terms of system theory, the description of complex accidents is not limited to the analysis of the sequence of events / individual conditions, but highlights nonlinear functional characteristics and frames human or technical performance in relation to normal functioning of the system, in safety conditions. Thus, the research of the system entities as a whole is no longer an abstraction of a concrete situation, but an exceeding of the theoretical limits set by analysis based on linear methods. Despite the issues outlined above, the hypothesis that there isn’t a complete method for accident analysis is supported by the nonlinearity of the considered function or restrictions, imposing a broad vision of the elements introduced in the analysis, so it can identify elements corresponding to nominal parameters or trigger factors.

  11. Severe Accident Management System On-line Network SAMSON

    International Nuclear Information System (INIS)

    Silverman, Eugene B.

    2004-01-01

    SAMSON is a computational tool used by accident managers in the Technical Support Centers (TSC) and Emergency Operations Facilities (EOF) in the event of a nuclear power plant accident. SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. SAMSON uses expert systems, as well as neural networks trained with the back propagation learning algorithms to make predictions. Training on data from an accident analysis code (MAAP - Modular Accident Analysis Program) allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTRs), with breaks ranging from one tube to eight tubes, and loss of coolant accidents (LOCAs), with breaks ranging from 0.0014 square feet (1.30 cm 2 ) in size to breaks 3.0 square feet in size (2800 cm 2 ). (author)

  12. System 80+ design features for severe accident prevention and mitigation

    International Nuclear Information System (INIS)

    Jacob, M.C.; Schneider, R.E.; Finnicum, D.J.

    1993-01-01

    ABB-CE, in cooperation with the US Department of Energy, is working to develop and certify the System 80+ design, which is ABB-CE's standardized evolutionary Advanced Light Water Reactor (ALWR) design. It incorporates design enhancements based on Probabilistic Risk Assessment (PRA) insights, guidance from the EPRI's Utility Requirements Document, and US NRC's Severe Accident Policy. Major severe accident prevention and mitigation design features of the system is discussed along with its conformance to EPRI URD guidance, as applicable. Computer simulation of a best estimate severe accident scenario is presented to illustrate the acceptable containment performance of the design. It is concluded that by considering severe accident prevention and mitigation early in the design process, the System 80+ design represents a robust plant design that has low core damage frequencies, low containment conditional failure probabilities, and acceptable deterministic containment performance under severe accident conditions

  13. Aerospace Accident - Injury Autopsy Data System -

    Data.gov (United States)

    Department of Transportation — The Aerospace Accident Injury Autopsy Database System will provide the Civil Aerospace Medical Institute (CAMI) Aerospace Medical Research Team (AMRT) the ability to...

  14. Accidents - Chernobyl accident

    International Nuclear Information System (INIS)

    2004-01-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  15. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.).

  16. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.)

  17. Supporting system in emergency response plan for nuclear material transport accidents

    International Nuclear Information System (INIS)

    Nakagome, Y.; Aoki, S.

    1993-01-01

    As aiming to provide the detailed information concerning nuclear material transport accidents and to supply it to the concerned organizations by an online computer, the Emergency Response Supporting System has been constructed in the Nuclear Safety Technology Center, Japan. The system consists of four subsystems and four data bases. By inputting initial information such as name of package and date of accident, one can obtain the appropriate initial response procedures and related information for the accident immediately. The system must be useful for protecting the public safety from nuclear material transport accidents. But, it is not expected that the system shall be used in future. (J.P.N.)

  18. A database system for the management of severe accident risk information, SARD

    International Nuclear Information System (INIS)

    Ahn, K. I.; Kim, D. H.

    2003-01-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies

  19. A database system for the management of severe accident risk information, SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, K. I.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies.

  20. Development of Information Display System for Operator Support in Severe Accident

    International Nuclear Information System (INIS)

    Jeong, Kwang Il; Lee, Joon Ku

    2016-01-01

    When the severe accident occurs, the technical support center (TSC) performs the mitigation strategy with severe accident management guidelines (SAMG) and communicates with main control room (MCR) operators to obtain information of plant's status. In such circumstances, the importance of an information display for severe accident is increased. Therefore an information display system dedicated to severe accident conditions is required to secure the plant information, to provide the necessary information to MCR operators and TSC operators, and to support the decision using these information. We setup the design concept of severe accident information display system (SIDS) in the previous study and defined its requirements of function and performance. This paper describes the process, results of the identification of the severe accident information for MCR operator and the implementation of SIDS. Further implementation on post-accident monitoring function and data validation function for severe accidents will be accomplished in the future

  1. Post-accident monitoring systems in Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Suriya Murthy, N.; Sivasailanathan, Vidhya; Ananth, Allu; Roy, Kallol

    2018-01-01

    PFBR is a 500 MW(e) MOX fueled and sodium cooled fast reactor (SFR) under advanced stage of commissioning at Kalpakkam. Currently, the main vessel is preheated and sodium has been charged into two secondary loops that are operated in recirculation mode. In order to characterize the radiation field and contamination, the workplace monitoring is undertaken using installed monitors that are commissioned and made operational. This helps to ensure radiological protection during normal operating conditions. On the other hand, radiological monitoring in emergency conditions is quite different. For undertaking the mitigative accident management, a set of specialized nuclear instruments called post-accident monitoring systems (PAMS) which include radiation monitors are stipulated. The Fukushima Daiichi accident emphasized the importance and need for reliable accident monitoring instrumentation to indicate the safety functions during the progression and aftermath of accident in NPP. In PFBR, the PAMS are integrated with other monitoring systems in design stage itself to manage the measurements and indicating the safety functions for implementing EOP and SAMG

  2. Noble gas control room accident filtration system for severe accident conditions (N-CRAFT)

    International Nuclear Information System (INIS)

    Hill, Axel; Stiepani, Cristoph; Drechsler, Michael

    2015-01-01

    Severe accidents might cause the release of airborne radioactive substances to the environment of the NPP either due to containment leakages or due to intentional filtered containment venting. In the latter case aerosols and iodine are retained, however noble gases are not retainable by the FCVS or by conventional air filtration systems like HEPA filters and iodine absorbers. Radioactive noble gases nevertheless dominate the activity release depending on the venting procedure and the weather conditions. To prevent unacceptable contamination of the control room atmosphere by noble gases, AREVA GmbH has developed a noble gas control room accident filtration system (CRAFT) which can supply purified fresh air to the control room without time limitation. The retention process is based on dynamic adsorption of noble gases on activated carbon. The system consists of delay lines (carbon columns) which are operated by a continuous and simultaneous adsorption and desorption process. CRAFT allows minimization of the dose rate inside the control room and ensures low radiation exposure to the staff by maintaining the control room environment suitable for prolonged occupancy throughout the duration of the accident. CRAFT consists of a proven modular design either transportable or permanently installed. (author)

  3. Accidents in nuclear ships

    Energy Technology Data Exchange (ETDEWEB)

    Oelgaard, P L [Risoe National Lab., Roskilde (Denmark); [Technical Univ. of Denmark, Lyngby (Denmark)

    1996-12-01

    This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events in considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10{sup -3} per ship reactor years. It if finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. It is emphasized that some of the information on which this report is based, may not be correct. Consequently some of the results of the assessments made may not be correct. (au).

  4. Accidents in nuclear ships

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1996-12-01

    This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events in considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10 -3 per ship reactor years. It if finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. It is emphasized that some of the information on which this report is based, may not be correct. Consequently some of the results of the assessments made may not be correct. (au)

  5. Aspects of severe accidents in transmutation systems

    International Nuclear Information System (INIS)

    Wider, H.U.; Karlson, J.; Jones, A.V.

    2001-01-01

    The different types of transmutation systems under investigation include accelerator driven (ADS) and critical systems. To switch off an accelerator in case of an accident initiation is quite important for all accidents. For a fast ADS the grace times available for doing so depend strongly on the total heat capacity and the natural circulation capability of the primary coolant. Cooling with heavy metal Pb-Bi has considerable advantages in this regard compared to gas cooling. Moreover it allows passive ex-vessel cooling with natural air or water circulation. In the remote likelihood of fuel melting, oxide fuel appears to mix with the Pb-Bi coolant. Fast critical systems that are cooled by Pb-Bi will automatically shut off if the flow or heat sink is lost. Reactivity accidents can be limited by a low total control rod worth. High temperature reactors can achieve only incomplete burning of actinides. If an accelerator is added to increase burn-up, a fast spectrum region is needed, which has a low heat capacity. (author)

  6. PCDP [Prototypical Spent Fuel Consolidation Equipment Demonstration Project] design basis accident report 9315-P-103, Rev. A

    International Nuclear Information System (INIS)

    1987-12-01

    The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) has identified a requirement to integrate the spent fuel rod consolidation design activities of each of several proposed geological repository facilities and the Monitored Retrievable Storage (MRS) facility, and to develop efficient and cost-effective equipment for the consolidation process. The equipment to be developed for the rod consolidation system will be required to operate in a dry environment at rates which can be appropriately scaled to approximate the waste management system acceptance rates, irrespective of repository geologic characteristics or the existence of an MRS facility in the waste management system. The purpose of this report is to identify and analyze the range of facility credible events and accident occurrences (from minor to the design basis accidents) and their causes and consequences. For each situation, the considerations to prevent or mitigate the event or accident is addressed

  7. APRI - Accident Phenomena of Risk Importance. Final Report

    International Nuclear Information System (INIS)

    Frid, W.; Hammar, L.; Soederman, E.

    1996-12-01

    The APRI-project started in 1992 with participation of the Swedish Nuclear Power Inspectorate (SKI) and the Swedish utilities. The Finnish utility TVO joined the project in 1993. The aim of the project has been to work with phenomenological questions in severe accidents, concentrating on the risk-dominating issues. The work is reported in separate sub-project reports, the present is the final report of the methodological studies as well as a final report for the total project. The research has led to clarifications of the risk complex, and ameliorated the basis for advanced probabilistic safety analyses, specially for the emission risks (PSA level 2) which are being studied at the Swedish plants. A new method has been tried for analysis of complicated accident courses, giving a possibility for systematic evaluation of the impact of different important phenomena (e.g. melt-through, high pressure melt-through with direct heating of the containment atmosphere, steam explosions). In this method, the phenomena are looked upon as top events of a 'phenomena-tree', illustrating how various conditions must be met before the top-event can happen. This method has been useful, in particular for applying 'expert estimates'. 47 refs

  8. Safety regulations regarding to accident monitoring and accident sampling at Russian NPPs with VVER type reactors

    International Nuclear Information System (INIS)

    Sharafutdinov, Rachet; Lankin, Michail; Kharitonova, Nataliya

    2014-01-01

    The paper describes a tendency by development of regulatory document requirements related to accident monitoring and accident sampling at Russia's NPPs. Lessons learned from the Fukushima Daiichi accident pointed at the importance and necessary to carry out an additional safety check at Russia's nuclear power plants in the preparedness for management of severe accidents at NPPs. Planned measures for improvement of severe accidents management include development and implementation of the accident instrumentation systems, providing, monitoring, management and storage of information in a severe accident conditions. The draft of Safety Guidelines <accident monitoring system of nuclear power plants with VVER reactors' prepared by Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS) established the main criteria for accident monitoring instrumentation that can monitor relevant plant parameters in the reactor and inside containment during and after a severe accident in nuclear power plants. Development of these safety guidelines is in line with the recommendations of IAEA Action Plan on Nuclear Safety in response to the Fukushima Daiichi event and recommendations of the IAEA Nuclear Energy series Report <<Accident Monitoring Systems for Nuclear Power Plants' (Draft V 2.7). The paper presents the principles, which are used as the basis for selection of plant parameters for accident monitoring and for establishing of accident monitoring instrumentation. The recommendations to the accident sampling system capable to obtain the representative reactor coolant and containment air and fluid samples that support accurate analytical results for the parameters of interest are considered. The radiological and chemistry parameters to be monitored for primary coolant and sump and for containment air are specified. (author)

  9. The consequences of the Chernobyl nuclear accident in Greece - Report No. 2

    International Nuclear Information System (INIS)

    1986-12-01

    In this report a realistic estimate of the radioactive fallout on Greece from the Chernobyl nuclear accident is described. The measurements performed on environmental samples and samples of the food chain, as well as some realistic estimations for the population doses and the expected consequences of the accident are presented. The analysis has shown that the radiological impact of the accident in Greece can be considered minor. (J.K.)

  10. Development of Information Display System for Operator Support in Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Il; Lee, Joon Ku [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    When the severe accident occurs, the technical support center (TSC) performs the mitigation strategy with severe accident management guidelines (SAMG) and communicates with main control room (MCR) operators to obtain information of plant's status. In such circumstances, the importance of an information display for severe accident is increased. Therefore an information display system dedicated to severe accident conditions is required to secure the plant information, to provide the necessary information to MCR operators and TSC operators, and to support the decision using these information. We setup the design concept of severe accident information display system (SIDS) in the previous study and defined its requirements of function and performance. This paper describes the process, results of the identification of the severe accident information for MCR operator and the implementation of SIDS. Further implementation on post-accident monitoring function and data validation function for severe accidents will be accomplished in the future.

  11. Report of investigation regarding accident in Tomsk reprocessing facilities in Russia

    International Nuclear Information System (INIS)

    1994-01-01

    At 1258 on April 6, 1993, the explosion accident of a welded tank occurred in the military reprocessing facilities in Tomsk, Siberia District, Russia. Japan carried out the investigation of the effect on the environmental radiation in Japan, dispatched the investigation mission to Russia, and explained the way of thinking on securing the safety of Japanese reprocessing plants to local communities. Science and Technology Agency organized the working group for investigating the accident, which exerted efforts to collect the information, analyze and examine it. This report is the summary of its results. The explosion occurred in the tank for adjusting the acid concentration of the solution to be supplied to the solvent extraction shop, and the building was destructed. No one died or was injured. The results of the radioactivity examination are reported. The process of the accident was inferred, and described. The factors that caused the accident were the mixing of organic impurities the use of the diluting liquid containing aromatic hydrocarbon, the contact of nitric acid with organic substances at high temperature, in sufficient agitation at the time of pouring nitric acid and so on. The safety countermeasures in Japanese reprocessing plants and the response by Japan based on the accident are described. (K.I.)

  12. APRI - Accident Phenomena of Risk Importance. Final Report; APRI - Accident Phenomena of Risk Importance. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hammar, L.; Soederman, E. [ES-konsult, Stockholm (Sweden)

    1996-12-01

    The APRI-project started in 1992 with participation of the Swedish Nuclear Power Inspectorate (SKI) and the Swedish utilities. The Finnish utility TVO joined the project in 1993. The aim of the project has been to work with phenomenological questions in severe accidents, concentrating on the risk-dominating issues. The work is reported in separate sub-project reports, the present is the final report of the methodological studies as well as a final report for the total project. The research has led to clarifications of the risk complex, and ameliorated the basis for advanced probabilistic safety analyses, specially for the emission risks (PSA level 2) which are being studied at the Swedish plants. A new method has been tried for analysis of complicated accident courses, giving a possibility for systematic evaluation of the impact of different important phenomena (e.g. melt-through, high pressure melt-through with direct heating of the containment atmosphere, steam explosions). In this method, the phenomena are looked upon as top events of a `phenomena-tree`, illustrating how various conditions must be met before the top-event can happen. This method has been useful, in particular for applying `expert estimates`. 47 refs.

  13. Report from the Special Committee on Fukushima Nuclear Accident

    International Nuclear Information System (INIS)

    Ozawa, Mamoru

    2012-01-01

    The Special Committee on Fukushima Nuclear Accident was established in April 2011 under the Heat Transfer Society of Japan (HTSJ) and discussed (1) how had evolved heat transfer research in progress of nuclear technology, (2) role of expert group in the area of heat transfer academy and technology and (3) energy prospect in Japan after the Fukushima nuclear accident. This report was described by the chairman of the special committee summarizing one year discussions as (1) background of heat transfer research progress, (2) progression of Fukushima Daiichi Nuclear Power Plant accident, (3) energy problem in Japan after the Fukushima accident and (4) social role of the HTSJ. This HTSJ was a unique, nonprofit association in Japan of the people engaged in heat transfers research or in various engineering aspects related to heat transfer, which meant interdisciplinary or common platform of heat transfer as elementary technologies. Such actual complex problems could be discussed in the HTSJ from an overlooking viewpoint in order for the HTSJ to play a social role. (T. Tanaka)

  14. System response of a DOE Defense Program package in a transportation accident environment

    International Nuclear Information System (INIS)

    Chen, T.F.; Hovingh, J.; Kimura, C.Y.

    1992-01-01

    The system response in a transportation accident environment is an element to be considered in an overall Transportation System Risk Assessment (TSRA) framework. The system response analysis uses the accident conditions and the subsequent accident progression analysis to develop the accident source term, which in turn, is used in the consequence analysis. This paper proposes a methodology for the preparation of the system response aspect of the TSRA

  15. Occupational Radiation Protection in Severe Accident Management. EG-SAM Interim Report

    International Nuclear Information System (INIS)

    2014-01-01

    As an early response to the Fukushima NPP accident, the ISOE Bureau decided to focus on the following issues as an initial response of the joint program after having direct communications with the Japanese official participants in April 2011; - Management of high radiation area worker doses: It has been decided to make available the experience and information from the Chernobyl accident in terms of how emergency worker / responder doses were legally and practically managed, - Personal protective equipment for highly-contaminated areas: It was agreed to collect information about the types of personnel protective equipment and other equipment (e.g. air bottles, respirators, air-hoods or plastic suits, etc.), as well as high-radiation area worker dosimetry use (e.g. type, number and placement of dosimetry) for different types of emergency and high-radiation work situations. Detailed information was collected on dose criteria which are used for emergency workers/responders and their basis, dose management criteria for high dose/dose rate areas, protective equipment which is recommended for emergency workers / responders, recommended individual monitoring procedures, and any special requirement for assessment from the ISOE participating nuclear utilities and regulatory authorities and made available for Japanese utilities. With this positive response of the ISOE actors and interest in the situation in Fukushima, the Expert Group on Occupational Radiation Protection in Severe Accident Management (EG-SAM) was established by the ISOE Management Board in May 2011. The overall objective of the EG-SAM is to contribute to occupational exposure management (providing a view on management of high radiation area worker doses) within the Fukushima plant boundary with the ISOE participants and to develop a state-of-the- art ISOE report on best radiation protection management practices for proper radiation protection job coverage during severe accident initial response and recovery

  16. The effect of system modeling on the Fukushima accident evolution

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L.E.; Fontanet, J.; López, C.; Fernández, E.

    2015-07-01

    The Fukushima accident is becoming both a unique opportunity and a huge challenge for severe accident analysis. The OECD-BSAF project has articulated a good part of the modeling efforts conducted so far. Inside this project, CIEMAT has conducted forensic analyses of the Fukushima accident in units 1 through 3 with MELCOR 2.1 and it has postulated a set of accident scenarios consistent with data. Beyond specific results, sensitivity analyses on safety systems performance and prevailing boundary conditions have highlighted the need of conducting uncertainty analyses when modeling NPPs severe accident scenarios. (Author)

  17. Visualization of Traffic Accidents

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  18. Shipping container response to severe highway and railway accident conditions: Main report

    International Nuclear Information System (INIS)

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    This report describes a study performed by the Lawrence Livermore National Laboratory to evaluate the level of safety provided under severe accident conditions during the shipment of spent fuel from nuclear power reactors. The evaluation is performed using data from real accident histories and using representative truck and rail cask models that likely meet 10 CFR 71 regulations. The responses of the representative casks are calculated for structural and thermal loads generated by severe highway and railway accident conditions. The cask responses are compared with those responses calculated for the 10 CFR 71 hypothetical accident conditions. By comparing the responses it is determined that most highway and railway accident conditions fall within the 10 CFR 71 hypothetical accident conditions. For those accidents that have higher responses, the probabilities anf potential radiation exposures of the accidents are compared with those identified by the assessments made in the ''Final Environmental Statement on the Transportation of Radioactive Material by Air and other Modes,'' NUREG-0170. Based on this comparison, it is concluded that the radiological risks from spent fuel under severe highway and railway accident conditions as derived in this study are less than risks previously estimated in the NUREG-0170 document

  19. Expansion of the Reporting System Paradigm to the United States Maritime Industry

    OpenAIRE

    Bixler, Jeffrey A.

    2009-01-01

    This paper focuses on the creation of a U.S. maritime reporting system designed to alert the industry of safety incidents and prevent accidents. A brief history of aviation safety reporting will be provided, followed by an analysis of eight recent U.S. maritime accidents that reveal a gap in maritime safety information sharing. This paper will also describe the United Kingdom’s maritime reporting system and the previous work completed on a U.S. maritime reporting system. This paper concludes ...

  20. Design and Development of a Severe Accident Training System

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Park, Sun Hee; Kim, Dong Ha

    2005-01-01

    The nuclear plants' severe accidents have two big characteristics. One is that they are very rare accidents, and the other is that they bring extreme conditions such as the high pressure and temperature in their process. It is, therefore, very hard to get the severe accident data, without inquiring that the data should be real or experimental. In fact, most of severe accident analyses rely on the simulation codes where almost all severe accident knowledge is contained. These codes are, however, programmed by the Fortran language, so that their output are typical text files which are very complicated. To avoid this kind of difficulty in understanding the code output data, several kinds of graphic user interface (GUI) programs could be developed. In this paper, we will introduce a GUI system for severe accident management and training, partly developed and partly in design stage

  1. Bilateral cerebrovascular accidents in incontinentia pigmenti.

    Science.gov (United States)

    Fiorillo, Loretta; Sinclair, D Barry; O'Byrne, Mary L; Krol, Alfons L

    2003-07-01

    Incontinentia Pigmenti is an X-linked dominant neurocutaneous disorder with central nervous system manifestations in 30% of cases, including seizures and mental retardation. Ischemic or hemorrhagic cerebrovascular accidents have been reported rarely in incontinentia pigmenti. Chart review and literature search was performed following identification of the index case. We describe a patient with incontinentia pigmenti who developed bilateral cerebrovascular accidents in the neonatal period, with resultant severe neurologic sequelae. This is the second reported case of bilateral cerebrovascular accidents in a patient with incontinentia pigmenti. This finding may be secondary to cerebrovascular anomalies, similar to those observed in the retina. Recognition of cerebrovascular accidents as a complication of incontinentia pigmenti will hopefully lead to earlier recognition and treatment.

  2. The handling of radiation accidents

    International Nuclear Information System (INIS)

    1977-01-01

    The symposium was attended by 204 participants from 39 countries and 5 international organizations. Forty-two papers were presented in 8 sessions. The purpose of the meeting was to foster an exchange of experiences gained in establishing and exercising plans for mitigating the effects of radiation accidents and in the handling of actual accident situations. Only a small number of accidents were reported at the symposium, and this reflects the very high standards of safety that has been achieved by the nuclear industry. No accidents of radiological significance were reported to have occurred at commercial nuclear power plants. Of the accidents reported, industrial radiography continues to be the area in which most of the radiation accidents occur. The experience gained in the reported accident situations served to confirm the crucial importance of the prompt availability of medical and radiological services, particularly in the case of uptake of radioactive material, and emphasized the importance of detailed investigation into the causes of the accident in order to improve preventative measures. One of the principal themes of the symposium involved emergency procedures related to nuclear power plant accidents, and several papers defining the scope, progression and consequences of design base accidents for both thermal and fast reactor systems were presented. These were complemented by papers defining the resultant protection requirements that should be satisfied in the establishment of plans designed to mitigate the effects of the postulated accident situations. Several papers were presented describing existing emergency organizational arrangements relating both to specific nuclear power plants and to comprehensive national schemes, and a particularly informative session was devoted to the topic of training of personnel in the practical conduct of emergency arrangements. The general feeling of the participants was one of studied confidence in the competence and

  3. North Wales Group report on the effects of the Chernobyl accident

    International Nuclear Information System (INIS)

    1987-11-01

    A report is presented by the North Wales Group concerning the sequence of events affecting North Wales and the identification of the residual problems following contamination from the Chernobyl accident. The first part of the report attempts to establish a time scale for radiation restrictions applicable in North Wales and the size of the areas which are involved. Part two deals with national arrangements to handle incidents like Chernobyl and examines the wider field of international arrangements. A review is given of events as seen by the affected community following the Chernobyl accident. (U.K.)

  4. Cognitive systems engineering analysis of the JCO criticality accident

    International Nuclear Information System (INIS)

    Tanabe, Fumiya; Yamaguchi, Yukichi

    2000-01-01

    The JCO Criticality Accident is analyzed with a framework based on cognitive systems engineering. With the framework, analysis is conducted integrally both from the system viewpoint and actors viewpoint. The occupational chemical risk was important as safety constraint for the actors as well as the nuclear risk, which is due to criticality accident, to the public and to actors. The inappropriate actor's mental model of the work system played a critical role and several factors (e.g. poor training and education, lack of information on criticality safety control in the procedures and instructions, and lack of warning signs at workplace) contributed to form and shape the mental model. Based on the analysis, several countermeasures, such as warning signs, information system for supporting actors and improved training and education, are derived to prevent such an accident. (author)

  5. Systemic accident analysis: examining the gap between research and practice.

    Science.gov (United States)

    Underwood, Peter; Waterson, Patrick

    2013-06-01

    The systems approach is arguably the dominant concept within accident analysis research. Viewing accidents as a result of uncontrolled system interactions, it forms the theoretical basis of various systemic accident analysis (SAA) models and methods. Despite the proposed benefits of SAA, such as an improved description of accident causation, evidence within the scientific literature suggests that these techniques are not being used in practice and that a research-practice gap exists. The aim of this study was to explore the issues stemming from research and practice which could hinder the awareness, adoption and usage of SAA. To achieve this, semi-structured interviews were conducted with 42 safety experts from ten countries and a variety of industries, including rail, aviation and maritime. This study suggests that the research-practice gap should be closed and efforts to bridge the gap should focus on ensuring that systemic methods meet the needs of practitioners and improving the communication of SAA research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Research on sever accident emergency simulation system for CPR1000

    International Nuclear Information System (INIS)

    Yang Zhifei; Liao Yehong; Liang Manchun; Li Ke; Yang Jie; Chen Yali

    2015-01-01

    The enhanced capability to nuclear power plant (NPP) severe accident management and emergency response depends heavily on exercises. Since the exercise scene is usually monotonous and not realistic, and conduct of exercise has a high cost, the effect of enhancing the capability is limited. Thus, the development of a Sever Accident Emergency Simulation System (SAESS) is necessary. SAESS is able to connect NPP simulator, and simulates the process of severe accident management, personnel evacuation, the dispersion of radioactive plume, and emergency response of emergency organizations. The system helps to design several of exercise scenes and optimize the disposal strategy in different severe accidents. In addition, the system reduces the cost of emergency exercise by computer simulation, benefits the research of exercise, increases the efficiency of exercise and enhances the emergency decision-making capability. This paper introduces the design and application of SAESS. (author)

  7. Methods for air cleaning system design and accident analysis

    International Nuclear Information System (INIS)

    Gregory, W.S.; Nichols, B.D.

    1987-01-01

    This paper describes methods, in the form of a handbook and five computer codes, that can be used for nuclear facility air cleaning system design and accident analysis. Four of the codes were developed primarily at the Los Alamos National Laboratory, and one was developed in France. Tools such as these are used to design ventilation systems in the mining industry but do not seem to be commonly used in the nuclear industry. For example, the Nuclear Air Cleaning Handbook is an excellent design reference, but it fails to include information on computer codes that can be used to aid in the design process. These computer codes allow the analyst to use the handbook information to form all the elements of a complete system design. Because these analysis methods are in the form of computer codes they allow the analyst to investigate many alternative designs. In addition, the effects of many accident scenarios on the operation of the air cleaning system can be evaluated. These tools originally were intended for accident analysis, but they have been used mostly as design tools by several architect-engineering firms. The Cray, VAX, and personal computer versions of the codes, an accident analysis handbook, and the codes availability will be discussed. The application of these codes to several design operations of nuclear facilities will be illustrated, and their use to analyze the effect of several accident scenarios also will be described

  8. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress

  9. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  10. Development of ultrasonic high temperature system for severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Young Ro and others

    2000-07-01

    The aims of this study are to find a gap formation between corium melt and the reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at suggesting development of a new high temperature measuring system using an ultrasonic method which overcomes the limitations of the present thermocouple method used for severe accident experiments. Also, this report describes the design and manufacturing method of the ultrasonic system. At that time, the sensor element is fabricated to a reflective element using 1mm diameter and 50 mm and 80 mm long tungsten alloy wires. This temperature measuring system is intended to measure up to 2800 deg C

  11. Monitoring and operation system for severe accidents

    International Nuclear Information System (INIS)

    Fukui, Toshiki; Niida, Shinji; Kato, Yumeto

    2017-01-01

    Monitoring and operation system for Severe Accidents (SA-MOS) is a compact Instrumentation and Control (I and C) system developed by Mitsubishi Heavy Industries (MHI) and certificated by the Japanese Nuclear Regulatory Agency (NRA) as a design application for Japanese existing PWR nuclear power plants. The system is tailored to provide monitoring and operation for Severe Accident (SA) conditions, and consists of digitalized I and C System, Human Systems Interface (HSI) system and Power Supply (PS) system as further improvement of reliability and safety. This design plans to be applied to the next Japanese PWR plants. In accordance with the new regulatory standards that NRA has established corresponding to the Fukushima accident, a long-term Station Black Out (SBO) scenario and 24-hours power supply by the storage battery in case of SA has been required. In order to address 24-hours power supply requirement in SA condition, the storage battery volume shall be increased. However, it may be difficult to introduce additional batteries to the existing plant site because of room space constraints, etc. Therefore, power distributions for the facilities which are only used for Design Basis Accident (DBA), are shut down in order to secure 24-hours operations of facilities for SA conditions including SA-MOS. That enables efficient battery resource operations as well as optimizes room space factors shared by battery cabinets. Another benefit is to introduce dedicate HSI system for SA condition and operators shift their operations using that dedicated HSI system to cope with SA events. That can reduce operator workload which forces operators to verify or choose which controllers and indicators are available in SA conditions. Furthermore, application of SA-MOS, secures the independence of the layers (DBA⇔SA) as well as secures the plant data transfer for SA conditions outside of plant. Those plant data assets can be shared by plant operation supporting personnel and

  12. Accidents in industrial radiography and lessons to be learned. A review of IAEA Safety Report

    International Nuclear Information System (INIS)

    Modupe, M.S.; Oresegun, O.

    1998-01-01

    This IAEA Safety Report Series publication is the result of a review of a large selection of accidents in industrial radiography which Regulatory Authorities, professional associations and scientific journals have reported. The review's objective was to draw lessons from the initiating events of the accidents, contributing factors and the consequences. A small, representative selection of accident descriptions is used to illustrate the primary causes of radiography accidents and a set of recommendations to prevent recurrence of such accidents or to mitigate the consequences of those that do occur is provided. By far the most common primary cause of over-exposure was 'Failure to follow operational procedures' and specifically failure to perform radiation monitoring to locate the position of the source. The information in the Safety Report is intended for use by Regulatory Authorities, operating organizations, workers manufacturers and client organizations having responsibilities for radiation protection and safety in industrial radiography. (author)

  13. Report about the radiological accident in Goiania; Documentario do acidente radiologico de Goiania

    Energy Technology Data Exchange (ETDEWEB)

    Schrimer, H.P.; Gomes, C.A.; Recio, J.C.A. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Rejeitos Radioativos

    1997-12-31

    This work reports the activities developed by the technical groups who worked during the radiological accident in Goiania, held on September 1997. Several aspects of the accident are described. The final solution for the disposal of the radioactive wastes generated during the accident is presented, according to the Brazilian waste management policy. (author) 7 refs., 6 figs., 2 tabs.; hebe at cnen.gov.br

  14. Sisifo-gas a computerised system to support severe accident training and management

    International Nuclear Information System (INIS)

    Castro, A.; Buedo, J.L.; Borondo, L.; Lopez, N.

    2001-01-01

    Nuclear Power Plants (NPP) will have to be prepared to face the management of severe accidents, through the development of Severe Accident Guides and sophisticated systems of calculation, as a supporting to the decision-making. SISIFO-GAS is a flexible computerized tool, both for the supporting to accident management and for education and training in severe accident. It is an interactive system, a visual and an easily handle one, and needs no specific knowledge in MAAP code to make complicate simulations in conditions of severe accident. The system is configured and adjusted to work in a BWR/6 technology plant with Mark III Containment, as it is Cofrentes NPP. But it is easily portable to every other kind of reactor, having the level 2 PSA (probabilistic safety analysis) of the plant to be able to establish the categories of the source term and the most important sequences in the progression of the accident. The graphic interface allows following in a very intuitive and formative way the evolution and the most relevant events in the accident, in the both system's way of work, training and management. (authors)

  15. Prevalence of injuries and reporting of accidents among health care workers at the University Hospital of the West Indies.

    Science.gov (United States)

    Vaz, Kurt; McGrowder, Donovan; Crawford, Tazhmoye; Alexander-Lindo, Ruby Lisa; Irving, Rachael

    2010-01-01

    This study investigated the knowledge, awareness and practices of health care workers towards universal precautions at the University Hospital of the West Indies. The study also examined the prevalence of injuries experienced by health care workers, as well as incidence of accidents and compliance with post-exposure prophylaxis. A cross sectional survey was conducted in September and October 2007. A 28-item self-administered questionnaire was provided to two hundred health care workers including medical doctors, medical technologists, nurses and porters to assess knowledge and practices regarding universal precautions, prevalence of injuries and incidence of accidents. Almost two-thirds (62.3%) of the respondents were aware of policies and procedures for reporting accidents while one-third (33.2%) were unsure. All nurses were aware of policies and procedures for reporting accidents, followed by medical doctors (88%) and medical technologists (61.2%). The majority (81.5%) of the respondents experienced splashes from bodily fluid. Over three-quarters of medical doctors (78%) and two-thirds of nurses (64%) reported having experienced needle stick injuries, while the incidence among medical technologists was remarkably lower (26%). The majority of the respondents (59%) experienced low accident incidence while just over one-tenth (14%) reported high incidence. Eighty four respondents reported needle stick injuries; just under two-thirds (59.5%) of this group received post-exposure treatment. The study found that majority of health care workers were aware of policies and procedures for reporting accidents. Splashes from body fluids, needle stick injuries and cuts from other objects were quite prevalent among health care workers. There is a need for monitoring systems which would provide accurate information on the magnitude of needle stick injuries and trends over time, potential risk factors, emerging new problems, and the effectiveness of interventions at The

  16. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  17. Accident and safety analyses for the HTR-modul. Partial project 1: Computer codes for system behaviour calculation. Final report. Pt. 2

    International Nuclear Information System (INIS)

    Lohnert, G.; Becker, D.; Dilcher, L.; Doerner, G.; Feltes, W.; Gysler, G.; Haque, H.; Kindt, T.; Kohtz, N.; Lange, L.; Ragoss, H.

    1993-08-01

    The project encompasses the following project tasks and problems: (1) Studies relating to complete failure of the main heat transfer system; (2) Pebble flow; (3) Development of computer codes for detailed calculation of hypothetical accidents; (a) the THERMIX/RZKRIT temperature buildup code (covering a.o. a variation to include exothermal heat sources); (b) the REACT/THERMIX corrosion code (variation taking into account extremely severe air ingress into the primary loop); (c) the GRECO corrosion code (variation for treating extremely severe water ingress into the primary loop); (d) the KIND transients code (for treating extremely fast transients during reactivity incidents. (4) Limiting devices for safety-relevant quantities. (5) Analyses relating to hypothetical accidents. (a) hypothetical air ingress; (b) effects on the fuel particles induced by fast transients. The problems of the various tasks are defined in detail and the main results obtained are explained. The contributions reporting the various project tasks and activities have been prepared for separate retrieval from the database. (orig./HP) [de

  18. Accident and safety analyses for the HTR-modul. Partial project 1: Computer codes for system behaviour calculation. Final report. Pt. 1

    International Nuclear Information System (INIS)

    Lohnert, G.; Becker, D.; Dilcher, L.; Doerner, G.; Feltes, W.; Gysler, G.; Haque, H.; Kindt, T.; Kohtz, N.; Lange, L.; Ragoss, H.

