WorldWideScience

Sample records for accident management epr

  1. OSSA - An optimized approach to severe accident management: EPR application

    International Nuclear Information System (INIS)

    Sauvage, E. C.; Prior, R.; Coffey, K.; Mazurkiewicz, S. M.

    2006-01-01

    There is a recognized need to provide nuclear power plant technical staff with structured guidance for response to a potential severe accident condition involving core damage and potential release of fission products to the environment. Over the past ten years, many plants worldwide have implemented such guidance for their emergency technical support center teams either by following one of the generic approaches, or by developing fully independent approaches. There are many lessons to be learned from the experience of the past decade, in developing, implementing, and validating severe accident management guidance. Also, though numerous basic approaches exist which share common principles, there are differences in the methodology and application of the guidelines. AREVA/Framatome-ANP is developing an optimized approach to severe accident management guidance in a project called OSSA ('Operating Strategies for Severe Accidents'). There are still numerous operating power plants which have yet to implement severe accident management programs. For these, the option to use an updated approach which makes full use of lessons learned and experience, is seen as a major advantage. Very few of the current approaches covers all operating plant states, including shutdown states with the primary system closed and open. Although it is not necessary to develop an entirely new approach in order to add this capability, the opportunity has been taken to develop revised full scope guidance covering all plant states in addition to the fuel in the fuel building. The EPR includes at the design phase systems and measures to minimize the risk of severe accident and to mitigate such potential scenarios. This presents a difference in comparison with existing plant, for which severe accidents where not considered in the design. Thought developed for all type of plants, OSSA will also be applied on the EPR, with adaptations designed to take into account its favourable situation in that field

  2. EPR design features to mitigate severe accident challenges

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Fischer, M.; Bittermann, D.

    2005-01-01

    The EPR, an evolutionary pressurized water reactor (PWR), is a 4300-4500 MWth that incorporates proven technology within an optimized configuration to enhance safety. EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product. Commercial EPR units are currently being built in Finland at the Olkiluoto site, and planned for France at the Flamanville site. In recent months, Framatome ANP announced their intention to market the EPR units to China in response to a request for vendor bids as well as their intent to pursue design certification in the United States under 10CFR52. The EPR safety philosophy is based on a deterministic consideration of defense-in-depth complemented by probabilistic analyses. Not only is the EPR designed to prevent and mitigate design basis accidents (DBAs), it employs an extra level of safety associated with severe accident response. Therefore, as a design objective, features are included to ensure that radiological consequences are limited such that the need for stringent counter measures, such as evacuation and relocation of the nearby population, can be reasonably excluded. This paper discusses some of the innovative features of the EPR to address severe accident challenges. (author)

  3. γ radiation level simulation and analysis with MCNP in EPR containment during severe accident

    International Nuclear Information System (INIS)

    Zeng Jun; Liu Shuhuan; Wang Yang; Zhai Liang

    2013-01-01

    The γ dosimetry model based on the EPR core structure, material composition and the designed shielding system was established. The γ-ray dose rate distributions in EPR containment under different conditions including normal operation state, loss-of-coolant accident and core melt severe accident were simulated with MCNP5, and the calculation results under normal operation state and severe accident were compared and analyzed respectively with that of the designed limit. The study results may provide some relative data reference for EPR core accident prediction and reactor accident emergency decision making. (authors)

  4. Some elements of understanding about the cluster ejection accident in the EPR

    International Nuclear Information System (INIS)

    Vignon, Dominique

    2010-01-01

    The author answers to a publication made by an association (Sortir du Nucleaire) which is provided in appendix (some parts of this text are highlighted) and denounced risks associated with a cluster ejection accident in an EPR in relationship with steering modes which, according to this association, would be essentially related to an objective of economic profitability. The author first recalls some elements regarding the control and neutron stopping of pressurized water reactors. Then, after having outlined some specific aspects of the EPR design, he addresses the cluster ejection accident: safety approach and its application to this type of accident. He recalls the conclusions of studies of cluster ejection performed by EDF and AREVA, comments the consequences for the EPR power

  5. Nuclear accident: the EPR, the most dangerous reactor in the world

    International Nuclear Information System (INIS)

    Large, John

    2007-02-01

    After a brief description of the operation of a nuclear reactor, this document outlines the complexity of this machine and the problems which may happen and result in radioactive releases. It also briefly recalls past accidents (Chernobyl, Three Mile Island) and serious incidents (Fosmark in Sweden, Blayais in France). The author then describes how the nuclear industry and nuclear safety authorities tend to deny the risk, notably as far as the EPR is concerned. He outlines that the hypotheses retained by EDF and safety authorities for the quantity of radioactivity released in case of accident might be under-assessed as it appears when they are compared with data obtained by different models and in reality. The author considers that the use of MOX introduces difficulties to ensure nuclear safety, and that the EPR will therefore be the most dangerous nuclear reactor in the world. Based on a simulation, he shows that, in case of accident in of the EPR in Flamanville, radioactive fallouts will occur at the continental scale in less than two days. He proposes an assessment of consequences for the population in terms of deaths, cancers, evacuation. He indicates the different exposure modes for the population, and the countermeasures to be implemented in case of accident (he proposes an assessment of consequences in terms of morbidity with or without countermeasures)

  6. Metabolism in tooth enamel and reliability of retrospective EPR dosimetry connected with Chernobyl accident

    International Nuclear Information System (INIS)

    Brik, A.; Radchuk, V.; Scherbina, O.; Matyash, M.; Gaver, O.

    1996-01-01

    It is shown that the results of retrospective EPR dosimetry by tooth enamel are essentially determined by the fact that tooth enamel is the mineral of biological origin. The structure of tooth enamel, properties of radiation defects and the role of metabolism in tooth enamel are discussed. It is shown that at deep metamorphic modifications tooth enamel don't save information about its radiation history. The reliability and accuracy of retrospective EPR dosimetry are discussed. Because after Chernobyl accident have passed 10 years the application of tooth enamel for reconstruction of doses which are connected with Chernobyl accident need care and additional investigations

  7. EPR response characterization of drugs excipients for applying in accident dosimetry

    International Nuclear Information System (INIS)

    Marczewski, Barbara S.; Rodrigues Junior, Orlando; Galante, Ocimar L.; Costa, Zelia M. da; Campos, Leticia L.

    2002-01-01

    Some drugs are widely used by the population and can be employed to dose retrospective. The carbohydrates (saccharides), commonly used as excipients in the pharmaceutical industry, produce a quantity of free radicals after gamma irradiation, making them useful for dosimetry in emergency or accident situations that imply in dose evaluation from the materials found nearly or in contact with victims. In general, EPR signal from pulverized pills of some drugs are very complex due to the variety of components in the formulation. Because of this fact, some pharmaceutical excipients identified in the pill composition were also analysed by EPR spectrometry. On the counter drugs were studied: Cebion glucose, AAS, Aspirina, Conmel, Lacto-Purga and sugar substitutive ZeroCal. The excipients were: lactose, amide, anhydrous glucose and magnesium stearate. In some samples the number of radicals produced increased with the dose, showing a linear response for a dose range of interest and an adequate sensibility for dosimetry in accident cases

  8. EPR Flamanville 3, Site Management

    International Nuclear Information System (INIS)

    Menager, Antoine

    2014-01-01

    Antoine Menager, the EPR Flamanville 3 Site Manager described the organization and the management of the Flamanville site during the construction phase. He placed emphasis on Health and Safety, Environmental and Social Responsibility and on Nuclear Safety and Quality

  9. Review of the correlation between results of cytogenetic dosimetry from blood lymphocytes and EPR dosimetry from tooth enamel for victims of radiation accidents

    International Nuclear Information System (INIS)

    Khvostunov, I.K.; Ivannikov, A.I.; Skvortsov, V.G.; Golub, E.V.; Nugis, V. Yu.

    2015-01-01

    The goal of this study was to compare dose estimates from electron paramagnetic resonance (EPR) dosimetry with teeth and cytogenetic dosimetry with blood lymphocytes for 30 victims of radiation accidents. The whole-body exposures estimated by tooth enamel EPR dosimetry were ranging from 0.01 to 9.3 Gy. Study group comprised victims exposed to acute and prolonged irradiation at high and low dose rate in different accidents. Blood samples were taken from each of them for cytogenetic analysis. Aberrations were scored and analysed according to International Atomic Energy Agency (IAEA) guidelines for conventional and FISH analysis. Tooth samples were collected in dental clinics after they had been extracted during ordinary practice. EPR dosimetry was performed according to the IAEA protocol. EPR dosimetry showed good correlation with dosimetry based on chromosomal analysis. All estimations of cytogenetic dose below detection limit coincide with EPR dose estimates within the ranges of uncertainty. The differences between cytogenetic and EPR assays may occur in a case of previous unaccounted exposure, non-homogeneous irradiation and due to contribution to absorbed dose from neutron irradiation. (authors)

  10. Severe accident analysis to prevent high pressure scenarios in the EPR TM

    International Nuclear Information System (INIS)

    Azarian, G.; Gandrille, P.; Gasperini, M.; Klein, R.

    2010-01-01

    The EPR TM has incorporated several design features in order to specifically address major severe accident safety issues. In particular, it was designed with the objective to transfer high pressure core melt scenarios into a low pressure scenario with high reliability so that a high pressure vessel failure can be practically eliminated. It is the key issue in the defense-in-depth approach, for a postulated severe accident with core melting, to prevent any risk of containment failure due to possible Direct Containment Heating or due to reactor vessel rocketing which results from vessel failure at high pressure. Temperature-induced steam generator tube rupture, which could lead to a radiological containment bypass, has also to be prevented. On the basis of the analysis of the main high pressure core melt scenarios which are calculated with the MAAP4.07 code which was developed to support the EPR TM, this paper explores the benefits of primary depressurization by dedicated valves on transient evolutions. It specifically addresses the thermal response of the structures by sensitivity studies involving the timing of valve actuation. It outlines that a grace period of at least one hour is available for a delayed valve actuation without inducing excessive loads and without increasing the risk of a temperature-induced steam generator tube rupture. (authors)

  11. Accident management

    International Nuclear Information System (INIS)

    Lutz, R.J.; Monty, B.S.; Liparulo, N.J.; Desaedeleer, G.

    1989-01-01

    The foundation of the framework for a Severe Accident Management Program is the contained in the Probabilistic Safety Study (PSS) or the Individual Plant Evaluations (IPE) for a specific plant. The development of a Severe Accident Management Program at a plant is based on the use of the information, in conjunction with other applicable information. A Severe Accident Management Program must address both accident prevention and accident mitigation. The overall Severe Accident Management framework must address these two facets, as a living program in terms of gathering the evaluating information, the readiness to respond to an event. Significant international experience in the development of severe accident management programs exist which should provide some direction for the development of Severe Accident Management in the U.S. This paper reports that the two most important elements of a Severe Accident Management Program are the Emergency Consultation process and the standards for measuring the effectiveness of individual Severe Accident Management Programs at utilities

  12. Preliminary study on electron paramagnetic resonance (EPR) signal properties of mobile phone components for dose estimation in radiation accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Ha, Wi Ho; Park, Sun Hoo; Lee, Jin Kyeong; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-12-15

    We have investigated the EPR signal properties in 12 components of two mobile phones (LCD, OLED) using electron paramagnetic resonance (EPR) spectrometer in this study.EPR measurements were performed at normal atmospheric conditions using Bruker EXEXSYS-II E500 spectrometer with X-band bridge, and samples were irradiated by {sup 137}C{sub s} gamma-ray source. To identify the presence of radiation-induced signal (RIS), the EPR spectra of each sample were measured unirradiated and irradiated at 50 Gy. Then, dose-response curve and signal intensity variating by time after irradiation were measured. As a result, the signal intensity increased after irradiation in all samples except the USIM plastic and IC chip. Among the samples, cover glass(CG), lens, light guide plate(LGP) and diffusion sheet have shown fine linearity (R{sup 2} > 0.99). Especially, the LGP had ideal characteristics for dosimetry because there were no signal in 0 Gy and high rate of increase in RIS. However, this sample showed weakness in fading. Signal intensity of LGP and Diffusion Sheet decreased by 50% within 72 hours after irradiation, while signals of Cover Glass and Lens were stably preserved during the short period of time. In order to apply rapidly EPR dosimetry using mobile phone components in large-scale radiation accidents, further studies on signal differences for same components of the different mobile phone, fading, pretreatment of samples and processing of background signal are needed. However, it will be possible to do dosimetry by dose-additive method or comparative method using unirradiated same product in small-scale accident.

  13. Synthesis of the IRSN report related to severe accidents and to the probabilistic level-2 safety study for the Flamanville EPR reactor. Referral of the Permanent Group of Experts for nuclear reactors (GPR), examination of probabilistic level-2 safety studies (EPS 2) and severe accidents (AG) of the Flamanville reactor nr 3. Opinion related to severe accidents and to the probabilistic level-2 safety study for the Flamanville EPR reactor (FA3). Electronuclear reactors - EDF - Flamanville 3 EPR reactor. Severe accidents and probabilistic level 2 studies

    International Nuclear Information System (INIS)

    2015-01-01

    This document gathers several documents. The first one recalls the main arrangements implemented on the FA3 EPR reactor regarding accidents with core fusion, reports the analysis made by the IRSN about the sizing of these arrangements to reach a controlled status of the installation after a severe accident, regarding the probabilistic level-2 safety assessment, regarding the radiological impact of a severe accident on the population and on the environment, regarding those aimed at facing a total and long duration loss of electric power sources and cold sources, and about the situation of the reactor with respect to WENRA positions on severe accidents for new reactors. The second document is a letter sent by the ASN to the Permanent Group of Experts for nuclear reactors (GPR) to address probabilistic level-2 safety studies (EPS2) and severe accidents for the Flamanville 3 reactor. The third one reports the opinion of the GPR on these both issues and proposes a set of recommendations. The next document is a letter sent by the ASN to the Flamanville 3 project manager at EDF which recalls the related objectives, the ASN opinion on the implemented arrangements for severe accidents (de-pressurization of the primary circuit, management of hydrogen-related risks, corium recovery and cooling outside the vessel, limitation of vapour explosion risks outside the vessel, heat evacuation system, containment enclosure, management of the risk of a return to criticality), to face a total and long duration loss of electricity sources and cold sources, and other aspects addressed in the IRSN analysis. Requests and remarks formulated by the ASN are provided in an appendix to this last document

  14. Accident management for severe accidents

    International Nuclear Information System (INIS)

    Bari, R.A.; Pratt, W.T.; Lehner, J.; Leonard, M.; Disalvo, R.; Sheron, B.

    1988-01-01

    The management of severe accidents in light water reactors is receiving much attention in several countries. The reduction of risk by measures and/or actions that would affect the behavior of a severe accident is discussed. The research program that is being conducted by the US Nuclear Regulatory Commission focuses on both in-vessel accident management and containment and release accident management. The key issues and approaches taken in this program are summarized. 6 refs

  15. EPR Dosimetry for ageing effect in NPP

    International Nuclear Information System (INIS)

    Choi, Hoon; Lim, Young Ki; Kim, Jong Seog; Jung, Sun Chul

    2005-01-01

    As one of the retrospective dosimetry method, EPR spectroscopy has been studied by many research up to theses days. As a dosimeter for EPR spectroscopy, Alanine is already a well known dosimeter in the field of radiation therapy and dose assessment in radiological accident by its characteristics as good linearity in a wide range of energy level and extremely low signal fading on time. Through technical document of IAEA, the EPR dosimetry method using alanine sample was published in 2000 after research by coordinated project on management of ageing of in-containment I and C cables. Although alanine sample is regarded as a good EPR dosimeter like above ageing assessment field, actually the assessment of radiation should be done at least for two fuel cycles, because of its relatively low irradiation environment in almost all spots in power plant. So, for getting more accurate detection value of radiation, another material is tested for being put in simultaneously inside the power plant with alanine. The test result for lithium formate monohydrate (HCO 2 LiH 2 0) was presented below for checking its possibility for being applied as EPR dosimeter for this project

  16. OSSA. A second generation of severe accident management

    International Nuclear Information System (INIS)

    Sauvage, E.C.; Musoyan, G.; Ducros, V.D.

    2009-01-01

    Nowadays the severe accident and their management are an integrated part of the new generation of power plants. The EPR, as the third generation of nuclear plants, includes both systems and instrumentation to mitigate a severe accident, but also a new generation of severe accident management guidelines: the OSSA. Severe accident management guidelines are highly dependent on human means available: emergency organization actors, training and knowledge shall be taken in consideration in an innovative way. Their impacts on ergonomy and content of the document lead to a new generation of guidelines with several innovative features. This second generation of severe accident management guidelines was developed in parallel with the PSA level 2, the human reliability analyses, the validation and verification process, the severe accident simulator progresses. By taking in consideration this variety of input the OSSA were developed in a user aspect orientation. For example in the OSSA a larger responsibility is given to the operational crew to better support the technical support group evaluation. Their existing knowledge of the plant and of the systems and instrumentation is used. This collaboration work implies a strong communication tool that has been developed to enhance the permanent communication within the emergency organization, but although to ensure the main up-to-date information for evaluation will be available where required. The entry condition is based on a strong and stand alone diagnostic for all plant states, that uses in particular a curve of core exit temperature as a function of primary pressure for a fixed core cladding temperature, or its equivalent in term of containment conditions. It ensures relatively consistent core conditions on entry. A first criterion for ultimate final primary depressurization is provided, ensuring all attempts to reflood the core with the available means have been ensured before the OSSA entry condition is reached. This

  17. Electron paramagnetic resonance (EPR) biodosimetry

    International Nuclear Information System (INIS)

    Desrosiers, Marc; Schauer, David A.

    2001-01-01

    Radiation-induced electron paramagnetic resonance (EPR) signals were first reported by Gordy et al. [Proc. Natl. Acad. Sci. USA 41 (1955) 983]. The application of EPR spectroscopy to ionizing radiation dosimetry was later proposed by Brady et al. [Health Phys. 15 (1968) 43]. Since that time EPR dosimetry has been applied to accident and epidemiologic dose reconstruction, radiation therapy, food irradiation, quality assurance programs and archaeological dating. Materials that have been studied include bone, tooth enamel, alanine and quartz. This review paper presents the fundamentals and applications of EPR biodosimetry. Detailed information regarding sample collection and preparation, EPR measurements, dose reconstruction, and data analysis and interpretation will be reviewed for tooth enamel. Examples of EPR biodosimetry application in accidental overexposures, radiopharmaceutical dose assessment and retrospective epidemiologic studies will also be presented

  18. The EPR investigation of tooth enamel for measurements of tooth enamel for measurements of absorbed gamma doses of people irradiated in Chernobyl accident

    International Nuclear Information System (INIS)

    Baran, N.P.; Barchuk, V.I.; Bar'yakhtar, V.G.; Bugaj, A.A.; Koval', G.N.; Maksimenko, V.M.; Berezhnoj, A.B.; Zakharash, M.P.; AN Ukrainskoj SSR, Kiev

    1993-01-01

    The EPR spectra of the tooth enamel of Chernobyl 'liquidators' were investigated. A lot of people were engaged in work at the Chernobyl area after the accident in 1986. A part of them is under regular medical control at the Ukrainian security service hospital. When patients lose the teeth for some reasons the EPR spectra of radiation centers in tooth enamel caused by emergency gamma radiation were investigated. The measurement of the intensities of the EPR spectra give the real individual absorbed doses of gamma radiation which are much higher than the official values registered in the medical cards of liquidators

  19. EPR dosimetry teeth in past and future accidents: A prospective look at a retrospective method

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.; Kenner, G.; Hayes, R. [Univ. of Utah, Salt Lake City, UT (United States). Center for Applied Dosimetry; Chumak, V.; Shalom, S. [Scientific Center for Radiation Medicine, Kiev (Ukraine)

    1997-03-01

    Accurate assessments of doses received by individuals exposed to radiation from nuclear accidents and incidents such as those at Hiroshima and Nagasaki, the Nevada test site, Cheliabinsk and Mayak are required for epidemiological studies seeking to establish relationships between radiation dose and health effects. One method of retrospective dosimetry which allows for measurement of cumulative gamma ray doses received by exposed individuals is electron paramagnetic resonance spectroscopy (EPR) of tooth enamel. Tooth enamel stores and retains, indefinitely, information on absorbed radiation dose. And teeth are available in every population as a result of dental extraction for medical reasons including periodontal disease and impacted wisdom teeth. In the case of children, deciduous teeth, which are shed between the ages of 7 and 13, can be a very important dosimetric source if documented collection is implemented shortly following an accident.

  20. EPR dosimetry teeth in past and future accidents: A prospective look at a retrospective method

    International Nuclear Information System (INIS)

    Haskell, E.; Kenner, G.; Hayes, R.

    1997-01-01

    Accurate assessments of doses received by individuals exposed to radiation from nuclear accidents and incidents such as those at Hiroshima and Nagasaki, the Nevada test site, Cheliabinsk and Mayak are required for epidemiological studies seeking to establish relationships between radiation dose and health effects. One method of retrospective dosimetry which allows for measurement of cumulative gamma ray doses received by exposed individuals is electron paramagnetic resonance spectroscopy (EPR) of tooth enamel. Tooth enamel stores and retains, indefinitely, information on absorbed radiation dose. And teeth are available in every population as a result of dental extraction for medical reasons including periodontal disease and impacted wisdom teeth. In the case of children, deciduous teeth, which are shed between the ages of 7 and 13, can be a very important dosimetric source if documented collection is implemented shortly following an accident

  1. Statistical analysis of fuel failures in large break loss-of-coolant accident (LBLOCA) in EPR type nuclear power plant

    International Nuclear Information System (INIS)

    Arkoma, Asko; Hänninen, Markku; Rantamäki, Karin; Kurki, Joona; Hämäläinen, Anitta

    2015-01-01

    Highlights: • The number of failing fuel rods in a LB-LOCA in an EPR is evaluated. • 59 scenarios are simulated with the system code APROS. • 1000 rods per scenario are simulated with the fuel performance code FRAPTRAN-GENFLO. • All the rods in the reactor are simulated in the worst scenario. • Results suggest that the regulations set by the Finnish safety authority are met. - Abstract: In this paper, the number of failing fuel rods in a large break loss-of-coolant accident (LB-LOCA) in EPR-type nuclear power plant is evaluated using statistical methods. For this purpose, a statistical fuel failure analysis procedure has been developed. The developed method utilizes the results of nonparametric statistics, the Wilks’ formula in particular, and is based on the selection and variation of parameters that are important in accident conditions. The accident scenario is simulated with the coupled fuel performance – thermal hydraulics code FRAPTRAN-GENFLO using various parameter values and thermal hydraulic and power history boundary conditions between the simulations. The number of global scenarios is 59 (given by the Wilks’ formula), and 1000 rods are simulated in each scenario. The boundary conditions are obtained from a new statistical version of the system code APROS. As a result, in the worst global scenario, 1.2% of the simulated rods failed, and it can be concluded that the Finnish safety regulations are hereby met (max. 10% of the rods allowed to fail)

  2. Statistical analysis of fuel failures in large break loss-of-coolant accident (LBLOCA) in EPR type nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Arkoma, Asko, E-mail: asko.arkoma@vtt.fi; Hänninen, Markku; Rantamäki, Karin; Kurki, Joona; Hämäläinen, Anitta

    2015-04-15

    Highlights: • The number of failing fuel rods in a LB-LOCA in an EPR is evaluated. • 59 scenarios are simulated with the system code APROS. • 1000 rods per scenario are simulated with the fuel performance code FRAPTRAN-GENFLO. • All the rods in the reactor are simulated in the worst scenario. • Results suggest that the regulations set by the Finnish safety authority are met. - Abstract: In this paper, the number of failing fuel rods in a large break loss-of-coolant accident (LB-LOCA) in EPR-type nuclear power plant is evaluated using statistical methods. For this purpose, a statistical fuel failure analysis procedure has been developed. The developed method utilizes the results of nonparametric statistics, the Wilks’ formula in particular, and is based on the selection and variation of parameters that are important in accident conditions. The accident scenario is simulated with the coupled fuel performance – thermal hydraulics code FRAPTRAN-GENFLO using various parameter values and thermal hydraulic and power history boundary conditions between the simulations. The number of global scenarios is 59 (given by the Wilks’ formula), and 1000 rods are simulated in each scenario. The boundary conditions are obtained from a new statistical version of the system code APROS. As a result, in the worst global scenario, 1.2% of the simulated rods failed, and it can be concluded that the Finnish safety regulations are hereby met (max. 10% of the rods allowed to fail)

  3. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1987-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery managment concevtrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that 'active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk', and goes further in considering and formulating the key issue: 'The most fruitful path to follow in reducing risk even further is through the planning of accident management.' (author)

  4. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1988-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery management concentrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk, and goes further in considering and formulating the key issue: The most fruitful path to follow in reducing risk even further is through the planning of accident management

  5. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR)

    International Nuclear Information System (INIS)

    Herve, M.L.

    2006-03-01

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  6. EPR dosimetry of teeth in past and future accidents. A prospective look at a retrospective method

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.; Kenner, G.; Hayes, R. [Center for Applied Dosimetry, Salt Lake City, UT (United States); Chumak, V.; Shalom, S.

    1996-12-31

    Accurate assessments of doses received by individuals exposed to radiation from nuclear accidents and incidents such as those at Hiroshima and Nagasaki, the Nevada test site, Chelyabinsk and Mayak are required for epidemiological studies seeking to establish relationships between radiation dose and health effects. One method of retrospective dosimetry which allows for measurement of cumulative gamma ray doses received by exposed individuals is electron paramagnetic resonance spectroscopy (EPR) of tooth enamel. Tooth enamel stores and retains, indefinitely, information on absorbed radiation dose; and teeth are available in every population as a result of dental extraction for medical reasons including periodontal disease and impacted wisdom teeth. In the case of children, deciduous teeth, which are shed between the ages of 7 and 13, can be a very important dosimetric source if documented collection is implemented shortly following an accident. (author)

  7. Accident management insights after the Fukushima Daiichi NPP accident

    International Nuclear Information System (INIS)

    Degueldre, Didier; Viktorov, Alexandre; Tuomainen, Minna; Ducamp, Francois; Chevalier, Sophie; Guigueno, Yves; Tasset, Daniel; Heinrich, Marcus; Schneider, Matthias; Funahashi, Toshihiro; Hotta, Akitoshi; Kajimoto, Mitsuhiro; Chung, Dae-Wook; Kuriene, Laima; Kozlova, Nadezhda; Zivko, Tomi; Aleza, Santiago; Jones, John; McHale, Jack; Nieh, Ho; Pascal, Ghislain; ); Nakoski, John; Neretin, Victor; Nezuka, Takayoshi; )

    2014-01-01

    The Fukushima Daiichi nuclear power plant (NPP) accident, that took place on 11 March 2011, initiated a significant number of activities at the national and international levels to reassess the safety of existing NPPs, evaluate the sufficiency of technical means and administrative measures available for emergency response, and develop recommendations for increasing the robustness of NPPs to withstand extreme external events and beyond design basis accidents. The OECD Nuclear Energy Agency (NEA) is working closely with its member and partner countries to examine the causes of the accident and to identify lessons learnt with a view to the appropriate follow-up actions to be taken by the nuclear safety community. Accident management is a priority area of work for the NEA to address lessons being learnt from the accident at the Fukushima Daiichi NPP following the recommendations of Committee on Nuclear Regulatory Activities (CNRA), Committee on the Safety of Nuclear Installations (CSNI), and Committee on Radiation Protection and Public Health (CRPPH). Considering the importance of these issues, the CNRA authorised the formation of a task group on accident management (TGAM) in June 2012 to review the regulatory framework for accident management following the Fukushima Daiichi NPP accident. The task group was requested to assess the NEA member countries needs and challenges in light of the accident from a regulatory point of view. The general objectives of the TGAM review were to consider: - enhancements of on-site accident management procedures and guidelines based on lessons learnt from the Fukushima Daiichi NPP accident; - decision-making and guiding principles in emergency situations; - guidance for instrumentation, equipment and supplies for addressing long-term aspects of accident management; - guidance and implementation when taking extreme measures for accident management. The report is built on the existing bases for capabilities to respond to design basis

  8. EPR Study of Free Radicals in Cotton Fiber for Its Potential Use as a Fortuitous Dosimeter in Radiological Accidents

    International Nuclear Information System (INIS)

    Sudprasert, W.; Insuan, P.; Khamkhrongmee, S.

    2014-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was applied to characterize radiation- induced free radicals in cotton fiber in order to determine the possibility for using cotton as a fortuitous dosimeter in accidental exposures to radiation. Cotton fabrics were irradiated at 0.1, 0.5, 1, 2, 10, 50 and 500 Gy using a 60Co gamma source. The irradiated samples were then stored in the dark under controlled environmental conditions for 1, 15, 35 and 60 days. The EPR spectra were observed in samples using a Bruker EMX X-band spectrometer equipped with a TE102 rectangular cavity. The EPR signal intensities of irradiated samples were determined from peak-to-peak amplitudes of EPR spectra and compared to unirradiated samples. The following optimum parameters were used: modulation frequency,100 kHz; microwave frequency, 9.84 GHz; modulation amplitude, 1.8 mT; microwave power,1.0 mW; time constant, 665 ms; conversion time, 41 ms; and sweep time, 41.98 s. The EPR spectra of unirradiated samples show a singlet line with g = 2.006 due to stable organic radicals pre-existing in the cotton fibers, whereas those of irradiated samples show the same pattern with different signal intensities according to the doses. Irradiation increased the signal intensity in a dose dependent manner. The signal intensity exhibited an exponential decay with storage time from 1 to 60 days. Obviously, the degree of fading of EPR intensity did not depend on the absorbed dose from 0.1-50 Gy. The maximum fading was about 60% at 60 days storage of irradiated samples at all doses. However the post-irradiation signal appeared to be detectable up to 60 days after irradiation. The results indicate the potential of using cotton as a fortuitous dosimeter in radiological accidents.

  9. Applications of nano-fluids to enhance LWR accidents management in in-vessel retention and emergency core cooling systems

    International Nuclear Information System (INIS)

    Chupin, A.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Water-based nano-fluid, colloidal dispersions of nano-particles in water; have been shown experimentally to increase the critical heat flux and surface wettability at very low concentrations. The use of nano-fluids to enhance accidents management would allow either to increase the safe margins in case of severe accidents or to upgrade the power of an existing power plant with constant margins. Building on the initial work, computational fluid dynamics simulations of the nano-fluid injection system have been performed to evaluate the feasibility of a nano-fluid injection system for in-vessel retention application. A preliminary assessment was also conducted on the emergency core cooling system of the European Pressurized Reactor (EPR) to implement a nano-fluid injection system for improving the management of loss of coolant accidents. Several design options were compared/or their respective merits and disadvantages based on criteria including time to injection, safety impact, and materials compatibility. (authors)

  10. Severe accident management. Prevention and Mitigation

    International Nuclear Information System (INIS)

    1992-01-01

    Effective planning for the management of severe accidents at nuclear power plants can produce both a reduction in the frequency of such accidents as well as the ability to mitigate their consequences if and when they should occur. This report provides an overview of accident management activities in OECD countries. It also presents the conclusions of a group of international experts regarding the development of accident management methods, the integration of accident management planning into reactor operations, and the benefits of accident management

  11. Severe accident mitigation and core melt retention in the European pressurized reactor (EPR)

    International Nuclear Information System (INIS)

    Fischer, Manfred

    2003-01-01

    For the mitigation of severe accidents, the FPR has adopted and improved the defense-in-depth approaches of its predecessors, the French 'N4' and the German 'Konvoi' PWR's. Beyond these evolutionary changes, it includes a new, 4-th level of defense aimed at limiting the consequences of a postulated severe accident with core melting. This involves a strengthening of the confinement function and the avoidance of large early releases, by the prevention of scenarios and events with potentially high loads on the containment, incl. RPV failure at high pressure. The remaining low-pressure accidents are mitigated by dedicated design measures. The paper gives an overview and of the measures for H 2 -mitigation and steam explosion and focuses on a detailed description of the precautions and design measures for the stabilization and long-term cooling of the molten core. In the EPR the latter is achieved by melt spreading into a large outside-cooled crucible lateral to the pit, which is passively flooded and cooled with water from the IRWST. The separation of functions between pit and spreading room not only isolates the core catcher from the various loads during RPV failure, but also avoids any risks related to an unintended initiation of flooding during power operation. A stable state of the melt is reached after a few hours. Complete solidification is achieved within days. The core catcher can optionally be cooled actively by the CHRS, which avoids further steaming into the containment and establishes ambient pressure conditions in the long term. (author)

  12. EPR response characterization of drugs excipients for applying in accident dosimetry; Caracterizacao da resposta RPE dos excipientes dos medicamentos para aplicacao em dosimetria de acidente

    Energy Technology Data Exchange (ETDEWEB)

    Marczewski, Barbara S.; Rodrigues Junior, Orlando; Galante, Ocimar L.; Costa, Zelia M. da; Campos, Leticia L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    Some drugs are widely used by the population and can be employed to dose retrospective. The carbohydrates (saccharides), commonly used as excipients in the pharmaceutical industry, produce a quantity of free radicals after gamma irradiation, making them useful for dosimetry in emergency or accident situations that imply in dose evaluation from the materials found nearly or in contact with victims. In general, EPR signal from pulverized pills of some drugs are very complex due to the variety of components in the formulation. Because of this fact, some pharmaceutical excipients identified in the pill composition were also analysed by EPR spectrometry. On the counter drugs were studied: Cebion glucose, AAS, Aspirina, Conmel, Lacto-Purga and sugar substitutive ZeroCal. The excipients were: lactose, amide, anhydrous glucose and magnesium stearate. In some samples the number of radicals produced increased with the dose, showing a linear response for a dose range of interest and an adequate sensibility for dosimetry in accident cases.

  13. Expertise of safety of the Flamanville EPR reactor. Manche inhabitants worry, the Institute answer them

    International Nuclear Information System (INIS)

    2014-01-01

    A first article gives some examples of activities and of the influence of experts who, at each step of the construction of the EPR in Flamanville and until its operation, check whether safety requirements are met. For example, strain gauges are used to control the behaviour of the containment all along its construction. Safety objectives for the EPR have been defined by French and German authorities who decided some design evolutions: number of emergency generators, use of a new water resource to cool the fuel in case of accident, safety systems. In a brief interview, the EDF technical manager evokes the lessons learned from Fukushima from a technical point of view as well as in terms of personnel, and evokes some modifications of the EPR project. A brief article evokes the participation of the IRSN to the Finnish EPR project. A last article addresses the cooperative activities of the local information commissions and other involved actors (IRSN, ASN, EDF, Areva) about the safety of the installation

  14. EPRI research on accident management

    International Nuclear Information System (INIS)

    Oehlberg, R.N.; Chao, J.

    1991-01-01

    The paper discusses Nuclear Regulatory Commission (NRC) efforts regarding severe reactor accident management and the Nuclear Management and Resources Council (NUMAEX), activities. (EPRI) Electric Power Research Institute accident management program consists of the two products just mentioned plus one related to severe accident plant status information and the MAAP 4.0 computer code. These are briefly discussed

  15. Considerations regarding the implementation of EPR dosimetry for the population in the vicinity of Semipalatinsk nuclear test site based on experience from other radiation accidents

    International Nuclear Information System (INIS)

    Skvortsov, Valeriy; Ivannikov, Alexander; Tikunov, Dimitri; Stepanenko, Valeriy; Borysheva, Natalie; Orlenko, Sergey; Nalapko, Mikhail; Hoshi, Masaharu

    2006-01-01

    General aspects of applying the method of retrospective dose estimation by electron paramagnetic resonance spectroscopy of human tooth enamel (EPR dosimetry) to the population residing in the vicinity of the Semipalatinsk nuclear test site are analyzed and summarized. The analysis is based on the results obtained during 20 years of investigations conducted in the Medical Radiological Research Center regarding the development and practical application of this method for wide-scale dosimetrical investigation of populations exposed to radiation after the Chernobyl accident and other radiation accidents. (author)

  16. Accident management on french PWRS

    International Nuclear Information System (INIS)

    Queniart, D.

    1990-06-01

    After a brief recall of French safety rationale, the reactor operation and severe accident management is given. The research and development aimed at developing accident management procedures and emergency organization in France for the case of a NPP accident are also given

  17. Accident management information needs

    International Nuclear Information System (INIS)

    Hanson, D.J.; Ward, L.W.; Nelson, W.R.; Meyer, O.R.

    1990-04-01

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, a methodology has been developed for identifying the plant information needs necessary for personnel involved in the management of an accident to diagnose that an accident is in progress, select and implement strategies to prevent or mitigate the accident, and monitor the effectiveness of these strategies. This report describes the methodology and presents an application of this methodology to a Pressurized Water Reactor (PWR) with a large dry containment. A risk-important severe accident sequence for a PWR is used to examine the capability of the existing measurements to supply the necessary information. The method includes an assessment of the effects of the sequence on the measurement availability including the effects of environmental conditions. The information needs and capabilities identified using this approach are also intended to form the basis for more comprehensive information needs assessment performed during the analyses and development of specific strategies for use in accident management prevention and mitigation. 3 refs., 16 figs., 7 tabs

  18. Accident management information needs

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Ward, L.W.; Nelson, W.R.; Meyer, O.R. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-04-01

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, a methodology has been developed for identifying the plant information needs necessary for personnel involved in the management of an accident to diagnose that an accident is in progress, select and implement strategies to prevent or mitigate the accident, and monitor the effectiveness of these strategies. This report describes the methodology and presents an application of this methodology to a Pressurized Water Reactor (PWR) with a large dry containment. A risk-important severe accident sequence for a PWR is used to examine the capability of the existing measurements to supply the necessary information. The method includes an assessment of the effects of the sequence on the measurement availability including the effects of environmental conditions. The information needs and capabilities identified using this approach are also intended to form the basis for more comprehensive information needs assessment performed during the analyses and development of specific strategies for use in accident management prevention and mitigation. 3 refs., 16 figs., 7 tabs.

  19. Use of PSA and severe accident assessment results for the accident management

    International Nuclear Information System (INIS)

    Jang, S. H.; Kim, H. G.; Jang, H. S.; Moon, S. K.; Park, J. U.

    1993-12-01

    The objectives for this study are to investigate the basic principle or methodology which is applicable to accident management, by using the results of PSA and severe accident research, and also facilitate the preparation of accidents management program in the future. This study was performed as follows: derivation of measures for core damage prevention, derivation of measures for accident mitigation, application of computerized tool to assess severe accident management

  20. Use of PSA and severe accident assessment results for the accident management

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S H; Kim, H G; Jang, H S; Moon, S K; Park, J U [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    1993-12-15

    The objectives for this study are to investigate the basic principle or methodology which is applicable to accident management, by using the results of PSA and severe accident research, and also facilitate the preparation of accidents management program in the future. This study was performed as follows: derivation of measures for core damage prevention, derivation of measures for accident mitigation, application of computerized tool to assess severe accident management.

  1. The IAEA Accident Management Programme

    Energy Technology Data Exchange (ETDEWEB)

    Kabanov, L.; Jankowski, M.; Mauersberger, H. (International Atomic Energy Agency, Vienna (Austria))

    1993-02-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.).

  2. The IAEA Accident Management Programme

    International Nuclear Information System (INIS)

    Kabanov, L.; Jankowski, M.; Mauersberger, H.

    1993-01-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.)

  3. Pressurized water reactors: the EPR project

    International Nuclear Information System (INIS)

    Py, J.P.; Yvon, M.

    2007-01-01

    EPR (originally 'European pressurized water reactor', and now 'evolutionary power reactor') is a model of reactor initially jointly developed by French and German engineers which fulfills the particular safety specifications of both countries but also the European utility requirements jointly elaborated by the main European power companies under the initiative of Electricite de France (EdF). Today, two EPR-based reactors are under development: one is under construction in Finland and the other, Flamanville 3 (France), received its creation permit decree on April 10, 2007. This article presents, first, the main objectives of the EPR, and then, describes the Flamanville 3 reactor: reactor type and general conditions, core and conditions of operation, primary and secondary circuits with their components, main auxiliary and recovery systems, man-machine interface and instrumentation and control system, confinement and serious accidents, arrangement of buildings. (J.S.)

  4. Meeting the next generation PWR safety requirements: The EPR Reactor

    International Nuclear Information System (INIS)

    Salhi, Othman

    2008-01-01

    The development process pursued the harmonization of technical solutions and the integration of all the lessons learned from earlier nuclear plants built by both vendors. As far as safety more specifically is concerned, the basic choice for the EPR was to adopt an evolutionary approach based on experience feedback from the reactors built by Areva, which at the time already amounted to nearly 100. This philosophy makes today's Areva EPR the natural descendant of the most advanced French N4 and German Konvoi power reactors currently in operation. EPR design choices affecting safety were motivated by a continuous quest for higher levels of safety. A two-fold approach was followed: 1. improvement of the measures aimed at further reducing the already very low probability of core melt 2. incorporation of measures aimed at further limiting the consequences of a severe accident, in the knowledge that its probability of occurrence has been considerably reduced. Through its filiations with French N4 and German Konvoi power reactors, the EPR benefits from the uninterrupted, evolutionary innovation process that has supported the development of PWRs since their introduction into the market place. This is especially true for safety where the EPR brings a unique combination of both tried and tested and innovative features that further improve the prevention of severe accidents and their mitigation

  5. Implementation of severe accident management measures - Summary and conclusions

    International Nuclear Information System (INIS)

    2002-01-01

    The objectives of the meeting were: 1) to exchange information on activities in the area of SAM implementation and on the rationale for such actions, 2) to monitor progress made, 3) to identify cases of agreement or disagreement, 4) to discuss future orientations of work, 5) to make recommendations to the CSNI. Session summaries prepared by the Chairpersons and discussed by the whole writing group are given in Annex. During the first session, 'SAM Programmes Implementation', papers from one regulator and several utilities and national research institutes were presented to outline the status of implementation of SAM programmes in countries like Switzerland, Russia, Spain, Finland, Belgium and Korea. Also, the contribution of SAM to the safety of Japanese plants (in terms of core damage frequency) was quantified in a paper. One paper gave an overview on the situation regarding SAM implementation in Europe. The second session, 'SAM Approach', provided background and bases for Severe Accident Management in countries like Sweden, Japan, Germany and Switzerland, as well as for hardware features in advanced light water reactor designs, such as the European Pressurised Reactor (EPR), regarding Severe Accident Management. The third session, 'SAM Mitigation Measures', was about hardware measures, in particular those oriented towards hydrogen mitigation where fundamentally different approaches have been taken in Scandinavian countries, France, Germany and Korea. Three papers addressed specific contributions from research to provide a broader basis for the assumptions made in certain computer codes used for the assessment of plant risk arising from beyond-design accident sequences. The fourth session, 'Implementation of SAM Measures on VVER-1000 Reactors', was about the status of work on Severe Accident Management implementation in VVER reactors of existing design and in a new plant currently under construction. The overall picture is that Severe Accident Management has been

  6. Approach to accident management in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.; Urbonavicius, E.; Uspuras, E.

    2008-01-01

    In order to ensure the safe operation of the nuclear power plants accident management programs are being developed around the world. These accident management programs cover the whole spectrum of accidents, including severe accidents. A lot of work is done to investigate the severe accident phenomena and implement severe accident management in NPPs with vessel-type reactors, while less attention is paid to channel-type reactors CANDU and RBMK. Ignalina NPP with RBMK-1500 reactor has implemented symptom based emergency operation procedures, which cover management of accidents until the core damage and do not extend to core damage region. In order to ensure coverage of the whole spectrum of accidents and meet the requirements of IAEA the severe accident management guidelines have to be developed. This paper presents the basic principles and approach to management of beyond design basis accidents at Ignalina NPP. In general, this approach could be applied to NPPs with RBMK-1000 reactors that are available in Russia, but the design differences should be taken into account

  7. Uncertainties and severe-accident management

    International Nuclear Information System (INIS)

    Kastenberg, W.E.

    1991-01-01

    Severe-accident management can be defined as the use of existing and or alternative resources, systems, and actions to prevent or mitigate a core-melt accident. Together with risk management (e.g., changes in plant operation and/or addition of equipment) and emergency planning (off-site actions), accident management provides an extension of the defense-indepth safety philosophy for severe accidents. A significant number of probabilistic safety assessments have been completed, which yield the principal plant vulnerabilities, and can be categorized as (a) dominant sequences with respect to core-melt frequency, (b) dominant sequences with respect to various risk measures, (c) dominant threats that challenge safety functions, and (d) dominant threats with respect to failure of safety systems. Severe-accident management strategies can be generically classified as (a) use of alternative resources, (b) use of alternative equipment, and (c) use of alternative actions. For each sequence/threat and each combination of strategy, there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These include (a) uncertainty in key phenomena, (b) uncertainty in operator behavior, (c) uncertainty in system availability and behavior, and (d) uncertainty in information availability (i.e., instrumentation). This paper focuses on phenomenological uncertainties associated with severe-accident management strategies

  8. Accident management approach in Armenia

    International Nuclear Information System (INIS)

    Ghazaryan, K.

    1999-01-01

    In this lecture the accident management approach in Armenian NPP (ANPP) Unit 2 is described. List of BDBAs had been developed by OKB Gydropress in 1994. 13 accident sequences were included in this list. The relevant analyses had been performed in VNIIAES and the 'Guidelines on operator actions for beyond design basis accident (BDBA) management at ANPP Unit 2' had been prepared. These instructions are discussed

  9. Regulatory approach to accident management in Sweden

    International Nuclear Information System (INIS)

    Hoegberg, L.

    1989-01-01

    The Swedish accident management program includes the following components: definition of overall safety and radiation protection objectives for the program; definition of appropriate accident management strategies to reach these objectives, based on plant-specific severe accident analysis; development and installation of appropriate accident management systems and associated management procedure; definition of roles and resposibilities for plant staff involved in accident management and implementation of appropriate training programs. The discussion of these components tries to highlight the basic technical concepts and approaches and the underlying safety philosophy rather than going into design details. 5 figs., 7 refs

  10. Longitudinal analysis on utilization of medical document management system in a hospital with EPR implementation.

    Science.gov (United States)

    Kuwata, Shigeki; Yamada, Hitomi; Park, Keunsik

    2011-01-01

    Document management systems (DMS) have widespread in major hospitals in Japan as a platform to digitize the paper-based records being out of coverage by EPR. This study aimed to examine longitudinal trends of actual use of DMS in a hospital in which EPR had been in operation, which would be conducive to planning the further information management system in the hospital. Degrees of utilization of electronic documents and templates with DMS were analyzed based on data extracted from a university-affiliated hospital with EPR. As a result, it was found that the number of electronic documents as well as scanned documents circulating at the hospital tended to increase. The result indicated that replacement of paper-based documents with electronic documents did not occur. Therefore it was anticipated that the need for DMS would continue to increase in the hospital. The methods used this study to analyze the trend of DMS utilization would be applicable to other hospitals with with a variety of DMS implementation, such as electronic storage by scanning documents or paper preservation that is compatible with EPR.

  11. Accident and emergency management

    International Nuclear Information System (INIS)

    Andersen, V.; Moellenbach, K.; Heinonen, R.; Jakobsson, S.; Kukko, T.; Berg, Oe.; Larsen, J.S.; Westgaard, T.; Magnusson, B.; Andersson, H.; Holmstroem, C.; Brehmer, B.; Allard, R.

    1988-06-01

    There is an increasing potential for severe accidents as the industrial development tends towards large, centralised production units. In several industries this has led to the formation of large organisations which are prepared for accidents fighting and for emergency management. The functioning of these organisations critically depends upon efficient decision making and exchange of information. This project is aimed at securing and possibly improving the functionality and efficiency of the accident and emergency management by verifying, demonstrating, and validating the possible use of advanced information technology in the organisations mentioned above. With the nuclear industry in focus the project consists of five main activities: 1) The study and detailed analysis of accident and emergency scenarios based on records from incidents and rills in nuclear installations. 2) Development of a conceptual understanding of accident and emergency management with emphasis on distributed decision making, information flow, and control structure sthat are involved. 3) Development of a general experimental methodology for evaluating the effects of different kinds of decision aids and forms of organisation for emergency management systems with distributed decision making. 4) Development and test of a prototype system for a limited part of an accident and emergency organisation to demonstrate the potential use of computer and communication systems, data-base and knowledge base technology, and applications of expert systems and methods used in artificial intelligence. 5) Production of guidelines for the introduction of advanced information technology in the organisations based on evaluation and validation of the prototype system. (author)

  12. The Fukushima Daiichi Accident. Technical Volume 3/5. Emergency Preparedness and Response

    International Nuclear Information System (INIS)

    2015-08-01

    This volume describes the key events and response actions from the onset of the accident at the Fukushima Daiichi nuclear power plant (NPP), operated by the Tokyo Electric Power Company (TEPCO), on 11 March 2011. It also describes the national emergency preparedness and response (EPR) system in place in Japan and the international EPR framework prior to the accident. It is divided into five sections. Section 3.1 describes the initial actions taken by Japan in response to the accident, involving: identification of the accident, notification of off-site authorities and activation of the response; mitigatory actions taken on-site; and initial off-site response. Section 3.2 describes the protective measures taken for personnel in response to the natural disaster, protection of emergency workers, medical management of emergency workers and the voluntary involvement of members of the public in the emergency response. Section 3.3 describes the protective actions and other response actions taken by Japan to protect the public. It addresses urgent and early protective actions; the use of a dose projection model, the System for Prediction of Environmental Emergency Dose Information (SPEEDI), as a basis for decisions on protective actions during the accident; environmental monitoring; provision of information to the public and international community; and issues related to international trade and waste management. Section 3.4 describes the transition from the emergency phase to the recovery phase. It also addresses the national analysis of the accident and the emergency response. Section 3.5 describes the response by the IAEA, other international organizations within the Inter- Agency Committee on Radiological and Nuclear Emergencies (IACRNE), the actions of IAEA Member States with regard to protective actions recommended to their nationals in Japan and the provision of international assistance. A summary, observations and lessons conclude each section. There are three

  13. NPP Krsko Severe Accident Management Guidelines Implementation

    International Nuclear Information System (INIS)

    Basic, I.; Krajnc, B.; Bilic-Zabric, T.; Spiler, J.

    2002-01-01

    Severe Accident Management is a framework to identify and implement the Emergency Response Capabilities that can be used to prevent or mitigate severe accidents and their consequences. The USA NRC has indicated that the development of a licensee plant specific accident management program will be required in order to close out the severe accident regulatory issue (Ref. SECY-88-147). Generic Letter 88-20 ties the Accident management Program to IPE for each plant. The SECY-89-012 defines those actions taken during the course of an accident by the plant operating and technical staff to: 1) prevent core damage, 2) terminate the progress of core damage if it begins and retain the core within the reactor vessel, 3) maintain containment integrity as long as possible, and 4) minimize offsite releases. The subject of this paper is to document the severe accident management activities, which resulted in a plant specific Severe Accident Management Guidelines implementation. They have been developed based on the Krsko IPE (Individual Plant Examination) insights, Generic WOG SAMGs (Westinghouse Owners Group Severe Accident Management Guidances) and plant specific documents developed within this effort. Among the required plant specific actions the following are the most important ones: Identification and documentation of those Krsko plant specific severe accident management features (which also resulted from the IPE investigations). The development of the Krsko plant specific background documents (Severe Accident Plant Specific Strategies and SAMG Setpoint Calculation). Also, paper discusses effort done in the areas of NPP Krsko SAMG review (internal and external ), validation on Krsko Full Scope Simulator (Severe Accident sequences are simulated by MAAP4 in real time) and world 1st IAEA Review of Accident Management Programmes (RAMP). (author)

  14. Computerized accident management support system: development for severe accident management

    International Nuclear Information System (INIS)

    Garcia, V.; Saiz, J.; Gomez, C.

