WorldWideScience

Sample records for accident fuel dispersion

  1. TREAT experimental data base regarding fuel dispersals in LMFBR loss-of-flow accidents

    International Nuclear Information System (INIS)

    Simms, R.; Fink, C.L.; Stanford, G.S.; Regis, J.P.

    1981-01-01

    The reactivity feedback from fuel relocation is a central issue in the analysis of loss-of-flow (LOF) accidents in LMFBRs. Fuel relocation has been studied in a number of LOF simulations in the TREAT reactor. In this paper the results of these tests are analyzed, using, as the principal figure of merit, the changes in equivalent fuel worth associated with the fuel motion. The equivalent fuel worth was calculated from the measured axial fuel distributions by weighting the data with a typical LMFBR fuel-worth function. At nominal power, the initial fuel relocation resulted in increases in equivalent fuel worth. Above nominal power the fuel motion was dispersive, but the dispersive driving forces could not unequivocally be identified from the experimental data

  2. Model development of UO_2-Zr dispersion plate-type fuel behavior at early phase of severe accident and molten fuel meat relocation

    International Nuclear Information System (INIS)

    Zhang Zhuohua; Yu Junchong; Peng Shinian

    2014-01-01

    According to former study on oxygen diffusion, Nb-Zr solid reaction and UO_2-Zr solid reaction, the models of oxidation, solid reaction in fuel meat and relocation of molten fuel meat are developed based on structure and material properties of UO_2-Zr dispersion plate-type fuel, The new models can supply theoretical elements for the safety analysis of the core assembled with dispersion plate-type fuel under severe accident. (authors)

  3. Modeling solid-fuel dispersal during slow loss-of-flow-type transients

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Fenske, G.R.

    1981-01-01

    The dispersal, under certain accident conditions, of solid particles of fast-reactor fuel is examined in this paper. In particular, we explore the possibility that solid-fuel fragmentation and dispersal can be driven by expanding fission gas, during a slow LOF-type accident. The consequences of fragmentation are studied in terms of the size and speed of dispersed particles, and the overall quantity of fuel moved. (orig.)

  4. Visualization Study of Melt Dispersion Behavior for SFR with a Metallic Fuel under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo Heo; Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Jungang Univ., Seoul (Korea, Republic of)

    2015-05-15

    The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition.

  5. EPRI nuclear fuel-cycle accident risk assessment

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The present results of the nuclear fuel-cycle accident risk assessment conducted by the Electric Power Research Institute show that the total risk contribution of the nuclear fuel cycle is only approx. 1% of the accident risk of the power plant; hence, with little error, the accident risk of nuclear electric power is essentially that of the power plant itself. The power-plant risk, assuming a very large usage of nuclear power by the year 2005 is only approx. 0.5% of the radiological risk of natural background. The smallness of the fuel-cycle risk relative to the power-plant risk may be attributed to the lack of internal energy to drive an accident and the small amount of dispersible material. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihood of errors and the estimated size of errors. The primary probabilistic estimation tool is fault-tree analysis, with the release source terms calculated using physicochemical processes. Doses and health effects are calculated with CRAC (Consequences of Reactor Accident Code). No evacuation or mitigation is considered; source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/t) and short cooling period (90 to 150 d); high-efficiency particulate air filter efficiencies are derived from experiments

  6. Probability of spent fuel transportation accidents

    International Nuclear Information System (INIS)

    McClure, J.D.

    1981-07-01

    The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10 -7 spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10 -9 /mile

  7. Neutronic, thermal-hydraulics and accident analysis calculations for an irradiation device to be used in the qualification process of dispersion fuels in the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges; Silva, Antonio Teixeira e; Umbehaun, Pedro Ernesto; Silva, Jose Eduardo Rosa da; Conti, Thadeu das Neves; Yamaguchi, Mitsuo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: douglasborgesdomingos@yahoo.com.br

    2009-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of an irradiation device placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U{sub 3}O{sub 8}-Al e U{sub 3}Si{sub 2}-Al dispersion fuels, LEU type (19.9% of {sup 235}U), with uranium densities of, respectively, 3.0 gU/cm{sup 3} and 4.8gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor, now in the conception phase. For the neutronic calculation, the computer code CITATION was utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation of the fuel miniplates will happen without any adverse consequence in the IEA-R1 reactor. (author)

  8. Qualification process of dispersion fuels in the IEAR1 research reactor

    International Nuclear Information System (INIS)

    Domingos, D.B.; Silva, A.T.; Silva, J.E.R.