    1993-08-01

    The project encompasses the following project tasks and problems: (1) Studies relating to complete failure of the main heat transfer system; (2) Pebble flow; (3) Development of computer codes for detailed calculation of hypothetical accidents; (a) the THERMIX/RZKRIT temperature buildup code (covering a.o. a variation to include exothermal heat sources); (b) the REACT/THERMIX corrosion code (variation taking into account extremely severe air ingress into the primary loop); (c) the GRECO corrosion code (variation for treating extremely severe water ingress into the primary loop); (d) the KIND transients code (for treating extremely fast transients during reactivity incidents. (4) Limiting devices for safety-relevant quantities. (5) Analyses relating to hypothetical accidents. (a) hypothetical air ingress; (b) effects on the fuel particles induced by fast transients. The problems of the various tasks are defined in detail and the main results obtained are explained. The contributions reporting the various project tasks and activities have been prepared for separate retrieval from the database. (orig./HP) [de

  19. Investigation into the causes of accidents on scraper systems in the gold and platinum mining sectors

    CSIR Research Space (South Africa)

    Moseme, R

    2003-11-01

    Full Text Available and cleaning operations of the scraper winch systems that require identification. This research report identifies the risk and hazards associated with scraper winch systems that may lead to potential accidents in the gold and platinum sector. The research also...

  20. System 80+TM PRA insights on severe accident prevention and mitigation

    International Nuclear Information System (INIS)

    Finnicum, D.J.; Jacob, M.C.; Schneider, R.E.; Weston, R.A.

    2004-01-01

    The System 80 + design is ABB-CE's standardized evolutionary Advanced Light Water Reactor (ALWR) design. It incorporates design enhancements based on Probabilistic Risk Assessment (PRA) insights, guidance from the ALWR Utility Requirements Document (URD), and US NRC's Severe Accident Policy. Major severe accident prevention and mitigation design features of the System 80 + design are described. The results of the System 80 + PRA are presented and the insights gained from the PRA sensitivity analyses are discussed. ABB-CE considered defense-in-depth for accident prevention and mitigation early in the design process and used robust design features to ensure that the System 80 + design achieved a low core damage frequency, low containment conditional failure probability, and excellent deterministic containment performance under severe accident conditions and to ensure that the risk was properly allocated among design features and between prevention and mitigation. (author)

  1. PWR auxiliary systems, safety and emergency systems, accident analysis, operation

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1976-01-01

    The author presents a description of PWR auxiliary systems like volume control, boric acid control, coolant purification, -degassing, -storage and -treatment system and waste processing systems. Residual heat removal systems, emergency systems and containment designs are discussed. As an accident analysis the author gives a survey over malfunctions and disturbances in the field of reactor operations. (TK) [de

  2. Surface Movement Incidents Reported to the NASA Aviation Safety Reporting System

    Science.gov (United States)

    Connell, Linda J.; Hubener, Simone

    1997-01-01

    Increasing numbers of aircraft are operating on the surface of airports throughout the world. Airport operations are forecast to grow by more that 50%, by the year 2005. Airport surface movement traffic would therefore be expected to become increasingly congested. Safety of these surface operations will become a focus as airport capacity planning efforts proceed toward the future. Several past events highlight the prevailing risks experienced while moving aircraft during ground operations on runways, taxiways, and other areas at terminal, gates, and ramps. The 1994 St. Louis accident between a taxiing Cessna crossing an active runway and colliding with a landing MD-80 emphasizes the importance of a fail-safe system for airport operations. The following study explores reports of incidents occurring on an airport surface that did not escalate to an accident event. The Aviation Safety Reporting System has collected data on surface movement incidents since 1976. This study sampled the reporting data from June, 1993 through June, 1994. The coding of the data was accomplished in several categories. The categories include location of airport, phase of ground operation, weather /lighting conditions, ground conflicts, flight crew characteristics, human factor considerations, and airport environment. These comparisons and distributions of variables contributing to surface movement incidents can be invaluable to future airport planning, accident prevention efforts, and system-wide improvements.

  3. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    Science.gov (United States)

    Belcastro, Christine M.; Jacobson, Steven r.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  4. Report of a Special Committee on the Review of U.S. Nuclear Power Plant Accident, second report

    International Nuclear Information System (INIS)

    1979-01-01

    Following on the issuance of the first report, for the accident in Three Mile Island Nuclear Power Plant in the United States there has appeared detailed information of such as reactor operation and radiation control. This has enabled technical evaluation of those items involved in nuclear power safety. The review results up to the beginning of September 1979 are presented, to meet popular desires to know the accident situation and to reflect the results in the nation's nuclear power generation. Contents are features and background of the TMI Nuclear Power Plant accident consequences, safety measures to be taken in Japan, and (in the appendix) the data on the TMI accident, countermeasures taken in Japan, etc. (Mori, K.)

  5. Learning lessons from Natech accidents - the eNATECH accident database

    Science.gov (United States)

    Krausmann, Elisabeth; Girgin, Serkan

    2016-04-01

    When natural hazards impact industrial facilities that house or process hazardous materials, fires, explosions and toxic releases can occur. This type of accident is commonly referred to as Natech accident. In order to prevent the recurrence of accidents or to better mitigate their consequences, lessons-learned type studies using available accident data are usually carried out. Through post-accident analysis, conclusions can be drawn on the most common damage and failure modes and hazmat release paths, particularly vulnerable storage and process equipment, and the hazardous materials most commonly involved in these types of accidents. These analyses also lend themselves to identifying technical and organisational risk-reduction measures that require improvement or are missing. Industrial accident databases are commonly used for retrieving sets of Natech accident case histories for further analysis. These databases contain accident data from the open literature, government authorities or in-company sources. The quality of reported information is not uniform and exhibits different levels of detail and accuracy. This is due to the difficulty of finding qualified information sources, especially in situations where accident reporting by the industry or by authorities is not compulsory, e.g. when spill quantities are below the reporting threshold. Data collection has then to rely on voluntary record keeping often by non-experts. The level of detail is particularly non-uniform for Natech accident data depending on whether the consequences of the Natech event were major or minor, and whether comprehensive information was available for reporting. In addition to the reporting bias towards high-consequence events, industrial accident databases frequently lack information on the severity of the triggering natural hazard, as well as on failure modes that led to the hazmat release. This makes it difficult to reconstruct the dynamics of the accident and renders the development of

  6. Development of a system of computer codes for severe accident analyses and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  7. Development of a system of computer codes for severe accident analyses and its applications

    International Nuclear Information System (INIS)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan

    1991-12-01

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy

  8. Comparing recall vs. recognition measures of accident under-reporting: A two-country examination.

    Science.gov (United States)

    Probst, Tahira M; Petitta, Laura; Barbaranelli, Claudio

    2017-09-01

    A growing body of research suggests that national injury surveillance data significantly underestimate the true number of non-fatal occupational injuries due to employee under-reporting of workplace accidents. Given the importance of accurately measuring such under-reporting, the purpose of the current research was to examine the psychometric properties of two different techniques used to operationalize accident under-reporting, one using a free recall methodology and the other a recognition-based approach. Moreover, in order to assess the cross-cultural generalizability of these under-reporting measures, we replicated our psychometric analyses in the United States (N=440) and Italy (N=592). Across both countries, the results suggest that both measures exhibited similar patterns of relationships with known antecedents, including job insecurity, production pressure, safety compliance, and safety reporting attitudes. However, the recall measures had more severe violations of normality and were less correlated with self-report workplace injuries. Considerations, implications, and recommendations for using these different types of accident measures are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Accidents in the school environment: perspectives of staff concerned with data collection and reporting procedures.

    Science.gov (United States)

    Williams, W R; Latif, A H; Cater, L

    2003-05-01

    School-accident reports document incidents that have resulted in children requiring assistance from staff in the education and healthcare sectors. This study was undertaken to investigate the collection and use of data by agencies concerned with the school-accident problem. Our aim was to determine if the annual collection and use of such a large body of data might be improved through better management procedures. Interviews were conducted with primary and secondary school staff in one education authority. Interviewees completed a questionnaire on accident activity and accident reporting in their school. In the healthcare sector, staff from the Schools' Office and the ambulance unit servicing the schools provided information on their collection and use of data. Our survey found that accident activity is usually a private matter for individual schools, shared to varying degrees with the education authority. Playgrounds, children's behaviour and footwear carried much of the blame for the injuries sustained. Staff generally accepted the current accident rates. The compilation of accident data by the Schools' Office, accident and emergency department, and ambulance service were compromised by deficiencies in computerization and computer software. The management and utilization of school-accident data could be improved by better collaboration within and between the education and healthcare agencies.

  10. Development of system of computer codes for severe accident analysis and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H S; Jeon, M H; Cho, N J. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-01-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts.

  11. Development of system of computer codes for severe accident analysis and its applications

    International Nuclear Information System (INIS)

    Jang, H. S.; Jeon, M. H.; Cho, N. J. and others

    1992-01-01

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts

  12. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    International Nuclear Information System (INIS)

    Hamm, L.L.

    1998-01-01

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers

  13. A systems approach to the management of radiation accidents

    International Nuclear Information System (INIS)

    Richter, L.L.; Berk, H.W.; Teates, C.D.; Larkham, N.E.; Friesen, E.J.; Edlich, R.F.

    1980-01-01

    Management of radiation accident patients should have a multidisciplinary approach that includes all health professionals as well as members of public safety agencies. Emergency plans for radiation accidents include detection of the ionizing radiation, patient evacuation, resuscitation, and decontamination. The resuscitated patient should be transported to a radiation control area located outside but adjacent to the emergency department. Ideally this area is accessed through an entrance separate from that used for the main flow of daily emergency department patients. The hospital staff, provided with protective clothing, dosimeters, and preprinted guidelines, continues the resuscitation and definitive care of the patient. This system approach to the management of radiation accidents may be tailored to meet the specific needs of other emergency medical systems

  14. The role of systems availability and operator actions in accident management

    International Nuclear Information System (INIS)

    Lutz, R.J. Jr.; Scobel, J.H.

    1988-01-01

    Traditional analyses of severe accidents, such as those presented in Probabilistic Risk Assessment (PRA) studies of nuclear power stations, have generally been performed on the assumption that all means of cooling the reactor core are lost and that no operator actions to mitigate the consequences or progression of the severe accident are performed. The assumption to neglect the availability of safety systems and operator actions which do not prevent core melting can lead to erroneous conclusions regarding the plant severe accident profile. Recent work in severe accident management has identified the need to perform analyses which consider all systems availabilities and operator actions, irrespective of their contribution to the prevention of core melting. These new analyses have far reaching conclusions. The analysis results indicate an unacceptably high degree of simplicity in the present severe accident analyses for Probabilistic Risk Assessment studies; the simplicity is in the assumption that systems availabilities and operator actions which do not impact core melt frequency can be neglected in the severe accident analyses. This results in overly pessimistic predictions of the time of core melting and the subsequent potential for recovery of core cooling prior to core melting. This simplicity can have a considerable impact on severe accident decision making, particularly in the evaluation of alternate plant design features and the priorities for research studies

  15. Development of an accident diagnosis system using a dynamic neural network for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jong Hyun; Seong, Poong Hyun

    2004-01-01

    In this work, an accident diagnosis system using the dynamic neural network is developed. In order to help the plant operators to quickly identify the problem, perform diagnosis and initiate recovery actions ensuring the safety of the plant, many operator support system and accident diagnosis systems have been developed. Neural networks have been recognized as a good method to implement an accident diagnosis system. However, conventional accident diagnosis systems that used neural networks did not consider a time factor sufficiently. If the neural network could be trained according to time, it is possible to perform more efficient and detailed accidents analysis. Therefore, this work suggests a dynamic neural network which has different features from existing dynamic neural networks. And a simple accident diagnosis system is implemented in order to validate the dynamic neural network. After training of the prototype, several accident diagnoses were performed. The results show that the prototype can detect the accidents correctly with good performances

  16. 49 CFR 233.5 - Accidents resulting from signal failure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Accidents resulting from signal failure. 233.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION SIGNAL SYSTEMS REPORTING REQUIREMENTS § 233.5 Accidents resulting... by toll free telephone, number 800-424-0201, whenever it learns of the occurrence of an accident...

  17. The countermeasures on Fukushima accident by EU and USA. Report of no need of emergency response according to European intermediate report and US review

    International Nuclear Information System (INIS)

    Mizumachi, Wataru

    2011-01-01

    On September 15, intermediate report of 'stress test' was published from reactor operator of 14 countries introducing nuclear power plants among 27 member states of EU. Based on Fukushima Daiichi accident and with assumption of similar accident occurrence such as (1) earthquake and flood, (2) station blackout and/or loss of final heat sink, (3) accident management for loss of reactor core cooling, loss of cooling function of spent fuel storage pool and loss of integrity of containment vessel, results of computerized simulation were reported. As a result, there existed no nuclear power plant needed for reactor closure. Report would be updated, reviewed by regulatory body, submitted to IAEA by next summer and then final assessment would be performed. If additional improvements were needed in terms of safety margins, additional works would be done during next refueling period. As for Muehlberg reactor in Swiss, intake structure was newly added. In US no 'stress test' was performed like EU and each plant was requested to respond according to NRC's recommendations issued on July 12. As a result, short-term evaluation about Fukushima accident showed US nuclear power plants could operate safely because mitigation measures to reduce possibility of core damage and radioactive material release such as containment vessel venting system had been already taken and decided to reinforce safety measures against outages and others as long-term evaluation. (T. Tanaka)

  18. 76 FR 30855 - Accident/Incident Reporting Requirements

    Science.gov (United States)

    2011-05-27

    ... sidewalk/walkway D5--In airport; D6- In airplane; D7--In hotel room; E1--On parking lot; E2--In building... Control C--Auto Train Stop D--Automatic Block Signals System E--Broken Rail Monitoring F--Direct Traffic... of the accident/incident. This document updates and moves footnote number four to make it clear that...

  19. Analysis and discussion on reports of additional safety assessment of nuclear installations with respect to the Fukushima accident

    International Nuclear Information System (INIS)

    Sene, Monique; Sene, Raymond

    2011-11-01

    This document proposes an analysis of the reports made by the different operators of nuclear installations within the frame of a safety audit of the French nuclear installations with respect to the Fukushima accident. Operators (mainly AREVA, the CEA and EDF) were asked to perform additional safety assessments. In a first part, the conclusions of EDF reports are analysed regarding the seismic risk, the flooding risk, the situation of some specific sites (Fessenheim, Tricastin), other phenomena (rains, winds), loss of electricity supplies and of cooling systems, severe accidents, hydrogen issue, chemical hazards, subcontractors, crisis management. Conclusions of AREVA reports are analysed for the different sites (Tricastin, La Hague, MELOX factory, Romans factory). Conclusions of CEA reports are analysed for the different concerned installations (ATPu, Masurca, Osiris, Phenix, Jules Horowitz reactor). A second part proposes a global analysis of EDF's additional safety assessment reports regarding earthquake, flooding, other extreme natural phenomena, loss of electricity supplies and cooling system, subcontracting conditions, crisis management, and radiation protection organisation. AREVA's and CEA's reports are then analysed in terms of report structure and content, and for the different concerned sites

  20. Friction testing for abnormal wet weather accident locations : all Louisiana districts for the period 1995 : technical assistance report.

    Science.gov (United States)

    2000-06-01

    This report contains the results of friction testing conducted by the pavement/systems group of the Louisiana Transportation Research Center (LTRC) based on accidents occurring in 1995. This testing is conducted on all Louisiana locations which have ...

  1. Nuclear-station post-accident liquid-sampling system: developed by Duke Power Company

    International Nuclear Information System (INIS)

    Burton, D.A.; Birch, M.L.; Orth, W.C.

    1981-01-01

    The accident at Three Mile Island showed that means must be provided to determine the radioactivity levels in high activity liquid and gaseous systems of a nuclear power plant without undue radiation exposure to personnel. The Duke Power Post Accident Liquid Sampling System provides the means for obtaining diluted liquid samples and diluted dissolved gas samples following a reactor accident involving substantial core damage. Their approach yields a straightforward engineering solution at a fraction of the cost of other systems. A description of the system, general design criteria, and color coded flow diagrams are included

  2. Design and implementation of an identification system in construction site safety for proactive accident prevention.

    Science.gov (United States)

    Yang, Huanjia; Chew, David A S; Wu, Weiwei; Zhou, Zhipeng; Li, Qiming

    2012-09-01

    Identifying accident precursors using real-time identity information has great potential to improve safety performance in construction industry, which is still suffering from day to day records of accident fatality and injury. Based on the requirements analysis for identifying precursor and the discussion of enabling technology solutions for acquiring and sharing real-time automatic identification information on construction site, this paper proposes an identification system design for proactive accident prevention to improve construction site safety. Firstly, a case study is conducted to analyze the automatic identification requirements for identifying accident precursors in construction site. Results show that it mainly consists of three aspects, namely access control, training and inspection information and operation authority. The system is then designed to fulfill these requirements based on ZigBee enabled wireless sensor network (WSN), radio frequency identification (RFID) technology and an integrated ZigBee RFID sensor network structure. At the same time, an information database is also designed and implemented, which includes 15 tables, 54 queries and several reports and forms. In the end, a demonstration system based on the proposed system design is developed as a proof of concept prototype. The contributions of this study include the requirement analysis and technical design of a real-time identity information tracking solution for proactive accident prevention on construction sites. The technical solution proposed in this paper has a significant importance in improving safety performance on construction sites. Moreover, this study can serve as a reference design for future system integrations where more functions, such as environment monitoring and location tracking, can be added. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Feasibility study on the rod ejection accident analysis with RETRAN-MASTER code system

    International Nuclear Information System (INIS)

    Kim, Y. H.; Lee, C. S.

    2003-01-01

    KEPRI has been developed the in-house methodology for non-LOCA safety analyses based on the codes and methodologies of vendors and EPRI. Using the methodology, the rod ejection accident, which is classified into the generic accident analysis category of reactivity insertion accident in primary system, has been analyzed with RETRAN-MASTER code system. And the feasibility of the coupled code system has been verified by the review of the results. Furthermore, to assess the important parameters to the accident, the sensitivity analyses have been carried out over some parameters

  4. REAC/TS radiation accident registry. Update of accidents in the United States

    International Nuclear Information System (INIS)

    Ricks, R.C.; Berger, M.E.; Holloway, E.C.; Goans, R.E.

    2000-01-01

    Serious injury due to ionizing radiation is a rare occurrence. From 1944 to the present, 243 US accidents meeting dose criteria for classification as serious are documented in the REAC/TS Registry. Thirty individuals have lost their lives in radiation accidents in the United States. The Registry is part of the overall REAC/TS program providing 24-hour direct or consultative assistance regarding medical and heath physics problems associated with radiation accidents in local, national, and international incidents. The REAC/TS Registry serves as a repository of medically important information documenting the consequences of these accidents. Registry data are gathered from various sources. These include reports from the World Heath Organization (WHO), International Atomic Energy Agency (IAEA), US Nuclear Regulatory Commission (US NRC), state radiological health departments, medical/health physics literature, personal communication, the Internet, and most frequently, from calls for medical assistance to REAC/TS, as part of our 24-hour medical assistance program. The REAC/TS Registry for documentation of radiation accidents serves several useful purposes: 1) weaknesses in design, safety practices, training or control can be identified, and trends noted; 2) information regarding the medical consequences of injuries and the efficacy of treatment protocols is available to the treating physician; and 3) Registry case studies serve as valuable teaching tools. This presentation will review and summarize data on the US radiation accidents including their classification by device, accident circumstances, and frequency by respective states. Data regarding accidents with fatal outcomes will be reviewed. The inclusion of Registry data in the IAEA's International Reporting System of Radiation Events (RADEV) will also be discussed. (author)

  5. Accident identification system with automatic detection of abnormal condition using quantum computation

    International Nuclear Information System (INIS)

    Nicolau, Andressa dos Santos; Schirru, Roberto; Lima, Alan Miranda Monteiro de

    2011-01-01

    Transient identification systems have been proposed in order to maintain the plant operating in safe conditions and help operators in make decisions in emergency short time interval with maximum certainty associated. This article presents a system, time independent and without the use of an event that can be used as a starting point for t = 0 (reactor scram, for instance), for transient/accident identification of a pressurized water nuclear reactor (PWR). The model was developed in order to be able to recognize the normal condition and three accidents of the design basis list of the Nuclear Power Plant Angra 2, postulated in the Final Safety Analysis Report (FSAR). Were used several sets of process variables in order to establish a minimum set of variables considered necessary and sufficient. The optimization step of the identification algorithm is based upon the paradigm of Quantum Computing. In this case, the optimization metaheuristic Quantum Inspired Evolutionary Algorithm (QEA) was implemented and works as a data mining tool. The results obtained with the QEA without the time variable are compatible to the techniques in the reference literature, for the transient identification problem, with less computational effort (number of evaluations). This system allows a solution that approximates the ideal solution, the Voronoi Vectors with only one partition for the classes of accidents with robustness. (author)

  6. Analysis of three loss-of-flow accidents in the first wall cooling system of NET/ITER

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1993-05-01

    This report presents the thermal-hydraulic analysis of three Loss-of-Flow Accidents (LOFAs) in the first wall cooling system of the Next European Torus (NET) design or the International Thermonuclear Experimental Reactor (ITER) design. The LOFAs considered result from a loss of the forced coolant flow caused by a loss of electrical power for the recirculation pump in the primary circuit. The analyses have been performed using the thermal-hydraulic system analysis code RELAP5/MOD3. In the analyses, special attention has been paid to the transient thermal-hydraulic behaviour of the cooling system and the temperature development in the first wall. In the LOFA case without plasma shutdown, melting starts in the first wall about 150 s after accident initiation. In the LOFA case with delayed plasma shutdown, melting starts in the first wall when the plasma shutdown is initiated later than about 110 s after accident initiation. Melting does not occur in the first wall during a LOFA with prompt plasma scram. (orig.)

  7. The causing model of accidents and preventing system of small mines

    Energy Technology Data Exchange (ETDEWEB)

    Cao, S.; Zhang, L.; Liu, Y.; Li, Y. [Chongqing University, Chongqing (China)

    2008-06-15

    From an analysis of data on fatal accidents in small coal mines in a southern region of China over a period of three years, the time and type of accidents was discussed by applying statistical methods. It is shown that accidents frequently occur at the end of spring and all through summer. Roof accidents and gas disasters constitute severe accidents and traffic accidents are also important. It was found that most accidents are caused by dangerous behaviour of personnel and the unsafe state of equipment combined with economic interest. The three-factor causing model (TFC model) was proposed. Unsafe behaviour is a direct cause influenced by staff and workers while the unsafe nature of equipment is an indirect cause of accidents influence by natural conditions and the level of technical equipment in the mines. A system of accident prevention in small coal collieries was established with the TFC model. In this, scientific management is an important factor. 13 refs., 4 figs., 1 tab.

  8. Do failures in non-technical skills contribute to fatal medical accidents in Japan? A review of the 2010-2013 national accident reports.

    Science.gov (United States)

    Uramatsu, Masashi; Fujisawa, Yoshikazu; Mizuno, Shinya; Souma, Takahiro; Komatsubara, Akinori; Miki, Tamotsu

    2017-02-16

    We sought to clarify how large a proportion of fatal medical accidents can be considered to be caused by poor non-technical skills, and to support development of a policy to reduce number of such accidents by making recommendations about possible training requirements. Summaries of reports of fatal medical accidents, published by the Japan Medical Safety Research Organization, were reviewed individually. Three experienced clinicians and one patient safety expert conducted the reviews to determine the cause of death. Views of the patient safety expert were given additional weight in the overall determination. A total of 73 summary reports of fatal medical accidents were reviewed. These reports had been submitted by healthcare organisations across Japan to the Japan Medical Safety Research Organization between April 2010 and March 2013. The cause of death in fatal medical accidents, categorised into technical skills, non-technical skills and inevitable progress of disease were evaluated. Non-technical skills were further subdivided into situation awareness, decision making, communication, team working, leadership, managing stress and coping with fatigue. Overall, the cause of death was identified as non-technical skills in 34 cases (46.6%), disease progression in 33 cases (45.2%) and technical skills in two cases (5.5%). In two cases, no consensual determination could be achieved. Further categorisation of cases of non-technical skills were identified as 14 cases (41.2%) of problems with situation awareness, eight (23.5%) with team working and three (8.8%) with decision making. These three subcategories, or combinations of them, were identified as the cause of death in 33 cases (97.1%). Poor non-technical skills were considered to be a significant cause of adverse events in nearly half of the fatal medical accidents examined. Improving non-technical skills may be effective for reducing accidents, and training in particular subcategories of non-technical skills may be

  9. A digest of the Nuclear Safety Division report on the Fukushima Dai-ichi accident seminar (4). Issues identified by the accident

    International Nuclear Information System (INIS)

    Moriyama, Kumiaki; Abe, Kiyoharu

    2013-01-01

    AESJ Nuclear Safety Division published 'Report on the Fukushima Dai-ichi Accident Seminar - what was wrong and what should been down in future-' which would be published as five special articles of the AESJ journal. The Fukushima Dai-ichi accident identified issues of several activities directly related with nuclear safety in the areas of safety design, severe accident management and safety regulations. PRA, operational experiences and safety research could not always contribute safety assurance of nuclear power plant so much. This article (4) summarized technical issues based on related facts of the accident as much as possible and discussed' what was wrong and what should be down in future'. Important issues were identified from defense-in-depth philosophy and lessons learned on safety design were obtained from accident progression analysis. Activities against external events and continuous improvements of safety standards based on latest knowledge were most indispensable. Strong cooperation among experts in different areas was also needed. (T. Tanaka)

  10. [Violence and accidents among older and younger adults: evidence from the Surveillance System for Violence and Accidents (VIVA), Brazil].

    Science.gov (United States)

    Luz, Tatiana Chama Borges; Malta, Deborah Carvalho; Sá, Naíza Nayla Bandeira de; Silva, Marta Maria Alves da; Lima-Costa, Maria Fernanda

    2011-11-01

    Data from the Brazilian Surveillance System for Violence and Accidents (VIVA) in 2009 were used to examine socio-demographic characteristics, outcomes, and types of accidents and violence treated at 74 sentinel emergency services in 23 Brazilian State capitals and the Federal District. The analysis included 25,201 individuals aged > 20 years (10.1% > 60 years); 89.3% were victims of accidents and 11.9% victims of violence. Hospitalization was the outcome in 11.1% of cases. Compared to the general population, there were more men and non-white individuals among victims of accidents, and especially among victims of violence. As compared to younger adults (20-59 years), accidents and violence against elderly victims showed less association with alcohol, a higher proportion of domestic incidents, more falls and pedestrian accidents, and aggression by family members. Policies for the prevention of accidents and violence should consider the characteristics of these events in the older population.

  11. Safety-critical human factors issues derived from analysis of the TEPCO Fukushima Daiichi accident investigation reports

    International Nuclear Information System (INIS)

    Sakuda, Hiroshi; Takeuchi, Michiru

    2013-01-01

    The Fukushima Daiichi nuclear power plant accident on March 11, 2011 had a large impact both in and outside Japan, and is not yet concluded. After Tokyo Electric Power Co.'s (TEPCO's) Fukushima accident, electric power suppliers have taken measures to respond in the event that the same state of emergency occurs - deploying mobile generators, temporary pumps and hoses, and training employees in the use of this equipment. However, it is not only the “hard” problems including the design of equipment, but the “soft” problems such as organization and safety culture that have been highlighted as key contributors in this accident. Although a number of organizations have undertaken factor analysis of the accident and proposed issues to be reviewed and measures to be taken, a systematic overview about electric power suppliers' organization and safety culture has not yet been undertaken. This study is based on three major reports: the report by the national Diet of Japan Fukushima Nuclear Accident Independent Investigation Commission (the Diet report), the report by the Investigation Committee on the Accident at Fukushima Nuclear Power Stations of Tokyo Electric Power Company (Government report), and the report by the non-government committee supported by the Rebuild Japan Initiative Foundation (Non-government report). From these reports, the sections relevant to electric power suppliers' organization and safety culture were extracted. These sections were arranged to correspond with the prerequisites for the ideal organization, and 30 issues to be reviewed by electric power suppliers were extracted using brainstorming methods. It is expected that the identified issues will become a reference for every organization concerned to work on preventive measures hereafter. (author)

  12. Primary pipe rupture accident analysis for the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Albright, D.C.; Bari, R.A.

    1976-04-01

    In this report, the thermal transient response of the CRBR to a severe primary coolant flow perturbation, initiated by a rupture of the primary heat transport system piping, is analyzed. This hypothetical accident is studied under the further assumption that the plant protection system does function according to current design descriptions for the CRBR. Although a brief discussion of an unprotected (no scram) pipe rupture accident is presented, the major emphasis of the present report is on the protected accident.

  13. Primary pipe rupture accident analysis for the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Albright, D.C.; Bari, R.A.

    1976-04-01

    In this report, the thermal transient response of the CRBR to a severe primary coolant flow perturbation, initiated by a rupture of the primary heat transport system piping, is analyzed. This hypothetical accident is studied under the further assumption that the plant protection system does function according to current design descriptions for the CRBR. Although a brief discussion of an unprotected (no scram) pipe rupture accident is presented, the major emphasis of the present report is on the protected accident

  14. ADAM: An Accident Diagnostic,Analysis and Management System - Applications to Severe Accident Simulation and Management

    International Nuclear Information System (INIS)

    Zavisca, M.J.; Khatib-Rahbar, M.; Esmaili, H.; Schulz, R.

    2002-01-01

    The Accident Diagnostic, Analysis and Management (ADAM) computer code has been developed as a tool for on-line applications to accident diagnostics, simulation, management and training. ADAM's severe accident simulation capabilities incorporate a balance of mechanistic, phenomenologically based models with simple parametric approaches for elements including (but not limited to) thermal hydraulics; heat transfer; fuel heatup, meltdown, and relocation; fission product release and transport; combustible gas generation and combustion; and core-concrete interaction. The overall model is defined by a relatively coarse spatial nodalization of the reactor coolant and containment systems and is advanced explicitly in time. The result is to enable much faster than real time (i.e., 100 to 1000 times faster than real time on a personal computer) applications to on-line investigations and/or accident management training. Other features of the simulation module include provision for activation of water injection, including the Engineered Safety Features, as well as other mechanisms for the assessment of accident management and recovery strategies and the evaluation of PSA success criteria. The accident diagnostics module of ADAM uses on-line access to selected plant parameters (as measured by plant sensors) to compute the thermodynamic state of the plant, and to predict various margins to safety (e.g., times to pressure vessel saturation and steam generator dryout). Rule-based logic is employed to classify the measured data as belonging to one of a number of likely scenarios based on symptoms, and a number of 'alarms' are generated to signal the state of the reactor and containment. This paper will address the features and limitations of ADAM with particular focus on accident simulation and management. (authors)

  15. Nuclear accidents

    International Nuclear Information System (INIS)

    1987-01-01

    On 27 May 1986 the Norwegian government appointed an inter-ministerial committee of senior officials to prepare a report on experiences in connection with the Chernobyl accident. The present second part of the committee's report describes proposals for measures to prevent and deal with similar accidents in the future. The committee's evaluations and proposals are grouped into four main sections: Safety and risk at nuclear power plants; the Norwegian contingency organization for dealing with nuclear accidents; compensation issues; and international cooperation

  16. Classification Of Road Accidents From The Perspective Of Vehicle Safety Systems

    Directory of Open Access Journals (Sweden)

    Jirovský Václav

    2015-11-01

    Full Text Available Modern road accident investigation and database structures are focused on accident analysis and classification from the point of view of the accident itself. The presented article offers a new approach, which will describe the accident from the point of view of integrated safety vehicle systems. Seven main categories have been defined to specify the level of importance of automated system intervention. One of the proposed categories is a new approach to defining the collision probability of an ego-vehicle with another object. This approach focuses on determining a 2-D reaction space, which describes all possible positions of the vehicle or other moving object in the specified amount of time in the future. This is to be used for defining the probability of the vehicles interacting - when the intersection of two reaction spaces exists, an action has to be taken on the side of ego-vehicle. The currently used 1-D quantity of TTC (time-to-collision can be superseded by the new reaction space variable. Such new quantity, whose basic idea is described in the article, enables the option of counting not only with necessary braking time, but mitigation by changing direction is then easily feasible. Finally, transparent classification measures of a probable accident are proposed. Their application is highly effective not only during basic accident comparison, but also for an on-board safety system.

  17. Accident Management System Based on Vehicular Network for an Intelligent Transportation System in Urban Environments

    Directory of Open Access Journals (Sweden)

    Yusor Rafid Bahar Al-Mayouf

    2018-01-01

    Full Text Available As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficient route planning algorithm to attain a globally optimal vehicle control is still a challenge that needs to be solved, especially when the unique preferences of drivers are considered. The aim of this paper is to establish an accident management system that makes use of vehicular ad hoc networks coupled with systems that employ cellular technology in public transport. This system ensures the possibility of real-time communication among vehicles, ambulances, hospitals, roadside units, and central servers. In addition, the accident management system is able to lessen the amount of time required to alert an ambulance that it is required at an accident scene by using a multihop optimal forwarding algorithm. Moreover, an optimal route planning algorithm (ORPA is proposed in this system to improve the aggregate spatial use of a road network, at the same time bringing down the travel cost of operating a vehicle. This can reduce the incidence of vehicles being stuck on congested roads. Simulations are performed to evaluate ORPA, and the results are compared with existing algorithms. The evaluation results provided evidence that ORPA outperformed others in terms of average ambulance speed and travelling time. Finally, our

  18. [HIV-1 infection after occupational accidents in the State of Amazonas: first reported case].

    Science.gov (United States)

    Lucena, Noaldo Oliveira de; Pereira, Flávio Ribeiro; Barros, Flávio Silveira de; Silva, Nélson Barbosa da; Alexandre, Márcia Almeida de Araújo; Castilho, Márcia da Costa; Alecrim, Maria das Graças Costa

    2011-10-01

    The medical care of occupational accidents in Tropical Medicine Foundation Dr. Heitor Dourado (FMT-HVD), involving blood and body fluids, started routinely in 1999. The objective of this report is to emphasize the importance of the measures used for the control of accidents with biological material. This study is carried out after a detailed epidemiological investigation confirmed one case of human immunodeficiency virus (HIV) seroconversion after an occupational accident involving bodily fluids and sharp instruments.

  19. Analysis of accidents and troubles of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kobayashi, Kunio

    1980-01-01

    In Japan, electric power companies are obliged to report the accidents and troubles occurred in nuclear power stations to the MITI according to the relevant laws, and 166 cases in total have been reported as of the end of March, 1980. These accidents and troubles are all trivial, and do not cause problems from the viewpoint of the safety nuclear power stations. Regarding respective accidents and troubles, the causes have been sought thoroughly, and the sufficient countermeasures have been taken on all occasions. But in order to improve the reliability of nuclear power stations further, it is important to treat the accidents and troubles occurred so far statistically and grasp the general trend. Thereupon, 152 accidents and troubles occurred till September, 1979, were analyzed quantitatively, and the results are reported in this paper. From the results, the prospect hereafter is discussed. The number of the reported cases of accidents and troubles in each nuclear power plant in operation every year is tabulated. The accidents and troubles were relatively frequent in the initial two or three years of operation of respective new reactor types, but decreased thereafter. The systems to which troubled equipments belong and the troubled equipments are shown. Most troubles have occurred in reactor cooling systems and valves. The situations and causes of troubles, the operational conditions at the time of the accidents and troubles and the effects and others are reported. (Kako, I.)

  20. Development of Traffic Accidents Control System

    Directory of Open Access Journals (Sweden)

    Andrey Borisovich Nikolaev

    2015-05-01

    Full Text Available Proposed a structure of traffic accidents control system included three main parts: pre-processing, decision support and monitoring. For decision support systems we propose a method that allows to make decisions on the basis of fuzzy situational management. The advantage of the method: it allows to formalize a set of typical traffic situations, using the theory of fuzzy sets and to carry out selection of the desired management action.