    1998-01-01

    The activities involved in the international Halden Reactor Project (HRP), sponsored by the OECD, include the development of a Computerized Accident Management Support System (CAMS). The system was initially designed for its operation under normal conditions, operational transients and non severe accidents. Its purpose is to detect the plant status, analyzing the future evolution of the sequence (initially using the APROS simulation code) and the possible recovery and mitigation actions in case of an accident occurs. In order to widen the scope of CAMS to severe accident management issues, the integration of the MAAP code in the system has been proposed, as the contribution of the Spanish Electrical Sector to the project (with the coordination of DTN). To include this new capacity in CAMS is necessary to modify the system structure, including two new modules (Diagnosis and Adjustment). These modules are being developed currently for Pressurized Water Reactors and Boiling Water REactors, by the engineering of UNION FENOSA and IBERDROLA companies (respectively). This motion presents the characteristics of the new structure of the CAMS, as well as the general characteristics of the modules, developed by these companies in the framework of the Halden Reactor Project. (Author)

  15. EPR by Areva. The path of greatest certainty

    International Nuclear Information System (INIS)

    2008-01-01

    AREVA's Evolutionary Power Reactor (EPR) is the first Generation III+ reactor design currently being built to answer the world's growing demand for clean and reliable electricity generation. Already under construction in Finland, France and China, the EPR is also being considered by America, United Kingdom, South Africa and other countries for the development of their nuclear fleet. The EPR is now clearly destined to become the mainstay of standardized, efficient reactor fleets around the globe. AREVA's EPR incorporates unbeatable know-how provided by an uninterrupted track record of reactor building activities and backed by decades of feedback experience from operating PWRs, including the most recent. The EPR is a Franco-German initiative which benefited from the stringent scrutiny of safety authorities from both countries, at each stage of the project. The EPR has already secured construction licenses from two of the world's most demanding safety authorities in France and Finland and is currently in line for a design certification and a combined construction and operating license (COL) in the USA. It is also taking part in the licensing process recently launched in the United Kingdom. Europe's leading utilities have granted the EPR their approval under the 'European Utilities Requirements' and have further expressed individual interest in the design and performance of the EPR for their businesses. AREVA is the only Gen III+ reactor constructor in the world with ongoing building experience. To date, AREVA is the only vendor who has the necessary field experience that future customers can benefit: - Detailed design completed; - Experience feedback from 87 PWR; - 3 projects going on; - Continuous PWR experience in design and construction. Close to 100% of the EPR primary circuit heavy components are sourced directly from AREVA's integrated plants. Engineering, manufacturing, services and fuel cycle management are totally integrated and mastered by AREVA. From its

  16. Large Break LOCA Accident Management Strategies for Accidents With Large Containment Leaks

    International Nuclear Information System (INIS)

    Sdouz, Gert

    2006-01-01

    The goal of this work is the investigation of the influence of different accident management strategies on the thermal-hydraulics in the containment during a Large Break Loss of Coolant Accident with a large containment leak from the beginning of the accident. The increasing relevance of terrorism suggests a closer look at this kind of severe accidents. Normally the course of severe accidents and their associated phenomena are investigated with the assumption of an intact containment from the beginning of the accident. This intact containment has the ability to retain a large part of the radioactive inventory. In these cases there is only a release via a very small leakage due to the un-tightness of the containment up to cavity bottom melt through. This paper represents the last part of a comprehensive study on the influence of accident management strategies on the source term of VVER-1000 reactors. Basically two different accident sequences were investigated: the 'Station Blackout'- sequence and the 'Large Break LOCA'. In a first step the source term calculations were performed assuming an intact containment from the beginning of the accident and no accident management action. In a further step the influence of different accident management strategies was studied. The last part of the project was a repetition of the calculations with the assumption of a damaged containment from the beginning of the accident. This paper concentrates on the last step in the case of a Large Break LOCA. To be able to compare the results with calculations performed years ago the calculations were performed using the Source Term Code Package (STCP), hydrogen explosions are not considered. In this study four different scenarios have been investigated. The main parameter was the switch on time of the spray systems. One of the results is the influence of different accident management strategies on the source term. In the comparison with the sequence with intact containment it was

  17. SAMEX: A severe accident management support expert

    International Nuclear Information System (INIS)

    Park, Soo-Yong; Ahn, Kwang-Il

    2010-01-01

    A decision support system for use in a severe accident management following an incident at a nuclear power plant is being developed which is aided by a severe accident risk database module and a severe accident management simulation module. The severe accident management support expert (SAMEX) system can provide the various types of diagnostic and predictive assistance based on the real-time plant specific safety parameters. It consists of four major modules as sub-systems: (a) severe accident risk data base module (SARDB), (b) risk-informed severe accident risk data base management module (RI-SARD), (c) severe accident management simulation module (SAMS), and (d) on-line severe accident management guidance module (on-line SAMG). The modules are integrated into a code package that executes within a WINDOWS XP operating environment, using extensive user friendly graphics control. In Korea, the integrated approach of the decision support system is being carried out under the nuclear R and D program planned by the Korean Ministry of Education, Science and Technology (MEST). An objective of the project is to develop the support system which can show a theoretical possibility. If the system is feasible, the project team will recommend the radiation protection technical support center of a national regulatory body to implement a plant specific system, which is applicable to a real accident, for the purpose of immediate and various diagnosis based on the given plant status information and of prediction of an expected accident progression under a severe accident situation.

  18. Development of Krsko Severe Accident Management Database (SAMD)

    International Nuclear Information System (INIS)

    Basic, I.; Kocnar, R.

    1996-01-01

    Severe Accident Management is a framework to identify and implement the Emergency Response Capabilities that can be used to prevent or mitigate severe accidents and their consequences. Krsko Severe Accident Management Database documents the severe accident management activities which are developed in the NPP Krsko, based on the Krsko IPE (Individual Plant Examination) insights and Generic WOG SAMGs (Westinghouse Owners Group Severe Accident Management Guidance). (author)

  19. Severe accidents at nuclear power plants. Their risk assessment and accident management

    International Nuclear Information System (INIS)

    Abe, Kiyoharu.

    1995-05-01

    This document is to explain the severe accident issues. Severe Accidents are defined as accidents which are far beyond the design basis and result in severe damage of the core. Accidents at Three Mild Island in USA and at Chernobyl in former Soviet Union are examples of severe accidents. The causes and progressions of the accidents as well as the actions taken are described. Probabilistic Safety Assessment (PSA) is a method to estimate the risk of severe accidents at nuclear reactors. The methodology for PSA is briefly described and current status on its application to safety related issues is introduced. The acceptability of the risks which inherently accompany every technology is then discussed. Finally, provision of accident management in Japan is introduced, including the description of accident management measures proposed for BWRs and PWRs. (author)

  20. ADAM: An Accident Diagnostic,Analysis and Management System - Applications to Severe Accident Simulation and Management

    International Nuclear Information System (INIS)

    Zavisca, M.J.; Khatib-Rahbar, M.; Esmaili, H.; Schulz, R.

    2002-01-01

    The Accident Diagnostic, Analysis and Management (ADAM) computer code has been developed as a tool for on-line applications to accident diagnostics, simulation, management and training. ADAM's severe accident simulation capabilities incorporate a balance of mechanistic, phenomenologically based models with simple parametric approaches for elements including (but not limited to) thermal hydraulics; heat transfer; fuel heatup, meltdown, and relocation; fission product release and transport; combustible gas generation and combustion; and core-concrete interaction. The overall model is defined by a relatively coarse spatial nodalization of the reactor coolant and containment systems and is advanced explicitly in time. The result is to enable much faster than real time (i.e., 100 to 1000 times faster than real time on a personal computer) applications to on-line investigations and/or accident management training. Other features of the simulation module include provision for activation of water injection, including the Engineered Safety Features, as well as other mechanisms for the assessment of accident management and recovery strategies and the evaluation of PSA success criteria. The accident diagnostics module of ADAM uses on-line access to selected plant parameters (as measured by plant sensors) to compute the thermodynamic state of the plant, and to predict various margins to safety (e.g., times to pressure vessel saturation and steam generator dryout). Rule-based logic is employed to classify the measured data as belonging to one of a number of likely scenarios based on symptoms, and a number of 'alarms' are generated to signal the state of the reactor and containment. This paper will address the features and limitations of ADAM with particular focus on accident simulation and management. (authors)

  1. EPR dosimetry for actual and suspected overexposures during radiotherapy treatments in Poland

    International Nuclear Information System (INIS)

    Trompier, F.; Sadlo, J.; Michalik, J.; Stachowicz, W.; Mazal, A.; Clairand, I.; Rostkowska, J.; Bulski, W.; Kulakowski, A.; Sluszniak, J.; Gozdz, S.; Wojcik, A.

    2007-01-01

    EPR dosimetry on bone samples was recently used for actual and suspected overexposures during radiotherapy treatments performed in Poland. In 2001 five breast-cancer patients undergoing radiotherapy in the Bialystok Oncology Center, Poland, were overexposed. The overexposure was due to a defective safety interlock and an obsolete safety system of the linear accelerator. For the three most exposed patients, pieces of rib bones removed during surgical reconstruction of the chest wall and skin transplantation allowed an estimation of the accident doses by electron paramagnetic resonance (EPR) spectrometry. The doses delivered during the accident were as high as 60-80 Gy. In 2005, a patient treated in Kielce Holy Cross Cancer Center exhibited similar deep necroses of the chest wall but 6 years following a 'standard upper mantel fields' radiotherapy for Hodgkin's disease. In order to investigate the possible late effect of an overexposure as necrosis origin, the delivered dose was afterward estimated by EPR dosimetry performed on a rib sample

  2. Assessment of uncertainties in severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Catton, I.; Dhir, V.K.; Okrent, D.

    1990-01-01

    Recent progress on the development of Probabilistic Risk Assessment (PRA) as a tool for qualifying nuclear reactor safety and on research devoted to severe accident phenomena has made severe accident management an achievable goal. Severe accident management strategies may involve operational changes, modification and/or addition of hardware, and institutional changes. In order to achieve the goal of managing severe accidents, a method for assessment of strategies must be developed which integrates PRA methodology and our current knowledge concerning severe accident phenomena, including uncertainty. The research project presented in this paper is aimed at delineating uncertainties in severe accident progression and their impact on severe accident management strategies

  3. The Chernobyl accident: EPR dosimetry on dental enamel of children

    International Nuclear Information System (INIS)

    Gualtieri, G.; Colacicchi, S.; Sgattoni, R.; Giannoni, M.

    2001-01-01

    The radiation dose on tooth enamel of children living close to Chernobyl has been evaluated by EPR. The sample preparation was reduced to a minimum of mechanical steps to remove a piece of enamel. A standard X-ray tube at low energy was used for additive irradiation. The filtration effect of facial soft tissue was taken into account. The radiation dose for a group of teeth slightly exceeds the annual dose, whereas for another group the dose very much exceeds the annual dose. Since the higher dose is found in teeth whose enamel have much lower EPR sensitivity to the radiation, it can be suggested that for these teeth the native signal could alter the evaluation of the smaller radiation signal

  4. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, George A. [U.S. Department of Health and Human Services, Office of Preparedness and Emergency Operations, 200 Independence Avenue, SW, Room 403B-1, Washington, DC 20201 (United States); Swartz, Harold M. [Dept. of Radiology and Physiology Dept., Dartmouth Medical School, HB 7785, Vail 702, Rubin 601, Hanover, NH 03755 (United States); Amundson, Sally A. [Center for Radiological Research, Columbia University Medical Center, 630 W. 168th Street, VC11-215, New York, NY 10032 (United States); Blakely, William F. [Armed Forces Radiobiology Research Inst., 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: blakely@afrri.usuhs.mil; Buddemeier, Brooke [Science and Technology, U.S. Department of Homeland Security, Washington, DC 20528 (United States); Gallez, Bernard [Biomedical Magnetic Resonance Unit and Lab. of Medicinal Chemistry and Radiopharmacy, Univ. Catholique de Louvain, Brussels (Belgium); Dainiak, Nicholas [Dept. of Medicine, Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610 (United States); Goans, Ronald E. [MJW Corporation, 1422 Eagle Bend Drive, Clinton, TN 37716-4029 (United States); Hayes, Robert B. [Remote Sensing Lab., MS RSL-47, P.O. Box 98421, Las Vegas, NV 89193 (United States); Lowry, Patrick C. [Radiation Emergency Assistance Center/Training Site (REAC/TS), Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 (United States); Noska, Michael A. [Food and Drug Administration, FDA/CDRH, 1350 Piccard Drive, HFZ-240, Rockville, MD 20850 (United States); Okunieff, Paul [Dept. of Radiation Oncology (Box 647), Univ. of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 (United States); Salner, Andrew L. [Helen and Harry Gray Cancer Center, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102 (United States); Schauer, David A. [National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095 (United States)] (and others)

    2007-07-15

    In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473-496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037-1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494-504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505-512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293-299; . Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672-682], national [. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; . Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland

  5. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents

    International Nuclear Information System (INIS)

    Alexander, George A.; Swartz, Harold M.; Amundson, Sally A.; Blakely, William F.; Buddemeier, Brooke; Gallez, Bernard; Dainiak, Nicholas; Goans, Ronald E.; Hayes, Robert B.; Lowry, Patrick C.; Noska, Michael A.; Okunieff, Paul; Salner, Andrew L.; Schauer, David A.

    2007-01-01

    In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473-496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037-1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494-504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505-512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293-299; . Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672-682], national [. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; . Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland

  6. Management of a radiological emergency. Experience feedback and post-accident management

    International Nuclear Information System (INIS)

    Dubiau, Ph.

    2007-01-01

    In France, the organization of crisis situations and the management of radiological emergency situations are regularly tested through simulation exercises for a continuous improvement. Past severe accidents represent experience feedback resources of prime importance which have led to deep changes in crisis organizations. However, the management of the post-accident phase is still the object of considerations and reflections between the public authorities and the intervening parties. This document presents, first, the nuclear crisis exercises organized in France, then, the experience feedback of past accidents and exercises, and finally, the main aspects to consider for the post-accident management of such events: 1 - Crisis exercises: objectives, types (local, national and international exercises), principles and progress, limits; 2 - Experience feedback: real crises (major accidents, other recent accidental situations or incidents), crisis exercises (experience feedback organization, improvements); 3 - post-accident management: environmental contamination and people exposure, management of contaminated territories, management of populations (additional protection, living conditions, medical-psychological follow up), indemnification, organization during the post-accident phase; 4 - conclusion and perspectives. (J.S.)

  7. EPR by Areva. The path of greatest certainty

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    AREVA's Evolutionary Power Reactor (EPR) is the first Generation III+ reactor design currently being built to answer the world's growing demand for clean and reliable electricity generation. Already under construction in Finland, France and China, the EPR is also being considered by America, United Kingdom, South Africa and other countries for the development of their nuclear fleet. The EPR is now clearly destined to become the mainstay of standardized, efficient reactor fleets around the globe. AREVA's EPR incorporates unbeatable know-how provided by an uninterrupted track record of reactor building activities and backed by decades of feedback experience from operating PWRs, including the most recent. The EPR is a Franco-German initiative which benefited from the stringent scrutiny of safety authorities from both countries, at each stage of the project. The EPR has already secured construction licenses from two of the world's most demanding safety authorities in France and Finland and is currently in line for a design certification and a combined construction and operating license (COL) in the USA. It is also taking part in the licensing process recently launched in the United Kingdom. Europe's leading utilities have granted the EPR their approval under the 'European Utilities Requirements' and have further expressed individual interest in the design and performance of the EPR for their businesses. AREVA is the only Gen III+ reactor constructor in the world with ongoing building experience. To date, AREVA is the only vendor who has the necessary field experience that future customers can benefit: - Detailed design completed; - Experience feedback from 87 PWR; - 3 projects going on; - Continuous PWR experience in design and construction. Close to 100% of the EPR primary circuit heavy components are sourced directly from AREVA's integrated plants. Engineering, manufacturing, services and fuel cycle management are totally

  8. Containment severe accident management - selected strategies

    International Nuclear Information System (INIS)

    Duco, J.; Royen, J.; Rohde, J.; Frid, W.; De Boeck, B.

    1994-01-01

    The OECD Nuclear Energy Agency (NEA) organized in June 1994, in collaboration with the Swedish Nuclear Power Inspectorate (SKI), a Specialist Meeting on Selected Containment Severe Accident Management Strategies, to discuss their feasibility, effectiveness, benefits and drawbacks, and long-term impact. The meeting focused on water reactors, mainly on existing systems. The technical content covered topics such as general aspects of accident management strategies in OECD Member countries, hydrogen management techniques and other containment accident management strategies, surveillance and protection of the containment function. The main conclusions of the meeting are summarized in the paper. (author)

  9. Severe accident analysis methodology in support of accident management

    International Nuclear Information System (INIS)

    Boesmans, B.; Auglaire, M.; Snoeck, J.

    1997-01-01

    The author addresses the implementation at BELGATOM of a generic severe accident analysis methodology, which is intended to support strategic decisions and to provide quantitative information in support of severe accident management. The analysis methodology is based on a combination of severe accident code calculations, generic phenomenological information (experimental evidence from various test facilities regarding issues beyond present code capabilities) and detailed plant-specific technical information

  10. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR); Dosimetrie d'accident en champ mixte (neutrons, photons) utilisant la spectrometrie par resonance paramagnetique electronique (RPE)

    Energy Technology Data Exchange (ETDEWEB)

    Herve, M.L

    2006-03-15

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  11. Application of the accident management information needs methodology to a severe accident sequence

    International Nuclear Information System (INIS)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R.; Solberg, D.E.

    1989-01-01

    The U.S. Nuclear Regulatory Commission is conducting an accident management research program that emphasizes the use of severe accident research to enhance the ability of plant operating personnel to effectively manage severe accidents. Hence, it is necessary to ensure that the plant instrumentation and information systems adequately provide this information to the operating staff during accident conditions. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed. The methodology identifies (a) the information needs of the plant personnel during a wide range of accident conditions, (b) the existing plant measurements capable of supplying these information needs and minor additions to instrument and display systems that would enhance management capabilities, (c) measurement capabilities and limitations during severe accident conditions, and (d) areas in which the information systems could mislead plant personnel

  12. Application of the accident management information needs methodology to a severe accident sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R. (Idaho National Engineering Laboratory, Idaho Falls (USA)); Solberg, D.E. (Nuclear Regulatory Commission, Washington, DC (USA))

    1989-11-01

    The U.S. Nuclear Regulatory Commission is conducting an accident management research program that emphasizes the use of severe accident research to enhance the ability of plant operating personnel to effectively manage severe accidents. Hence, it is necessary to ensure that the plant instrumentation and information systems adequately provide this information to the operating staff during accident conditions. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed. The methodology identifies (a) the information needs of the plant personnel during a wide range of accident conditions, (b) the existing plant measurements capable of supplying these information needs and minor additions to instrument and display systems that would enhance management capabilities, (c) measurement capabilities and limitations during severe accident conditions, and (d) areas in which the information systems could mislead plant personnel.

  13. Jose Cabrera NPP severe accident management activities

    International Nuclear Information System (INIS)

    Blanco, J.; Almeida, P.; Saiz, J.; Sastre, J.L.; Delgado, R.

    1998-01-01

    To prepare a common acting plan with respect to Severe Accident Management, in 1994 was founded the severe accident management ''ad-hoc'' working group from the Spanish Westinghouse PWR Nuclear Power Plant Owners Group. In this group actively collaborated the Jose Cabrera NPP Training Centre and the Department of Nuclear Engineering of UNION FENOSA. From this moment, Jose Cabrera NPP began the planning of its specific Severe Accident Management Program, which main point are Severe Accident Management Guidelines (SAMG). To elaborate this guidelines, the Spanish translation of Westinghouse Owners Group (WOG) Severe Accident Management Guidelines were considered the reference documents. The implementation of this Guidelines to Jose Cabrera NPP started on January 1997. Once the specific guidelines have been implemented to the plant, training activities for the personnel involved in severe accident issues will be developed. To prepare the training exercises MAAP4 code will be used, and with this intention, a specific Jose Cabrera NPP MAAP-GRAAPH screen has been developed. Furthermore, a wide selection of MAAP input files for the simulation of different scenarios and accidental events is available. (Author)

  14. Hydrogen Analyses in the EPR

    International Nuclear Information System (INIS)

    Worapittayaporn, S.; Eyink, J.; Movahed, M.

    2008-01-01

    In severe accidents with core melting large amounts of hydrogen may be released into the containment. The EPR provides a combustible gas control system to prevent hydrogen combustion modes with the potential to challenge the containment integrity due to excessive pressure and temperature loads. This paper outlines the approach for the verification of the effectiveness and efficiency of this system. Specifically, the justification is a multi-step approach. It involves the deployment of integral codes, lumped parameter containment codes and CFD codes and the use of the sigma criterion, which provides the link to the broad experimental data base for flame acceleration (FA) and deflagration to detonation transition (DDT). The procedure is illustrated with an example. The performed analyses show that hydrogen combustion at any time does not lead to pressure or temperature loads that threaten the containment integrity of the EPR. (authors)

  15. Report by the 'Fukushima Dai-Ichi major accident' nuclear subgroup

    International Nuclear Information System (INIS)

    Brezin, Edouard; Balibar, Sebastien; Candel, Sebastien; Cesarsky, Catherine; Dautray, Robert; Gratias, Denis; Guillaumont, Robert; Laval, Guy; Quere, Yves; Tissot, Bernard; Zaoui, Andre; Brechet, Yves; Carpentier, Alain; Duplessy, Jean-Claude; Jerome, Denis; Bamberger, Yves; Barre, Bertrand; Comets, Marie-Pierre; Jamet, Philippe; Schwarz, Michel; Baumont, David; Guilhem, Gilbert; Repussard, Jacques; Billot, Philippe; Boullis, Bernard; Gauche, Francois; Zaetta, Alan; Pouget-Abadie, Xavier

    2011-06-01

    This report comprises a description of the succession of events in the Fukushima-Dai-Ichi power plant, a discussion of the situation of the nuclear industry and energy in France after this accident (French nuclear stock, security organisation), and a discussion on the fuel cycle and on future opportunities (comparison with EPR - Gen II safety measures, perspectives beyond the EPR). Numerous appendices are proposed, made of documents from different bodies involved in nuclear industry, energy and safety. They deal with the Fukushima accident, with light water and pressurized water reactors, with severe accidents in PWRs, and so on

  16. Evaluation of severe accident environmental conditions taking accident management strategy into account for equipment survivability assessments

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Jeong, Ji Hwan; Na, Man Gyun; Kim, Soong Pyung

    2003-01-01

    This paper presents a methodology utilizing accident management strategy in order to determine accident environmental conditions in equipment survivability assessments. In case that there is well-established accident management strategy for specific nuclear power plant, an application of this tool can provide a technical rationale on equipment survivability assessment so that plant-specific and time-dependent accident environmental conditions could be practically and realistically defined in accordance with the equipment and instrumentation required for accident management strategy or action appropriately taken. For this work, three different tools are introduced; Probabilistic Safety Assessment (PSA) outcomes, major accident management strategy actions, and Accident Environmental Stages (AESs). In order to quantitatively investigate an applicability of accident management strategy to equipment survivability, the accident simulation for a most likely scenario in Korean Standard Nuclear Power Plants (KSNPs) is performed with MAAP4 code. The Accident Management Guidance (AMG) actions such as the Reactor Control System (RCS) depressurization, water injection into the RCS, the containment pressure and temperature control, and hydrogen concentration control in containment are applied. The effects of these AMG actions on the accident environmental conditions are investigated by comparing with those from previous normal accident simulation, especially focused on equipment survivability assessment. As a result, the AMG-involved case shows the higher accident consequences along the accident environmental stages

  17. Application of the accident management information needs methodology to a severe accident sequence

    International Nuclear Information System (INIS)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R.; Solberg, D.E.

    1989-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe accident research results to enhance the capability of plant operating personnel to effectively manage severe accidents. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed as part of the research program designed to resolve this issue. The methodology identifies the information needs of the plant personnel during a wide range of accident conditions, the existing plant measurements capable of supplying these information needs and what, if any minor additions to instrument and display systems would enhance the capability to manage accidents, known limitations on the capability of these measurements to function properly under the conditions that will be present during a wide range of severe accidents, and areas in which the information systems could mislead plant personnel. This paper presents an application of this methodology to a severe accident sequence to demonstrate its use in identifying the information which is available for management of the event. The methodology has been applied to a severe accident sequence in a Pressurized Water Reactor with a large dry containment. An examination of the capability of the existing measurements was then performed to determine whether the information needs can be supplied

  18. Retrospective individual dosimetry using luminescence and EPR after radiation accidents

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Wieser, A.; Ulanovsky, A.

    2007-01-01

    requires further investigation. Applicability of suggested procedure need to be tested under factory conditions using the latest material and card technology. Feasibility of production of such cards on an industrial scale is discussed. Alternatively individual dose after emergency situations can be reconstructed by assessment of absorbed dose in human tooth enamel by electron paramagnetic resonance (EPR) measurements. From absorbed dose in tooth enamel the effective dose and dose in organs can be reconstructed in consideration of photon energy response characteristic of teeth, and photon energy spectrum and geometry of the exposure field. In this project the applicability of EPR measurements with teeth was extended by reducing the detection threshold and computation of the photon energy response characteristic of deciduous teeth. It is shown that current limitation of EPR measurement with teeth at low absorbed dose is caused by incomplete consideration of the EPR spectrum of nonradiation induced (initial) radicals. By adding further components for simulation of the initial EPR spectrum in the dose evaluation procedure, the critical value for detection of absorbed dose in tooth enamel could be decreased to 19 mGy. Dose conversion coefficients for deciduous teeth in dependence of photon energy and exposure geometry were computed by Monte Carlo simulation using a mathematical child phantom. For use with luminescence measurements with chip cards and EPR measurements with teeth a software was established that allows conversion of the measured dose to integral free-in-air kerma, tissue dose or dose water in dependence on exposure scenario. (orig.)

  19. Development of integrated accident management assessment technology

    International Nuclear Information System (INIS)

    Jung, Won Dea; Ha, Jae Joo; Jin, Young Ho

    2002-04-01

    This project aims to develop critical technologies for accident management through securing evaluation frameworks and supporting tools, in order to enhance capabilities coping with severe accidents. For the research goal, firstly under the viewpoint of accident prevention, on-line risk monitoring system and the analysis framework for human error have been developed. Secondly, the training/supporting systems including the training simulator and the off-site risk evaluation system have been developed to enhance capabilities coping with severe accidents. Four kinds of research results have been obtained from this project. Firstly, the framework and taxonomy for human error analysis has been developed for accident management. As the second, the supporting system for accident managements has been developed. Using data that are obtained through the evaluation of off-site risk for Younggwang site, the risk database as well as the methodology for optimizing emergency responses has been constructed. As the third, a training support system, SAMAT, has been developed, which can be used as a training simulator for severe accident management. Finally, on-line risk monitoring system, DynaRM, has been developed for Ulchin 3 and 4 unit

  20. EPR meets the next generation PWR safety requirements

    International Nuclear Information System (INIS)

    Bouteille, Francois; Czech, Juergen; Sloan, Sandra

    2006-01-01

    features are implemented to satisfy the following safety objectives required by the Safety Authorities: - achieve a significantly lower core melt probability by appropriate prevention means, - achieve the 'preclusion' of accidents liable to cause early containment failure, such as core melt under high pressure conditions, - achieve a major reduction in the radioactive releases, which could result from low pressure core melt accidents. The EPR is furthermore characterized by a robust containment not only with respect to hypothetical loads resulting from a core melt accident but also from external hazards resulting from extreme situations such as an aircraft crash directly on the Nuclear Island buildings. The evolutionary approach chosen by EPR designers thus corresponds to the optimal mix between largely proven solutions derived from the largest experience and innovative features needed to meet new requirements, particularly in the field of safety. (authors)

  1. Stress in accident and post-accident management at Chernobyl

    International Nuclear Information System (INIS)

    Girard, P.; Dubreuil, G.H.

    1996-01-01

    The effects of the Chernobyl nuclear accident on the psychology of the affected population have been much discussed. The psychological dimension has been advanced as a factor explaining the emergence, from 1990 onwards, of a post-accident crisis in the main CIS countries affected. This article presents the conclusions of a series of European studies, which focused on the consequences of the Chernobyl accident. These studies show that the psychological and social effects associated with the post-accident situation arise from the interdependency of a number of complex factors exerting a deleterious effect on the population. We shall first attempt to characterise the stress phenomena observed among the population affected by the accident. Secondly, we will be presenting an anlysis of the various factors that have contributed to the emerging psychological and social features of population reaction to the accident and in post-accident phases, while not neglecting the effects of the pre-accident situation on the target population. Thirdly, we shall devote some initial consideration to the conditions that might be conducive to better management of post-accident stress. In conclusion, we shall emphasise the need to restore confidence among the population generally. (Author)

  2. Development of severe accident management advisory and training simulator (SAMAT)

    International Nuclear Information System (INIS)

    Jeong, K.-S.; Kim, K.-R.; Jung, W.-D.; Ha, J.-J.

    2002-01-01

    The most operator support systems including the training simulator have been developed to assist the operator and they cover from normal operation to emergency operation. For the severe accident, the overall architecture for severe accident management is being developed in some developed countries according to the development of severe accident management guidelines which are the skeleton of severe accident management architecture. In Korea, the severe accident management guideline for KSNP was recently developed and it is expected to be a central axis of logical flow for severe accident management. There are a lot of uncertainties in the severe accident phenomena and scenarios and one of the major issues for developing a operator support system for a severe accident is the reduction of these uncertainties. In this paper, the severe accident management advisory system with training simulator, SAMAT, is developed as all available information for a severe accident are re-organized and provided to the management staff in order to reduce the uncertainties. The developed system includes the graphical display for plant and equipment status, the previous research results by knowledge-base technique, and the expected plant behavior using the severe accident training simulator. The plant model used in this paper is oriented to severe accident phenomena and thus can simulate the plant behavior for a severe accident. Therefore, the developed system may make a central role of the information source for decision-making for a severe accident management, and will be used as the training simulator for severe accident management

  3. The screening approach for review of accident management programmes

    International Nuclear Information System (INIS)

    Misak, J.

    1999-01-01

    In this lecture the screening approach for review of accident management programmes are presented. It contains objective trees for accident management: logic structure of the approach; objectives and safety functions for accident management; safety principles

  4. Error in assessing the absorbed dose from the EPR signal from dental enamel

    International Nuclear Information System (INIS)

    Kleshchenko, E.D.; Kushnereva, K.K.

    1997-01-01

    Dose measurements from EPR signals from dental enamel were analyzed in a random sampling of 100 teeth extracted in liquidators of the Chernobyl accident aftermath and the EPR spectra of dental enamel of 80 intact teeth from children studied. The mean square deviation of enamel sensitivity to ionizing radiation in some teeth is approximately 0.3 of the mean sensitivity value. The variability of the nature EPR spectrum of dental enamel limits in principle the lower threshold of EPR-measured 60 mGy doses. When assessing the individual absorbed doses from the EPR signal from dental enamel without additional exposure it is necessary to bear in mind the extra error of approximately 6-% at a confidence probability P=0.95 caused by the variability of enamel sensitivity to radiation in some teeth. This additional error may be ruled out by graduated additional exposure of the examined enamel samples

  5. Occupational Radiation Protection in Severe Accident Management

    International Nuclear Information System (INIS)

    2015-01-01

    As an early response to the Fukushima Daiichi NPP accident, the Information System on Occupational Exposure (ISOE) Bureau decided to focus on the following issues as an initial response of the joint program after having direct communications with the Japanese official participants in April 2011: - Management of high radiation area worker doses: It has been decided to make available the experience and information from the Chernobyl accident in terms of how emergency worker / responder doses were legally and practically managed, - Personal protective equipment for highly-contaminated areas: It was agreed to collect information about the types of personnel protective equipment and other equipment (e.g. air bottles, respirators, air-hoods or plastic suits, etc.), as well as high-radiation area worker dosimetry use (e.g. type, number and placement of dosimetry) for different types of emergency and high-radiation work situations. Detailed information was collected on dose criteria which are used for emergency workers /responders and their basis, dose management criteria for high dose/dose rate areas, protective equipment which is recommended for emergency workers / responders, recommended individual monitoring procedures, and any special requirement for assessment from the ISOE participating nuclear utilities and regulatory authorities and made available for Japanese utilities. With this positive response of the ISOE official participants and interest in the situation in Fukushima, the Expert Group on Occupational Radiation Protection in Severe Accident Management (EG-SAM) was established by the ISOE Management Board in May 2011. The overall objective of the EG-SAM is to contribute to occupational exposure management (providing a view on management of high radiation area worker doses) within the Fukushima plant boundary with the ISOE participants and to develop a state-of-the-art ISOE report on best radiation protection management practices for proper radiation

  6. Superheated-steam test of ethylene propylene rubber cables using a simultaneous aging and accident environment

    International Nuclear Information System (INIS)

    Bennett, P.R.; St Clair, S.D.; Gilmore, T.W.

    1986-06-01

    The superheated-steam test exposed different ethylene propylene rubber (EPR) cables and insulation specimens to simultaneous aging and a 21-day simultaneous accident environment. In addition, some insulation specimens were exposed to five different aging conditions prior to the 21-day simultaneous accident simulation. The purpose of this superheated-steam test (a follow-on to the saturated-steam tests (NUREG/CR-3538)) was to: (1) examine electrical degradation of different configurations of EPR cables; (2) investigate differences between using superheated-steam or saturated-steam at the start of an accident simulation; (3) determine whether the aging technique used in the saturated-steam test induced artificial degradation; and (4) identify the constituents in EPR that affect moisture absorption

  7. Use of PSA to support accident management at NPPs

    International Nuclear Information System (INIS)

    Gomez Cobo, A.

    1997-01-01

    The presentation discusses the following: Overview of PSA level 2; Introduction: Framework; Accident Progression Phenomena in the Confinement/containment; Severe Accident Sequences; Examples; Results and Insights. Accident Management: Concepts; Process; Use of PSA to support Accident; Management

  8. Managing severe reactor accidents. A review and evaluation of our knowledge on reactor accidents and accident management

    International Nuclear Information System (INIS)

    Gustavsson, Veine

    2002-11-01

    The report gives a review of the results from the last years research on severe reactor accidents, and an opinion on the possibilities to refine the present strategies for accident management in Swedish and Finnish BWRs. The following aspect of reactor accidents are the major themes of the study: 1. Early pressure relief from hydrogen production; 2. Recriticality in re-flooded, degraded core; 3. Melt-through; 4. Steam explosion after melt-through; 5. Coolability of the melt after after melt-through; 6. Hydrogen fire in the reactor containment; 7. Leaking containment; 8. Hydrogen fire in the reactor building; 9. Long-time developments after a severe accident; 10. Accidents during shutdown for overhaul; 11. Information need for remedial actions. Possibilities for improving the strategies in each of these areas are discussed. The review shows that our knowledge is sufficient in the areas 1, 2, 4, 6, 8. For the other areas, more research is needed

  9. SEVERE ACCIDENT MANAGEMENT STATUS AT Loviisa

    International Nuclear Information System (INIS)

    Kymalainen, O.; Tuomisto, H.

    1997-01-01

    Some of the specific design features of IVO's Loviisa Plant, most notably the ice-condenser containment, strongly affect the plant response in a hypothetical core melt accident. They have together with the relatively stringent Finnish regulatory requirements forced IVO to develop a tailor made severe accident management strategy for Loviisa. The low design pressure of the ice-condenser containment complicates the design of the hydrogen management system. On the other hand, the ice-condensers and the water available from them are facilitating factors regarding in-vessel retention of corium by external cooling of reactor pressure vessel. This paper summarizes the Finnish severe accident requirements, IVO's approach to severe accidents, and its application to the Loviisa Plant

  10. The inner containment of an EPR trademark pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ostermann, Dirk; Krumb, Christian; Wienand, Burkhard [AREVA GmbH, Offenbach (Germany)

    2014-08-15

    On February 12, 2014 the containment pressure and subsequent leak tightness tests on the containment of the Finnish Olkiluoto 3 EPR trademark reactor building were completed successfully. The containment of an EPR trademark pressurized water reactor consists of an outer containment to protect the reactor building against external hazards (such as airplane crash) and of an inner containment that is subjected to internal overpressure and high temperature in case of internal accidents. The current paper gives an overview of the containment structure, the design criteria, the validation by analyses and experiments and the containment pressure test.

  11. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  12. EPR Dosimetry - Present and Future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  13. On preparation for accident management in LWR power stations

    International Nuclear Information System (INIS)

    1996-01-01

    Nuclear Safety Commission received the report from Reactor Safety General Examination Committee which investigated the policy of executing the preparation for accident management. The basic policy on the preparation for accident management was decided by Nuclear Safety Commission in May, 1992. This Examination Committee investigated the policy of executing the preparation for accident management, which had been reported from the administrative office, and as the result, it judged the policy as adequate, therefore, the report is made. The course to the foundation of subcommittee is reported. The basic policy of the examination on accident management by the subcommittee conforming to the decision by Nuclear Safety Commission, the measures of accident management which were extracted for BWR and PWR facilities, the examination of the technical adequacy of selecting accident sequences in BWR and PWR facilities and the countermeasures to them, the adequacy of the evaluation of the possibility of executing accident management measures and their effectiveness and the adequacy of the evaluation of effect to existing safety functions, the preparation of operation procedure manual, and education and training plan are reported. (K.I.)

  14. Strategy generation in accident management support

    International Nuclear Information System (INIS)

    Sirola, M.

    1995-01-01

    An increased interest for research in the field of Accident Management can be noted. Several international programmes have been started in order to be able to understand the basic physical and chemical phenomena in accident conditions. A feasibility study has shown that it would be possible to design and develop a computerized support system for plant staff in accident situations. To achieve this goal the Halden Project has initiated a research programme on Computerized Accident Management Support (CAMS project). The aim is to utilize the capabilities of computerized tools to support the plant staff during the various accident stages. The system will include identification of the accident state, assessment of the future development of the accident and planning of accident mitigation strategies. A prototype is developed to support operators and the Technical Support Centre in decision making during serious accident in nuclear power plants. A rule based system has been built to take care of the strategy generation. This system assists plant personnel in planning control proposals and mitigation strategies from normal operation to severe accident conditions. The ideal of a safety objective tree and knowledge from the emergency procedures have been used. Future prediction requires good state identification of the plant status and some knowledge about the history of some critical variables. The information needs to be validated as well. Accurate calculations in simulators and a large database including all important information form the plant will help the strategy planning. (author). 12 refs, 2 figs

  15. The EPR reactor

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Dupuy, Ph.; Gupta, O.; Perez, J.R.; Emond, D.; Cererino, G.; Rousseau, J.M.; Jeffroy, F.; Evrard, J.M.; Seiler, J.M.; Azarian, G.; Chaumont, B.; Dubail, A.; Fischer, M.; Tiippana, P.; Hyvarinen, J.; Zaleski, C.P.; Meritet, S.; Iglesias, F.; Vincent, C.; Massart, S.; Graillat, G.; Esteve, B.; Mansillon, Y.; Gatinol, C.; Carre, F.

    2005-01-01

    This document reviews economical and environmental aspects of the EPR project. The following topics are discussed: role and point of view of the French Nuclear Safety Authority on EPR, control of design and manufacturing of EPR by the French Nuclear Safety Authority, assessment by IRSN of EPR safety, research and development in support of EPR, STUK safety review of EPR design, standpoint on EPR, the place of EPR in the French energy policy, the place of EPR in EDF strategy, EPR spearhead of nuclear rebirth, the public debate, the local stakes concerning the building of EPR in France at Flamanville (Manche) and the research on fourth generation reactors. (A.L.B.)

  16. Developing a knowledge base for the management of severe accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.; Jenkins, J.P.

    1986-01-01

    Prior to the accident at Three Mile Island, little attention was given to the development of procedures for the management of severe accidents, that is, accidents in which the reactor core is damaged. Since TMI, however, significant effort has been devoted to developing strategies for severe accident management. At the same time, the potential application of artificial intelligence techniques, particularly expert systems, to complex decision-making tasks such as accident diagnosis and response has received considerable attention. The need to develop strategies for accident management suggests that a computerized knowledge base such as used by an expert system could be developed to collect and organize knowledge for severe accident management. This paper suggests a general method which could be used to develop such a knowledge base, and how it could be used to enhance accident management capabilities

  17. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1991-01-01

    The use of NUREG-1150 and similar probabilistic risk assessments in the Nuclear Regulatory Commission (NRC) and industry risk management programs is discussed. Risk management is more comprehensive than the commonly used term accident management. Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed

  18. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1990-01-01

    The use of NUREG-1150 and similar Probabilistic Risk Assessments in NRC and industry risk management programs is discussed. ''Risk management'' is more comprehensive than the commonly used term ''accident management.'' Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed. 2 refs., 3 figs

  19. Application of EPR retrospective dosimetry for large-scale accidental situation

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Ivannikov, A.I.; Stepanenko, V.F.; Tsyb, A.F.; Khamidova, L.G.; Kondrashov, A.E.; Tikunov, D.D.

    2000-01-01

    Above 3000 tooth enamel samples, collected at population of radioactive contaminated territories after Chernobyl accident, the Chernobyl liquidators, the retired military of high radiation risk and the population of control radiation free territories were investigated by EPR spectroscopy method in order to obtain accumulated individual exposure doses. Results of EPR spectra measurements are stored in data bank; enamel samples are also stored in order to provide the possibility to repeat the measurements in future. Statistical analysis of results has allowed to detect the contribution into EPR signal in tooth enamel due to the action of the natural background radiation, and the radioactive contamination of territory. In general, the average doses of external exposure of the population obtained with EPR spectroscopy of teeth enamel are consistent with results based on other methods of direct and retrospective dosimetry. Essential exceeding of the individual doses above the average level within the population groups was observed for some persons. That gave the possibility to detect the individuals with overexposure, which were included into groups for medical monitoring

  20. Severe accident management program at Cofrentes Nuclear Power Plant

    International Nuclear Information System (INIS)

    Borondo, L.; Serrano, C.; Fiol, M.J.; Sanchez, A.

    2000-01-01

    Cofrentes Nuclear Power Plant (GE BWR/6) has implemented its specific Severe Accident Management Program within this year 2000. New organization and guides have been developed to successfully undertake the management of a severe accident. In particular, the Technical Support Center will count on a new ''Severe Accident Management Team'' (SAMT) which will be in charge of the Severe Accident Guides (SAG) when Control Room Crew reaches the Emergency Operation Procedures (EOP) step that requires containment flooding. Specific tools and training have also been developed to help the SAMT to mitigate the accident. (author)

  1. French policy for managing the post-accident phase of a nuclear accident.

    Science.gov (United States)

    Gallay, F; Godet, J L; Niel, J C

    2015-06-01

    In 2005, at the request of the French Government, the Nuclear Safety Authority (ASN) established a Steering Committee for the Management of the Post-Accident Phase of a Nuclear Accident or a Radiological Emergency, with the objective of establishing a policy framework. Under the supervision of ASN, this Committee, involving several tens of experts from different backgrounds (e.g. relevant ministerial offices, expert agencies, local information commissions around nuclear installations, non-governmental organisations, elected officials, licensees, and international experts), developed a number of recommendations over a 7-year period. First published in November 2012, these recommendations cover the immediate post-emergency situation, and the transition and longer-term periods of the post-accident phase in the case of medium-scale nuclear accidents causing short-term radioactive release (less than 24 h) that might occur at French nuclear facilities. They also apply to actions to be undertaken in the event of accidents during the transportation of radioactive materials. These recommendations are an important first step in preparation for the management of a post-accident situation in France in the case of a nuclear accident. © The Chartered Institution of Building Services Engineers 2014.

  2. Impact of severe accidents on the European pressurized water reactor (ERP) design and layout

    International Nuclear Information System (INIS)

    Yvon, M.; Lohnert, G.; Lauret, P.; Bittermann, D.

    1998-01-01

    The purpose of this presentation is to describe the impact of severe accidents on the EPR design and layout. After a summary of the safety requirements specified in accordance with the recommendations expressed by the French and German safety authorities, the main EPR features corresponding to the prevention and the mitigation of severe accidents will be described. Considerations with regard to R and D and cost impacts are also provided

  3. Specific public debate on the EPR - Position of 'Sauvons le Climat'

    International Nuclear Information System (INIS)

    2008-01-01

    After having evoked the respective performance of Denmark, Sweden and France in terms of CO 2 emission reduction, electricity consumption per inhabitant, and outlined the unavoidable measures of energy saving and reasonable development of renewable energies while keeping on using nuclear energy, this report more particularly addresses various issues related to the EPR within the perspectives of energy production needs. It also outlines the need to stop the current rate of increase of energy consumption, for resource concerns as well as for CO 2 emission concerns, when renewable energies will remain limited. It discusses the objectives of reduction of greenhouse emissions and states that the EPR could be a determining factor to reach these objectives. Moreover, the EPR technology is an industrial asset for France even in front of the emergence of reactors of fourth generation (high temperature gas reactors, fast breeder reactors). It outlines that the EPR design improves nuclear safety and reduces accident probability. Direct, indirect and external costs of the EPR are discussed. The role of this reactor as a tool for electric power production is finally discussed within the French context and within the European context

  4. Use of NUREG-1150 and IPEs in accident management

    International Nuclear Information System (INIS)

    Mauersberger

    1992-01-01

    The fundamental objective of the accident management program is to assure, in the event of a severe accident at a nuclear plant, that the effectiveness of personnel and equipment is maximized in preventing or mitigating the consequences of the accident. This document studies the use of NUREG-1150 and IPEs in accident management. Figs

  5. Developing and assessing accident management plans for nuclear power plants

    International Nuclear Information System (INIS)

    Hanson, D.J.; Johnson, S.P.; Blackman, H.S.; Stewart, M.A.

    1992-07-01

    This document is the second of a two-volume NUREG/CR that discusses development of accident management plans for nuclear power plants. The first volume (a) describes a four-phase approach for developing criteria that could be used for assessing the adequacy of accident management plans, (b) identifies the general attributes of accident management plans (Phase 1), (c) presents a prototype process for developing and implementing severe accident management plans (Phase 2), and (d) presents criteria that can be used to assess the adequacy of accident management plans. This volume (a) describes results from an evaluation of the capabilities of the prototype process to produce an accident management plan (Phase 3) and (b), based on these results and preliminary criteria included in NUREG/CR-5543, presents modifications to the criteria where appropriate

  6. Risk evaluation of accident management strategies

    International Nuclear Information System (INIS)

    Dingman, S.; Camp, A.

    1992-01-01

    The use of Probabilistic Risk Assessment (PRA) methods to evaluate accident management strategies in nuclear power plants discussed in this paper. The PRA framework allows an integrated evaluation to be performed to give the full implications of a particular strategy. The methodology is demonstrated for a particular accident management strategy, intentional depressurization of the reactor coolant system to avoid containment pressurization during the ejection of molten debris at vessel breach

  7. Accident management strategy in Sweden - implementation and verification

    International Nuclear Information System (INIS)

    Loewenhielm, Gustaf; Engqvist, Alf; Espefaelt, Ralf

    1994-01-01

    A comprehensive program for severe accident mitigation was completed in Sweden by the end of 1988. As described in this paper, this program included plant modifications such as the introduction of filtered containment venting, and an accident management system comprising emergency operating strategies and procedures, training and emergency drills. The accident management system at Vattenfall has been further developed since 1988 and some results and experience from this development are reported in this paper. The main aspects covered concern the emergency organization and the supporting tools developed for use by the emergency response teams, the radiological implications such as accessibility to various locations and the long-term aspects of accident management. ((orig.))

  8. One-way EPR steering and genuine multipartite EPR steering

    Science.gov (United States)

    He, Qiongyi; Reid, Margaret D.

    2012-11-01

    We propose criteria and experimental strategies to realise the Einstein-Podolsky-Rosen (EPR) steering nonlocality. One-way steering can be obtained where there is asymmetry of thermal noise on each system. We also present EPR steering inequalities that act as signatures and suggest how to optimise EPR correlations in specific schemes so that the genuine multipartite EPR steering nonlocality (EPR paradox) can also possibly be realised. The results presented here also apply to the spatially separated macroscopic atomic ensembles.

  9. Prevention and mitigation of severe accidents

    International Nuclear Information System (INIS)

    Weisshaeupl, H.

    1996-01-01

    For the European Pressurized water Reactor (EPR), jointly developed by French and German industry, great emphasis is laid to gain further improvement in prevention of severe accidents based on the accumulative experience and proven technology of the French and German PWR reactors. In this evolutionary development, a balanced and comprehensive approach in respect to implement new passive features has been chosen. Improvements in each step of the defense in depth concept lead to a further decrease in the probability of occurrence of a severe accident with partial or even gross melting of the core. The different phenomenons that occur during such an hypothetical accident must be taken into account during the conception of specific measurements necessary to mitigate accident consequences. To cope with the consequences of a severe accident with core melt down means to deal with different phenomena which may threaten the integrity of the containment or may lead to an enhanced fission product release into the environment: high pressure reactor pressure vessel failure; energetic molten fuel coolant interaction; direct containment heating, molten core concrete interaction; hydrogen combustion; long term pressure and temperature increase in the containment. The EPR approach follows the recommendations from the DFD (Deutsch-Franzosischer Direktionsausschuss), jointly prepared by the French and German safety authorities. The EPR concept consist to prevent or eliminate as far as possible scenarios which are connected with high loads (high pressure failure of the reactor pressure vessel, or global hydrogen detonation etc..) by dedicated design provisions, and to deal with the consequences of severe accident scenarios which are not ruled out by specific safety measures. The measures comprise: the primary system depressurization; the control of hydrogen; the stabilisation and cooling of the melted core; the containment heat removal. They are completed by specific characteristics

  10. The Assesment Of Radioactive Accident Management On The RSG-GAS

    International Nuclear Information System (INIS)

    Soejoedi, Agoes; Karmana, Endang

    2000-01-01

    In the operational reactor facilities include RSG-GAS, safety factor for radioactive accident very important to be prioritized. Till now the anticipate happening radioactive accident on the RSG-GAS threat only by the RSG-GAS Operation Manual. For increasing the working function need to create radioactive accident management by facility level. From studying result which source IAEA guidebook, can be composed the assessment accident management of radioactive the RSG-GAS.The sketching this accident management of radioactive to be hoped can helping P2TRR organization by handling radioactive accident if this moment happen on the RSG-GAS

  11. EPR dosimetry - present and future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as co-ordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as biomarkers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (ASTM), and the International Organisation of Standards (ISO) as well as those of the International Commission on Radiation Units and Measurements (ICRU) considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (author)

  12. Strategy-oriented display concept to assist severe accident management

    International Nuclear Information System (INIS)

    Jeong, Kwangsub; Ha, Jaejoo

    2000-01-01

    The Critical Function Monitoring System (CFMS) is a typical Safety Parameter Display System (SPDS) to assist the operation of Korean Standard Nuclear Power Plants during normal and emergency operation, and SPDS for severe accident is being developed in Korea. When the existing CFMS is used under a severe accident situation, some problems are expected from: (1) different design basis, i.e. prevention of core melt vs. protection of radiation release to environment, (2) different parameters for decision-making, and (3) different domain and depth of information to restore the plant. To resolve the above problems, a concept, 'Strategy-Oriented Information Display' concept, for displaying information for severe accident management is developed in this paper. Whereas the existing SPDS structure is based on the critical safety function, the developed concept is based on the severe accident management strategy. The display for each strategy includes the plant parameters to check the status of plant and component with the logical or graphical views necessary for executing the strategy. As the application of the proposed concept, KAERI is developing a display system, the prototype severe accident SPDS, Severe Accident Management Display System (SAMDIS), to assist plant personnel for executing Korean Severe Accident Management Guidelines. CFMS is developed for a general display suitable to all situations with various displays. On the contrary, SAMDIS provides all the relevant information on one screen based on the proposed concept. The SAMDIS screen shows more extensive area than CFMS and thus plant personnel can recognize the overall plant status at a glance. This concept is quite effective when used with severe accident management guidelines because of the relatively macroscopic characteristics of a severe accident management strategy. (author)

  13. Use of analytical aids for accident management

    International Nuclear Information System (INIS)

    Ward, L.W.

    1991-01-01

    The use of analytical aids by utility technical support teams can enhance the staff's ability to manage accidents. Since instrumentation is exposed to environments beyond design-basis conditions, instruments may provide ambiguous information or may even fail. While it is most likely that many instruments will remain operable, their ability to provide unambiguous information needed for the management of beyond-design-basis events and severe accidents is questionable. Furthermore, given these limitation in instrumentation, the need to ascertain and confirm current plant status and forecast future behavior to effectively manage accidents at nuclear facilities requires a computational capability to simulate the thermal and hydraulic behavior in the primary, secondary, and containment systems. With the need to extend the current preventive approach in accident management to include mitigative actions, analytical aids could be used to further enhance the current capabilities at nuclear facilities. This need for computational or analytical aids is supported based on a review of the candidate accident management strategies discussed in NUREG/CR-5474. Based on the review of the NUREG/CR-5474 strategies, two major analytical aids are considered necessary to support the implementation and monitoring of many of the strategies in this document. These analytical aids include (1) An analytical aid to provide reactor coolant and secondary system behavior under LOCA conditions. (2) An analytical aid to predict containment pressure and temperature response with a steam, air, and noncondensable gas mixture present

  14. Use of simulators in severe accident management

    International Nuclear Information System (INIS)

    Evans, R.C.