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a miniplate irradiation device (MID) to be placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 -Al dispersion fuels, LEU type (19,9% of 235 U) with uranium densities of, respectively, 3.0 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and TWODB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer code LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. This paper also presents a system designed for fuel swelling evaluation. The determination of the fuel swelling will be performed by means of the fuel miniplate thickness measurements along the irradiation time. (author)

  9. In-pile observations of fuel and clad relocation during LMFBR initiation phase accident experiments - the STAR experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Schumacher, G.; Henkel, P.R.; Royl, P.

    1987-01-01

    A series of seven in-pile experiments (the STAR experiments) were performed in which clad motion and fuel dispersal were observed in small pin bundles with high-speed cinematography. The experimental heating conditions reproduced a range of Loss of Flow (LOF) accident scenarios for the lead subassemblies in LMFBRs. The experiments show strong tendencies for limited clad motion in multiple pin bundles, early fuel disruption and dispersal (prior to fuel melting) in moderate power transients having simultaneous clad melting and fuel disruption. The more recent experiments indicate a possibility of steel vapor driven fuel dispersal after fuel breakup and intimate fuel/steel mixing. (author)

  10. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Govers, K.; Verwerft, M.

    2016-01-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive. - Highlights: • We performed Discrete Element Methods simulation for fuel relocation and dispersal during LOCA transients. • The approach provides a mechanistic description of these phenomena. • The approach shows the ability of the technique to reproduce experimental observations. • The packing fraction in the balloon is shown to stabilize at 50–60%.

  11. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    Science.gov (United States)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  12. Behaviour of rock-like oxide fuels under reactivity-initiated accident conditions

    International Nuclear Information System (INIS)

    Kazuyuki, Kusagaya; Takehiko, Nakamura; Makio, Yoshinaga; Hiroshi, Akie; Toshiyuki, Yamashita; Hiroshi, Uetsuka

    2002-01-01

    Pulse irradiation tests of three types of un-irradiated rock-like oxide (ROX) fuel - yttria-stabilised zirconia (YSZ) single phase, YSZ and spinel (MgAl 2 O 4 ) homogeneous mixture and particle-dispersed YSZ/spinel - were conducted in the Nuclear Safety Research Reactor to investigate the fuel behaviour under reactivity-initiated accident conditions. The ROX fuels failed at fuel volumetric enthalpies above 10 GJ/m 3 , which was comparable to that of un-irradiated UO 2 fuel. The failure mode of the ROX fuels, however, was quite different from that of the UO 2 fuel. The ROX fuels failed with fuel pellet melting and a part of the molten fuel was released out to the surrounding coolant water. In spite of the release, no significant mechanical energy generation due to fuel/coolant thermal interaction was observed in the tested enthalpy range below∼12 GJ/m 3 . The YSZ type and homogenous YSZ/spinel type ROX fuels failed by cladding burst when their temperatures peaked, while the particle-dispersed YSZ/spinel type ROX fuel seemed to have failed by cladding local melting. (author)

  13. Fuel behaviour in the case of severe accidents and potential ATF designs. Fuel Behavior in Severe Accidents and Potential Accident Tolerance Fuel Designs

    International Nuclear Information System (INIS)

    Cheng, Bo

    2013-01-01

    This presentation reviews the conditions of fuel rods under severe loss of coolant conditions, approaches that may increase coping time for plant operators to recover, requirements of advanced fuel cladding to increase tolerance in accident conditions, potential candidate alloys for accident-tolerant fuel cladding and a novel design of molybdenum (Mo) -based fuel cladding. The current Zr-alloy fuel cladding will lose all its mechanical strength at 750-800 deg. C, and will react rapidly with high-pressure steam, producing significant hydrogen and exothermic heat at 700-1000 deg. C. The metallurgical properties of Zr make it unlikely that modifications of the Zr-alloy will improve the behaviour of Zr-alloys at temperatures relevant to severe accidents. The Mo-based fuel cladding is designed to (1) maintain fuel rod integrity, and reduce the release rate of hydrogen and exothermic heat in accident conditions at 1200-1500 deg. C. The EPRI research has thus far completed the design concepts, demonstration of feasibility of producing very thin wall (0.2 mm) Mo tubes. The feasibility of depositing a protective coating using various techniques has also been demonstrated. Demonstration of forming composite Mo-based cladding via mechanical reduction has been planned

  14. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  15. Development of Cr cold spray–coated fuel cladding with enhanced accident tolerance

    Directory of Open Access Journals (Sweden)