  1. Report on recent over-exposure accidents with a medical linac in Japan

    International Nuclear Information System (INIS)

    Kudoh, Hisaaki

    2003-01-01

    On December 21, 2001, at a hospital in Tokyo, an engineer setting a medical-linac was over-exposed by the equipment due to lack of communication between workers. The exposed dose was initially reported as 1000 mSv (1 Sv), but later revised to 200 mSv at most. The outline of the accident and the statistical data on radiation exposure accidents in Japan and the world are briefly overlooked. (author)

  2. Do failures in non-technical skills contribute to fatal medical accidents in Japan? A review of the 2010–2013 national accident reports

    Science.gov (United States)

    Uramatsu, Masashi; Fujisawa, Yoshikazu; Mizuno, Shinya; Souma, Takahiro; Komatsubara, Akinori; Miki, Tamotsu

    2017-01-01

    Objectives We sought to clarify how large a proportion of fatal medical accidents can be considered to be caused by poor non-technical skills, and to support development of a policy to reduce number of such accidents by making recommendations about possible training requirements. Design Summaries of reports of fatal medical accidents, published by the Japan Medical Safety Research Organization, were reviewed individually. Three experienced clinicians and one patient safety expert conducted the reviews to determine the cause of death. Views of the patient safety expert were given additional weight in the overall determination. Setting A total of 73 summary reports of fatal medical accidents were reviewed. These reports had been submitted by healthcare organisations across Japan to the Japan Medical Safety Research Organization between April 2010 and March 2013. Primary and secondary outcome measures The cause of death in fatal medical accidents, categorised into technical skills, non-technical skills and inevitable progress of disease were evaluated. Non-technical skills were further subdivided into situation awareness, decision making, communication, team working, leadership, managing stress and coping with fatigue. Results Overall, the cause of death was identified as non-technical skills in 34 cases (46.6%), disease progression in 33 cases (45.2%) and technical skills in two cases (5.5%). In two cases, no consensual determination could be achieved. Further categorisation of cases of non-technical skills were identified as 14 cases (41.2%) of problems with situation awareness, eight (23.5%) with team working and three (8.8%) with decision making. These three subcategories, or combinations of them, were identified as the cause of death in 33 cases (97.1%). Conclusions Poor non-technical skills were considered to be a significant cause of adverse events in nearly half of the fatal medical accidents examined. Improving non-technical skills may be effective for

  3. Reports of the Chernobyl accident consequences in Brazilian newspapers

    International Nuclear Information System (INIS)

    Vicente, Roberto; Oliveira, Rosana Lagua de

    2009-01-01

    The public perception of the risks associated with nuclear power plants was profoundly influenced by the accidents at Three Mile Island and Chernobyl Power Plants which also served to exacerbate in the last decades the growing mistrust on the 'nuclear industry'. Part of the mistrust had its origin in the arrogance of nuclear spokesmen and in the secretiveness of nuclear programs. However, press agencies have an important role in shaping and upsizing the public awareness against nuclear energy. In this paper we present the results of a survey in reports of some Brazilian popular newspapers on Chernobyl consequences, as measured by the total death toll of the accident, to show the up and down dance of large numbers without any serious judgment. (author)

  4. [Accidents and injuries at work].

    Science.gov (United States)

    Standke, W

    2014-06-01

    In the case of an accident at work, the person concerned is insured by law according to the guidelines of the Sozialgesetzbuch VII as far as the injuries have been caused by this accident. The most important source of information on the incident in question is the accident report that has to be sent to the responsible institution for statutory accident insurance and prevention by the employer, if the accident of the injured person is fatal or leads to an incapacity to work for more than 3 days (= reportable accident). Data concerning accidents like these are sent to the Deutsche Gesetzliche Unfallversicherung (DGUV) as part of a random sample survey by the institutions for statutory accident insurance and prevention and are analyzed statistically. Thus the key issues of accidents can be established and used for effective prevention. Although the success of effective accident prevention is undisputed, there were still 919,025 occupational accidents in 2011, with clear gender-related differences. Most occupational accidents involve the upper and lower extremities. Accidents are analyzed comprehensively and the results are published and made available to all interested parties in an effort to improve public awareness of possible accidents. Apart from reportable accidents, data on the new occupational accident pensions are also gathered and analyzed statistically. Thus, additional information is gained on accidents with extremely serious consequences and partly permanent injuries for the accident victims.

  5. Development of supporting system for emergency response to maritime transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    Odano, N.; Matsuoka, T.; Suzuki, H.

    2004-01-01

    National Maritime Research Institute has developed a supporting system for emergency response of competent authority to maritime transport accidents involving radioactive material. The supporting system for emergency response has functions of radiation shielding calculation, marine diffusion simulation, air diffusion simulation and radiological impact evaluation to grasp potential hazard of radiation. Loss of shielding performance accident and loss of sealing ability accident were postulated and impact of the accidents was evaluated based on the postulated accident scenario. Procedures for responding to emergency were examined by the present simulation results

  6. Accident management insights after the Fukushima Daiichi NPP accident

    International Nuclear Information System (INIS)

    Degueldre, Didier; Viktorov, Alexandre; Tuomainen, Minna; Ducamp, Francois; Chevalier, Sophie; Guigueno, Yves; Tasset, Daniel; Heinrich, Marcus; Schneider, Matthias; Funahashi, Toshihiro; Hotta, Akitoshi; Kajimoto, Mitsuhiro; Chung, Dae-Wook; Kuriene, Laima; Kozlova, Nadezhda; Zivko, Tomi; Aleza, Santiago; Jones, John; McHale, Jack; Nieh, Ho; Pascal, Ghislain; ); Nakoski, John; Neretin, Victor; Nezuka, Takayoshi; )

    2014-01-01

    The Fukushima Daiichi nuclear power plant (NPP) accident, that took place on 11 March 2011, initiated a significant number of activities at the national and international levels to reassess the safety of existing NPPs, evaluate the sufficiency of technical means and administrative measures available for emergency response, and develop recommendations for increasing the robustness of NPPs to withstand extreme external events and beyond design basis accidents. The OECD Nuclear Energy Agency (NEA) is working closely with its member and partner countries to examine the causes of the accident and to identify lessons learnt with a view to the appropriate follow-up actions to be taken by the nuclear safety community. Accident management is a priority area of work for the NEA to address lessons being learnt from the accident at the Fukushima Daiichi NPP following the recommendations of Committee on Nuclear Regulatory Activities (CNRA), Committee on the Safety of Nuclear Installations (CSNI), and Committee on Radiation Protection and Public Health (CRPPH). Considering the importance of these issues, the CNRA authorised the formation of a task group on accident management (TGAM) in June 2012 to review the regulatory framework for accident management following the Fukushima Daiichi NPP accident. The task group was requested to assess the NEA member countries needs and challenges in light of the accident from a regulatory point of view. The general objectives of the TGAM review were to consider: - enhancements of on-site accident management procedures and guidelines based on lessons learnt from the Fukushima Daiichi NPP accident; - decision-making and guiding principles in emergency situations; - guidance for instrumentation, equipment and supplies for addressing long-term aspects of accident management; - guidance and implementation when taking extreme measures for accident management. The report is built on the existing bases for capabilities to respond to design basis

  7. Professional experience and traffic accidents/near-miss accidents among truck drivers.

    Science.gov (United States)

    Girotto, Edmarlon; Andrade, Selma Maffei de; González, Alberto Durán; Mesas, Arthur Eumann

    2016-10-01

    To investigate the relationship between the time working as a truck driver and the report of involvement in traffic accidents or near-miss accidents. A cross-sectional study was performed with truck drivers transporting products from the Brazilian grain harvest to the Port of Paranaguá, Paraná, Brazil. The drivers were interviewed regarding sociodemographic characteristics, working conditions, behavior in traffic and involvement in accidents or near-miss accidents in the previous 12 months. Subsequently, the participants answered a self-applied questionnaire on substance use. The time of professional experience as drivers was categorized in tertiles. Statistical analyses were performed through the construction of models adjusted by multinomial regression to assess the relationship between the length of experience as a truck driver and the involvement in accidents or near-miss accidents. This study included 665 male drivers with an average age of 42.2 (±11.1) years. Among them, 7.2% and 41.7% of the drivers reported involvement in accidents and near-miss accidents, respectively. In fully adjusted analysis, the 3rd tertile of professional experience (>22years) was shown to be inversely associated with involvement in accidents (odds ratio [OR] 0.29; 95% confidence interval [CI] 0.16-0.52) and near-miss accidents (OR 0.17; 95% CI 0.05-0.53). The 2nd tertile of professional experience (11-22 years) was inversely associated with involvement in accidents (OR 0.63; 95% CI 0.40-0.98). An evident relationship was observed between longer professional experience and a reduction in reporting involvement in accidents and near-miss accidents, regardless of age, substance use, working conditions and behavior in traffic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Accident management

    International Nuclear Information System (INIS)

    Lutz, R.J.; Monty, B.S.; Liparulo, N.J.; Desaedeleer, G.

    1989-01-01

    The foundation of the framework for a Severe Accident Management Program is the contained in the Probabilistic Safety Study (PSS) or the Individual Plant Evaluations (IPE) for a specific plant. The development of a Severe Accident Management Program at a plant is based on the use of the information, in conjunction with other applicable information. A Severe Accident Management Program must address both accident prevention and accident mitigation. The overall Severe Accident Management framework must address these two facets, as a living program in terms of gathering the evaluating information, the readiness to respond to an event. Significant international experience in the development of severe accident management programs exist which should provide some direction for the development of Severe Accident Management in the U.S. This paper reports that the two most important elements of a Severe Accident Management Program are the Emergency Consultation process and the standards for measuring the effectiveness of individual Severe Accident Management Programs at utilities

  9. Analysis of Fukushima unit 2 accident considering the operating conditions of RCIC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Il, E-mail: sikim@kaeri.re.kr; Park, Jong Hwa; Ha, Kwang Soon; Cho, Song-Won; Song, JinHo

    2016-03-15

    Highlights: • Fukushima unit 2 accident was analyzed using MELCOR 1.8.6. • RCIC operating conditions were assumed and best case was selected. • Effect of RCIC operating condition on accident scenario was found. - Abstract: A severe accident in Fukushima occurred on March 11, 2011 and units 1, 2 and 3 were damaged severely. A tsunami following an earthquake made the supply of electricity power stop, and the safety systems, which use AC or DC power in plants could not operate properly. It is supposed that the degree of core degradation of unit 2 is less serious than in the other plants, and it was estimated that the operation of reactor core isolation cooling (RCIC) system at the initial stage of the accident minimized the core damage through decay heat removal. Although the operating conditions of the RCIC system are not known clearly, it can be important to analyze the accident scenario of unit 2. In this study, best case of the Fukushima unit 2 accident was presented considering the operating conditions of the RCIC system. The effects of operating condition on core degradation and fission product release rate to environment were also examined. In addition, importance of torus room flooding level in the accident analysis was discussed. MELCOR 1.8.6 was used in this research, and the geometries of plant and operating conditions of safety system were obtained from TEPCO through OECD/NEA BSAF Project.

  10. A systemic analysis of South Korea Sewol ferry accident - Striking a balance between learning and accountability.

    Science.gov (United States)

    Kee, Dohyung; Jun, Gyuchan Thomas; Waterson, Patrick; Haslam, Roger

    2017-03-01

    The South Korea Sewol ferry accident in April 2014 claimed the lives of over 300 passengers and led to criminal charges of 399 personnel concerned including imprisonment of 154 of them as of Oct 2014. Blame and punishment culture can be prevalent in a more hierarchical society like South Korea as shown in the aftermath of this disaster. This study aims to analyse the South Korea ferry accident using Rasmussen's risk management framework and the associated AcciMap technique and to propose recommendations drawn from an AcciMap-based focus group with systems safety experts. The data for the accident analysis were collected mainly from an interim investigation report by the Board of Audit and Inspection of Korea and major South Korean and foreign newspapers. The analysis showed that the accident was attributed to many contributing factors arising from front-line operators, management, regulators and government. It also showed how the multiple factors including economic, social and political pressures and individual workload contributed to the accident and how they affected each other. This AcciMap was presented to 27 safety researchers and experts at 'the legacy of Jens Rasmussen' symposium adjunct to ODAM2014. Their recommendations were captured through a focus group. The four main recommendations include forgive (no blame and punishment on individuals), analyse (socio-technical system-based), learn (from why things do not go wrong) and change (bottom-up safety culture and safety system management). The findings offer important insights into how this type of accident should be understood, analysed and the subsequent response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Accident management strategy in Sweden - implementation and verification

    International Nuclear Information System (INIS)

    Loewenhielm, Gustaf; Engqvist, Alf; Espefaelt, Ralf

    1994-01-01

    A comprehensive program for severe accident mitigation was completed in Sweden by the end of 1988. As described in this paper, this program included plant modifications such as the introduction of filtered containment venting, and an accident management system comprising emergency operating strategies and procedures, training and emergency drills. The accident management system at Vattenfall has been further developed since 1988 and some results and experience from this development are reported in this paper. The main aspects covered concern the emergency organization and the supporting tools developed for use by the emergency response teams, the radiological implications such as accessibility to various locations and the long-term aspects of accident management. ((orig.))

  12. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    Science.gov (United States)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the

  13. Central nervous system affecting drugs and road traffic accidents ...

    African Journals Online (AJOL)

    Central nervous system affecting drugs and road traffic accidents among commercial motorcyclists. ... including driving under the influence of drugs that affect the central nervous system (CNS). ... Keywords: Brain, influence, riders, substances ...

  14. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - summary report

    International Nuclear Information System (INIS)

    Gerton, R.E.

    1997-01-01

    This report is a summary of the Accident Investigation Board Report on the May 14, 1997, Chemical Explosion at the Plutonium Reclamation Facility, Hanford Site, Richland, Washington (DOE/RL-97-59). The referenced report provides a greater level of detail and includes a complete discussion of the facts identified, analysis of those facts, conclusions derived from the analysis, identification of the accident's causal factors, and recommendations that should be addressed through follow-up action by the U.S. Department of Energy and its contractors. This companion document provides a concise summary of that report, with emphasis on management issues. Evaluation of emergency and occupational health response to, and radiological and chemical releases from, this accident was not within the scope of this investigation, but is the subject of a separate investigation and report (see DOE/RL-97-62)

  15. Underreporting of maritime accidents to vessel accident databases.

    Science.gov (United States)

    Hassel, Martin; Asbjørnslett, Bjørn Egil; Hole, Lars Petter

    2011-11-01

    Underreporting of maritime accidents is a problem not only for authorities trying to improve maritime safety through legislation, but also to risk management companies and other entities using maritime casualty statistics in risk and accident analysis. This study collected and compared casualty data from 01.01.2005 to 31.12.2009, from IHS Fairplay and the maritime authorities from a set of nations. The data was compared to find common records, and estimation of the true number of occurred accidents was performed using conditional probability given positive dependency between data sources, several variations of the capture-recapture method, calculation of best case scenario assuming perfect reporting, and scaling up a subset of casualty information from a marine insurance statistics database. The estimated upper limit reporting performance for the selected flag states ranged from 14% to 74%, while the corresponding estimated coverage of IHS Fairplay ranges from 4% to 62%. On average the study results document that the number of unreported accidents makes up roughly 50% of all occurred accidents. Even in a best case scenario, only a few flag states come close to perfect reporting (94%). The considerable scope of underreporting uncovered in the study, indicates that users of statistical vessel accident data should assume a certain degree of underreporting, and adjust their analyses accordingly. Whether to use correction factors, a safety margin, or rely on expert judgment, should be decided on a case by case basis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. 46 CFR 167.65-70 - Reports of accidents, repairs, and unsafe boilers and machinery by engineers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Reports of accidents, repairs, and unsafe boilers and... of accidents, repairs, and unsafe boilers and machinery by engineers. (a) Before making repairs to a boiler of a nautical school ship the engineer in charge shall report, in writing, the nature of such...

  17. HANARO thermal hydraulic accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  18. Reliability analysis of emergency decay heat removal system of nuclear ship under various accident conditions

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    1984-01-01

    A reliability analysis is given for the emergency decay heat removal system of the Nuclear Ship ''Mutsu'' and the emergency sea water cooling system of the Nuclear Ship ''Savannah'', under ten typical nuclear ship accident conditions. Basic event probabilities under these accident conditions are estimated from literature survey. These systems of Mutsu and Savannah have almost the same reliability under the normal condition. The dispersive arrangement of a system is useful to prevent the reduction of the system reliability under the condition of an accident restricted in one room. As for the reliability of these two systems under various accident conditions, it is seen that the configuration and the environmental condition of a system are two main factors which determine the reliability of the system. Furthermore, it was found that, for the evaluation of the effectiveness of safety system of a nuclear ship, it is necessary to evaluate its reliability under various accident conditions. (author)

  19. Traffic accidents on expressways: new threat to China.

    Science.gov (United States)

    Zhao, Jinbao; Deng, Wei

    2012-01-01

    As China is building one of the largest expressway systems in the world, expressway safety problems have become serious concerns to China. This article analyzed the trends in expressway accidents in China from 1995 to 2010 and examined the characteristics of these accidents. Expressway accident data were obtained from the Annual Report for Road Traffic Accidents published by the Ministry of Public Security of China. Expressway mileage data were obtained from the National Statistics Yearbook published by the National Bureau of Statistics of China. Descriptive statistical analyses were conducted based on these data. Expressway deaths increased by 10.2-fold from 616 persons in 1995 to 6300 persons in 2010, and the average annual increase was 17.9 percent over the past 15 years, and the overall other road traffic deaths was -0.33 percent. China's expressway mileage accounted for only 1.85 percent of highway mileage driven in 2010, but expressway deaths made up 13.54 percent of highway traffic deaths. The average annual accident lethality rate [accident deaths/(accident deaths + accident injuries)] for China's expressways was 27.76 percent during the period 1995 to 2010, which was 1.33 times higher than the accident lethality rate of highway traffic accidents. China's government should pay attention to expressway construction and safety interventions during the rapid development period of expressways. Related causes, such as geographic patterns, speeding, weather conditions, and traffic flow composition, need to be studied in the near future. An effective and scientific expressway safety management services system, composed of a speed monitoring system, warning system, and emergency rescue system, should be established in developed and underdeveloped provinces in China to improve safety on expressway.

  20. Precursors to potential severe core damage accidents: 1992, a status report

    International Nuclear Information System (INIS)

    1993-12-01

    This document is part of a report which documents 1992 operational events selected as accident sequence precursors. This report describes the 27 precursors identified from the 1992 licensee event reports. It also describe containment-related events; open-quote interesting close-quote events; potentially significant events that were considered impractical to analyze; copies of the licensee event reports which were cited in the cases above; and comments from the licensee and NRC in response to the preliminary reports

  1. The Fukushima Daiichi nuclear accident final report of the AESJ investigation committee

    CERN Document Server

    Atomic Energy Society of Japan

    2015-01-01

    The Magnitude 9 Great East Japan Earthquake on March 11, 2011, followed by a massive tsunami struck  TEPCO’s Fukushima Daiichi Nuclear Power Station and triggered an unprecedented core melt/severe accident in Units 1 – 3. The radioactivity release led to the evacuation of local residents, many of whom still have not been able to return to their homes. As a group of nuclear experts, the Atomic Energy Society of Japan established the Investigation Committee on the Nuclear Accident at the Fukushima Daiichi Nuclear Power Station, to investigate and analyze the accident from scientific and technical perspectives for clarifying the underlying and fundamental causes, and to make recommendations. The results of the investigation by the AESJ Investigation Committee has been compiled herewith as the Final Report. Direct contributing factors of the catastrophic nuclear incident at Fukushima Daiichi NPP initiated by an unprecedented massive earthquake/ tsunami – inadequacies in tsunami measures, severe accident ma...

  2. US Department of Energy Chernobyl accident bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R A; Mahaffey, J A; Carr, F Jr

    1992-04-01

    This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit{trademark}) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report.

  3. US Department of Energy Chernobyl accident bibliography

    International Nuclear Information System (INIS)

    Kennedy, R.A.; Mahaffey, J.A.; Carr, F. Jr.

    1992-04-01

    This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit trademark) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report

  4. Building of communication system for nuclear accident emergency disposal based on IP multimedia subsystem

    Science.gov (United States)

    Wang, Kang; Gao, Guiqing; Qin, Yuanli; He, Xiangyong

    2018-05-01

    The nuclear accident emergency disposal must be supported by an efficient, real-time modularization and standardization communication system. Based on the analysis of communication system for nuclear accident emergency disposal which included many functions such as the internal and external communication, multiply access supporting and command center. Some difficult problems of the communication system were discussed such as variety access device type, complex composition, high mobility, set up quickly, multiply business support, and so on. Taking full advantages of the IP Multimedia Subsystem (IMS), a nuclear accident emergency communication system was build based on the IMS. It was studied and implemented that some key unit and module functions of communication system were included the system framework implementation, satellite access, short-wave access, load/vehicle-mounted communication units. The application tests showed that the system could provide effective communication support for the nuclear accident emergency disposal, which was of great practical value.

  5. Lessons learned from accidents in radiotherapy. An IAEA Safety Report

    International Nuclear Information System (INIS)

    Ortiz, P.

    1998-01-01

    Radiotherapy is a very special application from the view point of protection because humans are deliberately exposed to high doses of radiation, and no physical barrier can be placed between the source and the patient. It deserves, therefore, special considerations from the point of view of potential exposure. An IAEA's Safety Report (in preparation) reviews a large collection of accident information, their initiating events and contributing factors, followed by a set of lessons learned and measures for prevention. The most important causes were: deficiencies in education and training, lack of procedures and protocols for essential tasks (such as commissioning, calibration, commissioning and treatment delivery), deficient communication and information transfer, absence of defence in depth and deficiencies in design, manufacture, testing and maintenance of equipment. Often a combination of more than one of these causes was present in an accident, thus pointing to a problem of management. Arrangements for a comprehensive quality assurance and accident prevention should be required by regulations and compliance be monitored by a Regulatory Authority. (author)

  6. Report on a radiological accident in the southern Urals on 29 September 1957

    International Nuclear Information System (INIS)

    Nikipelov, B.V.; Romanov, G.N.; Buldakov, L.A.; Babaev, N.S.; Kholina, Yu.B.; Mikerin, E.I.

    1989-07-01

    In response to concern expressed by the international community about the possible consequences of a radiological accident which occurred at a military installation in the southern Urals in 1957, Soviet specialists have prepared this report containing information on this event. Owing to a fault in the cooling system used for the concrete tanks containing highly active nitrate acetate wastes, a chemical explosion occurred in these materials on 29 September 1957 and radioactive fission products were released into the atmosphere and subsequently scattered and deposited in parts of the Chelyabinsk, Svendlovsk and Tyumensk provinces. 9 tabs

  7. Full scale simulations of accidents on spent-nuclear-fuel shipping systems

    International Nuclear Information System (INIS)

    Yoshimura, H.R.

    1978-01-01

    In 1977 and 1978, five first-of-a-kind full scale tests of spent-nuclear-fuel shipping systems were conducted at Sandia Laboratories. The objectives of this broad test program were (1) to assess and demonstrate the validity of current analytical and scale modeling techniques for predicting damage in accident conditions by comparing predicted results with actual test results, and (2) to gain quantitative knowledge of extreme accident environments by assessing the response of full scale hardware under actual test conditions. The tests were not intended to validate the present regulatory standards. The spent fuel cask tests fell into the following configurations: crashes of a truck-transport system into a massive concrete barrier (100 and 130 km/h); a grade crossing impact test (130 km/h) involving a locomotive and a stalled tractor-trailer; and a railcar shipping system impact into a massive concrete barrier (130 km/h) followed by fire. In addition to collecting much data on the response of cask transport systems, the program has demonstrated thus far that current analytical and scale modeling techniques are valid approaches for predicting vehicular and cask damage in accident environments. The tests have also shown that the spent casks tested are extremely rugged devices capable of retaining their radioactive contents in very severe accidents

  8. APT Blanket System Loss-of-Flow Accident (LOFA) Analysis Based on Initial Conceptual Design - Case 1: with Beam Shutdown and Active RHR

    International Nuclear Information System (INIS)

    Hamm, L.L.

    1998-01-01

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report

  9. An application of probabilistic safety assessment methods to model aircraft systems and accidents

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1998-08-01

    A case study modeling the thrust reverser system (TRS) in the context of the fatal accident of a Boeing 767 is presented to illustrate the application of Probabilistic Safety Assessment methods. A simplified risk model consisting of an event tree with supporting fault trees was developed to represent the progression of the accident, taking into account the interaction between the TRS and the operating crew during the accident, and the findings of the accident investigation. A feasible sequence of events leading to the fatal accident was identified. Several insights about the TRS and the accident were obtained by applying PSA methods. Changes proposed for the TRS also are discussed.

  10. Development of Integrated Evaluation System for Severe Accident Management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y

    2007-06-15

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs.

  11. Development of Integrated Evaluation System for Severe Accident Management

    International Nuclear Information System (INIS)

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y.

    2007-06-01

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs

  12. The impact of the Chernobyl accident on Norway

    International Nuclear Information System (INIS)

    Christensen, G.C.

    1988-01-01

    As the fallout from the atmospheric nuclear weapons tests gradually decreased during the 1970s, the national preparedness and analytical capacity in Norway gradually disintegrated as well. The Chernobyl accident was therefore met without any overall contingency preparedness plan. The affected governmental bodies and other institutions had to improvise their first steps, including information to the public, until necessary coordination had been established. A complicating factor was the change of government during the first days of May 1986, the reasons for this had however nothing to do with the reactor accident. A great deal of uncertainty prevailed about the accident and its consequences especially during the first days after the accident. The Ministry of Health and Social Affairs and the Ministry of the Environment in May 1986 both appointed committees to report on the accident and its impacts and on a future preparedness system, although their terms of reference were not identical. A third committee was appointed in June by the Ministry of Health and Social Affairs to report on the information crises in connection with the accident

  13. Comparative Assessment of Severe Accidents in the Chinese Energy Sector

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, S; Burgherr, P; Spiekerman, G; Cazzoli, E; Vitazek, J; Cheng, L

    2003-03-01

    This report deals with the comparative assessment of accidents risks characteristic for the various electricity supply options. A reasonably complete picture of the wide spectrum of health, environmental and economic effects associated with various energy systems can only be obtained by considering damages due to normal operation as well as due to accidents. The focus of the present work is on severe accidents, as these are considered controversial. By severe accidents we understand potential or actual accidents that represent a significant risk to people, property and the environment and may lead to large consequences. (author)

  14. 76 FR 55079 - Recreational Vessel Accident Reporting

    Science.gov (United States)

    2011-09-06

    ... operators to make decisions aimed at improving boating safety. This information, described in title 33 Code... Coast Guard long after an accident occurs. Incomplete, inaccurate, or late accident information makes... the recreational vessel owner or operator? If so, how many man-hours are required to collect this...

  15. Accident Journalism and Traffic Safety Education: A Three-Phase Investigation of Accident Reporting in the Canadian Daily Press.

    Science.gov (United States)

    Wilde, Gerald J. S.; Ackersviller, Melody J.

    A study examined the potential for development of a traffic accident-reporting form in the Canadian daily press that strengthens concern for road safety in the general population and enhances knowledge, attitudes, and behavior leading to greater safety. The investigation was conducted on three levels: a content analysis, a readership analysis, and…

  16. Regulatory analyses for severe accident issues: an example

    International Nuclear Information System (INIS)

    Burke, R.P.; Strip, D.R.; Aldrich, D.C.

    1984-09-01

    This report presents the results of an effort to develop a regulatory analysis methodology and presentation format to provide information for regulatory decision-making related to severe accident issues. Insights and conclusions gained from an example analysis are presented. The example analysis draws upon information generated in several previous and current NRC research programs (the Severe Accident Risk Reduction Program (SARRP), Accident Sequence Evaluation Program (ASEP), Value-Impact Handbook, Economic Risk Analyses, and studies of Vented Containment Systems and Alternative Decay Heat Removal Systems) to perform preliminary value-impact analyses on the installation of either a vented containment system or an alternative decay heat removal system at the Peach Bottom No. 2 plant. The results presented in this report are first-cut estimates, and are presented only for illustrative purposes in the context of this document. This study should serve to focus discussion on issues relating to the type of information, the appropriate level of detail, and the presentation format which would make a regulatory analysis most useful in the decisionmaking process

  17. Synthesis of the IRSN report on the issue of severe accidents which may occur on operating pressurised water nuclear reactors

    International Nuclear Information System (INIS)

    2008-01-01

    While containing other related documents (expert report, mail), this synthetic report analyses and comments some aspects of the assessment and treatment of severe accidents by EDF in its operating PWRs (pressurised water nuclear reactors). These aspects are: the EDF referential related to severe accidents (objectives of consequence limitation and prevention, long term management, probabilistic objectives, radiological objectives, expected performance of equipment and systems), the re-assessment of the 'S3 reference source term' which corresponds to a typical discharge (selection of representative scenarios, new approach based on waste categorization, the taking into account of various species, components and systems), the water management in the reactor tank (risks of explosion, of critical corium level, etc.), the strategy of an anticipated opening of the containment envelope venting-filtration device in order to avoid a core fusion, and the risk associated by a cesspool filling-in by debris

  18. Priorities for Addressing Severe Accident and L3PSA in Radiation Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M. S.; Kang, H. S.; Kim, S. R. [NESS, Daejeon (Korea, Republic of); Yang, Y. H.; Yoon, Y. I. [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    Domestic rules for the radiation environment impact assessment were enacted based on NUREG-0555, the guidance to the nuclear regulatory commission staff in implementing provisions of 10 CFR 51, 'environmental protection regulations for domestic licensing and related regulatory functions', related to NPPs. A revised document of NUREG-0555 was published in 2000 as NUREG-1555, Vol. 1 and 2. The related domestic rules would have made some revisions in accordance with NUREG-1555 in 2016. In this paper, we would introduce the new technical standards and review legal and technical issues on legislation. There are three legal and technical issues on revised legislation that includes severe accidents and L3PSA results in RER. First, it may need a regular and continuing education for the severe accident concept, probabilistic assessment method and conservative assumptions for severe accident, how to interpret the assessment results, the probability of a severe accident, SAMA and etc. to obtain the public understanding for severe accident. Second, it needs the development of strategy and technology not only to evaluate the risk of multi-unit accidents and failure case and the impacts of inter-unit shared systems and common events for the probabilistic assessment of severe accidents but also to solve many potential L3PSA challenges. Finally, the cost-beneficial SAMAs analysis would be added in radiation environmental impact and severe accident impact analysis.

  19. Implications of the accident at Chernobyl for safety regulation of commercial nuclear power plants in the United States: Volume 1, Main report: Final report

    International Nuclear Information System (INIS)

    1989-04-01

    This report was prepared by the Nuclear Regulatory Commission (NRC) staff to assess the implications of the accident at the Chernobyl nuclear power plant as they relate to reactor safety regulation for commercial nuclear power plants in the United States. The facts used in this assessment have been drawn from the US fact-finding report (NUREG-1250) and its sources. The general conclusions of the document are that there are generic lessons to be learned but that no changes in regulations are needed due to the substantial differences in the design, safety features and operation of US plants as compared to those in the USSR. Given these general conclusions, further consideration of certain specific areas is recommended by the report. These include: administrative controls over reactor regulation, reactivity accidents, accidents at low or zero power, multi-unit protection, fires, containment, emergency planning, severe accident phenomena, and graphite-moderated reactors

  20. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    International Nuclear Information System (INIS)

    Putman, V.L.

    1995-09-01

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies

  1. DISTRIBUTION OF FATAL ACCIDENT TRANSPORT BETWEEN STATE WORKERS OF BAHIA AND BRAZIL

    OpenAIRE

    Jéssica de Jesus dos Santos; Kionna Oliveira Bernardes Santos

    2016-01-01

    Studies on the situation of mortality from traffic accidents among workers are still insufficient. This study aimed to describe the mortality rates for traffic accidents / path between state workers of Bahia and Brazil. This is a quantitative, descriptive study of fatal work accidents related to traffic accidents / path with the Mortality Information System data in the period from 2009 to 2011. The results show 317 reported deaths from traffic accidents in Bahia and...

  2. Our reflections and lessons from the Fukushima Nuclear Accident

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Sawada, Takashi; Yagawa, Genki

    2017-01-01

    In order to investigate the cause of the accident that began on March 11, 2011 at the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station, the Science Council of Japan set an investigation committee, the 'Sub-Committee on Fukushima Nuclear Accident (SCFNA)' under the Comprehensive Synthetic Engineering Committee. The committee has published a record entitled 'Reflections and Lessons from the Fukushima Nuclear Accident, (1st report)'. There are still many items about the accident for which the details are not clear. It is important to discuss the reasons why the severe accident could not be prevented and the possibilities that there might have been other proper operations and accident management to prevent or lessen the severity of the accident than those adopted at the time. SCFNA decided to continue its investigation by setting up our working group called the 'Working Group on Fukushima Nuclear Accident'. Our working group have published 'Reflection and Lessons from the Fukushima Nuclear Accident (2nd Report)'. We investigated the issues of specific units. Unit 1 were validity of the operation of the isolation condenser, whether or not a loss of coolant accident occurred due to a failure of the cooling piping system by the seismic ground motion, and the cause of the loss of the emergency AC power supply, Unit 2 was the reason why a large amount of radioactive materials was emitted to the environment although the reactor building did not explode, Unit 3 was the reasons why the operator stopped running the high pressure coolant injection system, and Units 1 to 3 was validity of the venting operation. These items were considered to be the key issues in these units that would have prevented progression to the severe accident. (author)

  3. NPP post-accident monitoring system based on unmanned aircraft vehicle:concept, design principles

    International Nuclear Information System (INIS)

    Sachenko, A.A.; Kochan, V.V.; Kharchenko, V.S.; Yanovskij, M.Eh.; Yastrebenetskij, M.A.; Fesenko, G.V.

    2016-01-01

    The paper presents a concept of designing the post-accident system for monitoring the equipment and territory of nuclear power plant after a severe accident based on unmanned aircraft vehicle (UAVs). Wired power and communications networks are found out as the most vulnerable ones during the accident monitoring, and informativity, reliability and veracity are recognized as system basic parameters. It is proposed to equip measurement and control modules with backup wireless communication channels and deploy the repeaters network based on UAVs to ensure the informativity. Modules possess the backup power battery, and repeaters appear in the appropriate places after the accident to provide the survivability. Moreover, an optimization of UAVs' location is proposed according to the minimum energy consumption criterion. To ensure the veracity, it is expected to design the noise-immune protocol for message exchange and archiving and self-diagnostics of all system components

  4. Jerky driving--An indicator of accident proneness?

    Science.gov (United States)

    Bagdadi, Omar; Várhelyi, András

    2011-07-01

    This study uses continuously logged driving data from 166 private cars to derive the level of jerks caused by the drivers during everyday driving. The number of critical jerks found in the data is analysed and compared with the self-reported accident involvement of the drivers. The results show that the expected number of accidents for a driver increases with the number of critical jerks caused by the driver. Jerk analyses make it possible to identify safety critical driving behaviour or "accident prone" drivers. They also facilitate the development of safety measures such as active safety systems or advanced driver assistance systems, ADAS, which could be adapted for specific groups of drivers or specific risky driving behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Crisis, criticism, change: Regulatory reform in the wake of nuclear accidents

    International Nuclear Information System (INIS)

    Sexton, Kimberly A.; )

    2015-01-01

    Accidents are a forcing function for change in the nuclear industry. While these events can shed light on needed technical safety reforms, they can also shine a light on needed regulatory system reforms. The TEPCO Fukushima Daiichi nuclear power plant (NPP) accident in Japan is the most recent example of this phenomenon, but it is not the only one. In the wake of the three major accidents that have occurred in the nuclear power industry - Three Mile Island (TMI) in the United States; Chernobyl in Ukraine, in the former Soviet Union; and the Fukushima Daiichi NPP accident in Japan - a commission or committee of experts issued a report (or reports) with harsh criticism of the countries' regulatory system. And each of these accidents prompted changes in the respective regulatory systems. In looking at these responses, however, one must ask if this crisis, criticism, change approach is working and whether regulatory bodies around the world should instead undertake their own systematic reviews, un-prompted by crisis, to better ensure safety. This article will attempt to analyse the issue of regulatory reform in the wake of nuclear accidents by first providing a background in nuclear regulatory systems, looking to international and national legal frameworks. Next, the article will detail a cross-section of current regulatory systems around the world. Following that, the article will analyse the before and after of the regulatory systems in the United States, the Soviet Union and Japan in relation to the TMI, Chernobyl and Fukushima accidents. Finally, taking all this together, the article will address some of the international and national efforts to define exactly what makes a good regulator and provide conclusions on regulatory reform in the wake of nuclear accidents. (author)

  6. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.