    1994-01-01

    The U.S. nuclear utility industry is moving in a deliberate fashion through a coordinated industry severe accident working group to study and augment, where appropriate, the existing utility organizational and emergency planning structure to address accident and severe accident management. Full-scope simulators are used extensively to train licensed operators for their initial license examinations and continually thereafter in licensed operator requalification training and yearly examinations. The goal of the training (both initial and requalification) is to ensure that operators possess adequate knowledge, skills and abilities to prevent an event from progressing to core damage. The use of full-scope simulators in severe accident management training is in large part viewed by the industry as being premature. The working group study has not progressed to the point where the decision to employ full-scope simulators can be logically considered. It is not however premature to consider part-task or work station simulators as invaluable research tools to support the industry's study. These simulators could be employed, subject to limitations in the current state of knowledge regarding severe accident progression and phenomenological responses, in the validation and verification (V and V) of severe accident models or codes as they are developed. The U.S. nuclear utility industry has made substantial strides in the past 12 years in the accident prevention, mitigation and management arena. These strides are a product of the industry's preference for a logical and systematic approach to change. (orig.)

  15. The EPR - technology for the 3rd millennium

    International Nuclear Information System (INIS)

    Bernstrauch, O.; Dubois, F.

    2001-01-01

    This paper is a story of a successful Franco-German co-operation: the EPR project. It is a rundown of the history of the EPR, before a decision is made to launch the lead-unit construction. The EPR is expected to progressively replace the existing nuclear power plants when they will reach the end of their service life. It integrates the latest technological advances, especially in safety and operational aspects and comprises more than 30 years operating experience. Thus, the EPR combines the qualities of its predecessors, the French N4 and the German Konvoi. The safety of the EPR was maximized both to prevent hypothetical accidents - even severe ones - and to reduce their consequences (corium spreading area, pre-stressed double containment with local liner, four-train safety systems...). The n+2 strategy (in the event of a problem with one train and even if a second train is undergoing maintenance, the remaining two are sufficient to perform the function) allows to perform maintenance during operation which leads consequently to short outage periods, highest availabilities and economical operation. Moreover, most of the EPR components are the result of mastered evolution. The reactor vessel, as a key element for the reactor service life, is designed to be in service for 60 years, the core is large (241 fuel elements instead of 205 in the N4 or 193 in the Konvoi) and the steam generators have higher efficiency. Along the same line, the core and core barrel design have been modified to allow a reduced uranium enrichment and the increase to 65 Gigawatt-day per metric-ton of the fuel discharge burn-up. Finally, the instrumentation and control systems minimize human error by giving the operators a grace period of at least 30 minutes to make decisions. (authors)

  16. Dosimetric management during a criticality accident

    International Nuclear Information System (INIS)

    Lebaron-Jacobs, L.; Fottorino, R.; Racine, Y.; Miele, A.; Barbry, F.; Briot, F.; Distinguin, S.; Le Goff, J.P.; Berard, P.; Boisson, P.; Cavadore, D.; Lecoix, G.; Persico, M.H.; Rongier, E.; Challeton-De Vathaire, C.; Medioni, R.; Voisin, P.; Exmelin, L.; Flury-Herard, A.; Gaillard-Lecanu, E.; Lemaire, G.; Gonin, M.; Riasse, C.

    2008-01-01

    A working group from health occupational and clinical biochemistry services on French sites has issued essential data sheets on the guidelines to follow in managing the victims of a criticality accident. Since the priority of the medical management after a criticality accident is to assess the dose and the distribution of dose, some dosimetric investigations have been selected in order to provide a prompt response and to anticipate the final dose reconstruction. Comparison exercises between clinical biochemistry laboratories on French sites were carried out to confirm that each laboratory maintained the required operational methods for hair treatment and the appropriate equipment for 32 P activity in hair and 24 Na activity in blood measurements, and to demonstrate its ability to rapidly provide neutron dose estimates after a criticality accident. As a result, a relation has been assessed to estimate the dose and the distribution of dose according to the neutron spectrum following a criticality accident. (authors)

  17. Using MARS to assist in managing a severe accident

    International Nuclear Information System (INIS)

    Raines, J.C.; Hammersley, R.J.; Henry, R.E.

    2004-01-01

    During an accident, information about the current and possible future states of the plant provides guidance for accident managers in evaluating which actions should be taken. However, depending upon the nature of the accident and the stress levels imposed on the plant staff responding to the accident the current and future plant assessments may be very difficult or nearly impossible to perform without supplemental training and/or appropriate tools. The MAAP Accident Response System (MARS) has been developed as a calculational aid to assist the responsible accident management individuals. Specifically MARS provides additional insights on the current and possible future states of the plant during an accident including the influence of operator actions. In addition to serving as a calculational aid, the MARS software can be an effective means for providing supplemental training. The MARS software uses engineering calculations to perform an integral assessment of the plant status including a consistency assessment of the available instrumentation. In addition, it uses the Modular Accident Analysis Program (MAAP) to provide near term predictions of the plant response if corrective actions are taken. This paper will discuss the types of information that are beneficial to the accident manager and how MARS addresses each. The MARS calculational functions include: instrumentation, validation and simulation, projected operator response based on the EOPs, as well as estimated timing and magnitude of in-plant and off-site radiation dose releases. Each of these items is influential in the management of a severe accident. (author)

  18. Retrospective dosimetry using EPR and TL techniques: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.H.

    1996-12-31

    Methods of retrospective dosimetry, including luminescence and electron paramagnetic resonance spectroscopy (EPR), rely on measurement of accident dose absorbed by naturally occurring materials - ceramics in the case of both thermoluminescence (TL) and optically stimulated luminescence (OSL) and organic materials and bio- minerals in the case of EPR. Each of these methods relies on measurement of radiation defects resulting from accidental exposure. Since defects also result from natural sources of radiation over the lifetime of a sample, analysis is usually restricted to materials for which the natural dose may be determined and subtracted from the measured cumulative dose. Luminescence dating techniques rely heavily on an accurate assessment of cumulative dose from natural radiation sources, and dating research has provided us with the bulk of our knowledge in this area. Virtually all of the work on natural dose determination can be directly applied to retrospective techniques. With EPR techniques the cumulative dose from diagnostic x- rays is also of importance.

  19. Retrospective dosimetry using EPR and TL techniques: a status report

    International Nuclear Information System (INIS)

    Haskell, E.H.

    1996-01-01

    Methods of retrospective dosimetry, including luminescence and electron paramagnetic resonance spectroscopy (EPR), rely on measurement of accident dose absorbed by naturally occurring materials - ceramics in the case of both thermoluminescence (TL) and optically stimulated luminescence (OSL) and organic materials and bio- minerals in the case of EPR. Each of these methods relies on measurement of radiation defects resulting from accidental exposure. Since defects also result from natural sources of radiation over the lifetime of a sample, analysis is usually restricted to materials for which the natural dose may be determined and subtracted from the measured cumulative dose. Luminescence dating techniques rely heavily on an accurate assessment of cumulative dose from natural radiation sources, and dating research has provided us with the bulk of our knowledge in this area. Virtually all of the work on natural dose determination can be directly applied to retrospective techniques. With EPR techniques the cumulative dose from diagnostic x- rays is also of importance

  20. The management of severe accidents

    International Nuclear Information System (INIS)

    Pelce, J.; Brignon, P.

    1987-01-01

    In considering severe accidents in water power reactors, a major problem that arises is how to manage them in such a way that the situation can be controlled as well as possible, from the aspects both of preventing serious damage to the core of limiting the discharge of radioactivity. A number of countries have announced provisions in the field of accident management, some already set up, others planned, but these mainly apply to preventing damage to the core. Part of this report deals with this aspect, to show that there is a fairly wide consensus on how problems should be approached. Attitudes vary, on the other hand, in the approach to mitigate radioactive release. In fact, few countries have proposed concrete steps to manage severe accidents in the final stages when the core is seriously damaged. Since it is difficult to compare different approaches, only the French approach is described. This description is however very brief, because in the five or six years since it was defined, the approach has been presented many times. The stress is placed more on the comments which this type of approach suggests, to make the subsequent general discussion easier

  1. EPR dosimetry in a mixed neutron and gamma radiation field.

    Science.gov (United States)

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  2. Management of Radioactive Waste after a Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Strand, Per; Laurent, Gerard; Rindo, Hiroshi; Georges, Christine; Ito, Eiichiro; Yamada, Norikazu; Iablokov, Iuri; Kilochytska, Tatiana; Jefferies, Nick; Byrne, Jim; Siemann, Michael; Koganeya, Toshiyuki; Aoki, Hiroomi

    2016-01-01

    The NEA Expert Group on Fukushima Waste Management and Decommissioning R and D (EGFWMD) was established in 2014 to offer advice to the authorities in Japan on the management of large quantities of on-site waste with complex properties and to share experiences with the international community and NEA member countries on ongoing work at the Fukushima Daiichi site. The group was formed with specialists from around the world who had gained experience in waste management, radiological contamination or decommissioning and waste management R and D after the Three Mile Island and Chernobyl accidents. This report provides technical opinions and ideas from these experts on post-accident waste management and R and D at the Fukushima Daiichi site, as well as information on decommissioning challenges. Chapter 1 provides general descriptions and a short introduction to nuclear accidents or radiological contaminations; for instance the Chernobyl NPP accident, the Three Mile Island Unit 2 accident and the Windscale fire accident. Chapter 2 provides experiences on regulator-implementer interaction in both normal and abnormal situations, including after a nuclear accident. Chapter 3 provides experiences on stakeholder involvement after accidents. These two chapters focus on human aspects after an accident and provide recommendations on how to improve communication between stakeholders so as to resolve issues arising after unexpected nuclear accidents. Chapters 4, 5 and 6 provide information on technical issues related to waste management after accidents. Chapter 4 focuses on the physical and chemical nature of the waste, Chapter 5 on radiological characterisation, and Chapter 6 on waste classification and categorisation. The persons involved in waste management after an accident should address these issues as soon as possible after the accident. Chapters 7 and 8 also focus on technical issues but with a long-term perspective of the waste direction in the future. Chapter 7 relates

  3. Passive depressurization accident management strategy for boiling water reactors

    International Nuclear Information System (INIS)

    Liu, Maolong; Erkan, Nejdet; Ishiwatari, Yuki; Okamoto, Koji

    2015-01-01

    Highlights: • We proposed two passive depressurization systems for BWR severe accident management. • Sensitivity analysis of the passive depressurization systems with different leakage area. • Passive depressurization strategies can prevent direct containment heating. - Abstract: According to the current severe accident management guidance, operators are required to depressurize the reactor coolant system to prevent or mitigate the effects of direct containment heating using the safety/relief valves. During the course of a severe accident, the pressure boundary might fail prematurely, resulting in a rapid depressurization of the reactor cooling system before the startup of SRV operation. In this study, we demonstrated that a passive depressurization system could be used as a severe accident management tool under the severe accident conditions to depressurize the reactor coolant system and to prevent an additional devastating sequence of events and direct containment heating. The sensitivity analysis performed with SAMPSON code also demonstrated that the passive depressurization system with an optimized leakage area and failure condition is more efficient in managing a severe accident

  4. Passive depressurization accident management strategy for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Maolong, E-mail: liuml@vis.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo (Japan); Erkan, Nejdet [Nuclear Professional School, School of Engineering, The University of Tokyo (Japan); Ishiwatari, Yuki [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo (Japan); Hitachi-GE Nuclear Energy, Ltd. (Japan); Okamoto, Koji [Nuclear Professional School, School of Engineering, The University of Tokyo (Japan)

    2015-04-01

    Highlights: • We proposed two passive depressurization systems for BWR severe accident management. • Sensitivity analysis of the passive depressurization systems with different leakage area. • Passive depressurization strategies can prevent direct containment heating. - Abstract: According to the current severe accident management guidance, operators are required to depressurize the reactor coolant system to prevent or mitigate the effects of direct containment heating using the safety/relief valves. During the course of a severe accident, the pressure boundary might fail prematurely, resulting in a rapid depressurization of the reactor cooling system before the startup of SRV operation. In this study, we demonstrated that a passive depressurization system could be used as a severe accident management tool under the severe accident conditions to depressurize the reactor coolant system and to prevent an additional devastating sequence of events and direct containment heating. The sensitivity analysis performed with SAMPSON code also demonstrated that the passive depressurization system with an optimized leakage area and failure condition is more efficient in managing a severe accident.

  5. Development of the severe accident risk information database management system SARD

    International Nuclear Information System (INIS)

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies

  6. Development of the severe accident risk information database management system SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies.

  7. Severe accident research and management in Nordic Countries - A status report

    International Nuclear Information System (INIS)

    Frid, W.

    2002-01-01

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  8. A framework for assessing severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.; Jae, M.; Lim, H.; Milici, T.; Park, H.; Swider, J.; Xing, L.; Yu, D.

    1991-01-01

    Accident management can be defined as the innovative use of existing and or alternative resources, systems and actions to prevent or mitigate a severe accident. Together with risk management (changes in plant operation and/or addition of equipment) and emergency planning (off-site actions), accident management provides an extension of the defense-in-depth safety philosophy for severe accidents. A significant number of probabilistic safety assessments (PSA) have been completed which yield the principal plant vulnerabilities. For each sequence/threat and each combination of strategy there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These considerations include uncertainty in key phenomena, uncertainty in operator behavior, uncertainty in system availability and behavior, and uncertainty in available information (i.e., instrumentation). The objective of this project is to develop a methodology for assessing severe accident management strategies given the key uncertainties mentioned above. Based on Decision Trees and Influence Diagrams, the methodology is currently being applied to two case studies: cavity flooding in a PWR to prevent vessel penetration or failure, and drywell flooding in a BWR to prevent containment failure

  9. Use of probabilistic safety analyses in severe accident management

    International Nuclear Information System (INIS)

    Neogy, P.; Lehner, J.

    1991-01-01

    An important consideration in the development and assessment of severe accident management strategies is that while the strategies are often built on the knowledge base of Probabilistic Safety Analyses (PSA), they must be interpretable and meaningful in terms of the control room indicators. In the following, the relationships between PSA and severe accident management are explored using ex-vessel accident management at a PWR ice-condenser plant as an example. 2 refs., 1 fig., 3 tabs

  10. Factors influencing EPR dosimetry in fingernails

    International Nuclear Information System (INIS)

    Dubner, D.L.; Spinella, M.R.; Bof, E.

    2010-01-01

    The technique based on the detection of ionizing radiation induced radicals by EPR in tooth enamel is an established method for the dosimetry of exposed persons in radiological emergencies. Dosimetry based on EPR spectral analysis of fingernail clippings, currently under development, has the practical advantage of the easier sample collection. A limiting factor is that overlapping the radiation induced signal (RIS), fingernails have shown the presence of two mechanically induced signals, called MIS1 and MIS2, due to elastic and plastic deformation respectively, at the time of fingernails cutting. With a water treatment, MIS1 is eliminated while MIS2 is considerably reduced. The calibration curves needed for radiation accident dosimetry should have 'universal' characteristics, ie. Represent the variability that can be found in different individuals. Early studies were directed to the analysis of factors affecting the development of such universal calibration curves. The peak to peak amplitude of the signal before and after the water treatment as well as the effect of size and number of clippings were studied. Furthermore, the interpersonal and intrapersonal variability were analyzed. Taking into account these previous studies, the optimal conditions for measurement were determined and EPR spectra of samples irradiated at different doses were used for the developing of dose-response curves. This paper presents the analysis of the results.(authors) [es

  11. Reconstruction of the Chernobyl emergency and accident management

    International Nuclear Information System (INIS)

    Schinner, F.; Andreev, I.; Andreeva, I.; Fritsche, F.; Hofer, P.; Lettner, E.; Seidelberger, E.; Kromp-Kolb, H.; Kromp, W.

    1998-01-01

    Full text of publication follows: on April 26, 1986 the most serious civil technological accident in the history of mankind occurred of the Chernobyl Nuclear Power Plant (ChNPP) in the former Soviet Union. As a direct result of the accident, the reactor was severely destroyed and large quantities of radionuclides were released. Some 800000 persons, also called 'liquidators' - including plant operators, fire-fighters, scientists, technicians, construction workers, emergency managers, volunteers, as well as medical and military personnel - were part of emergency measurements and accident management efforts. Activities included measures to prevent the escalation of the accident, mitigation actions, help for victims as well as activities in order to provide a basic infrastructure for this unprecedented and overwhelming task. The overall goal of the 'Project Chernobyl' of the Institute of Risk Research of the University of Vienna was to preserve for mankind the experience and knowledge of the experts among the 'liquidators' before it is lost forever. One method used to reconstruct the emergency measures of Chernobyl was the direct cooperation with liquidators. Simple questionnaires were distributed among liquidators and a database of leading accident managers, engineers, medical experts etc. was established. During an initial struggle with a number of difficulties, the response was sparse. However, after an official permit had been issued, the questionnaires delivered a wealth of data. Furthermore a documentary archive was established, which provided additional information. The multidimensional problem in connection with the severe accident of Chernobyl, the clarification of the causes of the accident, as well as failures and successes and lessons to be learned from the Chernobyl emergency measures and accident management are discussed. (authors)

  12. Management of foodstuffs after nuclear accidents

    International Nuclear Information System (INIS)

    1991-01-01

    A model for the management of foodstuffs after nuclear accidents is presented. The model is a synthesis of traditions and principles taken from both radioactive protection and management of food. It is based on cooperation between the Nordic countries and on practical experience gained from the Chernobyl accident. The aim of the model is to produce a basis for common plans for critical situations based on criteria for decision making. In the case of radioactive accidents it is important that the protection of the public and of the society is handled in a positive way. The model concerns production, marketing and consumption of food and beverage. The overall aim is that the radiation doses should be as low and harmless to health for individual members of the public. (CLS) 35 refs

  13. Proceedings of the Specialist Meeting on Severe Accident Management Programme Development

    International Nuclear Information System (INIS)

    1992-04-01

    Effective Accident Management planning can produce both a reduction in the frequency of severe accidents at nuclear power plants as well as the ability to mitigate a severe accident. The purpose of an accident management programme is to provide to the responsible plant staff the capability to cope with the complete range of credible severe accidents. This requires that appropriate instrumentation and equipment are available within the plant to enable plant staff to diagnose the faults and to implement appropriate strategies. The programme must also provide the necessary guidance, procedures, and training to assure that appropriate corrective actions will be implemented. One of the key issues to be discussed is the transition from control room operations and the associated emergency operating procedures to a technical support team approach (and the associated severe accident management strategies). Following a proposal made by the Senior Group of Experts on Severe Accident Management (SESAM), the Committee on the Safety of Nuclear Installations decided to sponsor a Specialist Meeting on Severe Accident Management Programme Development. The general objectives of the Specialist Meeting were to exchange experience, views, and information among the participants and to discuss the status of severe accident management programmes. The meeting brought together utilities, accident management programme developers, personnel training programme developers, regulators, and researchers. In general, the tone of the Specialist Meeting - designed to promote progress, as contrasted with conferences or symposia where the state-of-the-art is presented - was to be rather practical, and focus on accident management programme development, applications, results, difficulties and improvements. As shown by the conclusions of the meeting, there is no doubt that this objective was widely attained

  14. Proceedings of the Specialist Meeting on Severe Accident Management Programme Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-15

    Effective Accident Management planning can produce both a reduction in the frequency of severe accidents at nuclear power plants as well as the ability to mitigate a severe accident. The purpose of an accident management programme is to provide to the responsible plant staff the capability to cope with the complete range of credible severe accidents. This requires that appropriate instrumentation and equipment are available within the plant to enable plant staff to diagnose the faults and to implement appropriate strategies. The programme must also provide the necessary guidance, procedures, and training to assure that appropriate corrective actions will be implemented. One of the key issues to be discussed is the transition from control room operations and the associated emergency operating procedures to a technical support team approach (and the associated severe accident management strategies). Following a proposal made by the Senior Group of Experts on Severe Accident Management (SESAM), the Committee on the Safety of Nuclear Installations decided to sponsor a Specialist Meeting on Severe Accident Management Programme Development. The general objectives of the Specialist Meeting were to exchange experience, views, and information among the participants and to discuss the status of severe accident management programmes. The meeting brought together utilities, accident management programme developers, personnel training programme developers, regulators, and researchers. In general, the tone of the Specialist Meeting - designed to promote progress, as contrasted with conferences or symposia where the state-of-the-art is presented - was to be rather practical, and focus on accident management programme development, applications, results, difficulties and improvements. As shown by the conclusions of the meeting, there is no doubt that this objective was widely attained.

  15. Use of aspartame-based sweetener tablets in emergency dosimetry using EPR.

    Science.gov (United States)

    Maghraby, A; Salama, E

    2010-06-01

    Accident dosimetry aims to evaluate the unplanned radiation doses delivered to individuals through one of the objects exist in the area of the accident. The gamma dose response of free radicals generated in irradiated aspartame tablets and its usability for emergency dosimetry was studied. EPR spectra of unirradiated and irradiated aspartame-based sweetener were recorded. Two signals arise after irradiating, S(1) at g (S(1)) = 2.00229 +/- 0.00097 and S(2) at g (S(2)) = 2.00262 +/- 0.00088. Some EPR parameters were studied for radiation-induced radicals in aspartame sweeteners tablets, such as the microwave saturation behaviour, the effect of magnetic field modulation amplitude on the peak-to-peak height and peak-to-peak line width for both of S(1) and S(2). Responses of S(1) and S(2) to different radiation doses were studied and resulted in linear relationships, radicals persistence curves were plotted over a 49-d storage period. It was found that Aspartame sweeteners tablets are useful in the range from 0.96 to 39.96 Gy. Radiation-induced radicals possess reasonable stability.

  16. Swedish REGULATORY APPROACH TO SAFETY Assessment AND SEVERE ACCIDENT MANAGEMENT

    International Nuclear Information System (INIS)

    Frid, W.; Sandervaag, O.

    1997-01-01

    The Swedish regulatory approach to safety assessment and severe accident management is briefly described. The safety assessment program, which focuses on prevention of incidents and accidents, has three main components: periodic safety reviews, probabilistic safety analysis, and analysis of postulated disturbances and accident progression sequences. Management and man-technology-organisation issues, as well as inspections, play a key role in safety assessment. Basis for severe accident management were established by the Government decisions in 1981 and 1986. By the end of 1988, the severe accident mitigation systems and emergency operating procedures were implemented at all Swedish reactors. The severe accident research has continued after 1988 for further verification of the protection provided by the systems and reduction of remaining uncertainties in risk dominant phenomena

  17. A structured approach to individual plant evaluation and accident management

    International Nuclear Information System (INIS)

    Klopp, G.T.

    1991-01-01

    The current requirements for the performance of individual plant evaluations (IPE's) include the derivation of accident management insights as and if they occur in the course of finalizing an IPE. The development of formal, structured accident management programs is, however, explicitly excluded from current IPE requirements. The Nuclear Regulatory Commission is following the Nuclear Management and Resources Council (NUMARC) efforts to establish the framework(s) for accident management program development and plants to issue requirements on such development at a later date. The Commonwealth Edison program consists of comprehensive level 2 PRA's which address the requirements for IPE's and which go beyond those requirements. From the start of the IPE efforts, it was firmly held, within Edison, that the best way to fully and economically extract a viable accident management program from an IPE was to integrate the two efforts from the start and include the accident management program development as a required IPE product

  18. Proceedings of the specialist meeting on selected containment severe accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-15

    Twenty papers were presented at the first specialist meeting on Selected Containment Severe Accident management Strategies, held in Stockholm, Sweden, in 1994, half of them dealing with accident management strategies implementation status, half of them with research aspects. The four sessions were: general aspects of containment accident management strategies, hydrogen management techniques, other containment accident management strategies (spray cooling, core catcher...), surveillance and protection of containment function

  19. Proceedings of the specialist meeting on selected containment severe accident management strategies

    International Nuclear Information System (INIS)

    1995-07-01

    Twenty papers were presented at the first specialist meeting on Selected Containment Severe Accident management Strategies, held in Stockholm, Sweden, in 1994, half of them dealing with accident management strategies implementation status, half of them with research aspects. The four sessions were: general aspects of containment accident management strategies, hydrogen management techniques, other containment accident management strategies (spray cooling, core catcher...), surveillance and protection of containment function

  20. Discussion on several issues of the accidents management of nuclear power plants in operation

    International Nuclear Information System (INIS)

    Cao Xuewu; Wang Zhe; Zhang Yingzhen

    2009-01-01

    This article discusses several issues of the accident management of nuclear power plants in operation, for example: the necessity, implementation principle of accident management and accident management program etc. For conducting accident management for beyond design basis accidents, this article thinks that the accident management program should be developed and implemented to ensure that the plant and its personnel with responsibilities for accident management are adequately prepared to take effective on-site actions to prevent or mitigate the consequences of severe accident. (authors)

  1. The EPR (European Pressurized Water Reactor) containment - concept, testing of leakage behaviour, FRP liner

    Energy Technology Data Exchange (ETDEWEB)

    Touret, J.P. [EDF SEPTEN, Villeurbanne (France); Liersch, G. [Bayernwerk Kerenergie GmbH, Muenchen (Germany); Danisch, R. [Siemens AG, KWU NAD, Erlangen (Germany)

    2001-07-01

    The Basic Design of the EPR has now been completed. The containment plays a major safety-related role with respect to protection of the environment against radioactive releases. The EPR features a double (steel-reinforced concrete/prestressed concrete) containment design, with the inner containment coated additionally with a fibreglass-reinforced plastic (FRP) liner in certain areas. This means that containment leaktightness is provided mainly by the prestressed concrete and the FRP liner in the event of a postulated accident. The numerous findings of the tests carried out so far in both France and Germany are summarized. (orig.) [German] Das Basic Design fuer den EPR ist fertiggestellt. Entscheidend fuer eine Realisierung wird neben der politischen Akzeptanz vor allem die Wettbewerbsfaehigkeit mit anderen Energietraegern sein. Im EPR-Projekt wird der hohe Sicherheitsstandard der heutigen Kernkraftwerke in Deutschland und Frankreich ergaenzt, indem zusaetzlich technische Massnahmen ergriffen werden, um die Konsequenzen beim unterstellten Versagen aller sicherheitstechnischen Einrichtungen mit der Folge eines postulierten Niederschmelzen des Kerns technisch zu beherrschen. (orig.)

  2. Accident management: What is it and how do you do it?

    International Nuclear Information System (INIS)

    Henry, Robert E.; Hammersley, Robert J.

    2004-01-01

    Accident management is the composite of those actions that would prevent, stop and/or mitigate a severe accident in a nuclear power plant. Since they act to prevent core damage, the Emergency Operating Procedures (EOPs) are an integral part of accident management. Each of the Owners Groups have developed EOPs that are well thought out for instructing the operator to respond to accident conditions which could threaten the core. However, for those very low probability events in which the core could be uncovered and damaged, accident management actions arise from a logical evaluation of possible actions (strategies) for recovering from the accident state and protecting the public health and safety. To understand the character of accident management it is first necessary to define: 1. What is threatened as a result of the accident? 2. Fundamentally, what needs to be protected? 3. What is known during an accident? 4. What have we learned from the TMI-2 accident? 5. What have we learned from the plant specific IPEs? Once these subjects are reviewed on a utility specific and plant specific basis, accident management actions become relatively straightforward and likely can be effectively addressed using the total capability available in a given design. This paper discusses these five questions in a global manner with the aim being to aid plant specific implementation. (author)

  3. Lessons from Chernobyl post-accident management

    International Nuclear Information System (INIS)

    Schneider, T.

    2012-01-01

    The Chernobyl accident has shown that the long-term management of its consequences is not straightforward. The management of the consequences has revealed the complexity of the situation to deal with. The long-term contamination of the environment has affected all the dimensions of the daily life of the inhabitants living in affected territories: health, environment, social life, education, work, distribution of foodstuffs and commodities... The experience from the Chernobyl accident shows 4 key issues that may be beneficial for the populations living in territories affected by the Fukushima accident: 1) the direct involvement of the inhabitants in their own protection, 2) the radiation monitoring system and health surveillance at the local level, 3) to develop a practical radiation protection culture among the population, and 4) the setting up of economic measures to favour the local development. (A.C.)

  4. Study of dosimetric properties of acetylsalicylic acid in pharmaceutical preparations by EPR spectroscopy

    International Nuclear Information System (INIS)

    Juarez-Calderon, J.M.; Negron-Mendoza, A.; Ramos-Bernal, S.; Gomez-Vidales, V.

    2009-01-01

    Electron paramagnetic resonance (EPR) was used to investigate the dosimetric properties of two pharmaceutical preparations containing acetylsalicylic acid, Aspirin R and Cafiaspirin R . The EPR spectra of the irradiated samples were found to have an asymmetric absorption characterized by a major resonance at g = 2.0033. Dose response was investigated between dose ranges of 2 to 95 kGy for 60 Co-gamma rays. Fading characteristics and dependence on temperature irradiation were also studied. We suggest that commercial Aspirin R and Cafiaspirin R tablets can be used as dosimeters in the case of a short accident. (author)

  5. Role of the man-machine interface in accident management strategies

    International Nuclear Information System (INIS)

    Oewre, Fridtjov

    2001-01-01

    First, this paper gives a short general review on important safety issues in the field of man-machine interaction as expressed by important nuclear safety organisations. Then follows a summary discussion on what constitutes a modern Man-Machine Interface (MMI) and what is normally meant with accident management and accident management strategies. Furthermore, the paper focuses on three major issues in the context of accident management. First, the need for reliable information in accidents and how this can be obtained by additional computer technology. Second, the use of procedures is discussed, and basic MMI aspects of computer support for procedure presentation are identified followed by a presentation of a new approach on how to computerise procedures. Third, typical information needs for characteristic end-users in accidents, such as the control room operators, technical support staff and plant emergency teams, is discussed. Some ideas on how to apply virtual reality technology in accident management is also presented

  6. A framework for the assessment of severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.

    1993-09-01

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed

  7. A framework for the assessment of severe accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

    1993-09-01

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

  8. Severe accident management at South Africa's Koeberg plant

    International Nuclear Information System (INIS)

    Prior, R.P.; Wolvaardt, F.P.; Holderbaum, D.F.; Lutz, R.J.; Taylor, J.J.; Hodgson, C.D.

    1997-01-01

    Between the middle of 1993 and the end of 1995, Westinghouse and Eskom implemented plant specific Severe Accident Management Guidelines (SAMGs) at the Koeberg Nuclear Power Plant in South Africa. Prior to this project, Koeberg, like many plants, had emergency operating procedures which contain guidance for plant personnel to perform preventive accident management measures in event of an accident. There was, however, no structured guidance on recovery from an event which progresses past core damage -mitigative accident management. The SAMGs meet this need. In this paper, the Westinghouse approach to severe accident management is outlined, and the Koeberg implementation project described. A few key issues which arose during implementation are discussed, including plant instrumentation, flooding of the reactor pit, organisation and training of the Technical Support Centre staff, and impact of SAMG on risk. The means by which both generic and plant-specific SAMG have been validated is also summarised. In the next few years, many LWR owners will be implementing SAMG. In the U.S. all plants are in the process of developing SAMG. The Koeberg project is believed to be the first plant specific implementation of the WOG SAMG worldwide, and this paper has hopefully provided insights into some of the implementation issues for those about to undertake similar projects. (author)

  9. Design performances and chemistry program supporting the FA3/UK-EPR (TM) Activity Management: Experience and Modelling Balance

    International Nuclear Information System (INIS)

    Tigeras, A.; Bachet, M.; Bremmes, O.; Berger, M.; Clinard, M.H.; Jolivet, P.; Chahma, F.

    2012-01-01

    Several methodologies have been applied to evaluate the source term in the primary circuit and to define the appropriate chemistry conditioning for the EPR reactor. These methodologies are based on nuclear power plant (NPP) feedback experience, laboratory data and modelling considerations. It is concluded that the activity risks are understood and can be managed with EPR design options. A strategy for the chemical conditioning of the primary coolant has been defined through the specifications for 3 parameters: pH, Zn and H 2 whose target and limit values are based on NPP feedback, international experimental data from laboratory tests, theoretical studies and numerical simulations. The material inventory selected for the primary components will allow low dose rates and low crud formation despite the high power level of the EPR reactor

  10. Knowledge data base for severe accident management of nuclear power plants

    International Nuclear Information System (INIS)

    Ogino, Masao; Kawabe, Ryuhei; Nagasaka, Hideo; Sumida, Susumu; Fukasawa, Masanori; Muta, Hitoshi

    2011-01-01

    For the reinforcement of the safety of NPPs, the continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of this present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of severe accident, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of accident management. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the severe accident analysis codes and the accident management knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2010 are as follows; Experimental study on OECD/NEA projects such as MCCI, SERENA, SFP and international cooperative PSI-ARTIST project, and analytical study on accident management review of new plant and making regulation for severe accident. (author)

  11. Development of an accident management expert system for containment assessment

    International Nuclear Information System (INIS)

    Nelson, W.R.; Sebo, D.E.; Haney, L.N.

    1987-01-01

    The United States Nuclear Regulatory Commission (USNRSC) is sponsoring a program at the Idaho National Engineering Laboratory (INEL) to develop an accident management expert system. The intended users of the system are the personnel of the NRC Operations Center in Washington, D.C. The expert system will be used to help NRC personnel monitor and evaluate the status and management of the containment during a severe reactor accident. The knowledge base will include severe accident knowledge regarding the maintenance of the critical safety functions, especially containment integrity, during an accident. This paper summarizes the concepts that have been developed for the accident management expert system, and the plans that have been developed for its implementation

  12. Enhancing AP1000 reactor accident management capabilities for long term accidents

    International Nuclear Information System (INIS)

    Jiang Pingting; Liu Mengying; Duan Chengjie; Liao Yehong

    2015-01-01

    Passive safety actions are considered as main measures under severe accident in AP1000 power plant. However, risk is still existed. According to PSA, several probable scenarios for AP1000 nuclear power plant are analyzed in this paper with MAAP the severe accident analysis code. According to the analysis results, several deficiencies of AP1000 severe accident management are found. The long term cooling and containment depressurization capability for AP1000 power plant appear to be most important factors under such accidents. Then, several temporary strategies for AP1000 power plant are suggested, including PCCWST temporary water supply strategy after 72h, temporary injection strategy for IRWST, hydrogen relief action in fuel building, which would improve the safety of AP1000 power plant. At last, assessments of effectiveness for these strategies are performed, and the results are compared with analysis without these strategies. The comparisons showed that correct actions of these strategies would effectively prevent the accident process of AP1000 power plant. (author)

  13. EPR dosimetry of glass substrate of mobile phone LCDs

    International Nuclear Information System (INIS)

    Trompier, F.; Della Monaca, S.; Fattibene, P.; Clairand, I.

    2011-01-01

    Previous studies have shown that mineral glass from watches, windows and displays of personal electronic devices could be a suitable restrospective dosimeter in case of radiation accident. In this paper glass substrates of the window display of 100 mobile phones of different trademarks were analized by X-band cw-EPR before and after irradiation at 100 Gy. The objective of this study was to highlight some issues of EPR measurements of glass related to inter-sample variability of: i) signal line shape in irradiated and unirradiated glass; ii) signal intensity loss and line shape change with post-irradiation time; iii) signal changes induced by sample preparation and iv) signal changes induced by thermal annealing. Scope of the paper is to provide a phenomenological picture of the observed effects in order to give a warning about possible problems and to provide suggestions for future work. Explanation of the mechanisms and the causes leading to the observed effects was beyond the scope of this work. These preliminary results confirm that glass substrate of mobile phone displays should be considered as a fortuitous dosimeter in radiation accidents. However, albeit very promising, mineral glass presents a number of issues that should be thoroughly investigated and addressed in future work.

  14. [Early management of cerebrovascular accidents].

    Science.gov (United States)

    Libot, Jérômie; Guillon, Benoit

    2013-01-01

    A cerebrovascular accident requires urgent diagnosis and treatment.The management of a stroke must be early and adapted in order to improve the overall clinical outcome and lower the risk of mortality.

  15. A preliminary study for the implementation of general accident management strategies

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Kim, Soo Hyung; Jeong, Young Hoon; Chang, Soon Heung

    1997-01-01

    To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of each strategy are also investigated

  16. Active or passive systems? The EPR approach

    International Nuclear Information System (INIS)

    Bonhomme, N.; Py, J.P.

    1996-01-01

    In attempting to review how EPR is contemplated to meet requirements applicable to future nuclear power plants, the authors indicate where they see the markets and the corresponding unit sizes for the EPR which is a generic key factor for competitiveness. There are no reason in industrialized countries, other than USA (where the investment and amortizing practices under control by Public Utility Commission are quite particular), not to build future plants in the 1000 to 1500 MWe range. Standardization, which has been actively applied all along the French program and for the Konvoi plants, does not prevent evolution and allows to concentrate large engineering effort in smooth realization of plants and achieve actual construction and commissioning without significant delays. In order to contribute to public trust renewal, a next generation of power reactors should be fundamentally less likely to incur serious accidents. To reach this goal the best of passive and active systems must be considered without forgetting that the most important source of knowledge is construction and operating experience. Criteria to assess passive systems investigated for possible implementation in the EPR, such as simplicity of design, impact on plant operation, safety and cost, are discussed. Examples of the principal passive systems investigated are described and reasons why they have been dropped after screening through the criteria are given. (author). 11 figs

  17. Active or passive systems? The EPR approach

    Energy Technology Data Exchange (ETDEWEB)

    Bonhomme, N [Nuclear Power International, Cedex (France); Py, J P [FRAMATOME, Cedex (France)

    1996-12-01

    In attempting to review how EPR is contemplated to meet requirements applicable to future nuclear power plants, the authors indicate where they see the markets and the corresponding unit sizes for the EPR which is a generic key factor for competitiveness. There are no reason in industrialized countries, other than USA (where the investment and amortizing practices under control by Public Utility Commission are quite particular), not to build future plants in the 1000 to 1500 MWe range. Standardization, which has been actively applied all along the French program and for the Konvoi plants, does not prevent evolution and allows to concentrate large engineering effort in smooth realization of plants and achieve actual construction and commissioning without significant delays. In order to contribute to public trust renewal, a next generation of power reactors should be fundamentally less likely to incur serious accidents. To reach this goal the best of passive and active systems must be considered without forgetting that the most important source of knowledge is construction and operating experience. Criteria to assess passive systems investigated for possible implementation in the EPR, such as simplicity of design, impact on plant operation, safety and cost, are discussed. Examples of the principal passive systems investigated are described and reasons why they have been dropped after screening through the criteria are given. (author). 11 figs.

  18. The Development of Severe Accident Codes at IRSN and Their Application to Support the Safety Assessment of EPR

    International Nuclear Information System (INIS)

    Caroli, Cataldo; Bleyer, Alexandre; Bentaib, Ahmed; Chatelard, Patrick; Cranga, Michel; Van Dorsselaere, Jean-Pierre

    2006-01-01

    IRSN uses a two-tier approach for development of codes analysing the course of a hypothetical severe accident (SA) in a Pressurized Water Reactor (PWR): on one hand, the integral code ASTEC, jointly developed by IRSN and GRS, for fast-running and complete analysis of a sequence; on the other hand, detailed codes for best-estimate analysis of some phenomena such as ICARE/CATHARE, MC3D (for steam explosion), CROCO and TONUS. They have been extensively used to support the level 2 Probabilistic Safety Assessment of the 900 MWe PWR and, in general, for the safety analysis of the French PWR. In particular the codes ICARE/CATHARE, CROCO, MEDICIS (module of ASTEC) and TONUS are used to support the safety assessment of the European Pressurized Reactor (EPR). The ICARE/CATHARE code system has been developed for the detailed evaluation of SA consequences in a PWR primary system. It is composed of the coupling of the core degradation IRSN code ICARE2 and of the thermal-hydraulics French code CATHARE2. The CFD code CROCO describes the corium flow in the spreading compartment. Heat transfer to the surrounding atmosphere and to the basemat, leading to the possible formation of an upper and lower crust, basemat ablation and gas sparging through the flow are modelled. CROCO has been validated against a wide experimental basis, including the CORINE, KATS and VULCANO programs. MEDICIS simulates MCCI (Molten-Corium-Concrete-Interaction) using a lumped-parameter approach. Its models are being continuously improved through the interpretation of most MCCI experiments (OECD-CCI, ACE...). The TONUS code has been developed by IRSN in collaboration with CEA for the analysis of the hydrogen risk (both distribution and combustion) in the reactor containment. The analyses carried out to support the EPR safety assessment are based on a CFD formulation. At this purpose a low-Mach number multi-component Navier-Stokes solver is used to analyse the hydrogen distribution. Presence of air, steam and

  19. A preliminary study for the implementation of general accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo Hyung; Kim, Soo Hyung; Jeong, Young Hoon; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of each strategy are also investigated. 11 refs., 3 figs., 3 tabs. (Author)

  20. A preliminary study for the implementation of general accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo Hyung; Kim, Soo Hyung; Jeong, Young Hoon; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of each strategy are also investigated. 11 refs., 3 figs., 3 tabs. (Author)

  1. Summary and conclusions of the specialist meeting on severe accident management programme development

    International Nuclear Information System (INIS)

    1992-01-01

    The CSNI Specialist meeting on severe accident management programme development was held in Rome and about seventy experts from thirteen countries attended the meeting. A total of 27 papers were presented in four sessions, covering specific aspects of accident management programme development. It purposely focused on the programmatic aspects of accident management rather than on some of the more complex technical issues associated with accident management strategies. Some of the major observations and conclusions from the meeting are that severe accident management is the ultimate part of the defense in depth concept within the plant. It is function and success oriented, not event oriented, as the aim is to prevent or minimize consequences of severe accidents. There is no guarantee it will always be successful but experts agree that it can reduce the risks significantly. It has to be exercised and the importance of emergency drills has been underlined. The basic structure and major elements of accident management programmes appear to be similar among OECD member countries. Dealing with significant phenomenological uncertainties in establishing accident management programmes continues to be an important issue, especially in confirming the appropriateness of specific accident management strategies

  2. A proposal for accident management optimization based on the study of accident sequence analysis for a BWR

    International Nuclear Information System (INIS)

    Sobajima, M.

    1998-01-01

    The paper describes a proposal for accident management optimization based on the study of accident sequence and source term analyses for a BWR. In Japan, accident management measures are to be implemented in all LWRs by the year 2000 in accordance with the recommendation of the regulatory organization and based on the PSAs carried out by the utilities. Source terms were evaluated by the Japan Atomic Energy Research Institute (JAERI) with the THALES code for all BWR sequences in which loss of decay heat removal resulted in the largest release. Identification of the priority and importance of accident management measures was carried out for the sequences with larger risk contributions. Considerations for optimizing emergency operation guides are believed to be essential for risk reduction. (author)

  3. Severe accident management. Optimized guidelines and strategies

    International Nuclear Information System (INIS)

    Braun, Matthias; Löffler, Micha; Plank, Hermann; Asse, Dietmar; Dimmelmeier, Harald

    2014-01-01

    The highest priority for mitigating the consequences of a severe accident with core melt lies in securing containment integrity, as this represents the last barrier against fission product release to the environment. Containment integrity is endangered by several physical phenomena, especially highly transient phenomena following high-pressure reactor pressure vessel failure (like direct containment heating or steam explosions which can lead to early containment failure), hydrogen combustion, quasi-static over-pressure, temperature failure of penetrations, and basemat penetration by core melt. Each of these challenges can be counteracted by dedicated severe accident mitigation hardware, like dedicated primary circuit depressurization valves, hydrogen recombiners or igniters, filtered containment venting, containment cooling systems, and core melt stabilization systems (if available). However, besides their main safety function these systems often have also secondary effects that need to be considered. Filtered containment venting causes (though limited) fission product release into the environment, primary circuit depressurization leads to loss of coolant, and an ex-vessel core melt stabilization system as well as hydrogen igniters can generate high pressure and temperature loads on the containment. To ensure that during a severe accident any available systems are used to their full beneficial extent while minimizing their potential negative impact, AREVA has implemented a severe accident management for German nuclear power plants. This concept makes use of extensive numerical simulations of the entire plant, quantifying the impact of system activations (operational systems, safety systems, as well as dedicated severe accident systems) on the accident progression for various scenarios. Based on the knowledge gained, a handbook has been developed, allowing the plant operators to understand the current state of the plant (supported by computational aids), to predict

  4. Specialist meeting on selected containment severe accident management strategies. Summary and conclusions

    International Nuclear Information System (INIS)

    1994-01-01

    The CSNI Specialist Meeting on Selected Containment Severe Accident Management Strategies held in Stockholm, Sweden in June 1994 was organised by the Task Group on Containment Aspects of Severe Accident Management (CAM) of CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases (PWG4) in collaboration with the Swedish Nuclear Power Inspectorate (SKI). Conclusions and recommendations are given for each of the sessions of the workshops: Containment accident management strategies (general aspects); hydrogen management techniques and other containment accident management techniques; surveillance and protection of containment function

  5. Strategy generator in computerized accident management support system

    International Nuclear Information System (INIS)

    Sirola, M.

    1994-02-01

    An increased interest for research in the field of accident management of nuclear power plants can be noted. Several international programmes have been started in order to be able to understand the basic physical and chemical phenomena in accident conditions. A feasibility study has shown that it would be possible to design and develop a computerized support system for plant staff in accident situations. To achieve this goal the Halden Project has initiated a research programme on Computerized Accident Management Support (CAMS project). The aim is to utilize the capabilities of computerized tools to support the plant staff during the various accident stages. The system will include identification of the accident state, assessment of the future development of the accident and planning of accident mitigation strategies. A prototype is developed to support operators and the Technical Support Centre in decision making during serious accidents in nuclear power plants. A rule based system has been built to take care of the strategy generation. This system assists plant personnel in planning control proposals and mitigation strategies from normal operation to severe accident conditions. The idea of a safety objective tree and knowledge from the emergency procedures have been used. Future prediction requires good state identification of the plant status and some knowledge about the history of some critical variables. The information needs to be validated as well. Accurate calculations in simulators and a large database including all important information from the plant will help the strategy planning. (orig.). (40 refs., 20 figs.)

  6. Use of aspartame-based sweetener tablets in emergency dosimetry using EPR

    International Nuclear Information System (INIS)

    Maghraby, A.; Salama, E.

    2010-01-01

    Accident dosimetry aims to evaluate the unplanned radiation doses delivered to individuals through one of the objects exist in the area of the accident. The gamma dose response of free radicals generated in irradiated aspartame tablets and its usability for emergency dosimetry was studied. EPR spectra of unirradiated and irradiated aspartame-based sweetener were recorded. Two signals arise after irradiating, S 1 at g (S 1 ) = 2.00229 ± 0.00097 and S 2 at g (S 2 ) = 2.00262 ± 0.00088. Some EPR parameters were studied for radiation-induced radicals in aspartame sweeteners tablets, such as the microwave saturation behaviour, the effect of magnetic field modulation amplitude on the peak-to-peak height and peak-to-peak line width for both of S 1 and S 2 . Responses of S 1 and S 2 to different radiation doses were studied and resulted in linear relationships, radicals persistence curves were plotted over a 49-d storage period. It was found that Aspartame sweeteners tablets are useful in the range from 0.96 to 39.96 Gy. Radiation-induced radicals possess reasonable stability. (authors)

  7. Confirmation of a second EPR to be built at Penly

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The French government has made public its decision to launch the construction of a second EPR in France. This EPR is planned to be built on the Penly site (northern region of France). EDF will manage this project but other investors like GDF-Suez are invited to participate. The construction works are planned to begin in 2012 for a commissioning in 2017. This reactor will be the fifth EPR being built in the world. (A.C.)

  8. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.E.; Sype, T.T.; Camp, A.L.

    1990-01-01

    The risk from five nuclear power plants was examined during the NUREG-1150 program. When the analyses of the plants were complete, an effort was undertaken to examine the implications of NUREG-1150 for accident management initiatives. The framework provided by the NUREG-1150 analysis presented a means within which current accident management strategies could be evaluated and future accident management strategies could be developed and assessed. Five separate but interrelated phases of risk management were considered: (1) prevention of accident initiators, (2) prevention of core damage, (3) implementation of an effective emergency response, (4) prevention of vessel breach and mitigation of radionuclide releases from the reactor coolant system, and (5) retention of fission products in the containment and other surrounding buildings. A risk-based methodology was developed to identify and evaluate risk management options for each of these five phases. The methodology was demonstrated through quantitative examples for the first two phases of risk management listed above. In addition, the reduction in risk for several currently implemented risk management strategies at operating plants was quantified

  9. Neural network-based expert system for severe accident management

    International Nuclear Information System (INIS)

    Klopp, G.T.; Silverman, E.B.

    1992-01-01

    This paper presents the results of the second phase of a three-phase Severe Accident Management expert system program underway at Commonwealth Edison Company (CECo). Phase I successfully demonstrated the feasibility of Artificial Neural Networks to support several of the objectives of severe accident management. Simulated accident scenarios were generated by the Modular Accident Analysis Program (MAAP) code currently in use by CECo as part of their Individual Plant Evaluations (IPE)/Accident Management Program. The primary objectives of the second phase were to develop and demonstrate four capabilities of neural networks with respect to nuclear power plant severe accident monitoring and prediction. The results of this work would form the foundation of a demonstration system which included expert system performance features. These capabilities included the ability to: (1) Predict the time available prior to support plate (and reactor vessel) failure; (2) Calculate the time remaining until recovery actions were too late to prevent core damage; (3) Predict future parameter values of each of the MAAP parameter variables; and (4) Detect simulated sensor failure and provide best-value estimates for further processing in the presence of a sensor failure. A variety of accident scenarios for the Zion and Dresden plants were used to train and test the neural network expert system. These included large and small break LOCAs as well as a range of transient events. 3 refs., 1 fig., 1 tab

  10. Return on experience on nuclear accidents

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-09-01

    After a presentation of the International Nuclear and radiological Events Scale (INES scale), of its levels and criteria, this article proposes brief recalls of some nuclear accidents which occurred in nuclear reactors: Chalk River in Canada (1952), Windscale in England (1957), the universal Canadian reactor (NRU in 1958), the SL1 reactor of the Idaho National Laboratory in the USA (1961), the Swiss Lucens reactor (1969), Saint-Laurent des Eaux in France (1969 and 1980). More detailed descriptions are then given for the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima accident in 2011. The main causes of these accidents are identified: loss of control of chain reaction, cooling defect on a stopped reactor, cooling defect on an operated reactor. Some lessons are drawn from these facts, and some characteristics of the EPR are outlined with respect with problems encountered in these accidents

  11. Artificial intelligence applications in accident management

    International Nuclear Information System (INIS)

    Cain, D.G.

    1989-01-01

    For nuclear power plant accident management, there are some addition concerns: linking AI systems to live data streams must be mastered; techniques for processing sensor inputs with varying data quality need to be provided; systems responsiveness to changing plant conditions and multiple user requests should, in general, be improved; there is a need for porting applications from specialized AI machines onto conventional computer hardware without incurring unacceptable performance penalties; human factors guidelines are required for new user interfaces in AI applications; methods for verification and validation of AI-based systems must be developed; and, finally, there is a need for proven methods to evaluate use effectiveness and firmly establish the benefits of AI-based accident management systems. (orig./GL)

  12. Accident management-defence in depth in Indian PHWRS

    International Nuclear Information System (INIS)

    Jagannad, V.B.L.; Reddy, V.V.; Hajela, Sameer; Bhatia, C.M.; Nair, Suma

    2015-01-01

    Defence in Depth (DiD) is the established safety principle for the design of Nuclear Power Plants (NPPs). Accident at Fukushima Dai-ichi had highlighted the importance of provisions at Level-4 and 5 of DiD. Post Fukushima accident, on-site measures have been strengthened for Indian Nuclear Power Plants. On procedural front, Accident Management Guidelines have been introduced to handle events more severe than design basis accidents. This paper elaborates enhancement of Defence in Depth provisions for Indian Nuclear Power Plants. (author)

  13. Methodological aspects to elaborate the management and procedure guides of severe accidents

    International Nuclear Information System (INIS)

    Gonzalez Gonzalez, F.; Jimenez Fernandez, A.

    1995-01-01

    The management guides in severe accidents are very important to know the procedures in these accidents. The present articles summarizes the methodological aspects to elaborate the management guides, in order to prevent the severe accidents

  14. Development of Krsko Severe Accident Management Guidance (SAMG)

    International Nuclear Information System (INIS)

    Cizel, F.

    1999-01-01

    In this lecture development of severe accident management guidances for Krsko NPP are described. Author deals with the history of severe accident management and implementation of issues (validation, review of E-plan and other aspects SAMG implementation guidance). Methods of Westinghouse owners group, of Combustion Engineering owners group, of Babcock and Wilcox owners group, of the BWR owners group, as well as application of US SAMG methodology in Europe and elsewhere are reviewed

  15. Effect of alternative aging and accident simulations on polymer properties

    International Nuclear Information System (INIS)

    Bustard, L.D.; Chenion, J.; Carlin, F.; Alba, C.; Gaussens, G.; LeMeur, M.