    Martin Ševeček

    2018-03-01

    Full Text Available Accident-tolerant fuels (ATFs are currently of high interest to researchers in the nuclear industry and in governmental and international organizations. One widely studied accident-tolerant fuel concept is multilayer cladding (also known as coated cladding. This concept is based on a traditional Zr-based alloy (Zircaloy-4, M5, E110, ZIRLO etc. serving as a substrate. Different protective materials are applied to the substrate surface by various techniques, thus enhancing the accident tolerance of the fuel. This study focuses on the results of testing of Zircaloy-4 coated with pure chromium metal using the cold spray (CS technique. In comparison with other deposition methods, e.g., Physical vapor deposition (PVD, laser coating, or Chemical vapor deposition techniques (CVD, the CS technique is more cost efficient due to lower energy consumption and high deposition rates, making it more suitable for industry-scale production. The Cr-coated samples were tested at different conditions (500°C steam, 1200°C steam, and Pressurized water reactor (PWR pressurization test and were precharacterized and postcharacterized by various techniques, such as scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX, or nanoindentation; results are discussed. Results of the steady-state fuel performance simulations using the Bison code predicted the concept's feasibility. It is concluded that CS Cr coating has high potential benefits but requires further optimization and out-of-pile and in-pile testing. Keywords: Accident-Tolerant Fuel, Chromium, Cladding, Coating, Cold Spray, Nuclear Fuel

  16. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  17. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  18. Modelling Accident Tolerant Fuel Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Hales, Jason Dean [Idaho National Laboratory; Gamble, Kyle Allan Lawrence [Idaho National Laboratory

    2016-05-01

    The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. The United States Department of Energy (DOE) through its Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is a three-year project to perform research on two accident tolerant concepts. The final outcome of the ATF HIP will be an in-depth report to the DOE Advanced Fuels Campaign (AFC) giving a recommendation on whether either of the two concepts should be included in their lead test assembly scheduled for placement into a commercial reactor in 2022. The two ATF concepts under investigation in the HIP are uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (Idaho National Laboratory, Los Alamos National Laboratory, and Argonne National Laboratory), a comprehensive multiscale approach to modeling is being used that includes atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. Model development and fuel performance analysis are critical since a full suite of experimental studies will not be complete before AFC must prioritize concepts for focused development. In this paper, we present simulations of the two proposed accident tolerance fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. Sensitivity analyses are completed using Sandia National Laboratories’ Dakota software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). We also outline the multiscale modelling approach being employed. Considerable additional work is required prior to preparing the recommendation report for the Advanced

  19. Assessment of Core Failure Limits for Light Water Reactor Fuel under Reactivity Initiated Accidents

    International Nuclear Information System (INIS)

    Jernkvist, Lars Olof; Massih, Ali R.

    2004-12-01

    Core failure limits for high-burnup light water reactor UO 2 fuel rods, subjected to postulated reactivity initiated accidents (RIAs), are here assessed by use of best-estimate computational methods. The considered RIAs are the hot zero power rod ejection accident (HZP REA) in pressurized water reactors and the cold zero power control rod drop accident (CZP CRDA) in boiling water reactors. Burnup dependent core failure limits for these events are established by calculating the fuel radial average enthalpy connected with incipient fuel pellet melting for fuel burnups in the range of 30 to 70 MWd/kgU. The postulated HZP REA and CZP CRDA result in lower enthalpies for pellet melting than RIAs that take place at rated power. Consequently, the enthalpy thresholds presented here are lower bounds to RIAs at rated power. The calculations are performed with best-estimate models, which are applied in the FRAPCON-3.2 and SCANAIR-3.2 computer codes. Based on the results of three-dimensional core kinetics analyses, the considered power transients are simulated by a Gaussian pulse shape, with a fixed width of either 25 ms (REA) or 45 ms (CRDA). Notwithstanding the differences in postulated accident scenarios between the REA and the CRDA, the calculated core failure limits for these two events are similar. The calculated enthalpy thresholds for fuel pellet melting decrease gradually with fuel burnup, from approximately 960 J/gUO 2 at 30 MWd/kgU to 810 J/gUO 2 at 70 MWd/kgU. The decline is due to depression of the UO 2 melting temperature with increasing burnup, in combination with burnup related changes to the radial power distribution within the fuel pellets. The presented fuel enthalpy thresholds for incipient UO 2 melting provide best-estimate core failure limits for low- and intermediate-burnup fuel. However, pulse reactor tests on high-burnup fuel rods indicate that the accumulation of gaseous fission products within the pellets may lead to fuel dispersal into the coolant at

  20. Enhanced accident-tolerant fuel (EATF)

    International Nuclear Information System (INIS)