  7. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2004-01-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures

  8. Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Wang, Yang; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Liu, Tong; Deng, Yongjun; Huang, Heng

    2015-01-01

    Highlights: • Analysis of severe accident scenarios for a PWR fueled with ATF system is performed. • A large-break LOCA without ECCS is analyzed for the PWR fueled with ATF system. • Extended SBO cases are discussed for the PWR fueled with ATF system. • The accident-tolerance of ATF system for application in PWR is illustrated. - Abstract: Experience gained in decades of nuclear safety research and previous nuclear accidents direct to the investigation of passive safety system design and accident-tolerant fuel (ATF) system which is now becoming a hot research point in the nuclear energy field. The ATF system is aimed at upgrading safety characteristics of the nuclear fuel and cladding in a reactor core where active cooling has been lost, and is preferable or comparable to the current UO 2 –Zr system when the reactor is in normal operation. By virtue of advanced materials with improved properties, the ATF system will obviously slow down the progression of accidents, allowing wider margin of time for the mitigation measures to work. Specifically, the simulation and analysis of a large break loss of coolant accident (LBLOCA) without ECCS and extended station blackout (SBO) severe accident are performed for a pressurized water reactor (PWR) loaded with ATF candidates, to reflect the accident-tolerance of ATF

  9. Some Examples of Accident Analyses for RB Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    The RB reactor is heavy water critical assembly operated in the Vinca Institute of Nuclear Sciences, Belgrade, Yugoslavia, since April 1959. The first Safety Analysis Report of the RB critical assembly was prepared in 1961/62. But, the first accidental analysis was done in late 1958 in aim the examine power transient and total equivalent doses received by the staff during the reactivity accident occurred on October 15, 1958. Since 1960, the RB reactor is modified few times. Beside initial natural uranium metal fuel rods, new fuel (TVR-S types) from 2% enriched metal uranium and 80% enriched UO 2 were available since 1962 and 1976, respectively. Also, modifications in control and safety systems of the reactor were done occasionally. Special reactor cores were created using all three types of fuel elements, among them, the coupled fast-thermal ones. Nuclear Safety Committee of the Vinca Institute, an independent regulatory body approved for usage all these modifications of the RB reactor. For those decisions of the Committee, the Preliminary Safety Analysis Reports were prepared that, beside proposed technical modifications and new regulation rules had included analyses of various possible accidents. Special attention is given and new methodology was proposed for thoroughly analyses of design based accidents related to coupled fast-thermal cores, that include reactor central zones filled by fuel elements without moderator. In these accidents, during assumed flooding of the fast zone by moderator, a very high reactivity could be inserted in the system with very high reactivity rate. It was necessary to provide that the safety system of the reactor had fast response to that accident and had enough high (negative) reactivity to shut down the reactor timely. In this paper, a brief overview of some accidents, methodology and computation tools used for the accident analyses at RB reactor are given. (author)

  10. Natural hazard impacts on transport systems: analyzing the data base of transport accidents in Russia

    Science.gov (United States)

    Petrova, Elena

    2015-04-01

    We consider a transport accident as any accident that occurs during transportation of people and goods. It comprises of accidents involving air, road, rail, water, and pipeline transport. With over 1.2 million people killed each year, road accidents are one of the world's leading causes of death; another 20-50 million people are injured each year on the world's roads while walking, cycling, or driving. Transport accidents of other types including air, rail, and water transport accidents are not as numerous as road crashes, but the relative risk of each accident is much higher because of the higher number of people killed and injured per accident. Pipeline ruptures cause large damages to the environment. That is why safety and security are of primary concern for any transport system. The transport system of the Russian Federation (RF) is one of the most extensive in the world. It includes 1,283,000 km of public roads, more than 600,000 km of airlines, more than 200,000 km of gas, oil, and product pipelines, 115,000 km of inland waterways, and 87,000 km of railways. The transport system, especially the transport infrastructure of the country is exposed to impacts of various natural hazards and weather extremes such as heavy rains, snowfalls, snowdrifts, floods, earthquakes, volcanic eruptions, landslides, snow avalanches, debris flows, rock falls, fog or icing roads, and other natural factors that additionally trigger many accidents. In June 2014, the Ministry of Transport of the RF has compiled a new version of the Transport Strategy of the RF up to 2030. Among of the key pillars of the Strategy are to increase the safety of the transport system and to reduce negative environmental impacts. Using the data base of technological accidents that was created by the author, the study investigates temporal variations and regional differences of the transport accidents' risk within the Russian federal regions and a contribution of natural factors to occurrences of different

  11. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  12. Safety against releases in severe accidents. Annual report 1996. Project plan 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The work scope of the RAK-2 project is divided into three sub-projects: RAK-2.1 Severe Accident Phenomenology; RAK-2.2 Computerised Accident Management; RAK-2.3 Reactors In Nordic Surroundings. The work in subproject 1 progresses roughly according to budget and time schedule. Some adjustments in the technical work scope were made during 1996. Main tasks of RAK-2.1 in 1996: Complete recriticality studies for Nordic BWRs; Investigate phenomena related to late phase melt progression; Issue and NKS Final Technical Report on KTH experiments. Main tasks of RAK-2.2 in 1996: CAMS would be further developed with signal validation, tracking simulation, state identification and PSA and risk monitoring applications; Carry out a feasibility study for development of a PWR version of CAMS in collaboration with EdF, France; Use CAMS in the Halden Man-Machine laboratory to perform human factor studies. Main tasks of RAK-2.3 in 1996: Collect and report data from the British reactor types AGR, MAGNOX and PWR; Make a report on accidents in nuclear ships; Put the collected data together in a common data base covering neighbour reactors treated in SIK-3 and RAK-2.3; Update the data in the former SIK-3 report if needed. The work in project 2 progresses according to plans. The data collection of British reactors with in sub-project 3 has been delayed significantly due to difficulty of obtaining information from some of the British utilities, but the problems are expected to be solved by the end of 1997. (EG)

  13. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  14. State-of-the-art report on accident analysis and risk analysis of reprocessing plants in European countries

    International Nuclear Information System (INIS)

    Nomura, Yasushi

    1985-12-01

    This report summarizes informations obtained from America, England, France and FRG concerning methodology, computer code, fundamental data and calculational model on accident/risk analyses of spent fuel reprocessing plants. As a result, the followings are revealed. (1) The system analysis codes developed for reactor plants can be used for reprocessing plants with some code modification. (2) Calculational models and programs have been developed for accidental phenomenological analyses in FRG, but with insufficient data to prove them. (3) The release tree analysis codes developed in FRG are available to estimate radioactivity release amount/probability via off-gas/exhaustair lines in the case of accidents. (4) The computer codes developed in America for reactor-plant environmental transport/safety analyses of released radioactivity can be applied to reprocessing facilities. (author)

  15. Water level measurement system in reactor pressure vessel of BWR and hydrogen concentration monitoring system for severe accident

    International Nuclear Information System (INIS)

    Kuroda, Hidehiko; Okazaki, Koki; Shiraishi, Fujio; Kenjyo, Hiroaki; Isoda, Koichiro

    2013-01-01

    TEPCO's Fukushima Daiichi Nuclear Power Station Accident caused severe accident to lose functions of many instrumentation systems. As a result, many important plant parameters couldn't be monitored. In order to monitor plant parameters in the case of severe accident, new instrumentation systems available in the severe conditions are being developed. Water level in reactor pressure vessel and hydrogen concentration in primary containment vessel are one of the most important parameters. Performance test results about water level measurement sensor and hydrogen sensor in severe environmental conditions are described. (author)

  16. Applying of Reliability Techniques and Expert Systems in Management of Radioactive Accidents

    International Nuclear Information System (INIS)

    Aldaihan, S.; Alhbaib, A.; Alrushudi, S.; Karazaitri, C.

    1998-01-01

    Accidents including radioactive exposure have variety of nature and size. This makes such accidents complex situations to be handled by radiation protection agencies or any responsible authority. The situations becomes worse with introducing advanced technology with high complexity that provide operator huge information about system working on. This paper discusses the application of reliability techniques in radioactive risk management. Event tree technique from nuclear field is described as well as two other techniques from nonnuclear fields, Hazard and Operability and Quality Function Deployment. The objective is to show the importance and the applicability of these techniques in radiation risk management. Finally, Expert Systems in the field of accidents management are explored and classified upon their applications

  17. Application of the accident management information needs methodology to a severe accident sequence

    International Nuclear Information System (INIS)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R.; Solberg, D.E.

    1989-01-01

    The U.S. Nuclear Regulatory Commission is conducting an accident management research program that emphasizes the use of severe accident research to enhance the ability of plant operating personnel to effectively manage severe accidents. Hence, it is necessary to ensure that the plant instrumentation and information systems adequately provide this information to the operating staff during accident conditions. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed. The methodology identifies (a) the information needs of the plant personnel during a wide range of accident conditions, (b) the existing plant measurements capable of supplying these information needs and minor additions to instrument and display systems that would enhance management capabilities, (c) measurement capabilities and limitations during severe accident conditions, and (d) areas in which the information systems could mislead plant personnel

  18. Application of the accident management information needs methodology to a severe accident sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R. (Idaho National Engineering Laboratory, Idaho Falls (USA)); Solberg, D.E. (Nuclear Regulatory Commission, Washington, DC (USA))

    1989-11-01

    The U.S. Nuclear Regulatory Commission is conducting an accident management research program that emphasizes the use of severe accident research to enhance the ability of plant operating personnel to effectively manage severe accidents. Hence, it is necessary to ensure that the plant instrumentation and information systems adequately provide this information to the operating staff during accident conditions. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed. The methodology identifies (a) the information needs of the plant personnel during a wide range of accident conditions, (b) the existing plant measurements capable of supplying these information needs and minor additions to instrument and display systems that would enhance management capabilities, (c) measurement capabilities and limitations during severe accident conditions, and (d) areas in which the information systems could mislead plant personnel.

  19. Methodology for time-dependent reliability analysis of accident sequences and complex reactor systems

    International Nuclear Information System (INIS)

    Paula, H.M.

    1984-01-01

    The work presented here is of direct use in probabilistic risk assessment (PRA) and is of value to utilities as well as the Nuclear Regulatory Commission (NRC). Specifically, this report presents a methodology and a computer program to calculate the expected number of occurrences for each accident sequence in an event tree. The methodology evaluates the time-dependent (instantaneous) and the average behavior of the accident sequence. The methodology accounts for standby safety system and component failures that occur (a) before they are demanded, (b) upon demand, and (c) during the mission (system operation). With respect to failures that occur during the mission, this methodology is unique in the sense that it models components that can be repaired during the mission. The expected number of system failures during the mission provides an upper bound for the probability of a system failure to run - the mission unreliability. The basic event modeling includes components that are continuously monitored, periodically tested, and those that are not tested or are otherwise nonrepairable. The computer program ASA allows practical applications of the method developed. This work represents a required extension of the presently available methodology and allows a more realistic PRA of nuclear power plants

  20. Analysis of accidents in nine Iranian gas refineries: 2007-2011.

    Science.gov (United States)

    Mehrdad, R; Bolouri, A; Shakibmanesh, A R

    2013-10-01

    Occupational accidents are one of the major health hazards in industries and associated with high mortality, morbidity, spiritual damage and economic losses in the world. To determine the incidence of occupational accidents in 9 Iranian gas refineries between March 2007 and February 2011. Data on all occupational accidents occurred between March 2007 and February 2011, as well as other possible associated variables including time of accident, whether the accident was due to a personal or systemic fault, type of accident and its outcomes, age and gender of the victim, the injured parts of the body, job experience, and type of employment, were extracted from HSE reports and notes of health care services. Based on these data, we calculated the incidence rate of accidents and assessed the associated factors. During the 5 studied years, 1129 accidents have been recorded. The incidence of fatal accidents was 1.64 per 100 000 and of nonfatal accidents was 1857 per 100 000 workers per year. 99.4% of injured workers were male. The mean±SD age of injured people was 29.6±7.3 years. Almost 70% of injured workers aged under 30 years. The mean±SD job experience was 5.3±5.3 years. Accidents occurred more commonly around 10:00. More than 60% of accidents happened between 8:00 and 15:00. July had the highest incidence rate. The most common type of accident was being struck by an object (48%). More than 94% of accidents are caused by personal rather than systemic faults. Hands and wrists were the most common injured parts and involved in more than one-third of accidents. 70% of injured workers needed medical treatment and returned to work after primary treatment. The pattern of occupational accidents in Iranian gas refineries is similar to other previous reports in many ways. The incidence did not change significantly over the study period. Establishment of an online network for precise registration, notification and meticulous data collection seems necessary.

  1. Road traffic accidents and self-reported Portuguese car driver's attitudes, behaviors, and opinions: Are they related?

    Science.gov (United States)

    Bon de Sousa, Teresa; Santos, Carolina; Mateus, Ceu; Areal, Alain; Trigoso, Jose; Nunes, Carla

    2016-10-02

    This study aims to characterize Portuguese car drivers in terms of demographic characteristics, driving experience, and attitudes, opinions, and behaviors concerning road traffic safety. Furthermore, associations between these characteristics and self-reported involvement in a road traffic accident as a driver in the last 3 years were analyzed. A final goal was to develop a final predictive model of the risk of suffering a road traffic accident. A cross-sectional analytic study was developed, based on a convenience sample of 612 car drivers. A questionnaire was applied by trained interviewers, embracing various topics related to road safety such as driving under the influence of alcohol or drugs, phone use while driving, speeding, use of advanced driver assistance systems, and the transport infrastructure and environment (European Project SARTRE 4, Portuguese version). From the 52 initial questions, 19 variables were selected through principal component analysis. Then, and in addition to the usual descriptive measures, logistic binary regression models were used in order to describe associations and to develop a predictive model of being involved in a road traffic accident. Of the 612 car drivers, 37.3% (228) reported being involved in a road traffic accident with damage or injury in the past 3 years. In this group, the majority were male, older than 65, with no children, not employed, and living in an urban area. In the multivariate model, several factors were identified: being widowed (vs. single; odds ratio [OR] = 3.478, 95% confidence interval [95% CI], 1.159-10.434); living in a suburban area (vs. a rural area; OR = 5.023, 95% CI, 2.260-11.166); having been checked for alcohol once in the last 3 years (vs. not checked; OR = 3.124, 95% CI, 2.040-4,783); and seldom drinking an energetic beverage such as coffee when tired (vs. always do; OR = 6.822, 95% CI, 2.619-17.769) all suffered a higher risk of being involved in a car accident. The results obtained with

  2. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  3. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    International Nuclear Information System (INIS)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav

    2017-01-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  4. Application of the SPEEDI system to the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Chino, Masamichi; Ishikawa, Hirohiko; Yamazawa, Hiromi; Moriuchi, Shigeru

    1986-10-01

    The SPEEDI system is a computational code system to predict the radiological dose due to the plume released in a nuclear accident in Japan. This paper describes the SPEEDI's application to the Chernobyl reactor accident for the estimation of the movement of plume and the release rate of radioactive nuclides into the environment. The predicted results on the movement of plume agreed well with the monitoring data in Europe. The estimated results on the release rate showed that half of the noble gas inventory, about 5 % of the iodine inventory and about 3 % of the cesium inventory are released into the environment within 24 hours. (author)

  5. Analysis of severe accidents in pressurized heavy water reactors

    International Nuclear Information System (INIS)

    2008-06-01

    Certain very low probability plant states that are beyond design basis accident conditions and which may arise owing to multiple failures of safety systems leading to significant core degradation may jeopardize the integrity of many or all the barriers to the release of radioactive material. Such event sequences are called severe accidents. It is required in the IAEA Safety Requirements publication on Safety of the Nuclear Power Plants: Design, that consideration be given to severe accident sequences, using a combination of engineering judgement and probabilistic methods, to determine those sequences for which reasonably practicable preventive or mitigatory measures can be identified. Acceptable measures need not involve the application of conservative engineering practices used in setting and evaluating design basis accidents, but rather should be based on realistic or best estimate assumptions, methods and analytical criteria. Recently, the IAEA developed a Safety Report on Approaches and Tools for Severe Accident Analysis. This publication provides a description of factors important to severe accident analysis, an overview of severe accident phenomena and the current status in their modelling, categorization of available computer codes, and differences in approaches for various applications of severe accident analysis. The report covers both the in- and ex-vessel phases of severe accidents. The publication is consistent with the IAEA Safety Report on Accident Analysis for Nuclear Power Plants and can be considered as a complementary report specifically devoted to the analysis of severe accidents. Although the report does not explicitly differentiate among various reactor types, it has been written essentially on the basis of available knowledge and databases developed for light water reactors. Therefore its application is mostly oriented towards PWRs and BWRs and, to a more limited extent, they can be only used as preliminary guidance for other types of reactors

  6. Analysis of helium purification system capability during water ingress accident in RDE

    Science.gov (United States)

    Sriyono; Kusmastuti, Rahayu; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    The water ingress accident caused by steam generator tube rupture (SGTR) in RDE (Experimental Power Reactor) must be anticipated. During the accident, steam from secondary system diffused and mixed with helium gas in the primary coolant. To avoid graphite corrosion in the core, steam will be removed by Helium purification system (HPS). There are two trains in HPS, first train for normal operation and the second for the regeneration and accident. The second train is responsible to clean the coolant during accident condition. The second train is equipped with additional component, i.e. water cooler, post accident blower, and water separator to remove this mixture gas. During water ingress, the water release from rupture tube is mixed with helium gas. The water cooler acts as a steam condenser, where the steam will be separated by water separator from the helium gas. This paper analyses capability of HPS during water ingress accident. The goal of the research is to determine the time consumed by HPS to remove the total amount of water ingress. The method used is modelling and simulation of the HPS by using ChemCAD software. The BDBA and DBA scenarios will be simulated. In BDBA scenario, up to 110 kg of water is assumed to infiltrate to primary coolant while DBA is up to 35 kg. By using ChemCAD simulation, the second train will purify steam ingress maximum in 0.5 hours. The HPS of RDE has a capability to anticipate the water ingress accident.

  7. Golfech plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Golfech plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  8. Tricastin plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Tricastin plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  9. Bugey plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Bugey plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  10. Fessenheim plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Fessenheim plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  11. Chinon plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Chinon B plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  12. Blayais plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Blayais plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  13. Civaux plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Civaux plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  14. Cattenom plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Cattenom plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  15. Gravelines plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Gravelines plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  16. Revised accident source terms for light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soffer, L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  17. The role of nuclear reactor containment in severe accidents

    International Nuclear Information System (INIS)

    1989-04-01

    The containment is a structural envelope which completely surrounds the nuclear reactor system and is designed to confine the radioactive releases in case of an accident. This report summarises the work of an NEA Senior Group of Experts who have studied the potential role of containment in accidents exceeding design specifications (so-called severe accidents). Some possibilities for enhancing the ability of plants to reduce the risk of significant off-site consequences by appropriate management of the acident have been examined

  18. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kerr, G.D.; Mei, G.T.

    1993-08-01

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident

  19. CarSim: Automatic 3D Scene Generation of a Car Accident Description

    OpenAIRE

    Egges, A.; Nijholt, A.; Nugues, P.

    2001-01-01

    The problem of generating a 3D simulation of a car accident from a written description can be divided into two subtasks: the linguistic analysis and the virtual scene generation. As a means of communication between these two system parts, we designed a template formalism to represent a written accident report. The CarSim system processes formal descriptions of accidents and creates corresponding 3D simulations. A planning component models the trajectories and temporal values of every vehicle ...

  20. Aerosol challenges to air cleaning systems during severe accidents in nuclear plants

    International Nuclear Information System (INIS)

    Gieseke, J.A.

    1985-01-01

    A variety of air cleaning systems may be operating in nuclear power plants and under severe accident conditions, these systems may be treating airborne concentrations of aerosols which are very high. Predictions of airborne aerosol concentrations in nuclear power plant containments under severe accident conditions are reviewed to provide a basis for evaluating the potential effects on the air cleaning systems. The air cleaning systems include filters, absorber beds, sprays, water pools, ice beds, and condensers. Not all of these were intended to operate as air cleaners but will in fact be good aerosol collectors. Knowledge of expected airborne concentrations will allow better evaluation of system performances

  1. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  2. Report on the preliminary fact finding mission following the accident at the nuclear fuel processing facility in Tokaimura, Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Following the accident on 30 September 1999 at the nuclear fuel processing facility at Tokaimura, Japan, the IAEA Emergency Response Centre received numerous requests for information about the event's causes and consequences from Contact Points under the Conventions on Early Notification of a Nuclear Accident and on Assistance in the Case of a Nuclear Accident or Radiological Emergency. Although the lack of transboundary consequences of the accident meant that action under the Early Notification Convention was not triggered, the Emergency Response Centre issued several advisories to Member States which drew on official reports received from Japan. After discussions with the Government of Japan, the IAEA dispatched a team of three experts from the Secretariat on a fact finding mission to Tokaimura from 13 to 17 October 1999. The present preliminary report by that team documents key technical information obtained during the mission. At this stage, the report can in no way provide conclusive judgements on the causes and consequences of the accident. Investigations are proceeding in Japan and more information is expected to be made available after access has been gained to the building where the accident occurred. Moreover, much of the information already made available will be revised as more accurate assessments are made, for example of the radiation doses to the three individuals who received the highest exposures. Notwithstanding the preliminary nature of this report, it is clear that the accident was not one involving widespread contamination of the environment as in the 1986 Chernobyl accident. Although there was little risk off the site once the accident had been brought under control, the authorities evacuated the population living within a few hundred metres and advised people within about 10 km of the facility to take shelter for a period of about one day. The event at Tokaimura was nevertheless a serious industrial accident. The results of the detailed

  3. The reactor accident at Chernobyl, U.S.S.R. Radiation measurements in Denmark. 3. report

    International Nuclear Information System (INIS)

    1986-01-01

    In continuation of the reporting of 4 May and 11 May 1986 this report summarizes the radioactivity measurements made during the third and fourth week after the accident at Chernobyl. The data have been collated by the Inspectorate of Nuclear Installations from measurements made by Risoe National Laboratory and the National Institute of Radiation Hygiene. The radioactivity remaining in the air after the first two weeks shows daily variations at low levels without significant contribution to the fall out levels on the ground surfaces. The ground contamination shows a decreasing trend according to radioactive decay and for the plants also according to natural cleaning mechanisms. The radioactive data from the third and fourth week after the accident confirm the previous estimate that the total radiation impact on the Danish area from the accident, including future radiation exposures from the contamination experienced up to now, corresponds at most to approximately one month of natural background radiation. For the time to come the measuring programme and data reporting arrangements will be reorganized with a view to the future long term follow-up of the situation. Thus, this report is expected to be the last in the series of ad hoc reports for prompt dissemination of data on the Danish radioactivity measurements. (author)

  4. Development of reactor accident diagnostic system DISKET using knowledge engineering technique

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Yoshida, Kazuo; Kohsaka, Atsuo; Yamamoto, Minoru.

    1986-01-01

    An accident diagnostic system DISKET has been developed to identify the cause and the type of an abnormal transient of a nuclear power plant. The system is based on the knowledge engineering (KE) and consists of an inference engine IERIAS and a knowledge base. The main features of DISKET are the following : (1) Time-varying characteristics of transients can be treated. (2) Knowledge base can be divided into several knowledge units to handle a lot of rules effectively. (3) Programming language UTILISP, which is a dialect of LISP, is used to manipulate symbolic data effectively. For the verification of DISKET, performance tests have been conducted for several types of accidents. The knowledge base used in the tests was generated from the data of various types of transients produced by a PWR plant simulator. The results of verification studies showed a good applicability of DISKET to reactor accident diagnosis. (author)

  5. Study on the code system for the off-site consequences assessment of severe nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

  6. Study on the code system for the off-site consequences assessment of severe nuclear accident

    International Nuclear Information System (INIS)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents

  7. Occupational Radiation Protection in Severe Accident Management

    International Nuclear Information System (INIS)

    2015-01-01

    As an early response to the Fukushima Daiichi NPP accident, the Information System on Occupational Exposure (ISOE) Bureau decided to focus on the following issues as an initial response of the joint program after having direct communications with the Japanese official participants in April 2011: - Management of high radiation area worker doses: It has been decided to make available the experience and information from the Chernobyl accident in terms of how emergency worker / responder doses were legally and practically managed, - Personal protective equipment for highly-contaminated areas: It was agreed to collect information about the types of personnel protective equipment and other equipment (e.g. air bottles, respirators, air-hoods or plastic suits, etc.), as well as high-radiation area worker dosimetry use (e.g. type, number and placement of dosimetry) for different types of emergency and high-radiation work situations. Detailed information was collected on dose criteria which are used for emergency workers /responders and their basis, dose management criteria for high dose/dose rate areas, protective equipment which is recommended for emergency workers / responders, recommended individual monitoring procedures, and any special requirement for assessment from the ISOE participating nuclear utilities and regulatory authorities and made available for Japanese utilities. With this positive response of the ISOE official participants and interest in the situation in Fukushima, the Expert Group on Occupational Radiation Protection in Severe Accident Management (EG-SAM) was established by the ISOE Management Board in May 2011. The overall objective of the EG-SAM is to contribute to occupational exposure management (providing a view on management of high radiation area worker doses) within the Fukushima plant boundary with the ISOE participants and to develop a state-of-the-art ISOE report on best radiation protection management practices for proper radiation

  8. Accident history, risk perception and traffic safe behaviour.

    Science.gov (United States)

    Ngueutsa, Robert; Kouabenan, Dongo Rémi

    2017-09-01

    This study clarifies the associations between accident history, perception of the riskiness of road travel and traffic safety behaviours by taking into account the number and severity of accidents experienced. A sample of 525 road users in Cameroon answered a questionnaire comprising items on perception of risk, safe behaviour and personal accident history. Participants who reported involvement in more than three accidents or involvement in a severe accident perceived road travel as less risky and also reported behaving less safely compared with those involved in fewer, or less severe accidents. The results have practical implications for the prevention of traffic accidents. Practitioner Summary: The associations between accident history, perceived risk of road travel and safe behaviour were investigated using self-report questionnaire data. Participants involved in more than three accidents, or in severe accidents, perceived road travel as less risky and also reported more unsafe behaviour compared with those involved in fewer, or less severe accidents. Campaigns targeting people with a less serious, less extensive accident history should aim to increase awareness of hazards and the potential severity of their consequences, as well as emphasising how easy it is to take the recommended preventive actions. Campaigns targeting those involved in more frequent accidents, and survivors of serious accidents, should address feelings of invulnerability and helplessness.

  9. Benchmarking MARS (accident management software) with the Browns Ferry fire

    International Nuclear Information System (INIS)

    Dawson, S.M.; Liu, L.Y.; Raines, J.C.

    1992-01-01

    The MAAP Accident Response System (MARS) is a userfriendly computer software developed to provide management and engineering staff with the most needed insights, during actual or simulated accidents, of the current and future conditions of the plant based on current plant data and its trends. To demonstrate the reliability of the MARS code in simulatng a plant transient, MARS is being benchmarked with the available reactor pressure vessel (RPV) pressure and level data from the Browns Ferry fire. The MRS software uses the Modular Accident Analysis Program (MAAP) code as its basis to calculate plant response under accident conditions. MARS uses a limited set of plant data to initialize and track the accidnt progression. To perform this benchmark, a simulated set of plant data was constructed based on actual report data containing the information necessary to initialize MARS and keep track of plant system status throughout the accident progression. The initial Browns Ferry fire data were produced by performing a MAAP run to simulate the accident. The remaining accident simulation used actual plant data

  10. Replacement of the criticality accident alarm system in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Momose, Takumaro; Suzuki, Kei; Kawai, Keiichi

    2008-01-01

    A Criticality Accident Alarm System (CAAS) was installed as part of criticality safety management for use in reducing the radiation workers could be exposed to in the rare case of a criticality accident. The initial CAAS version was installed the Tokai Reprocessing Plant (TRP) in the 1980s. It includes units that can detect gamma-rays or neutron-rays released in criticality accidents (CADs), one of which consists of three plastic scintillation gamma detectors and three solid state neutron detectors with fissile material, and in being highly reliable utilizes the 2 out of 3 voting system. The purpose of this study is to give the design principles and procedures for determining the adequate relocation of the CADs within the TRP. The optimal places for the CADs to be relocated to were determined using a conservative evaluation method. Firstly, equipment needing to be monitored for criticality accidents was selected with consideration given to the risk of excessive exposure to workers. Secondly, the detection threshold of a minimum accident was set to be an increase in power of 10 15 fissions/s occurring within a rise-time of between 0.5 ms and 1 s. The sum of neutron and gamma doses of a minimum accident (10 15 fissions) was 0.3 Gy at an unshielded distance of 1 m. Finally, doses at where the CADs were installed were evaluated using parameters calculated with MCNP and ANISN. As a result, the alarm trip level of both the gamma detector and the neutron detector being set at 2.0 mGy/h enabled minimum criticality accidents to be conservatively detected. These results were then applied to the new CAD positions. (author)

  11. Improvement of the following accident dose assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Enn Han; Han, Moon Hee; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-15

    The FADAS has been updates for calculating the real-time wind fields continuously at the nuclear sites in Korea. The system has been constructed to compute the wind fields using its own process for the dummy meteorological data, and dose not effect on the overall wind field module. If the radioactive materials are released into the atmosphere in real situation, the calculations of wind fields and exposure dose in the previous FADAS are performed in the case of the recognition of the above situation in the source term evaluation module. The current version of FADAS includes the program for evaluating the effect of the predicted accident and the assumed scenario together. The dose assessment module is separated into the real-time and the supposed accident respectively.

  12. Occupational Accidents And Preventive Measures

    CERN Document Server

    Fassnacht, V

    2006-01-01

    This report presents the 2005 statistics concerning occupational accidents involving members of the CERN personnel and contractors' personnel. It sets out the accident frequency and severity rates and provides a breakdown of accidents by cause and injury. It also contains a summary analysis of the most serious accidents and the associated recommendations.

  13. Evaluation of severe accident safety system value based on averting financial risks

    International Nuclear Information System (INIS)

    Hatch, S.W.; Benjamin, A.S.; Bennett, P.R.

    1983-01-01

    The Severe Accident Risk Reduction Program is being performed to benchmark the risks from nuclear power plants and to assess the benefits and impacts of a set of severe accident safety features. This paper describes the program in general and presents some preliminary results. These results include estimates of the financial risks associated with the operation of six reference plants and the value of severe accident prevention and mitigation safety systems in averting these risks. The results represent initial calculations and will be iterated before being used to support NRC decisions

  14. Centrifugal Filtration System for Severe Accident Source Term Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shu Chang; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of this paper is to present the conceptual design of a filtration system that can be used to process airborne severe accident source term. Reactor containment may lose its structural integrity due to over-pressurization during a severe accident. This can lead to uncontrolled radioactive releases to the environment. For preventing the dispersion of these uncontrolled radioactive releases to the environment, several ways to capture or mitigate these radioactive source term releases are under investigation at KAIST. Such technologies are based on concepts like a vortex-like air curtain, a chemical spray, and a suction arm. Treatment of the radioactive material captured by these systems would be required, before releasing to environment. For current filtration systems in the nuclear industry, IAEA lists sand, multi-venturi scrubber, high efficiency particulate arresting (HEPA), charcoal and combinations of the above in NS-G-1-10, 4.143. Most if not all of the requirements of the scenario for applying this technology near the containment of an NPP site and the environmental constraints were analyzed for use in the design of the centrifuge filtration system.

  15. The development of a nuclear accident risk information system

    International Nuclear Information System (INIS)

    Jeong, J. T.; Jeong, W. D.

    2001-01-01

    The computerized system NARIS (Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analyses of the distribution of the health effects. The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system

  16. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  17. Environmental decision support system on base of geoinformational technologies for the analysis of nuclear accident consequences

    International Nuclear Information System (INIS)

    Haas, T.C.; Maigan, M.; Arutyunyan, R.V.; Bolshov, L.A.; Demianov, V.V.

    1996-01-01

    The report deals with description of the concept and prototype of environmental decision support system (EDSS) for the analysis of late off-site consequences of severe nuclear accidents and analysis, processing and presentation of spatially distributed radioecological data. General description of the available software, use of modem achievements of geostatistics and stochastic simulations for the analysis of spatial data are presented and discussed

  18. System Design Strategies of Post-Accident Monitoring System for a PGSFR in Korea

    International Nuclear Information System (INIS)

    Jang, Gwi-sook; Jeong, Kwang-il; Keum, Jong-yong; Seong, Seung-hwan

    2013-06-01

    Monitoring systems of a PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) in Korea provide alarms, integrity information in the reactor building, sodium-water reaction information in the steam generator, fuel failure information, and supporting information for maintenance and inspection. In particular, a Post-Accident Monitoring System (PAMS) provides primary information for operators to assess the plant conditions and perform their role in bringing the plant to a safe condition during an accident. Some PAM variables can be allocated as more two types. It is important for system designers to confirm the suitability of the selection of PAM variables. In addition, the PAMS is a position 4 display against common cause failures of safety I and C systems. The position 4 display should be independent and diverse from the safety I and C systems. The diversity of safety I and C equipment has led to an increase in the design and verification and validation cost. Thus, this paper proposes the system design strategies on the PAMS design problems of the PGSFR in KOREA. The results will be input into a conceptual system design for the PAMS of the PGSFR in KOREA. (authors)

  19. Insomnia and accidents: cross-sectional study (EQUINOX) on sleep-related home, work and car accidents in 5293 subjects with insomnia from 10 countries.

    Science.gov (United States)

    Léger, Damien; Bayon, Virginie; Ohayon, Maurice M; Philip, Pierre; Ement, Philippe; Metlaine, Arnaud; Chennaoui, Mounir; Faraut, Brice

    2014-04-01

    The link between sleepiness and the risk of motor vehicle accidents is well known, but little is understood regarding the risk of home, work and car accidents of subjects with insomnia. An international cross-sectional survey was conducted across 10 countries in a population of subjects with sleep disturbances. Primary care physicians administered a questionnaire that included assessment of sociodemographic characteristics, sleep disturbance and accidents (motor vehicle, work and home) related to sleep problems to each subject. Insomnia was defined using the International Classification of Sleep Disorders (ICSD-10) criteria. A total of 5293 subjects were included in the study, of whom 20.9% reported having had at least one home accident within the past 12 months, 10.1% at least one work accident, 9% reported having fallen asleep while driving at least once and 4.1% reported having had at least one car accident related to their sleepiness. All types of accident were reported more commonly by subjects living in urban compared to other residential areas. Car accidents were reported more commonly by employed subjects, whereas home injuries were reported more frequently by the unemployed. Car accidents were reported more frequently by males than by females, whereas home accidents were reported more commonly by females. Patients with insomnia have high rates of home accidents, car accidents and work accidents related to sleep disturbances independently of any adverse effects of hypnotic treatments. Reduced total sleep time may be one factor explaining the high risk of accidents in individuals who complain of insomnia. © 2013 European Sleep Research Society.

  20. Highlights from the literature on accident causation and system safety: Review of major ideas, recent contributions, and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, J.H., E-mail: jsaleh@gatech.ed [School of Aerospace Engineering, Georgia Institute of Technology (United States); Marais, K.B. [School of Aeronautics and Astronautics, Purdue University (United States); Bakolas, E.; Cowlagi, R.V. [School of Aerospace Engineering, Georgia Institute of Technology (United States)

    2010-11-15

    This work constitutes a short guide to the extensive but fragmented literature on accident causation and system safety. After briefly motivating the interest in accident causation and discussing the notion of a safety value chain, we delve into our multi-disciplinary review with discussions of Man Made Disasters, Normal Accident, and the High Reliability Organizations (HRO) paradigm. The HRO literature intersects an extensive literature on safety culture, a subject we then briefly touch upon. Following this discussion, we note that while these social and organizational contributions have significantly enriched our understanding of accident causation and system safety, they have important deficiencies and are lacking in their understanding of technical and design drivers of system safety and accident causation. These missing ingredients, we argue, were provided in part by the development of Probabilistic Risk Assessment (PRA). The idea of anticipating possible accident scenarios, based on the system design and configuration, as well as its technical and operational characteristics, constitutes an important contribution of PRA, which builds on and extends earlier contributions made by the development of Fault Tree and Event Tree Analysis. We follow the discussion of PRA with an exposition of the concept of safety barriers and the principle of defense-in-depth, both of which emphasize the functions and 'safety elements [that should be] deliberately inserted' along potential accident trajectories to prevent, contain, or mitigate accidents. Finally, we discuss two ideas that are emerging as foundational in the literature on system safety and accident causation, namely that system safety is a 'control problem', and that it requires a 'system theoretic' approach to be dealt with. We clarify these characterizations and indicate research opportunities to be pursued along these directions. We conclude this work with two general recommendations

  1. Highlights from the literature on accident causation and system safety: Review of major ideas, recent contributions, and challenges

    International Nuclear Information System (INIS)

    Saleh, J.H.; Marais, K.B.; Bakolas, E.; Cowlagi, R.V.