    1985-05-01

    The influence of accident irradiation, steam, and chemical spray exposures on the behavior of twenty-three age-preconditioned polymer sample sets (twenty-one different materials) has been investigated. The test program varied the following conditions: (1) Accident simulations of irradiation and thermodynamic (steam and chemical spray) conditions were performed both sequentially and simultaneously. (2) Accident thermodynamic (steam and chemical spray) exposures were performed both with and without air present during the exposures. (3) Sequential accident irradiations were performed both at 28 0 C and 70 0 C. (4) Age preconditioning was performed both sequentially and simultaneously. (5) Sequential aging irradiations were performed both at 27 0 C and 70 0 C. (6) Sequential aging exposures were performed using two sequences: (1) thermal followed by irradiation and (2) irradiation followed by thermal. We report both general trends applicable to a majority of the tested materials as well as specific results for each polymer. Our data base consists of ultimate tensile properties at the completion of the accident exposure for three XLPO and XLPE, five EPR and EPDM, two CSPE (HYPALON), one CPE, one VAMAC, one polydiallylphtalate, and one PPS material. We also report bend test results at completion of the accident exposures for two TEFZEL materials and permanent set after compression results for three EPR, one VAMAC, one BUNA N, one SILICONE, and one VITON material

  16. The evaluation of the compatibility of electronic patient record (EPR) system with nurses' management needs in a developing country.

    Science.gov (United States)

    Kahouei, Mehdi; Zadeh, Jamileh Mahdi; Roghani, Panoe Seyed

    2015-04-01

    In a developing country like Iran, wasting economic resources has a number of negative consequences. Therefore, it is crucial that problems of introducing new electronic systems be identified and addressed early to avoid failure of the programs. The purpose of this study was to evaluate head nurses' and supervisors' perceptions about the efficiency of the electronic patient record (EPR) system and its impact on nursing management tasks in order to provide useful recommendations. This descriptive study was performed in teaching hospitals affiliated to Semnan University of Medical Sciences, Iran. An anonymous self-administered questionnaire was developed. Head nurses and supervisors were included in this study. It was found that the EPR system was immature and was not proportionate to the operational level. Moreover, few head nurses and supervisors agreed on the benefits of the EPR system on the performance of their duties such as planning, organizing, budgeting, and coordinating. It is concluded that in addition to the technical improvements, the social and cultural factors should be considered to improve the acceptability of electronic systems through social marketing in the different aspects of nursing management. It is essential that health information technology managers emphasize on training head nurses and supervisors to design technology corresponding to their needs rather than to accept poorly designed technology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. EPR project construction cost control

    International Nuclear Information System (INIS)

    Duflo, D.; Pouget-Abadie, X.; Dufour, A.; Kauffmann, G.

    2001-01-01

    The EPR project is now managed by EDF in cooperation with the German Utilities. The main engineering activities for this period are related to the preparation of construction project management, deepening of some safety issues, definition of the project technical reference. The EPR project concerns the so-called reference unit, that is an isolated first-off unit, with unit electrical power of about 1500 MW. The construction costs evaluated are those of the nuclear island, the conventional island, site facilities, installation work and the administrative buildings. The EPR project construction cost evaluation method applies to all the equipment installed and commissioned. It requires the availability of a preliminary project detailed enough to identify the bill of quantities. To these quantities are then assigned updated unit prices that are based either on cost bases for similar and recent facilities or taken from request for quotation for similar equipment or result from gains due to contractual conditions benefiting from simplifications in the functional and technical specifications. The input and output data are managed in a model that respects the breakdown on which the evaluation method is based. The structural organization of this method reflects a functional breakdown on the one hand (nuclear island, conventional island, common site elements) and on the other hand a breakdown according to equipment or activity (civil engineering, mechanics, electricity, instrumentation and control). This paper discusses the principle and the method of construction cost evaluation carried out, the cost data base and input and output parameters as well as results and oncoming cost analysis tasks. (author)

  18. EPR becomes reality at Finland's Olkiluoto 3

    International Nuclear Information System (INIS)

    Gueldner, R.; Giese, U.

    2005-01-01

    accomplishments of the world's two leading PWR product lines - France's N4 and Germany's Konvoi. At the same time it incorporates a new class of safety: its highly advanced safety systems represent a further enhancement of the high safety level already provided by nuclear plants currently in operation in Germany and France. To attain the specified safety goals, measures have been taken to further reduce the probability of occurrence of core damage and to also ensure that all consequences of a (hypothetical) accident involving core melt remain restricted to the plant itself. The EPR has additionally made great progress in terms of low power generating costs, conservation of natural resources, and minimization of waste volumes. From the viewpoint of the European nuclear community, it therefore demonstrates nuclear energy's excellent prospects for the future as an economical option for carbondioxide-free base-load power generation in our liberalized power markets. (author)

  19. The computer aided education and training system for accident management

    International Nuclear Information System (INIS)

    Yoneyama, Mitsuru; Masuda, Takahiro; Kubota, Ryuji; Fujiwara, Tadashi; Sakuma, Hitoshi

    2000-01-01

    Under severe accident conditions of a nuclear power plant, plant operators and technical support center (TSC) staffs will be under a amount of stress. Therefore, those individuals responsible for managing the plant should promote their understanding about the accident management and operations. Moreover, it is also important to train in ordinary times, so that they can carry out accident management operations effectively on severe accidents. Therefore, the education and training system which works on personal computers was developed by Japanese BWR group (Tokyo Electric Power Co.,Inc., Tohoku Electric Power Co. ,Inc., Chubu Electric Power Co. ,Inc., Hokuriku Electric Power Co.,Inc., Chugoku Electric Power Co.,Inc., Japan Atomic Power Co.,Inc.), and Hitachi, Ltd. The education and training system is composed of two systems. One is computer aided instruction (CAI) education system and the other is education and training system with a computer simulation. Both systems are designed to execute on MS-Windows(R) platform of personal computers. These systems provide plant operators and technical support center staffs with an effective education and training tool for accident management. TEPCO used the simulation system for the emergency exercise assuming the occurrence of hypothetical severe accident, and have performed an effective exercise in March, 2000. (author)

  20. Application of simulation techniques for accident management training in nuclear power plants

    International Nuclear Information System (INIS)

    2003-05-01

    Many IAEA Member States operating nuclear power plants (NPPs) are at present developing accident management programmes (AMPs) for the prevention and mitigation of severe accidents. However, the level of implementation varies significantly between NPPs. The exchange of experience and best practices can considerably contribute to the quality, and facilitate the implementation of AMPs at the plants. Various IAEA activities assist countries in the area of accident management. Several publications have been developed which provide guidance and support in establishing accident management at NPPs. The defence in depth concept in nuclear safety requires that, although highly unlikely, beyond design basis and severe accident conditions should also be considered, in spite of the fact that they were not explicitly addressed in the original design of currently operating nuclear power plants (NPPs). Defence in depth is physically achieved by means of four successive barriers (fuel matrix, cladding, primary coolant boundary, and containment) that prevent the release of radioactive material. These barriers are protected by a set of design measures at three levels, including prevention of abnormal operation and failures (level 1), control of abnormal operation and detection of failures (level 2) and control of accidents within the design basis (level 3). Should these first three levels fail to ensure the structural integrity of the core, additional efforts are made at the fourth level of defence in depth in order to further reduce the risks. The objective at level 4 is to ensure that both the likelihood of an accident entailing significant core damage (severe accident) and the magnitude of radioactive releases following a severe accident are kept as low as reasonably achievable. The term 'accident management' refers to the overall range of capabilities of a NPP and its personnel to both prevent and mitigate accident situations that could lead to severe fuel damage in the reactor

  1. A database system for the management of severe accident risk information, SARD

    International Nuclear Information System (INIS)

    Ahn, K. I.; Kim, D. H.

    2003-01-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies

  2. A database system for the management of severe accident risk information, SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, K. I.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies.

  3. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    International Nuclear Information System (INIS)

    Putman, V.L.

    1995-09-01

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies

  4. New Generation of self-calibrated SS/EPR dosimeters: Alanine/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    A new type of solid state/EPR dosimeters is described. Principally, it contains radiation sensitive diamagnetic material, some quantity of EPR active, but radiation insensitive, substance (for example Mn 2+ /MgO) and a binding material. In the present case alanine is used as a radiation sensitive substance. With this dosimeter, the EPR spectra of alanine and Mn 2+ are simultaneously recorded and the calibration graph represents the ratio of alanine versus Mn 2+ EPR signal intensity as a function of absorbed dose. In this way the reproducibility of the results is expected to be improved significantly including their intercomparison among different laboratories. Homogeneity of the prepared dosimeters and their behaviour (fading of EPR signals with time, influence of different meteorological conditions) show satisfactory reproducibility and stability with time. Because two different EPR active samples are recorded simultaneously, the influence of some instrument setting parameters (microwave power, modulation amplitude and modulation frequency) on the ratio I alanine /I Mn is also investigated. (author)

  5. EPR and Bell Locality

    OpenAIRE

    Norsen, Travis

    2004-01-01

    A new formulation of the EPR argument is presented, one which uses John Bell's mathematically precise local causality condition in place of the looser locality assumption which was used in the original EPR paper and on which Niels Bohr seems to have based his objection to the EPR argument. The new formulation of EPR bears a striking resemblance to Bell's derivation of his famous inequalities. The relation between these two arguments -- in particular, the role of EPR as part one of Bell's two-...

  6. The DOE technology development programme on severe accident management

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Moore, R.A.; Theofanous, T.G.

    1998-01-01

    The US Department of Energy (DOE) is sponsoring a programme in technology development aimed at resolving the technical issues in severe accident management strategies for advanced and evolutionary light water reactors (LWRs). The key objective of this effort is to achieve a robust defense-in-depth at the interface between prevention and mitigation of severe accidents. The approach taken towards this goal is based on the Risk Oriented Accident Analysis Methodology (ROAAM). Applications of ROAAM to the severe accident management strategy for the US AP600 advanced LWR have been effective both in enhancing the design and in achieving acceptance of the conclusions and base technology developed in the course of the work. This paper presents an overview of that effort and its key technical elements

  7. The expert assistant in accident management

    International Nuclear Information System (INIS)

    Goddard, A.J.H.; Cannell, R.J.

    1990-01-01

    In the event of a nuclear accident in proximity to an urban area, the consequences resulting from the complex processes of environmental transport of radioactivity would require complex countermeasures. Emphasis has been placed on either modelling the potential effects of such an event on the population, or on attempting to predict the geographical evolution of the release. Less emphasis has been placed on the development of accident management aids with a in-built data acquisition capability. Given the problems of predicting the evolution of an accidental release of activity, more emphasis should be placed on the development of small regional systems specifically engineered to acquire and display environmental data in the most efficaceous form possible. A wealth of information can be obtained from appropriately-sited outstations which can aid those responsible for countermeasures in their decision making processes. The substantial volume of data which would arrive within the duration and during the aftermath of an accident requires skilled interpretation under conditions of considerable stress. It is necessary that a management aid notonly presents these data in a rapidly assimilable form, but is capable of making intelligent decisions of its own, on such matters as information display priority and the polling frequency of outstations. The requirement is for an expert assistant. The XERSES accident management aid has been designed with the foregoing features in mind. Intended for covering regions up to approximately 100 kms square, it links with between 1 and 64 outstations supplying a variety of environmental data. Under quiescent conditions the system will operate unattended, raising alarms remotely only when detecting abnormal conditions. Under emergency conditions, the system automatically adjusts such operating parameters as data acquisition rate

  8. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.H.; Kenner, G.H.; Hayes, R.B. [Utah Univ., Salt Lake City, UT (United States). Center for Applied Dosimetry; Chumak, V.; Shalom, S. [All-Union Scientific Centre of Radiation Medicine, Kiev (Ukraine)

    1996-01-01

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation.

  9. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    International Nuclear Information System (INIS)

    Haskell, E.H.; Kenner, G.H.; Hayes, R.B.

    1996-01-01

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation

  10. Identification of the operating crew's information needs for accident management

    International Nuclear Information System (INIS)

    Nelson, W.R.; Hanson, D.J.; Ward, L.W.; Solberg, D.E.

    1988-01-01

    While it would be very difficult to predetermine all of the actions required to mitigate the consequences of every potential severe accident for a nuclear power plant, development of additional guidance and training could improve the likelihood that the operating crew would implement effective sever-accident management measures. The US Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe-accident research results to enhance the capability of the plant operating crew to effectively manage severe accidents. One element of this program includes identification of the information needed by the operating crew in severe-accident situations. This paper discusses a method developed for identifying these information needs and its application. The methodology has been applied to a generic reactor design representing a PWR with a large dry containment. The information needs were identified by systematically determining what information is needed to assess the health of the critical functions, identify the presence of challenges, select strategies, and assess the effectiveness of these strategies. This method allows the systematic identification of information needs for a broad range of severe-accident scenarios and can be validated by exercising the functional models for any specific event sequence

  11. Consideration of Command and Control Performance during Accident Management Process at the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nisrene M. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Sok Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The accident at the Fukushima Daiichi nuclear power plants shifted the nuclear safety paradigm from risk management to on-site management capability during a severe accident. The kernel of on-site management capability during an accident at a nuclear power plant is situation awareness and agility of command and control. However, little consideration has been given to accident management. After the events of September 11, 2001 and the catastrophic Fukushima nuclear disaster, agility of command and control has emerged as a significant element for effective and efficient accident management, with many studies emphasizing accident management strategies, particularly man-machine interface, which is considered a key role in ensuring nuclear power plant safety during severe accident conditions. This paper proposes a conceptual model for evaluating command and control performance during the accident management process at a nuclear power plant. Communication and information processing while responding to an accident is one of the key issues needed to mitigate the accident. This model will give guidelines for accurate and fast communication response during accident conditions.

  12. Development of the severe accident management guidance module for the SATS training simulator

    International Nuclear Information System (INIS)

    Kim, K. R.; Park, S. H.; Kim, D. H.

    2004-01-01

    Recently KAERI has developed severe accident management guidance to establish Korea standard severe accident management system. On the other hand PC-based severe accident training simulator SATS has been developed, which uses MELCOR computing code as the simulation engine. SATS graphically displays and simulates the severe accident progression with interactive user inputs. The control capability of SATS makes a severe accident training course more interesting and effective. In this paper the development and functions of HyperKAMG module are explained. Furthermore easiness and effectiveness of the HyperKAMG-SATS system in severe accident management are described

  13. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1991-01-01

    A recently completed Oak Ridge effort proposes two management strategies for mitigation of the events that might occur in-vessel after the onset of significant core damage in a BWR severe accident. While the probability of such an accident is low, there may be effective yet inexpensive mitigation measures that could be implemented employing the existing plant equipment and requiring only additions to the plant emergency procedures. In this spirit, accident management strategies have been proposed for use of a borated solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and for containment flooding to maintain the core debris within the reactor vessel if injection systems cannot be restored. The proposed strategy for poisoning of the water used for vessel reflood should injection systems be restored after control blade damage has occurred has great promise, using only the existing plant equipment but employing a different chemical form for the boron poison. The dominant BWR severe accident sequence is Station Blackout and without means for mechanical stirring or heating of the storage tank, the question of being able to form the poisoned solution under accident conditions becomes of supreme importance. On the other hand, the proposed strategy for drywell flooding to cool the reactor vessel bottom head and prevent the core and structure debris from escaping to the drywell holds less promise. This strategy does, however, have potential for future plant designs in which passive methods might be employed to completely submerge the reactor vessel under severe accident conditions without the need for containment venting

  14. A framework for the assessment of severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.; Jae, M.; Lim, H.; Milici, T.; Park, H.; Swider, J.; Xing, L.; Yu, D.

    1992-01-01

    Accident management can be defined as the innovative use of existing and or alternative resources, systems and actions to prevent or mitigate a severe accident. Together with risk management (changes in plant operation and/or addition of equipment) and emergency planning (off-site actions), accident management provides an extension of the defense-in-depth safety philosophy for severe accidents. A significant number of probabilistic safety assessments (PSA) have been completed which yield the principal plant vulnerabilities. For each sequence/threat and each combination of strategy there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These considerations include uncertainty in key phenomena, uncertainty in operator behavior, uncertainty in system availability and behavior, and uncertainty in available information (i.e., instrumentation). The objective of this project is to develop a methodology for assessing severe accident management strategies given the key uncertainties mentioned above. Based on decision trees and influence diagrams, the methodology is currently being applied to two case studies: cavity flooding in a pressurized water reactor to prevent vessel penetration or failure, and drywell flooding in a boiling water reactor to prevent containment failure

  15. Selfcalibrated alanine/EPR dosimeters. A new generation of solid state/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    Alanine/EPR dosimeters are well established as secondary, reference dosimeters for high-energy radiation. However, there are various sources of uncertainty in the evaluation of absorbed dose. This arises primarily from the necessity to calibrate each EPR spectrometer and each batch of dosimeters before their use. In order to overcome this disadvantage, a new generation alanine/EPR dosimeter has been developed, and its possibilities as a radiation detector are reported. Principally, it is a mixture of alanine, some quantity of EPR active substance, and a binding material. The EPR active substance, acting as an internal EPR standard, is chosen to have EPR parameters which are independent of the irradiation dose. The simultaneous recording of the spectra of both the sample and the standard under the same experimental conditions and the estimation of the ratio I alanine /I Mn as a function of the absorbed dose strongly reduces the uncertainties. The response of these dosimeters for 60 Co γ-radiation exhibits excellent linearity and reproducibility in the range of absorbed dose, 10 2 - 5 x 10 4 Gy. (author)

  16. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  17. Use of decision trees for evaluating severe accident management strategies in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclerar Engineering; Lee, Yongjin; Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of). School of Energy Systems Engineering

    2016-07-15

    Accident management strategies are defined to innovative actions taken by plant operators to prevent core damage or to maintain the sound containment integrity. Such actions minimize the chance of offsite radioactive substance leaks that lead to and intensify core damage under power plant accident conditions. Accident management extends the concept of Defense in Depth against core meltdown accidents. In pressurized water reactors, emergency operating procedures are performed to extend the core cooling time. The effectiveness of Severe Accident Management Guidance (SAMG) became an important issue. Severe accident management strategies are evaluated with a methodology utilizing the decision tree technique.

  18. The management of individuals involved in radiation accidents

    Energy Technology Data Exchange (ETDEWEB)

    Swindon, T N [Australian Radiation Lab., Melbourne (Australia)

    1991-09-01

    The author defines the objectives and the coverage of two radiation accident courses presented in 1990 by the US Radiation Emergency Assistance Centre and Training Site of the Oak Ridge Associated Universities together with some Australian Medical institutions. It is estimated that the courses, directed towards physicians, radiotherapists and nurses gave plenty practical advices and details on how to go about radiation accident managements. A manual on handling radiation accidents is also to be prepared after the courses.

  19. A study on the development of framework and supporting tools for severe accident management

    International Nuclear Information System (INIS)

    Chang, Hyun Sop

    1996-02-01

    Through the extensive research on severe accidents, knowledge on severe accident phenomenology has constantly increased. Based upon such advance, probabilistic risk studies have been performed for some domestic plants to identify plant-specific vulnerabilities to severe accidents. Severe accident management is a program devised to cover such vulnerabilities, and leads to possible resolution of severe accident issues. This study aims at establishing severe accident management framework for domestic nuclear power plants where severe accident management program is not yet established. Emphasis is given to in-vessel and ex-vessel accident management strategies and instrumentation availability for severe accident management. Among the various strategies investigated, primary system depressurization is found to be the most effective means to prevent high pressure core melt scenarios. During low pressure core melt sequences, cooling of in-vessel molten corium through reactor cavity flooding is found to be effective. To prevent containment failure, containment filtered venting is found to be an effective measure to cope with long-term and gradual overpressurization, together with appropriate hydrogen control measure. Investigation of the availability of Yonggwang 3 and 4 instruments shows that most of instruments essential to severe accident management lose their desired functions during the early phase of severe accident progression, primarily due to the environmental condition exceeded ranges of instruments. To prevent instrument failure, a wider range of instruments are recommended to be used for some severe accident management strategies such as reactor cavity flooding. Severe accidents are generally known to accompany a number of complex phenomena and, therefore, it is very beneficial when severe accident management personnel is aided by appropriately designed supporting systems. In this study, a support system for severe accident management personnel is developed

  20. Severe accident management guidelines tool

    International Nuclear Information System (INIS)

    Gutierrez Varela, Javier; Tanarro Onrubia, Augustin; Martinez Fanegas, Rafael

    2014-01-01

    Severe Accident is addressed by means of a great number of documents such as guidelines, calculation aids and diagnostic trees. The response methodology often requires the use of several documents at the same time while Technical Support Centre members need to assess the appropriate set of equipment within the adequate mitigation strategies. In order to facilitate the response, TECNATOM has developed SAMG TOOL, initially named GGAS TOOL, which is an easy to use computer program that clearly improves and accelerates the severe accident management. The software is designed with powerful features that allow the users to focus on the decision-making process. Consequently, SAMG TOOL significantly improves the severe accident training, ensuring a better response under a real situation. The software is already installed in several Spanish Nuclear Power Plants and trainees claim that the methodology can be followed easier with it, especially because guidelines, calculation aids, equipment information and strategies availability can be accessed immediately (authors)

  1. Simulation of operator's actions during severe accident management

    International Nuclear Information System (INIS)

    Viktorov, A.

    2015-01-01

    Implementing accident management counter measures or actions to mitigate consequences of a severe accident is essential to reduce radiological risks to the public and environment. Station-specific severe accident management guidelines (SAMGs) have been developed and implemented at all Canadian nuclear power plants. Following the Fukushima Daiichi nuclear accident certain enhancements were introduced to the SAMG, namely consideration of multi-units accidents, events involving spent fuel pools, incorporation of capability offered by the portable emergency mitigating equipment, and so on. To evaluate the adequacy and usability of the SAMGs, CNSC staff initiated a number of activities including a desktop review of SAMG documentation, evaluation of SAMG implementation through exercises and interviews with station staff, and independent verification of SAMG action effectiveness. This paper focuses on the verification of SAMG actions through analytical simulations. The objectives of the work are two-folds: (a) to understand the effectiveness of SAMG-specified mitigation actions in addressing the safety challenges and (b) to check for potential negative effects of the action. Some sensitivity calculations were performed to help understanding of the impact from actions that rely on the partially effective equipment or limited material resources. The severe accident computer code MAAP4-CANDU is used as a tool in this verification. This paper will describe the methodology used in the verification of SAMG actions and some results obtained from simulations. (author)

  2. NPP Krsko Severe Accident Management Guidelines Upgrade

    International Nuclear Information System (INIS)

    Mihalina, Mario; Spalj, Srdjan; Glaser, Bruno; Jalovec, Robi; Jankovic, Gordan

    2014-01-01

    Nuclear Power Plant Krsko (NEK) has decided to take steps for upgrade of safety measures to prevent severe accidents, and to improve the means to successfully mitigate their consequences. The content of the program for the NEK Safety Upgrade is consistent with the nuclear industry response to Fukushima accident, which revealed many new insights into severe accidents. Therefore, new strategies and usage of new systems and components should be integrated into current NEK Severe Accident Management Guidelines (SAMG's). SAMG's are developed to arrest the progression of a core damage accident and to limit the extent of resulting releases of fission products. NEK new SAMG's revision major changes are made due to: replacement of Electrical Recombiners by Passive Autocatalytic Recombiners (PARs) and the installation of Passive Containment Filtered Vent System (PCFV); to handle a fuel damage situation in Spent Fuel Pool (SFP) and to assess risk of core damage situation during shutdown operation. (authors)

  3. PSA use in accident management studies in Japan

    International Nuclear Information System (INIS)

    Hirano, Mitsumasa

    1994-01-01

    The safety of NPPs in Japan is secured by stringent safety regulations based on the deterministic method, minimizing the possibility a severe accident to a technologically negligible level. PSA is not required in the current regulatory procedures. Accident management based on PSA is a 'knowledge-based' action dependent on utilities' technical knowledge aimed at further reduction of the risk which is kept small enough by existing measures. The paper discusses the following three kinds of PSAs that have been conducted practically and efficiently on NPPs to provide supplemental information about their safety characteristics in addition to the deterministic evaluation used in the regulatory safety review: PSAs on typical NPPs, PSAs on all NPPs to examine candidates for accident management, and PSAs as part of periodic safety review (PSR). 1 fig., 5 tabs

  4. Populations protection and territories management in nuclear emergency and post-accident situation

    International Nuclear Information System (INIS)

    Bourrel, M.; Calmon, Ph.; Calvez, M.; Chambrette, V.; Champion, D.; Devin, P.; Godino, O.; Lombard, J.; Rzepka, J.P.; Schneider, Th.; Verhaeghe, B.; Cogez, E.; Kayser, O.; Guenon, C.; Jourdain, J.R.; Bouchot, E.; Murith, Ch.; Lochard, J.; Cluchier, A.; Vandecasteele, Ch.; Pectorin, X.; Dubiau, Ph.; Gerphagnon, O.; Roche, H.; Cessac, B.; Cochard, A.; Machenaud, G.; Jourdain, J.R.; Pirard, Ph.; Leger, M.; Bouchot, E.; Demet, M.; Charre, J.P.; Poumadere, M.; Cogez, E.

    2010-01-01

    This document gathers the slides of the available presentations given during these conference days. Twenty seven presentations out of 29 are assembled in the document and deal with: 1 - radiological and dosimetric consequences in nuclear accident situation: impact on the safety approach and protection stakes (E. Cogez); 2 - organisation of public authorities in case of emergency and in post-event situation (in case of nuclear accident or radiological terror attack in France and abroad), (O. Kayser); 3 - ORSEC plan and 'nuclear' particular intervention plan (PPI), (C. Guenon); 4 - thyroid protection by stable iodine ingestion: European perspective (J.R. Jourdain); 5 - preventive distribution of stable iodine: presentation of the 2009/2010 public information campaign (E. Bouchot); 6 - 2009/2010 iodine campaign: presentation and status (O. Godino); 7 - populations protection in emergency and post-accident situation in Switzerland (C. Murith); 8 - CIPR's recommendations on the management of emergency and post-accident situations (J. Lochard); 9 - nuclear exercises in France - status and perspectives (B. Verhaeghe); 10 - the accidental rejection of uranium at the Socatri plant: lessons learnt from crisis management (D. Champion); 11 - IRE's radiological accident of August 22, 2008 (C. Vandecasteele); 12 - presentation of the CEA's crisis national organisation: coordination centre in case of crisis, technical teams, intervention means (X. Pectorin); 13 - coordination and realisation of environmental radioactivity measurement programs, exploitation and presentation of results: status of IRSN's actions and perspectives (P. Dubiau); 14 - M2IRAGE - measurements management in the framework of geographically-assisted radiological interventions in the environment (O. Gerphagnon and H. Roche); 15 - post-accident management of a nuclear accident - the CODIRPA works (I. Mehl-Auget); 16 - nuclear post-accident: new challenges of crisis expertise (D. Champion); 17 - aid guidebooks

  5. WASTE-ACC: A computer model for analysis of waste management accidents

    International Nuclear Information System (INIS)

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  6. Occupational Radiation Protection in Severe Accident Management. EG-SAM Interim Report

    International Nuclear Information System (INIS)

    2014-01-01

    As an early response to the Fukushima NPP accident, the ISOE Bureau decided to focus on the following issues as an initial response of the joint program after having direct communications with the Japanese official participants in April 2011; - Management of high radiation area worker doses: It has been decided to make available the experience and information from the Chernobyl accident in terms of how emergency worker / responder doses were legally and practically managed, - Personal protective equipment for highly-contaminated areas: It was agreed to collect information about the types of personnel protective equipment and other equipment (e.g. air bottles, respirators, air-hoods or plastic suits, etc.), as well as high-radiation area worker dosimetry use (e.g. type, number and placement of dosimetry) for different types of emergency and high-radiation work situations. Detailed information was collected on dose criteria which are used for emergency workers/responders and their basis, dose management criteria for high dose/dose rate areas, protective equipment which is recommended for emergency workers / responders, recommended individual monitoring procedures, and any special requirement for assessment from the ISOE participating nuclear utilities and regulatory authorities and made available for Japanese utilities. With this positive response of the ISOE actors and interest in the situation in Fukushima, the Expert Group on Occupational Radiation Protection in Severe Accident Management (EG-SAM) was established by the ISOE Management Board in May 2011. The overall objective of the EG-SAM is to contribute to occupational exposure management (providing a view on management of high radiation area worker doses) within the Fukushima plant boundary with the ISOE participants and to develop a state-of-the- art ISOE report on best radiation protection management practices for proper radiation protection job coverage during severe accident initial response and recovery

  7. Accident management for PWRs in France and Germany

    International Nuclear Information System (INIS)

    Heili, F.; Lecomte, C.; L'Homme, A.

    1991-11-01

    The results of risk analyses, research and particularly the two severe accidents in the nuclear power plants TMI-2 and Chernobyl let to a worldwide re-examination of all aspects dealing with the capability to cope with severe accidents. Strategies have been developed or are under development providing actions that can be taken to prevent severe accidents or to mitigate their consequences. Those strategies are investigated and discussed using the term 'accident management'. The purpose of this report is to present the respective views in France and Germany and to point out differences and commonalties of the approaches. This report also includes proposals for further work

  8. Dental radiography: tooth enamel EPR dose assessment from Rando phantom measurements

    International Nuclear Information System (INIS)

    Aragno, D.; Fattibene, P.; Onori, S.

    2000-01-01

    Electron paramagnetic resonance dosimetry of tooth enamel is now established as a suitable method for individual dose reconstruction following radiation accidents. The accuracy of the method is limited by some confounding factors, among which is the dose received due to medical x-ray irradiation. In the present paper the EPR response of tooth enamel to endoral examination was experimentally evaluated using an anthropomorphic phantom. The dose to enamel for a single exposure of a typical dental examination performed with a new x-ray generation unit working at 65 kVp gave rise to a CO 2 -signal of intensity similar to that induced by a dose of about 2 mGy of 60 Co. EPR measurements were performed on the entire tooth with no attempt to separate buccal and lingual components. Also the dose to enamel for an orthopantomography exam was estimated. It was derived from TLD measurements as equivalent to 0.2 mGy of 60 Co. In view of application to risk assessment analysis, in the present work the value for the ratio of the reference dose at the phantom surface measured with TLD to the dose at the tooth measured with EPR was determined. (author)

  9. The EPR in a few words: all you need to know about the EPR nuclear reactor

    International Nuclear Information System (INIS)

    2009-01-01

    After a brief presentation of the EPR (European - or Evolutionary - Pressurized Reactor) type nuclear reactor, this paper, proposed by the collective group 'Stop EPR', develops the following points: EPR is as dangerous as other reactors; EPR flouts democracy; France's energy demand do not need the construction of EPRs; the construction of EPRs is not a factor of economical and social development; EPR should not be constructed neither in France nor elsewhere and the present building sites should be cancelled; the EPR will not help France to increase its energy independence and protect itself from oil price increases; choosing the EPR is incompatible with the large investments to be made in energy conservation and renewable energies; the EPR is not a solution to climate change; the VHV line corridor that will starts at Flamanville is not justified and poses risks to the environment and public health

  10. Seabrook Station Level 2 PRA Update to Include Accident Management

    International Nuclear Information System (INIS)

    Lutz, Robert; Lucci, Melissa; Kiper, Kenneth; Henry, Robert

    2006-01-01

    A ground-breaking study was recently completed as part of the Seabrook Level 2 PRA update. This study updates the post-core damage phenomena to be consistent with the most recent information and includes accident management activities that should be modeled in the Level 2 PRA. Overall, the result is a Level 2 PRA that fully meets the requirements of the ASME PRA Standard with respect to modeling accident management in the LERF assessment and NRC requirements in Regulatory Guide 1.174 for considering late containment failures. This technical paper deals only with the incorporation of operator actions into the Level 2 PRA based on a comprehensive study of the Seabrook Station accident response procedures and guidance. The paper describes the process used to identify the key operator actions that can influence the Level 2 PRA results and the development of success criteria for these key operator actions. This addresses a key requirement of the ASME PRA Standard for considering SAMG. An important benefit of this assessment was the identification of Seabrook specific accident management insights that can be fed back into the Seabrook Station accident management procedures and guidance or the training provided to plant personnel for these procedures and guidance. (authors)

  11. Validation of severe accident management guidance for the wolsong plants

    International Nuclear Information System (INIS)

    Park, S. Y.; Jin, Y. H.; Kim, S. D.; Song, Y. M.

    2006-01-01

    Full text: Full text: The severe accident management(SAM) guidance has been developed for the Wolsong nuclear power plants in Korea. The Wolsong plants are 700MWe CANDU-type reactors with heavy water as the primary coolant, natural uranium-fueled pressurized, horizontal tubes, surrounded by heavy water moderator inside a horizontal calandria vessel. The guidance includes six individual accident management strategies: (1) injection into primary heat transport system (2) injection into calandria vessel (3) injection into calandria vault (4) reduction of fission product release (5) control of reactor building condition (6) reduction of reactor building hydrogen. The paper provides the approaches to validate the SAM guidance. The validation includes the evaluation of:(l) effectiveness of accident management strategies, (2) performance of mitigation systems or components, (3) calculation aids, (4) strategy control diagram, and (5) interface with emergency operation procedure and with radiation emergency plan. Several severe accident sequences with high probability is selected from the plant specific level 2 probabilistic safety analysis results for the validation of SAM guidance. Afterward, thermal hydraulic and severe accident phenomenological analyses is performed using ISAAC(Integrated Severe Accident Analysis Code for CANDU Plant) computer program. Furthermore, the experiences obtained from a table-top-drill is also discussed

  12. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  13. EPR by Areva. EPR the 1600+ MWe reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system.

  14. EPR by Areva. EPR the 1600+ MWe reactor

    International Nuclear Information System (INIS)

    2008-01-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system

  15. Development of severe accident management guidance for Younggwang units 5 and 6

    International Nuclear Information System (INIS)

    Lee, K. W.; Beon, C. S.; Kim, M. K.; Hong, S. Y.; Park, K. S.

    2001-01-01

    Severe Accident Management Guidance (SAMG) has been developed for Younggwang Units 5 and 6. It is consisted of Severe Accident Control Room Guideline, Diagnostic Flow Chart, Severe Accident Guideline, Severe Challenge Guideline, TSC Long Term Monitoring, SAMG Termination. Severe Accident Control Room Guideline, which deals with severe accident after finishing Emergency Operation Procedure, consists of acitions before and after TSC actuation. Seven servere accident management strategies are developed. Diagnostic Flow Chart, Severe Accident Guideline, and Severe Challenge Guideline are developed for each strategy, which enables the users to the implementation of strategy easily and systematically. TSC Long Term Monitoring is also developed to monitor long term activities after a particular strategy. Total of 45 set points are developed for decision making during the implementation of the SAMG

  16. Severe accident management: radiation dose control, Fukushima Daiichi and TMI-2 nuclear plant accidents

    International Nuclear Information System (INIS)

    Shaw, Roger

    2014-01-01

    This presentation presents valuable dose information related to the Fukushima Daiichi and Three Mile Island Unit 2 (TMI-2) Nuclear Plant accidents. Dose information is provided for what is well known for TMI-2, and what is available for Fukushima Daiichi. Particular emphasis is placed on the difference between the type of reactors involved, overarching plant damage issues, and radiation worker dose outcomes. For TMI-2, more in depth dose data is available for the accident and the subsequent recovery efforts. The comparisons demonstrate the need to understand the wide variation in potential dose management measures and outcomes for severe reactor accidents. (author)

  17. Plant specific severe accident management - the implementation phase

    International Nuclear Information System (INIS)

    Prior, R.

    1999-01-01

    Many plants are in the process of developing on-site guidance for technical staff to respond to a severe accident situation severe accident management guidance (SAMG). Once the guidance is developed, the SAMG must be implemented at the plant site, and this involves addressing a number of additional aspects. In this paper, approaches to this implementation phase are reviewed, including review and verification of plant specific SAMG, organizational aspects and integration with the emergency plan, training of SAMG users, validation and self-assessment and SAMG maintenance. Examples draw on experience from assisting numerous plants to implement symptom based severe accident management guidelines based on the Westinghouse Owners Group approach, in Westinghouse, non-Westinghouse and VVER plant types. It is hoped that it will be of use to those plant operators about to perform these activities.(author)

  18. Severe Accident Management System On-line Network SAMSON

    International Nuclear Information System (INIS)

    Silverman, Eugene B.

    2004-01-01

    SAMSON is a computational tool used by accident managers in the Technical Support Centers (TSC) and Emergency Operations Facilities (EOF) in the event of a nuclear power plant accident. SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. SAMSON uses expert systems, as well as neural networks trained with the back propagation learning algorithms to make predictions. Training on data from an accident analysis code (MAAP - Modular Accident Analysis Program) allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTRs), with breaks ranging from one tube to eight tubes, and loss of coolant accidents (LOCAs), with breaks ranging from 0.0014 square feet (1.30 cm 2 ) in size to breaks 3.0 square feet in size (2800 cm 2 ). (author)

  19. Aspects of accident management in Cernavoda NPP

    International Nuclear Information System (INIS)

    Dascalu, N.

    1999-01-01

    As a general conclusion, the accident management system as implemented at Cerna voda NPP is expected to be appropriate for handling a severe accident, should it occur, in such a way that the environmental radiological consequences would be insignificant and radiation exposure of the personnel be within recommendations. It is recognized, however, that continued development and verification of the system as well as effective personnel training programs are essential to maintain the safety level achieved. (author)

  20. Concept and objectives of accident management in LWR type plants

    International Nuclear Information System (INIS)

    Herttrich, P.M.; Hicken, E.F.

    1990-01-01

    For the sake of putting the previous protection and prevention concept in its proper place, it is shown, first of all, on which basis the prevention against damages required according to the state of the art in science and technology was proved under the licensing practice applied so far. Secondly, the previous practice of dynamic upgrading of safety engineering and risk prevention is explained. The introduction of accident management measures is a consequent continuation of this practice. Concrete approaches and objectives of accident management are outlined; an overview of scientific and technical foundations for the development, assessment and introduction of accident management measures is given, and finally the most important organizational and procedural aspects are dealt with. (orig./DG) [de

  1. Design adaptation to the local context - Example of the UK EPR

    International Nuclear Information System (INIS)

    Dupuis, Joseph

    2014-01-01

    The Chief Executive Officer of SOFINEL, Joseph Dupuis, explained how the EPR design was adapted to the UK context and, in particular, the main modifications that were implemented to conform with UK specific regulations. He also presented the cultural and/or technical differences that had to be taken into account for managing the UK EPR project

  2. The evolution of computerized displays in accident management

    International Nuclear Information System (INIS)

    DeBor, J.

    1988-01-01

    Key regulations implemented by the NRC in 1982, which included requirements such as upgraded emergency operating procedures, detailed control room design reviews, the addition of a safety parameter display system, and the inclusion of a degreed shift technical advisor as part of the operating staff, have enabled the use of computerized displays to evolve as an integral part of accident management within each of the four main vendor groups. Problems, however, remain to be resolved in the area of technical content, information reliability, and rules for use in order to achieve the goal of more reliable accident management in nuclear power plants

  3. Development of Integrated Evaluation System for Severe Accident Management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y

    2007-06-15

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs.

  4. Development of Integrated Evaluation System for Severe Accident Management

    International Nuclear Information System (INIS)

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y.

    2007-06-01

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs

  5. An operational centre for managing major chemical industrial accidents.

    Science.gov (United States)

    Kiranoudis, C T; Kourniotis, S P; Christolis, M; Markatos, N C; Zografos, K G; Giannouli, I M; Androutsopoulos, K N; Ziomas, I; Kosmidis, E; Simeonidis, P; Poupkou, N

    2002-01-28

    The most important characteristic of major chemical accidents, from a societal perspective, is their tendency to produce off-site effects. The extent and severity of the accident may significantly affect the population and the environment of the adjacent areas. Following an accident event, effort should be made to limit such effects. Management decisions should be based on rational and quantitative information based on the site specific circumstances and the possible consequences. To produce such information we have developed an operational centre for managing large-scale industrial accidents. Its architecture involves an integrated framework of geographical information system (GIS) and RDBMS technology systems equipped with interactive communication capabilities. The operational centre was developed for Windows 98 platforms, for the region of Thriasion Pedion of West Attica, where the concentration of industrial activity and storage of toxic chemical is immense within areas of high population density. An appropriate case study is given in order to illuminate the use and necessity of the operational centre.

  6. A systems approach to the management of radiation accidents

    International Nuclear Information System (INIS)

    Richter, L.L.; Berk, H.W.; Teates, C.D.; Larkham, N.E.; Friesen, E.J.; Edlich, R.F.

    1980-01-01

    Management of radiation accident patients should have a multidisciplinary approach that includes all health professionals as well as members of public safety agencies. Emergency plans for radiation accidents include detection of the ionizing radiation, patient evacuation, resuscitation, and decontamination. The resuscitated patient should be transported to a radiation control area located outside but adjacent to the emergency department. Ideally this area is accessed through an entrance separate from that used for the main flow of daily emergency department patients. The hospital staff, provided with protective clothing, dosimeters, and preprinted guidelines, continues the resuscitation and definitive care of the patient. This system approach to the management of radiation accidents may be tailored to meet the specific needs of other emergency medical systems

  7. Proceedings of the workshop on operator training for severe accident management and instrumentation capabilities during severe accidents

    International Nuclear Information System (INIS)

    2001-01-01

    This Workshop was organised in collaboration with Electricite de France (Service Etudes et Projets Thermiques et Nucleaires). There were 34 participants, representing thirteen OECD Member countries, the Russian Federation and the OECD/NEA. Almost half the participants represented utilities. The second largest group was regulatory authorities and their technical support organisations. Basically, the Workshop was a follow-up to the 1997 Second Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2) [Reports NEA/CSNI/R(97)10 and 27] and to the 1992 Specialist Meeting on Instrumentation to Manage Severe Accidents [Reports NEA/CSNI/R(92)11 and (93)3]. It was aimed at sharing and comparing progress made and experience gained from these two meetings, emphasizing practical lessons learnt during training or incidents as well as feedback from instrumentation capability assessment. The objectives of the Workshop were therefore: - to exchange information on recent and current activities in the area of operator training for SAM, and lessons learnt during the management of real incidents ('operator' is defined hear as all personnel involved in SAM); - to compare capabilities and use of instrumentation available during severe accidents; - to monitor progress made; - to identify and discuss differences between approaches relevant to reactor safety; - and to make recommendations to the Working Group on the Analysis and Management of Accidents and the CSNI (GAMA). The meeting confirmed that only limited information is needed for making required decisions for SAM. In most cases existing instrumentation should be able to provide usable information. Additional instrumentation requirements may arise from particular accident management measures implemented in some plants. In any case, depending on the time frame where the instrumentation should be relied upon, it should be assessed whether it is likely to survive the harsh environmental conditions it will be exposed

  8. EPR by AREVA. An evolutionary reactor

    International Nuclear Information System (INIS)

    Horstmann, Marion

    2010-01-01

    The EPR development goals are as follows: 1. Evolutionary design to fully capitalize on the design, construction and operating experience based on the 86 AREVA's PWR operating worldwide; 2. Enhanced Safety compared to operating PWRs: reduce core damage frequency (CDF), accommodate severe accidents with no long-term population effect, Withstand large airplane crash (APC); 3. High availability; 4. Simplified operation and maintenance; and 5. Generation cost at least 10 % lower than 1500 MWe series in operation.The design builds on the achievements of the N4 and Konvoi reactors. The main plant data are tabulated. The PWR structure is shown as an example of the stepwise improvement. Focus of the presentation is on the construction techniques, supply chain, and project delivery. (P.A.)

  9. Opportunities for international cooperation in nuclear accident preparedness and management: Procedural and organizational measures

    International Nuclear Information System (INIS)

    Lathrop, J.

    1989-01-01

    In this paper we address a difficult problem: How can we create and maintain preparedness for nuclear accidents? Our research has shown that this can be broken down into two questions: (1) How can we maintain the resources and expertise necessary to manage an accident once it occurs? and (2) How can we develop plans that will help in actually managing an accident once it occurs? It is apparently beyond the means of ordinary human organizations to maintain the capability to respond to a rare event. (A rare event is defined as something like an accident that only happens once every five years or so, somewhere in the world.) Other more immediate pressures tend to capture the resources that should, in a cost/benefit sense, be devoted to maintaining the capability. This paper demonstrates that some of the important factors behind that phenomenon can be mitigated by an international body that promotes and enforces preparedness. Therefore this problem provides a unique opportunity for international cooperation: an international organization promoting and enforcing preparedness could help save us from our own organizational failings. Developing useful accident management plans can be viewed as a human performance problem. It can be restated: how can we support and off-load the accident managers so that their tasks are more feasible? This question reveals the decision analytic perspective of this paper. That is, we look at the problem managing a nuclear accident by focusing on the decision makers, the accident managers: how do we create a decision frame for the accident managers to best help them manage? The decision frame is outlined and discussed. 9 refs

  10. Potential use of wallboard (drywall) for EPR retrospective dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Jeroen W. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main St. West, Hamilton ON L8S 4K1 (Canada)], E-mail: thompjw@mcmaster.ca; Atiya, Ibrahim Abu [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main St. West, Hamilton ON L8S 4K1 (Canada)], E-mail: abuatii@mcmaster.ca; Rink, W. Jack [School of Geography and Earth Sciences, McMaster University, 1280 Main St. West, Hamilton ON L8S 4K1 (Canada)], E-mail: rinkwj@mcmaster.ca; Boreham, Doug [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main St. West, Hamilton ON L8S 4K1 (Canada)], E-mail: boreham@mcmaster.ca

    2009-03-15

    Concern regarding the possibility of criminal or terrorist use of nuclear materials has led to an interest in developing the capability to measure radiation dose in a variety of natural and manufactured materials. Electron paramagnetic resonance (EPR) measurements of radiation dose following a radiological incident may aid in screening affected populations (triage) and in reconstruction of doses following accidents. One such EPR dosimeter is wallboard (drywall), a common construction material composed largely of gypsum (calcium sulphate dihydrate). We have identified the CO{sub 3}{sup -} and SO{sub 3}{sup -} dose-sensitive lines in drywall and developed a measurement protocol using the intensity of CO{sub 3}{sup -} line. Proper background subtraction is a major difficulty, and we demonstrate a procedure based on alignment of a contaminant Mn{sup 2+} line. As a proof-of-concept, a wallboard panel was irradiated with a {sup 60}Co source, and a two-dimensional map of the absorbed dose was measured. While most aliquots yielded reasonably accurate doses, a spatially contiguous region of apparent dose-insensitivity in one panel was identified.

  11. Recent Perspective on the Severe Accident Management Programme for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Manwoong; Lee, Sukho; Lee, Jungjae; Chung, Kuyoung

    2017-01-01

    Severe Accident Management Guidelines (SAMGs), has been developed to help operators to prevent or mitigate the impacts of accidents at nuclear power plants. Severe accident management was first introduced in the 1990s with the creation of SAMGs following recognition that post-Three Mile Island Emergency Operating Procedures (EOPs) did not adequately address severe core damage conditions. Establishing and maintaining multiple layers of defence against any internal/external hazards is an important measure to reduce radiological risks to the public and environment. This study is intended to suggest future regulatory perspectives to strengthen the prevention and mitigation strategies for severe accidents by review of the current status of revision of IAEA Safety Standard on Severe Accident Management Programmes for Nuclear Power Plants and the combined PWR SAMG. This new IAEA Safety Guide will address guidelines for preparation, development, implementation and review of severe accident management programs during all operating conditions for both reactor and spent fuel pool. This Guide is used by operating organizations of nuclear power plants and their support organizations. It may also be used by national regulatory bodies and technical support organizations as a reference for developing their relevant safety requirements and for conducting reviews and safety assessments for SAMP including SAMG. The Pressurized Water Reactor Owner’s Group (PWROG) is upgrading the original generic Severe Accident Management Guidelines (SAMGs) into single Severe Accident Guidelines (SAGs) for the PWR SAMG aims to consolidate the advantages of each of the separate vendor severe accident (SA) mitigation methods. This new PWROG SAGs changes the SAMG process to be made that can improve SA response. Changes have been made that guidance is available for control room operators when the TSC is not activated thus allowing for timely accident response. Other changes were made to the guidance

  12. US nuclear industry approach to severe accident management guidance development and implementation

    International Nuclear Information System (INIS)

    Modeen, D.; Walsh, L.; Oehlberg, R.

    1992-01-01

    The purpose of this paper is to discuss the US nuclear industry activities, occurring under the auspices of Nuclear Management and Resources Council (NUMARC), to define, develop and implement enhancements to utility accident management capabilities. This effort consists of three major parts: (1) Development of a practical framework for evaluation of plant-specific accident management capabilities and the subsequent implementation of selected enhancements. (2) Development of specific technical guidance that address arresting core damage if it begins, either in-vessel or ex-vessel, and maintaining containment integrity. Preventing inadequate core cooling or minimizing the consequences of offsite releases, while considered to be candidate areas for accident management enhancements, have been the subject of intense previous study and development. (3) Plant-specific implementation of accident management enhancements in three areas: (a) personnel resources (organization, training, communications); (b) systems and equipment (restoration and repair, instrumentation, use of alternatives); and (c) information resources (procedures and guidance, technical information, process information)

  13. Sisifo-gas a computerised system to support severe accident training and management

    International Nuclear Information System (INIS)

    Castro, A.; Buedo, J.L.; Borondo, L.; Lopez, N.

    2001-01-01

    Nuclear Power Plants (NPP) will have to be prepared to face the management of severe accidents, through the development of Severe Accident Guides and sophisticated systems of calculation, as a supporting to the decision-making. SISIFO-GAS is a flexible computerized tool, both for the supporting to accident management and for education and training in severe accident. It is an interactive system, a visual and an easily handle one, and needs no specific knowledge in MAAP code to make complicate simulations in conditions of severe accident. The system is configured and adjusted to work in a BWR/6 technology plant with Mark III Containment, as it is Cofrentes NPP. But it is easily portable to every other kind of reactor, having the level 2 PSA (probabilistic safety analysis) of the plant to be able to establish the categories of the source term and the most important sequences in the progression of the accident. The graphic interface allows following in a very intuitive and formative way the evolution and the most relevant events in the accident, in the both system's way of work, training and management. (authors)

  14. Recent Developments in Level 2 PSA and Severe Accident Management

    International Nuclear Information System (INIS)

    Ang, Ming Leang; Shepherd, Charles; Gauntt, Randall; Landgren, Vickie; Van Dorsselaere, Jean Pierre; Chaumont, Bernard; Raimond, Emmanuel; Magallon, Daniel; Prior, Robert; Mlady, Ondrej; Khatib-Rahbar, Mohsen; Lajtha, Gabor; Tinkler, Charles; Siu, Nathan

    2007-01-01

    In 1997, CSNI WGRISK produced a report on the state of the art in Level 2 PSA and severe accident management - NEA/CSNI/R(1997)11. Since then, there have been significant developments in that more Level 2 PSAs have been carried out worldwide for a variety of nuclear power plant designs including some that were not addressed in the original report. In addition, there is now a better understanding of the severe accident phenomena that can occur following core damage and the way that they should be modelled in the PSA. As requested by CSNI in December 2005, the objective of this study was to produce a report that updates the original report and gives an account of the developments that have taken place since 1997. The aim has been to capture the most significant new developments that have occurred rather than to provide a full update of the original report, most of which is still valid. This report is organised using the same structure as the original report as follows: Chapter 2: Summary on state of application, results and insights from recent Level 2 PSAs. Chapter 3: Discussion on key severe accident phenomena and modelling issues, identification of severe accident issues that should be treated in Level 2 PSAs for accident management applications, review of severe accident computer codes and the use of these codes in Level 2 PSAs. Chapter 4: Review of approaches and practices for accident management and SAM, evaluation of actions in Level 2 PSAs. Chapter 5: Review of available Level 2 PSA methodologies, including accident progression event tree / containment event tree development. Chapter 6: Aspects important to quantification, including the use of expert judgement and treatment of uncertainties. Chapter 7: Examples of the use of the results and insights from the Level 2 PSA in the context of an integrated (risk informed) decision making process

  15. Level 2 PSA methodology and severe accident management

    International Nuclear Information System (INIS)

    1997-01-01

    The objective of the work was to review current Level 2-PSA (Probabilistic Safety Assessment) methodologies and practices and to investigate how Level 2-PSA can support severe accident management programmes, i.e. the development, implementation, training and optimisation of accident management strategies and measures. For the most part, the presented material reflects the state in 1996. Current Level 2 PSA results and methodologies are reviewed and evaluated with respect to plant type specific and generic insights. Approaches and practices for using PSA results in the regulatory context and for supporting severe accident management programmes by input from level 2 PSAs are examined. The work is based on information contained in: PSA procedure guides, PSA review guides and regulatory guides for the use of PSA results in risk informed decision making; plant specific PSAs and PSA related literature exemplifying specific procedures, methods, analytical models, relevant input data and important results, use of computer codes and results of code calculations. The PSAs are evaluated with respect to results and insights. In the conclusion section, the present state of risk informed decision making, in particular in the level 2 domain, is described and substantiated by relevant examples

  16. Severe accident management guidelines

    International Nuclear Information System (INIS)

    Uhle, Jennifer

    2014-01-01

    The events at Fukushima Daiichi have highlighted the importance of Severe Accident Management Guidelines (SAMGs). As the world has learned from the catastrophe and countries are considering changes to their nuclear regulatory programs, the content of SAMGs and their regulatory control are being evaluated. This presentation highlights several factors that are being addressed in the United States as rulemaking is underway pertaining to SAMGs. The question of how to be prepared for the unexpected is discussed with specific insights gleaned from Fukushima. (author)

  17. EPR: Evidence and fallacy.

    Science.gov (United States)

    Nichols, Joseph W; Bae, You Han

    2014-09-28

    The enhanced permeability and retention (EPR) of nanoparticles in tumors has long stood as one of the fundamental principles of cancer drug delivery, holding the promise of safe, simple and effective therapy. By allowing particles preferential access to tumors by virtue of size and longevity in circulation, EPR provided a neat rationale for the trend toward nano-sized drug carriers. Following the discovery of the phenomenon by Maeda in the mid-1980s, this rationale appeared to be well justified by the flood of evidence from preclinical studies and by the clinical success of Doxil. Clinical outcomes from nano-sized drug delivery systems, however, have indicated that EPR is not as reliable as previously thought. Drug carriers generally fail to provide superior efficacy to free drug systems when tested in clinical trials. A closer look reveals that EPR-dependent drug delivery is complicated by high tumor interstitial fluid pressure (IFP), irregular vascular distribution, and poor blood flow inside tumors. Furthermore, the animal tumor models used to study EPR differ from clinical tumors in several key aspects that seem to make EPR more pronounced than in human patients. On the basis of this evidence, we believe that EPR should only be invoked on a case-by-case basis, when clinical evidence suggests the tumor type is susceptible. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Accident management information needs for a BWR with a MARK I containment

    Energy Technology Data Exchange (ETDEWEB)

    Chien, D.N.; Hanson, D.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1991-05-01

    In support of the US Nuclear Regulatory Commission Accident Management Research Program, information needs during severe accidents have been evaluated for Boiling Water Reactors (BWRs) with MARK 1 containments. This evaluation was performed using a methodology that identifies plant information needs necessary for personnel to: (a) diagnose that an accident is in progress, (b) select and implement strategies to prevent or mitigate the accident, and (c) monitor the effectiveness of these strategies. The information needs and capabilities identified are intended to form a basis for more comprehensive information needs assessments. The assessments will be performed during the analysis and development of specific strategies, which will be used in accident management prevention and mitigation. 3 refs., 4 figs., 2 tabs.