    Strumpell, John

    2013-01-01

    The Fukushima accident provided a strong reminder that the exothermic reaction between zirconium and steam, and the attendant hydrogen generation, can significantly affect the course of a severe accident. Part of the response to the accident was increased interest in the extent to which the fuel itself can mitigate the consequences of a severe accident. Improved fuel alone is not sufficient to provide the desired increase in reactor safety, but it can provide an important contribution. With support from the US Department of Energy, AREVA has brought together a team that includes researchers (AREVA, Electric Power Research Institute, Savannah River National Laboratory, University of Florida, and University of Wisconsin), a fuel vendor (AREVA), and utilities (Duke Energy and Tennessee Valley Authority). The goal of the project is to develop new technologies that can be deployed in a lead assembly within ten years. The researchers have proposed a variety of approaches for improving the performance of the fuel, including new cladding and structural materials, fuel pellets with improved thermal characteristics, and coatings on the fuel rods. The expected performance of fuels that apply these technologies will be judged against the requirements of the vendor and utilities to determine those that are most promising for immediate development and those that may be suited for development in the future. The first review will consider the manufacturability of the proposed designs; the second will focus on performance. Materials that are suitable for immediate development will be considered for irradiation in a test reactor and subsequent use in lead assembly designs

  1. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  2. Criticality accident of nuclear fuel facility. Think back on JCO criticality accident

    International Nuclear Information System (INIS)

    Naito, Keiji

    2003-09-01

    This book is written in order to understand the fundamental knowledge of criticality safety or criticality accident of nuclear fuel facility by the citizens. It consists of four chapters such as critical conditions and criticality accident of nuclear facility, risk of criticality accident, prevention of criticality accident and a measure at an occurrence of criticality accident. A definition of criticality, control of critical conditions, an aspect of accident, a rate of incident, damage, three sufferers, safety control method of criticality, engineering and administrative control, safety design of criticality, investigation of failure of safety control of JCO criticality accident, safety culture are explained. JCO criticality accident was caused with intention of disregarding regulation. It is important that we recognize the correct risk of criticality accident of nuclear fuel facility and prevent disasters. On the basis of them, we should establish safety culture. (S.Y.)

  3. Review of progress on enhanced accident tolerant fuel

    International Nuclear Information System (INIS)

    McCoy, K.; Dunn, B.; Kochendarfer, R.

    2015-01-01

    The accident at Fukushima has resulted in renewed interest in understanding the performance of nuclear power plants under accident conditions. Part of that interest is directed toward determining how to improve the performance of fuel during an accident that involves long exposures of the fuel to high temperatures. This paper describes the method being used by AREVA to select and evaluate approaches for improving the accident tolerance of nuclear fuel. The method involves starting with a large number of approaches that might enhance accident tolerance, and reviewing how well each approach satisfies a set of engineering requirements and goals. Among the approaches investigated we have the development of fuel pellets that contain a second phase to improve thermal conductivity, the use of molybdenum alloy tubing as fuel cladding, the use of oxidation-resistant coatings to zirconium cladding, and the use of nanoparticles in the coolant to improve heat transfer

  4. Melt Fragmentation Characteristics of Metal Fuel with Melt Injection Mass during Initiating Phase of SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Lee, Min Ho; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2016-05-15

    The PGSFR has adopted the metal fuel for its inherent safety under severe accident conditions. However, this fuel type is not demonstrated clearly yet under the such severe accident conditions. Additional experiments for examining these issues should be performed to support its licensing activities. Under initiating phase of hypothetic core disruptive accident (HCDA) conditions, the molten metal could be better dispersed and fragmented into the coolant channel than in the case of using oxide fuel. This safety strategy provides negative reactivity driven by a good dispersion of melt. If the coolant channel does not sufficient coolability, the severe recriticality would occur within the core region. Thus, it is important to examine the extent of melt fragmentation. The fragmentation behaviors of melt are closely related to a formation of debris shape. Once the debris shape is formed through the fragmentation process, its coolability is determined by the porosity or thermal conductivity of the melt. There were very limited studies for transient irradiation experiments of the metal fuel. These studies were performed by Transient Reactor Test Facility (TREAT) M series tests in U.S. The TREAT M series tests provided basic information of metal fuel performance under transient conditions. The effect of melt injection mass was evaluated in terms of the fragmentation behaviors of melt. These behaviors seemed to be similar between single-pin and multi-pins failure condition. However, the more melt was agglomerated in case of multi-pins failure.

  5. Preliminary Calculation on a Spent Fuel Pool Accident using GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehwan; Choi, Yu Jung; Hong, Tae Hyub; Kim, Hyeong-Taek [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    The probability of an accident happening at the spent fuel pool was believed to be quite low until the 2011 Fukushima accident occurred. Notably, large amount of spent fuel are normally stored in the spent fuel pool for a long time compared to the amount of fuel in the reactor core and the total heat released from the spent fuel is high enough to boil the water of the spent fuel pool when the cooling system does not operate. In addition, the enrichment and the burnup of the fuel have both increased in the past decade and heat generation from the spent fuel thereby has also increased. The failure of the cooling system at the spent fuel pool (hereafter, a loss-of-cooling accident) is one of the principal hypothetical causes of an accident that could occur at the spent fuel pool. In this paper, the preliminary calculation of a loss-of-cooling accident was performed. In this paper, the preliminary calculation of a loss-of cooling accident was performed with GOTHIC. The calculation results show boiling away of water in the spent fuel pool due to the loss-of-cooling accident and similar thermal performance of the spent fuel pool with previous research results.