    2010-01-01

    This work constitutes a short guide to the extensive but fragmented literature on accident causation and system safety. After briefly motivating the interest in accident causation and discussing the notion of a safety value chain, we delve into our multi-disciplinary review with discussions of Man Made Disasters, Normal Accident, and the High Reliability Organizations (HRO) paradigm. The HRO literature intersects an extensive literature on safety culture, a subject we then briefly touch upon. Following this discussion, we note that while these social and organizational contributions have significantly enriched our understanding of accident causation and system safety, they have important deficiencies and are lacking in their understanding of technical and design drivers of system safety and accident causation. These missing ingredients, we argue, were provided in part by the development of Probabilistic Risk Assessment (PRA). The idea of anticipating possible accident scenarios, based on the system design and configuration, as well as its technical and operational characteristics, constitutes an important contribution of PRA, which builds on and extends earlier contributions made by the development of Fault Tree and Event Tree Analysis. We follow the discussion of PRA with an exposition of the concept of safety barriers and the principle of defense-in-depth, both of which emphasize the functions and 'safety elements [that should be] deliberately inserted' along potential accident trajectories to prevent, contain, or mitigate accidents. Finally, we discuss two ideas that are emerging as foundational in the literature on system safety and accident causation, namely that system safety is a 'control problem', and that it requires a 'system theoretic' approach to be dealt with. We clarify these characterizations and indicate research opportunities to be pursued along these directions. We conclude this work with two general recommendations: (1) that more fundamental

  2. An analysis on human factor issues in criticality accident at a uranium processing plant. Investigation on human behavior contributing to the criticality accident. Interim report

    International Nuclear Information System (INIS)

    Sasou, Kuonihide; Goda, Hideki; Hirotsu, Yuko

    1999-01-01

    At 10:30 am, September 30th, 1999, a criticality accident occurred in a conversion building of a uranium processing plant in Tokai, Ibaraki prefecture. 69 people including 3 workers who then worked at the building, 3 fire fighters who dispatched to rescue them were exposed to the radiation. People with a 350 m-radius of the site were recommended to evacuate themselves from the region to a temporarily prepared evacuation center. And about one hundred thousand people within a 10 km-radius were also advised to stay inside of their home. Nuclear Safety Commission's Accident Investigation Committee is investigating causes of this accident and have been revealing that deviation from government-authorized processing method and negligence of its illegal procedure had contributed to the accident. The influence of this accident is expanding not only to the plant operating company, local people but also to Japanese nuclear power policy, the whole nuclear industry in Japan. Especially pervasion of 'Safety Culture' is strongly being required. This report analyses latent factors of some human behavior directly contributing to the criticality accident. It also mentions that 4 critical points on the poor climate for safety in the work place, the inadequate safety management, the unsuitable equipment and the production-biased company's policy are the latent factors of this accident. It also finds that the poor climate and the production-biased policy are the most important factors. It can be said that some people directly or indirectly having caused the accident are the victims of them. (author)

  3. A criticism of ANSI/ANS-8.3-1986: Criticality accident alarm system

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-01-01

    The American National Standard on criticality accident alarm systems has given rise to confusion in interpretation and implementation of the requirements. In addition, some of the standards have recently been incorporated into US Department of Energy (DOE) orders, and others have been paraphrased in the DOE orders. Some of the DOE orders referencing these standards are being incorporated into law by means of the Code of Federal Regulations. As such, the intent of the authors of the standards to recommend a code of good practice is now being codified into law with attendant civil and criminal penalties for failure to comply. It is suggested that ANSI/ANS-8.3-1986, Critically Accident Alarm System, be carefully reviewed to alleviate the confusion that has been experienced in practice, to clarify the minimum accident of concern, to further define the dose (or dose rate) criteria for activation, and to stress the fact that a prime consideration in any safety system is the overall reduction of risk

  4. Synthesis of the IRSN report on severe accidents and level 2 probabilistic safety studies within the frame of the safety re-examination associated with the third decennial inspection of 1300 MW reactors

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of this report is to analyze studies related to severe accidents and performed within the framework of the third decennial safety re-examination of the French 1300 We nuclear reactors. It also reports the main conclusions of a detailed analysis of level-2 probabilistic safety studies performed according to another procedure. The report first addresses the 'severe accident' system of reference. It presents the general approach and the safety objectives, discusses the management of a site with a unit in severe accident (this encompasses the management of neighbouring units, the conditions of intervention in terms of habitability of the control room and of manoeuvrability of the venting-filtration system), discusses the expected equipment performance (concerned equipment, safety requirements for equipment needed in case of severe accident, loadings). A second part addresses and comments the results of level 2 probabilistic studies. The report then addresses the water management in the vessel sink with two main objectives (to keep corium in the vessel while promoting its cooling, to cool corium fallen in the vessel sink). The next part addresses modifications planned by EDF in terms of instrumentation associated with a severe accident situation, of improvement of confinement and reduction of risks of important and early releases, of enclosure depressurization in case of unavailability of the enclosure sprinkling system, and of strategy of opening the venting-filtration device in case of total loss of electricity supplies

  5. REACTOR: an expert system for diagnosis and treatment of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1982-01-01

    REACTOR is an expert system under development at EG and G Idaho, Inc., that will assist operators in the diagnosis and treatment of nuclear reactor accidents. This paper covers the background of the nuclear industry and why expert system technology may prove valuable in the reactor control room. Some of the basic features of the REACTOR system are discussed, and future plans for validation and evaluation of REACTOR are presented. The concept of using both event-oriented and function-oriented strategies for accident diagnosis is discussed. The response tree concept for representing expert knowledge is also introduced

  6. The contribution of human factors to accidents in the offshore oil industry

    International Nuclear Information System (INIS)

    Gordon, Rachael P.E.

    1998-01-01

    Accidents such as the Piper Alpha disaster illustrate that the performance of a highly complex socio-technical system, is dependent upon the interaction of technical, human, social, organisational, managerial and environmental factors and that these factors can be important co-contributors that could potentially lead to a catastrophic event. The purpose of this article is to give readers an overview of how human factors contribute to accidents in the offshore oil industry. An introduction to human errors and how they relate to human factors in general terms is given. From here the article discusses some of the human factors which were found to influence safety in other industries and describes the human factors codes used in accident reporting forms in the aviation, nuclear and marine industries. Analysis of 25 accident reporting forms from offshore oil companies in the UK sector of the North Sea was undertaken in relation to the human factors. Suggestions on how these accident reporting forms could be improved are given. Finally, this article describes the methods by which accidents can be reduced by focusing on the human factors, such as feedback from accident reporting in the oil industry, auditing of unsafe acts and auditing of latent failures

  7. Third IAEA nuclear accident intercomparison experiment

    Energy Technology Data Exchange (ETDEWEB)

    Miric, I; Ubovic, Z

    1974-05-15

    The purpose of this report is to present the results of the International Atomic Energy Agency intercomparison experiments held at the 'Boris Kidric' Institute, Vinca, in May 1973. The experiments are parts of a multilaboratory intercomparison programme sponsored by the IAEA for the evaluation of nuclear accident dosimetry systems and eventually recommendation of dosimetry systems that will provide adequate informations in the event of a criticality accident. The previous two studies were held at the Valduc Centre near Dijon (France) in June 1970 and at the ORNL in Oak Ridge (USA), in May 1971. Parts of the intercomparison studies were coordination meetings. The topics and conclusions of the Third coordination meeting are given in the Chairman's Report of F.F. Haywood. This paper will deal, therefore, only with data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation. (author)

  8. Third IAEA nuclear accident intercomparison experiment

    International Nuclear Information System (INIS)

    Miric, I.; Ubovic, Z.

    1974-05-01

    The purpose of this report is to present the results of the International Atomic Energy Agency intercomparison experiments held at the 'Boris Kidric' Institute, Vinca, in May 1973. The experiments are parts of a multilaboratory intercomparison programme sponsored by the IAEA for the evaluation of nuclear accident dosimetry systems and eventually recommendation of dosimetry systems that will provide adequate informations in the event of a criticality accident. The previous two studies were held at the Valduc Centre near Dijon (France) in June 1970 and at the ORNL in Oak Ridge (USA), in May 1971. Parts of the intercomparison studies were coordination meetings. The topics and conclusions of the Third coordination meeting are given in the Chairman's Report of F.F. Haywood. This paper will deal, therefore, only with data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation. (author)

  9. [Current status of medical accident prevention in our pathology section].

    Science.gov (United States)

    Uehara, Takeshi; Kobayashi, Yukihiro; Honda, Takayuki

    2010-08-01

    Preventive measures against medical accident should be addressed in the pathology section. Medical accidents occur while preparing tissue specimens and making pathological diagnoses. For the preparation of tissue specimens, we have developed a work manual in consultation with past incident reports and update this manual regularly. We can reduce medical accidents by including a check system for each task. For pathological diagnosis, we perform some of the same checks as for tissue specimen preparation and can make more correct diagnoses by conferring with other departments. It is also important to check each other's work to prevent medical accidents.

  10. Accident tolerant high-pressure helium injection system concept for light water reactors

    International Nuclear Information System (INIS)

    Massey, Caleb; Miller, James; Vasudevamurthy, Gokul

    2016-01-01

    Highlights: • Potential helium injection strategy is proposed for LWR accident scenarios. • Multiple injection sites are proposed for current LWR designs. • Proof-of-concept experimentation illustrates potential helium injection benefits. • Computational studies show an increase in pressure vessel blowdown time. • Current LOCA codes have the capability to include helium for feasibility calculations. - Abstract: While the design of advanced accident-tolerant fuels and structural materials continues to remain the primary focus of much research and development pertaining to the integrity of nuclear systems, there is a need for a more immediate, simple, and practical improvement in the severe accident response of current emergency core cooling systems. Current blowdown and reflood methodologies under accident conditions still allow peak cladding temperatures to approach design limits and detrimentally affect the integrity of core components. A high-pressure helium injection concept is presented to enhance accident tolerance by increasing operator response time while maintaining lower peak cladding temperatures under design basis and beyond design basis scenarios. Multiple injection sites are proposed that can be adapted to current light water reactor designs to minimize the need for new infrastructure, and concept feasibility has been investigated through a combination of proof-of-concept experimentation and computational modeling. Proof-of-concept experiments show promising cooling potential using a high-pressure helium injection concept, while the developed choked-flow model shows core depressurization changes with added helium injection. Though the high-pressure helium injection concept shows promise, future research into the evaluation of system feasibility and economics are needed.Classification: L. Safety and risk analysis

  11. The role of personality traits and driving experience in self-reported risky driving behaviors and accident risk among Chinese drivers.

    Science.gov (United States)

    Tao, Da; Zhang, Rui; Qu, Xingda

    2017-02-01

    The purpose of this study was to explore the role of personality traits and driving experience in the prediction of risky driving behaviors and accident risk among Chinese population. A convenience sample of drivers (n=511; mean (SD) age=34.2 (8.8) years) completed a self-report questionnaire that was designed based on validated scales for measuring personality traits, risky driving behaviors and self-reported accident risk. Results from structural equation modeling analysis demonstrated that the data fit well with our theoretical model. While showing no direct effects on accident risk, personality traits had direct effects on risky driving behaviors, and yielded indirect effects on accident risk mediated by risky driving behaviors. Both driving experience and risky driving behaviors directly predicted accident risk and accounted for 15% of its variance. There was little gender difference in personality traits, risky driving behaviors and accident risk. The findings emphasized the importance of personality traits and driving experience in the understanding of risky driving behaviors and accident risk among Chinese drivers and provided new insight into the design of evidence-based driving education and accident prevention interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Highly Reliable Power and Communication System for Essential Instruments under a Severe Accident of NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S. J.; Choi, B. H.; Jung, S. Y.; Rim, Chun T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, three survivable strategies to overcome the problems listed above are proposed for the essential instruments under the severe accident of NPPs. First, wire/wireless multi power systems are adopted to the essential instruments for continuous power supply. Second, wire/wireless communication systems are proposed for reliable transmission of measuring information among instruments and operators. Third, a physical protection system such as a harness and a heat isolation box is introduced to ensure operable conditions for the proposed systems. In this paper, a highly reliable strategy, which consists of wire/wireless multi power and communication systems and physical protection system is proposed to ensure the survival of the essential instruments under harsh external conditions. The wire/wireless multi power and communication systems are designed to transfer power and data in spite of the failure of conventional wired systems. The physical protection system provides operable environments to the instruments. Therefore, the proposed system can be considered as a candidate of practical and urgent remedy for NPPs under the severe accident. After the Fukushima nuclear accident, survivability of essential instruments has been emphasized for immediate and accurate response. The essential instruments can measure environment conditions such as temperature, pressure, radioactivity and corium behavior inside nuclear power plants (NPPs) under a severe accident. Access to the inside of NPPs is restricted to human beings because of hazardous environment such as high radioactivity, high temperature and high pressure. Thus, monitoring the inside of NPPs is necessary for avoiding damage from the severe accident. Even though there were a number of instruments in Fukushima Daiichi NPP, they failed to obtain exact monitoring information. According to the details of the Fukushima nuclear accident, following problems can be counted as strong candidates of this instruments

  13. Highly Reliable Power and Communication System for Essential Instruments under a Severe Accident of NPPs

    International Nuclear Information System (INIS)

    Yoo, S. J.; Choi, B. H.; Jung, S. Y.; Rim, Chun T.

    2013-01-01

    In this paper, three survivable strategies to overcome the problems listed above are proposed for the essential instruments under the severe accident of NPPs. First, wire/wireless multi power systems are adopted to the essential instruments for continuous power supply. Second, wire/wireless communication systems are proposed for reliable transmission of measuring information among instruments and operators. Third, a physical protection system such as a harness and a heat isolation box is introduced to ensure operable conditions for the proposed systems. In this paper, a highly reliable strategy, which consists of wire/wireless multi power and communication systems and physical protection system is proposed to ensure the survival of the essential instruments under harsh external conditions. The wire/wireless multi power and communication systems are designed to transfer power and data in spite of the failure of conventional wired systems. The physical protection system provides operable environments to the instruments. Therefore, the proposed system can be considered as a candidate of practical and urgent remedy for NPPs under the severe accident. After the Fukushima nuclear accident, survivability of essential instruments has been emphasized for immediate and accurate response. The essential instruments can measure environment conditions such as temperature, pressure, radioactivity and corium behavior inside nuclear power plants (NPPs) under a severe accident. Access to the inside of NPPs is restricted to human beings because of hazardous environment such as high radioactivity, high temperature and high pressure. Thus, monitoring the inside of NPPs is necessary for avoiding damage from the severe accident. Even though there were a number of instruments in Fukushima Daiichi NPP, they failed to obtain exact monitoring information. According to the details of the Fukushima nuclear accident, following problems can be counted as strong candidates of this instruments

  14. Socioeconomic consequences of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Tawil, J.J.; Callaway, J.W.; Coles, B.L.; Cronin, F.J.; Currie, J.W.; Imhoff, K.L.; Lewis, P.M.; Nesse, R.J.; Strenge, D.L.

    1984-06-01

    This report identifies and characterizes the off-site socioeconomic consequences that would likely result from a severe radiological accident at a nuclear power plant. The types of impacts that are addressed include economic impacts, health impacts, social/psychological impacts and institutional impacts. These impacts are identified for each of several phases of a reactor accident - from the warning phase through the post-resettlement phase. The relative importance of the impact during each accident phase and the degree to which the impact can be predicted are indicated. The report also examines the methods that are currently used for assessing nuclear reactor accidents, including development of accident scenarios and the estimating of socioeconomic accident consequences with various models. Finally, a critical evaluation is made regarding the use of impact analyses in estimating the contribution of socioeconomic consequences to nuclear accident reactor accident risk. 116 references, 7 figures, 15 tables

  15. Saint-Alban plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Saint-Alban plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  16. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    International Nuclear Information System (INIS)

    Gerton, R.E.

    1997-01-01

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board's investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63)

  17. Study on integrated approach of Nuclear Accident Hazard Predicting, Warning, and Optimized Controlling System based on GIS

    International Nuclear Information System (INIS)

    Tang Lijuan; Huang Shunxiang; Wang Xinming

    2012-01-01

    The issue of nuclear safety becomes the attention focus of international society after the nuclear accident happened in Fukushima. Aiming at the requirements of the prevention and controlling of Nuclear Accident establishment of Nuclear Accident Hazard Predicting, Warning and optimized Controlling System (NAPWS) is a imperative project that our country and army are desiderating, which includes multiple fields of subject as nuclear physics, atmospheric science, security science, computer science and geographical information technology, etc. Multiplatform, multi-system and multi-mode are integrated effectively based on GIS, accordingly the Predicting, Warning, and Optimized Controlling technology System of Nuclear Accident Hazard is established. (authors)

  18. Description of the information and calculation system for combatment of accidents with hazardous materials

    International Nuclear Information System (INIS)

    Scheur, M.J. van de; Stolk, D.J.

    1987-04-01

    On request of the Netherlands government by TNO a decision support system is developed for the assessment of the off-site consequences of an accident with toxic or radioactive materials. The interactive system supports the emergency planning in two ways. First, the risk to the residents in the surroundings of the accident is quantified in terms of severity and magnitude. Second, a set of countermeasures is evaluated by which an optimum strategy to reduce the impact of the accident can be determined. At this moment the system is in a development stage. It turned out that even the preliminary system provides information to the decision process that is urgently needed. This specifically refers to the introduction of the time aspects and the quantification of the damage. 7 refs.; 8 figs.; 3 tabs

  19. Development of a prototype graphic simulation program for severe accident training

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo

    2000-05-01

    This is a report of the development process and related technologies of severe accident graphic simulators, required in industrial severe accident management and training. Here, we say 'a severe accident graphic simulator' as a graphics add-in system to existing calculation codes, which can show the severe accident phenomena dynamically on computer screens and therefore which can supplement one of main defects of existing calculation codes. With graphic simulators it is fairly easy to see the total behavior of nuclear power plants, where it was very difficult to see only from partial variable numerical information. Moreover, the fast processing and control feature of a graphic simulator can give some opportunities of predicting the severe accident advancement among several possibilities, to one who is not an expert. Utilizing graphic simulators' we expect operators' and TSC members' physical phenomena understanding enhancement from the realistic dynamic behavior of plants. We also expect that severe accident training course can gain better training effects using graphic simulator's control functions and predicting capabilities, and therefore we expect that graphic simulators will be effective decision-aids tools both in sever accident training course and in real severe accident situations. With these in mind, we have developed a prototype graphic simulator having surveyed related technologies, and from this development experiences we have inspected the possibility to build a severe accident graphic simulator. The prototype graphic simulator is developed under IBM PC WinNT environments and is suited to Uljin 3and4 nuclear power plant. When supplied with adequate severe accident scenario as an input, the prototype can provide graphical simulations of plant safety systems' dynamic behaviors. The prototype is composed of several different modules, which are phenomena display module, MELCOR data interface module and graphic database interface module. Main functions of

  20. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  1. Implementation of accident management programmes in nuclear power plants

    International Nuclear Information System (INIS)

    2004-01-01

    good practices and developments in Member States and is intended as reference material for NPPs, as well as an information source for other organizations such as regulatory bodies. It is a follow-up to the IAEA report on Accident Management Programmes in Nuclear Power Plants, published in 1994, and reflects the considerable progress made since that time. The objective of this report is to provide a description of the elements to be addressed by the team responsible for developing and implementing a plant specific AMP at an NPP. Although it is intended primarily for use by NPP operators, utilities and their technical support organizations, it can also facilitate preparation of the relevant national regulatory requirements. Important event sequences that may lead to severe accidents shall be identified using a combination of probabilistic methods, deterministic methods and sound engineering judgement. These event sequences shall then be reviewed against a set of criteria aimed at determining which severe accidents should be addressed in the design. Potential design or procedural changes that could either reduce the likelihood of these selected events, or mitigate their consequences, should these selected events occur, shall be evaluated, and shall be implemented if reasonably practicable. Consideration shall be given to the plant full design capabilities, including the possible use of some systems (i.e. safety and non-safety systems) beyond their originally intended function and anticipated operating conditions, and the use of additional temporary systems to return the plant to a controlled state and/or to mitigate the consequences of a severe accident, provided that it can be shown that the systems are able to function in the environmental conditions to be expected. For multiunit plants, consideration shall be given to the use of available means and/or support from other units, provided that the safe operation of the other units is not compromised. Accident management

  2. EAC european accident code. A modular system of computer programs to simulate LMFBR hypothetical accidents

    International Nuclear Information System (INIS)

    Wider, H.; Cametti, J.; Clusaz, A.; Devos, J.; VanGoethem, G.; Nguyen, H.; Sola, A.

    1985-01-01

    One aspect of fast reactor safety analysis consists of calculating the strongly coupled system of physical phenomena which contribute to the reactivity balance in hypothetical whole-core accidents: these phenomena are neutronics, fuel behaviour and heat transfer together with coolant thermohydraulics in single- and two-phase flow. Temperature variations in fuel, coolant and neighbouring structures induce, in fact, thermal reactivity feedbacks which are added up and put in the neutronics calculation to predict the neutron flux and the subsequent heat generation in the reactor. At this point a whole-core analysis code is necessary to examine for any hypothetical transient whether the various feedbacks result effectively in a negative balance, which is the basis condition to ensure stability and safety. The European Accident Code (EAC), developed at the Joint Research Centre of the CEC at Ispra (Italy), fulfills this objective. It is a modular informatics structure (quasi 2-D multichannel approach) aimed at collecting stand-alone computer codes of neutronics, fuel pin mechanics and hydrodynamics, developed both in national laboratories and in the JRC itself. EAC makes these modules interact with each other and produces results for these hypothetical accidents in terms of core damage and total energy release. 10 refs

  3. Iodine removal in containment filtered venting system during nuclear accident

    International Nuclear Information System (INIS)

    Bera, Subrata; Deo, Anuj Kumar; Nagrale, D.B.; Paul, U.K.; Prasad, M.; Gaikwad, A.J.

    2015-01-01

    Post Fukushima nuclear accident, containment filtered venting system is being introduced in Indian nuclear power plant to strengthen the defense in depth safety barrier by depressurizing the containment building along with minimization of radioactivity release to environment during a severe accident. Radioactive iodine is one of the major contributors to radiation dose during early release phase of a severe accident. Physical and Chemical form of iodine and iodine bearing compounds includes particulates, elemental and organic. In the most efficient design of CFVS, wet scrubbing mechanism has been employed through use of venture scrubber. The Iodine removal process in wet scrubber involves two processes: chemical reaction in highly alkaline aqueous solution and impingement of particulates with water droplets produced in the venturi nozzle. In this paper, venturi has been modeled using the Calvert model. The variation of efficiency has been estimated for the different particle sizes. The impact of the shape parameter of log-normal distribution on the amount of scrubbed iodine has also been assessed. Release phase wise the scrubbed amount of iodine in the venturi based CFVS system has been estimated for a typical BWR. (author)

  4. [Under registration of occupational accidents in São Paulo, Brazil, 1997].

    Science.gov (United States)

    Binder, Maria Cecília Pereira; Cordeiro, Ricardo

    2003-08-01

    To estimate the number of occupational accidents that occurred in a certain municipality during a specific period of time as well as the extent of sub-registration. The study sample was comprised of 4.782 households within the municipality of Botucatu, São Paulo occupied by a total 17,219 inhabitants on the 1st of July, 1997. In each household, an adult inhabitant was interviewed in order to identify the occurrence of occupational accidents in the three months preceding the interview. When such occurrences were identified, the injured workers were interviewed. The Cochran formula was utilized to calculate the confidence interval. Seventy-six individuals confirmed that they had suffered occupational accidents during these three months. In 1997, there were approximately 1,810 occupational accidents in Botucatu, according to our estimates, and the incidence of work related injuries in the population was approximately 4.1% (CI 95% 3.0%-5.3%). Thirty-nine (51.3%, CI 95% 41.1%61.6%) of the above 76 workers were not covered by the Social Security System. Consequently, their injuries were not reported for there was no legally binding obligation to fill out and emit the official registration form - Comunicação de Acidente do Trabalho (CAT) [the work injury report]. Included among the latter are civil servants and informal sector workers, such as self-employed, casual workers and others. Although the remaining 37 workers (48.7%) were covered by the Social Security System and emission of the work injury report was obligatory, 20 of the cases (54.1% CI 95% 39.4%-68.7%) had not been registered. A greater proportion of cases of sub-registration were found among those workers employed in micro, small and medium sized businesses than among those working in large firms. Only 22.4% (CI 13.8%-30.9%) of the occupational accidents reported in this study were registered by the Social Security System. Research findings confirm that analyses based on the number of officially registered

  5. Investigation into information flow during the accident at Three Mile Island

    International Nuclear Information System (INIS)

    1981-01-01

    This report was prepared in response to a request from NRC Chairman Ahearne that directed the Office of Inspection and Enforcement to resume its investigation of information flow during the accident at Three Mile Island (TMI) that occurred on March 28, 1979. This investigation was resumed on March 21, 1980. The transfer of information among individuals, agencies, and personnel from Metropolitan Edison was analyzed to ascertain what knowledge was held by various individuals of the specific events, parameters, and systems during the accident at TMI. Maximum use was made of existing records, and additional interviews were conducted to clarify areas that had not been pursued during earlier investigations. Although the passage of time between the accident and post-accident interviews hampered precise recollections of events and circumstances, the investigation revealed that information was not intentionally withheld during the accident and that the system for effective transfer of information was inadequate during the accident

  6. Hot Cell Installation and Demonstration of the Severe Accident Test Station

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Zachary M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    A Severe Accident Test Station (SATS) capable of examining the oxidation kinetics and accident response of irradiated fuel and cladding materials for design basis accident (DBA) and beyond design basis accident (BDBA) scenarios has been successfully installed and demonstrated in the Irradiated Fuels Examination Laboratory (IFEL), a hot cell facility at Oak Ridge National Laboratory. The two test station modules provide various temperature profiles, steam, and the thermal shock conditions necessary for integral loss of coolant accident (LOCA) testing, defueled oxidation quench testing and high temperature BDBA testing. The installation of the SATS system restores the domestic capability to examine postulated and extended LOCA conditions on spent fuel and cladding and provides a platform for evaluation of advanced fuel and accident tolerant fuel (ATF) cladding concepts. This document reports on the successful in-cell demonstration testing of unirradiated Zircaloy-4. It also contains descriptions of the integral test facility capabilities, installation activities, and out-of-cell benchmark testing to calibrate and optimize the system.

  7. Interim report on the accident at Fukushima Nuclear Power Stations of Tokyo Electric Power Company

    International Nuclear Information System (INIS)

    2011-12-01

    The Investigation Committee on the Accident at the Fukushima Nuclear Power Stations (the Investigation Committee) of Tokyo Electric Power Company (TEPCO) was established by the Cabinet decision on May 24, 2011. Its objectives are: to conduct investigation for finding out the causes of accidents at the Fukushima Dai-ichi Nuclear Power Station (Fukushima Dai-ichi NPS) and Fukushima Dai-ni Nuclear Power Station (Fukushima Dai-ni NPS) of TEPCO as well as the causes of accident damage; and to make policy recommendations for limiting the expansion of damage and preventing reoccurrence of similar accidents. The Investigation Committee has conducted its investigation and evaluation since its first meeting on June 7, 2011. Its activities included: site visits to the Fukushima Dai-ichi and Dai-ni NPSs, as well as to other facilities; hearing of heads of local governments around the Fukushima Dai-ichi NPS; and hearing of people concerned through interviews mainly arranged by the Secretariat. As of December 16, 2011, the number of interviewees reached 456. The investigation and evaluation by the Investigation Committee are still ongoing and the Interim Report does not cover every item that the Committee aims at investigating and evaluating. Fact-finding of even some of those items discussed in the Interim Report are not yet completed. The Investigation Committee continues to conduct its investigation and evaluation and will issue its Final Report in the summer of 2012. This brief executive summary covers mainly considerations and evaluation of the issues in Chapter VII of the Interim Report, with brief reference to Chapters I to VI. The Investigation Committee recommendations are printed in bold. (author)

  8. Report of the Fukushima nuclear accident by the National Academy of Science. Lessons learned from the Fukushima nuclear accident for improving safety of U.S. nuclear plants

    International Nuclear Information System (INIS)

    Nariai, Hideki

    2014-01-01

    U.S. National Academy of Science investigated the accident at the Fukushima Daiichi nuclear plant initiated by the Great East Japan Earthquake for two years and published a draft report in July 24, 2014. Investigation results were summarized in nine new findings and made ten recommendations in a wide horizon; (1) hardware countermeasures against severe accidents and training of operators, (2) upgrade of risk assessment capability for beyond design basis accident, (3) incorporation of new information about hazards in safety regulations, (4) needed improvement of off-site emergency preparedness, and (5) improvements of nuclear safety culture. New information about hazards related with tsunami assessment, new risk assessment for beyond design basis accident, advice of foreigner resident evacuations, regulatory capture, and safety culture and regulator's specialty were discussed as Japanese issues. (T. Tanaka)

  9. Epidemiology of occupational accidents in iran based on social security organization database.

    Science.gov (United States)

    Mehrdad, Ramin; Seifmanesh, Shahdokht; Chavoshi, Farzaneh; Aminian, Omid; Izadi, Nazanin

    2014-01-01

    Today, occupational accidents are one of the most important problems in industrial world. Due to lack of appropriate system for registration and reporting, there is no accurate statistics of occupational accidents all over the world especially in developing countries. The aim of this study is epidemiological assessment of occupational accidents in Iran. Information of available occupational accidents in Social Security Organization was extracted from accident reporting and registration forms. In this cross-sectional study, gender, age, economic activity, type of accident and injured body part in 22158 registered accidents during 2008 were described. The occupational accidents rate was 253 in 100,000 workers in 2008. 98.2% of injured workers were men. The mean age of injured workers was 32.07 ± 9.12 years. The highest percentage belonged to age group of 25-34 years old. In our study, most of the accidents occurred in basic metals industry, electrical and non-electrical machines and construction industry. Falling down from height and crush injury were the most prevalent accidents. Upper and lower extremities were the most common injured body parts. Due to the high rate of accidents in metal and construction industries, engineering controls, the use of appropriate protective equipment and safety worker training seems necessary.

  10. Univariate and Cross Tabulation Analysis of Construction Accidents in the Aegean Region

    OpenAIRE

    BARADAN, Selim; AKBOĞA, Özge; ÇETİNKAYA, Ufuk; USMEN, Mümtaz A.

    2016-01-01

    It is crucial toinvestigate case studies and analyze accident statistics to establish safetyand health culture in the construction industry, which exhibits high fatalityrates. However, it is difficult to find reliable and accurate constructionaccidents data in Turkeydue to inadequate accident reporting and recordkeeping system, which hindersstatistical safety research. Therefore, an independent database was generatedby using inspection reports in this research study. Data mining was performed...

  11. System calculations related to the accident at Three-Mile Island using TRAC

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1980-01-01

    The Three Mile Island nuclear plant (Unit 2) was modeled using the Transient Reactor Analysis Code (TRAC-P1A) and a base case calculation, which simulated the initial part of the accident that occurred on March 28, 1979, was performed. In addition to the base case calculation, several parametric calculations were performed in which a single hypothetical change was made in the system conditions, such as assuming the high pressure injection (HPI) system operated as designed rather than as in the accident. Some of the important system parameter comparisons for the base case as well as some of the parametric case results are presented

  12. Severe accidents: in nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    A ''severe'' nuclear accident refers to a reactor accident that could exceed reactor design specifications to such a degree as to prevent cooling of the reactor's core by normal means. This report summarizes the work of a NEA Senior Group of Experts who have studied the potential response of existing light-water reactors to severe accidents and have found that current designs of reactors are far more capable of coping with severe accidents than design specifications would suggest. The report emphasises the specific knowledge and means that can be used for diagnosing a severe accident and for managing its progression in order to prevent or mitigate its consequences

  13. Fukushima Daiichi Nuclear Accident; based on the Final Report of Atomic Energy Society of Japan

    Science.gov (United States)

    Sekimura, Naoto

    2014-09-01

    The Atomic Energy Society of Japan (AESJ) published the Final Report of the AESJ Investigation Committee on Fukushima Daiichi NPS Accident in March 2014. The AESJ is responsible to identify the underlying root causes of the accident through technical surveys and analyses, and to offer solutions for nuclear safety. At the Fukushima Daiichi, Units 1 to 3, which were under operation, were automatically shut down at 14:46 on March 11, 2011 by the Tohoku District-off the Pacific Ocean Earthquake. About 50 minutes later, the tsunami flooded and destroyed the emergency diesel generators, the seawater cooling pumps, the electric wiring system and the DC power for Units 1, 2 and 4, resulting in loss of all power except for an air-cooled emergency diesel generator at Unit 6. Unit 3 lost all AC power, and later lost DC before dawn of March 13. Cooling the reactors and monitoring the results were heavily dependent on electricity for high-pressure water injection, depressurizing the reactor, low pressure water injection, and following continuous cooling. In Unit 3, for example, recent re-evaluation in August 2014 by TEPCO shows that no cooling water was injected into the reactor core region after 8 PM on March 12, leading to the fuel melting from 5:30 AM on March 13. Even though seawater was injected from fire engines afterwards, the rupture of pressure vessel was caused and the majority of melted fuel dropped into the containment vessel of Unit 3. The estimation of amount of radioactive materials such as Xe-133, I-131, Cs-137 and Cs-134, emitted to the environment from Units 1 to 3 is discussed in the presentation. Direct causes of the accident identified in the AESJ Report were, 1) inadequate tsunami measures, 2) inadequate severe accident management measures and 3) inadequate emergency response, post-accident management/mitigation, and recovery measures. These were caused by the following underlying factors, i.e., a) lack of awareness on the roles and responsibilities by

  14. Development of the criticality accident analysis code, AGNES

    International Nuclear Information System (INIS)

    Nakajima, Ken

    1989-01-01

    In the design works for the facilities which handle nuclear fuel, the evaluation of criticality accidents cannot be avoided even if their possibility is as small as negligible. In particular in the system using solution fuel like uranyl nitrate, solution has the property easily becoming dangerous form, and all the past criticality accidents occurred in the case of solution, therefore, the evaluation of criticality accidents becomes the most important item of safety analysis. When a criticality accident occurred in a solution fuel system, due to the generation and movement of radiolysis gas voids, the oscillation of power output and pressure pulses are observed. In order to evaluate the effect of criticality accidents, these output oscillation and pressure pulses must be calculated accurately. For this purpose, the development of the dynamic characteristic code AGNES (Accidentally Generated Nuclear Excursion Simulation code) was carried out. The AGNES is the reactor dynamic characteristic code having two independent void models. Modified energy model and pressure model, and as the benchmark calculation of the AGNES code, the results of the experimental analysis on the CRAC experiment are reported. (K.I.)

  15. Qualitative analysis of the man-organization system in accident conditions for nuclear installations

    International Nuclear Information System (INIS)

    Farcasiu, Mita; Prisecaru, Ilie

    2010-01-01

    In this paper a model of the human performance investigation of accident conditions in the operation of the nuclear installation is developed. A framework for analyses of the human action in the man-organization system context is achieved. The goal of this model is to identify the possible roots causing human errors which could occur during the evolution of the accident by the qualitative analysis of the interfaces in man-organization system. These interfaces represent the main elements which characterize the implication of the organization in human performance. The results of this paper are the interfaces of the man-organization and their circumstances in which human performance could fail. Also, another result is a pre-designed framework which could help in the investigation of an accident. (authors)

  16. Analysis of reactivity accidents in PWR'S

    International Nuclear Information System (INIS)

    Camous, F.; Chesnel, A.