  19. Accident management information needs for a BWR with a MARK I containment

    International Nuclear Information System (INIS)

    Chien, D.N.; Hanson, D.J.

    1991-05-01

    In support of the US Nuclear Regulatory Commission Accident Management Research Program, information needs during severe accidents have been evaluated for Boiling Water Reactors (BWRs) with MARK 1 containments. This evaluation was performed using a methodology that identifies plant information needs necessary for personnel to: (a) diagnose that an accident is in progress, (b) select and implement strategies to prevent or mitigate the accident, and (c) monitor the effectiveness of these strategies. The information needs and capabilities identified are intended to form a basis for more comprehensive information needs assessments. The assessments will be performed during the analysis and development of specific strategies, which will be used in accident management prevention and mitigation. 3 refs., 4 figs., 2 tabs

  20. Guide on medical management of persons exposed in radiation accidents

    International Nuclear Information System (INIS)

    1990-01-01

    The present guide has been prepared in order to provide guidance to medical and para-medical personnel regarding medical management of the different types of radiation accidents. It discusses briefly the physical aspects and biological effect of radiation, for the benefit of those who have not specialised in radiation medicine. The diagnosis, medical management and follow-up of persons involved in different types of radiation accidents are also dealt with. The implementation of the procedures described calls for organisation of appropriate facilities and provision of requisite equipment as well as education and training of the staff. It is emphasised that major radiation accidents are rare events and the multi-disciplinary nature of the response required to deal with them calls for proper planning and continuous liaison among plant management, radiation protection personnel, first-aid assistants and medical and paramedical staff. The organisation and conduct of emergency drills may help in maintaining preparedness of the medical facilities for efficient management of radiation casualities. (original). 64 refs., tabs., figs

  1. Accidents - Chernobyl accident

    International Nuclear Information System (INIS)

    2004-01-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  2. The use of influence diagrams for evaluating severe accident management strategies

    International Nuclear Information System (INIS)

    Jae, M.; Apostolakis, G.E.

    1992-01-01

    In this paper, the influence diagram, a new analytical tool for developing and evaluating severe accident management strategies, is presented. Influence diagrams are much simpler than decision trees because they do not lead to the large number of branches that are generated when decision trees are used in realistic problems; furthermore, they show explicitly the dependencies between the variables of the problem. One of the accident management strategies proposed for light water reactors, flooding the reactor cavity as a means of preventing vessel breach during a short-term station blackout sequence, is presented. The influence diagram associated with this strategy is constructed. Finally, the advantages of using influence diagrams in accident management are explored

  3. Policy elements for post-accident management in the event of nuclear accident. Document drawn up by the Steering Committee for the Management of the Post-Accident Phase of a Nuclear Accident (CODIRPA). Final version - 5 October 2012

    International Nuclear Information System (INIS)

    2012-01-01

    Pursuant to the Inter-ministerial Directive on the Action of the Public Authorities, dated 7 April 2005, in the face of an event triggering a radiological emergency, the National directorate on nuclear safety and radiation protection (DGSNR), which became the Nuclear safety authority (ASN) in 2006, was tasked with working the relevant Ministerial offices in order to set out the framework and outline, prepare and implement the provisions needed to address post-accident situations arising from a nuclear accident. In June 2005, the ASN set up a Steering committee for the management of the post-accident phase in the event of nuclear accident or a radiological emergency situation (CODIRPA), put in charge of drafting the related policy elements. To carry out its work, CODIRPA set up a number of thematic working groups from 2005 on, involving in total several hundred experts from different backgrounds (local information commissions, associations, elected officials, health agencies, expertise agencies, authorities, etc.). The working groups reports have been published by the ASN. Experiments on the policy elements under construction were carried out at the local level in 2010 across three nuclear sites and several of the neighbouring municipalities, as well as during national crisis drills conducted since 2008. These works gave rise to two international conferences organised by ASN in 2007 and 2011. The policy elements prepared by CODIRPA were drafted in regard to nuclear accidents of medium scale causing short-term radioactive release (less than 24 hours) that might occur at French nuclear facilities equipped with a special intervention plan (PPI). They also apply to actions to be carried out in the event of accidents during the transport of radioactive materials. Following definitions of each stage of a nuclear accident, this document lists the principles selected by CODIRPA to support management efforts subsequent to a nuclear accident. Then, it presents the main

  4. A Methodology for Probabilistic Accident Management

    International Nuclear Information System (INIS)

    Munteanu, Ion; Aldemir, Tunc

    2003-01-01

    While techniques have been developed to tackle different tasks in accident management, there have been very few attempts to develop an on-line operator assistance tool for accident management and none that can be found in the literature that uses probabilistic arguments, which are important in today's licensing climate. The state/parameter estimation capability of the dynamic system doctor (DSD) approach is combined with the dynamic event-tree generation capability of the integrated safety assessment (ISA) methodology to address this issue. The DSD uses the cell-to-cell mapping technique for system representation that models the system evolution in terms of probability of transitions in time between sets of user-defined parameter/state variable magnitude intervals (cells) within a user-specified time interval (e.g., data sampling interval). The cell-to-cell transition probabilities are obtained from the given system model. The ISA follows the system dynamics in tree form and braches every time a setpoint for system/operator intervention is exceeded. The combined approach (a) can automatically account for uncertainties in the monitored system state, inputs, and modeling uncertainties through the appropriate choice of the cells, as well as providing a probabilistic measure to rank the likelihood of possible system states in view of these uncertainties; (b) allows flexibility in system representation; (c) yields the lower and upper bounds on the estimated values of state variables/parameters as well as their expected values; and (d) leads to fewer branchings in the dynamic event-tree generation. Using a simple but realistic pressurizer model, the potential use of the DSD-ISA methodology for on-line probabilistic accident management is illustrated

  5. Analytical support for SAMG development as a part of accident management

    International Nuclear Information System (INIS)

    Honcarenko, R.

    1999-01-01

    The decision to built up and implement a comprehensive Accident Management Program applying best world-wide knowledge made during last year at Temelin. A small group of engineers dedicated to Accident Management was formed at Temelin NPP as a part of the plant organisation scheme. A short summary of these activities performed by this group is presented. (author)

  6. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    International Nuclear Information System (INIS)

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-01

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR

  7. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-15

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR.

  8. Radiological objectives and severe accident mitigation strategy for the generation II PWRs in France in the framework of PLE

    International Nuclear Information System (INIS)

    Cenerino, G.; Dubreuil, M.; Raimond, E.; Pichereau, F.

    2012-01-01

    In France, EDF is involved in the construction of a first generation III (Gen III) reactor (European Pressurized Reactor - EPR) on Flamanville site next to two PWRs. Plant Life Extension (PLE) of reactors will consequently lead to simultaneous operation of Gen III and Gen II reactors during a long period of time. As a consequence, EDF was requested by the French Nuclear Safety Authority to prepare a PWR life management program including, in addition to an ageing management of Systems, Structures and Components, a consequent reactor safety enhancement program. The objective was stated to EDF by the French Nuclear Safety Authority: 'the safety objectives of the Gen III reactors should be used as a reference for all studies undertaken in the frame of PLE'. One part of the EDF program deals with additional arrangements able to reduce more drastically the consequences of any accident. The relevance, according to IRSN, of the EDF radiological objectives for Design Basis Accidents, of the new EDF objectives for Severe Accidents (SA) and of the EDF potential modifications for SA mitigation are presented. (author)

  9. Development of a site-wide accident management center for the Savannah River Site

    International Nuclear Information System (INIS)

    Heal, D.W.; Britt, T.E.

    1992-01-01

    In 1990, the Safety Analysis Group at the Savannah River Site (SRS) began development of an Accident Management program. The program was designed to provide a total system which would meet the Department of Energy (DOE) Safety Performance Criteria, in regard to severe accident management, in the most effective manner. This paper will present two significant changes in the current SRS Accident Management program which will be used to meet these expanded needs. The first and most significant change will be to expand the diversity of the groups involved in the Accident Management process. In the future, organizations such as Environmental Safety, Health ampersand Quality Assurance, Emergency Planning, Site Management, Human Factors, Risk Assessment, and many others will work as an integrated team to solve facility problems. Organizations such as Materials Technology, Equipment Engineering and many of the laboratories on site will be utilized as support groups to increase the technical capability for specific accident analyses. This phase of the program is currently being structured, and should be operational by January of 1993

  10. Investigation on accident management measures for VVER-1000 reactors

    International Nuclear Information System (INIS)

    Tusheva, P.; Schaefer, F.; Rohde, U.; Reinke, N.

    2009-01-01

    A consequence of a total loss of AC power supply (station blackout) leading to unavailability of major active safety systems which could not perform their safety functions is that the safety criteria ensuring a secure operation of the nuclear power plant would be violated and a consequent core heat-up with possible core degradation would occur. Currently, a study which examines the thermal-hydraulic behaviour of the plant during the early phase of the scenario is being performed. This paper focuses on the possibilities for delay or mitigation of the accident sequence to progress into a severe one by applying Accident Management Measures (AMM). The strategy 'Primary circuit depressurization' as a basic strategy, which is realized in the management of severe accidents is being investigated. By reducing the load over the vessel under severe accident conditions, prerequisites for maintaining the integrity of the primary circuit are being created. The time-margins for operators' intervention as key issues are being also assessed. The task is accomplished by applying the GRS thermal-hydraulic system code ATHLET. In addition, a comparative analysis of the accident progression for a station blackout event for both a reference German PWR and a reference VVER-1000, taking into account the plant specifics, is being performed. (authors)

  11. Fukushima accident: the consequences in Japan, France and in Japan; Accident de Fukushima: les repercusions au Japon, en France et dans le Japon

    Energy Technology Data Exchange (ETDEWEB)

    Foucher, N.; Sorin, F.

    2011-03-15

    This document begins with a description of the Fukushima accident, the second article reviews the main consequences in Japan of the accident: setting of a forbidden zone around the plant, restriction of the exports of food products, or the shutdown of the Hamaoka plant. The third article is the reporting of an interview of L. Oursel, deputy general director of the Areva group, this interview deals mainly with the safety standard of the EPR and with the issue of passive safety systems. The last part of the document is dedicated to the consequences in France (null sanitary impact, cooperation between Areva, EdF, CEA and the Japanese plant operator Tepco...) and in the rest of the world: the organization of resistance tests in the nuclear power plants operating in the European Union, the decision about the agreement of EPR and AP1000 reactor has been delayed in United-Kingdom, acceleration of the German program for abandoning nuclear energy, Italy suspends its nuclear program, China orders a general overhaul of the safety standard of its nuclear power plants, Poland and Romania reaffirm their trust in nuclear energy, France wishes a 'mechanism' allowing a quick international intervention in case of major nuclear accident, Russia proposes measures to improve nuclear safety. (A.C.)

  12. Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, Kouichi; Epel, Boris

    2014-10-15

    In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids’ EPR behaviour, for different spin system symmetries. The metrics’ efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method.

  15. Identification of the operating crew's information needs for accident management

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Hanson, D.J.; Ward, L.W.; Solberg, D.E.

    1988-01-01

    While it would be very difficult to predetermine all of the actions required to mitigate the consequences of every potential severe accident for a nuclear power plant, development of additional guidance and training could improve the likelihood that the operating crew would implement effective sever-accident management measures. The US Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe-accident research results to enhance the capability of the plant operating crew to effectively manage severe accidents. One element of this program includes identification of the information needed by the operating crew in severe-accident situations. This paper discusses a method developed for identifying these information needs and its application. The methodology has been applied to a generic reactor design representing a PWR with a large dry containment. The information needs were identified by systematically determining what information is needed to assess the health of the critical functions, identify the presence of challenges, select strategies, and assess the effectiveness of these strategies. This method allows the systematic identification of information needs for a broad range of severe-accident scenarios and can be validated by exercising the functional models for any specific event sequence.

  16. Correlated four-component EPR g-tensors for doublet molecules

    DEFF Research Database (Denmark)

    Vad, M.S.; Pedersen, M.N.; Nørager, A.

    2013-01-01

    configuration interaction wave functions in the DIRAC program package. We find that the correlation effects on the g-tensors can be sufficiently well described with manageable basis sets of triple-zeta quality and manageable configuration spaces. The new fully relativistic EPR module in DIRAC should be useful...

  17. Identification and evaluation of PWR in-vessel severe accident management strategies

    International Nuclear Information System (INIS)

    Dukelow, J.S.; Harrison, D.G.; Morgenstern, M.

    1992-03-01

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents

  18. Usage of geotechnologies for risk management in radiation accidents

    International Nuclear Information System (INIS)

    Silva, T.A.A.; Marques, F.A.P.; Murta, Y.L.

    2017-01-01

    Through the use of geotechnologies an important tool can be created for risk management in radiation accidents. With the use of the QGIS software (Las Palmas version), it is shown its applicability in situations of radiological emergency, as in the case of the accident with cesium-137 in Goiânia. The work analyses the risk of a possible accident with the deposit of cesium wastes that still remains in the region, aiming to protect the population with the best exit routes and forms of allocation of the residents

  19. Development of the methodology and approaches to validate safety and accident management

    International Nuclear Information System (INIS)

    Asmolov, V.G.

    1997-01-01

    The article compares the development of the methodology and approaches to validate the nuclear power plant safety and accident management in Russia and advanced industrial countries. It demonstrates that the development of methods of safety validation is dialectically related to the accumulation of the knowledge base on processes and events during NPP normal operation, transients and emergencies, including severe accidents. The article describes the Russian severe accident research program (1987-1996), the implementation of which allowed Russia to reach the world level of the safety validation efforts, presents future high-priority study areas. Problems related to possible approaches to the methodological accident management development are discussed. (orig.)

  20. Workshop on iodine aspects of severe accident management. Summary and conclusions

    International Nuclear Information System (INIS)

    2000-03-01

    Following a recommendation of the OECD Workshop on the Chemistry of Iodine in Reactor Safety held in Wuerenlingen (Switzerland) in June 1996 [Summary and Conclusions of the Workshop, Report NEA/CSNI/R(96)7], the CSNI decided to sponsor a Workshop on Iodine Aspects of Severe Accident Management, and their planned or effective implementation. The starting point for this conclusion was the realization that the consolidation of the accumulated iodine chemistry knowledge into accident management guidelines and procedures remained, to a large extent, to be done. The purpose of the meeting was therefore to help build a bridge between iodine research and the application of its results in nuclear power plants, with particular emphasis on severe accident management. Specifically, the Workshop was expected to answer the following questions: - what is the role of iodine in severe accident management? - what are the needs of the utilities? - how can research fulfill these needs? The Workshop was organized in Vantaa (Helsinki), Finland, from 18 to 20 May 1999, in collaboration with Fortum Engineering Ltd. It was attended by forty-six specialists representing fifteen Member countries and the European Commission. Twenty-eight papers were presented. These included four utility papers, representing the views of Electricite de France (EDF), Teollisuuden Voima Oy and Fortum Engineering Ltd (Finland), the Nuclear Energy Institute (USA), and Japanese utilities. The papers were presented in five sessions: - iodine speciation; - organic compound control; - iodine control; - modeling; - iodine management; A sixth session was devoted to a general discussion on iodine management under severe accident conditions. This report summarizes the content of the papers and the conclusions of the workshop

  1. Written instructions for the transport of hazardous materials: Accident management instruction sheets

    International Nuclear Information System (INIS)

    Ridder, K.

    1988-01-01

    In spite of the regulations and the safety provisions taken, accidents are not entirely avoidable in the transport of hazardous materials. For managing an accident and preventing further hazards after release of dangerous substances, the vehicle drivers must carry with them the accident management instruction sheets, which give instructions on immediate counter measures to be taken by the driver, and on information to be given to the police and the fire brigades. The article in hand discusses the purpose, the contents, and practice-based improvement of this collection of instruction sheets. Particular reference is given to the newly revised version of June 15, 1988 (Verkehrsblatt 1/88) of the 'Directives for setting up accident management instruction sheets - written instructions - for road transport of hazardous materials', as issued by the Federal Ministry of Transport. (orig./HP) [de

  2. Serious accidents of PWR type reactors for power generation

    International Nuclear Information System (INIS)

    2008-12-01

    This document presents the great lines of current knowledge on serious accidents relative to PWR type reactors. First, is exposed the physics of PWR type reactor core meltdown and the possible failure modes of the containment building in such a case. Then, are presented the dispositions implemented with regards to such accidents in France, particularly the pragmatic approach that prevails for the already built reactors. Then, the document tackles the case of the European pressurized reactor (E.P.R.), for which the dimensioning takes into account explicitly serious accidents: it is a question of objectives conception and their respect must be the object of a strict demonstration, by taking into account uncertainties. (N.C.)

  3. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  4. Method of assessing severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.; Jae, M.; Lim, H.; Milici, T.; Park, H.; Swider, J.; Xing, L.; Yu, D.

    1991-01-01

    Accident management can be defined as the innovative use of existing and or alternative resources, systems, and actions to prevent or mitigate a severe accident. A significant number of probabilistic safety assessments (PSAs) have been completed that yield the principal plant vulnerabilities. These vulnerabilities can be categorized as (1) dominant sequences with respect to core-melt frequency. (2) dominant sequences with respect to various risk measures. (3) dominant threats that challenge safety functions. (4) dominant threats with respect to failure of safety systems. For each sequence/threat and each combination of strategy, there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These considerations include uncertainties in key phenomena, operator behavior, system availability and behavior, and available information. This paper presents a methodology for assessing severe accident management strategies given the key uncertainties delineated at two workshops held at the University of California, Los Angeles. Based on decision trees and influence diagrams, the methodology is currently being applied to two case studies: cavity flooding in a pressurized water reactor (PWR) to prevent vessel penetration or failure, and drywell flooding in a boiling water reactor to prevent vessel and/or containment failure

  5. Application of the severe accident code ATHLET-CD. Modelling and evaluation of accident management measures (Project WASA-BOSS)

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Polina; Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Schaefer, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety

    2016-07-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. Numerical analyses are used to investigate the accident progression and the complex physical phenomena during the core degradation phase, as well as to evaluate the effectiveness of possible countermeasures in the preventive and mitigative domain [1, 2]. The presented analyses have been performed with the computer code ATHLET-CD developed by GRS [3, 4].

  6. U.S. nuclear industry approach to severe accident management guidance, development and implementation

    International Nuclear Information System (INIS)

    Modeen, D.; Walsh, L.; Oehlberg, R.

    1991-01-01

    The purpose of this paper is to discuss the US nuclear industry activities, occurring under the auspices of Nuclear Management and Resources Council (NUMARC), to define, develop and implement enhancements to utility accident management capabilities. This effort consists of three major parts: (1) Development of a practical framework for evaluation of plant-specific accident management capabilities and the subsequent implementation of selected enhancements. (2) Development of specific technical guidance that address arresting core damage if it begins, either in-vessel or ex-vessel, and maintaining containment integrity. Preventing inadequate core cooling or minimizing the consequences of offsite releases, while considered to be candidate areas for accident management enhancements, have been the subject of intense previous study and development. (3) Plant-specific implementation of accident management enhancements in three areas: (a) personnel resources (organization, training, communications); (b) systems and equipment (restoration and repair, instrumentation, use of alternatives); and (c) information resources (procedures and guidance, technical information, process information)

  7. Managing major chemical accidents in China: Towards effective risk information

    International Nuclear Information System (INIS)

    He Guizhen; Zhang Lei; Lu Yonglong; Mol, Arthur P.J.

    2011-01-01

    Chemical industries, from their very inception, have been controversial due to the high risks they impose on safety of human beings and the environment. Recent decades have witnessed increasing impacts of the accelerating expansion of chemical industries and chemical accidents have become a major contributor to environmental and health risks in China. This calls for the establishment of an effective chemical risk management system, which requires reliable, accurate and comprehensive data in the first place. However, the current chemical accident-related data system is highly fragmented and incomplete, as different responsible authorities adopt different data collection standards and procedures for different purposes. In building a more comprehensive, integrated and effective information system, this article: (i) reviews and assesses the existing data sources and data management, (ii) analyzes data on 976 recorded major hazardous chemical accidents in China over the last 40 years, and (iii) identifies the improvements required for developing integrated risk management in China.

  8. Fukushima accident: the consequences in Japan, France and in Japan

    International Nuclear Information System (INIS)

    Foucher, N.; Sorin, F.

    2011-01-01

    This document begins with a description of the Fukushima accident, the second article reviews the main consequences in Japan of the accident: setting of a forbidden zone around the plant, restriction of the exports of food products, or the shutdown of the Hamaoka plant. The third article is the reporting of an interview of L. Oursel, deputy general director of the Areva group, this interview deals mainly with the safety standard of the EPR and with the issue of passive safety systems. The last part of the document is dedicated to the consequences in France (null sanitary impact, cooperation between Areva, EdF, CEA and the Japanese plant operator Tepco...) and in the rest of the world: the organization of resistance tests in the nuclear power plants operating in the European Union, the decision about the agreement of EPR and AP1000 reactor has been delayed in United-Kingdom, acceleration of the German program for abandoning nuclear energy, Italy suspends its nuclear program, China orders a general overhaul of the safety standard of its nuclear power plants, Poland and Romania reaffirm their trust in nuclear energy, France wishes a 'mechanism' allowing a quick international intervention in case of major nuclear accident, Russia proposes measures to improve nuclear safety. (A.C.)

  9. Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.

    Science.gov (United States)

    Möser, J; Lips, K; Tseytlin, M; Eaton, G R; Eaton, S S; Schnegg, A

    2017-08-01

    X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan EPR results in signal-to-noise improvements by factors between 10 and 50. Rapid-scan EPR is thus capable of improving the detection limit of quantitative EPR by at least one order of magnitude. In addition, we provide a recipe for setting up and calibrating a conventional pulsed and continuous-wave EPR spectrometer for rapid-scan EPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Accident analysis for transuranic waste management alternatives in the U.S. Department of Energy waste management program

    International Nuclear Information System (INIS)

    Nabelssi, B.; Mueller, C.; Roglans-Ribas, J.; Folga, S.; Tompkins, M.; Jackson, R.

    1995-01-01

    Preliminary accident analyses and radiological source term evaluations have been conducted for transuranic waste (TRUW) as part of the US Department of Energy (DOE) effort to manage storage, treatment, and disposal of radioactive wastes at its various sites. The approach to assessing radiological releases from facility accidents was developed in support of the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The methodology developed in this work is in accordance with the latest DOE guidelines, which consider the spectrum of possible accident scenarios in the implementation of various actions evaluated in an EIS. The radiological releases from potential risk-dominant accidents in storage and treatment facilities considered in the EM PEIS TRUW alternatives are described in this paper. The results show that significant releases can be predicted for only the most severe and extremely improbable accidents sequences

  11. Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, K; Hara, H

    2015-01-01

    We investigated the location of radical in various sesame seeds using continuous-wave (CW) electron paramagnetic resonance (EPR) and 9-GHz EPR imaging. CW EPR detected persistent radicals (single line) for various sesame seeds. The EPR linewidth of black sesame seeds was narrower than that of the irradiated white sesame seeds. A very small signal was detected for the white sesame seeds. Two-dimensional (2D) imaging using a 9-GHz EPR imager showed that radical locations vary for various sesame seeds. The paramagnetic species in black sesame seeds were located on the seed coat (skin) and in the hilum region. The signal with the highest intensity was obtained from the hilum part. A very low-intensity image was observed for the white sesame seeds. In addition, the 2D imaging of the irradiated white sesame seeds showed that free radicals were located throughout the entire seed. For the first time, CW EPR and 9-GHz EPR imaging showed the exact location of radical species in various sesame seeds.

  12. The management of severe accidents in modern pressure tube reactors

    International Nuclear Information System (INIS)

    Popov, N.K.; Santamaura, P.; Blahnik, C.; Snell, V.G.; Duffey, R.B.

    2007-01-01

    Advanced new reactor designs resist severe accidents through a balance between prevention and mitigation. This balance is achieved by designing to ensure that such accidents are very rare; and by limiting core damage progression and releases from the plant in the event of such rare accidents. These design objectives are supported by a suitable combination of probabilistic safety analysis, engineering judgment and experimental and analytical study. This paper describes the approach used for the Advanced CANDU Reactor TM -1000 (ACR-1000) design, which includes provisions to both prevent and mitigate severe accidents. The paper describes the use of PSA as a 'design assist' tool; the analysis of core damage progression pathways; the definition of the core damage states; the capability of the mitigating systems to stop and control severe accident events; and the severe accident management opportunities for consequence reduction. (author)

  13. Applying of Reliability Techniques and Expert Systems in Management of Radioactive Accidents

    International Nuclear Information System (INIS)

    Aldaihan, S.; Alhbaib, A.; Alrushudi, S.; Karazaitri, C.

    1998-01-01

    Accidents including radioactive exposure have variety of nature and size. This makes such accidents complex situations to be handled by radiation protection agencies or any responsible authority. The situations becomes worse with introducing advanced technology with high complexity that provide operator huge information about system working on. This paper discusses the application of reliability techniques in radioactive risk management. Event tree technique from nuclear field is described as well as two other techniques from nonnuclear fields, Hazard and Operability and Quality Function Deployment. The objective is to show the importance and the applicability of these techniques in radiation risk management. Finally, Expert Systems in the field of accidents management are explored and classified upon their applications

  14. Implementation of accident management programmes in nuclear power plants

    International Nuclear Information System (INIS)

    2004-01-01

    According to the generally established defence in depth concept in nuclear safety, consideration in plant operation is also given to highly improbable severe plant conditions that were not explicitly addressed in the original design of currently operating nuclear power plants (NPPs). Defence in depth is achieved primarily by means of four successive barriers which prevent the release of radioactive material (fuel matrix, cladding, primary coolant boundary and containment), and these barriers are primarily protected by three levels of design measures: prevention of abnormal operation and failures (level 1), control of abnormal operation and detection of failures (level 2) and control of accidents within the design basis (level 3). If these first three levels fail to ensure the structural integrity of the core, e.g. due to beyond the design basis multiple failures, or due to extremely unlikely initiating events, additional efforts are made at level 4 to further reduce the risks. The objective at the fourth level is to ensure that both the likelihood of an accident entailing significant core damage (severe accident) and the magnitude of radioactive releases following a severe accident are kept as low as reasonably achievable. Finally, level 5 includes off-site emergency response measures, with the objective of mitigating the radiological consequences of significant releases of radioactive material. The implementation of the emergency response is usually dependent upon the type and magnitude of the accident. Good co-ordination between the operator and the responding organizations is needed to ensure the appropriate response. Accident management is one of the key components of effective defence in depth. In accordance with defence in depth, each design level should be protected individually, independently of other levels. This report focuses on the fourth level of defence in depth, including the transitions from the third level and into the fifth level. It describes

  15. Quantitative EPR A Practitioners Guide

    CERN Document Server

    Eaton, Gareth R; Barr, David P; Weber, Ralph T

    2010-01-01

    This is the first comprehensive yet practical guide for people who perform quantitative EPR measurements. No existing book provides this level of practical guidance to ensure the successful use of EPR. There is a growing need in both industrial and academic research to provide meaningful and accurate quantitative EPR results. This text discusses the various sample, instrument and software related aspects required for EPR quantitation. Specific topics include: choosing a reference standard, resonator considerations (Q, B1, Bm), power saturation characteristics, sample positioning, and finally, putting all the factors together to obtain an accurate spin concentration of a sample.

  16. Generalities on nuclear accidents and their short-dated and middle-dated management

    International Nuclear Information System (INIS)

    2003-03-01

    All the nuclear activities present a radiation risk. The radiation exposure of the employees or the public, may occur during normal activity or during an accident. The IRSN realized a document on this radiation risk and the actions of protection. The sanitary and medical aspects of a radiation accident are detailed. The actions of the population protection during an accident and the post accident management are also discussed. (A.L.B.)

  17. ACCIDENT PHENOMENA OF RISK IMPORTANCE PROJECT - Continued RESEARCH CONCERNING SEVERE ACCIDENT PHENOMENA AND MANAGEMENT IN Sweden

    International Nuclear Information System (INIS)

    Rolandson, S.; Mueller, F.; Loevenhielm, G.

    1997-01-01

    Since 1988 all reactors in Sweden have mitigating measures, such as filtered vents, implemented. In parallel with the work of implementing these measures, a cooperation effort (RAMA projects) between the Swedish utilities and the Nuclear Power Inspectorate was performed to acquire sufficient knowledge about severe accident research work. The on-going project has the name Accident Phenomena of Risk Importance 3. In this paper, we will give background information about severe accident management in Sweden. In the Accident Phenomena of Risk Importance 3 project we will focus on the work concerning coolability of melted core in lower plenum which is the main focus of the In-vessel Coolability Task Group within the Accident Phenomena of Risk Importance 3 project. The Accident Phenomena of Risk Importance 3 project has joined on international consortium and the in-vessel cooling experiments are performed by Fauske and Associates, Inc. in Burr Ridge, Illinois, United States America, Sweden also intends to do one separate experiment with one instrument penetration we have in Swedish/Finnish BWR's. Other parts of the Accident Phenomena of Risk Importance 3 project, such as support to level 2 studies, the research at Royal Institute of Technology and participation in international programs, such as Cooperative Severe Accident Research Program, Advanced Containment Experiments and PHEBUS will be briefly described in the paper

  18. The computer aided education and training system for accident management

    International Nuclear Information System (INIS)

    Yoneyama, Mitsuru; Kubota, Ryuji; Fujiwara, Tadashi; Sakuma, Hitoshi

    1999-01-01

    The education and training system for Accident Management was developed by the Japanese BWR group and Hitachi Ltd. The education and training system is composed of two systems. One is computer aided instruction (CAI) education system and the education and training system with computer simulations. Both systems are designed to be executed on personal computers. The outlines of the CAI education system and the education and training system with simulator are reported below. These systems provides plant operators and technical support center staff with the effective education and training for accident management. (author)

  19. A systematic process for developing and assessing accident management plans

    International Nuclear Information System (INIS)

    Hanson, D.J.; Blackman, H.S.; Meyer, O.R.; Ward, L.W.

    1991-04-01

    This document describes a four-phase approach for developing criteria recommended for use in assessing the adequacy of nuclear power plant accident management plans. Two phases of the approach have been completed and provide a prototype process that could be used to develop an accident management plan. Based on this process, a preliminary set of assessment criteria are derived. These preliminary criteria will be refined and improved when the remaining steps of the approach are completed, that is, after the prototype process is validated through application. 9 refs., 10 figs., 7 tabs

  20. Severe accident management (SAM), operator training and instrumentation capabilities - Summary and conclusions

    International Nuclear Information System (INIS)

    2002-01-01

    The Workshop on Operator Training for Severe Accident Management (SAM) and Instrumentation Capabilities During Severe Accidents was organised in collaboration with Electricite de France (Service Etudes et Projets Thermiques et Nucleaires). There were 34 participants, representing thirteen OECD Member countries, the Russian Federation and the OECD/NEA. Almost half the participants represented utilities. The second largest group was regulatory authorities and their technical support organisations. Basically, the Workshop was a follow-up to the 1997 Second Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2) [Reports NEA/CSNI/R(97)10 and 27] and to the 1992 Specialist Meeting on Instrumentation to Manage Severe Accidents [Reports NEA/CSNI/R(92)11 and (93)3]. It was aimed at sharing and comparing progress made and experience gained from these two meetings, emphasizing practical lessons learnt during training or incidents as well as feedback from instrumentation capability assessment. The objectives of the Workshop were therefore: - to exchange information on recent and current activities in the area of operator training for SAM, and lessons learnt during the management of real incidents ('operator' is defined hear as all personnel involved in SAM); - to compare capabilities and use of instrumentation available during severe accidents; - to monitor progress made; - to identify and discuss differences between approaches relevant to reactor safety; - and to make recommendations to the Working Group on the Analysis and Management of Accidents and the CSNI (GAMA). The Workshop was organised into five sessions: - 1: Introduction; - 2: Tools and Methods; - 3: Training Programmes and Experience; - 4: SAM Organisation Efficiency; - 5: Instrumentation Capabilities. It was concluded by a Panel and General Discussion. This report presents the summary and conclusions: the meeting confirmed that only limited information is needed for making required decisions

  1. Solid waste accident analysis in support of the Savannah River Waste Management Environmental Impact Statement

    International Nuclear Information System (INIS)

    Copeland, W.J.; Crumm, A.T.; Kearnaghan, D.P.; Rabin, M.S.; Rossi, D.E.

    1994-07-01

    The potential for facility accidents and the magnitude of their impacts are important factors in the evaluation of the solid waste management addressed in the Environmental Impact Statement. The purpose of this document is to address the potential solid waste management facility accidents for comparative use in support of the Environmental Impact Statement. This document must not be construed as an Authorization Basis document for any of the SRS waste management facilities. Because of the time constraints placed on preparing this accident impact analysis, all accident information was derived from existing safety documentation that has been prepared for SRS waste management facilities. A list of facilities to include in the accident impact analysis was provided as input by the Savannah River Technology Section. The accident impact analyses include existing SRS waste management facilities as well as proposed facilities. Safety documentation exists for all existing and many of the proposed facilities. Information was extracted from this existing documentation for this impact analysis. There are a few proposed facilities for which safety analyses have not been prepared. However, these facilities have similar processes to existing facilities and will treat, store, or dispose of the same type of material that is in existing facilities; therefore, the accidents can be expected to be similar

  2. Application of probabilistic methods to accident analysis at waste management facilities

    International Nuclear Information System (INIS)

    Banz, I.

    1986-01-01

    Probabilistic risk assessment is a technique used to systematically analyze complex technical systems, such as nuclear waste management facilities, in order to identify and measure their public health, environmental, and economic risks. Probabilistic techniques have been utilized at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, to evaluate the probability of a catastrophic waste hoist accident. A probability model was developed to represent the hoisting system, and fault trees were constructed to identify potential sequences of events that could result in a hoist accident. Quantification of the fault trees using statistics compiled by the Mine Safety and Health Administration (MSHA) indicated that the annual probability of a catastrophic hoist accident at WIPP is less than one in 60 million. This result allowed classification of a catastrophic hoist accident as ''not credible'' at WIPP per DOE definition. Potential uses of probabilistic techniques at other waste management facilities are discussed

  3. The link between off-site-emergency planning and plant-internal accident management

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.

    1995-02-01

    A variety of accident management measures has been developed and implemented in the German nuclear power plants. They constitute a fourth level of safety in the defence-in-depth concept. The containment venting system is an important example. A functioning link with well defined lines of communication between plant-internal accident management and off-site disaster emergency planning has been established.

  4. MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A. [AREVA - Tour AREVA, 1 Place Jean Millier, 92084 Paris La Defense (France)

    2013-07-01

    In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO{sub 2} fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory.

  5. MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core

    International Nuclear Information System (INIS)

    Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A.

    2013-01-01

    In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO 2 fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory

  6. Towards EPR (European pressurized reactor)

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    According to the French industry minister, it is nonsense continuing delaying the construction of an EPR prototype because France needs it in order to renew timely its park of nuclear reactors. The renewing is expected to begin in 2020 and will be assured with third generation reactors like EPR. A quick launching of the EPR prototype is necessary to have it being in service by 2012, the feedback operating experience that will be accumulated over the 8 years that will follow will be necessary to optimize the industrial version and to have it ready by 2020. The EPR reactor has indisputable assets: modern, safer, more competitive and it will produce less wastes than present nuclear reactors. The construction cost of an EPR prototype is estimated to 3 milliard Euros and the nuclear industry operators propose to finance it completely. The EPR prototype does not jeopardize the ambitious French program about renewable energy sources, France is committed to produce 21% of its electricity from renewable energies by 2010 and 10 milliard Euros will be invested over this period on wind energy. Nuclear energy and alternative energies must be considered as 2 aspects of a diversified energy policy. (A.C.)

  7. Modeling and measuring the effects of imprecision in accident management

    International Nuclear Information System (INIS)

    Yu, Donghan

    2002-01-01

    This paper presents two approaches for evaluating the uncertainties inherent in accident management strategies. Current PRA methodology uses expert opinion in the assessment of rare event probabilities. The problem is that these probabilities may be difficult to estimate even though reasonable engineering judgement is applied. This occurs because expert opinion under incomplete knowledge and limited data is inherently imprecise. In this case, the concept of uncertainty about a probability value is both intuitively appealing and potentially useful. This analysis considers accident management as a decision problem (i.e. 'applying a strategy' vs. 'do nothing') and uses an influence diagram. Then, the analysis applies two approaches to evaluating imprecise node probabilities in the influence diagram: 'a fuzzy probability' and 'an interval-valued subjective probability'. For the propagation of subjective probabilities, the analysis uses a Monte-Carlo simulation approach. In case of fuzzy probabilities, fuzzy logic is applied to propagate them. We believe that these approaches can allow us to better understand uncertainties associated with severe accident management strategies, because they provide additional information regarding the implications of using imprecise input data

  8. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)

    2014-08-15

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.

  9. Using rapid scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude

    OpenAIRE

    Möser, J.; Lips, K.; Tseytlin, M.; Eaton, G.; Eaton, S.; Schnegg, A

    2017-01-01

    X band rapid scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid scan and continuous wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid scan EPR results in signal to noise improvements by factors between 10 and 50. Rapid scan EPR is thus ca...

  10. Benchmarking MARS (accident management software) with the Browns Ferry fire

    International Nuclear Information System (INIS)

    Dawson, S.M.; Liu, L.Y.; Raines, J.C.

    1992-01-01

    The MAAP Accident Response System (MARS) is a userfriendly computer software developed to provide management and engineering staff with the most needed insights, during actual or simulated accidents, of the current and future conditions of the plant based on current plant data and its trends. To demonstrate the reliability of the MARS code in simulatng a plant transient, MARS is being benchmarked with the available reactor pressure vessel (RPV) pressure and level data from the Browns Ferry fire. The MRS software uses the Modular Accident Analysis Program (MAAP) code as its basis to calculate plant response under accident conditions. MARS uses a limited set of plant data to initialize and track the accidnt progression. To perform this benchmark, a simulated set of plant data was constructed based on actual report data containing the information necessary to initialize MARS and keep track of plant system status throughout the accident progression. The initial Browns Ferry fire data were produced by performing a MAAP run to simulate the accident. The remaining accident simulation used actual plant data

  11. A study on the implementation effect of accident management strategies on safety

    International Nuclear Information System (INIS)

    Jae, Moo Sung; Kim, Dong Ha; Jin, Young Ho

    1996-01-01

    This paper presents a new approach for assessing accident management strategies using containment event trees(CETs) developed during an individual plant examination (IPE) for a reference plant (CE type, 950 MWe PWR). Various accident management strategies to reduce risk have been proposed through IPE. Three strategies for the station blackout sequence are used as an example: 1) reactor cavity flooding only, 2) primary system depressurization only, and 3) doing both. These strategies are assumed to be initiated at about the time of core uncovery. The station blackout (SBO) sequence is selected in this paper since it is identified as one of the most threatening sequences to safety of the reference plant. The effectiveness and adverse effects of each accident management strategy are considered synthetically in the CETs. A best estimate assessment for the developed CETs using data obtained from NUREG-1150, other PRA results, and the MAAP code calculations is performed. The strategies are ranked with respect to minimizing the frequencies of various containment failure modes. The proposed approach is demonstrated to be very flexible in that it can be applied to any kind of accident management strategy for any sequence. 9 refs., 3 figs., 2 tabs. (author)

  12. Medical application of EPR

    International Nuclear Information System (INIS)

    Eichhoff, Uwe; Hoefer, Peter

    2015-01-01

    Selected applications of continuous-wave EPR in medicine are reviewed. This includes detection of reactive oxygen and nitrogen species, pH measurements and oxymetry. Applications of EPR imaging are demonstrated on selected examples and future developments to faster imaging methods are discussed

  13. Risk management and role of schools of the Tokai-village radiation accident in 1999. Safety education and risk management before and during the radiation accident from the standpoint of school nurse teachers

    International Nuclear Information System (INIS)

    Akisaka, Masafumi; Nakamura, Tomoko; Satake, Tsuyoshi

    2002-01-01

    The purpose of this study is to evaluate safety education and risk management in the neighborhood schools before and during the radiation accident in the Tokai-village in 1999 from the standpoint of school nurse teachers. Eighty-six school nurse teachers from 44 elementary, 25 junior-high, 14 high and 3 handicapped children's schools were surveyed within neighboring towns and villages. The main results were as follows: There had been few risk management systems against the potential radiation accidents including safety education, radiological monitoring and protection in all of the neighboring schools. There were no significant difference in risk management systems among the schools before the accident, though the anxiety rates of school children were significantly higher in the schools nearest to the accident site. Some radiation risk management systems must be established in neighboring schools including safety education, radiological monitoring and protection. (author)

  14. Medical management of radiological accidents in non-specialized clinics: mistakes and lessons

    International Nuclear Information System (INIS)

    Jikia, D.

    2009-01-01

    In 1996-2002 three radiological accidents were developed in Georgia. There were some people injured in those accidents. During medical management of the injured some mistakes and errors were revealed both in diagnostics and scheme of the treatment. The goal of this article is to summarize medical management of the mentioned radiological accidents, to estimate reasons of mistakes and errors, to present the lessons drawn in result of Georgia radiological accidents. There was no clinic with specialized profile and experience. Accordingly due to having no relevant experience late diagnosis can be considered as the main error. It had direct influence on the patients' health and results of treatment. Lessons to be drawn after analyzing Georgian radiological accidents: 1. informing medical staff about radiological injuries (pathogenesis, types, symptoms, clinical course, principles of treatment and etc.); 2. organization of training and meetings in non-specialized clinics or medical institutions for medical staff; 3. preparation of informational booklets and guidelines.(author)

  15. The Flamanville EPR: an EDF third generation reactor to prepare the future

    International Nuclear Information System (INIS)

    2011-11-01

    This document presents the EPR reactor as an evolution of the currently operated nuclear reactors, but with a reinforced safety. It incorporates technological improvements which enable the number of incidents, the core fusion risk, the consequences of an accident, and workers' exposure to be reduced, the releases and the quantities of radioactive wastes to be limited, and the ecosystem to be preserved. It indicates the planning from public debate in 2004 to electricity production in 2016. It outlines the industrial cooperation for the plant construction, and economic consequences for the area

  16. EPR compared to international requirements (Mainly EUR)

    International Nuclear Information System (INIS)

    Broecker, B.

    1996-01-01

    A number of European Utilities have entered an agreement to write common requirements dedicated to future light water nuclear power plants to be built in Europe. The activities are known under the sign EUR (European Utilities Requirements). EPR, the future European Pressurized water Reactor, is the first installation of this type which will be operational from the year 2000 onwards, must fulfill the European requirements. EPR will serve as a test whether these requirements are realistic and well balanced. At the basic design stage of EPR, this paper concentrates on four main topics: the requirements which are new compared with existing reactors and which put a major challenge to the designer; the requirements today still open and the way they can be met by the EPR or not; the points for which already today the EPR special requirements exceed the EUR; the examples where the design of the EPR has given feedback which has led to a change of the EUR. EPR and EUR are different approaches to the reactor of the future. EUR is a set of requirements which leaves a flexibility to the designer while EPR is a real project which defines the technical solutions. EPR will fulfill the EUR and will at the same time serve as a test whether these requirements are realistic. EPR will also fulfill international requirements with minor changes. (J.S.). 7 figs

  17. EPR paradox revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, C.D.; Scully, M.O.

    1978-07-01

    Einstein, Podolsky, and Rosen (EPR) argued in 1935 that quantum mechanics fails to give an adequate description of physical reality, and also cannot give a consistent wave-function description of certain phenomena. It is shown that a calculation based upon the reduced density matrix removes the formal inconsistency pointed out by EPR. The spirit of the present paper is that of a pedagogical review.

  18. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. EPR spectroscopy at DNP conditions

    International Nuclear Information System (INIS)

    Heckmann, J.; Goertz, St.; Meyer, W.; Radtke, E.; Reicherz, G.

    2004-01-01

    In terms of dynamic nuclear polarization (DNP) studies and systematic target material research it is crucial to know the EPR lineshape of the DNP relevant paramagnetic centers. Therefore in Bochum an EPR spectrometer has been implemented into the 4 He evaporation DNP facility in order to perform EPR studies at DNP conditions (B=2.5 T, T=1 K). The spectrometer hardware and performance as well as first results are presented

  20. Development of Parameter Network for Accident Management Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sukyoung; Ahemd, Rizwan; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jung Taek; Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    When a severe accident happens, it is hard to obtain the necessary information to understand of internal status because of the failure or damage of instrumentation and control systems. We learned the lessons from Fukushima accident that internal instrumentation system should be secured and must have ability to react in serious conditions. While there might be a number of methods to reinforce the integrity of instrumentation systems, we focused on the use of redundant behavior of plant parameters without additional hardware installation. Specifically, the objective of this study is to estimate the replaced value which is able to identify internal status by using set of available signals when it is impossible to use instrumentation information in a severe accident, which is the continuation of the paper which was submitted at the last KNS meeting. The concept of the VPN was suggested to improve the quality of parameters particularly to be logged during severe accidents in NPPs using a software based approach, and quantize the importance of each parameter for further maintenance. In the future, we will continue to perform the same analysis to other accident scenarios and extend the spectrum of initial conditions so that we are able to get more sets of VPNs and ANN models to predict the behavior of accident scenarios. The suggested method has the uncertainty underlain in the analysis code for severe accidents. However, In case of failure to the safety critical instrumentation, the information from the VPN would be available to carry out safety management operation.

  1. EPR dosimetry of irradiated human teeth

    International Nuclear Information System (INIS)

    Rodas Duran, J.E.; Panzeri, H.; Mascarenhas, S.

    1985-01-01

    The determination of the absorbed radiation dose in man may be made by Electron Paramagnetic Resonance (EPR) spectroscopy of dental enamel. We analysed the EPR signals for dental enamel submitted to gamma radiation in doses between 1 Gy and 25 Gy. We conclude that independent of the type of tooth analysed there exists a linear relation between the EPR signals and the absorbed doses. These studies were extended to enamel irradiated with gamma rays and with X rays in doses between 0.1 Gy and 0.6 Gy. The graph of the intensity of the EPR signals as a function of the dose has a slope of 0.22. This calibration may be used to calculate the absorbed dose for humans from a measurement of the EPR signal from small samples of enamel taken from any permanent tooth. Finally we comment on some EPR studies of effects of radiation of milk teeth. (author)

  2. The technical requirements concerning severe accident management in nuclear power plants

    International Nuclear Information System (INIS)

    Okamoto, Koji; Sugiyama, Tomoyuki; Kamata, Shinya

    2014-01-01

    The Great East Japan Earthquake with a magnitude of 9.0 (The 2011 off the Pacific coast of Tohoku Earthquake) occurred on March 11, 2011, and the beyond design-basis tsunami descended on the Fukushima Daiichi Nuclear Power Plant by the earthquake. Eventually, the core cooling systems of the units 1, 2 and 3 could not operate stably, they all suffered severe accident, and hydrogen explosions were triggered in the reactor buildings of units 1, 3 and 4. In the light of these circumstances, Atomic Energy Society of Japan (AESJ) decided to establish a standard that consolidates the concept of maintaining and improving severe accident management. In the SAM standard, the combination of hardware and software measures based on the risk assessment enables a scientific and rational approach to apply to scenarios of various severe accidents including low-frequency, high-impact events, and assures safety with functionality and flexibility. The SAM standard is already established in March, 2014. After publication of the SAM standard, with regard to effectiveness assessment for accident management and treatment of the uncertainty of severe accident analysis code, for example, the detailed guideline will be prepared as appendices of the standard. (author)

  3. Extension of emergency operating procedures for severe accident management

    International Nuclear Information System (INIS)

    Chiang, S.C.

    1992-01-01

    To enhance the capability of reactor operators to cope with the hypothetical severe accident its the key issue for utilities. Taiwan Power Company has started the enhancement programs on extension of emergency operating procedures (EOPs). It includes the review of existing LOPs based on the conclusions and recommendations of probabilistic risk assessment studies to confirm the operator actions. Then the plant specific analysis for accident management strategy will be performed and the existing EOPs will be updated accordingly

  4. Development of Severe Accident Management Strategies for Shin-Kori 3 and 4

    International Nuclear Information System (INIS)

    Lee, Youngseung; Kim, Hyeongtaek; Shin, Jungmin

    2013-01-01

    Shin-Kori units 3 and 4 are new reactors under construction as an APR 1400 type reactor. The plants which considered coping with severe accident from design phase are different from other operating plants in view of severe accident management strategies. The purpose of this paper is to establish optimal strategies for Shin-Kori 3 and 4. A scheme for optimized severe accident management was drawn up with the object of achieving core cooling, containment integrity, and decreased release of fission product. Shin-Kori units 3 and 4 are a new reactor and designed to add mitigating systems for coping with severe accident such as ECSBS, PAR, and CFS. Also the plants are reflected as a part of Fukushima followup measures The strategies of SAMG for Shin-Kori 3 and 4 were developed. The strategic approach was based on the concept of defense in depth. Firstly, strategies for core cooling were chosen such as RCS depressurization, injection to SG, injection to RCS, and injection to reactor cavity. Secondly, the plans for containment integrity were developed for controlling pressure and hydrogen in containment. Lastly, reduced release of fission product was considered for protection of the public after containment failure. The achieved strategies meet the needs of effective methods for severe accident management and enhancement of safety

  5. MDEP Common Position No EPR-01 - Common positions on the EPR instrumentation and controls design

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of the EPR Working Group (EPRWG) of the Multinational Design Evaluation Program (MDEP) is to identify common positions among the regulators reviewing the EPR Instrumentation and Controls (I and C) Systems in order to: 1. Promote understanding of each country 's regulatory decisions and basis for the decisions, 2. Enhance communication among the members and with external stakeholders, 3. Identify areas where harmonization and convergence of regulations, standards, and guidance can be achieved or improved, and 4. Supports standardization of new reactor designs. Since January 2008, the EPR I and C Technical Expert Subgroup (TESG) members met five times to exchange information regarding their country 's review of the EPR I and C design. The EPR I and C TESG consists of regulators from China, Canada, Finland, France, the United Kingdom, and the United States. The information exchange includes presentation of each country 's review status and technical issues, sharing of guidance documents, and sharing of regulatory decision documents. The TESG focused on the following four core areas of the EPR I and C design: 1. I and C System Independence (particularly for data communications), 2. Level of Defense and Diversity (back-up systems), 3. Qualification/quality of digital platforms, 4. Categorization/classification of systems and functions. As meetings were conducted, some areas were emphasized more depending on the significance of the issues for each country. During the TESG interactions, it became apparent that there were aspects of the EPR design where the countries had common agreement. On November 2, 2009, three of the subgroup countries, France, Finland and the United Kingdom, issued a joint regulatory position on the EPR I and C design as result of the 'Groupe Permanent' meeting in France. This statement of common positions expands upon that joint regulatory position

  6. Proceedings of the International conference on nuclear accidents and crisis management

    International Nuclear Information System (INIS)

    Stefenson, B.; Landahl, P.A.; Ritchey, T.