  6. Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Wang, Yang; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Liu, Tong; Deng, Yongjun; Huang, Heng

    2015-01-01

    Highlights: • Analysis of severe accident scenarios for a PWR fueled with ATF system is performed. • A large-break LOCA without ECCS is analyzed for the PWR fueled with ATF system. • Extended SBO cases are discussed for the PWR fueled with ATF system. • The accident-tolerance of ATF system for application in PWR is illustrated. - Abstract: Experience gained in decades of nuclear safety research and previous nuclear accidents direct to the investigation of passive safety system design and accident-tolerant fuel (ATF) system which is now becoming a hot research point in the nuclear energy field. The ATF system is aimed at upgrading safety characteristics of the nuclear fuel and cladding in a reactor core where active cooling has been lost, and is preferable or comparable to the current UO 2 –Zr system when the reactor is in normal operation. By virtue of advanced materials with improved properties, the ATF system will obviously slow down the progression of accidents, allowing wider margin of time for the mitigation measures to work. Specifically, the simulation and analysis of a large break loss of coolant accident (LBLOCA) without ECCS and extended station blackout (SBO) severe accident are performed for a pressurized water reactor (PWR) loaded with ATF candidates, to reflect the accident-tolerance of ATF

  7. Fuel Performance Modeling of U-Mo Dispersion Fuel: The thermal conductivity of the interaction layers of the irradiated U-Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mistarhi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    U-Mo/Al dispersion fuel performed well at a low burn-up. However, higher burn-up and higher fission rate irradiation testing showed enhanced fuel meat swelling which was caused by high interaction layer growth and pore formation. The performance of the dispersion type fuel in the irradiation and un-irradiation environment is very important. During the fabrication of the dispersion type fuel an Interaction Layer (IL) is formed due to the inter-diffusion between the U-Mo fuel particles and the Al matrix which is an intermetallic compound (U,Mo)Alx. During irradiation, the IL becomes amorphous causing a further decrease in the thermal conductivity and an increase in the centerline temperature of the fuel meat. Several analytical models and numerical methods were developed to study the performance of the unirradiated U-Mo/Al dispersion fuel. Two analytical models were developed to study the performance of the irradiated U-Mo/Al dispersion fuel. In these models, the thermal conductivity of the IL was assumed to be constant. The properties of the irradiated U-Mo dispersion fuel have been investigated recently by Huber et al. The objective of this study is to develop a correlation for IL thermal conductivity during irradiation as a function of the temperature and fission density from the experimentally measured thermal conductivity of the irradiated U-Mo/Al dispersion fuel. The thermal conductivity of IL during irradiation was calculated from the experimentally measured data and a correlation was developed from the thermal conductivity of IL as a function of T and fission density.

  8. Accident analysis of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.; Chi, D. Y

    1998-03-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. The HANARO fuel test loop was designed to match the CANDU and PWR fuel operating conditions. The accident analysis was performed by RELAP5/MOD3 code based on FTL system designs and determined the detail engineering specification of in-pile test section and out-pile systems. The accident analysis results of FTL system could be used for the fuel and materials designer to plan the irradiation testing programs. (author). 23 refs., 20 tabs., 178 figs.

  9. Accident tolerant fuels for LWRs: A perspective

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J., E-mail: zinklesj@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Terrani, K.A.; Gehin, J.C.; Ott, L.J.; Snead, L.L. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

    2014-05-01

    The motivation for exploring the potential development of accident tolerant fuels in light water reactors to replace existing Zr alloy clad monolithic (U, Pu) oxide fuel is outlined. The evaluation includes a brief review of core degradation processes under design-basis and beyond-design-basis transient conditions. Three general strategies for accident tolerant fuels are being explored: modification of current state-of-the-art zirconium alloy cladding to further improve oxidation resistance (including use of coatings), replacement of Zr alloy cladding with an alternative oxidation-resistant high-performance cladding, and replacement of the monolithic ceramic oxide fuel with alternative fuel forms.

  10. Accident tolerant fuels for LWRs: A perspective

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Terrani, K.A.; Gehin, J.C.; Ott, L.J.; Snead, L.L.