    1989-12-01

    This note describes the French strategy which has consisted, firstly, in examining all the accidents presented in the PWR unit safety reports in order to determine for each parameter the impact on accident consequences of varying the parameter considered, secondly in analyzing the provisions taken into account to restrict variation of this parameter to within an acceptable range and thirdly, in checking that the reliability of these provisions is compatible with the potential consequences of transgression of the authorized limits. Taking into consideration violations of technical operating specifications and/or non-observance of operating procedures, equipment failures, and partial or total unavailability of safety systems, these studies have shown that fuel mechanical strength limits can be reached but that the probability of occurrence of the corresponding events places them in the residual risk field and that it must, in fact, be remembered that there is a wide margin between the design basis accidents and accidents resulting in fuel destruction. However, during the coming year, we still have to analyze scenarios dealing with cumulated events or incidents leading to a reactivity accident. This program will be mainly concerned with the impact of the cases examined relating to dilution incidents under normal operating conditions or accident operating conditions

  17. Report of the activities carried out by the Psychological Support Group in the Goiania radiological accident in Brazil

    International Nuclear Information System (INIS)

    1988-01-01

    The report analyzes the characteristics and attitudes of the population directly involved in the Goiania radiological accident. The inhabitants of the affected area were interviewed in their residence. Factual information about the accidents were given and specific psychological support were received whenever necessary

  18. An Ontology-Underpinned Emergency Response System for Water Pollution Accidents

    Directory of Open Access Journals (Sweden)

    Xiaoliang Meng

    2018-02-01

    Full Text Available With the unceasing development and maturation of environment geographic information system, the response to water pollution accidents has been digitalized through the combination of monitoring sensors, management servers, and application software. However, most of these systems only achieve the basic and general geospatial data management and functional process tasks by adopting mechanistic water-quality models. To satisfy the sustainable monitoring and real-time emergency response application demand of the government and public users, it is a hotspot to study how to make the water pollution information being semantic and make the referred applications intelligent. Thus, the architecture of the ontology-underpinned emergency response system for water pollution accidents is proposed in this paper. This paper also makes a case study for usability testing of the water ontology models, and emergency response rules through an online water pollution emergency response system. The system contributes scientifically to the safety and sustainability of drinking water by providing emergency response and decision-making to the government and public in a timely manner.

  19. A critical assessment of energy accident studies

    International Nuclear Information System (INIS)

    Felder, Frank A.

    2009-01-01

    A comparison of two studies conducted ten years apart on energy accidents provides important insights into methodological issues and policy implications. Recommendations for further improvements in energy accident studies are developed including accounting for differences between average and incremental accident damages, testing for appropriate levels of aggregation of accidents, making references and databases publicly available, more precisely defining and reporting different types of economic damages, accounting for involuntary and voluntary risks, reporting normalized damages, raising broader public policy and planning implications and updating existing accident databases.

  20. A critical assessment of energy accident studies

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Frank A. [Edward J. Bloustein School of Planning and Public Policy, Rutgers, The State University of New Jersey, 33 Livingston Avenue, New Brunswick, NJ 08901 (United States)

    2009-12-15

    A comparison of two studies conducted ten years apart on energy accidents provides important insights into methodological issues and policy implications. Recommendations for further improvements in energy accident studies are developed including accounting for differences between average and incremental accident damages, testing for appropriate levels of aggregation of accidents, making references and databases publicly available, more precisely defining and reporting different types of economic damages, accounting for involuntary and voluntary risks, reporting normalized damages, raising broader public policy and planning implications and updating existing accident databases. (author)

  1. Health effects of the Chernobyl accident and special health care programmes. Report of the UN Chernobyl Forum Expert Group 'Health'

    International Nuclear Information System (INIS)

    Bennett, B.; Repacholi, M.; Carr, Z.

    2006-01-01

    on this information, to provide authoritative statements and recommendations to the Governments of Belarus, the Russian Federation and Ukraine. An additional purpose of the Forum was to provide the information in non-scientific, appropriate languages (Russian and English) to the affected populations. Under the Forum's auspices, the WHO's Radiation and Environmental Health Programme convened a series of international scientific expert meetings. They included scientists of international repute who had been conducting research on Chernobyl. This report is the outcome of WHO's contribution to the Forum. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) review of the scientific literature on Chernobyl health effects published in 2000 was used in this review and updated with more recent information. Many lessons have been learned from the Chernobyl accident and preparations have been made to respond to and mitigate future accidents. An international system of response to nuclear emergencies and radiological accidents has been established, including the WHO Radiation Emergency Medical Preparedness and Response Network. Over the past 20 years, people in the three affected countries have come a long way in Overcoming the consequences of the accident. Providing the public and key professionals with accurate information about the health and environmental consequences of the disaster should be a high priority. This report is the result of a sound scientific evaluation of the available evidence and provides a firm basis for moving forward

  2. Quantitative Safety Impact of Severe Accident Management Systems for EU-APR during Low Power Shutdown Operation

    International Nuclear Information System (INIS)

    Lee, Keunsung; Hwang, Do Hun; Chang, Hyun-bin

    2016-01-01

    In order to enlarge and to diversify the export market of APR1400, the EU-APR design was developed based on the APR1400 design to comply with the latest version of the European Utility Requirements (EUR) revision D. The EU-APR design has the distinguished and advanced severe accident management systems taken from the APR1400 to obtain a containment integrity for the beyond design basis accident, such as the Passive Ex-vessel retaining and Cooling System (PECS), the Severe Accident Containment Spray System (SACSS) and the Containment Filtered Vent System (CFVS). The risk associated with the nuclear power plant can be identified through the Probabilistic Safety Assessment (PSA). In the EUR chapter 1 and 17 of volume 2, the Criteria for Limited Impact (CLI) should be applied to the Level 2 PSA as a risk metrics. The fraction of exceeding CLI for the EU-APR during LPSD operation was calculated as 4.52% of the CDF under the condition that all severe accident management systems are credited. The PECS, SACSS and CFVS are considered as the severe accident management system which is EU-APR dedicated system. The exemption of each system leads to increase the fraction of exceeding CLI to 54.18%, 89.74% and 21.32% respectively. In case if all these systems are unavailable, the fraction of exceeding CLI is increased to 100%. The most effective system is the SACSS that the system reduces containment pressure and temperature

  3. Quantitative Safety Impact of Severe Accident Management Systems for EU-APR during Low Power Shutdown Operation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keunsung; Hwang, Do Hun [KHNP CRI, Daejeon (Korea, Republic of); Chang, Hyun-bin [Future and Challenge Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    In order to enlarge and to diversify the export market of APR1400, the EU-APR design was developed based on the APR1400 design to comply with the latest version of the European Utility Requirements (EUR) revision D. The EU-APR design has the distinguished and advanced severe accident management systems taken from the APR1400 to obtain a containment integrity for the beyond design basis accident, such as the Passive Ex-vessel retaining and Cooling System (PECS), the Severe Accident Containment Spray System (SACSS) and the Containment Filtered Vent System (CFVS). The risk associated with the nuclear power plant can be identified through the Probabilistic Safety Assessment (PSA). In the EUR chapter 1 and 17 of volume 2, the Criteria for Limited Impact (CLI) should be applied to the Level 2 PSA as a risk metrics. The fraction of exceeding CLI for the EU-APR during LPSD operation was calculated as 4.52% of the CDF under the condition that all severe accident management systems are credited. The PECS, SACSS and CFVS are considered as the severe accident management system which is EU-APR dedicated system. The exemption of each system leads to increase the fraction of exceeding CLI to 54.18%, 89.74% and 21.32% respectively. In case if all these systems are unavailable, the fraction of exceeding CLI is increased to 100%. The most effective system is the SACSS that the system reduces containment pressure and temperature.

  4. Trismus: An unusual presentation following road accident

    Directory of Open Access Journals (Sweden)

    Thakur Jagdeep

    2007-01-01

    Full Text Available Trismus due to trauma usually follows road accidents leading to massive faciomaxillary injury. In the literature there is no report of a foreign body causing trismus following a road accident, this rare case is an exception. We present a case of isolated presentation of trismus following a road accident. This case report stresses on the thorough evaluation of patients presenting with trismus following a road accident.

  5. An Accident Precursor Analysis Process Tailored for NASA Space Systems

    Science.gov (United States)

    Groen, Frank; Stamatelatos, Michael; Dezfuli, Homayoon; Maggio, Gaspare

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system and which may differ in frequency or type from those in the various models. These discrepancies between the models (perceived risk) and the system (actual risk) provide the leading indication of an underappreciated risk. This paper presents an APA process developed specifically for NASA Earth-to-Orbit space systems. The purpose of the process is to identify and characterize potential sources of system risk as evidenced by anomalous events which, although not necessarily presenting an immediate safety impact, may indicate that an unknown or insufficiently understood risk-significant condition exists in the system. Such anomalous events are considered accident precursors because they signal the potential for severe consequences that may occur in the future, due to causes that are discernible from their occurrence today. Their early identification allows them to be integrated into the overall system risk model used to intbrm decisions relating to safety.

  6. Pilot Study for the Creation of a European Union Radiation Accident and Incident Data Exchange System (EURAIDE)

    International Nuclear Information System (INIS)

    Stewart, J.E.; Lefaure, C; Czarwinski, R.

    2004-01-01

    This study has had the objective of evaluating the feasibility of: (i) facilitating the establishment of national radiation accident and incident databases where there are none and to encourage the compatibility of such databases, (ii) establishing a European network to exchange radiological protection feedback from accidents and incidents, (iii) establishing summary reports of relevant accidents and incidents with the aim of identifying lessons to be learned, so that they can be used in radiation protection training programs, and (iv) upgrading the radiological safety in the countries applying to join the EU, by integrating them into the above efficient feedback exchange system. This report details the first stage of the project, which was to review the status of existing (or proposed) national mechanisms for collating data on radiation incidents. The objectives of this initial review were to: i) obtain detailed information regarding the means of capturing and collating data, the format of established or proposed data systems and accessibility of the final data, ii) to use this information to consider how a European platform to gather relevant data/accident reports might be established., and iii) to consider how the various elements of national data systems might be harmonised in order to facilitate the presentation and distribution of lessons learned. It was considered that the key aspects that would need to be addressed in order to determine the feasibility of a European wide data exchange mechanism were: - the criteria used for the classification and categorisation of incidents, - criteria for the selection of incidents from national data systems for inclusion in a European-wide system, - the implication of possible language problems. In order to illicit the required information a detailed questionnaire was sent to a total of 31 countries, being existing European Member States, applicant or associated countries. A full list of the countries and institutions

  7. Anatomy of Sodium Hypochlorite Accidents Involving Facial Ecchymosis – A Review

    Science.gov (United States)

    Zhu, Wan-chun; Gyamfi, Jacqueline; Niu, Li-na; Schoeffel, G. John; Liu, Si-ying; Santarcangelo, Filippo; Khan, Sara; Tay, Kelvin C-Y.; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Objectives Root canal treatment forms an essential part of general dental practice. Sodium hypochlorite (NaOCl) is the most commonly used irrigant in endodontics due to its ability to dissolve organic soft tissues in the root canal system and its action as a potent antimicrobial agent. Although NaOCl accidents created by extrusion of the irrigant through root apices are relatively rare and are seldom life-threatening, they do create substantial morbidity when they occur. Methods To date, NaOCl accidents have only been published as isolated case reports. Although previous studies have attempted to summarise the symptoms involved in these case reports, there was no endeavor to analyse the distribution of soft tissue distribution in those reports. In this review, the anatomy of a classical NaOCl accident that involves facial swelling and ecchymosis is discussed. Results By summarising the facial manifestations presented in previous case reports, a novel hypothesis that involves intravenous infusion of extruded NaOCl into the facial vein via non-collapsible venous sinusoids within the cancellous bone is presented. Conclusions Understanding the mechanism involved in precipitating a classic NaOCl accident will enable the profession to make the best decision regarding the choice of irrigant delivery techniques in root canal débridement, and for manufacturers to design and improve their irrigation systems to achieve maximum safety and efficient cleanliness of the root canal system. PMID:23994710

  8. [Implementation of safety devices: biological accident prevention].

    Science.gov (United States)

    Catalán Gómez, M Teresa; Sol Vidiella, Josep; Castellà Castellà, Manel; Castells Bo, Carolina; Losada Pla, Nuria; Espuny, Javier Lluís

    2010-04-01

    Accidental exposures to blood and biological material were the most frequent and potentially serious accidents in healthcare workers, reported in the Prevention of Occupational Risks Unit within 2002. Evaluate the biological percutaneous accidents decrease after a progressive introduction of safety devices. Biological accidents produced between 2.002 and 2.006 were analyzed and reported by the injured healthcare workers to the Level 2b Hospital Prevention of Occupational Risk Unit with 238 beds and 750 employees. The key of the study was the safety devices (peripheral i.v. catheter, needleless i.v. access device and capillary blood collection lancet). Within 2002, 54 percutaneous biological accidents were registered and 19 in 2006, that represents a 64.8% decreased. There has been no safety devices accident reported involving these material. Accidents registered during the implantation period occurred because safety devices were not used at that time. Safety devices have proven to be effective in reducing needle stick percutaneous accidents, so that they are a good choice in the primary prevention of biological accidents contact.

  9. Overview of main accident parameters in car-to-cyclist accidents for use in AEB-system test protocol

    NARCIS (Netherlands)

    Uittenbogaard, J.; Camp, O.M.G.C. op den; Montfort, S. van

    2016-01-01

    The number of fatalities in road traffic accidents in Europe is decreasing. Unfortunately, the number of fatalities among cyclists does not follow this trend with the same rate [1]. The au-tomotive industry is making a significant effort in the development and implementation of safety systems in

  10. THE WORK IN INTERIOR OF BAHIA: ASSESSMENT FOR REPORTING ACCIDENTS AT WORK

    Directory of Open Access Journals (Sweden)

    Cleber Souza de Jesus

    2010-07-01

    Full Text Available The relationship between work and health are interconnected to a variety of situations, characterized by different stages of technological incorporation, multiple forms of organization and management, and a precarious employment relation, reflected on morbidity and mortality of workers. Thus, this study aimed to identify the profile of work accidents from the chips of communication of occupational accidents notified in the regional occupational health center in Jequié/BA. A cross-sectional study was conducted for year 2006. Data analysis was performed with SPSS software 11.0. Were analyzed 141 records of communicationof occupational accidents, of which 57.9% were i ssued by theemployer, there was a male predominance (68.1%, unmarried individuals (52.5% living in urban area (90.8%, with emphasis on the affections of the upper limbs (55.3%. Regarding foroccupational aspects, 63.8% of diagnoses were for neuromuscular disorders. Removals to treatment 85.8% of workers, as well as 48.2% of reports were from the sector of manufacturing industry. Statistically significant association was found between sex and body part affected with the type of accident (p <0.05.Therefore, the composition of the accidents, according to its severity and its various types of classification, have shown that these do not constitute a single and isolated event, being unevenly distributed. It becomes essential the valorization of employee as integral and fundamental part to the economic development process of the country. Public policies to encourage prevention and health promotion in workplaces should be implemented, aiming at a possible change in the scenario of health workers in the interior of Bahia.

  11. 20 years after Chernobyl Accident. Future outlook. National Report of Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Baloga, V I [ed.

    2006-07-01

    The scale of the Chernobyl catastrophe - the most severe man made nuclear accident in the history of mankind - is well known to both scientists and politicians worldwide. The basic causes of the catastrophe were as follows: Conduction an incompletely and incorrectly prepared electrical experiment; The low professional level of operators, and of the NPP management and the officials of the Ministry of Electrification as a whole in the area of NPP safety; Insufficient safety level of the graphite-uranium reactor RBMK-1000; Constructive faults RBMK-1000; Personnel mistakes. The report describes and reviews the actions of the governments of the USSR, Ukraine, and the Verkhovna Rada of Ukraine; the activities of scientists in elimination of the accident consequences; and elimination of the additional experience gained over the past years. Mistakes made during these activities are highlighted.

  12. 20 years after Chernobyl Accident. Future outlook. National Report of Ukraine

    International Nuclear Information System (INIS)

    Baloga, V.I.

    2006-01-01

    The scale of the Chernobyl catastrophe - the most severe man made nuclear accident in the history of mankind - is well known to both scientists and politicians worldwide. The basic causes of the catastrophe were as follows: Conduction an incompletely and incorrectly prepared electrical experiment; The low professional level of operators, and of the NPP management and the officials of the Ministry of Electrification as a whole in the area of NPP safety; Insufficient safety level of the graphite-uranium reactor RBMK-1000; Constructive faults RBMK-1000; Personnel mistakes. The report describes and reviews the actions of the governments of the USSR, Ukraine, and the Verkhovna Rada of Ukraine; the activities of scientists in elimination of the accident consequences; and elimination of the additional experience gained over the past years. Mistakes made during these activities are highlighted

  13. [Nordic accident classification system used in the Danish National Hospital Registration System to register causes of severe traumatic brain injury].

    Science.gov (United States)

    Engberg, Aase Worsaa; Penninga, Elisabeth Irene; Teasdale, Thomas William

    2007-11-05

    The purpose was to illustrate the use of the accident classification system worked out by the Nordic Medico-Statistical Committee (NOMESCO). In particular, registration of causes of severe traumatic brain injury according to the system as part of the Danish National Hospital Registration System was studied. The study comprised 117 patients with very severe traumatic brain injury (TBI) admitted to the Brain Injury Unit of the University Hospital in Hvidovre, Copenhagen, from 1 October 2000 to 30 September 2002. Prospective NOMESCO coding at discharge was compared to independent retrospective coding based on hospital records, and to coding from other wards in the Danish National Hospital Registration System. Furthermore, sets of codes in the Danish National Hospital Registration System for consecutive admissions after a particular accident were compared. Identical results of prospective and independent retrospective coding were found for 65% of 588 single codes, and complete sets of codes for the same accident were identical only in 28% of cases. Sets of codes for the first admission in a hospital course corresponded to retrospective coding at the end of the course in only 17% of cases. Accident code sets from different wards, based on the same injury, were identical in only 7% of cases. Prospective coding by the NOMESCO accident classification system proved problematic, both with regard to correctness and completeness. The system--although logical--seems too complicated compared to the resources invested in the coding. The results of this investigation stress the need for better management and for better instruction to those who carry out the registration.

  14. A Study on the Operation Strategy for Combined Accident including TLOFW accident

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Gook Young; Yoon, Ho Joon

    2014-01-01

    It is difficult for operators to recognize the necessity of a feed-and-bleed (F-B) operation when the loss of coolant accident and failure of secondary side occur. An F-B operation directly cools down the reactor coolant system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. The plant is not always necessary the F-B operation when the secondary side is failed. It is not necessary to initiate an F-B operation in the case of a medium or large break because these cases correspond to low RCS pressure sequences when the secondary side is failed. If the break size is too small to sufficiently decrease the RCS pressure, the F-B operation is necessary. Therefore, in the case of a combined accident including a secondary cooling system failure, the provision of clear information will play a critical role in the operators' decision to initiate an F-B operation. This study focuses on the how we establish the operation strategy for combined accident including the failure of secondary side in consideration of plant and operating conditions. Previous studies have usually focused on accidents involving a TLOFW accident. The plant conditions to make the operators confused seriously are usually the combined accident because the ORP only focuses on a single accident and FRP is less familiar with operators. The relationship between CET and PCT under various plant conditions is important to decide the limitation of initiating the F-B operation to prevent core damage

  15. Case examples of chemical plant accidents. What we learn from them?

    International Nuclear Information System (INIS)

    Nakamura, Masayoshi

    2009-01-01

    Lessons learned from the JCO Nuclear Criticality Accident of 30 September 1999 in a uranium conversion test plant in Tokai-mura, Japan, are reviewed by referring some pertinent matters from the official report of this accident to remind of the universal characteristics among possible accidents of chemical plants. The paper discusses the responsibility of the establishment or institution to the demand alternation or request change from the client, how to respond to the proposal arising from the factory floor, and the safety control system of every-day maintenance of the factory which are important to prevent accidents in chemical plants. After explaining a background leading to the JCO accident, the author summarizes the lessons as follows: (1) changeable control system, (2) perfect provision of the manual considering the actual condition, and (3) clarification of the roles each played by the managers and the workers are most necessary and important. (S. Ohno)

  16. Accidents involving Brazilian indigenous treated at urgent and emergency services of the Unified Health System.

    Science.gov (United States)

    Souza, Edinilsa Ramos de; Njaine, Kathie; Mascarenhas, Márcio Dênis Medeiros; Oliveira, Maria Conceição de

    2016-12-01

    Abstract We analyzed the accidents with Brazilian indigenous treated at urgent and emergency services of the Unified Health System (SUS). Data were obtained from the 2014 Viva Survey, which included 86 services from 24 capitals and the Federal District. The demographic profile of the indigenous, the event and the attendance were characterized. Most of the attended people were male in the 20-39 years age group. Falls and traffic accidents were the main reasons for attendance. Alcohol use was informed by 5.6% of the attended people, a figure that increases to 19.1% in traffic accidents, 26.1% among drivers and 22.8% among motorcyclists. There was a statistical difference between genders in relation to age, disability, place of occurrence of the event, work-related event and victim's condition in the traffic accident. We emphasize the importance of providing visibility to accidents with indigenous and engage them in the prevention of such events. Data reliability depends on the adequate completion in indigenous health information systems.

  17. Nuclear accidents and epidemiology

    International Nuclear Information System (INIS)

    1987-01-01

    A consultation on epidemiology related to the Chernobyl accident was held in Copenhagen in May 1987 as a basis for concerted action. This was followed by a joint IAEA/WHO workshop in Vienna, which reviewed appropriate methodologies for possible long-term effects of radiation following nuclear accidents. The reports of these two meetings are included in this volume, and cover the subjects: 1) Epidemiology related to the Chernobyl nuclear accident. 2) Appropriate methodologies for studying possible long-term effects of radiation on individuals exposed in a nuclear accident. Figs and tabs

  18. Analysis of rail accident frequencies and severities for the assessment of radioactive material transport risk - Summary report

    International Nuclear Information System (INIS)

    Heywood, J.D.; Schwartz, G.; Fett, J.

    2001-01-01

    This shortened version of the final contractual report to the European Commission DGXVII summarises the work performed and the conclusions drawn from consideration, comparison and analysis of transport accident frequency and severity assessment methods for radioactive material transport by rail. This paper aims to provide an introduction to the study whose final report is 155 pages in length. The findings are based on a comprehensive review of transport risk assessment methods and related databases available to EU member states. The emphasis has been on the probabilistic accident severity and frequency assessment methodologies developed and used by the organisations involved in this EU-funded research project - AEA Technology and GRS. The results should be of major assistance in the understanding and development of standardised quantitative risk assessment models. Further work is suggested to underpin the development of a harmonised accident methodology including the collection of more detailed rail data and analysis on a year by year basis as well as further consideration of the assumptions made for fire accident scenarios. (author)

  19. SAMEX: A severe accident management support expert

    International Nuclear Information System (INIS)

    Park, Soo-Yong; Ahn, Kwang-Il

    2010-01-01

    A decision support system for use in a severe accident management following an incident at a nuclear power plant is being developed which is aided by a severe accident risk database module and a severe accident management simulation module. The severe accident management support expert (SAMEX) system can provide the various types of diagnostic and predictive assistance based on the real-time plant specific safety parameters. It consists of four major modules as sub-systems: (a) severe accident risk data base module (SARDB), (b) risk-informed severe accident risk data base management module (RI-SARD), (c) severe accident management simulation module (SAMS), and (d) on-line severe accident management guidance module (on-line SAMG). The modules are integrated into a code package that executes within a WINDOWS XP operating environment, using extensive user friendly graphics control. In Korea, the integrated approach of the decision support system is being carried out under the nuclear R and D program planned by the Korean Ministry of Education, Science and Technology (MEST). An objective of the project is to develop the support system which can show a theoretical possibility. If the system is feasible, the project team will recommend the radiation protection technical support center of a national regulatory body to implement a plant specific system, which is applicable to a real accident, for the purpose of immediate and various diagnosis based on the given plant status information and of prediction of an expected accident progression under a severe accident situation.

  20. Flamanville plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Flamanville plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 2 parts: one part dedicated to the first 2 reactors of the plant and the second part to the EPR that is being built. Each part is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  1. A Review of Criticality Accidents 2000 Revision

    Energy Technology Data Exchange (ETDEWEB)

    Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost; Vladimir V. Frolov; Boris G. Ryazanov; Victor I. Sviridov

    2000-05-01

    Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.

  2. A Review of Criticality Accidents 2000 Revision

    International Nuclear Information System (INIS)

    McLaughlin, Thomas P.; Monahan, Shean P.; Pruvost, Norman L.; Frolov, Vladimir V.; Ryazanov, Boris G.; Sviridov, Victor I.

    2000-01-01

    Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report

  3. 75 FR 25137 - Changes to Standard Numbering System, Vessel Identification System, and Boating Accident Report...

    Science.gov (United States)

    2010-05-07

    ...-2003-14963] RIN 1625-AB45 Changes to Standard Numbering System, Vessel Identification System, and... System (SNS), the Vessel Identification System (VIS), and casualty reporting; require validation of... Standard Numbering System U.S.C. United States Code VIS Vessel Identification System III. Background Coast...

  4. Managing severe reactor accidents. A review and evaluation of our knowledge on reactor accidents and accident management

    International Nuclear Information System (INIS)

    Gustavsson, Veine

    2002-11-01

    The report gives a review of the results from the last years research on severe reactor accidents, and an opinion on the possibilities to refine the present strategies for accident management in Swedish and Finnish BWRs. The following aspect of reactor accidents are the major themes of the study: 1. Early pressure relief from hydrogen production; 2. Recriticality in re-flooded, degraded core; 3. Melt-through; 4. Steam explosion after melt-through; 5. Coolability of the melt after after melt-through; 6. Hydrogen fire in the reactor containment; 7. Leaking containment; 8. Hydrogen fire in the reactor building; 9. Long-time developments after a severe accident; 10. Accidents during shutdown for overhaul; 11. Information need for remedial actions. Possibilities for improving the strategies in each of these areas are discussed. The review shows that our knowledge is sufficient in the areas 1, 2, 4, 6, 8. For the other areas, more research is needed

  5. Dampierre-en-Burly plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Dampierre-en-Burly plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  6. Belleville-sur-Loire plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Belleville-sur-Loire plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  7. Nogent-sur-Seine plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Nogent-sur-Seine plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  8. Chemical dosimetry system for criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  9. Evaluation of decision support systems for nuclear accidents

    International Nuclear Information System (INIS)

    Sdouz, G.; Mueck, K.

    1998-05-01

    In order to adopt countermeasures to protect the public after an accident in a nuclear power plant in an appropriate and optimum way, decision support systems offer a valuable assistance in supporting the decision maker in choosing and optimizing protective actions. Such decision support systems may range from simple systems to accumulate relevant parameters for the evaluation of the situation over prediction models for the rapid evaluation of the dose to be expected to systems which permit the evaluation and comparison of possible countermeasures. Since the establishment of a decision support systems obviously is also required in Austria, an evaluation of systems available or in the state of development in other countries or unions was performed. The aim was to determine the availability of decision support systems in various countries and to evaluate them with regard to depth and extent of the system. The evaluation showed that in most industrialized countries the requirement for a decision support system was realized, but in only few countries actual systems are readily available and operable. Most systems are limited to early phase consequences, i.e. dispersion calculations of calculated source terms and the estimation of exposure in the vicinity of the plant. Only few systems offer the possibility to predict long-term exposures by ingestion. Few systems permit also an evaluation of potential countermeasures, in most cases, however, limited to a few short-term countermeasures. Only one system which is presently not operable allows the evaluation of a large number of agricultural countermeasures. In this report the different systems are compared. The requirements with regard to an Austrian decision support system are defined and consequences for a possible utilization of a DSS or parts thereof for the Austrian decision support system are derived. (author)

  10. Possibility of the development of a Serbian protection system against chemical accidents

    Directory of Open Access Journals (Sweden)

    Dejan R. Inđić

    2012-10-01

    Full Text Available The paper presents a draft of a system model for responding in case of chemical accidents in accordance with the current legislation regarding the environment protection, the structure and elements of the existing response system in case of chemical accidents, other works dealing with the issue as well as the prospects planned by those responsible for the environmental protection. The paper discuss the possibilities of different institutions and agencies of the Republic of Serbia to engage in specialized methods of cooperation and protection against chemical hazards in accordance with Article X of the Convention on the Prohibition of Chemical Weapons.

  11. Severe accident management. Prevention and Mitigation

    International Nuclear Information System (INIS)

    1992-01-01

    Effective planning for the management of severe accidents at nuclear power plants can produce both a reduction in the frequency of such accidents as well as the ability to mitigate their consequences if and when they should occur. This report provides an overview of accident management activities in OECD countries. It also presents the conclusions of a group of international experts regarding the development of accident management methods, the integration of accident management planning into reactor operations, and the benefits of accident management

  12. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  13. Models and criteria for prediction of Deflagration-to-Detonation Transition (DDT) in hydrogen-air-steam systems under severe accident conditions. Final report

    International Nuclear Information System (INIS)

    Klein, R.; Rehm, W.

    1999-01-01

    The European Commission in Brussels supported a joint project on Deflagration-to-Detonation Transition (DDT) studies for hydrogen safety within the framework programme on nuclear fission safety. The project was initiated by the Forschungszentrum Juelich based on the results of a pilot project. The following main project was coordinated by the Freie Universitaet Berlin involving seven european partners. The partners came from universities, research centers and industry, as follows: FU-Berlin, RWTH-Aachen, CNRS-Marseille, IPSN-Saclay, FZ-Juelich, FZ-Karlsruhe, and NNC-Knutsford, which worked closely together. The working period was two years (1997-1998). The aim of the project was to develop models and criteria for prediction of deflagration-to-detonation transition (DDT) in hydrogen-air-steam systems under severe accident conditions. The results obtained are documented in this final report, which was finished in 1999. The report consists of seven chapters, concerning: - Introduction - Experimental Investigations - Modelling and Numerics - Validation - Mitigation - Further Deliverables - Summary and Conclusion. The final report presents special experimental, theoretical, and computational aspects of the complex DDT phenomena for hydrogen safety studies, and it should be a solid basis for end user applications and further developments. (orig.)

  14. The development of a nuclear accident risk information system(NARIS)

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Jung, Won Dea

    2001-03-01

    The computerized system, NARIS(Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analysis of the distribution of the health effects.The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system.

  15. The development of a nuclear accident risk information system(NARIS)

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Jung, Won Dea [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The computerized system, NARIS(Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analysis of the distribution of the health effects.The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system. 23 figs., 1 tab. (Author)

  16. The development of a nuclear accident risk information system(NARIS)

    International Nuclear Information System (INIS)

    Jeong, Jong Tae; Jung, Won Dea

    2001-03-01

    The computerized system, NARIS(Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analysis of the distribution of the health effects.The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system

  17. Epidemiology of Occupational Accidents in Iran Based on Social Security Organization Database

    Science.gov (United States)

    Mehrdad, Ramin; Seifmanesh, Shahdokht; Chavoshi, Farzaneh; Aminian, Omid; Izadi, Nazanin

    2014-01-01

    Background: Background: Today, occupational accidents are one of the most important problems in industrial world. Due to lack of appropriate system for registration and reporting, there is no accurate statistics of occupational accidents all over the world especially in developing countries. Objectives: The aim of this study is epidemiological assessment of occupational accidents in Iran. Materials and Methods: Information of available occupational accidents in Social Security Organization was extracted from accident reporting and registration forms. In this cross-sectional study, gender, age, economic activity, type of accident and injured body part in 22158 registered accidents during 2008 were described. Results: The occupational accidents rate was 253 in 100,000 workers in 2008. 98.2% of injured workers were men. The mean age of injured workers was 32.07 ± 9.12 years. The highest percentage belonged to age group of 25-34 years old. In our study, most of the accidents occurred in basic metals industry, electrical and non-electrical machines and construction industry. Falling down from height and crush injury were the most prevalent accidents. Upper and lower extremities were the most common injured body parts. Conclusion: Due to the high rate of accidents in metal and construction industries, engineering controls, the use of appropriate protective equipment and safety worker training seems necessary. PMID:24719699

  18. Technique of research of severe accidents and substantiation of safety of nuclear systems

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Tchenov, S.V.

    2001-01-01

    Work is devoted to development of possible ways of solution of the problems of nuclear safety substantiation. We believe that safety in severe accidents is one of significant factors, which restrict value of nuclear industry in future power production. In connection with it we can conclude followed items: -) Substantiation of safety in severe accidents in nuclear system should be built on a deterministic way of guaranteed exception of heavy consequences; -) It is easy that this aim can be achieved by modeling in functions of common type; -) Main purpose of this work is to show that it is possible to estimate physical allowed state of system in emergency and find of trajectory of heaviest scenarios by optimization procedure; and -) In this work we have developed new method and computer code purposed for study of accident conditions of water cooled un-managed nuclear systems such as cooling ponds of spent fuel, experimental facilities etc. (authors)

  19. Development of a prototype graphic simulation program for severe accident training

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo

    2000-05-01

    This is a report of the development process and related technologies of severe accident graphic simulators, required in industrial severe accident management and training. Here, we say 'a severe accident graphic simulator' as a graphics add-in system to existing calculation codes, which can show the severe accident phenomena dynamically on computer screens and therefore which can supplement one of main defects of existing calculation codes. With graphic simulators it is fairly easy to see the total behavior of nuclear power plants, where it was very difficult to see only from partial variable numerical information. Moreover, the fast processing and control feature of a graphic simulator can give some opportunities of predicting the severe accident advancement among several possibilities, to one who is not an expert. Utilizing graphic simulators' we expect operators' and TSC members' physical phenomena understanding enhancement from the realistic dynamic behavior of plants. We also expect that severe accident training course can gain better training effects using graphic simulator's control functions and predicting capabilities, and therefore we expect that graphic simulators will be effective decision-aids tools both in sever accident training course and in real severe accident situations. With these in mind, we have developed a prototype graphic simulator having surveyed related technologies, and from this development experiences we have inspected the possibility to build a severe accident graphic simulator. The prototype graphic simulator is developed under IBM PC WinNT environments and is suited to Uljin 3and4 nuclear power plant. When supplied with adequate severe accident scenario as an input, the prototype can provide graphical simulations of plant safety systems' dynamic behaviors. The prototype is composed of several different modules, which are phenomena display module, MELCOR data interface module and graphic database

  20. The Human Aspect of the Fukushima Daiichi Accident

    International Nuclear Information System (INIS)

    Anegawa, T.; Kawano, A.

    2016-01-01

    Recognizing itself as the main party involved in the nuclear accident triggered by the Tohoku-Chihou-Taiheiyo-Oki Earthquake on March 11, 2011, Tokyo Electric Power Company (TEPCO) has performed accident investigation from various aspects. Results of the investigation are reported mainly in two reports; (1) Fukushima Nuclear Accident Analysis Report (June 20, 2012), which identified the timeline and the proximate causes of the accident, and (2) Summary of Fukushima Nuclear Accident and Nuclear Safety Reform Plan (March 29, 2013) to set forth the results of the investigation and provide an analysis of the background factors surrounding the accident and countermeasures taken. This presentation will first provide overview of the accident response at Fukushima Daiichi and Daini Nuclear Power Stations. Voices from the first responders at the sites will be introduced in order to share thoughts of individuals involved in the emergency response. Summary of retrospective study of the accident by one of the shift supervisors at the time of the accident will be presented in order to share the facts that happened at main control rooms. The shift supervisor and his crew had to manage the situation for extended period of time that exceeded the scenarios that they had been trained, in a situation with no lightning and high radiation condition. During the accident response, shift supervisors had to decide to dispatch some of his crew members to the field to open valves, check the status of equipment etc., in the situation where the high radiation exposure is foreseen. The presentation will include conflict of shift supervisors and crew focusing on the human aspects. In addition, actions being taken at the Emergency Response Centers (ERC) set up at the seismic-isolated building on-site and the Headquarters in Tokyo will be shared focusing on the human aspects related to the accident progress. This includes difficult decisions to dispatch first responders to the field, in the

  1. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  2. Modular telerobot control system for accident response

    Science.gov (United States)

    Anderson, Richard J. M.; Shirey, David L.

    1999-08-01

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.

  3. Progress summary of the Chernobyl accident

    International Nuclear Information System (INIS)

    Iddekinge, F.W. van

    1986-01-01

    Based on two IAEA documents (the report of the USSR State Committee on the Utilization of Atomic Energy named 'The accident at the Chernobyl nuclear power plant and its consequences' prepared for the IAEA Experts Meeting held in Vienna on 25-29 August, 1986 and the INSAG (International Nuclear Safety Advisory Group) summary report on the Post-accident review meeting on the Chernobyl accident, drawn up in Vienna from August 30 until September 5, 1986, this publication tries to present a logic relation between the special features of the RMBK-1000 LWGR, the cause of the accident, and the technical countermeasures. (Auth.)