    1993-06-01

    This booklet presents the proceedings of the international conference on nuclear accidents and crisis management, held in Stockholm 16-18 March, 1993. It consists of a collection of lectures and discussion notes. The overall purpose of the conference was to promote a greater awareness of crisis management problems during a nuclear accident of potential international scope. Emphasis was placed on information and cooperation, and on experience of different forms of emergency planning and crisis management. The foreign participants in the conference were scientists and representatives from different levels of authority in Denmark, Finland, Germany, Latvia, Lithuania, Norway, Russia, and USA. The second half of the conference was reserved for Swedish national issues. Several additional themes were discussed here, inter alia: *problems of local, regional and central government cooperation. *the need for special laws and directives concerning nuclear accidents. *the need for more research. The lectures and discussion notes from the second part of the conference are in Swedish

  7. Accident beyond the design basis management with the coolant loss at the NPP with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Klyuchnikov, A.A.; Kolykhanov, V.N.

    2010-01-01

    The analysis of status and experience of development on modelling and accident beyond the design basis management, including the severe accidents, at the nuclear power plants is carried out. The methodical providing of manuals on the accident beyond the design basis management with the coolant loss on the basis of simulated critical system configurations providing the necessary safety function performance on reactor unit is proposed. The project of symptom-oriented manuals on accident beyond the design basis management with the coolant loss on the serial power unit with WWER-1000 on the basis of developed methodical providing and well known results of deepened safety analysis is presented.

  8. Development of Human Factor Management Requirements and Human Error Classification for the Prevention of Railway Accident

    International Nuclear Information System (INIS)

    Kwak, Sang Log; Park, Chan Woo; Shin, Seung Ryoung

    2008-08-01

    Railway accident analysis results show that accidents cased by human factors are not decreasing, whereas H/W related accidents are steadily decreasing. For the efficient management of human factors, many expertise on design, conditions, safety culture and staffing are required. But current safety management activities on safety critical works are focused on training, due to the limited resource and information. In order to improve railway safety, human factors management requirements for safety critical worker and human error classification is proposed in this report. For this accident analysis, status of safety measure on human factor, safety management system on safety critical worker, current safety planning is analysis

  9. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.

    Science.gov (United States)

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim E; Moonen, Chrit T W; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2017-09-15

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Facility accident considerations in the US Department of Energy Waste Management Program

    International Nuclear Information System (INIS)

    Mueller, C.

    1994-01-01

    A principal consideration in developing waste management strategies is the relative importance of Potential radiological and hazardous releases to the environment during postulated facility accidents with respect to protection of human health and the environment. The Office of Environmental Management (EM) within the US Department of Energy (DOE) is currently formulating an integrated national program to manage the treatment, storage, and disposal of existing and future wastes at DOE sites. As part of this process, a Programmatic Environmental impact Statement (PEIS) is being prepared to evaluate different waste management alternatives. This paper reviews analyses that have been Performed to characterize, screen, and develop source terms for accidents that may occur in facilities used to store and treat the waste streams considered in these alternatives. Preliminary results of these analyses are discussed with respect to the comparative potential for significant releases due to accidents affecting various treatment processes and facility configurations. Key assumptions and sensitivities are described

  11. Beyond-design-basis accident management in the RF regulation documents

    International Nuclear Information System (INIS)

    Bukrinskij, A.M.

    2010-01-01

    The article observes the issues of the management of beyond-design-basis accidents (BDBA) in the existing regulations in Russia. The ideology of the approach to the definition of the BDBA list to formulate the management guidelines has been proposed [ru

  12. Impact of short-term severe accident management actions in a long-term perspective. Final Report

    International Nuclear Information System (INIS)

    2000-03-01

    The present systems for severe accident management are focused on mitigating the consequences of special severe accident phenomena and to reach a safe plant state. However, in the development of strategies and procedures for severe accident management, it is also important to consider the long-term perspective of accident management and especially to secure the safe state of the plant. The main reason for this is that certain short-term actions have an impact on the long-term scenario. Both positive and negative effects from short-term actions on the accident management in the long-term perspective have been included in this paper. Short-term actions are accident management measures taken within about 24 hours after the initiating event. The purpose of short-term actions is to reach a stable status of the plant. The main goal in the long-term perspective is to maintain the reactor in a stable state and prevent uncontrolled releases of activity. The purpose of this short Technical Note, deliberately limited in scope, is to draw attention to potential long-term problems, important to utilities and regulatory authorities, arising from the way a severe accident would be managed during the first hours. Its objective is to encourage discussions on the safest - and maybe also most economical - way to manage a severe accident in the long term by not making the situation worse through inappropriate short-term actions, and on the identification of short-term actions likely to make long-term management easier and safer. The Note is intended as a contribution to the knowledge base put at the disposal of Member countries through international collaboration. The scope of the work has been limited to a literature search. Useful further activities have been identified. However, there is no proposal, at this stage, for more detailed work to be undertaken under the auspices of the CSNI. Plant-specific applications would need to be developed by utilities

  13. Geographic Information System (GIS) capabilities in traffic accident information management: a qualitative approach.

    Science.gov (United States)

    Ahmadi, Maryam; Valinejadi, Ali; Goodarzi, Afshin; Safari, Ameneh; Hemmat, Morteza; Majdabadi, Hesamedin Askari; Mohammadi, Ali

    2017-06-01

    Traffic accidents are one of the more important national and international issues, and their consequences are important for the political, economical, and social level in a country. Management of traffic accident information requires information systems with analytical and accessibility capabilities to spatial and descriptive data. The aim of this study was to determine the capabilities of a Geographic Information System (GIS) in management of traffic accident information. This qualitative cross-sectional study was performed in 2016. In the first step, GIS capabilities were identified via literature retrieved from the Internet and based on the included criteria. Review of the literature was performed until data saturation was reached; a form was used to extract the capabilities. In the second step, study population were hospital managers, police, emergency, statisticians, and IT experts in trauma, emergency and police centers. Sampling was purposive. Data was collected using a questionnaire based on the first step data; validity and reliability were determined by content validity and Cronbach's alpha of 75%. Data was analyzed using the decision Delphi technique. GIS capabilities were identified in ten categories and 64 sub-categories. Import and process of spatial and descriptive data and so, analysis of this data were the most important capabilities of GIS in traffic accident information management. Storing and retrieving of descriptive and spatial data, providing statistical analysis in table, chart and zoning format, management of bad structure issues, determining the cost effectiveness of the decisions and prioritizing their implementation were the most important capabilities of GIS which can be efficient in the management of traffic accident information.

  14. Molten Corium-Concrete Interaction Behavior Analyses for Severe Accident Management in CANDU Reactor

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, D. H.; Song, Y. M.

    2014-01-01

    After the last few severe accidents, the importance of accident management in nuclear power plants has increased. Many countries, including the United States (US) and Canada, have focused on understanding severe accidents in order to identify ways to further improve the safety of nuclear plants. It has been recognized that severe accident analyses of nuclear power plants will be beneficial in understanding plant-specific vulnerabilities during severe accidents. The objectives of this paper are to describe the molten corium behavior to identify a plant response with various concrete specific components. Accident analyses techniques using ISSAC can be useful tools for MCCI behavior in severe accident mitigation

  15. Use of EPR to Solve Biochemical Problems

    Science.gov (United States)

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  16. An evaluation of the Davis-Besse loss of feedwater event (June 1985) from an accident management perspective

    International Nuclear Information System (INIS)

    Di Salvo, R.; Leonard, M.T.; Wreathall, J.

    1986-01-01

    An accident management perspective is used to analyze events associated with a total loss-of-feedwater at the Davis-Besse nuclear power plant in June 1985. The relationships of accident management to the closely associated concepts of risk management and emergency management are delineated. The analysis shows that the principal contributors to the event's occurrence were shortcomings in risk management. Successful performance by the operators in accident management was principally responsible for terminating the event without consequence to public health

  17. Management of a radiological emergency. Experience feedback and post-accident management; Gestion d'une urgence radiologique. Retour d'experience et gestion post-accidentelle

    Energy Technology Data Exchange (ETDEWEB)

    Dubiau, Ph. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France)

    2007-07-15

    In France, the organization of crisis situations and the management of radiological emergency situations are regularly tested through simulation exercises for a continuous improvement. Past severe accidents represent experience feedback resources of prime importance which have led to deep changes in crisis organizations. However, the management of the post-accident phase is still the object of considerations and reflections between the public authorities and the intervening parties. This document presents, first, the nuclear crisis exercises organized in France, then, the experience feedback of past accidents and exercises, and finally, the main aspects to consider for the post-accident management of such events: 1 - Crisis exercises: objectives, types (local, national and international exercises), principles and progress, limits; 2 - Experience feedback: real crises (major accidents, other recent accidental situations or incidents), crisis exercises (experience feedback organization, improvements); 3 - post-accident management: environmental contamination and people exposure, management of contaminated territories, management of populations (additional protection, living conditions, medical-psychological follow up), indemnification, organization during the post-accident phase; 4 - conclusion and perspectives. (J.S.)

  18. Second Specialist Meeting on operator aids for severe accident management: summary and conclusions

    International Nuclear Information System (INIS)

    1997-01-01

    The second OECD Specialist Meeting on operator aids for severe accident management (SAMOA-2) was held in Lyon, France (1997), and was attended by 33 specialists representing ten OECD member countries. As for SAMOA-1, the scope of SAMOA-2 was limited to operator aids for accident management which were in operation or could be soon. The meeting concentrated on the management of accidents beyond the design basis, including tools which might be extended from the design basis range into the severe accident area. Relevant simulation tools for operator training were also part of the scope of the meeting. 20 papers were presented; there were two demonstrations of computerized systems (the ATLAS analysis simulator developed by GRS, and EDF's 'Simulateur Post Accidentels' (SIPA). The three sessions dealt with operator aids for control rooms, operator aids for technical support centres, and simulation tools for operator training. The various papers for each session are summarized

  19. Use of a fuzzy decision-making method in evaluating severe accident management strategies

    International Nuclear Information System (INIS)

    Jae, M.; Moon, J.H.

    2002-01-01

    In developing severe accident management strategies, an engineering decision would be made based on the available data and information that are vague, imprecise and uncertain by nature. These sorts of vagueness and uncertainty are due to lack of knowledge for the severe accident sequences of interest. The fuzzy set theory offers a possibility of handling these sorts of data and information. In this paper, the possibility to apply the decision-making method based on fuzzy set theory to the evaluation of the accident management strategies at a nuclear power plant is scrutinized. The fuzzy decision-making method uses linguistic variables and fuzzy numbers to represent the decision-maker's subjective assessments for the decision alternatives according to the decision criteria. The fuzzy mean operator is used to aggregate the decision-maker's subjective assessments, while the total integral value method is used to rank the decision alternatives. As a case study, the proposed method is applied to evaluating the accident management strategies at a nuclear power plant

  20. Influence of boron reduction strategies on PWR accident management flexibility

    International Nuclear Information System (INIS)

    Papukchiev, Angel Aleksandrov; Liu, Yubo; Schaefer, Anselm

    2007-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. Design changes to reduce boron concentration in the reactor coolant are of general interest regarding three aspects - improved reactivity feedback properties, lower impact of boron dilution scenarios on PWR safety and eventually more flexible accident management procedures. In order to assess the potential advantages through the introduction of boron reduction strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 ppm and 805 ppm. For the assessment of the potential safety advantages of these cores a hypothetical beyond design basis accident has been simulated with the system code ATHLET. The analyses showed improved inherent safety and increased accident management flexibility of the low boron cores in comparison with the standard PWR. (author)

  1. Five Years Progress on Waste Management of Fukushima-Daiichi Nuclear Accident

    International Nuclear Information System (INIS)

    Nomura, Shigeo; Katoh, Kazuyuki; Okano, Kenta

    2016-01-01

    Conclusions: • A huge amount of off-site specified waste is planned to be managed by constructing and operating interim storage facilities. However, there still needs a lot of initiatives to recover the 1F nuclear accident. • On-site management of solid waste generated by the accident should be sustained as long-term key activities, such as safe storage, characterization, processing and disposal of various wastes. • Effective collaborations among NDF, TEPCO, IRID, JAEA, other domestic and international organizations and companies are strongly requested to tackle challenging projects on 1F decommissioning.

  2. Initial medical management of criticality accident victim; Conduite a tenir aux victimes d'un accident de criticite

    Energy Technology Data Exchange (ETDEWEB)

    Miele, A; Bebaron-Jacobs, L

    2005-07-01

    The extremely severe criticality accidents known to this day, and the subsequent deaths recorded (Sarov 1997 and Tokai Mura 1999), demonstrate the need for sustained surveillance and constant adapted training for the teams in charge of irradiated and/or contaminated victims. The aim of this work group, composed of occupational health services and associated medical biology laboratories, is to present, in leaflet format, the essential data on the documentation and the conduct to be held when facing the victims of a criticality accident. The studies of this work group confirm the difficulties involved in managing this type of accident, both from the dosimetric evaluation point of view and from the therapeutic management point of view. That is why several research themes and perspectives are developed. During the different phases of victim triage, the recommendations given on these leaflets describe the operational conducts to be held. This work will have to be updated according to the evolution in knowledge and means: short and long term effects of exposure to neutrons, multi-competence hospital cooperation, expertise networks related to dosimetric reconstitution. (authors)

  3. Detection limits by EPR spectroscopy of cumulated doses ionizing radiations in molluscs shells

    International Nuclear Information System (INIS)

    Ostrowski, K.; Burlinska, G.; Dziedzic-Goclawska, A.; Stachowicz, W.; Michalik, J.; Sadlo, J.

    1997-01-01

    The exposure of waters to ionizing radiation from radionuclides stored in concrete containers or freed in nuclear accidents or underwater eruption might be difficult to be proved, when currents, rains, exchange of water displace sand soils or rocks in the bottom. Ionizing radiation evokes stable paramagnetic centers in the crystalline lattice of mineral components in bones as well as in exoskeletons of most molluscs, which are detected by the EPR spectroscopy and could be used as an indicator of the exposure to the action of radiation during prolonged period of time. (authors)

  4. Draft resolution aimed at creating an inquiry commission related to the EPR sector - Nr 1251

    International Nuclear Information System (INIS)

    Baupin, Denis; Pompili, Barbara; Rugy, Francois De; Abeille, Laurence; Alauzet, Eric; Allain, Brigitte; Attard, Isabelle; Auroi, Danielle; Bonneton, Michele; Cavard, Christophe; Coronado, Sergio; Lambert, Francois-Michel; Mamere, Noel; Massonneau, Veronique; Molac, Paul; Roumegas, Jean-Louis; Sas, Eva

    2013-01-01

    This draft resolution is based on several problems and issues raised by the construction of the EPR reactor in Flamanville and dealing with the perspectives for this specific sector. The authors outline that the construction may finally take almost twice as long as initially foreseen, that the budget has been multiplied by two and a half, that the safety of this installation is still a matter of questions (notably for the control-command system, for the resistance to a plane crash, and with respect with lessons learned from the Fukushima accident), and that the involved partners (GDF Suez, ENEL, Centrica, Siemens) are becoming always more hesitant. They evoke the problems faced by other EPRs under construction in Finland and in China, and state that export perspectives seem to lead to a failure. The draft resolution proposes the creation of an inquiry commission to examine these issues

  5. EPR studies of melanin from Cladosporium cladosporioides

    International Nuclear Information System (INIS)

    Pilawa, B.; Buszman, E.; Latocha, M.; Wilczok, T.

    1996-01-01

    Free radical properties of Cladosporium cladosporioides mycelium and melanin, and synthetic eumelanin and pheomelanin were studied by electron paramagnetic resonance method. Single EPR line and complex EPR spectrum with hyperfine splitting were measured for model DOPA-melanin and cysteinyldopa-melanin, respectively. EPR spectra of Cladosporium cladosporioides samples and pheomelanin show the same character. The concentration of paramagnetic centers in melanins isolated from Cladosporium cladosporioides is considerably higher than that of crude mycelium, whereas the EPR line widths are lower for mycelium than for melanin samples. For all analyzed samples the increase of EPR signals intensity with the increase of microwave power, and the decrease of intensities after saturation were observed the low values of microwave power sufficient for EPR lines saturation demonstrate that the spin-lattice relaxation times of unpaired electrons in melanins are long. (author)

  6. EPR in B physics and elsewhere

    International Nuclear Information System (INIS)

    Lipkin, H.J.; Tel Aviv Univ.; Argonne National Lab., IL

    1997-01-01

    The application of Einstein-Podolsky-Rosen correlations in Υ(4s) → B anti B decays to research in CP violation is the first and probably only use of EPR as a technique for research in new physics. Elsewhere highly sophisticated EPR projects question EPR and test its predictions to look for violations of quantum mechanics, hidden variables, Bell''s inequalities, etc

  7. Geographic Information System (GIS) capabilities in traffic accident information management: a qualitative approach

    Science.gov (United States)

    Ahmadi, Maryam; Valinejadi, Ali; Goodarzi, Afshin; Safari, Ameneh; Hemmat, Morteza; Majdabadi, Hesamedin Askari; Mohammadi, Ali

    2017-01-01

    Background Traffic accidents are one of the more important national and international issues, and their consequences are important for the political, economical, and social level in a country. Management of traffic accident information requires information systems with analytical and accessibility capabilities to spatial and descriptive data. Objective The aim of this study was to determine the capabilities of a Geographic Information System (GIS) in management of traffic accident information. Methods This qualitative cross-sectional study was performed in 2016. In the first step, GIS capabilities were identified via literature retrieved from the Internet and based on the included criteria. Review of the literature was performed until data saturation was reached; a form was used to extract the capabilities. In the second step, study population were hospital managers, police, emergency, statisticians, and IT experts in trauma, emergency and police centers. Sampling was purposive. Data was collected using a questionnaire based on the first step data; validity and reliability were determined by content validity and Cronbach’s alpha of 75%. Data was analyzed using the decision Delphi technique. Results GIS capabilities were identified in ten categories and 64 sub-categories. Import and process of spatial and descriptive data and so, analysis of this data were the most important capabilities of GIS in traffic accident information management. Conclusion Storing and retrieving of descriptive and spatial data, providing statistical analysis in table, chart and zoning format, management of bad structure issues, determining the cost effectiveness of the decisions and prioritizing their implementation were the most important capabilities of GIS which can be efficient in the management of traffic accident information. PMID:28848627

  8. Review of current status for designing severe accident management support system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sub

    2000-05-01

    The development of operator support system (OSS) is ongoing in many other countries due to the complexity both in design and in operation for nuclear power plant. The computerized operator support system includes monitoring of some critical parameters, early detection of plant transient, monitoring of component status, plant maintenance, and safety parameter display, and the operator support system for these areas are developed and are being used in some plants. Up to now, the most operator support system covers the normal operation, abnormal operation, and emergency operation. Recently, however, the operator support system for severe accident is to be developed in some countries. The study for the phenomena of severe accident is not performed sufficiently, but, based on the result up to now, the operator support system even for severe accident will be developed in this study. To do this, at first, the current status of the operator support system for normal/abnormal/emergency operation is reviewed, and the positive aspects and negative aspects of systems are analyzed by their characteristics. And also, the major items that should be considered in designing the severe accident operator support system are derived from the review. With the survey of domestic and foreign operator support systems, they are reviewed in terms of the safety parameter display system, decision-making support system, and procedure-tracking system. For the severe accident, the severe accident management guideline (SAMG) which is developed by Westinghouse is reviewed; the characteristics, structure, and logical flow of SAMG are studied. In addition, the critical parameters for severe accident, which are the basis for operators decision-making in severe accident management and are supplied to the operators and the technical support center, are reviewed, too.

  9. Review of current status for designing severe accident management support system

    International Nuclear Information System (INIS)

    Jeong, Kwang Sub

    2000-05-01

    The development of operator support system (OSS) is ongoing in many other countries due to the complexity both in design and in operation for nuclear power plant. The computerized operator support system includes monitoring of some critical parameters, early detection of plant transient, monitoring of component status, plant maintenance, and safety parameter display, and the operator support system for these areas are developed and are being used in some plants. Up to now, the most operator support system covers the normal operation, abnormal operation, and emergency operation. Recently, however, the operator support system for severe accident is to be developed in some countries. The study for the phenomena of severe accident is not performed sufficiently, but, based on the result up to now, the operator support system even for severe accident will be developed in this study. To do this, at first, the current status of the operator support system for normal/abnormal/emergency operation is reviewed, and the positive aspects and negative aspects of systems are analyzed by their characteristics. And also, the major items that should be considered in designing the severe accident operator support system are derived from the review. With the survey of domestic and foreign operator support systems, they are reviewed in terms of the safety parameter display system, decision-making support system, and procedure-tracking system. For the severe accident, the severe accident management guideline (SAMG) which is developed by Westinghouse is reviewed; the characteristics, structure, and logical flow of SAMG are studied. In addition, the critical parameters for severe accident, which are the basis for operators decision-making in severe accident management and are supplied to the operators and the technical support center, are reviewed, too

  10. Use of the Frank sequence in pulsed EPR

    DEFF Research Database (Denmark)

    Tseitlin, Mark; Quine, Richard W.; Eaton, Sandra S.

    2011-01-01

    The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 256MHz (9.1mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5m......W in the application reported here) relative to standard pulsed EPR. A 0.2mM aqueous solution of a triarylmethyl radical was studied using a 16mm diameter cross-loop resonator to isolate the EPR signal detection system from the incident pulses. Keyword: Correlation spectroscopy,Multi-pulse EPR,Low power pulses,NMR,EPR...

  11. Managing Nuclear Reactor Accidents: Issues Raised by Three Mile Island

    OpenAIRE

    Hamilton, G.W.

    1980-01-01

    This paper provides a descriptive account of significant events in the accident at the Three Mile Island nuclear power plant in March, 1979. It is based upon documents collected as background materials for the IIASA workshop: Procedural and Organizational Measures for Accident Management: Nuclear Reactors. In addition to the references listed, information was supplied by John Lathrop, who conducted interviews with government and industry officials involved in the crisis. There have been ...

  12. Management, administrative and operational causes of the accident: Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Anastas, G.

    1996-01-01

    Full text: The Chernobyl accident, which occurred in April 1986, was the result of management, administrative, operational, technical and design flaws. The accident released millions of curies of mixed fission products (including 70-100 P Bq of 137 Cs). The results of this study strongly suggest that the cultural, political, managerial and operational attributes of the Soviet 'system' performed in a synergistic manner to significantly contribute to the initiation of the accident. At the time of the accident, science, engineering and safety in the former Soviet Union were dominated by an atmosphere of politics, group think and 'dingoes tending the sheep'

  13. EPR STUDIES OF THERMALLY STERILIZED VASELINUM ALBUM.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used for examination of free radicals in thermally treated vaselinum album (VA). Thermal treatment in hot air as sterilization process was tested. Conditions of thermal sterilization were chosen according to the pharmaceutical norms. Vaselinum album was heated at the following conditions (T--temperature, t--time): T = 160°C and t = 120 min, T = 170°C and t = 60 min and T = 180°C and t = 30 min. The aim of this work was to determine concentration and free radical properties of thermally sterilized VA. EPR analysis for VA was done 15 min after sterilization. EPR measurements were done at room temperature. EPR spectra were recorded in the range of microwave power of 2.2-70 mW. g-Factor, amplitudes (A) and line width (ΔBpp) of the spectra were determined. The shape of the EPR spectra was analyzed. Free radical concentration (N) in the heated samples was determined. EPR spectra were not obtained for the non heated VA. EPR spectra were detected for all thermally sterilized samples. The spectra revealed complex character, their asymmetry depends on microwave power. The lowest free radicals concentration was found for the VA sterilized at 180°C during 30 min. EPR spectroscopy is proposed as the method useful for optimization of sterilization process of drugs.

  14. Management of older patients presenting after a fall - an accident ...

    African Journals Online (AJOL)

    Background. It is common for older patients to present to accident and emergency (AE) departments after a fall. Management should include assessment and treatment of the injuries and assessment and correction of underlying risk factors in order to prevent recurrent falls. Objectives. To determine management of older ...

  15. CANDU severe accident management guidance update

    International Nuclear Information System (INIS)

    Jones, L.; Popov, N.; Gilbert, L.; Weed, J.

    2014-01-01

    The CANDU Owners Group (COG) developed a set of generic and initial station-specific Severe Accident Management Guidance (SAMG) documents to mitigate the consequences to the public in the event of a severe accident. The generic portion of the COG SAMG was completed in 2006; the overall project including the station-specific phase was completed in April 2007. Over the years, the CANDU industry and utilities have continuously increased the knowledge base for SAMG and have incorporated various engineered features based on the knowledge obtained. As a result of the event that occurred at the Fukushima Daiiachi nuclear power plant (NPP) in Japan, the Canadian Nuclear Safety Commission (CNSC) established the CNSC Fukushima Task Force. The results of the task force were documented in INFO-0828, CNSC Staff Action Plan on the CNSC Fukushima Task Force Recommendations. Among the recommendation documented in INFO-828 were Fukushima Action Items (FAIs) directed towards the CANDU utilities in Canada; a portion of which are related to SAMG documentation updates and directed at enhancing SAM response. A COG joint project was established to support the closure of the CNSC FAIs and to revise the current CANDU documentation accordingly. This paper provides a high level summary of the COG project scope and results. It also demonstrates that the CANDU SAMG programs in Canada provide robust protection and mitigation of severe accidents. (author)

  16. CANDU severe accident management guidance update

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L., E-mail: lisa.m.jones@opg.com [Ontario Power Generation, Pickering, ON (Canada); Popov, N., E-mail: nik.popov@rogers.com [Candu Owners Group, Toronto, ON (Canada); Gilbert, L., E-mail: lovell.gilbert@brucepower.com [Bruce Power, Tiverton, ON (Canada); Weed, J., E-mail: jeff.weed@candu.gov [Candu Owners Group, Toronto, ON (Canada)

    2014-07-01

    The CANDU Owners Group (COG) developed a set of generic and initial station-specific Severe Accident Management Guidance (SAMG) documents to mitigate the consequences to the public in the event of a severe accident. The generic portion of the COG SAMG was completed in 2006; the overall project including the station-specific phase was completed in April 2007. Over the years, the CANDU industry and utilities have continuously increased the knowledge base for SAMG and have incorporated various engineered features based on the knowledge obtained. As a result of the event that occurred at the Fukushima Daiiachi nuclear power plant (NPP) in Japan, the Canadian Nuclear Safety Commission (CNSC) established the CNSC Fukushima Task Force. The results of the task force were documented in INFO-0828, CNSC Staff Action Plan on the CNSC Fukushima Task Force Recommendations. Among the recommendation documented in INFO-828 were Fukushima Action Items (FAIs) directed towards the CANDU utilities in Canada; a portion of which are related to SAMG documentation updates and directed at enhancing SAM response. A COG joint project was established to support the closure of the CNSC FAIs and to revise the current CANDU documentation accordingly. This paper provides a high level summary of the COG project scope and results. It also demonstrates that the CANDU SAMG programs in Canada provide robust protection and mitigation of severe accidents. (author)

  17. Management of accident risks

    International Nuclear Information System (INIS)

    Compes, P.C.

    1987-01-01

    The example of the Chernobyl accident and the statistics of the occurrence of accidents make clear the threat to humanity, if one cannot guarantee successful accident prevention in the use and distribution of the projects aimed at. The science of safety, as it is known in the Wuppertal model, makes its contribution to this vital task for the human community. It makes it necessary to create the essential dates and concepts, the methods, principles and techniques based on them and the associated instrumentation. (DG) [de

  18. Application of high-order uncertainty for severe accident management

    International Nuclear Information System (INIS)

    Yu, Donghan; Ha, Jaejoo

    1998-01-01

    The use of probability distribution to represent uncertainty about point-valued probabilities has been a controversial subject. Probability theorists have argued that it is inherently meaningless to be uncertain about a probability since this appears to violate the subjectivists' assumption that individual can develop unique and precise probability judgments. However, many others have found the concept of uncertainty about the probability to be both intuitively appealing and potentially useful. Especially, high-order uncertainty, i.e., the uncertainty about the probability, can be potentially relevant to decision-making when expert's judgment is needed under very uncertain data and imprecise knowledge and where the phenomena and events are frequently complicated and ill-defined. This paper presents two approaches for evaluating the uncertainties inherent in accident management strategies: 'a fuzzy probability' and 'an interval-valued subjective probability'. At first, this analysis considers accident management as a decision problem (i.e., 'applying a strategy' vs. 'do nothing') and uses an influence diagram. Then, the analysis applies two approaches above to evaluate imprecise node probabilities in the influence diagram. For the propagation of subjective probabilities, the analysis uses the Monte-Carlo simulation. In case of fuzzy probabilities, the fuzzy logic is applied to propagate them. We believe that these approaches can allow us to understand uncertainties associated with severe accident management strategy since they offer not only information similar to the classical approach using point-estimate values but also additional information regarding the impact from imprecise input data

  19. Pharmaceutical applications of in vivo EPR

    International Nuclear Information System (INIS)

    Maeder, K.

    1998-01-01

    The aim of this article is to discuss the applications of in vivo EPR in the field of pharmacy. In addition to direct detection of free radical metabolites and measurement of oxygen, EPR can be used to characterize the mechanisms of drug release from biodegradable polymers. Unique information about drug concentration, the microenvironment (viscosity, polarity, pH) and biodistribution (by localized measurement or EPR Imaging) can be obtained. (author)

  20. Major accident prevention through applying safety knowledge management approach.

    Science.gov (United States)

    Kalatpour, Omid

    2016-01-01

    Many scattered resources of knowledge are available to use for chemical accident prevention purposes. The common approach to management process safety, including using databases and referring to the available knowledge has some drawbacks. The main goal of this article was to devise a new emerged knowledge base (KB) for the chemical accident prevention domain. The scattered sources of safety knowledge were identified and scanned. Then, the collected knowledge was formalized through a computerized program. The Protégé software was used to formalize and represent the stored safety knowledge. The domain knowledge retrieved as well as data and information. This optimized approach improved safety and health knowledge management (KM) process and resolved some typical problems in the KM process. Upgrading the traditional resources of safety databases into the KBs can improve the interaction between the users and knowledge repository.

  1. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry

    International Nuclear Information System (INIS)

    Gallez, Bernard

    2016-01-01

    In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far. (author)

  2. A Study on the Requisite Information for Severe Accident Management

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunhee; Ahn, Kwang-Il; Kim, Jae-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Related this research on arranging the requisite information for severe accident management, the documents of various forms in each country as well as the domestic literature are secured and analyzed. The analyzed information is arranged up to a detailed level. For the secured documents, the issued organizations and the issued purpose are diverse. Thus, the contents of the secured documents are also diverse according to the reactor type, and the purpose and standards of the classification are also diverse. Moreover, terminologies with same meaning are not unified. These various documents are analyzed to arrange the requisite information for severe accident management. Based on the documents of a related severe accident, the major information was analyzed. The information is different according to the reactor type, classification standard, and classification standard of the safety function. Thus the information is classified variously. In this study, based on the analysis results of the documents described these information, the major information and parameters are examined as safety function. And the results of parameters and information including the safety function and the detail information are induced.

  3. Severe accident management: a summary of the VAHTI and ROIMA projects

    International Nuclear Information System (INIS)

    Sairanen, R.

    1998-01-01

    Two severe accident research projects: 'Severe Accident Management' (VAHTI), 1994-96 and 'Reactor Accidents' Phenomena and Simulation (ROIMA) 1997-98. have been conducted at VTT Energy within the RETU research programme. The main objective was to assist the severe accident management programmes of the Finnish nuclear power plants. The projects had several subtopics. These included thermal hydraulic validation of the APROS code, studies of failure mode of the BWR pressure vessel, investigation of core melt progression within a BWR pressure vessel, containment phenomena, development of a computerised severe accident training tool, and aerosol behaviour experiments. The last topic is summarised by another paper in the seminar. The projects have met the objectives set at the project commencement. Calculation tools have been developed and validated suitable for analyses of questions specific for the Finnish plants. Experimental fission product data have been produced that can be used to validate containment aerosol codes. The tools and results have been utilised in plant assessments. One of the main achievements has been the computer code PASULA for analysis of interactions between core melt and pressure vessel. The code has been applied to pressure vessel penetration analysis. The results have shown the importance of the nozzle construction. Modelling possibilities have recently improved by addition of a creep and porous debris models. Cooling of a degraded BWR core has been systematically studied as joint Nordic projects with a set of severe accident codes. Estimates for coolable conditions have been provided. Recriticality due to reflooding of a damaged core has been evaluated. (orig.)

  4. EPR design: A combined approach on safety and economic competitiveness

    International Nuclear Information System (INIS)

    Griedl, R.; Sturm, J.; Degrave, C.; Kappler, F.; Martin-Onraet, M.

    2001-01-01

    Starting in 1991, the French and German cooperation led to common work based on the experience of the two designers FRAMATOME and SIEMENS KWU with all their know how, the most important utilities in France and Germany operating NPP and the technical supports of the Licensing Authorities GRS and IPSN. The conclusion of that work was the issue in November 1997 and February 1999 respectively of two Basic Design reports for a European Pressurized Reactor (EPR) with a power of 4250 MWth and 4900 MWth. The Basic Design approach was led under two key items: Enhancement of the overall safety level by implementation of design measures to: make the plant less dependant to common cause failures; practically eliminate all high pressure core melt sequences which could lead to important radioactive releases to the environment; implement specific systems to face severe accident situation with low-pressure core melt. Use of the many years of experiences in two different nuclear designs is to reach an overall availability figure over 91%, partly due to design improvements on the safety level. With such an objective, demonstrated by feedback of experience on already operating plants, the EPR project can be proposed as a competitive alternative to the most recent fossil plants. (author)

  5. Severe accident analysis and management in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Golshan, Mina

    2013-01-01

    Within the UK regulatory regime, assessment of risks arising from licensee's activities are expected to cover both normal operations and fault conditions. In order to establish the safety case for fault conditions, fault analysis is expected to cover three forms of analysis: design basis analysis (DBA), probabilistic safety assessment (PSA) and severe accident analysis (SAA). DBA should provide a robust demonstration of the fault tolerance of the engineering design and the effectiveness of the safety measures on a conservative basis. PSA looks at a wider range of fault sequences (on a best estimate basis) including those excluded from the DBA. SAA considers significant but unlikely accidents and provides information on their progression and consequences, within the facility, on the site and off site. The assessment of severe accidents is not limited to nuclear power plants and is expected to be carried out for all plant states where the identified dose targets could be exceeded. This paper sets out the UK nuclear regulatory expectation on what constitutes a severe accident, irrespective of the type of facility, and describes characteristics of severe accidents focusing on nuclear fuel cycle facilities. Key rules in assessment of severe accidents as well as the relationship to other fault analysis techniques are discussed. The role of SAA in informing accident management strategies and offsite emergency plans is covered. The paper also presents generic examples of scenarios that could lead to severe accidents in a range of nuclear fuel cycle facilities. (authors)

  6. The EPR paradox revisited

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Scully, M.O.

    1978-01-01

    Einstein, Podolsky and Rosen (EPR) argued in 1935 that quantum mechanics fails to give an adequate description of physical reality, and also cannot give a consistent wave-function description of certain phenomena. The authors show that a calculation based upon the reduced density matrix removes the formal inconsistency pointed out by EPR. The spirit of the present paper is that of a pedagogical review. (Auth.)

  7. Initial medical management of criticality accident victim; Conduite a tenir aux victimes d'un accident de criticite

    Energy Technology Data Exchange (ETDEWEB)

    Miele, A.; Bebaron-Jacobs, L

    2005-07-01

    The extremely severe criticality accidents known to this day, and the subsequent deaths recorded (Sarov 1997 and Tokai Mura 1999), demonstrate the need for sustained surveillance and constant adapted training for the teams in charge of irradiated and/or contaminated victims. The aim of this work group, composed of occupational health services and associated medical biology laboratories, is to present, in leaflet format, the essential data on the documentation and the conduct to be held when facing the victims of a criticality accident. The studies of this work group confirm the difficulties involved in managing this type of accident, both from the dosimetric evaluation point of view and from the therapeutic management point of view. That is why several research themes and perspectives are developed. During the different phases of victim triage, the recommendations given on these leaflets describe the operational conducts to be held. This work will have to be updated according to the evolution in knowledge and means: short and long term effects of exposure to neutrons, multi-competence hospital cooperation, expertise networks related to dosimetric reconstitution. (authors)

  8. EPR spectroscopic investigation of psoriatic finger nails.

    Science.gov (United States)

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke

    2013-11-01

    Nail lesions are common features of psoriasis and found in almost half of the patients. However, there is no feasible spectroscopic method evaluating changes and severity of nail psoriasis. EPR (electron paramagnetic resonance) might be feasible for evaluating nail conditions in the patients of psoriasis. Finger nails of five cases with nail psoriasis, (three females and two males) were examined. Nail samples were subjected to the EPR assay. The small piece of the finger nail (1.5 × 5 mm(2)) was incubated in ~50 μM 5-DSA (5-doxylstearic acid) aqueous solutions for about 60 min at 37°C. After rinsing and wiping off the excess 5-DSA solution, the nail samples were measured by EPR. EPR spectra were analyzed using the intensity ratio (Fast/Slow) of the two motions at the peaks of the lower magnetic field. We observed two distinguishable sites on the basis of the EPR results. In addition, the modern EPR calculation was performed to analyze the spectra obtained. The nail psoriasis-related region is 2~3 times higher than that of the control. The present EPR results show that there are two distinguishable sites in the nail. In the case of nail psoriasis, the fragile components are 2~3 times more than those of the control. Thus, the EPR method is thought to be a novel and reliable method of evaluating the nail psoriasis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. EPR dosimetry with tooth enamel: A review

    International Nuclear Information System (INIS)

    Fattibene, Paola; Callens, Freddy

    2010-01-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  10. EPRTM engineered features for core melt mitigation in severe accidents

    International Nuclear Information System (INIS)

    Fischer, Manfred; Henning, Andreas

    2009-01-01

    For the prevention of accident conditions, the EPR TM relies on the proven 3-level safety concepts inherited from its predecessors, the French 'N4' and the German 'Konvoi' NPP. In addition, a new, fourth 'beyond safety' level is implemented for the mitigation of postulated severe accidents (SA) with core melting. It is aimed at preserving the integrity of the containment barrier and at significantly reducing the frequency and magnitude of activity releases into the environment under such extreme conditions. Loss of containment integrity is prevented by dedicated design measures that address short- and long-term challenges, like: the melt-through of the reactor pressure vessel under high internal pressure, energetic hydrogen/steam explosions, containment overpressure failure, and basemat melt-through. The EPR TM SA systems and components that address these issues are: - the dedicated SA valves for the depressurization the primary circuit, - the provisions for H 2 recombination, atmospheric mixing, steam dilution, - the core melt stabilization system, - the dedicated SA containment heat removal system. The core melt stabilization system (CMSS) of the EPR TM is based on a two-stage ex-vessel approach. After its release from the RPV the core debris is first accumulated and conditioned in the (dry) reactor pit by the addition of sacrificial concrete. Then the created molten pool is spread into a lateral core catcher to establish favorable conditions for the later flooding, quenching and cooling with water passively drained from the Internal Refueling Water Storage Tank. Long-term heat removal from the containment is achieved by sprays that are supplied with water by the containment heat removal system. Complementing earlier publications focused on the principle function, basic design, and validation background of the EPR TM CMSS, this paper describes the state achieved after detailed design, as well as the technical solutions chosen for its main components, including

  11. Proceedings of the International Workshop on Occupational Radiation Protection in Severe Accident Management 'sharing practices and experiences'

    International Nuclear Information System (INIS)

    2014-06-01

    The objective of the Workshop on Occupational Radiation Protection in Severe Accident Management was to share practices and experiences in approaches to severe accident management. The workshop: provided an international forum for information and experience exchange amongst nuclear electricity utilities and national regulatory authorities on approaches to, and issues in severe accident management, including national and international implications. Focus was placed on sharing practices and experiences in many countries on approaches to severe accident management; identified best occupational radiation protection approaches in strategies, practices, as well as limitations for developing effective management. This included experiences in various countries; identified national experiences to be incorporated into the final version of ISOE EG-SAM report. The workshop included a series of plenary presentations that provided participants with an overview of practices and experiences in severe accident management from various countries. Furthermore, by taking into account the structure of the interim report, common themes and issues were discussed in follow-up breakout sessions. Sessions included invited speakers, moderated by designated experts, allowing participants to discuss their national experiences and possible inputs into the report. The outcomes of the breakout sessions were presented in plenary by the respective moderators followed by an open discussion, with a view towards elaborating ways forward to achieve more effective severe accident management. This document brings together the abstracts and the slides of the available presentations

  12. Management, administrative and operational causes of the accident: Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Anastas, G.

    1996-01-01

    The Chernobyl accident, which occurred in April 1986, was the result of management, administrative, operational, technical and design flaws. The accident released millions of curies of mixed fission products including 70-100 PBq of 137 Cs. At the time of the accident, science, engineering and safety in the former Soviet Union were dominated by an atmosphere of politics, group think and 'dingoes tending the sheep'. This corrupted safety culture exacerbated the poor design of the reactor. The results of this study strongly suggest that the cultural, political, managerial and operational attributes of the Soviet 'system' performed in a synergistic manner to significantly contribute to the initiation of the accident. (authors)

  13. HTR-10 severe accident management

    International Nuclear Information System (INIS)

    Xu Yuanhui; Sun Yuliang

    1997-01-01

    The High Temperature Gas-cooled Reactor (HTR-10) is under construction at the Institute of Nuclear Energy Technology site northwest of Beijing. This 10 MW thermal plant utilizes a pebble bed high temperature gas cooled reactor for a large range of applications such as electricity generation, steam and district heat generation, gas turbine and steam turbine combined cycle and process heat for methane reforming. The HTR-10 is the first high temperature gas cooled reactor to be licensed in China. This paper describes the safety characteristics and design criteria for the HTR-10 as well as the accident management and analysis required for the licensing process. (author)

  14. Imaging informatics-based multimedia ePR system for data management and decision support in rehabilitation research

    Science.gov (United States)

    Wang, Ximing; Verma, Sneha; Qin, Yi; Sterling, Josh; Zhou, Alyssa; Zhang, Jeffrey; Martinez, Clarisa; Casebeer, Narissa; Koh, Hyunwook; Winstein, Carolee; Liu, Brent

    2013-03-01

    With the rapid development of science and technology, large-scale rehabilitation centers and clinical rehabilitation trials usually involve significant volumes of multimedia data. Due to the global aging crisis, millions of new patients with age-related chronic diseases will produce huge amounts of data and contribute to soaring costs of medical care. Hence, a solution for effective data management and decision support will significantly reduce the expenditure and finally improve the patient life quality. Inspired from the concept of the electronic patient record (ePR), we developed a prototype system for the field of rehabilitation engineering. The system is subject or patient-oriented and customized for specific projects. The system components include data entry modules, multimedia data presentation and data retrieval. To process the multimedia data, the system includes a DICOM viewer with annotation tools and video/audio player. The system also serves as a platform for integrating decision-support tools and data mining tools. Based on the prototype system design, we developed two specific applications: 1) DOSE (a phase 1 randomized clinical trial to determine the optimal dose of therapy for rehabilitation of the arm and hand after stroke.); and 2) NEXUS project from the Rehabilitation Engineering Research Center(RERC, a NIDRR funded Rehabilitation Engineering Research Center). Currently, the system is being evaluated in the context of the DOSE trial with a projected enrollment of 60 participants over 5 years, and will be evaluated by the NEXUS project with 30 subjects. By applying the ePR concept, we developed a system in order to improve the current research workflow, reduce the cost of managing data, and provide a platform for the rapid development of future decision-support tools.

  15. Melt spreading code assessment, modifications, and initial application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is a 1,600-MWe Pressurized Water Reactor (PWR) that is undergoing a design certification review by the U.S. Nuclear Regulatory Commission (NRC). The EPR severe accident design philosophy is predicated upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external flooding. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: 1) an external core melt retention system to temporarily hold core melt released from the vessel; 2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; 3) a melt plug that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, 4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and non-uniform spreading. The NRC is using MELTSPREAD to evaluate melt spreading in the EPR design. The development of MELTSPREAD ceased in the early 1990's, and so the code was first assessed against the more contemporary spreading database and code modifications, as warranted, were carried out before performing confirmatory plant calculations. This paper provides principle findings from the MELTSPREAD assessment activities and resulting code modifications, and also summarizes the results of initial scoping calculations for the EPR plant design and preliminary plant analyses, along with the plan for performing the final set of plant calculations including sensitivity studies

  16. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry.

    Science.gov (United States)

    Gallez, Bernard

    2016-12-01

    In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Characterization of Melanin Radicals in Paraffin-embedded Malignant Melanoma and Nevus Pigmentosus Using X-band EPR and EPR Imaging.

    Science.gov (United States)

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke; Hara, Hideyuki

    2017-01-01

    Continuous wave electron paramagnetic resonance (CW EPR) and X-band (9 GHz) EPR imaging (EPRI) were used to nondestructively investigate the possible differentiation between malignant melanoma (MM) and nevus pigmentosus (NP) melanin radicals in paraffin-embedded specimens. The EPR spectra of both samples were analyzed using linewidth, spectral pattern, and X-band EPRI. The CW-EPR spectra of the MM showed an additional signal overlap. Eumelanin- and pheomelanin-related radicals were observed in the MM specimens. The EPR results revealed that the peak-to-peak linewidths (ΔH pp ) of paraffin-embedded MM and NP samples were 0.65 ± 0.01 and 0.69 ± 0.01 mT, respectively. The g-value was 2.005 for both samples. Moreover, the two-dimensional (2D) EPRI of the MM showed different signal intensities at the different tumor stages, unlike the NP, which displayed fewer variations in signal intensity. Thus, the present results suggest that EPR and 2D EPRI can be useful for characterization of the two melanin radicals in the MM and for determination of their size and concentration.

  18. RBMK-1500 accident management for loss of long-term core cooling

    International Nuclear Information System (INIS)

    Uspuras, E.; Kaliatka, A.

    2001-01-01

    Results of the Level 1 probabilistic safety assessment of the Ignalina NPP has shown that in topography of the risk, transients dominate above the accidents with LOCAs and failure of the core long-term cooling are the main factors to frequency of the core damage. Previous analyses have shown, that after initial event, as a rule, the reactivity control, as well as short-term and intermediate cooling are provided. However, the acceptance criteria of the long-term cooling are not always carried out. It means that from this point of view the most dangerous accident scenarios are the scenarios related to loss of the core long-term cooling. On the other hand, the transition to the core condition due to loss of the long-term cooling specifies potential opportunities for the management of the accident consequences. Hence, accident management for the mitigation of the accident consequences should be considered and developed. The most likely initiating event, which probably leads to the loss of long term cooling accident, is station blackout. The station blackout is the loss of normal electrical power supply for local needs with an additional failure on start-up of all diesel generators. In the case of loss of electrical power supply MCPs, the circulating pumps of the service water system and MFWPs are switched-off. At the same time, TCV of both turbines are closed. Failure of diesel generators leads to the non-operability of the ECCS long-term cooling subsystem. It means the impossibility to feed MCC by water. The analysis of the station blackout for Ignalina NPP was performed using RELAP5 code. (author)

  19. A system of safety management practices and worker engagement for reducing and preventing accidents: an empirical and theoretical investigation.

    Science.gov (United States)

    Wachter, Jan K; Yorio, Patrick L

    2014-07-01

    The overall research objective was to theoretically and empirically develop the ideas around a system of safety management practices (ten practices were elaborated), to test their relationship with objective safety statistics (such as accident rates), and to explore how these practices work to achieve positive safety results (accident prevention) through worker engagement. Data were collected using safety manager, supervisor and employee surveys designed to assess and link safety management system practices, employee perceptions resulting from existing practices, and safety performance outcomes. Results indicate the following: there is a significant negative relationship between the presence of ten individual safety management practices, as well as the composite of these practices, with accident rates; there is a significant negative relationship between the level of safety-focused worker emotional and cognitive engagement with accident rates; safety management systems and worker engagement levels can be used individually to predict accident rates; safety management systems can be used to predict worker engagement levels; and worker engagement levels act as mediators between the safety management system and safety performance outcomes (such as accident rates). Even though the presence of safety management system practices is linked with incident reduction and may represent a necessary first-step in accident prevention, safety performance may also depend on mediation by safety-focused cognitive and emotional engagement by workers. Thus, when organizations invest in a safety management system approach to reducing/preventing accidents and improving safety performance, they should also be concerned about winning over the minds and hearts of their workers through human performance-based safety management systems designed to promote and enhance worker engagement. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  1. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification in with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  2. Technical, organizational and human-centered requirements for the purpose of accident management

    International Nuclear Information System (INIS)

    Berning, A.; Fassmann, W.; Preischl, W.

    1998-01-01

    A catalog of ergonomic recommendations for organizational measures and design of paper documented work aids for accident management situations in nuclear power plants was developed. Attention was given to provide recommendations meeting practical needs and being sufficiently flexible to allow plant specific [aptation. A weight was assigned to each recommendation indicating its importance. The development of the recommendations was based on the state of the art concerning research and practical experience. Results from walk-/talk-through experiments, training and exercises, discussions with on-site experts, and investigations of emergency manuals from German and foreign nuclear power plants were taken into account. The catalog is founded on a bro[ knowledge base covering important aspects. The catalog is intended for qualitative evaluation and design of organizational measures and procedures. The catalog shall assure high quality. The project further provides an important contribution to the standardization of organizational and human centered demands concerning accident management procedures. Thus it can contribute to develop general regulations regarding ergonomic design of accident management measures. (orig.) [de

  3. Comparison of Management Oversight and Risk Tree and Tripod-Beta in Excavation Accident Analysis

    Directory of Open Access Journals (Sweden)

    Mohamadfam

    2015-01-01

    Full Text Available Background Accident investigation programs are a necessary part in identification of risks and management of the business process. Objectives One of the most important features of such programs is the analysis technique for identifying the root causes of accidents in order to prevent their recurrences. Analytical Hierarchy Process (AHP was used to compare management oversight and risk tree (MORT with Tripod-Beta in order to determine the superior technique for analysis of fatal excavation accidents in construction industries. Materials and Methods MORT and Tripod-Beta techniques were used for analyzing two major accidents with three main steps. First, these techniques were applied to find out the causal factors of the accidents. Second, a number of criteria were developed for the comparison of the techniques and third, using AHP, the techniques were prioritized in terms of the criteria for choosing the superior one. Results The Tripod-Beta investigation showed 41 preconditions and 81 latent causes involved in the accidents. Additionally, 27 root causes of accidents were identified by the MORT analysis. Analytical hierarchy process (AHP investigation revealed that MORT had higher priorities only in two criteria than Tripod-Beta. Conclusions Our findings indicate that Tripod-Beta with a total priority of 0.664 is superior to MORT with the total priority of 0.33. It is recommended for future research to compare the available accident analysis techniques based on proper criteria to select the best for accident analysis.