    2014-01-01

    The motivation for exploring the potential development of accident tolerant fuels in light water reactors to replace existing Zr alloy clad monolithic (U, Pu) oxide fuel is outlined. The evaluation includes a brief review of core degradation processes under design-basis and beyond-design-basis transient conditions. Three general strategies for accident tolerant fuels are being explored: modification of current state-of-the-art zirconium alloy cladding to further improve oxidation resistance (including use of coatings), replacement of Zr alloy cladding with an alternative oxidation-resistant high-performance cladding, and replacement of the monolithic ceramic oxide fuel with alternative fuel forms

  11. Modeling atmospheric dispersion for reactor accident consequence evaluation

    International Nuclear Information System (INIS)

    Alpert, D.J.; Gudiksen, P.H.; Woodard, K.

    1982-01-01

    Atmospheric dispersion models are a central part of computer codes for the evaluation of potential reactor accident consequences. A variety of ways of treating to varying degrees the many physical processes that can have an impact on the predicted consequences exists. The currently available models are reviewed and their capabilities and limitations, as applied to reactor accident consequence analyses, are discussed

  12. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 - Al dispersion fuels, LEU type (19.75 % 235 U) with uranium densities of, respectively, 3.2 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  13. Assessment of WWER fuel condition in design basis accident

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.; Sokolov, N.; Andreeva-Andrievskaya, L.; Vlasov, Yu.; Nechaeva, O.; Salatov, A.

    1994-01-01

    The fuel behaviour in design basis accidents is assessed by means of the verified code RAPTA-5. The code uses a set of high temperature physico-chemical properties of the fuel components as determined for commercially produced materials, fuel rod simulators and fuel rod bundles. The WWER fuel criteria available in Russia for design basis accidents do not generally differ from the similar criteria adopted for PWR's. 12 figs., 11 refs

  14. Development of Accident Scenario for Interim Spent Fuel Storage Facility Based on Fukushima Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongjin; Choi, Kwangsoon; Yoon, Hyungjoon; Park, Jungsu [KEPCO-E and C, Yongin (Korea, Republic of)

    2014-05-15

    700 MTU of spent nuclear fuel is discharged from nuclear fleet every year and spent fuel storage is currently 70.9% full. The on-site wet type spent fuel storage pool of each NPP(nuclear power plants) in Korea will shortly exceed its storage limit. Backdrop, the Korean government has rolled out a plan to construct an interim spent fuel storage facility by 2024. However, the type of interim spent fuel storage facility has not been decided yet in detail. The Fukushima accident has resulted in more stringent requirements for nuclear facilities in case of beyond design basis accidents. Therefore, there has been growing demand for developing scenario on interim storage facility to prepare for beyond design basis accidents and conducting dose assessment based on the scenario to verify the safety of each type of storage.

  15. Dispersion parameters: impact on calculated reactor accident consequences

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, D.C.

    1979-01-01

    Much attention has been given in recent years to the modeling of the atmospheric dispersion of pollutants released from a point source. Numerous recommendations have been made concerning the choice of appropriate dispersion parameters. A series of calculations has been performed to determine the impact of these recommendations on the calculated consequences of large reactor accidents. Results are presented and compared in this paper.

  16. Assessment of WWER fuel condition in design basis accident

    Energy Technology Data Exchange (ETDEWEB)

    Bibilashvili, Yu; Sokolov, N; Andreeva-Andrievskaya, L; Vlasov, Yu; Nechaeva, O; Salatov, A [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation)

    1994-12-31

    The fuel behaviour in design basis accidents is assessed by means of the verified code RAPTA-5. The code uses a set of high temperature physico-chemical properties of the fuel components as determined for commercially produced materials, fuel rod simulators and fuel rod bundles. The WWER fuel criteria available in Russia for design basis accidents do not generally differ from the similar criteria adopted for PWR`s. 12 figs., 11 refs.

  17. Improving performance with accident tolerant-fuels

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    After the Fukushima reactor accident, efforts to improve risk management in nuclear operations have included the intensification of research on accident-tolerant fuels (ATFs). In this investigation, the physical properties of recently developed ATFs were compared with those of the current standard fuel, UO 2 - Zr. The goals for innovative fuel design include a rigorous characterization of the thermal, mechanical, and chemical considerations. The intentions are to lengthen the burnup cycle, raise the power density, and improve safety. Fuels must have a high uranium density - above that supported by UO 2 - and possess a coating that exhibits better oxidation resistance than Zircaloys. ATFs such as U 3 Si 2 , UN, and UC contain a higher uranium density and thermal conductivity than UO 2 , providing significant benefits. The ideal combination of fuel and cladding must increase performance in a loss-of-coolant accident. However, U 3 Si 2 , UN, and UC have a disadvantage; their respective swelling rates are higher than that of UO 2 . These ATFs also have thermal conductivities approximately four times higher than that of UO 2 . A study was conducted investigating the hydrogen generated by the oxidation of zirconium alloys in contact with steam using cladding options such as Fe-Cr-Al and silicon carbide. It was confirmed that ferritic alloys offer a better response under severe conditions, because of their mechanical properties as creep rate. The findings of this study indicate that advanced fuels should replace UO 2 - Zr as the fuel system of choice. (author)