  4. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  5. Probabilistic accident consequence uncertainty analysis: Food chain uncertainty assessment. Volume 1: Main report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J. [National Radiological Protection Board (United Kingdom); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)] [and others

    1997-06-01

    This volume is the first of a two-volume document that summarizes a joint project conducted by the US Nuclear Regulatory Commission and the European Commission to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This document reports on an ongoing project to assess uncertainty in the MACCS and COSYMA calculations for the offsite consequences of radionuclide releases by hypothetical nuclear power plant accidents. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain variables that affect calculations of offsite consequences. The expert judgment elicitation procedure and its outcomes are described in these volumes. Other panels were formed to consider uncertainty in other aspects of the codes. Their results are described in companion reports. Volume 1 contains background information and a complete description of the joint consequence uncertainty study. Volume 2 contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures for both panels, (3) the rationales and results for the panels on soil and plant transfer and animal transfer, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  6. Probabilistic accident consequence uncertainty analysis: Food chain uncertainty assessment. Volume 1: Main report

    International Nuclear Information System (INIS)

    Brown, J.; Goossens, L.H.J.; Kraan, B.C.P.

    1997-06-01

    This volume is the first of a two-volume document that summarizes a joint project conducted by the US Nuclear Regulatory Commission and the European Commission to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This document reports on an ongoing project to assess uncertainty in the MACCS and COSYMA calculations for the offsite consequences of radionuclide releases by hypothetical nuclear power plant accidents. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain variables that affect calculations of offsite consequences. The expert judgment elicitation procedure and its outcomes are described in these volumes. Other panels were formed to consider uncertainty in other aspects of the codes. Their results are described in companion reports. Volume 1 contains background information and a complete description of the joint consequence uncertainty study. Volume 2 contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures for both panels, (3) the rationales and results for the panels on soil and plant transfer and animal transfer, (4) short biographies of the experts, and (5) the aggregated results of their responses

  7. Characteristics of Hydrogen Monitoring Systems for Severe Accident Management at a Nuclear Power Plant

    Science.gov (United States)

    Petrosyan, V. G.; Yeghoyan, E. A.; Grigoryan, A. D.; Petrosyan, A. P.; Movsisyan, M. R.

    2018-02-01

    One of the main objectives of severe accident management at a nuclear power plant is to protect the integrity of the containment, for which the most serious threat is possible ignition of the generated hydrogen. There should be a monitoring system providing information support of NPP personnel, ensuring data on the current state of a containment gaseous environment and trends in its composition changes. Monitoring systems' requisite characteristics definition issues are considered by the example of a particular power unit. Major characteristics important for proper information support are discussed. Some features of progression of severe accident scenarios at considered power unit are described and a possible influence of the hydrogen concentration monitoring system performance on the information support reliability in a severe accident is analyzed. The analysis results show that the following technical characteristics of the combustible gas monitoring systems are important for the proper information support of NPP personnel in the event of a severe accident at a nuclear power plant: measured parameters, measuring ranges and errors, update rate, minimum detectable concentration of combustible gas, monitoring reference points, environmental qualification parameters of the system components. For NPP power units with WWER-440/270 (230) type reactors, which have a relatively small containment volume, the update period for measurement results is a critical characteristic of the containment combustible gas monitoring system, and the choice of monitoring reference points should be focused not so much on the definition of places of possible hydrogen pockets but rather on the definition of places of a possible combustible mixture formation. It may be necessary for the above-mentioned power units to include in the emergency operating procedures measures aimed at a timely heat removal reduction from the containment environment if there are signs of a severe accident phase

  8. Reference accident (Core disruption accident - safety analysis detailed report no. 11)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-15

    The PEC safety analysis led to the conclusion that all credible sequences (incident sequences characterized by a frequency of occurrence above 10/sup minus 7/ events per year) are limited to the design basis conditions of components of the plant protection systems, and that none of them leads to a release of mechanical energy or to an extensive damage of the core and primary containment structures event in the case of failure to scram. Nevertheless, as is done in other countries for similar reactors, some events beyond the limits of credibility were considered for the PEC reactor. These were defined on a absolutely hypothetical basis that involves severe core disruption and dynamic loading of primary containment boundary. A series of containments, each having a different role, was designed to mitigate the radiological effects of a postulated core disruptive accident. The final aim was to demonstrate that residual heat can be removed and that the release of radioactivity to the environment is within acceptable limits.

  9. Summary of the foreign countries reports on the Fukushima Daiichi Nuclear Power Plants accident, on the lessons learnt and recommendation

    International Nuclear Information System (INIS)

    Nariai, Hideki

    2017-01-01

    This paper focused on the lessons and recommendations from the accident investigation reports prepared by the National Academy of Sciences (NAS), IAEA, and OECD/NEA on the accident of Fukushima Daiichi Nuclear Power Station associated with the Great East Japan Earthquake. (1) As for the causes of the accident, the IAEA report pointed out as a technical factor that Japan's scientists did not think that the earthquake occurrence probability of the magnitude 9 as an external event was high. As for tsunami countermeasures, it reported that accident countermeasures would have been easier if only seawater pump flood protection and the high-elevation positioning of emergency power supply etc. were prepared. As for human organizational factor, it pointed out that nuclear regulations were performed by many divided organizations, and responsibility and authority were not clear. The NAS report pointed out that the regulatory agency and nuclear promotion agency were not functionally separated, and that the regulatory agency was not independent as a result of the relationship between the Japanese government agency and companies, and the agency became a captive of regulations. The following items were also reported; (2) safety measures and emergency preparedness, (3) off-site response during emergency, (4) radiation effects, (5) restoration after the accident, (6) international issues, and (7) issues of the spent fuel storage pool of NAS. Japan established the Nuclear Regulation Authority by integrating related organizations, but how to create a regulatory agency with advanced expertise is the future task. (A.O.)

  10. 49 CFR 225.19 - Primary groups of accidents/incidents.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Primary groups of accidents/incidents. 225.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD ACCIDENTS/INCIDENTS: REPORTS CLASSIFICATION, AND INVESTIGATIONS § 225.19 Primary groups of accidents/incidents. (a) For reporting purposes reportable railroad...

  11. [Analisys of work-related accidents and incidents in an oil refinery in Rio de Janeiro].

    Science.gov (United States)

    de Souza, Carlos Augusto Vaz; de Freitas, Carlos Machado

    2003-01-01

    Accidents in the chemical industry can have serious consequences for workers, communities, and the environment and are thus highly relevant to public health. This article is the result of an occupational surveillance project involving several public institutions. We analyze 800 work-related accidents that resulted in injuries, environmental damage, or loss of production in 1997 in an oil refinery located in Rio de Janeiro, Brazil. The methodology was based on managerial and organizational approaches to accident investigation, with the European Union reporting system as the reference. The results highlight various limitations in the process of reporting and investigating accidents, as well as a certain hierarchy of accidents, with more attention given to accidents involving loss of production and less to those resulting in injuries, particularly among outsourced workers.

  12. The scenario-based system of workers training to prevent accidents during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, DongJun; Lee, JongHwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok

    2014-01-01

    Highlights: • This paper is meant to develop the training system to prevent accidents during decommissioning of nuclear facilities. • Requirements of the system were suggested. • Data management modules of the system were designed. • The system was developed on virtual reality environment. - Abstract: This paper is meant to develop the training system to prevent accidents during decommissioning of nuclear facilities. Requirements of the system were suggested. Data management modules of the system were designed. The system was developed on virtual reality environment. The performance test of the system was proved to be appropriate to decommissioning of nuclear facilities

  13. Errors in accident data, its types, causes and methods of rectification-analysis of the literature.

    Science.gov (United States)

    Ahmed, Ashar; Sadullah, Ahmad Farhan Mohd; Yahya, Ahmad Shukri

    2017-07-29

    Most of the decisions taken to improve road safety are based on accident data, which makes it the back bone of any country's road safety system. Errors in this data will lead to misidentification of black spots and hazardous road segments, projection of false estimates pertinent to accidents and fatality rates, and detection of wrong parameters responsible for accident occurrence, thereby making the entire road safety exercise ineffective. Its extent varies from country to country depending upon various factors. Knowing the type of error in the accident data and the factors causing it enables the application of the correct method for its rectification. Therefore there is a need for a systematic literature review that addresses the topic at a global level. This paper fulfils the above research gap by providing a synthesis of literature for the different types of errors found in the accident data of 46 countries across the six regions of the world. The errors are classified and discussed with respect to each type and analysed with respect to income level; assessment with regard to the magnitude for each type is provided; followed by the different causes that result in their occurrence, and the various methods used to address each type of error. Among high-income countries the extent of error in reporting slight, severe, non-fatal and fatal injury accidents varied between 39-82%, 16-52%, 12-84%, and 0-31% respectively. For middle-income countries the error for the same categories varied between 93-98%, 32.5-96%, 34-99% and 0.5-89.5% respectively. The only four studies available for low-income countries showed that the error in reporting non-fatal and fatal accidents varied between 69-80% and 0-61% respectively. The logistic relation of error in accident data reporting, dichotomised at 50%, indicated that as the income level of a country increases the probability of having less error in accident data also increases. Average error in recording information related to the

  14. Development of training system to prevent accidents during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, Geunho; Seo, Jaeseok

    2014-01-01

    Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities

  15. Development of training system to prevent accidents during decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, Geunho; Seo, Jaeseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities.

  16. Analysis of Three Mile Island - Unit 2 accident

    International Nuclear Information System (INIS)

    1979-07-01

    The Nuclear Safety Analysis Center (NSAC) of the Electric Power Research Institute is analyzing the Three Mile Island-2 accident. An early result of this analysis was a brief narrative summary, issued in mid May 1979. The present report contains a revised version of that narrative summary, a highly detailed sequence of events, a standard reference list, a list of abbreviations and acronyms, and several appendices. The appendices serve either to describe plant features which are pertinent to the understanding of the sequence of events, or indicate how certain inferences and conclusions in the report were reached. Supplementing the appendices contained herein, additional appendices are in preparation; these will be issued when available (e.g., the appendices Hydrogen Phenomena and Operator Actions during Initial Transient will follow later). Also in preparation is a matrix of equipment and systems actions during the accident. This report together with future supplements and a separate Core Damage Assessment report, will embody the principal results of that phase of NSAC work which is devoted to learning and understanding what happened during the accident. Subsequent phases will concentrate on causes, lessons learned and generic remedial or preventive measures which may be appropriate

  17. Analysis of Three Mile Island-Unit 2 accident

    International Nuclear Information System (INIS)

    1979-07-01

    The Nuclear Safety Analysis Center (NSAC) of the Electic Power Research Institute is analyzing the Three Mile Island-2 accident. An early result of this analysis was a brief narrative summary, issued in mid-May 1979. The present report contains a revised version of that narrative summary, a highly detailed sequence of events, a standard reference list, a list of abbreviations and acronyms, and several appendices. The appendices serve either to describe plant features which are pertinent to the understanding of the sequence of events, or indicate how certain inferences and conclusions in the report were reached. Supplementing the appendices contained herein, additional appendices are in preparation; these will be issued when available (e.g., the appendices Hydrogen Phenomena and Operator Actions duing Initial Transient will follow later). Also in preparation is a matrix of equipment and systems actions during the accident. This report together with future supplements and a separate Core Damage Assessment report, will embody the principal results of that phase of NSAC's work which is devoted to learning and understanding what happened during the accident. Subsequent phases will concentrate on causes, lessons learned and generic remedial or preventive measures which may be appropriate

  18. Bubble-vacuum system of accident localization of reference nuclear power plant with two WWER's

    International Nuclear Information System (INIS)

    Sykora, D.; Sykorova, I.

    1988-01-01

    Higher efficiency of the safety system for removing the consequences of project design accidents and higher radiation safety of a nuclear power plant with two WWER-440 units is the subject of Czechoslovak patent document 243961. The principle consists in interconnecting air chambers which are the end parts of safety systems for the two units. The air chamber is separated from the other parts of the safety system by double swing-check valves or closures. The connecting pipes of the two air chambers do not in any way reduce the reliability of the safety system thanks to their high technical safety and totally passive function. The benefits of the interconnection of the air chambers are given by the fact that it reduces maximum accident overpressure both in the air chambers and in the airtight zones. The reduction of the overpressure reduces the total leakage of radioactive substances and the radiation burden of the environment in case of a nuclear power plant accident. (Z.M.). 2 figs

  19. Application of the accident management information needs methodology to a severe accident sequence

    International Nuclear Information System (INIS)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R.; Solberg, D.E.

    1989-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe accident research results to enhance the capability of plant operating personnel to effectively manage severe accidents. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed as part of the research program designed to resolve this issue. The methodology identifies the information needs of the plant personnel during a wide range of accident conditions, the existing plant measurements capable of supplying these information needs and what, if any minor additions to instrument and display systems would enhance the capability to manage accidents, known limitations on the capability of these measurements to function properly under the conditions that will be present during a wide range of severe accidents, and areas in which the information systems could mislead plant personnel. This paper presents an application of this methodology to a severe accident sequence to demonstrate its use in identifying the information which is available for management of the event. The methodology has been applied to a severe accident sequence in a Pressurized Water Reactor with a large dry containment. An examination of the capability of the existing measurements was then performed to determine whether the information needs can be supplied

  20. IAEA report on the Fukushima-Daiichi accident and safety standards

    International Nuclear Information System (INIS)

    Mizumachi, Wataru

    2011-01-01

    On March 11th, 2011, 4th largest earthquake attacked Fukushima Nuclear Power Plant and around one hour later, the enormous Tsunami attacked it also. After the large earthquake attacked, the automatic shutdown was performed and the emergency diesel generators automatically started and Isolation condenser cooled down the core for unit 1 and RCIC cooled down the cores for unit 2 and 3. However, the large Tsunami damaged all emergency diesel generators and all ECCS pumps. The core melted and the hydrogen gas were generated by the steam and the zircaloy reaction. The hydrogen leaked into the reactor building and then the reactor building blasted by the hydrogen. IAEA has organized the Great East Japan Earthquake Expert Mission on Fukushima-daiichi accident and they reported to the formal meeting in the headquater in Viena. They made 15 conclusions and 16 lessons and learned. IAEA chairman officially summarized 28 recommendations from them. USNRC published 'Recommendations for Enhanuing Reactor Safety in the 21st Century 'where they summarized 12 Recommendations on Fukushima Accident. Here is the summary of these recommendations. (author)

  1. NIF: Impacts of chemical accidents and comparison of chemical/radiological accident approaches

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Rhodes, M.

    1996-01-01

    The US Department of Energy (DOE) proposes to construct and operate the National Ignition Facility (NIF). The goals of the NIF are to (1) achieve fusion ignition in the laboratory for the first time by using inertial confinement fusion (ICF) technology based on an advanced-design neodymium glass solid-state laser, and (2) conduct high-energy-density experiments in support of national security and civilian applications. The primary focus of this paper is worker-public health and safety issues associated with postulated chemical accidents during the operation of NIF. The key findings from the accident analysis will be presented. Although NIF chemical accidents will be emphasized, the important differences between chemical and radiological accident analysis approaches and the metrics for reporting results will be highlighted. These differences are common EIS facility and transportation accident assessments

  2. Steering committee for the management of the post-accidental phase of a nuclear accident or of a radiological situation (CODIRPA). Work group nr 4. Response to health challenges after a radiological accident - Stage report issue nr 2 of 2007 November 5; Synthesis of doctrinal elements and recommendations; Consultative meeting - February 2009; Final report March 2011; Report synthesis

    International Nuclear Information System (INIS)

    Bernier, Marie-Odile; Challeton-de Vathaire, Cecile; Catelinois, Olivier; Pirard, Philippe; Collignon, Albert; Corblet, Sibylle; Empereur Bissonnet, Pascal; Fite, Johanna; Mehl Auget, Isabelle; Fleutot, Jean-Baptiste; Gavel, Yves; Geis-Bonnemains, Nathalie; Geneau, Christian; Guagniere, Bertrand; Janin, Claire; Lang, Thierry; Marielle, Schmitt; N'Diaye, Bakhao; Raoul, Christophe; Ricoux, Christine; Schwoebel, Valerie; Telion, Caroline; Tillier, Claude; Verger, Pierre; Volant, Philippe

    2007-01-01

    A first report describes effects of radiological accidents on health, and possible scenarios (dose assessments, exposed population, health challenges), gives an overview of methods and arrangements used to count exposed populations and to assess received doses, and presents the foreseen reception centres. It describes the health management organisation (medical and psychological care of exposed population, public information), and reports an analysis of health risks associated with the accident. The next document contains a synthesis of doctrinal elements and recommendations regarding information acquisition, the management of health consequences of the accident, the assessment of the health impact. Propositions made by the work group to face health challenges are presented in a Power Point presentation. The final report addresses the context of preparation of the response to a radiological accident in France (studied accidents and scenarios, public health challenges), proposes a chronological synthesis of actions to be undertaken during a preparation phase, an emergency phase, a transition phase, and a long term phase), and a detailed presentation of main actions to be undertaken (medical and psychological care, reception centres, counting, health risk analysis, health information)

  3. Evaluation of severe accident risks, Grand Gulf, Unit 1: Appendices

    International Nuclear Information System (INIS)

    Brown, T.D.; Breeding, R.J.; Jow, H.N.; Higgins, S.J.; Shiver, A.W.; Helton, J.C.; Amos, C.N.

    1990-12-01

    In support of the Nuclear Regulatory Commission's (NRC's) assessment of the risk from severe accidents at commercial nuclear power plants in the US report in NUREG-1150, the Severe Accident Risk Reduction Program (SARRP) has completed a revised calculation of the risk to the general public from severe accidents at the Grand Gulf Nuclear Station, Unit 1. This power plant, located in Port Gibson, Mississippi, is operated by the System Energy Resources, Inc. (SERI). The emphasis in this risk analysis was not on determining a ''so-called'' point estimate of risk. Rather, it was to determine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution. Off-site risk initiated by events internal to the power plant was assessed. This document provides Appendices A through E for this report. Topics included are, respectively: supporting information for the accident progression analysis; supporting information for the source term analysis; supporting information for the consequence analysis; risk results; and sampling information

  4. LOA-1: prevent accidents. Quarterly technical progress report, FRSP program - July through September 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Information related to LMFBR reactor safety is presented concerning common cause failures; shutdown by self-activated system; shutdown heat removal system operation; sodium burning; core catcher material interactions; accident release of sodium oxide aerosol; and LMFBR risk assessment

  5. Assessment of PASS Effectiveness under Severe Accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Yu Jung; Lee, Sung Bok; Kim, Hyeong Taek; Lee, Jin Yong

    2008-01-01

    Following the accident at Three Mile Island Unit 2 (TMI-2) on March 28, 1979, the USNRC formed a lessons-learned Task Force to identify and evaluate safety concerns originating with the TMI-2 accident. NUREG-0578 documented the results of the task force effort. One of the recommendations of the task force was for licensees to upgrade the capability to obtain samples from the reactor coolant system and containment atmosphere under high radioactivity conditions and to provide the capability for chemical and spectral analyses of high-level samples on site. NUREG-0737 contained the details of the TMI recommendations that were to be implemented by the licensees. Additional criteria for post accident sampling system(PASS) were issued by Regulatory Guide 1.97. As the results, PASS has been installed on nuclear power plants(NPPs) in Korea as well as United States. However, significant improvements have been achieved since the TMI-2 accident in the areas of understanding risks associated with nuclear plant operations and developing better strategies for managing the response to potential severe accidents at NPPs. Thus, the requirements for PASS have been re-evaluated in some reports. According to the reports, the samples and measurements from PASS do not contribute significantly to emergency management response to severe accidents due to the long analyzing time, 3 hours. Hence, this paper focused on the development of the quantitative analysis methodology to analyze the sequence of the severe accident in Yonggwang nuclear power plants (YGN) and presented the results of the analysis according to the developed methodology

  6. Research on alarm triggered fault-diagnosis expert system for U-shaped tube breaking accident of steam generators

    International Nuclear Information System (INIS)

    Qian Hong; Luo Jianbo; Jin Weixiao; Zhou Jinming; Wang Du

    2015-01-01

    According to the U-shaped tube breaking accident of steam generator (SGTR), this paper designs a fault-diagnosis expert system based on the alarm triggering. By analyzing the fault mechanism of SGTR accidents, the fault symptom is obtained. The parameters of the belief rule are set up based on the simulation experiment. The information fusion is conducted on the fault-diagnosis results from multiple expert systems to obtain the final diagnose result. The test result shows that the expert system can diagnose the SGTR accident accurately and rapidly, and provide with the operation guidance. (authors)

  7. Accident of Chernobyl nuclear power plant. From rumors to the reports of international organizations. WHO, IAEA and others summary reports of one and two decades after and UNSCEAR 2008 of 25 years after Chernobyl accident

    International Nuclear Information System (INIS)

    Nagataki, Shigenobu

    2012-01-01

    False rumor was circulating at a disaster, Nuclear disaster was not an exception. The author could visit the spot in 1990 after Chernobyl accident when the old USSR started international exchange, take part in various research projects with countless visits till ten years after and attend international organization's summary report conference of one and two decades after. Scientific investigation on radiation hazards became possible and results of various investigations had been reported. Evaluation of scientific credibility of reports came to a big job, which required the author's great effort to give an international scientific consent such that thyroid cancer in childhood was caused by the consequences of the accident with chronological and geographical strong circumstantial evidence. This article reviewed chronological definite information and experiences of radiation hazards that the author got from initial false rumor age to the publication of summary reports of international organizations, and presented problems for emergency response at nuclear disaster. (T. Tanaka)

  8. Causative Chain Difference for each Type of Accidents in Japanese Maritime Traffic Systems (MTS

    Directory of Open Access Journals (Sweden)

    Wanginingastuti Mutmainnah

    2017-09-01

    Full Text Available Causative chain (CC is a failure chain that cause accident as an outcome product of the second step of MOP model, namely line relation analysis (LRA. This CC is a connection of several causative factors (CF, an outcome product of first step of MOP model, namely corner analysis (CA. MOP Model is an abbreviation from 4M Overturned Pyramid, created by authors by combining 2 accident analysis models. There are two steps in this model, namely CA and LRA. Utilizing this model can know what is CF that happen dominantly to the accidents and what is a danger CC that characterize accidents in a certain place and certain period. By knowing the characteristics, the preventive action can be decided to decrease the number of accident in the next period. The aim of this paper is providing the development of MOP Model that has been upgraded and understanding the characteristics of each type accident. The data that is analyzed in this paper is Japanese accidents from 2008 until 2013, which is available on Japan Transportation Safety Board (JTSB’s website. The analysis shows that every type of accidents has a unique characteristic, shown by their CFs and CCs. However, Man Factor is still playing role to the system dominantly.

  9. Risk assessment of maintenance operations: the analysis of performing task and accident mechanism.

    Science.gov (United States)

    Carrillo-Castrillo, Jesús A; Rubio-Romero, Juan Carlos; Guadix, Jose; Onieva, Luis

    2015-01-01

    Maintenance operations cover a great number of occupations. Most small and medium-sized enterprises lack the appropriate information to conduct risk assessments of maintenance operations. The objective of this research is to provide a method based on the concepts of task and accident mechanisms for an initial risk assessment by taking into consideration the prevalence and severity of the maintenance accidents reported. Data were gathered from 11,190 reported accidents in maintenance operations in the manufacturing sector of Andalusia from 2003 to 2012. By using a semi-quantitative methodology, likelihood and severity were evaluated based on the actual distribution of accident mechanisms in each of the tasks. Accident mechanisms and tasks were identified by using those variables included in the European Statistics of Accidents at Work methodology. As main results, the estimated risk of the most frequent accident mechanisms identified for each of the analysed tasks is low and the only accident mechanisms with medium risk are accidents when lifting or pushing with physical stress on the musculoskeletal system in tasks involving carrying, and impacts against objects after slipping or stumbling for tasks involving movements. The prioritisation of public preventive actions for the accident mechanisms with a higher estimated risk is highly recommended.

  10. Strategy generation in accident management support

    International Nuclear Information System (INIS)

    Sirola, M.

    1995-01-01

    An increased interest for research in the field of Accident Management can be noted. Several international programmes have been started in order to be able to understand the basic physical and chemical phenomena in accident conditions. A feasibility study has shown that it would be possible to design and develop a computerized support system for plant staff in accident situations. To achieve this goal the Halden Project has initiated a research programme on Computerized Accident Management Support (CAMS project). The aim is to utilize the capabilities of computerized tools to support the plant staff during the various accident stages. The system will include identification of the accident state, assessment of the future development of the accident and planning of accident mitigation strategies. A prototype is developed to support operators and the Technical Support Centre in decision making during serious accident in nuclear power plants. A rule based system has been built to take care of the strategy generation. This system assists plant personnel in planning control proposals and mitigation strategies from normal operation to severe accident conditions. The ideal of a safety objective tree and knowledge from the emergency procedures have been used. Future prediction requires good state identification of the plant status and some knowledge about the history of some critical variables. The information needs to be validated as well. Accurate calculations in simulators and a large database including all important information form the plant will help the strategy planning. (author). 12 refs, 2 figs

  11. Identification and evaluation of accident sequences in nuclear power reactors

    International Nuclear Information System (INIS)

    Amendola, A.; Capobianchi, S.; Mancini, G.; Olivi, L.; Volta, G.; Reina, G.

    1981-01-01

    Probabilistic analysis techniques are being more and more used for the evaluation of accident progression in nuclear power plants, especially after the issue of the Reactor Safety Study (Report WASH-1400). This study and subsequent discussions have indicated the necessity of better investigating some major items, namely: adequate data base for the probabilistic evaluations; completeness of the analysis with respect both to accident initiation and behaviour; adequate treatment of uncertainties on the physical and operational parameters governing the accident behaviour. Furthermore, recent occurrences have stressed the importance of the operational aspects of reactor safety, such as plant-specific identification of possible occurrences, their prompt recognition, on-line prediction of subsequent developments and actions to be taken. The paper reviews the contributions in progress at JRC-Ispra to all these aspects, and specifically reports on the following: (1) The set-up of a European Reliability Data System for the acquisition and organisation of operational data of LWRs in the European Community. (2) The development of more complete and realistic models of systems. This work includes multistate static models of components and systems with a view to automatic fault-tree construction and dynamic models for accident sequence identification. The dynamic modelling approach ESCS (Event Sequence and Consequences Spectrum), shown in detail with an example, represents a step forward with respect to event-tree technique and opens new possibilities in dealing with human factors and on-line diagnosis problems. (3) The development of RSM (Response Surface Methodology) for the analysis of uncertainty propagations in consequence and in probability of accident chains. (author)

  12. Systems thinking, the Swiss Cheese Model and accident analysis: a comparative systemic analysis of the Grayrigg train derailment using the ATSB, AcciMap and STAMP models.

    Science.gov (United States)

    Underwood, Peter; Waterson, Patrick

    2014-07-01

    The Swiss Cheese Model (SCM) is the most popular accident causation model and is widely used throughout various industries. A debate exists in the research literature over whether the SCM remains a viable tool for accident analysis. Critics of the model suggest that it provides a sequential, oversimplified view of accidents. Conversely, proponents suggest that it embodies the concepts of systems theory, as per the contemporary systemic analysis techniques. The aim of this paper was to consider whether the SCM can provide a systems thinking approach and remain a viable option for accident analysis. To achieve this, the train derailment at Grayrigg was analysed with an SCM-based model (the ATSB accident investigation model) and two systemic accident analysis methods (AcciMap and STAMP). The analysis outputs and usage of the techniques were compared. The findings of the study showed that each model applied the systems thinking approach. However, the ATSB model and AcciMap graphically presented their findings in a more succinct manner, whereas STAMP more clearly embodied the concepts of systems theory. The study suggests that, whilst the selection of an analysis method is subject to trade-offs that practitioners and researchers must make, the SCM remains a viable model for accident analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A system of safety management practices and worker engagement for reducing and preventing accidents: an empirical and theoretical investigation.

    Science.gov (United States)

    Wachter, Jan K; Yorio, Patrick L

    2014-07-01

    The overall research objective was to theoretically and empirically develop the ideas around a system of safety management practices (ten practices were elaborated), to test their relationship with objective safety statistics (such as accident rates), and to explore how these practices work to achieve positive safety results (accident prevention) through worker engagement. Data were collected using safety manager, supervisor and employee surveys designed to assess and link safety management system practices, employee perceptions resulting from existing practices, and safety performance outcomes. Results indicate the following: there is a significant negative relationship between the presence of ten individual safety management practices, as well as the composite of these practices, with accident rates; there is a significant negative relationship between the level of safety-focused worker emotional and cognitive engagement with accident rates; safety management systems and worker engagement levels can be used individually to predict accident rates; safety management systems can be used to predict worker engagement levels; and worker engagement levels act as mediators between the safety management system and safety performance outcomes (such as accident rates). Even though the presence of safety management system practices is linked with incident reduction and may represent a necessary first-step in accident prevention, safety performance may also depend on mediation by safety-focused cognitive and emotional engagement by workers. Thus, when organizations invest in a safety management system approach to reducing/preventing accidents and improving safety performance, they should also be concerned about winning over the minds and hearts of their workers through human performance-based safety management systems designed to promote and enhance worker engagement. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Regulatory aspects of nuclear accidents

    International Nuclear Information System (INIS)

    Caoui, A.

    1988-01-01

    The legislative systems used in different countries insist on requiring the license of the nuclear installations exploitation and on providing a nuclear safety report. For obtaining this license, the operators have to consider all situations of functioning (normal, incidental and accidental) to make workers and the public secure. The licensing procedures depend on the juridical and administrative systems of the country. Usually, protection of people against ionzing radiation is the responsibility of the ministry of health and the ministry of industry. In general, the regulations avoid to fix a definite technical standards by reason of technological development. An emergency plan is normally designed in the stage of the installation project planification. This plan contains the instructions and advices to give to populations in case of accident. The main lesson learnt from the nuclear accidents that happened is to enlarge the international cooperation in the nuclear safety field. 4 refs. (author)

  15. Final report on Risoe measuring program in connection with Chernobyl accident

    International Nuclear Information System (INIS)

    Aarkrog, A.

    1987-01-01

    The present report deals with the measurements of Chernobyl debris carried out in Denmark, the Faroe Islands and Greenland in the perioed May-Sept. 1986. The results are presented in details in appendix II, but summarized in tables and figures in the main report, which is in Danish. Appendix I is the samples programme, also in Danish. It is concluded that the dose equivalent commitment to an adult Dane from consumption of foodstuffs in the first year after the accident (May 1986-April 1987) is 17 μ Sv, corresponding to approximately 1% of a years background radiation. (author)

  16. How to reduce the number of accidents

    CERN Multimedia

    2012-01-01

    Among the safety objectives that the Director-General has established for CERN in 2012 is a reduction in the number of workplace accidents.   The best way to prevent workplace accidents is to learn from experience. This is why any accident, fire, instance of pollution, or even a near-miss, should be reported using the EDH form that can be found here. All accident reports are followed up. The departments investigate all accidents that result in sick leave, as well as all the more common categories of accidents at CERN, essentially falls (slipping, falling on stairs, etc.), regardless of whether or not they lead to sick leave. By studying the accident causes that come to light in this way, it is possible to take preventive action to avoid such accidents in the future. If you have any questions, the HSE Unit will be happy to answer them. Contact us at safety-general@cern.ch. HSE Unit

  17. Case study on chemical plant accidents for flow-sheet design of the HTTR-IS system

    International Nuclear Information System (INIS)

    Homma, Hiroyuki; Sato, Hiroyuki; Kasahara, Seiji; Hara, Teruo; Kato, Ryoma; Sakaba, Nariaki; Ohashi, Hirofumi

    2007-02-01

    At the present time, we are alarmed by depletion of fossil energy and adverse effect of rapid increase in fossil fuel burning on environment such as climate changes and acid rain, because our lives depend still heavily upon fossil energy. It is thus widely recognized that hydrogen is one of important future energy carriers in which it is used without emission of carbon dioxide greenhouse gas and atmospheric pollutants and that hydrogen demand will increase greatly as fuel cells are developed and applied widely in the near future. To meet massive demand of hydrogen, hydrogen production from water utilizing nuclear, especially by thermochemical water-splitting Iodine-Sulphur (IS) process utilizing heat from High-Temperature Gas-cooled Reactors (HTGRs), offers one of the most attractive zero-emission energy strategies and the only one practical on a substantial scale. However, to establish a technology based for the HTGR hydrogen production by the IS process, we should close several technology gaps through R and D with the High-Temperature Engineering Test Reactor (HTTR), which is the only Japanese HTGR built and operated at the Oarai Research and Development Centre of Japan Atomic Energy Agency (JAEA). We have launched design studies of the IS process hydrogen production system coupled with the HTTR (HTTR-IS system) to demonstrate HTGR hydrogen production. In designing the HTTR-IS system, it is necessary to consider preventive and breakdown maintenance against accidents occurred in the IS process as a chemical plant. This report describes case study on chemical plant accidents relating to the IS process plant and shows a proposal of accident protection measures based on above case study, which is necessary for flow-sheet design of the HTTR-IS system. (author)

  18. Test Data for USEPR Severe Accident Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  19. Normal accidents

    International Nuclear Information System (INIS)

    Perrow, C.

    1989-01-01

    The author has chosen numerous concrete examples to illustrate the hazardousness inherent in high-risk technologies. Starting with the TMI reactor accident in 1979, he shows that it is not only the nuclear energy sector that bears the risk of 'normal accidents', but also quite a number of other technologies and industrial sectors, or research fields. The author refers to the petrochemical industry, shipping, air traffic, large dams, mining activities, and genetic engineering, showing that due to the complexity of the systems and their manifold, rapidly interacting processes, accidents happen that cannot be thoroughly calculated, and hence are unavoidable. (orig./HP) [de

  20. The Fukushima Daiichi Accident. Technical Volume 1/5. Description and Context of the Accident. Annexes

    International Nuclear Information System (INIS)

    2015-08-01

    The Fukushima Daiichi Accident consists of a Report by the IAEA Director General and five technical volumes. It is the result of an extensive international collaborative effort involving five working groups with about 180 experts from 42 Member States with and without nuclear power programmes and several international bodies. It provides a description of the accident and its causes, evolution and consequences, based on the evaluation of data and information from a large number of sources available at the time of writing. The Fukushima Daiichi Accident will be of use to national authorities, international organizations, nuclear regulatory bodies, nuclear power plant operating organizations, designers of nuclear facilities and other experts in matters relating to nuclear power, as well as the wider public. The set contains six printed parts and five supplementary CD-ROMs. Contents: Report by the Director General; Technical Volume 1/5, Description and Context of the Accident; Technical Volume 2/5, Safety Assessment; Technical Volume 3/5, Emergency Preparedness and Response; Technical Volume 4/5, Radiological Consequences; Technical Volume 5/5, Post-accident Recovery; Annexes. The Report by the Director General is available separately in Arabic, Chinese, English, French, Russian, Spanish and Japanese

  1. Accident and emergency management

    International Nuclear Information System (INIS)

    Andersen, V.; Moellenbach, K.; Heinonen, R.; Jakobsson, S.; Kukko, T.; Berg, Oe.; Larsen, J.S.; Westgaard, T.; Magnusson, B.; Andersson, H.; Holmstroem, C.; Brehmer, B.; Allard, R.