  4. Comprehensive Health Risk Management after the Fukushima Nuclear Power Plant Accident.

    Science.gov (United States)

    Yamashita, S

    2016-04-01

    Five years have passed since the Great East Japan Earthquake and the subsequent Fukushima Daiichi Nuclear Power Plant accident on 11 March 2011. Countermeasures aimed at human protection during the emergency period, including evacuation, sheltering and control of the food chain were implemented in a timely manner by the Japanese Government. However, there is an apparent need for improvement, especially in the areas of nuclear safety and protection, and also in the management of radiation health risk during and even after the accident. Continuous monitoring and characterisation of the levels of radioactivity in the environment and foods in Fukushima are now essential for obtaining informed consent to the decisions on living in the radio-contaminated areas and also on returning back to the evacuated areas once re-entry is allowed; it is also important to carry out a realistic assessment of the radiation doses on the basis of measurements. Until now, various types of radiation health risk management projects and research have been implemented in Fukushima, among which the Fukushima Health Management Survey is the largest health monitoring project. It includes the Basic Survey for the estimation of external radiation doses received during the first 4 months after the accident and four detailed surveys: thyroid ultrasound examination, comprehensive health check-up, mental health and lifestyle survey, and survey on pregnant women and nursing mothers, with the aim to prospectively take care of the health of all the residents of Fukushima Prefecture for a long time. In particular, among evacuees of the Fukushima Nuclear Power Plant accident, concern about radiation risk is associated with psychological stresses. Here, ongoing health risk management will be reviewed, focusing on the difficult challenge of post-disaster recovery and resilience in Fukushima. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Decision-making guide for management of agriculture in the case of a nuclear accident

    International Nuclear Information System (INIS)

    Fourrie, Laetitia; Grosjean, Francois; Adam, Didier; Pretet, Caroline; Michel, Aurelie; Fostier, Bernard; Bertrand, Sophie; Cessac, Bruno; Reales, Nicolas IRSN; Aubert, Claude

    2007-05-01

    For several years, agricultural and nuclear professionals in France have been working on how to manage the agricultural situation in the event of a nuclear accident. This work resulted in measures at both the national (Aube nuclear safety exercises in 2003, INEX3 in 2005) and international levels (EURATOM Programmes). Following on from the European FARMING (FP5) and EURANOS (FP6) works, ACTA', IRSN and six agricultural technical institutes which are specialized in agricultural production and processing network (arable crop [especially cereals, maize, pulses, potatoes and forage crops], fruits and vegetables, vine and wine, livestock farming [cattle, sheep, goats, pigs, poultry]), created a resource adapted to the French context: the Decision-aiding Tool for the Management of Agriculture in case of a Nuclear Accident. Devised for the Ministry of Agriculture services supporting state officials in a radiation emergency, this manual focuses on the early phase following the accident when the state of emergency would make discussion on countermeasures with a large stakeholder panel impossible. Supported by the Ministry of Agriculture and Fisheries and the French Nuclear Safety Authority, this project increased knowledge of post-accident management strategies and made an important contribution to the national think tank set up within the framework of the French Steering Committee for managing the post-event phase of a nuclear accident (CODIRPA). This article describes how the manual evolved throughout the project and the development of new resources

  6. Decision-making guide for management of agriculture in the case of a nuclear accident

    International Nuclear Information System (INIS)

    Reales, N.; Fourrie, L.; Quinio, C.; Grastilleur, Ch.

    2008-01-01

    For several years, agricultural and nuclear professionals in France have been working on how to manage the agricultural situation in the event of a nuclear accident. This work resulted in measures at both the national (Aube nuclear safety exercises in 2003, INEX3 in 2005) and international levels (EURATOM Programmes). Following on from the European FARMING (FP5) and EURANOS (FP6) works, ACTA', IRSN and six agricultural technical institutes which are specialized in agricultural production and processing network (arable crop [especially cereals, maize, pulses, potatoes and forage crops], fruits and vegetables, vine and wine, livestock farming [cattle, sheep, goats, pigs, poultry]), created a resource adapted to the French context: the Decision-aiding Tool for the Management of Agriculture in case of a Nuclear Accident. Devised for the Ministry of Agriculture services supporting state officials in a radiation emergency, this manual focuses on the early phase following the accident when the state of emergency would make discussion on countermeasures with a large stakeholder panel impossible. Supported by the Ministry of Agriculture and Fisheries and the French Nuclear Safety Authority, this project increased knowledge of post-accident management strategies and made an important contribution to the national think tank set up within the framework of the French Steering Committee for managing the post-event phase of a nuclear accident (CODIRPA). This article describes how the manual evolved throughout the project and the development of new resources. (authors)

  7. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  8. Electron paramagnetic resonance (EPR) in medical dosimetry

    International Nuclear Information System (INIS)

    Schauer, David A.; Iwasaki, Akinori; Romanyukha, Alexander A.; Swartz, Harold M.; Onori, Sandro

    2006-01-01

    This paper describes the fundamentals of electron paramagnetic resonance (EPR) and its application to retrospective measurements of clinically significant doses of ionizing radiation. X-band is the most widely used in EPR dosimetry because it represents a good compromise between sensitivity, sample size and water content in the sample. Higher frequency bands (e.g., W and Q) provide higher sensitivity, but they are also greatly influenced by water content. L and S bands can be used for EPR measurements in samples with high water content but they are less sensitive than X-band. Quality control for therapeutic radiation facilities using X-band EPR spectrometry of alanine is also presented

  9. A sub-Kelvin cryogen-free EPR system.

    Science.gov (United States)

    Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard

    2017-09-01

    We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. EPR investigation of some gamma-irradiated medicines

    International Nuclear Information System (INIS)

    Aleksieva, Katerina; Yordanov, Nicola

    2016-01-01

    The results of EPR studies on three medical tablets – Galanthamine, Cytisine and Tribulus terrestris before and after gamma-irradiation are reported. Before irradiation Galanthamine and Cytisine tablets are EPR silent, whereas Tribulus terrestris show a broad singlet line with g factor 2.2084±0.002. The same spectrum is recorded after irradiation. After gamma-sterilization, however, Galanthamine and Cytisine tablets exhibit a typical EPR spectrum due to gamma induced free radicals in lactose used as an excipient. These stable free radicals can be used for identification of radiation processing for a long time after it. Key words: medical tablets, gamma-irradiation, EPR

  11. EPR TOOTH DOSIMETRY OF SNTS AREA INHABITANTS.

    Science.gov (United States)

    Sholom, Sergey; Desrosiers, Marc; Bouville, André; Luckyanov, Nicholas; Chumak, Vadim; Simon, Steven L

    2007-07-01

    The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed "accident doses", were found to lie in the range from zero to approximately 2 Gy, with one exception, a dose for one person from Semipalatinsk city was approximately 9 Gy. The variability of reconstructed doses within each of the settlements demonstrated heterogeneity of the deposited fallout as well as variations in lifestyle. The village mean external gamma doses for residents of nine[ settlements were in the range from a few tens of mGy to approximately 100 mGy.

  12. EPR tooth dosimetry of SNTS area inhabitants

    Energy Technology Data Exchange (ETDEWEB)

    Sholom, Sergey [Scientific Center for Radiation Medicine, Melnikova str., 53, Kiev (Ukraine); Desrosiers, Marc [Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Bouville, Andre; Luckyanov, Nicholas [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 6120 Executive Boulevard, Bethesda, MD (United States); Chumak, Vadim [Scientific Center for Radiation Medicine, Melnikova str., 53, Kiev (Ukraine); Simon, Steven L. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 6120 Executive Boulevard, Bethesda, MD (United States)], E-mail: ssimon@mail.nih.gov

    2007-07-15

    The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed 'accident doses', were found to lie in the range from zero to approximately 2 Gy, with one exception, a dose for one person from Semipalatinsk city was approximately 9 Gy. The variability of reconstructed doses within each of the settlements demonstrated heterogeneity of the deposited fallout as well as variations in lifestyle. The village mean external gamma doses for residents of nine settlements were in the range from a few tens of mGy to approximately 100 mGy.

  13. Severe accident management guidance for third Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Su Changsong

    2010-01-01

    The paper describes the background, document structure and the summaries of Severe Accident Management Guidance (SAMG) for Third Qinshan Nuclear Power Plant (TQNPP), and also introduces briefly some design features and their impacts on SAMG. (authors)

  14. Effect of Occupational Health and Safety Management System on Work-Related Accident Rate and Differences of Occupational Health and Safety Management System Awareness between Managers in South Korea's Construction Industry.

    Science.gov (United States)

    Yoon, Seok J; Lin, Hsing K; Chen, Gang; Yi, Shinjea; Choi, Jeawook; Rui, Zhenhua

    2013-12-01

    The study was conducted to investigate the current status of the occupational health and safety management system (OHSMS) in the construction industry and the effect of OHSMS on accident rates. Differences of awareness levels on safety issues among site general managers and occupational health and safety (OHS) managers are identified through surveys. The accident rates for the OHSMS-certified construction companies from 2006 to 2011, when the construction OHSMS became widely available, were analyzed to understand the effect of OHSMS on the work-related injury rates in the construction industry. The Korea Occupational Safety and Health Agency 18001 is the certification to these companies performing OHSMS in South Korea. The questionnaire was created to analyze the differences of OHSMS awareness between site general managers and OHS managers of construction companies. The implementation of OHSMS among the top 100 construction companies in South Korea shows that the accident rate decreased by 67% and the fatal accident rate decreased by 10.3% during the period from 2006 to 2011. The survey in this study shows different OHSMS awareness levels between site general managers and OHS managers. The differences were motivation for developing OHSMS, external support needed for implementing OHSMS, problems and effectiveness of implementing OHSMS. Both work-related accident and fatal accident rates were found to be significantly reduced by implementing OHSMS in this study. The differences of OHSMS awareness between site general managers and OHS managers were identified through a survey. The effect of these differences on safety and other benefits warrants further research with proper data collection.

  15. Precept from the management for the accident of Fukushima daiichi

    International Nuclear Information System (INIS)

    Miyaushiro, Norihiro

    2013-01-01

    At 17 hours after the accident of Fukushima Daiichi Nuclear Power Plant due to the Great East Japan Earthquake, National Institute of Radiological Sciences sent the first REMAT (Radiation Emergency Medical Assistance Team) in the 20 km range from the Plant. The team members were confronted by two issues: (1) Medical activities under the infrastructures destructed by a multiple disaster caused by earthquake, tsunami and nuclear accident, which was not presumed. (2) Radiation protection management for dispatched staff. Measures for this situation worked out by activities on the site are presented. (K.Y.)

  16. Not a mystery. Inner containment of the pressurized water reactor (EPR trademark type)

    Energy Technology Data Exchange (ETDEWEB)

    Ostermann, Dirk; Wienand, Burkhard; Krumb, Christian [AREVA NP GmbH (Germany)

    2012-11-01

    The containment of the advanced pressurized water reactor EPR trademark type is developed on the basis of the French nuclear power plant operational experience and consists of - The reinforced outer containment structure, designed to withstand external hazards (e.g. APC), - The pre-stressed inner containment structure, designed to bear the loads resulting from internal hazards (LOCA), - The steel liner, designed to provide leak tightness resulting from internal hazards. The main advantage of the pre-stressed inner containment design is that the structure remains in linear-elastic behavior during the whole life-time. Even in case of postulated design accidents (LOCA) concrete tensile strains are strongly limited. Due to pre-stressing the concrete structure remains practically free of cracks. Due to pre-stressing the leak tightness ensuring steel liner, embedded into the inner concrete shell, is exposed to more favorable compression loads. In addition to detailed calculations several test programs have been performed to verify and confirm the predicted behavior in normal operation and in accident condition. (orig.)

  17. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Karakirova, Y.

    2007-01-01

    A simple new approach for independent calibration of solid state/EPR (SS/EPR) dosimetry system is reported. It is based on the fact that: (i) gamma-irradiation of solid sucrose (sugar) induces stable EPR detectable free radicals accompanied by UV detectable brown colour stable in the solid state and in solution; (ii) both the EPR intensity of gamma-irradiated solid sucrose and its solution UV absorbance linearly depend on the absorbed dose high energy radiation and may be independently used for dosimetric purpose; (iii) UV spectrometers are calibrated. The correlation between EPR response and absorbed dose radiation of solid sucrose and UV absorption of its solutions is used in the present communication for calibration purpose. The procedure of sucrose extraction from sucrose-paraffin dosimeters is described. The calibration procedure may be applied to any other (alanine, self-calibrated, etc.) SS/EPR dosimeters, simultaneously irradiated with sucrose

  18. Proceedings of the first OECD (NEA) CSNI-Specialist Meeting on Instrumentation to Manage Severe Accidents

    International Nuclear Information System (INIS)

    Sonnenkalb, Martin

    1992-07-01

    OECD member countries have adopted various accident management measures and procedures. To initiate these measures and control their effectiveness, information on the status of the plant and on accident symptoms is necessary. This information includes physical data (pressure, temperatures, hydrogen concentrations, etc.) but also data on the condition of components such as pumps, valves, power supplies, etc. In response to proposals made by the CSNI - PWG 4 Task Group on Containment Aspects of Severe Accident Management (CAM) and endorsed by PWG 4, CSNI has decided to sponsor a Specialist Meeting on Instrumentation to Manage Severe Accidents. The knowledge-basis for the Specialist Meeting was the paper on 'Instrumentation for Accident Management in Containment'. This technical document (NEA/CSNI/R(92)4) was prepared by the CSNI - Principle Working Group Number 4 of experts on January 1992. The Specialist Meeting was structured in the following sessions: I. Information Needs for Managing Severe Accidents, II. Capabilities and Limitations of Existing Instrumentation, III. Unconventional Use and Further Development of Instrumentation, IV. Operational Aids and Artificial Intelligence. The Specialist Meeting concentrated on existing instrumentation and its possible use under severe accident conditions; it also examined developments underway and planed. Desirable new instrumentation was discussed briefly. The interactions and discussions during the sessions were helpful to bring different perspectives to bear, thus sharpening the thinking of all. Questions were raised concerning the long-term viability of current (or added) instrumentation. It must be realized that the subject of instrumentation to manage severe accidents is very new, and that no international meeting on this topic was held previously. One of the objectives was to bring this important issue to the attention of both safety authorities and experts. It could be seen from several of the presentations and from

  19. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    International Nuclear Information System (INIS)

    Rao, Suman

    2007-01-01

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  20. Nitrosyl hemoglobins: EPR above 80 K

    Energy Technology Data Exchange (ETDEWEB)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs.

  1. Nitrosyl hemoglobins: EPR above 80 K

    International Nuclear Information System (INIS)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs

  2. Effects of B4C control rod degradation under severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si-Won; Park, Sang-Gil; Han, Sang-Ku [Atomic Creative Technology Co., Daejeon (Korea, Republic of)

    2016-10-15

    Boron carbide (B4C) is widely used as absorber material in western boiling water reactor (BWR), some PWR, EPR and Russian RBMK and VVERs. B4C oxidation is one of the important phenomena of in-vessel. In the present paper, the main results and knowledge gained regarding the B4C control rod degradation from above mentioned experiments are reviewed and arranged to inform its significance on the severe accident consequences. In this paper, the role of B4C control rod oxidation and the subsequent degradation on the severe accident consequences is reviewed with available literature and report of previous experimental program regarding the B4C oxidation. From this review, it seems that the contribution of this B4C oxidation on the accident progression to the further severe accident situation is not negligible. For the future work, the extensive experimental data interpretation will be performed to assess quantitatively the effect of B4C oxidation and degradation on the various postulated severe accident conditions.

  3. Six Decades of Nuclear Accidents, Nuclear Compensation, and Issues of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Boonsuwan, P.; Songjakkeaw, A.

    2011-11-01

    Thailand has made a serious aim to employ nuclear power by adopting five 1,000 MWt in the 2010 national Power Development Plan (PDP 2010) with the first NPP coming online in 2020. However, after the Fukushima nuclear disaster in March 2011, the National Energy Policy Committee had made the resolution to postpone the plan by 3 years. The post-Fukushima atmosphere does not bode well for the public sentiment towards the proposed programme, especially with regards to safety of an NPP. Nonetheless, during the six decades that NPPs have been in operation in 32 countries worldwide, there are only 19 serious accidents involving fatalities and/or damage to properties in excess of 100 million USD. Out of the three significant accidents - Fukushima nuclear accident (2011), Chernobyl nuclear accident (1986), and Three Miles Island nuclear accident (1979) - only the accident at Three Miles Island occurs during normal operation. Such can be implied that the operation of NPPs does maintain a high level of safety. The current technology on nuclear safety has been advancing greatly to the point that the new NPP design claims to render the possibility of a severe accident resulting in core melting insignificant. Along with the technical improvements, laws and regulations have also be progressing in parallel to adequately compensate and limit the liability of operators in case of a nuclear accident. The international agreements such as the Vienna Convention on Civil Liability for Nuclear Damage and the Convention of the Third Party Liability in the Field of Nuclear Energy had also been established and also the national laws of countries such as the United States and Japan have been implemented to address such issues to the point that victims of a nuclear accidents are adequately and justly compensated. In addition to the issues of nuclear accident, the dilemma in nuclear waste management, especially with regards to the High Level Waste which is highly radioactive while having very

  4. Retrospective individual dosimetry using EPR of tooth enamel

    International Nuclear Information System (INIS)

    Skvortzo, V.; Ivannikov, A.; Stepanenko, V.; Wieser, A.; Bougai, A.; Brick, A.; Chumak, V.; Radchuk, V.; Repin, V.; Kirilov, V.

    1996-01-01

    The results of joint investigations (in the framework of ECP-10 program) aimed on the improvement of the sensitivity and accuracy of the procedure of dose measurement using tooth enamel EPR spectroscopy are presented. It is shown, what the sensitivity of method may be increased using special physical-chemical procedure of the enamel samples treatment, which leads to the reducing of EPR signal of organic components in enamel. Tooth diseases may have an effect on radiation sensitivity of enamel. On the basis of statistical analysis of the results of more then 2000 tooth enamel samples measurements it was shown, what tooth enamel EPR spectroscopy gives opportunity to register contribution into total dose, which is caused by natural environmental radiation and by radioactive contamination. EPR response of enamel to ultraviolet exposure is investigated and possible influences to EPR dosimetry is discussed. The correction factors for EPR dosimetry in real radiation fields are estimated

  5. A defense in depth approach for nuclear power plant accident management

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yao Hsieh; Hwai-Pwu Chou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, TW (China)

    2015-07-01

    An initiating event may lead to a severe accident if the plant safety functions have been challenged or operators do not follow the appropriate accident management procedures. Beyond design basis accidents are those corresponding to events of very low occurrence probability but such an accident may lead to significant consequences. The defense in depth approach is important to assure nuclear safety even in a severe accident. Plant Damage States (PDS) can be defined by the combination of the possible values for each of the PDS parameters which are showed on the nuclear power plant simulator. PDS is used to identify what the initiating event is, and can also give the information of safety system's status whether they are bypassed, inoperable or not. Initiating event and safety system's status are used in the construction of Containment Event Tree (CET) to determine containment failure modes by using probabilistic risk assessment (PRA) technique. Different initiating events will correspond to different CETs. With these CETs, the core melt frequency of an initiating event can be found. The use of Plant Damage States (PDS) is a symptom-oriented approach. On the other hand, the use of Containment Event Tree (CET) is an event-oriented approach. In this study, the Taiwan's fourth nuclear power plants, the Lungmen nuclear power station (LNPS), which is an advanced boiling water reactor (ABWR) with fully digitized instrumentation and control (I and C) system is chosen as the target plant. The LNPS full scope engineering simulator is used to generate the testing data for method development. The following common initiating events are considered in this study: loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), loss of offsite power (LOOP), station blackout (SBO). Studies have indicated that the combination of the symptom-oriented approach and the event-oriented approach can be helpful to find mitigation strategies and is useful for the accident

  6. Properties of the ammonium tartrate/EPR dosimeter

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    2004-01-01

    The EPR response of γ-irradiated ammonium tartrate on the absorbed dose of γ-rays up to 22 kGy as well as the changes in the shape of the EPR spectrum upon applied modulation amplitude and microwave power are reported. Also the possibility to use ammonium tartrate together with Mn 2+ magnetically diluted in MgO as an internal reference material is evaluated. The influence of the microwave power and the modulation amplitude on their dose response is investigated. The results show that the radiation-induced EPR spectrum of ammonium tartrate, obtained at a low microwave power is complex consisting several patterns and is more easily saturated than the Mn 2+ EPR spectrum. In this case the following settings of the EPR parameters are recommended: H mod ≤0.05 mT and 10≤P MW ≤13 mW. Using these parameters the dosimeters can be considered for use in intercomparisons

  7. PWR accident management realated tests: some Bethsy results

    International Nuclear Information System (INIS)

    Clement, P.; Chataing, T.; Deruaz, R.

    1993-01-01

    The BETHSY integral test facility which is a scaled down model of a 3 loop FRAMATOME PWR and is currently operated at the Nuclear Center of Grenoble, forms an important part of the French strategy for PWR Accident Management. In this paper the features of both the facility and the experimental program are presented. Two accident transients: a total loss of feedwater and a 2'' cold leg break in case of High Pressure Safety Injection System failure, involving either Event Oriented - or State Oriented-Emergency Operating Procedures (EO-EOP or SO-EOP) are described and the system response analyzed. CATHARE calculation results are also presented which illustrate the ability of this code to adequately predict the key phenomena of these transients. (authors). 13 figs., 11 refs., 2 tabs

  8. EPR-based distance measurements at ambient temperature.

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (TEPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    International Nuclear Information System (INIS)

    Aleksieva, K.I.; Dimov, K.G.; Yordanov, N.D.

    2014-01-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to “cellulose-like” EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical “sugar-like“ spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation. - Highlights: • The EPR analysis of juices, nectars and syrups proves that the sample has been irradiated. • Two sample preparation procedures were used. • The stability of the radiation induced EPR signals was studied over 2 months. • Application of European standards can be extended for irradiated juices and syrups

  10. The role of systems availability and operator actions in accident management

    International Nuclear Information System (INIS)

    Lutz, R.J. Jr.; Scobel, J.H.

    1988-01-01

    Traditional analyses of severe accidents, such as those presented in Probabilistic Risk Assessment (PRA) studies of nuclear power stations, have generally been performed on the assumption that all means of cooling the reactor core are lost and that no operator actions to mitigate the consequences or progression of the severe accident are performed. The assumption to neglect the availability of safety systems and operator actions which do not prevent core melting can lead to erroneous conclusions regarding the plant severe accident profile. Recent work in severe accident management has identified the need to perform analyses which consider all systems availabilities and operator actions, irrespective of their contribution to the prevention of core melting. These new analyses have far reaching conclusions. The analysis results indicate an unacceptably high degree of simplicity in the present severe accident analyses for Probabilistic Risk Assessment studies; the simplicity is in the assumption that systems availabilities and operator actions which do not impact core melt frequency can be neglected in the severe accident analyses. This results in overly pessimistic predictions of the time of core melting and the subsequent potential for recovery of core cooling prior to core melting. This simplicity can have a considerable impact on severe accident decision making, particularly in the evaluation of alternate plant design features and the priorities for research studies

  11. Two-dimensional 220 MHz Fourier transform EPR imaging

    International Nuclear Information System (INIS)

    Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello

    1998-01-01

    In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)

  12. Detection limits of absorbed dose of ionizing radiation in molluscan shells as determined by e.p.r. spectroscopy

    International Nuclear Information System (INIS)

    Stachowicz, W.; Michalik, J.; Burlinska, G.; Sadlo, J.; Dziedzic-Goclawska, A.; Ostrowski, K.

    1995-01-01

    The exposure of waters to ionizing radiation from radionuclides imprisoned in dumped nuclear waste containers, freed in nuclear submarine accidents or released in underwater magma eruptions are difficult to be evaluated by conventional radiometric methods. Ionizing radiation evokes stable paramagnetic centers in crystalline lattice of mineral components in bone skeletons of mammals and fishes as well as in exoskeletons of mollusca. They give rise in e.p.r. to specific, extremely stable signals which are proposed to be applied as indicators of radiation exposure levels. In the present study the e.p.r. detection limits of the dose of ionizing radiation absorbed in shells of fresh water and marine mollusca (selected species) have been estimated. It has been found that with fresh water mollusca the dose of 1-2 Gy can be detected, while the sea water mollusca by one order of magnitude lower, i.e. about 0.1 Gy. (author)

  13. Emergency room management of radiation accidents

    International Nuclear Information System (INIS)

    Rosenberg, R.; Mettler, F.A. Jr.

    1990-01-01

    Emergency room management of radioactively contaminated patients who have an associated medical injury requiring immediate attention must be handled with care. Radioactive contamination of the skin of a worker is not a medical emergency and is usually dealt with at the plant. Effective preplanning and on-the-scene triage will allow the seriously injured and contaminated patients to get the medical care they need with a minimum of confusion and interference. Immediate medical and surgical priorities always take precedence over radiation injuries and radioactive contamination. Probably the most difficult aspect of emergency management is the rarity of such accidents and hence the unfamiliarity of the medical staff with the appropriate procedures. The authors discuss how the answer to these problems is preplanning, having a simple and workable procedure and finally having 24-h access to experts

  14. Development of the regional EPR and PACS sharing system on the infrastructure of cloud computing technology controlled by patient identifier cross reference manager.

    Science.gov (United States)

    Kondoh, Hiroshi; Teramoto, Kei; Kawai, Tatsurou; Mochida, Maki; Nishimura, Motohiro

    2013-01-01

    A Newly developed Oshidori-Net2, providing medical professionals with remote access to electronic patient record systems (EPR) and PACSs of four hospitals, of different venders, using cloud computing technology and patient identifier cross reference manager. The operation was started from April 2012. The patients moved to other hospital were applied. Objective is to show the merit and demerit of the new system.

  15. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suman [Risk Analyst (India)]. E-mail: sumanashokrao@yahoo.co.in

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  16. Beyond Design Basis Severe Accident Management as an Element of DiD Concept Strengthening

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, M., E-mail: kuznetsov_mv@vosafety.ru [FSUE VO “Safety”, Moscow (Russian Federation)

    2014-10-15

    The 4{sup th} Level of DiD is ensured by management of beyond design basis accidents which is achieved by implementation of the Beyond Design Basis Accidents Management Guidance (BDBAMG) and, if necessary, by additional technical devices and organizational measures at NPP Unit. BDBAMG is located between Levels 3 and 5 in DiD and is related to them. It is connected with Level 3 by means of conditions generated at this Level and according to which BDBAM should be initiated (Level 4). It is associated with Level 5 by conditions which necessitate implementation of Emergency planning. Both types of conditions should be identified in BDBAMG. BDBAs including the phase of severe damage of fuel and protective barriers (severe accidents) in accordance with Russian regulatory framework are a subset of all BDBAs set. In this connection, such accident scenarios meet the representativeness criterion for further analysis and development of Guidance for their management. BDBAMG availability, as it provides robustness of DiD as a whole, is an obligatory condition for obtaining a NPP operational license. In the process of BDBAMG development and implementation a feedback with technical and organizational measures, comprising Level 1 and, to a less extent, Level 2, comes up. BDBAMG verification is an important final stage of its development. Addressing severe accidents, it is a challenging issue for a full scope simulator and may require its software modernization to make it responsive to severe accident phenomena. The existing BDBAMGs should be updated due to NPP Unit modernizations and in conjunction with the latest knowledge on severe accident phenomenology and lessons learnt from known events (e.g. NPP Fukushima). Thus, improvements incorporated in BDBAMG, enhance the strength of DiD. (author)

  17. Radioactive Waste Management In The Chernobyl Exclusion Zone - 25 Years Since The Chernobyl Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Farfan, E.; Jannik, T.

    2011-01-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures

  18. Electronic Paramagnetic Resonance of irradiated nails: challenges for a dosimetry in radiation accidents

    International Nuclear Information System (INIS)

    Giannoni, Ricardo A.; Rodrigues Junior, Orlando

    2014-01-01

    The purpose of this work is to characterize samples of human nails exposed to high doses of radiation, applying the technique of Electron Paramagnetic Resonance (EPR). The objective is to establish a dose response study that allow determine the absorbed dose by exposed individuals in situations of radiological accidents, in a retrospective form. Samples of human nails were collected and afterward irradiated with gamma radiation, and received dose of 20 Gy. The EPR measurement performed on the samples, before irradiation, permitted the signal identification of the components associated with effects caused by the mechanical stress during the fingernail cutting, the so-called mechanically induced signal (MIS). After the irradiation, different species of free radicals were identified, the so-called radiation induced signal (RIS). (author)

  19. Generalities on nuclear accidents and their short-dated and middle-dated management; Generalites sur les accidents nucleaires et leur gestion a court terme et a long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    All the nuclear activities present a radiation risk. The radiation exposure of the employees or the public, may occur during normal activity or during an accident. The IRSN realized a document on this radiation risk and the actions of protection. The sanitary and medical aspects of a radiation accident are detailed. The actions of the population protection during an accident and the post accident management are also discussed. (A.L.B.)

  20. Post-Accident Waste Management in Ukraine : Challenges and Steps Needed to Resolve the Accident Waste Problem

    International Nuclear Information System (INIS)

    Kilochytska, T.; Zinkevich, L.; Shybetskyi, I.; Krone, J.

    2016-01-01

    Conclusions: • Solving the problem of management of “Chernobyl waste” requires: - a systematic review of the existing norms and regulations with respect to best international practice of radioactive waste management; - improvement of the existing classification / characterization of radioactive waste with a focus on disposal; - improvement of the safety assessment approaches for licensing the disposal of accident waste, taking into account relevant safety features and site specific conditions; - involving of international experience and support to plan and perform safety related activity on the Shelter Object transformation

  1. EPR study on tomatoes before and after gamma-irradiation

    International Nuclear Information System (INIS)

    Aleksieva, K.; Georgieva, L.; Tzvetkova, E.; Yordanov, N.D.

    2009-01-01

    The results from the EPR studies on fresh, air-dried and lyophilized tomato samples before and after gamma-irradiation are reported. Before irradiation fresh and air-dried tomatoes exhibit one singlet EPR line characterized with common g-factor of 2.0048±0.0005, whereas freeze-dried tomato does not show any EPR spectrum. After irradiation, a typical 'cellulose-like' triplet EPR spectrum appears in all samples, attributed to cellulose free radicals, generated by gamma-irradiation. It consists of intense central line with g=2.0048±0.0005 and two weak satellite lines separated ca. 3 mT left and right of it. In air-dried and lyophilized tomatoes the 'cellulose-like' EPR spectrum is superimposed by an additional partly resolved carbohydrate spectrum. Fading measurements of the radiation-induced EPR signals indicate that the intensity of the EPR spectra of air-dried and freeze-dried tomato are reduced to about 50% after 50 days, whereas those of fresh irradiated tomatoes kept at 4 o C fade completely in 15 days. The reported results unambiguously show that the presence of two satellite lines in the EPR 'cellulose-like' spectra of tomato samples can be used for identification of radiation processing.

  2. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    Science.gov (United States)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  3. EPR paradox revisited

    Energy Technology Data Exchange (ETDEWEB)

    Klippert, R. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    In a seminal paper from 1935 Einstein, Podolsky and Rosen produced one of the most powerful weapon against the unpredictability of the world ensured by quantum mechanics. The recent production of entangled states, with all its possible future applications in quantum computation, re-open the possibility of testing EPR states on physical grounds. The present intends to present a challenge to the wedding of classical (special) relativity with quantum mechanics, the so called relativistic quantum mechanics. Making use of the same apparatus devised in EPR, it is shown that non local quantum states are incompatible with either their possibility of being measured or else with Lorentz invariance (or even with both). (author)

  4. Regulatory requirements on accident management and emergency preparedness - concept of nuclear and radiation safety during beyond-design-basis accidents

    International Nuclear Information System (INIS)

    Yanke, R.

    2002-01-01

    Actual practice the and proposals for further activities in the field of Accident Management (AM) in the member countries of the Co-operation Forum of WWER regulators and in Western countries have been assessed. Further the results of the last working group on AM , the overview of interactions of severe accident research and the regulatory positions in various countries, IAEA reports, practice in Switzerland and Finland, were taken into consideration. From this information, the working group derived recommendations on Accident Management. The general proposals correspond to the present state of the art on AM. They do not describe the whole spectra of recommendations on AM for NPPs with WWER reactors. A basis for the implementation of an AM program is given, which could be extended in a follow-up working group. The developments and research concerning AM have to be continued. The positions of various countries with regard to the 'Interactions of severe accident research and the regulatory positions' are given. On the basis of the working group proposals, the WWER regulators could set regulatory requirements and support further developments of AM strategies, making use of the benefits of common features of NPPs with WWER reactors. Concerted actions in the field of AM between the WWER regulators would bundle the development of a unified concept of recommendations and speed up the implementation of AM measures in order to minimise the risks involved in nuclear power generation

  5. Accident management strategies for VVER-1000 reactors. Part 1: text

    International Nuclear Information System (INIS)

    Sdouz, G.; Sonneck, G.; Pachole, M.

    1994-10-01

    This report describes the effect of different accident management strategies on the onset, development and end of the core-concrete-interaction as well as on the containment integrity for a TMLB'-type sequence in a Pressurized Water Reactor of the type VVER- 1000. Using the computer code MARCH3 the following strategies were investigated: (1) One or more Spray and LP ECC Systems available with and without coolers after 10 hours (2) Inclusion of the reactor pressure vessel testing facility room to the cavity (3) Containment venting (4) External water supply and (5) Different electric power restoration times. The results show that some of these accident management measures will maintain the containment integrity and reduce the source term drastically, others will reduce the source term rate. For some measures final conclusions can only be given after complete source term calculations have been performed. (authors)

  6. Radiation dosimetry of an accidental overexposure using EPR spectrometry and imaging of human bone

    International Nuclear Information System (INIS)

    Schauer, D.A.; Desrosiers, M.F.; Kuppusamy, P.; Zweier, J.L.

    1997-01-01

    On 11 December 1991 a radiation accident occurred at an industrial accelerator facility. 'A description of the facility and details of the accident are reported in Schauer et al., 1993a)'?. In brief, during maintenance on the lower window pressure plate of a 3 MV potential drop accelerator, an operator placed his hands, head, and feet in the radiation beam. The filament voltage of the electron source was turned ''off'', but the full accelerating potential was on the high voltage terminal. The operator's body, especially his extremities and head, were exposed to electron dark current. At approx. 3 months post-irradiation, the four digits of the victim's right hand and most of the four digits of his left hand were amputated. Electron paramagnetic resonance (EPR) spectrometry was used to estimate the radiation dose to the victim's extremities. Extremity dose estimates ranged from 55.0 Gy (±4.7 Gy) to 108 Gy (±24.1 Gy). (Author)

  7. The EPR - a safe and competitive solution for future energy needs

    International Nuclear Information System (INIS)

    Fischer, U.; Bouteille, F.; Leverenz, R.

    1999-01-01

    NPI, Siemens and Framatome, in co-operation with EDF and the major German Utilities, started the development of the European Pressurized Water Reactor (EPR) as an evolutionary approach. After a careful evaluation of the potential of passive safety features, this way was concluded to be superior compared to a 'revolutionary' approach. The vast majority of advanced reactor designs being developed today is of the evolutionary type. The advantages to base an advanced design on the feedback of operation experience of the more than 100 nuclear power plants designed and constructed by Siemens and Framatome are outstanding. This view is shared by the German and French safety authorities which defined their preference for an evolutionary design early at the beginning of their co-operation for the definition of a common safety approach for future nuclear power plants to be built in Germany and France. In their first common set of recommendations, they gave a clear guideline regarding their point of view for requirements posed to the next generation of nuclear power plants: (1) Preference for an evolutionary design in order to derive a maximum benefit from experience; (2) Significant safety improvements by reduction of core meltdown probability and improvement of the confinement function of the containment under accident conditions; (3) Improvement of operating conditions regarding radiation protection, maintenance and human errors. Besides the French-German co-operation of vendors, utilities and authorities, the European utilities co-operate on a much broader basis for the establishment of the European Utilities' Requirements (EUR). During the development of the basic design, the EPR was continuously assessed against these EUR and it was concluded that the EPR complies with these requirements. At the end of the basic design phase at the end of 1997, all information necessary to file a preliminary safety analysis report and a reliable bill of quantities was elaborated. With

  8. The EPR - technology for the 3rd Millennium

    International Nuclear Information System (INIS)

    Bernstrauch, O.

    2000-01-01

    The Basic Design of the European Pressurized Water Reactor (EPR) was completed 1997 , the Basic Design Optimization Phase 1998 and the Detailed Design Phase will start in the near future. With these milestones, a new generation of PWRs is moving forward. Most of all, this is another story of a successful Franco-German cooperation. It is a rundown of the history of the EPR, before a decision is made to launch the lead-unit construction. The EPR project was launched in 1992 by Nuclear Power International (NPI), a joint company of FRAMATOME and Siemens KWU, supported by EDF and nine German electric utilities. Each step of the development of the EPR was harmonized with the Nuclear Safety Authorities both in France and Germany to reach an early approval. The EPR integrates the latest technological advances, especially in safety and operational aspects and comprises more than 30 years operating experience. Thus, the EPR combines the qualities of its predecessors, the French N4 and the German Konvoi. Presently, Siemens KWU and FRAMATOME are preparing the detailed design phase and the following construction and commissioning phase. The decision to build an EPR is not yet made either by the German electric utilities or by EdF, but it will be expected within the next months as a strong statement to follow the nuclear way and to ensure the know-how transfer. (author)

  9. Nuclear. Getting out of the EPR deadlock: the EPR's evil star; Under the Flamanville vessel; United-Kingdom: Hinkley Point, stop or more? A nuclear which we will be able to finance

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2016-01-01

    A first article outlines and comments the difficulties faced in the development and construction of the EPR which seems to be born under an evil star, and which resulted in a loss of credibility for the French nuclear industry. The author evokes various steps in the design and test of various components which finally produced important delays and high costs. Moreover, the reactor high power seems not to be adapted to current market status and needs. The reorganisation of the French nuclear sector also produced an unfavourable environment (the dismantling of Areva into two companies is briefly evoked). Now, the objective for EDF is to try to optimize the reactor production and reduce costs by 25 to 30 per cent. A second article addresses the situation of the Flamanville EPR construction which is now six years late. The author proposes an overview of the differences between the various parts and components of the power station: the control room is operational whereas many parts and rooms are still under construction. A new management of construction organisation has been set up. The third article addresses the situation of the British Hinkley Point EPR project. Due to the difficulties met in Finland and in Flamanville, a new financial drift would be a catastrophe, and as many aspects of the project are already well defined, EDF keeps on stating that the decision to build these two EPRs is about to be taken, as it is in fact always delayed. The last article is an interview in which a manager of an important nuclear engineering company comments the role of the French nuclear reactor model in the world, the development of concepts of small modular reactors, and the impact of EPR construction difficulties on the image of the French nuclear industry in the world

  10. Specific features of RBMK severe accidents progression and approach to the accident management

    International Nuclear Information System (INIS)

    Vasilevskij, V.P.; Nikitin, Yu.M.; Petrov, A.A.; Potapov, A.A.; Cherkashov, Yu.M.

    2001-01-01

    Fundamental construction features of the LWGR facilities (absence of common external containment shell, disintegrated circulation circuit and multichannel reactor core, positive vapor reactivity coefficient, high mass of thermally capacious graphite moderator) predetermining development of assumed heavy non-projected accidents and handling them are treated. Rating the categories of the reactor core damages for non-projected accidents and accident types producing specific grope of damages is given. Passing standard non-projected accidents, possible methods of attack accident consequences, as well as methods of calculated analysis of non-projected accidents are demonstrated [ru

  11. EPR spectral investigation of radiation-induced radicals of gallic acid.

    Science.gov (United States)

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  12. Utilization technique of 'radiation management manual in medical field (2012).' What should be learnt from the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Kikuchi, Toru

    2014-01-01

    From the abstract of contents of the 'Radiation management manual in medical field (2012),' the utilization technique of the manual is introduced. Introduced items are as follows: (1) Exposure management; exposure management for radiation medical workers, patients, and citizens in the medical field, and exposure management for radiation workers and citizens involved in the emergency work related to the Fukushima nuclear accident, (2) Health management; health management for radiation medical workers, (3) Radiation education: Education/training for radiation medical workers, and radiation education for health care workers, (4) Accident and emergency measures; emergency actions involved in the radiation accidents and radiation medicine at medical facilities

  13. Finnish EPR Olkiluoto 3. The world's first third-generation reactor now under construction

    International Nuclear Information System (INIS)

    2007-01-01

    The EPR was developed by Framatome and Siemens KWU (the nuclear division of Siemens), whose nuclear activities were combined in January 2001 to form Framatome ANP, now AREVA NP. The French electricity utility EDF (Electricite de France), together with the major German utilities, played an active role in the project. The safety authorities of the two countries joined forces to bring their respective safety standards into line and draw up joint design rules for the new reactor. On December 18, 2003, the consortium formed by AREVA and Siemens - and led by AREVA - signed a contract with TVO for the turnkey construction of the EPR. The overall Olkiluoto 3 project cost has been estimated by TVO at around euros 3 Billion. TVO is responsible for the overall project management and licensing process with the Finnish Safety Authority STUK. In the pre-qualification phase, STUK concluded that the EPR can meet the Finnish licensing requirements. All specific comments will be taken into account for the realization of the project. In January 2005, STUK emphasized in its safety assessment that the evolutionary EPR design compared to predecessor product lines has been further enhanced by AREVA. This paper presents first, The Finnish energy situation (Electricity consumption and supply, Finland's Kyoto CO 2 cutback, Competitiveness of nuclear power), and then the EPR in Olkiluoto (General schedule of responsibilities, Important milestones of the project). Finally, the EPR third-generation and advanced reactor is presented with its position in the international competition (Targeted design objectives, Main characteristics, competitiveness, safety, Additional measures to prevent the occurrence of events likely to damage the core, Increased protection against the consequences of core melt)

  14. Regulatory research of the PWR severe accident information needs and instrumentation availability for hydrogen control and management

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Hong; Park, Gun-Chul; Suh, Kune Y.; Kang, Yun-Moon; Lee, Un-Jang; Oh, Se-Chul; Lee, Jin-Yong [Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-03-15

    During the current research period, we have set forth the methodology for identification of a severe accident, developed a framework for hydrogen management decision trees, and analyzed the literature on hydrogen management and experimental data for hydrogen bum. Specifically, we have summarized me results for information needs in a severe accident obtained in the U.S. and other countries, and applied the methodology to the reference plant YGN 3 and 4 as part of severe accident management. We have also examined the existing instruments in terms of their availability and survivability during a severe accident, and identified additionally needed information needs and instruments. We have identified dominant accident sequences for me reference plant YGN 3 and 4 to construct decision trees, and extracted available data from the IPE study of the plant. Based upon the data we have performed preliminary study on the decision tree and decision node. Last, we have examined various mechanisms for hydrogen generation and reIevant experimental data to predict me amount of hydrogen generation and governing factors in me process. We have also reviewed the hydrogen generation related models in the severe accident analysis.

  15. Experimental EPR-steering using Bell-local states

    Science.gov (United States)

    Saunders, D. J.; Jones, S. J.; Wiseman, H. M.; Pryde, G. J.

    2010-11-01

    The concept of `steering' was introduced in 1935 by Schrödinger as a generalization of the EPR (Einstein-Podolsky-Rosen) paradox. It has recently been formalized as a quantum-information task with arbitrary bipartite states and measurements, for which the existence of entanglement is necessary but not sufficient. Previous experiments in this area have been restricted to an approach that followed the original EPR argument in considering only two different measurement settings per side. Here we demonstrate experimentally that EPR-steering occurs for mixed entangled states that are Bell local (that is, that cannot possibly demonstrate Bell non-locality). Unlike the case of Bell inequalities, increasing the number of measurement settings beyond two-we use up to six-significantly increases the robustness of the EPR-steering phenomenon to noise.

  16. Workshop proceedings of ISAMM 2009: Implementation of severe accident management measures

    International Nuclear Information System (INIS)

    Guentay, S.

    2010-10-01

    This comprehensive report published by the Paul Scherrer Institute (PSI) in Switzerland reports on a conference and workshop held in Switzerland in October 2009 dealing with Severe Accidents Management (SAM) in nuclear power stations. The workshop provided an update on the status of severe accident management measures and their implications since the OECD/CSNI workshop held in 2001 at the PSI in Switzerland. Since the 2001 workshop, additional work has been performed to integrate emergency procedures and SAM measures into risk assessments in order to better reflect operator responses to recover a plant from a damaged state. The major focus of the workshop was to address SAM measures for both operational plants and new plant designs. Also, the integration of SAM measures into contemporary/future probabilistic risk assessments was discussed. 41 papers were presented in 8 sessions. The papers addressed the following areas: 1) Current status and insights of SAM (2 sessions); 2) Probabilistic Safety Assessment (PSA) modelling issues; 3) code analysis for supporting Serious Accident Management Guidance (SAMG, 2 sessions); 4) decision making, tools, training, risk-targets and entrance to SAM; 5) design modifications for implementation of SAM; 6) physical phenomena. The last part of the workshop was devoted to the presentation of the most striking highlights of the papers in the above areas, followed by two panellists giving presentations on human and organisational aspects of SAM, their importance in relation to technical issues and the effectiveness of current SAMG implementation. The question of how consequence analyses can be used to improve the effectiveness of SAM is discussed. The contributions were presented by representatives from Austria, Germany, Japan, France, the USA, Korea, Switzerland, Finland, Hungary, Belgium, Canada, Sweden, the Czech republic, the United kingdom, the Netherlands, Spain, Slovenia and Russia. The authors state that the overall picture

  17. Workshop proceedings of ISAMM 2009: Implementation of severe accident management measures

    Energy Technology Data Exchange (ETDEWEB)

    Guentay, S. (ed.) [Paul Scherrer Institute (PSI), Nuclear Energy and Safety Research Department, Laboratory for Thermal Hydraulics, ViIligen (Switzerland)

    2010-10-15

    This comprehensive report published by the Paul Scherrer Institute (PSI) in Switzerland reports on a conference and workshop held in Switzerland in October 2009 dealing with Severe Accidents Management (SAM) in nuclear power stations. The workshop provided an update on the status of severe accident management measures and their implications since the OECD/CSNI workshop held in 2001 at the PSI in Switzerland. Since the 2001 workshop, additional work has been performed to integrate emergency procedures and SAM measures into risk assessments in order to better reflect operator responses to recover a plant from a damaged state. The major focus of the workshop was to address SAM measures for both operational plants and new plant designs. Also, the integration of SAM measures into contemporary/future probabilistic risk assessments was discussed. 41 papers were presented in 8 sessions. The papers addressed the following areas: 1) Current status and insights of SAM (2 sessions); 2) Probabilistic Safety Assessment (PSA) modelling issues; 3) code analysis for supporting Serious Accident Management Guidance (SAMG, 2 sessions); 4) decision making, tools, training, risk-targets and entrance to SAM; 5) design modifications for implementation of SAM; 6) physical phenomena. The last part of the workshop was devoted to the presentation of the most striking highlights of the papers in the above areas, followed by two panellists giving presentations on human and organisational aspects of SAM, their importance in relation to technical issues and the effectiveness of current SAMG implementation. The question of how consequence analyses can be used to improve the effectiveness of SAM is discussed. The contributions were presented by representatives from Austria, Germany, Japan, France, the USA, Korea, Switzerland, Finland, Hungary, Belgium, Canada, Sweden, the Czech republic, the United kingdom, the Netherlands, Spain, Slovenia and Russia. The authors state that the overall picture

  18. Correlations between the particles in the EPR-paradox

    Energy Technology Data Exchange (ETDEWEB)

    Treder, H.J. (Akademie der Wissenschaften der DDR, Potsdam-Babelsberg. Einstein-Laboratorium fuer Theoretische Physik)

    1984-03-01

    The Einstein-Podolsky-Rosen 'gedanken-experiment' does not imply non-local interactions or an 'action-at-a-distance'. Contrary, the EPR proves the measurements at one particle does not have influences at canonical variables of the other particles if the quantum-mechanical commutation relations are true. But, the EPR implies correlations between the particles which come in by 'subjective knowledge'. These correlations are a priori informations about the relative motion or, complementarily, about the motion of the center of mass. The impression of an action-at-a-distance is produced by the use of usual particle coordinates in the EPR-arrangements. The discussion of the Einstein-Podolsky-Rosen 'gedanken-experiment' (EPR) has been going on over fifty years. Einstein, Podolsky, and Rosen formulated their famous paradox in 1935, and in the discussion between N. Bohr (1935, 1949) and Einstein (1936, 1948); A. Einstein (1948) made his point that the EPR implied an 'action-at-a-distance' for quantum-mechanical particles (without obvious classical interactions). His argument is the starting point for the recent discussion about EPR and causality (see A. Aspect 1981).

  19. EPR-technical codes - a common basis for the EPR

    International Nuclear Information System (INIS)

    Zaiss, W.; Appell, B.

    1997-01-01

    The design and construction of Nuclear Power Plants implies a full set of codes and standards to define the construction rules of components and equipment. Rules are existing and are currently implemented, respectively in France and Germany (mainly RCCs and KTA safety standards). In the frame of the EPR-project, the common objective requires an essential industrial work programme between engineers from both countries to elaborate a common set of codes and regulations. These new industrial rules are called the ETCs (EPR Technical Codes). In the hierarchy the ETCs are - in case of France - on the common level of basic safety rules (RFS), design and construction rules (RCC) and - in Germany - belonging to RSK guidelines and KTA safety standards. A set of six ETCs will be elaborated to cover: safety and process, mechanical components, electrical equipment, instrumentation and control, civil works, fire protection. (orig.)

  20. Analysis of the reasons of recently some radioactive source accidents and suggestions for management countermeasures

    International Nuclear Information System (INIS)

    Su Yongjie; Feng Youcai; Song Chenxiu; Gao Huibin; Xing Jinsong; Pang Xinxin; Wang Xiaoqing; Wei Hong

    2007-01-01

    The article introduces recently some radioactive source accidents in China, and analyses the reasons of the accidents. Some important issues existed in the process of implementing new regulation were summarized, and some suggestions for managing radioactive sources are made. (authors)

  1. Accident Precursor Analysis and Management: Reducing Technological Risk Through Diligence

    Science.gov (United States)

    Phimister, James R. (Editor); Bier, Vicki M. (Editor); Kunreuther, Howard C. (Editor)

    2004-01-01

    Almost every year there is at least one technological disaster that highlights the challenge of managing technological risk. On February 1, 2003, the space shuttle Columbia and her crew were lost during reentry into the atmosphere. In the summer of 2003, there was a blackout that left millions of people in the northeast United States without electricity. Forensic analyses, congressional hearings, investigations by scientific boards and panels, and journalistic and academic research have yielded a wealth of information about the events that led up to each disaster, and questions have arisen. Why were the events that led to the accident not recognized as harbingers? Why were risk-reducing steps not taken? This line of questioning is based on the assumption that signals before an accident can and should be recognized. To examine the validity of this assumption, the National Academy of Engineering (NAE) undertook the Accident Precursors Project in February 2003. The project was overseen by a committee of experts from the safety and risk-sciences communities. Rather than examining a single accident or incident, the committee decided to investigate how different organizations anticipate and assess the likelihood of accidents from accident precursors. The project culminated in a workshop held in Washington, D.C., in July 2003. This report includes the papers presented at the workshop, as well as findings and recommendations based on the workshop results and committee discussions. The papers describe precursor strategies in aviation, the chemical industry, health care, nuclear power and security operations. In addition to current practices, they also address some areas for future research.

  2. A web-based database for EPR centers in semiconductors

    International Nuclear Information System (INIS)

    Umeda, T.; Hagiwara, S.; Katagiri, M.; Mizuochi, N.; Isoya, J.

    2006-01-01

    We develop a web-based database system for electron paramagnetic resonance (EPR) centers in semiconductors. This database is available to anyone at http://www.kc.tsukuba.ac.jp/div-media/epr/. It currently has more than 300 records of the spin-Hamiltonian parameters for major known EPR centers. One can upload own new records to the database or can use simulation tools powered by EPR-NMR(C). Here, we describe the features and objectives of this database, and mention some future plans

  3. Development and application of a radioactivity evaluation technique the to obtain radiation exposure dose of radioactivity evaluation technique when a severe accident occurs in the a power station of a severe accident. Accident management guidelines of knowledge-based maintenance

    International Nuclear Information System (INIS)

    Kawasaki, Ikuo; Yoshida, Yoshitaka

    2013-01-01

    As a One of the lessons learned from the nuclear accident at the Fukushima Daiichi Nuclear Power Stations of Tokyo Electric Power Company, the was the need for improvement of accident management guidelines is required. In this report study, we developed and applied a dose evaluation technique to evaluated the radiation dose in a nuclear power plant assuming three conditions: employees were evacuation evacuated at the time of a severe accident occurrence; operators carried out the accident management operation; of the operators, and the repair work was carried out for of the trouble damaged apparatuses in a the nuclear power plant using a dose evaluation system. The following knowledge findings were obtained and should to be reflected to in the knowledge base of the guidelines was obtained. (1) By making clearly identifying an areas beforehand becoming the that would receive high radiation doses at the time of a severe accident definitely beforehand, we can employees can be moved to the evacuation places through an areas having of low dose rate and it is also known it how much we long employees can safely stay in the evacuation places. (2) When they circulate CV containment vessel recirculation sump water is recirculated by for the accident management operation and the restoration of safety in the facilities, because the plumbing piping and the apparatuses become radioactive radioactivity sources, the dose evaluation of the shortest access route and detour access routes with should be made for effective the accident management operation is effective. Because the area where a dose rate rises changes which as safety apparatuses are restored, in consideration of a plant state, it is necessary to judge the rightness or wrongness of the work continuation from the spot radioactive dose of the actual apparatus area, with based on precedence of the need to restore with precedence, and to choose a system to be used for accident management. (author)

  4. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  5. Can EPR non-locality be geometrical?