  18. Improving performance with accident tolerant-fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    After the Fukushima reactor accident, efforts to improve risk management in nuclear operations have included the intensification of research on accident-tolerant fuels (ATFs). In this investigation, the physical properties of recently developed ATFs were compared with those of the current standard fuel, UO{sub 2} - Zr. The goals for innovative fuel design include a rigorous characterization of the thermal, mechanical, and chemical considerations. The intentions are to lengthen the burnup cycle, raise the power density, and improve safety. Fuels must have a high uranium density - above that supported by UO{sub 2} - and possess a coating that exhibits better oxidation resistance than Zircaloys. ATFs such as U{sub 3}Si{sub 2}, UN, and UC contain a higher uranium density and thermal conductivity than UO{sub 2}, providing significant benefits. The ideal combination of fuel and cladding must increase performance in a loss-of-coolant accident. However, U{sub 3}Si{sub 2}, UN, and UC have a disadvantage; their respective swelling rates are higher than that of UO{sub 2}. These ATFs also have thermal conductivities approximately four times higher than that of UO{sub 2}. A study was conducted investigating the hydrogen generated by the oxidation of zirconium alloys in contact with steam using cladding options such as Fe-Cr-Al and silicon carbide. It was confirmed that ferritic alloys offer a better response under severe conditions, because of their mechanical properties as creep rate. The findings of this study indicate that advanced fuels should replace UO{sub 2} - Zr as the fuel system of choice. (author)

  19. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  20. Use of activity measurements in the plume from Chernobyl to deduce fuel state before, during and after the accident

    International Nuclear Information System (INIS)

    Longworth, J.P.; Tobias, A.

    1986-07-01

    Work performed at Berkely Nuclear Laboratories both prior to the meeting in Vienna at which USSR gave full details of the Chernobyl accident and after that meeting is recorded. Plume data from Western Europe were used to deduce the likely damage to the fuel and its previous irradiation history. The note concludes that the source to the environment consisted of an initial dispersion of fuel particulate followed by a prolonged release at a lower rate, the total release being some 3% of the core inventory of fuel. Early and late in the release period it was enhanced in volatile species. Damage to the fuel was thus due both to mechanical disruption and to high temperatures. During the early dispersive event high temperatures (probably approaching fuel melting) were reached in some of the core, though the proportion of the fuel affected may have been small. (UK)

  1. Calculation of spent fuel pool severe accident with MELCOR

    International Nuclear Information System (INIS)

    Deng Jian; Xiang Qing'an; Zhou Kefeng

    2014-01-01

    A calculation model was established for spent fuel pool (SFP) using MELCOR code to study the severe accident phenomena caused by the long term station black-out (SBO), including spent fuel heatup, zirconium cladding oxidation, and the injection into SFP to mitigate the severe accident. The results show that the severe accident progression is slow and relates directly with the initial water level in SFP. It is illustrated that the injection into SFP is one of the best mitigated measures for the SFP severe accident. (authors)

  2. International collaboration for development of accident-resistant LWR fuel. International Collaboration for Development of Accident Resistant Light Water Reactor Fuel

    International Nuclear Information System (INIS)

    Sowder, Andrew

    2013-01-01

    Following the March 2011 multi-unit accident at the Fukushima Daiichi plant, there has been increased interest in the development of breakthrough nuclear fuel designs that can reduce or eliminate many of the outcomes of a severe accident at a light water reactor (LWR) due to loss of core cooling following an extended station blackout or other initiating event. With this interest and attention comes a unique opportunity for the nuclear industry to fundamentally change the nature and impact of severe accidents. Clearly, this is no small feat. The challenges are many and the technical barriers are high. Early estimates for moving maturing R and D concepts to the threshold of commercialisation exceed one billion USD. Given the anticipated effort and resources required, no single entity or group can succeed alone. Accordingly, the Electric Power Research Institute (EPRI) sees the need for and promise of cooperation among many stakeholders on an international scale to bring about what could be transformation in LWR fuel performance and robustness. An important initial task in any R and D programme is to define the goals and metrics for measuring success. As starting points for accident-tolerant fuel development, the extension of core coolability under loss of coolant conditions and the elimination or reduction of hydrogen generation are widely recognised R and D endpoints for deployment. Furthermore, any new LWR fuel technology will, at a minimum, need to (1) be compatible with the safe, economic operation of existing plants and (2) maintain acceptable or improve nuclear fuel performance under normal operating conditions. While the primary focus of R and D to date has been on cladding and fuel improvements, there are a number of other potential paths to improve outcomes following a severe accident at an LWR that include modifications to other fuel hardware and core internals to fully address core coolability, criticality, and hydrogen generation concerns. The US

  3. Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase

    2013-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and

  4. Credible accident analyses for TRIGA and TRIGA-fueled reactors

    International Nuclear Information System (INIS)

    Hawley, S.C.; Kathren, R.L.