    1988-06-01

    There is an increasing potential for severe accidents as the industrial development tends towards large, centralised production units. In several industries this has led to the formation of large organisations which are prepared for accidents fighting and for emergency management. The functioning of these organisations critically depends upon efficient decision making and exchange of information. This project is aimed at securing and possibly improving the functionality and efficiency of the accident and emergency management by verifying, demonstrating, and validating the possible use of advanced information technology in the organisations mentioned above. With the nuclear industry in focus the project consists of five main activities: 1) The study and detailed analysis of accident and emergency scenarios based on records from incidents and rills in nuclear installations. 2) Development of a conceptual understanding of accident and emergency management with emphasis on distributed decision making, information flow, and control structure sthat are involved. 3) Development of a general experimental methodology for evaluating the effects of different kinds of decision aids and forms of organisation for emergency management systems with distributed decision making. 4) Development and test of a prototype system for a limited part of an accident and emergency organisation to demonstrate the potential use of computer and communication systems, data-base and knowledge base technology, and applications of expert systems and methods used in artificial intelligence. 5) Production of guidelines for the introduction of advanced information technology in the organisations based on evaluation and validation of the prototype system. (author)

  2. Radiation accident/disaster

    International Nuclear Information System (INIS)

    Kida, Yoshiko; Hirohashi, Nobuyuki; Tanigawa, Koichi

    2013-01-01

    Described are the course of medical measures following Fukushima Daiichi Nuclear Power Plant (FNPP) Accident after the quake and tsunami (Mar. 11, 2011) and the future task for radiation accident/disaster. By the first hydrogen explosion in FNPP (Mar. 12), evacuation of residents within 20 km zone was instructed, and the primary base for measures of nuclear disaster (Off-site Center) 5 km afar from FNPP had to work as a front base because of damage of communicating ways, of saving of injured persons and of elevation of dose. On Mar. 13, the medical arrangement council consisting from stuff of Fukushima Medical University (FMU), National Institute of Radiological Sciences, Nuclear Safety Research Association and Prefectural officers was setup in residents' hall of Fukushima City, and worked for correspondence to persons injured or exposed, where communication about radiation and between related organizations was still poor. The Off-site Center's head section moved to Prefectural Office on Mar. 15 as headquarters. Early in the period, all residents evacuated from the 20 km zone, and in-hospital patients and nursed elderly were transported with vehicles, >50 persons of whom reportedly died mainly by their base diseases. The nation system of medicare for emergent exposure had consisted from the network of the primary to third facilities; there were 5 facilities in the Prefecture, 3 of which were localized at 4-9 km distance from FNPP and closed early after the Accident; and the secondary facility of FMU became responsible to all exposed persons. There was no death of workers of FNPP. Medical stuff also measured the ambient dose at various places near FNPP, having had risk of exposure. At the Accident, the important system of command, control and communication was found fragile and measures hereafter should be planned on assumption of the worst scenario of complete damage of the infrastructure and communication. It is desirable for Disaster Medical Assistance Team which

  3. Fuel relocation modeling in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Tentner, A.M.; Miles, K.J.

    1985-01-01

    SAS4A is a new code system which has been designed for analyzing the initial phase of Hypothetical Core Disruptive Accidents (HCDAs) up to gross melting or failure of the subassembly walls. During such postulated accident scenarios as the Loss-of-Flow (LOF) and Transient-Overpower (TOP) events, the relocation of the fuel plays a key role in determining the sequence of events and the amount of energy produced before neutronic shutdown. This paper discusses the general strategy used in modeling the various phenomena which lead to fuel relocation and presents the key fuel relocation models used in SAS4A. The implications of these models for the whole-core accident analysis as well as recent results of fuel motion experiment analyses are also presented

  4. Fuel relocation modeling in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Tentner, A.M.; Miles, K.J.; Kalimullah; Hill, D.J.

    1986-01-01

    The SAS4A code system has been designed for the analysis of the initial phase of Hypothetical Core Disruptive Accidents (HCDAs) up to gross melting or failure of the subassembly walls. During such postulated accident scenarios as the Loss-of-Flow (LOF) and Transient-Overpower (TOP) events, the relocation of the fuel plays a key role in determining the sequence of events and the amount of energy produced before neutronic shutdown. This paper discusses the general strategy used in modelong the various phenomena which lead to fuel relocation and presents the key fuel relocation models used in SAS4A. The implications of these models for the whole-core accident analysis as well as recent results of fuel relocation are emphasized. 12 refs

  5. Use of bayesian operations for diagnosing accidents

    International Nuclear Information System (INIS)

    Kang, K.M.; Jae, M.; Suh, K.Y.

    2005-01-01

    In complex systems, it is necessary to model a logical representation of the overall system interaction with respect to the individual subsystems. Operators are allowed to follow EOPs (Emergency Operating Procedures) when reactor tripped because of accidents. But, it's very difficult to diagnose accidents and find out appropriate procedures to mitigate current accidents in a given short time. Even if they diagnose accidents, it also has possibility to misdiagnose. TMI accident is a good example of operators' errors. Methodology using Influence Diagrams has been developed and applied for representing the dependency behaviors and uncertain behaviors of complex systems. An example to diagnose the accidents such as SLOCA and SGTR with similar symptoms has been introduced. From the constructed model, operators could diagnose accidents at any states of accidents. This model can offer the information about accidents with given symptoms. This model might help operators to diagnose correctly and rapidly. It might be very useful to support operators to reduce human error. Also, from this study, it is applicable to diagnose other accidents with similar symptoms and to analyze causes of reactor trip. (authors)

  6. Criticality accident:

    International Nuclear Information System (INIS)

    Canavese, Susana I.

    2000-01-01

    A criticality accident occurred at 10:35 on September 30, 1999. It occurred in a precipitation tank in a Conversion Test Building at the JCO Tokai Works site in Tokaimura (Tokai Village) in the Ibaraki Prefecture of Japan. STA provisionally rated this accident a 4 on the seven-level, logarithmic International Nuclear Event Scale (INES). The September 30, 1999 criticality accident at the JCO Tokai Works Site in Tokaimura, Japan in described in preliminary, technical detail. Information is based on preliminary presentations to technical groups by Japanese scientists and spokespersons, translations by technical and non-technical persons of technical web postings by various nuclear authorities, and English-language non-technical reports from various news media and nuclear-interest groups. (author)

  7. Saint-Laurent-des-Eaux plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Saint-Laurent-des-Eaux plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  8. Radionuclide release calculations for selected severe accident scenarios

    International Nuclear Information System (INIS)

    Denning, R.S.; Leonard, M.T.; Cybulskis, P.; Lee, K.W.; Kelly, R.F.; Jordan, H.; Schumacher, P.M.; Curtis, L.A.

    1990-08-01

    This report provides the results of source term calculations that were performed in support of the NUREG-1150 study. ''Severe Accident Risks: An Assessment for Five US Nuclear Power Plants.'' This is the sixth volume of a series of reports. It supplements results presented in the earlier volumes. Analyses were performed for three of the NUREG-1150 plants: Peach Bottom, a Mark I, boiling water reactor; Surry, a subatmospheric containment, pressurized water reactor; and Sequoyah, an ice condenser containment, pressurized water reactor. Complete source term results are presented for the following sequences: short term station blackout with failure of the ADS system in the Peach Bottom plant; station blackout with a pump seal LOCA for the Surry plant; station blackout with a pump seal LOCA in the Sequoyah plant; and a very small break with loss of ECC and spray recirculation in the Sequoyah plant. In addition, some partial analyses were performed which did not require running all of the modules of the Source Term Code Package. A series of MARCH3 analyses were performed for the Surry and Sequoyah plants to evaluate the effects of alternative emergency operating procedures involving primary and secondary depressurization on the progress of the accident. Only thermal-hydraulic results are provided for these analyses. In addition, three accident sequences were analyzed for the Surry plant for accident-induced failure of steam generator tubes. In these analyses, only the transport of radionuclides within the primary system and failed steam generator were examined. The release of radionuclides to the environment is presented for the phase of the accident preceding vessel meltthrough. 17 refs., 176 figs., 113 tabs

  9. Review of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Connelly, J.W.; Storr, G.J.

    1989-01-01

    Two types of severe reactor accidents - loss of coolant or coolant flow and transient overpower (TOP) accidents - are described and compared. Accidents in research reactors are discussed. The 1961 SL1 accident in the US is used as an illustration as it incorporates the three features usually combined in a severe accident - a design flaw or flaws in the system, a circumvention of safety circuits or procedures, and gross operator error. The SL1 reactor, the reactivity accident and the following fuel-coolant interaction and steam explosion are reviewed. 3 figs

  10. On preparation for accident management in LWR power stations

    International Nuclear Information System (INIS)

    1996-01-01

    Nuclear Safety Commission received the report from Reactor Safety General Examination Committee which investigated the policy of executing the preparation for accident management. The basic policy on the preparation for accident management was decided by Nuclear Safety Commission in May, 1992. This Examination Committee investigated the policy of executing the preparation for accident management, which had been reported from the administrative office, and as the result, it judged the policy as adequate, therefore, the report is made. The course to the foundation of subcommittee is reported. The basic policy of the examination on accident management by the subcommittee conforming to the decision by Nuclear Safety Commission, the measures of accident management which were extracted for BWR and PWR facilities, the examination of the technical adequacy of selecting accident sequences in BWR and PWR facilities and the countermeasures to them, the adequacy of the evaluation of the possibility of executing accident management measures and their effectiveness and the adequacy of the evaluation of effect to existing safety functions, the preparation of operation procedure manual, and education and training plan are reported. (K.I.)

  11. [Fatal occupational accidents: estimates based on more data sources].

    Science.gov (United States)

    Baldasseroni, A; Chellini, E; Zoppi, O; Giovannetti, L

    2001-01-01

    The data reported by INAIL (Istituto Nazionale Assicurazione Infortuni sul Lavoro) on fatal occupational injuries have always been considered complete and reliable. The authors of this article verified the completeness of this information source crossing it with data bases existing in different registration systems (Regional Mortality Registry of Tuscany--RMR; registers and data of the Operative Units of Prevention, Hygiene and Safety in the Workplace--UOPISLL) for the period between 1992 and 1996. In the five years concerned, a total of 458 cases were reported. These cases could be considered fatal injuries at work without taking into account traffic accidents, which were not included in the present study. The results show that the most complete information source was RMR, reporting 80% of the total data, while INAIL reports only 62.2% of the total cases. On the contrary, the UOPISLL source is the least reliable. Using the capture/recapture method, the estimate of events in the period concerned (1992-1996) amounts to nearly 500 (499.8 LC 475.9-523.7), while the three sources systematically explored for the whole period (INAIL, RMR, UOSPILL) report 458 cases. An additional information source, the daily press, which could be systematically tested only two months for each of the five years, reports 10 additional cases, which were ignored by the 3 other sources, indirectly confirming in this way how reliable the performed estimate was. The main cases among the 157 fatal accidents reported by RMR, but not by INAIL, occurred among farmers (70), most of them already retired, but there were several fatal accidents reported in the construction sector (30). Other categories were included only in the RMR data because, in the period concerned, they were not covered by INAIL insurance (18 cases in the Army and Police, 7 on the railways). The survey that was carried out confirms the essential importance of INAIL data for the surveillance system applied to this phenomenon. This

  12. Radioactive material (RAM) accident/incident data analysis program

    International Nuclear Information System (INIS)

    Emerson, E.L.; McClure, J.D.

    1985-03-01

    This report describes the development of the Radioactive Material Transportation Accident/Incident Data Base (RAM-AIDB), which contains information on the occurrences of transportation accidents and incidents, for radioactive materials (RAM) that are involved in the process of transportation, loading and unloading operation, or temporary storage. These transportation operations are in support of the nuclear fuel cycle for electrical energy generation. This study analyzes in some detail basic accident/incident statistical data, RAM packaging accident response data, and the health effects associated with RAM transport accidents/incidents. This report presents a summary of US RAM transport accident/incident experience for the period 1971 through December 1981. In addition, a sample annual summary of accident/incident experience is presented for the calendar year 1981

  13. JCO criticality accident termination operation

    International Nuclear Information System (INIS)

    Kanamori, Masashi

    2010-07-01

    In 2001, we summarized the circumstances surrounding termination of the JCO criticality accident based on testimony in the Mito District Court on December 17, 2001. JCO was the company for uranium fuels production in Japan. That document was assembled based on actual testimony in the belief that a description of the work involved in termination of the accident would be useful in some way for preventing nuclear disasters in the future. The description focuses on the witness' own behavior, and what he saw and heard, and thus is written from the perspective of action by one individual. This was done simply because it was easier for the witness to write down his memories as he remembers them. Description of the activities of other organizations and people is provided only as necessary, to ensure that consistency in the descriptive approach is not lost. The essentials of this report were rewritten as a third-person objective description in the summary of the report by the Atomic Energy Society of Japan (AESJ). Since then, comments have been received from sources such as former members of the Nuclear Safety Commission (Dr. Kenji Sumita and Dr. Akira Kanagawa), concerned parties from the former Science and Technology Agency, and reports from the JCO Criticality Accident Investigation Committee of the AESJ, and thus this report was rewritten to correct incorrect information, and add material where that was felt to be necessary. This year is the tenth year of the JCO criticality accident. To mark this occasion we have decided to translate the record of what occurred at the accident site into English so that more people can draw lessons from this accident. This report is an English version of JAEA-Technology 2009-073. (author)

  14. Radioactive release during nuclear accidents in Chernobyl and Fukushima

    Science.gov (United States)

    Nur Ain Sulaiman, Siti; Mohamed, Faizal; Rahim, Ahmad Nabil Ab

    2018-01-01

    Nuclear accidents that occurred in Chernobyl and Fukushima have initiated many research interests to understand the cause and mechanism of radioactive release within reactor compound and to the environment. Common types of radionuclide release are the fission products from the irradiated fuel rod itself. In case of nuclear accident, the focus of monitoring will be mostly on the release of noble gases, I-131 and Cs-137. As these are the only accidents have been rated within International Nuclear Events Scale (INES) Level 7, the radioactive release to the environment was one of the critical insights to be monitored. It was estimated that the release of radioactive material to the atmosphere due to Fukushima accident was approximately 10% of the Chernobyl accident. By referring to the previous reports using computational code systems to model the release rate, the release activity of I-131 and Cs-137 in Chernobyl was significantly higher compare to Fukushima. The simulation code also showed that Chernobyl had higher release rate of both radionuclides on the day of accident. Other factors affecting the radioactive release for Fukushima and Chernobyl accidents such as the current reactor technology and safety measures are also compared for discussion.

  15. Postulated accident conditions for air cleaning systems and radiological dose assessments for containment options

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Postma, A.K.

    1975-01-01

    Ambient conditions and performance requirements for emergency air cleaning systems applicable to commercial LMFBR plants were studied. The focus of this study centered on aerosol removal under hypothetical core disruptive accident conditions. Effort completed includes a review of air cleaning systems related to LMFBR plants, selection of three reference containment system designs, postulation of the EACS design basis accident (EACS-DBA), analysis of thermal conditions resulting from the DBA, analysis of aerosol transport behavior following the DBA, and an estimate of bone dose at the site boundary for each of the reference plant designs. Reference plant concepts were a single containment system (e.g., FFTF), a double containment system (e.g., CRBRP with closed head compartment), and a containment-confinement design in which an inerted, sealed primary volume was located within a ventilated building whose exhaust was filtered. The reference design basis accident selected here involved release to the inner containment system of 1 percent of non-volatile solids and plutonium, 25 percent of core halogens, 25 percent of core volatile solids, 100 percent of core noble gases, 68 lbs of sodium vapor and 5000 lbs of liquid sodium. 13 references. (U.S.)

  16. NASA Accident Precursor Analysis Handbook, Version 1.0

    Science.gov (United States)

    Groen, Frank; Everett, Chris; Hall, Anthony; Insley, Scott

    2011-01-01

    Catastrophic accidents are usually preceded by precursory events that, although observable, are not recognized as harbingers of a tragedy until after the fact. In the nuclear industry, the Three Mile Island accident was preceded by at least two events portending the potential for severe consequences from an underappreciated causal mechanism. Anomalies whose failure mechanisms were integral to the losses of Space Transportation Systems (STS) Challenger and Columbia had been occurring within the STS fleet prior to those accidents. Both the Rogers Commission Report and the Columbia Accident Investigation Board report found that processes in place at the time did not respond to the prior anomalies in a way that shed light on their true risk implications. This includes the concern that, in the words of the NASA Aerospace Safety Advisory Panel (ASAP), "no process addresses the need to update a hazard analysis when anomalies occur" At a broader level, the ASAP noted in 2007 that NASA "could better gauge the likelihood of losses by developing leading indicators, rather than continue to depend on lagging indicators". These observations suggest a need to revalidate prior assumptions and conclusions of existing safety (and reliability) analyses, as well as to consider the potential for previously unrecognized accident scenarios, when unexpected or otherwise undesired behaviors of the system are observed. This need is also discussed in NASA's system safety handbook, which advocates a view of safety assurance as driving a program to take steps that are necessary to establish and maintain a valid and credible argument for the safety of its missions. It is the premise of this handbook that making cases for safety more experience-based allows NASA to be better informed about the safety performance of its systems, and will ultimately help it to manage safety in a more effective manner. The APA process described in this handbook provides a systematic means of analyzing candidate

  17. Ambulance traffic accidents in Taiwan.

    Science.gov (United States)

    Chiu, Po-Wei; Lin, Chih-Hao; Wu, Chen-Long; Fang, Pin-Hui; Lu, Chien-Hsin; Hsu, Hsiang-Chin; Chi, Chih-Hsien

    2018-04-01

    Ambulance traffic accidents (ATAs) are the leading cause of occupation-related fatalities among emergency medical service (EMS) personnel. We aim to use the Taiwan national surveillance system to analyze the characteristics of ATAs and to assist EMS directors in developing policies governing ambulance operations. A retrospective, cross-sectional and largely descriptive study was conducted using Taiwan national traffic accidents surveillance data from January 1, 2011 to October 31, 2016. Among the 1,627,217 traffic accidents during the study period, 715 ATAs caused 8 deaths within 24 h and 1844 injured patients. On average, there was one ATA for every 8598 ambulance runs. Compared to overall traffic accidents, ATAs were 1.7 times more likely to result in death and 1.9 times more likely to have injured patients. Among the 715 ATAs, 8 (1.1%) ATAs were fatal and 707 (98.9%) were nonfatal. All 8 fatalities were associated with motorcycles. The urban areas were significantly higher than the rural areas in the annual number of ATAs (14.2 ± 7.3 [7.0-26.7] versus 3.1 ± 1.9 [0.5-8.4], p = 0.013), the number of ATA-associated fatalities per year (0.2 ± 0.2 [0.0-0.7] versus 0.1 ± 0.1 [0.0-0.2], p = 0.022), and the annual number of injured patients (who needed urgent hospital visits) in ATAs (19.4 ± 7.3 [10.5-30.9] versus 5.2 ± 3.8 [0.9-15.3], p traffic accident reporting system should be built to provide EMS policy guidance for ATA reduction and outcome improvements. Copyright © 2018. Published by Elsevier B.V.

  18. Can we use near-miss reports for accident prevention? A study in the oil and gas industry in Denmark

    NARCIS (Netherlands)

    Rasmussen, H.B.; Drupsteen, L.; Dyreborg, J.

    2013-01-01

    Background: The oil and gas industry in the Danish sector of the North Sea has always focused on reducing work-related accidents. Over the years, accident rates have been reduced, and near-miss reporting has gained in importance, because it allows the industry to learn from experience and prevent

  19. Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Report of the Chernobyl Forum Expert Group 'Environment'

    International Nuclear Information System (INIS)

    2006-01-01

    Chernobyl Forum in 2003. The mission of the Forum was - through a series of managerial and expert meetings - to generate 'authoritative consensual statements' on the environmental consequences and health effects attributable to radiation exposure arising from the accident, as well as to provide advice on environmental remediation and special health care programmes, and to suggest areas in which further research is required. The Forum was created as a contribution to the United Nations' ten year strategy for Chernobyl, launched in 2002 with the publication of Human Consequences of the Chernobyl Nuclear Accident - A Strategy for Recovery. Over a two year period, two groups of experts from 12 countries, including Belarus, the Russian Federation and Ukraine, and from relevant international organizations, assessed the accident's environmental and health consequences. In early 2005 the Expert Group 'Environment', coordinated by the IAEA, and the Expert Group 'Health', coordinated by the WHO, presented their reports for the consideration of the Chernobyl Forum. Both reports were considered and approved by the Forum at its meeting on 18-20 April 2005. This meeting also decided, inter alia, 'to consider the approved reports... as a common position of the Forum members, i.e., of the eight United Nations organizations and the three most affected countries, regarding the environmental and health consequences of the Chernobyl accident, as well as recommended future actions, i.e., as a consensus within the United Nations system.' This report presents the findings and recommendations of the Chernobyl Forum concerning the environmental effects of the Chernobyl accident. The Forum's report considering the health effects of the Chernobyl accident is being published by the WHO

  20. Special committee review of the Nuclear Regulatory Commission's severe accident risks report (NUREG--1150)

    International Nuclear Information System (INIS)

    Kouts, H.J.C.; Apostolakis, G.; Kastenberg, W.E.; Birkhofer, E.H.A.; Hoegberg, L.G.; LeSage, L.G.; Rasmussen, N.C.; Teague, H.J.; Taylor, J.J.

    1990-08-01

    In April 1989, the Nuclear Regulatory Commission's (NRC) Office of Nuclear Regulatory Research (RES) published a draft report ''Severe Accident Risks: An Assessment for Five US Nuclear Power Plants,'' NUREG-1150. This report updated, extended and improved upon the information presented in the 1974 ''Reactor Safety Study,'' WASH-1400. Because the information in NUREG-1150 will play a significant role in implementing the NRC's Severe Accident Policy, its quality and credibility are of critical importance. Accordingly, the Commission requested that the RES conduct a peer review of NUREG-1150 to ensure that the methods, safety insights and conclusions presented are appropriate and adequately reflect the current state of knowledge with respect to reactor safety. To this end, RES formed a special committee in June of 1989 under the provisions of the Federal Advisory Committee Act. The Committee, composed of a group of recognized national and international experts in nuclear reactor safety, was charged with preparing a report reflecting their review of NUREG-1150 with respect to the adequacy of the methods, data, analysis and conclusions it set forth. The report which precedes reflects the results of this peer review

  1. Analysis of National Major Work Safety Accidents in China, 2003-2012.

    Science.gov (United States)

    Ye, Yunfeng; Zhang, Siheng; Rao, Jiaming; Wang, Haiqing; Li, Yang; Wang, Shengyong; Dong, Xiaomei

    2016-01-01

    This study provides a national profile of major work safety accidents in China, which cause more than 10 fatalities per accident, intended to provide scientific basis for prevention measures and strategies to reduce major work safety accidents and deaths. Data from 2003-2012 Census of major work safety accidents were collected from State Administration of Work Safety System (SAWS). Published literature and statistical yearbook were also included to implement information. We analyzed the frequency of accidents and deaths, trend, geographic distribution and injury types. Additionally, we discussed the severity and urgency of emergency rescue by types of accidents. A total of 877 major work safety accidents were reported, resulting in 16,795 deaths and 9,183 injuries. The numbers of accidents and deaths, mortality rate and incidence of major accidents have declined in recent years. The mortality rate and incidence was 0.71 and 1.20 per 10(6) populations in 2012, respectively. Transportation and mining contributed to the highest number of major accidents and deaths. Major aviation and railway accidents caused more casualties per incident, while collapse, machinery, electrical shock accidents and tailing dam accidents were the most severe situation that resulted in bigger proportion of death. Ten years' major work safety accident data indicate that the frequency of accidents and number of eaths was declined and several safety concerns persist in some segments.

  2. System Response Analysis of Rod Ejection Accident for APR1400 Using KNAP Hot Spot Model

    International Nuclear Information System (INIS)

    Kim, Yo-Han; Ha, Sang-Jun; Jun, Hwang-Yong

    2006-01-01

    Korea Electric Power Research Institute (KEPRI) has been developed the non-loss-of-coolant accident (non- LOCA) analysis methodology, called as the Korea Non- LOCA Analysis Package (KNAP), for the typical Optimized Power Reactor 1000 (OPR1000) plants. Considering current licensing methodology conducted by ABB-CE, however, the KNAP could be applied to Advanced Power Reactor 1400 (APR1400) also. In spite of some difference in design concepts of two plant types, there is a close resemblance between their nuclear steam supply systems (NSSS). So, in this study, the rod ejection accident (REA) event was analyzed using KNAP hot spot model (HSM) for APR1400 to estimate the feasibility of the application and the results were compared with those given in APR1400 Standard Safety Analysis Report (SSAR), which were calculated using the CESEC-III and STRIKIN-II code of ABB-CE. Through the study, it was concluded that the KNAP could be applicable to APR1400 on the view point of REA

  3. 49 CFR 234.7 - Accidents involving grade crossing signal failure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Accidents involving grade crossing signal failure... PLANS Reports and Plans § 234.7 Accidents involving grade crossing signal failure. (a) Each railroad... (activation failure report) and 49 CFR 225.11 (accident/ incident report). (b) Each telephone report must...

  4. Development of integrated accident management assessment technology

    International Nuclear Information System (INIS)

    Jung, Won Dea; Ha, Jae Joo; Jin, Young Ho

    2002-04-01

    This project aims to develop critical technologies for accident management through securing evaluation frameworks and supporting tools, in order to enhance capabilities coping with severe accidents. For the research goal, firstly under the viewpoint of accident prevention, on-line risk monitoring system and the analysis framework for human error have been developed. Secondly, the training/supporting systems including the training simulator and the off-site risk evaluation system have been developed to enhance capabilities coping with severe accidents. Four kinds of research results have been obtained from this project. Firstly, the framework and taxonomy for human error analysis has been developed for accident management. As the second, the supporting system for accident managements has been developed. Using data that are obtained through the evaluation of off-site risk for Younggwang site, the risk database as well as the methodology for optimizing emergency responses has been constructed. As the third, a training support system, SAMAT, has been developed, which can be used as a training simulator for severe accident management. Finally, on-line risk monitoring system, DynaRM, has been developed for Ulchin 3 and 4 unit

  5. Analysis on the Role of RSG-GAS Pool Cooling System during Partial Loss of Heat Sink Accident

    Science.gov (United States)

    Susyadi; Endiah, P. H.; Sukmanto, D.; Andi, S. E.; Syaiful, B.; Hendro, T.; Geni, R. S.

    2018-02-01

    RSG-GAS is a 30 MW reactor that is mostly used for radioisotope production and experimental activities. Recently, it is regularly operated at half of its capacity for efficiency reason. During an accident, especially loss of heat sink, the role of its pool cooling system is very important to dump decay heat. An analysis using single failure approach and partial modeling of RELAP5 performed by S. Dibyo, 2010 shows that there is no significant increase in the coolant temperature if this system is properly functioned. However lessons learned from the Fukushima accident revealed that an accident can happen due to multiple failures. Considering ageing of the reactor, in this research the role of pool cooling system is to be investigated for a partial loss of heat sink accident which is at the same time the protection system fails to scram the reactor when being operated at 15 MW. The purpose is to clarify the transient characteristics and the final state of the coolant temperature. The method used is by simulating the system in RELAP5 code. Calculation results shows the pool cooling systems reduce coolant temperature for about 1 K as compared without activating them. The result alsoreveals that when the reactor is being operated at half of its rated power, it is still in safe condition for a partial loss of heat sink accident without scram.

  6. Intersection layout, traffic volumes and accidents.

    NARCIS (Netherlands)

    Poppe, F.

    1988-01-01

    This paper reports on the accident research carried out as a part of a large project started in 1983. For this accident research an inventory was made of a large number of intersections.Recorded were layout features, accident data and estimates of traffic volumes. Attention will be given to the

  7. Accidents cutting and piercing in a School of Dentistry

    Directory of Open Access Journals (Sweden)

    Maria Cristina Zindel Deboni

    2010-04-01

    Full Text Available Objective: To assess the occurrence and characteristics of the reported accidents with perforating-cutting materials involving students, staff and faculty members, between 2000 and 2005 at the Dental Clinic of the School of Dentistry of the University of São Paulo. Methods: A survey of the records of reported occurrences of accidents was made, considering the material that caused the accident, time of day of the occurrence, the discipline in which it occurred, and clinical conduct adopted in the emergency room. When available, the results of the laboratory exams of the accident victim and the source patient were also taken into consideration. Results: The data assessed showed there were 40 accident reports, of which 39 reports involved undergraduate students and 1 staff member. The instrument that caused most accidents was the anesthetic needle and largest number of these accidents occurred in the Surgery discipline. However, 50% of the records did not present complete information, which prevented a more accurate epidemiological assessment. Conclusion: The data obtained led to the conclusion that the rate of accidents is extremely low considering the number of clinical attendances provided in the period and raises the hypothesis that many cases were not reported.

  8. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Chanin, D.I.; Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems

  9. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  10. Progress in methodology for probabilistic assessment of accidents: timing of accident sequences

    International Nuclear Information System (INIS)

    Lanore, J.M.; Villeroux, C.; Bouscatie, F.; Maigret, N.

    1981-09-01

    There is an important problem for probabilistic studies of accident sequences using the current event tree techniques. Indeed this method does not take into account the dependence in time of the real accident scenarios, involving the random behaviour of the systems (lack or delay in intervention, partial failures, repair, operator actions ...) and the correlated evolution of the physical parameters. A powerful method to perform the probabilistic treatment of these complex sequences (dynamic evolution of systems and associated physics) is Monte-Carlo simulation, very rare events being treated with the help of suitable weighting and biasing techniques. As a practical example the accident sequences related to the loss of the residual heat removal system in a fast breeder reactor has been treated with that method

  11. Assessing economic consequences of radiation accidents

    International Nuclear Information System (INIS)

    Rowe, M.D.; Lee, J.C.; Grimshaw, C.A.; Kalb, P.D.

    1987-01-01

    A recent review of existing models and methods for assessing potential consequences of accidents in the high-level radioactive waste (HLW) disposal system identifies economic consequence assessment methods as a weak point. Existing methods have mostly been designed to assess economic consequences of reactor accidents, the possible scale of which can be several orders of magnitude greater than anything possible in the HLW disposal system. There is therefore some question about the applicability of these methods, their assumptions, and their level of detail to assessments of smaller accidents. The US Dept. of Energy funded this study to determine needs for code modifications or model development for assessing economic costs of accidents in the HLW disposal system. The objectives of the study were as follows: (1) review the literature on economic consequences of accidents to determine the availability of assessment methods and data and their applicability to the HLW disposal system before closure. (2) Determine needs for expansion, revision, or adaptation of methods and data for modeling economic consequences of accidents of the scale projected for the disposal system. (3) Gather data that might be useful for the needed revisions for modeling economic impacts on this scale

  12. Modeling of pipe break accident in a district heating system using RELAP5 computer code

    International Nuclear Information System (INIS)

    Kaliatka, A.; Valinčius, M.

    2012-01-01

    Reliability of a district heat supply system is a very important factor. However, accidents are inevitable and they occur due to various reasons, therefore it is necessary to have possibility to evaluate the consequences of possible accidents. This paper demonstrated the capabilities of developed district heating network model (for RELAP5 code) to analyze dynamic processes taking place in the network. A pipe break in a water supply line accident scenario in Kaunas city (Lithuania) heating network is presented in this paper. The results of this case study were used to demonstrate a possibility of the break location identification by pressure decrease propagation in the network. -- Highlights: ► Nuclear reactor accident analysis code RELAP5 was applied for accident analysis in a district heating network. ► Pipe break accident scenario in Kaunas city (Lithuania) district heating network has been analyzed. ► An innovative method of pipe break location identification by pressure-time data is proposed.

  13. Status Report on Activities of the Systems Assessment Task Force, OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon Michelle [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, parametric studies, and selection of system codes. The Cladding and Core Materials and Fuel Concepts task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment Task Force is chaired by Shannon Bragg-Sitton (INL), while the Cladding Task Force will be chaired by a representative from France (Marie Moatti, Electricite de France [EdF]) and the Fuels Task Force will be chaired by a representative from Japan (Masaki Kurata, Japan Atomic Energy Agency [JAEA]). This report provides an overview of the Systems Assessment Task Force charter and status of work accomplishment.

  14. Chernobyl accident and Denmark

    International Nuclear Information System (INIS)

    1986-12-01

    The report describes the Chernobyl accident and its consequences for Denmark in particular. It was commissioned by The Secretary of State for the Environment. Volume 2 contains copies of original documents issued by Danish authorities during the first accident phase and afterwards. Evaluations, monitoring data, press releases, legislation acts etc. are included. (author)

  15. Chernobyl accident and Danmark

    International Nuclear Information System (INIS)

    1986-12-01

    The report describes the Chernobyl accident and its consequences for Denmark in particular. It was commissioned by the Secretary of State for the Environment. Volume 1 contains copies of original documents issued by Danish authorities during the first accident phase and afterwards. Evaluations, monitoring data, press releases, legislation acts etc. are included. (author)

  16. Protection of the Population in the event of a Nuclear accident. A Basis for Intervention

    International Nuclear Information System (INIS)

    1990-01-01

    During the years following the Chernobyl accident in 1986, the NEA actively participated in the international effort towards the improvement and better harmonization of the international and national criteria for the protection of the public in the event of a nuclear accident. A first report on this matter, titled Nuclear Accidents: Intervention Levels for Protection of the Public was published by the NEA in 1989. Subsequently, the NEA Committee on Radiation Protection and Public Health set up a small Task Group to provide additional guidance, and to take into account recent developments in other international organizations. The report outlines the status of relevant international activities in the period following the preparation of the 1989 report, discusses the intervention principles and describes both the proposed accident management system and a general scheme for its application. It is to be noted that the principles and criteria for intervention discussed in this report, although developed with specific reference to reactor accidents, apply equally well to activities and possible accidents at other nuclear facilities. The report briefly describes the transition from an accident management situation back to a normal situation and the related problem of changing criteria for the protection of the public. In addition to the traditional exposure pathways -inhalation from the cloud, external irradiation from the cloud and the ground and ingestion of food - the report acknowledges the existence of special pathways, proposing criteria for protecting workers and the public and some examples of their application

  17. Keynote on lessons from major radiation accidents

    International Nuclear Information System (INIS)

    Ortiz, P.; Oresegun, M.; Wheatley, J.

    2000-01-01

    Generic lessons have been learned from a relatively large number of accidents in the most relevant practices (a set of analysis have been made on about 90 radiotherapy events, 43 industrial radiography and nine from industrial irradiations); more specific lessons have been drawn from in-depth investigations of individual accidents. The body of knowledge is grouped as follows: a) radiotherapy is very unique in that humans (patients) are purposely given very high radiation doses (20-75 Gy) by placing them in the radiation beam or by placing radioactive sources in contact with tissues. Intended deterministic effects are the essence of the normal radiotherapy practice and relatively small deviation from the intended doses, i.e,, slightly higher or lower than intended may cause increased rate of severe complication or reduce probability of cure. Consequences of major accidents have been devastating, affecting tens, even hundreds of patients and causing death (directly or indirectly) to a large number of them; b) accidents involving industrial radiography are the most frequent cause of overexposure to workers (radiographers); c) accidents with industrial irradiators have lower probability of occurrence, however, they are deemed to be fatal, especially when whole body exposure to panoramic gamma irradiators occur; partial body irradiation from industrial or research accelerator beams has led to amputation of hands and legs; d) when control of sources was relinquished ('orphan' sources) this has resulted in severe injuries, in some cases death and widespread contamination of the environment. A tool for further dissemination of lessons will be an international reporting system of unusual radiation events (RADEV), being introduced world-wide. Accidents were rarely due to a single human error or isolated equipment failure. In most cases there was a combination of elements such as: a) unawareness of the potential for an accident, b) poor education, which usually did not

  18. The cause-consequence data base: a retrieval system for records pertaining to accident management

    International Nuclear Information System (INIS)

    Kumamoto, H.; Inoue, K.; Sawaragi, Y.

    1981-01-01

    This paper describes a proposal to store in a data base important paragraphs from reports of investigations into many types of accidents. The data base is to handle not only reports on TMI, but also reports on other events at nuclear reactors, chemical plant explosions, earthquakes, hurricanes, fires, and so forth. (author)

  19. Evaluation of the use of advanced information technology (expert systems) for data-base system development and emergency management in non-nuclear industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J; Pedersen, O M; Groenberg, C D

    1987-04-01

    During recent years, a number of large industrial accidents have resulted in a widespread concern with organization of emergency services and means for effective support of the distributed organizations involved in emergency management. With the aim of presenting a discussion of the potential of modern information technology for decision support during accidents, the report brings a brief review of approaches to design of decision-support systems and expert systems. From the review it is concluded that models of decision support systems based on a control theoretic point of view, together with a cognitive approach to decision task analysis offer a suitable framework. In addition, it is concluded that Advanced Information-tools for data base design and for communication support in distributed decision-making should be considered for further development. A number of recent Danish industrial accidents are reviewed and key persons interviewed in order to give a preliminary basis for judging the feasibility of the theoretical discussion. The report includes a number of recommendations for further studies to support the development of a distributed data base system for emergency management.

  20. President's Commission and the normal accident

    International Nuclear Information System (INIS)

    Perrow, C.

    1982-01-01

    This chapter incorporates the major points of an analysis of the accident at Three Mile Island that I prepared in September 1979. In contrast to the findings of the President's Commission (1979), I did not view the accident as the result of operator error, an inept utility, or a negligent Nuclear Regulatory Commission but as a consequence of the complexity and interdependence that characterize the system itself. I argued that the accident was inevitable-that is, that it could not have been prevented, foreseen, or quickly terminated, because it was incomprehensible. It resembled other accidents in nuclear plants and in other high risk, complex and highly interdependent operator-machine systems; none of the accidents were caused by management or operator ineptness or by poor government regulation, though these characteristics existed and should have been expected. I maintained that the accident was normal, because in complex systems there are bound to be multiple faults that cannot be avoided by planning and that operators cannot immediately comprehend