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1995-01-01

    The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3

  6. Accident management to prevent containment failure and reduce fission product release

    International Nuclear Information System (INIS)

    Lehner, J.R.; Lin, C.C.; Luckas, W.J.; Pratt, W.T.

    1991-01-01

    Brookhaven National Laboratory, under the auspices of the US Nuclear Regulatory Commission, is investigating accident management strategies which could help preserve containment integrity or minimize releases during a severe accident. The strategies considered make use of existing plant systems and equipment in innovative ways to reduce the likelihood of containment failure or to mitigate the release of fission products to the environment if failure cannot be prevented. Many of these strategies would be implemented during the later stages of a severe accident, i.e. after vessel breach, and sizable uncertainties exist regarding some of the phenomena involved. The identification and assessment process for containment and release strategies is described, and some insights derived from its application to specific containment types are presented. 2 refs., 5 figs., 2 tabs

  7. Accident Management System Based on Vehicular Network for an Intelligent Transportation System in Urban Environments

    Directory of Open Access Journals (Sweden)

    Yusor Rafid Bahar Al-Mayouf

    2018-01-01

    Full Text Available As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficient route planning algorithm to attain a globally optimal vehicle control is still a challenge that needs to be solved, especially when the unique preferences of drivers are considered. The aim of this paper is to establish an accident management system that makes use of vehicular ad hoc networks coupled with systems that employ cellular technology in public transport. This system ensures the possibility of real-time communication among vehicles, ambulances, hospitals, roadside units, and central servers. In addition, the accident management system is able to lessen the amount of time required to alert an ambulance that it is required at an accident scene by using a multihop optimal forwarding algorithm. Moreover, an optimal route planning algorithm (ORPA is proposed in this system to improve the aggregate spatial use of a road network, at the same time bringing down the travel cost of operating a vehicle. This can reduce the incidence of vehicles being stuck on congested roads. Simulations are performed to evaluate ORPA, and the results are compared with existing algorithms. The evaluation results provided evidence that ORPA outperformed others in terms of average ambulance speed and travelling time. Finally, our

  8. EPR and development of quantum electronics

    International Nuclear Information System (INIS)

    Manenkov, A A

    2011-01-01

    A role of electron paramagnetic resonance in development of quantum electronics is discussed. Basic principles and history of masers are briefly described. Spin-levels of paramagnetic ions in crystals as a very suitable object for active media of solid-state masers (called as EPR-masers) and physical processes in EPR-masers (population inversion of energy states) are analyzed. This analysis demonstrates a significant role of relaxation processes in multi-level spin-systems for efficient maser action. In this context peculiarities of spin-lattice and spin-spin cross relaxation processes in multi-level systems are analyzed. Development of EPR-masers and their application in radioastronomy and far-space communication systems are briefly described.

  9. EPR spectral investigation of radiation-induced radicals of gallic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tuner, Hasan [Balikesir University, Department of Physics, Faculty of Art and Science, Balikesir (Turkey)

    2017-11-15

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH){sub 2}C{sub 6}H{sub 2}COOH radicals for both compounds. (orig.)

  10. Assessment of performance parameters for EPR dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Wieser, A.; Fattibene, P.; Shishkina, E.A.; Ivanov, D.V.; De Coste, V.; Guettler, A.; Onori, S.

    2008-01-01

    In the framework of a comparison between three laboratories, electron paramagnetic resonance (EPR) signal-to-dose response curves were measured for sets of 30 tooth enamel samples and the variance of EPR measurements in dependence on absorbed dose was evaluated, in nine combinations of laboratory of sample preparation and EPR evaluation, respectively. As a test for benchmarking of EPR evaluation, the parameters 'critical dose' and 'limit of detection' were proposed as performance parameters following definitions from chemical-metrology, and a model function was suggested for analytical formulation of the dependence of the variance of EPR measurement on absorbed dose. First estimates of limits of detection by weighted and unweighted fitting resulted in the range 101-552 and 67-561 mGy, respectively, and were generally larger with weighted than with unweighted fitting. Indication was found for the influence of methodology of sample preparation and applied EPR measurement parameters on performance of EPR dosimetry with tooth enamel

  11. EPR spectral investigation of radiation-induced radicals of gallic acid

    International Nuclear Information System (INIS)

    Tuner, Hasan

    2017-01-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH) 2 C 6 H 2 COOH radicals for both compounds. (orig.)

  12. Costing the EPR Project Using the Real Options Method

    International Nuclear Information System (INIS)

    Epaulard, Anne; Gallon, Stephane

    2001-01-01

    Real options theory makes it possible to cost investments which offer flexibility but whose returns are uncertain, such as the construction in 2000 of an EPR prototype; this prototype will enable the European pressurised-water reactor (EPR) to be used to renew EDF's nuclear power stations in 2020 (flexibility) but its economic worth will then depend on the cost of the competing gas-fired power plants (uncertain return). Options theory shows that investing in EPR technology in 2000 provides sufficient flexibility in 2020 to be considered cost-effective, even though use of EPRs is unlikely by that date. The investment made in 2000 to develop EPR technology therefore actually plays the part of an option or, in other words, insurance (against the risk of high gas prices)

  13. Guidelines for the review of accident management programmes in nuclear power plants. Reference document for the IAEA safety service missions on review of accident management programmes in nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    Similarly as for other IAEA safety services, the objectives of accident management safety service are to assist the Member States in ensuring and enhancing the safety of NPPs. In particular, the objective is to assist at the utility and NPP (i.e. licensee) level in effective plant specific AMP preparation, development and implementation. However, assistance can also be provided to the regulatory body in its reviewing of AMPs. Objectives of the safety service can be summarized as follows: To explain to licensee personnel principles and possible approaches in effective implementation of AMP based on experience world-wide; To give opportunities to experts from the host plant to broaden their experience and knowledge in the field; To perform an objective assessment of the status in various phases of AMP implementation, compared with international experience and practices; To provide the licensee with suggestions and assistance for improvements in various stages of AMP implementation. The objective of the IAEA safety services is to offer two options to respond to individual requirements. These options include missions to review accident analysis needed for accident management and missions to review the whole AMP. Review of accident analysis for accident management (RAAAM): this review is intended to check completeness and quality of accident analysis covering BDBA and severe accidents. The review should be typically performed prior to use of accident analysis for development of AMP. It is considered that 2 experts and 1 IAEA team leader in one-week mission can perform the review. Detailed guidelines for review of analysis are provided in Section 2. Reference is also made to another IAEA Safety Report (Safety Standards Series No. NS-R-1) which is devoted to guidance for accident analysis of nuclear power plants (NPPs). Review of AMP (RAMP): this review of AMP, which is in particular appropriate prior to its implementation, is intended to check its quality, consistency

  14. Example of severe accident management guidelines validation and verification using full scope simulator

    International Nuclear Information System (INIS)

    Krajnc, B.; Basic, I.; Spiler, J.

    2001-01-01

    The purpose of Severe Accident Management Guidelines (SAMG) is to provide guidelines to mitigate and control beyond design bases accidents. These guidelines are to be used by the technical support center that is established at the plant within one hour after the beginning of the accident as a technical support for the main control room operators. Since some of the accidents can progress very fast there are also two guidelines provided for the main control room operators. The first one is to be used if the core damage occurs and the TSC is not established yet and the second one after technical support center become operational. After SG replacement and power uprate in year 2000, NPP Krsko developed Rev.1 of these procedures, which have been validated and verified during one-week effort. Plant specific simulator capable of simulating severe accidents was extensively used.(author)

  15. Risk impact of two accident management strategies

    International Nuclear Information System (INIS)

    Dingman, S.; Camp, A.

    1992-01-01

    This report probabilistic Risk Assessment is used to evaluate two accident management strategies: intentionally depressurizing the reactor coolant system of a pressurized water reactor to prevent containment-pressurization during high pressure melt ejection, and flooding the containment of a boiling water reactor to prevent or delay vessel breach. Sensitivity studies indicated that intentional depressurization would not provide a significant risk reduction at Surry. A preliminary evaluation of the containment flooding strategy indicated that it might prove beneficial for some plants, but that further strategy development would be needed to fully evaluate the strategy-

  16. EPR: the nuclear impasse; EPR: l'impasse nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Marillier, F [Association Ecologiste Greenpeace (France)

    2008-07-01

    The questions relative to the climatic change constitute crucial challenges for the next ten years. In this context the author aims to show how the EPR project illustrates the nuclear french ''autism''. He presents and analyzes the international and environmental impacts of this obsolete technology, as a project useless and dangerous. (A.L.B.)

  17. Applicability of Phebus FP results to severe accident safety evaluations and management measures

    International Nuclear Information System (INIS)

    Schwarz, M.; Clement, B.; Jones, A.V.

    2001-01-01

    The international Phebus FP (Fission Product) programme is the largest research programme in the world investigating core degradation and radioactive product release should a core meltdown accident occur in a light water reactor plant. Three integral experiments have already been performed. The experimental database obtained so far contains a wealth of information to validate the computer codes used for safety and accident management assessment

  18. ATHLET validation using accident management experiments

    Energy Technology Data Exchange (ETDEWEB)

    Teschendorff, V.; Glaeser, H.; Steinhoff, F. [Gasellschaft fuer Anlagen - und Reaktorsicherheit (GSR) mbH, Garching (Germany)

    1995-09-01

    The computer code ATHLET is being developed as an advanced best-estimate code for the simulation of leaks and transients in PWRs and BWRs including beyond design basis accidents. The code has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialisation by a steady-state calculation, full-range drift-flux model, and dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The systematic validation of ATHLET is based on a well balanced set of integral and separate effect tests derived from the CSNI proposal emphasising, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities. PKL-III test B 2.1 simulates a cool-down procedure during an emergency power case with three steam generators isolated. Natural circulation under these conditions was investigated in detail in a pressure range of 4 to 2 MPa. The transient was calculated over 22000 s with complicated boundary conditions including manual control actions. The calculations demonstrations the capability to model the following processes successfully: (1) variation of the natural circulation caused by steam generator isolation, (2) vapour formation in the U-tubes of the isolated steam generators, (3) break-down of circulation in the loop containing the isolated steam generator following controlled cool-down of the secondary side, (4) accumulation of vapour in the pressure vessel dome. One conclusion with respect to the suitability of experiments simulating AM procedures for code validation purposes is that complete documentation of control actions during the experiment must be available. Special attention should be given to the documentation of operator actions in the course of the experiment.

  19. EPR detection of foods preserved with ionizing radiation

    Science.gov (United States)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60Co) and 10 MeV electrons were observed

  20. EPR detection of foods preserved with ionizing radiation

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-01-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60 Co) and 10 MeV electrons were observed

  1. EPR detection of foods preserved with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Stachowicz, W.; Burlinska, G.; Michalik, J

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ({sup 60}Co) and 10 MeV electrons were observed.

  2. Considerations on monitoring needs of advanced, passive safety light water reactors for severe accident management

    International Nuclear Information System (INIS)

    Bava, G.; Zambardi, F.

    1992-01-01

    This paper deals with problems concerning information and related instrumentation needs for Accident Management (AM), with special emphasis on Severe Accidents (SA) in the new advanced, passive safety Light Water Reactors (PLWR), presently in a development stage. The passive safety conception adopted in the plants concerned goes parallel with a deeper consideration of SA, that reflects the need of increasing the plant resistance against conditions going beyond traditional ''design basis accidents''. Further, the role of Accident Management (AM) is still emphasized as last step of the defence in depth concept, in spite of the design efforts aimed to reduce human factor importance; as a consequence, the availability of pertinent information on actual plant conditions remains a necessary premise for performing preplanned actions. This information is essential to assess the evolution of the accident scenarios, to monitor the performances of the safety systems, to evaluate the ultimate challenge to the plant safety, and to implement the emergency operating procedures and the emergency plans. Based on these general purposes, the impact of the new conception on the monitoring structure is discussed, furthermore reference is made to the accident monitoring criteria applied in current plants to evaluate the requirements for possible solutions. (orig.)

  3. Accident knowledge and emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, B; Groenberg, C D

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs.

  4. Accident knowledge and emergency management

    International Nuclear Information System (INIS)

    Rasmussen, B.; Groenberg, C.D.

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs

  5. Radiological accidents potentially important to human health risk in the U.S. Department of Energy waste management program

    International Nuclear Information System (INIS)

    Mueller, C.; Roglans-Ribas, J.; Folga, S.; Nabelssi, B.; Jackson, R.

    1995-01-01

    Human health risks as a consequence of potential radiological releases resulting from plausible accident scenarios constitute an important consideration in the US Department of Energy (DOE) national program to manage the treatment, storage, and disposal of wastes. As part of this program, the Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks that could result from managing five different waste types. This paper (1) briefly reviews the overall approach used to assess process and facility accidents for the EM PEIS; (2) summarizes the key inventory, storage, and treatment characteristics of the various DOE waste types important to the selection of accidents; (3) discusses in detail the key assumptions in modeling risk-dominant accidents; and (4) relates comparative source term results and sensitivities

  6. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. iROCS: Integrated accident management framework for coping with beyond-design-basis external events

    International Nuclear Information System (INIS)

    Kim, Jaewhan; Park, Soo-Yong; Ahn, Kwang-Il; Yang, Joon-Eon

    2016-01-01

    Highlights: • An integrated mitigating strategy to cope with extreme external events, iROCS, is proposed. • The strategy aims to preserve the integrity of the reactor vessel as well as core cooling. • A case study for an extreme damage state is performed to assess the effectiveness and feasibility of candidate mitigation strategies under an extreme event. - Abstract: The Fukushima Daiichi accident induced by the Great East Japan earthquake and tsunami on March 11, 2011, poses a new challenge to the nuclear society, especially from an accident management viewpoint. This paper presents a new accident management framework called an integrated, RObust Coping Strategy (iROCS) to cope with beyond-design-basis external events (BDBEEs). The iROCS approach is characterized by classification of various plant damage conditions (PDCs) that might be impacted by BDBEEs and corresponding integrated coping strategies for each of PDCs, aiming to maintain and restore core cooling (i.e., to prevent core damage) and to maintain the integrity of the reactor pressure vessel if it is judged that core damage may not be preventable in view of plant conditions. From a case study for an extreme damage condition, it showed that candidate accident management strategies should be evaluated from the viewpoint of effectiveness and feasibility against accident scenarios and extreme damage conditions of the site, especially when employing mobile or portable equipment under BDBEEs within the limited time available to achieve desired goals such as prevention of core damage as well as a reactor vessel failure.

  8. Orientation-dependent effects of EPR-measurements on β-rhombohedral boron

    International Nuclear Information System (INIS)

    Siems, C.D.; Geist, D.

    1976-01-01

    EPR studies on β-rhombohedral boron have been reported by several authors. Two EPR-lines with the same g-value have been found by measurements with and without illumination. The microwave frequency used was 9 GHz, as far as is known. In this paper EPR-measurements at 35 GHz on β-rhombohedral boron single crystals are reported. The investigations concerning the 'dark EPR-line' were made at 300 K. (Auth.)

  9. Selective saturation method for EPR dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Ignatiev, E.A.; Romanyukha, A.A.; Koshta, A.A.; Wieser, A.

    1996-01-01

    The method of selective saturation is based on the difference in the microwave (mw) power dependence of the background and radiation induced EPR components of the tooth enamel spectrum. The subtraction of the EPR spectrum recorded at low mw power from that recorded at higher mw power provides a considerable reduction of the background component in the spectrum. The resolution of the EPR spectrum could be improved 10-fold, however simultaneously the signal-to-noise ratio was found to be reduced twice. A detailed comparative study of reference samples with known absorbed doses was performed to demonstrate the advantage of the method. The application of the selective saturation method for EPR dosimetry with tooth enamel reduced the lower limit of EPR dosimetry to about 100 mGy. (author)

  10. Regulation Plans on Severe Accidents developed by KINS Severe Accident Regulation Preparation TFT

    International Nuclear Information System (INIS)

    Kim, Kyun Tae; Chung, Ku Young; Na, Han Bee

    2016-01-01

    Some nuclear power plants in Fukushima Daiichi site had lost their emergency reactor cooling function for long-time so the fuels inside the reactors were molten, and the integrity of containment was damaged. Therefore, large amount of radioactive material was released to environment. Because the social and economic effects of severe accidents are enormous, Korean Government already issued 'Severe Accident Policy' in 2001 which requires nuclear power plant operators to set up 'Quantitative Safety Goal', to do 'Probabilistic Safety Analysis', to install 'Severe Accident Countermeasures' and to make 'Severe Accident Management Plan'. After the Fukushima disaster, a Special Safety Inspection was performed for all operating nuclear power plants of Korea. The inspection team from industry, academia, and research institutes assessed Korean NPPs capabilities to cope with or respond to severe accidents and emergency situation caused by natural disasters such as a large earthquake or tsunami. As a result of the special inspection, about 50 action items were identified to increase the capability to cope with natural disaster and severe accidents. Nuclear Safety Act has been amended to require NPP operators to submit Accident Management Plant as part of operating license application. The KINS Severe Accident Regulation Preparation TFT had first investigated oversea severe accident regulation trend before and after the Fukushima accident. Then, the TFT has developed regulation draft for severe accidents such as Severe accident Management Plans, the required design features for new NPPs to prevent severe accident against multiple failures and beyond-design external events, countermeasures to mitigate severe accident and to keep the integrity of containment, and assessment methodology on safety assessment plan and probabilistic safety assessment

  11. Regulatory aspects of Olkiluoto 3 nuclear power plant (EPR-1600) (Draft, 12 Sept. 2005)

    International Nuclear Information System (INIS)

    Sandberg, J.; Tiippana, P.

    2005-01-01

    A 1600 MWe European Pressurized Water Reactor (EPR) supplied by the Framatome ANP - Siemens Consortium is under construction at the Olkiluoto site in Finland. Current international safety requirements and especially French and German operating experience have been applied in the design. Finnish requirements and operating experience have also been applied, especially regarding site-specific features. Severe accidentmanagement and protection against a collision of a large passenger airplane are implemented in the plant design. The plant safety features, licensing procedure, Finnish regulatory requirements, changes to the original EPR design, project quality management and regulatory control are discussed. (author)

  12. CW EPR and 9 GHz EPR imaging investigation of stable paramagnetic species and their antioxidant activities in dry shiitake mushroom (Lentinus edodes).

    Science.gov (United States)

    Nakagawa, Kouichi; Hara, Hideyuki

    2016-01-01

    We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.

  13. Relativistic Nonlocality and the EPR Paradox

    Science.gov (United States)

    Chamberlain, Thomas

    2014-03-01

    The exact violation of Bell's Inequalities is obtained with a local realistic model for spin. The model treats one particle that comprises a quantum ensemble and simulates the EPR data one coincidence at a time as a product state. Such a spin is represented by operators σx , iσy ,σz in its body frame rather than the usual set of σX ,σY ,σZ in the laboratory frame. This model, assumed valid in the absence of a measuring probe, contains both quantum polarizations and coherences. Each carries half the EPR correlation, but only half can be measured using coincidence techniques. The model further predicts the filter angles that maximize the spin correlation in EPR experiments.

  14. Regulatory Research of the PWR Severe Accident. Information Needs and Instrumentation for Hydrogen Control and Management

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gun Chul; Suh, Kune Y.; Lee, Jin Yong; Lee, Seung Dong [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2001-03-15

    The current research is concerned with generation of basic engineering data needed in the process of developing hydrogen control guidelines as part of accident management strategies for domestic nuclear power plants and formulating pertinent regulatory requirements. Major focus is placed on identification of information needs and instrumentation methods for hydrogen control and management in the primary system and in the containment, development of decision-making trees for hydrogen management and their quantification, the instrument availability under severe accident conditions, critical review of relevant hydrogen generation model and phenomena In relation to hydrogen behavior, we analyzed the severe accident related hydrogen generation in the UCN 3{center_dot}4 PWR with modified hydrogen generation model. On the basis of the hydrogen mixing experiment and related GASFLOW calculation, the necessity of 3-dimensional analysis of the hydrogen mixing was investigated. We examined the hydrogen control models related to the PAR(Passive Autocatalytic Recombiner) and performed MAAP4 calculation in relation to the decision tree to estimate the capability and the role of the PAR during a severe accident.

  15. Regulatory Research of the PWR Severe Accident. Information Needs and Instrumentation for Hydrogen Control and Management

    International Nuclear Information System (INIS)

    Park, Gun Chul; Suh, Kune Y.; Lee, Jin Yong; Lee, Seung Dong

    2001-03-01

    The current research is concerned with generation of basic engineering data needed in the process of developing hydrogen control guidelines as part of accident management strategies for domestic nuclear power plants and formulating pertinent regulatory requirements. Major focus is placed on identification of information needs and instrumentation methods for hydrogen control and management in the primary system and in the containment, development of decision-making trees for hydrogen management and their quantification, the instrument availability under severe accident conditions, critical review of relevant hydrogen generation model and phenomena In relation to hydrogen behavior, we analyzed the severe accident related hydrogen generation in the UCN 3·4 PWR with modified hydrogen generation model. On the basis of the hydrogen mixing experiment and related GASFLOW calculation, the necessity of 3-dimensional analysis of the hydrogen mixing was investigated. We examined the hydrogen control models related to the PAR(Passive Autocatalytic Recombiner) and performed MAAP4 calculation in relation to the decision tree to estimate the capability and the role of the PAR during a severe accident

  16. EPR study on non- and gamma-irradiated herbal pills

    Energy Technology Data Exchange (ETDEWEB)

    Aleksieva, K., E-mail: katerina_bas@abv.b [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Lagunov, O. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Dimov, K. [Institute of Cryobiology and Food Technologies, 1162 Sofia (Bulgaria); Yordanov, N.D. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2011-06-15

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048{+-}0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show 'cellulose-like' EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  17. EPR study on non- and gamma-irradiated herbal pills

    International Nuclear Information System (INIS)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N.D.

    2011-01-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show 'cellulose-like' EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  18. EPR study on non- and gamma-irradiated herbal pills

    Science.gov (United States)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N. D.

    2011-06-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show "cellulose-like" EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  19. From PACS to Web-based ePR system with image distribution for enterprise-level filmless healthcare delivery.

    Science.gov (United States)

    Huang, H K

    2011-07-01

    The concept of PACS (picture archiving and communication system) was initiated in 1982 during the SPIE medical imaging conference in New Port Beach, CA. Since then PACS has been matured to become an everyday clinical tool for image archiving, communication, display, and review. This paper follows the continuous development of PACS technology including Web-based PACS, PACS and ePR (electronic patient record), enterprise PACS to ePR with image distribution (ID). The concept of large-scale Web-based enterprise PACS and ePR with image distribution is presented along with its implementation, clinical deployment, and operation. The Hong Kong Hospital Authority's (HKHA) integration of its home-grown clinical management system (CMS) with PACS and ePR with image distribution is used as a case study. The current concept and design criteria of the HKHA enterprise integration of the CMS, PACS, and ePR-ID for filmless healthcare delivery are discussed, followed by its work-in-progress and current status.

  20. EPR: Some History and Clarification

    Science.gov (United States)

    Fine, Arthur

    2002-04-01

    Locality, separation and entanglement 1930s style. We’ll explore the background to the 1935 paper by Einstein, Podolsky and Rosen, how it was composed, the actual argument of the paper, the principles used, and how the paper was received by Schroedinger, and others.We’ll also look at Bohr’s response: the extent to which Bohr connects with what Einstein was after in EPR and the extent to EPR marks a shift in Bohr’s thinking about the quantum theory.

  1. Enriched boric acid as an optimized neutron absorber in the EPR primary coolant

    International Nuclear Information System (INIS)

    Cosse, Christelle; Jolivel, Fabienne; Berger, Martial

    2012-09-01

    This paper focuses on one of the most important EPR PWR reactor design optimizations, through primary coolant conditioning by enriched boric acid (EBA). On PWRs throughout the world, boric acid has already been implemented in primary coolant and associated auxiliary systems for criticality control, due to its high Boron 10 neutron absorption cross section. Boric acid also allows primary coolant pH 300C control in combination with lithium hydroxide in many PWRs. The boric acid employed in the majority of existing PWRs is the 'natural' one, with a typical isotopic atomic abundance in Boron 10 about 19.8 at.%. However, EPR requirements for neutron management are more important, due to its fully optimized design compared to older PWRs. From the boron point of view, it means that criticality could be controlled either by increased 'natural' Boron concentrations or by using EBA. Comparatively to 'natural' boric acid, EBA allows for: - the use of smaller storage volumes for an identical total Boron concentration, or lower total Boron concentration if the tank volumes are kept identical. The latter also reduces the risks of boric acid crystallization, in spite of increased neutron-absorbing properties - the application of an evolutionary chemistry operating regime called Advanced pH Control, making it possible to maintain a constant pH 300C value at 7.2 in the primary coolant at nominal conditions throughout entire cycles. This optimized stability of pH 300C will contribute to reduce the consequences of contamination of the reactor coolant system by corrosion products, and consequently, all related issues - the reduction of borated liquid wastes, thanks to maximal recycling resulting from EPR design. The increased design costs associated with EBA are consequently compensated by a reduced total consumption of this chemical. Therefore, the basic design choice for the EPR is the use of EBA. For the Flamanville 3 EPR, according to the above

  2. Chirp echo Fourier transform EPR-detected NMR.

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Chirp echo Fourier transform EPR-detected NMR

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  4. Causal Factors and Adverse Events of Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon M.; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.

    2011-01-01

    Causal factors in aviation accidents and incidents related to system/component failure/malfunction (SCFM) were examined for Federal Aviation Regulation Parts 121 and 135 operations to establish future requirements for the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project. Data analyzed includes National Transportation Safety Board (NSTB) accident data (1988 to 2003), Federal Aviation Administration (FAA) incident data (1988 to 2003), and Aviation Safety Reporting System (ASRS) incident data (1993 to 2008). Failure modes and effects analyses were examined to identify possible modes of SCFM. A table of potential adverse conditions was developed to help evaluate IVHM research technologies. Tables present details of specific SCFM for the incidents and accidents. Of the 370 NTSB accidents affected by SCFM, 48 percent involved the engine or fuel system, and 31 percent involved landing gear or hydraulic failure and malfunctions. A total of 35 percent of all SCFM accidents were caused by improper maintenance. Of the 7732 FAA database incidents affected by SCFM, 33 percent involved landing gear or hydraulics, and 33 percent involved the engine and fuel system. The most frequent SCFM found in ASRS were turbine engine, pressurization system, hydraulic main system, flight management system/flight management computer, and engine. Because the IVHM Project does not address maintenance issues, and landing gear and hydraulic systems accidents are usually not fatal, the focus of research should be those SCFMs that occur in the engine/fuel and flight control/structures systems as well as power systems.

  5. Guidelines for calculation of atmospheric dispersion and radiological consequences of design basis reactor accidents - Severe accident calculation guidelines, EPR

    International Nuclear Information System (INIS)

    Martens, R.; Schmitz, B.M.; Horn, M.

    1999-01-01

    The activities carried out within the (reduced) project period (1. Sept. until 31. Dec. 1998) for coordinated harmonization between France and Germany, of guidelines for calculation of the radiological consequences of a severe reactor accident, are summarized. (orig./CB) [de

  6. Severe Accident Management Guidance: Lessons Still to be Learned after Fukushima

    International Nuclear Information System (INIS)

    Vayssier, G.

    2016-01-01

    After the accidents in Three Mile Island (TMI) and Chernobyl, many countries decided to develop and implement guidelines specifically directed to mitigate accidents with core damage, so-called severe accidents. The guidelines are usually named Severe Accident Management Guidelines (SAMG). In the USA, all operating plants had these guidelines in place at the end of 1998. Most other countries followed later, but today, it can be said that many nuclear power plants in the world have such guidelines in place. Typically, however, the guidelines were constructed under the assumption that many plant systems still will be available, i.e. there will be DC to feed the instruments, AC to feed equipment and water to restore cooling to the core. Typically, this was basically the situation at TMI: most equipment was functional, only the insight of what had happened had been lost and operators did not know how to respond. At Fukushima-Daiichi, a Site Disruptive Accident (SDA) occurred and it appeared that the situation was much more complex: much of the needed supportive equipment needed was unavailable, which greatly complicated the handling of the event. In this paper, the major shortcomings of the present existing SAMG are discussed, both from a technical, and an organisational viewpoint. It is concluded that, where proper regulation still is missing, the development of an industrial standard is recommended to define adequate tools and guidelines to mitigate severe accidents, including SDAs. (author).

  7. EPR study on gamma-irradiated fruits dehydrated via osmosis

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Aleksieva, K.

    2007-01-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples

  8. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Science.gov (United States)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  9. Overview of training methodology for accident management at nuclear power plants

    International Nuclear Information System (INIS)

    2005-04-01

    Many IAEA Member States operating nuclear power plants (NPPs) are at present developing accident management programmes (AMPs) for the prevention and mitigation of severe accidents. However, the level of implementation varies significantly between NPPs. The exchange of experience and best practices can considerably contribute to the quality and facilitate the implementation of AMPs at the plants. The main objective of this publication is to describe available material and technical support tools that can be used to support training of the personnel involved in the accident management (AM), and to highlight the current status of their application. The focus is on those operator aids that can help the plant personnel to take correct actions during an emergency to prevent and mitigate consequences of a severe accident. The second objective is to describe the available material for the training courses of those people who are responsible of the AMP development and implementation of an individual plant. The third objective is to collect a compact set of information on various aspects of AM training into a single publication. In this context, the AM personnel includes both the plant staff responsible for taking the decision and actions concerning preventive and mitigative AM and the persons involved in the management of off-site releases. Thus, the scope of this publication is on the training of personnel directly involved in the decisions and execution of the SAM actions during progression of an accident. The integration of training into the AMP development and implementation is summarized. The technical AM support tools and material are defined as operator aids involving severe accident guidelines, various computational aids and computerized tools. The operator aids make also an essential part of the training tools. The simulators to be applied for the AM training have been developed or are under development by various organizations in order to support the training on

  10. IRSN-Ancli seminar on the post-accident context

    International Nuclear Information System (INIS)

    Didier, Damien; Leroyer, Veronique; Gariel, Jean-Christophe; Meier, Christine; Petitfrere, Michael; Meraux-Netillard, Isabelle; Lerouxel, Roland; Gandouen, Gael; Boutin, Dominique; Charre, Jean-Pierre; Noe, Maite; Quenneville, Celine; Farandeau, Sebastien; Mouchet, Chantal; Pineau, Coralie; Rollinger, Francois; GARIEL, Jean-Christophe; Ando, Ryoko; Nishida, Shoshi; Miazaki, Makoto; Hayano, Ryugo; Lheureux, Yves; Lochard, Jacques; Boilley, David; Godet, Jean-Luc

    2014-10-01

    The first session addressed the context of post-accident management: main challenges of radiation protection in case of nuclear accident, management of energy situations (specific intervention plans of nuclear plants), elements of doctrine for the post-accident management of an accident. The second session addressed the preparedness of territories to post-accident management: preparation to post-accident management in the Montbeliard district, emergency and post-accidental situation (preparedness at the district scale, example of Loiret), and return on experience from the post-accident exercise in Cattenom. The third session addressed the action undertaken by the ANCCLI and IRSN for the awareness of post-accidental problematic (experiments in Saclay, Marcoule, Gravelines and Golfech, lessons learned from the pilot phase and perspectives). The last session addressed the post-accidental management of the Fukushima accident: approach of the IRSN to learn lessons from the dialogue initiative in Fukushima, round table on challenges on the long term of post-accidental management, Japanese witnesses

  11. Investigation of EPR signals on tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, A; Mironova-Ulmane, N; Polakov, M; Riekstina, D [Institute of Solid State Physics, University of Latvia, Riga (Latvia)

    2007-12-15

    Calcified tissues are involved in continues metabolic process in human organism exchanging a number of chemical elements with environment. The rate of biochemical reactions is tissue dependent and the slowest one at the tooth enamel, the most mineralized tissue of human organism. The long time stability and unique chemical composition make tooth enamel suitable for number of application. The assessment of individual radiation dose by Electron Paramagnetic Resonance (EPR) and evaluations of elemental composition by Instrumentation Neutron Activation Analysis (INAA) are the well known procedures where properties of tooth enamel intensively used. The current work is focused on investigation of EPR signals and determination of chemical composition on several teeth samples having different origin. The EPR spectra and INAA element content of milk tooth, caries tooth, and paradantose tooth have been compared to each other. The results showed that the intensity of EPR signal is much higher for the caries tooth than the for paradantose tooth that is in agreement with depleted Ca content.

  12. Software for evaluation of EPR-dosimetry performance

    International Nuclear Information System (INIS)

    Shishkina, E.A.; Timofeev, Yu.S.; Ivanov, D.V.

    2014-01-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty. (authors)

  13. Aspects of risk analysis application to estimation of nuclear accidents and tests consequences and intervention management

    International Nuclear Information System (INIS)

    Demin, V.F.; Hedemann-Jensen, P.; Rolevich, I.V.; Schneider, T.S.; Sobolev, B.G.

    1996-01-01

    For assessment of accident consequences and a post-accident management a risk analysis methodology and data bank (BARD) with allowance for radiation and non-radiation risk causes should be developed and used. Aspects of these needs and developments are considered. Some illustrative results of health risk estimation made with BARD for the Bryansk region territory with relatively high radioactive contamination from the Chernobyl accident are presented

  14. Conclusions of the specialist meeting on operator AIDS for severe accident management and training (SAMOA)

    International Nuclear Information System (INIS)

    1994-01-01

    The scope of the Specialist Meeting was limited to operator aids for accident management which were in operation or could be soon. Moreover, the meeting concentrated on the management of accidents beyond the design basis, including tools which might be extended from the design basis range into the severe accident area. Relevant simulation tools for operator training were also part of the scope of the meeting. The presentations showed that the design and implementation of operator aids were closely related to the organisation adopted by the user, whether it was a utility or a governmental agency. The most common organisation is to share the management of severe accidents among two groups of people: the operating team in the Control Room (CR) and a team of specialists in a Technical Support Centre (TSC). The CR is in charge of the operation of the plant in all conditions using a set of procedures and guidelines, while the experts in the TSC are able to produce in-depth analyses of the plant state and its evolution. The responsibility is shared between the CR and the TSC during accident progression. The TSC acts as a support for the CR for reactor operation and takes charge of the predictions of radioactive releases (source term, accident progression, release and dispersion of radioactive substances, as well as the interaction with public authorities). But this type of organisation is not general and the differences can induce different approaches in the design of operator aids. The first session was dedicated to operator aids for control rooms, the second session to operator aids for technical support centres

  15. German Phase B [risk study] highlights the role of [reactor] accident management

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Phase B of the German probabilistic risk assessment study, now scheduled for publication this month, suggests that reactor accident management measures can prevent or mitigate about 90 per cent of event sequences. (author)

  16. 41 CFR 101-39.407 - Accident records.

    Science.gov (United States)

    2010-07-01

    ...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.4-Accidents and Claims § 101-39.407 Accident records. If GSA's records... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Accident records. 101-39.407 Section 101-39.407 Public Contracts and Property Management Federal Property Management...

  17. EPR Spectroscopy in Environmental Lichen-Indication

    Science.gov (United States)

    Bondarenko, P. V.; Nguyet, Le Thi Bich; Zhuravleva, S. E.; Trukhan, E. M.

    2017-09-01

    The paramagnetic properties of lichens were investigated using EPR spectroscopy and Xanthoria parietina (L.) Th. Fr. as a case study. It was found that the concentration of paramagnetic centers in lichen thalli increased as the air-pollution level increased. Possible formation mechanisms of the paramagnetic centers in lichens were discussed. The efficiency of using EPR spectroscopy to study lichens as environmental quality indicators was demonstrated.

  18. Effect of Occupational Health and Safety Management System on Work-Related Accident Rate and Differences of Occupational Health and Safety Management System Awareness between Managers in South Korea's Construction Industry

    Directory of Open Access Journals (Sweden)

    Seok J. Yoon

    2013-12-01

    Conclusion: Both work-related accident and fatal accident rates were found to be significantly reduced by implementing OHSMS in this study. The differences of OHSMS awareness between site general managers and OHS managers were identified through a survey. The effect of these differences on safety and other benefits warrants further research with proper data collection.

  19. Regulation Plans on Severe Accidents developed by KINS Severe Accident Regulation Preparation TFT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyun Tae; Chung, Ku Young; Na, Han Bee [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    Some nuclear power plants in Fukushima Daiichi site had lost their emergency reactor cooling function for long-time so the fuels inside the reactors were molten, and the integrity of containment was damaged. Therefore, large amount of radioactive material was released to environment. Because the social and economic effects of severe accidents are enormous, Korean Government already issued 'Severe Accident Policy' in 2001 which requires nuclear power plant operators to set up 'Quantitative Safety Goal', to do 'Probabilistic Safety Analysis', to install 'Severe Accident Countermeasures' and to make 'Severe Accident Management Plan'. After the Fukushima disaster, a Special Safety Inspection was performed for all operating nuclear power plants of Korea. The inspection team from industry, academia, and research institutes assessed Korean NPPs capabilities to cope with or respond to severe accidents and emergency situation caused by natural disasters such as a large earthquake or tsunami. As a result of the special inspection, about 50 action items were identified to increase the capability to cope with natural disaster and severe accidents. Nuclear Safety Act has been amended to require NPP operators to submit Accident Management Plant as part of operating license application. The KINS Severe Accident Regulation Preparation TFT had first investigated oversea severe accident regulation trend before and after the Fukushima accident. Then, the TFT has developed regulation draft for severe accidents such as Severe accident Management Plans, the required design features for new NPPs to prevent severe accident against multiple failures and beyond-design external events, countermeasures to mitigate severe accident and to keep the integrity of containment, and assessment methodology on safety assessment plan and probabilistic safety assessment.

  20. MDEP Common Position CP-EPRWG-04. Common position on EPR containment heat removal system in accident conditions

    International Nuclear Information System (INIS)

    2015-01-01

    The importance of the integrity of the containment as a fundamental barrier to protect the people and environment against the effects of a nuclear accident is well established. In this regard, an essential objective is that the necessity for off-site counter-measures to reduce radiological consequences be limited or even eliminated. The design should provide engineering means to address those sequences which would otherwise lead to large or early releases, even in case of severe external hazards. The plant shall be designed so that it can be brought into a controlled and stable state and the containment function can be maintained, under accident conditions in which there is a significant amount of radioactive material in the containment, i.e. resulting from severe degradation of the reactor core. It is expected that due consideration to these requirements is to be given while tailoring long term loss of electrical power mitigation strategies. In order to reliably maintain the containment barrier, the regulators believe that: - safety features specifically designed for fulfilling safety functions required in core melt accidents shall be independent to the extent reasonably practicable from the Systems, Structures and Components (SSC) of the other levels of defense; - safety features specifically designed for fulfilling safety functions required in core melt accidents shall be safety classified and adequately qualified for the core melt accident environmental conditions for the time frame for which they are required to operate. In the light of the Fukushima Daiichi accident, the regulators believe that those safety features shall be designed with an adequate margin as compared to the levels of natural hazards considered for the site hazard evaluation; - the systems and components necessary for ensuring the containment function in a core melt accident shall have reliability commensurate with the function that they are required to fulfil. This may require redundancy of

  1. Most advanced HTP fuel assembly design for EPR

    International Nuclear Information System (INIS)

    Francillon, Eric; Kiehlmann, Horst-Dieter

    2006-01-01

    End 2003, the Finnish electricity utility Teollisuuden Voima Oy (TVO) signed the contract for building an EPR in Olkiluoto (Finland). Mid 2004, the French electricity utility EDF selected an EPR to be built in France. In 2005, Framatome ANP, an AREVA and Siemens company, announced that they will be pursuing a design certification in the U.S. The EPR development is based on the latest PWR product lines of former Framatome (N4) and Siemens Nuklear (Konvoi). As an introductory part, different aspects of the EPR core characteristics connected to fuel assembly design are presented. It includes means of ensuring reactivity control like hybrid AIC/B4C control rod absorbers and gadolinium as burnable absorber integrated in fuel rods, and specific options for in-core instrumentation, such as Aeroball type instrumentation. Then the design requirements for the EPR fuel assembly are presented in term of very high burnup capacity, rod cladding and fuel assembly reliability. Framatome ANP fuel assembly product characteristics meeting these requirements are then described. EPR fuel assembly design characteristics benefit from the experience feedback of the latest fuel assembly products designed within Framatome ANP, leading to resistance to assembly deformation, high fuel rod restraint and prevention of handling hazards. EPR fuel assembly design features the best components composing the cornerstones of the upgraded family of fuel assemblies that FRAMATOME ANP proposes today. This family is based on a set of common characteristics and associated features, which include the HMP grid as bottom end spacer, the MONOBLOC guide tube and the Robust FUELGUARD as lower tie plate, the use of the M5 Alloy, as cladding and structure material. This fully re-crystallized, ternary Zr-Nb-O alloy produces radically improved in-reactor corrosion, very low hydrogen uptake and growth and an excellent creep behavior, which are described there. EPR fuel assembly description also includes fuel rod

  2. On the annealing of the EPR dislocation signal in silicon

    International Nuclear Information System (INIS)

    Zolotukhin, M.N.; Kveder, V.V.; Osip'yan, Yu.A.

    1981-01-01

    The annealing kinetics of the (EPR) dislocation signal (D-centers) in silicon is studied. The disappearance of the dislocation EPR signal as a result of annealing is ascribed to rearrangement of the nuclei of the partial dislocations accompanied by pairwise ''closing'' of the broken bonds in the S=0 state. The height of the energy barrier for the rearrangement process is approximately 2 eV. A residual ''nonannealing'' EPR signal is observed in strongly deformed silicon crystals. It resembles an isotropic line with a width approximately 7.5 Oe and a g-factor approximately 2.006. It is suggested that the respective EPR centers (O-centers) are similar to the EPR centers in amorphic silicon [ru

  3. Magnetic, catalytic, EPR and electrochemical studies on binuclear ...

    Indian Academy of Sciences (India)

    Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes ... to the oxidation of 3,5-di--butylcatechol to the corresponding quinone. ... EPR spectral studies in methanol solvent show welldefined four hyperfine ...

  4. EPR spectroscopy of complex biological iron-sulfur systems.

    Science.gov (United States)

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  5. Thermal induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Fattibene, P.; Aragno, D.; Onori, S.; Pressello, M.C.

    2000-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to detect the effects of temperature on powdered human tooth enamel, not irradiated in the laboratory. Samples were heated at temperature between 350 and 450, at 600 and at 1000 deg. C, for different heating times, between 6 min and 39 h. Changes in the EPR spectra were detected, with the formation of new signals. Possible correlation between the changes in EPR spectra and modifications in the enamel and in the mineral phase of bone detected with other techniques is discussed. The implications for dosimetric applications of signals induced by overheating due to mechanical friction during sample preparation are underlined

  6. Accident information needs

    International Nuclear Information System (INIS)

    Hanson, D.J.; Arcieri, W.C.; Ward, L.W.

    1992-01-01

    A Five-step methodology has been developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and the severe accident conditions to evaluate the availability of the instrumentation to supply needed plant information

  7. Accident information needs

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Arcieri, W.C.; Ward, L.W.

    1992-12-31

    A Five-step methodology has been developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and the severe accident conditions to evaluate the availability of the instrumentation to supply needed plant information.

  8. Accident information needs

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Arcieri, W.C.; Ward, L.W.

    1992-01-01

    A Five-step methodology has been developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and the severe accident conditions to evaluate the availability of the instrumentation to supply needed plant information.

  9. Effect of Occupational Health and Safety Management System on Work-Related Accident Rate and Differences of Occupational Health and Safety Management System Awareness between Managers in South Korea's Construction Industry

    OpenAIRE

    Yoon, Seok J.; Lin, Hsing K.; Chen, Gang; Yi, Shinjea; Choi, Jeawook; Rui, Zhenhua

    2013-01-01

    Background: The study was conducted to investigate the current status of the occupational health and safety management system (OHSMS) in the construction industry and the effect of OHSMS on accident rates. Differences of awareness levels on safety issues among site general managers and occupational health and safety (OHS) managers are identified through surveys. Methods: The accident rates for the OHSMS-certified construction companies from 2006 to 2011, when the construction OHSMS became ...

  10. Limits in EPR dosimetry for irradiated dried fruits discrimination

    International Nuclear Information System (INIS)

    Brasoveanu, Mirela M. E-mirela@alpha.infim.ro; Nemtanu, R.; Minea, R.; Grecu, V.V.

    2003-01-01

    Irradiation of food induces free radical species. EPR dosimetry in irradiated goods puts in evidence if these radicals are stable in environmental condition. Irradiation of dried fruits has been carried out. Their behaviour under irradiation was investigated and correlation between EPR signal and irradiation dose was determined. Electrons of 6 MeV (mean energy) and doses up to 10 kGy were used. EPR spectra were recorded with a Jeol spectrometer, JES-ME-3X tip, with a 100 kHz modulation. The dried fruits can be separated into categories depending on the EPR signal intensity. Strong signals are observed in those fruits in which possible crystalline-like phases exist. As the amount of crystallized sugar decreases, the EPR signals become weaker. Dependencies on irradiation dose give a linear correlation below 10 kGy. The spectra are compared to irradiated sugar and differences and similarities are discussed. (authors)

  11. The evolution of the Italian EPR system for the management of household Waste Electrical and Electronic Equipment (WEEE). Technical and economic performance in the spotlight.

    Science.gov (United States)

    Favot, Marinella; Veit, Raphael; Massarutto, Antonio

    2016-10-01

    In this paper we analyse the Italian collective system for the management of household Waste Electrical and Electronic Equipment (WEEE), and its evolution over time, following the European Directives on WEEE, which include the Extended Producer Responsibility (EPR). The analysis focuses on the technical and economic performance of WEEE compliance organisations (consortia), as they are the key players in the Italian EPR regime. Economic results have not usually been provided in previous studies, due to the lack of available data. This study overcomes this problem by accessing the financial statements for the years 2009-2014 of all consortia. The main conclusions of the study are: The Italian EPR system barely exceeded the technical target of the first WEEE Directive (4kg per capita). Improvements are necessary to achieve the target set for 2019 by the Recast Directive. The economic performance of the Italian EPR regime improved significantly over time. The fees charged per tonne of WEEE collected decreased by almost 43% from 652 Euro per tonne in 2009 to 374 Euro per tonne in 2014, while the fees per tonne put on the market (POM) were 134 Euro in 2009 and 104 Euro in 2014. The results prove the theory which states that, competing consortia use the learning effects to reduce the contribution fees for producers rather than to increase the quantity collected. Municipalities remain the most important actor in WEEE collection operations. Consortia compensate municipalities with a reimbursement that ranges between 28 and 38 Euros per tonne collected. These repayments cover only partially their costs. Additional studies should investigate their role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-06-15

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and {gamma}-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas {gamma}-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  13. Flamanville plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Flamanville plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 2 parts: one part dedicated to the first 2 reactors of the plant and the second part to the EPR that is being built. Each part is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  14. EPR trademark project delivery. The value of experience

    International Nuclear Information System (INIS)

    Leverenz, Ruediger

    2013-01-01

    We are building the EPR trademark reactor fleet. Together. With four EPR trademark projects under construction in the world, AREVA has unrivalled experience in the delivery of large-scale nuclear projects, including more than a thousand lessons learned captured from Olkiluoto 3 and Flamanville 3 projects. This book of knowledge as well as the return of experience of AREVA's and EDF's teams are now being fully leveraged on ongoing projects, especially on Flamanville 3 and Taishan, and will be incorporated in all future EPR TM projects.

  15. Some ideas on the EPR

    International Nuclear Information System (INIS)

    2003-01-01

    Facing the debate and controversial between partisans and opponents of the European Pressurized Reactor construction, the SFP energy Group aims to offer some reflexions. In this framework the following topics are discussed: the french nuclear park and its replacement, the energy costs, the nuclear reactors profitability, the generation IV reactors. The paper examines then the EPR technology and its cost to conclude on the advantage of an EPR construction, in the case of an energy policy based on the nuclear. This last point seems to be the real challenge of the problem. (A.L.B.)

  16. Lessons learned from post-accident management at Chernobyl: the P.a.r.e.x. project

    International Nuclear Information System (INIS)

    Heriard Dubreuil, G.; Lochard, J.; Bataille, C.; Ollagnon, H.; Baude, St.

    2008-01-01

    Return of experience on Chernobyl post-accident management: the PAREX study Belarus is the country the most affected by the Chernobyl fallouts and is among the most significant experiences in the nuclear post-accident field. Despite specificities inherent to the political and social situation in Belarus, the experience of post-accidental management in this country holds a wealth of lessons in the perspective of preparation to a post-accidental situation in the French and European context. Through the PAREX project (2005-2006), the French Nuclear Safety Authority analysed the return of experience of Chernobyl post-accident management from 1986 to 2005 in order to draw its lessons in the perspective of a preparation policy. The study was led by a group of experts and involved the participation of a pluralistic group of about thirty participants (public authorities, local governments, NGOs, experts, operators). PAREX highlighted the complexity of a situation of long-lasting radioactive contamination (diversity of stakeholders and of dimensions at stake: health, environment, economy, society...). Beyond traditional public crisis management tools and frameworks, post-accident strategies also involves in the longer term a territorial and social response, which relies on local capacities of initiative. Preparation to such process requires experimenting new modes of operation that allow a diversity of local actors to take part to the response to a situation of contamination and to the surveillance system, with the support of public authorities. The conclusions of PAREX include a set of recommendations in this perspective. (authors)

  17. Accounting of the knowledge-based actions and the rules-based actions in frames of accident management guidelines development

    International Nuclear Information System (INIS)

    Lankin, M.Yu.; Bukrinskij, A.M.

    2015-01-01

    The main approaches used in the development of the Safety Guide (SG) “Recommendations to the structure and content of the manual for the management of beyond-design-basis accidents, including severe accidents” (BDBA MG) are described. The manual was developed taking into account the provisions of the current IAEA standards relevant to the affected area, taking into account the specifics of the Russian nuclear power industry. In the draft SG, three types of behavior of personnel are considered - based on skills, rules and knowledge. When developing BDBA MG, it is recommended to give priority to a knowledge-based approach. At the same time, when performing well-designed and worked-out activities, work is possible based on rules and skills (for example, using step-by-step procedures). The SG project provides for a unified organizational structure for managing beyond-design-basis accidents, both at the stage of preventing severe damage to the core, and at the stage of managing a heavy accident. In SG the order of management of beyond-design-basis accidents for both of the indicated stages examined in detail [ru

  18. PropeR: a multi disciplinary EPR system

    NARCIS (Netherlands)

    van der Linden, Helma; Boers, Gerrit; Tange, Huibert; Talmon, Jan; Hasman, Arie

    2003-01-01

    This article describes the architecture of an EPR system developed for the PropeR project. This EPR system not only aims at supporting home care of stroke patients, but is also designed in such a way that it can be ported to other medical services without much effort. We will briefly describe the

  19. Summary and conclusions: Specialist Meeting on Severe Accident Management Implementation

    International Nuclear Information System (INIS)

    1995-01-01

    During the first session of this meeting, regulators, research groups, designers/owners' groups and some utilities discussed the critical decisions in SAM (Severe Accident Management), how these decisions were addressed and implemented in generic SAM guidelines, what equipment and instrumentation was used, what are the differences in national approaches, etc. During the second session, papers were presented by utility specialists that described approaches chosen for specific implementation of the generic guidelines, the difficulties encountered in the implementation process and the perceived likelihood of success of their SAM programme in dealing with severe accidents. The third and final sessions was dedicated to discussing what are the remaining uncertainties and open questions in SAM. Experts from several OECD countries presented significant perspectives on remaining open issues

  20. Learning Lessons from TMI to Fukushima and Other Industrial Accidents: Keys for Assessing Safety Management Practices

    International Nuclear Information System (INIS)

    Dechy, N.; Rousseau, J.-M.; Dien, Y.; Montmayeul, R.; Llory, M.

    2016-01-01

    The main objective of the paper is to discuss and to argue about transfer, from an industrial sector to another industrial sector, of lessons learnt from accidents. It will be achieved through the discussion of some theoretical foundations and through the illustration of examples of application cases in assessment of safety management practices in Nuclear Power Plant (NPP). The nuclear energy production industry has faced three big ones in 30 years (TMI, Chernobyl, Fukushima) involving three different reactor technologies operated in three quite different cultural, organizational and regulatory contexts. Each of those accident has been the origin of questions, but also generator of lessons, some changing the worldview (see Wilpert and Fahlbruch, 1998) of what does cause an accident in addition to the engineering view about the importance of technical failures (human error, safety culture, sociotechnical interactions). Some of their main lessons were implemented such as improvements of human-machine interfaces ergonomics, recast of some emergency operating procedures, severe accident mitigation strategies and crisis management. Some lessons did not really provide deep changes. It is the case for organizational lessons such as, organizational complexity, management of production pressures, regulatory capture, and failure to learn, etc.