    1982-04-01

    Credible accidents were developed and analyzed for TRIGA and TRIGA-fueled reactors. The only potential for offsite exposure appears to be from a fuel-handling accident that, based on highly conservative assumptions, would result in dose equivalents of less than or equal to 1 mrem to the total body from noble gases and less than or equal to 1.2 rem to the thyroid from radioiodines. Credible accidents from excess reactivity insertions, metal-water reactions, lost, misplaced, or inadvertent experiments, core rearrangements, and changes in fuel morphology and ZrH/sub x/ composition are also evaluated, and suggestions for further study provided

  5. Truck accident involving unirradiated nuclear fuel

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.

    1992-07-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 nuclear fuel assemblies in 12 containers on Interstate 1-91 in Springfield, Massachusetts. This paper documents the mechanical circumstances of the accident and the physical environment to which the containers were exposed and the response of the containers and their contents. The accident involved four impacts where the truck was struck by the car, impacted on the center guardrail, impacted on the outer concrete barrier and came to rest against the center guardrail. The impacts were followed by a fire that began in the engine compartment, spread to the.tractor and cab, and eventually spread to the trailer and payload. The fire lasted for about three hours and the packages were involved in the fire for about two hours. As a result of the fire, the tractor-trailer was completely destroyed and the packages were exposed to flames with temperatures between 1300 degrees F and 1800 degrees F. The fuel assemblies remained intact during the accident and there was no release of any radioactive material during the accident. This was a very severe accident; however, the injuries were minor and at no time was the public health and safety at risk

  6. Truck accident involving unirradiated nuclear fuel

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.

    1993-01-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 unirradiated nuclear fuel assemblies in 12 containers on Interstate I-91 in Springfield, Massachusetts. This paper documents the mechanical circumstances of the accident and assesses the physical environment to which the containers were exposed and the response of the containers and their contents. The accident involved four impacts where the truck was struck by the car, impacted on the center guardrail, impacted on the outer concrete barrier and came to rest against the center guardrail. The impacts were followed by a fire that began in the engine compartment, spread to the tractor and cab, and eventually spread to the trailer and payload. The fire lasted for about three hours and the packages were involved in the fire for about two hours. As a result of the fire, the tractor-trailer was completely destroyed and the packages were exposed to flames with temperatures between 1,300 F and 1,800 F. The fuel assemblies remained intact during the accident and there was no release of any radioactive material during the accident. This was a very severe accident; however, the injuries were minor and at no time was the public health and safety at risk

  7. Behaviour of molten reactor fuels under accident conditions

    International Nuclear Information System (INIS)

    Xavier Swamikannu, A.; Mathews, C.K.

    1980-01-01

    The behaviour of molten reactor fuels under accident conditions has received considerable importance in recent times. The chemical processes that occur in the molten state among the fuel, the clad components and the concrete of the containment building under the conditions of a core melt down accident in oxide fuelled reactors have been reviewed with the purpose of identifying areas of developmental work required to be performed to assess and minimize the consequences of such an accident. This includes the computation and estimation of vapour pressure of various gaseous species over the fuel, the clad and the coolant, providing of sacrificial materials in the concrete in order to protect the containment building in order to prevent release of radioactive gases into the atmosphere and understanding the distribution and chemical state of fission products in the molten fuel in order to provide for the effective removal of their decay heats. (auth.)

  8. Preliminary neutronic assessment for ATF (Accident Tolerant Fuel) based on iron alloy

    International Nuclear Information System (INIS)

    Abe, Alfredo; Carluccio, Thiago; Piovezan, Pamela; Giovedi, Claudia; Martins, Marcelo R.

    2015-01-01

    After Fukushima Daiichi nuclear accident in 2011, the nuclear fuel performance under accident condition became a very important issue and currently different research and development program are in progress toward to reliability and withstand under accident condition. These initiatives are known as ATF (Accident Tolerant Fuel) R and D program, which many countries with different research institutes, fuel vendors and others are nowadays involved. Accident Tolerant Fuel (ATF) can be defined as enhanced fuel which can tolerate loss of active cooling system capability for a considerably longer time period and the fuel/cladding system can be maintained without significant degradation and can also improve the fuel performance during normal operations and transients, as well as design-basis accident (DBA) and beyond design-basis (BDBA) accident. Different materials have being proposed as fuel cladding candidates considering thermo-mechanical properties and lower reaction kinetic with steam and slower hydrogen production. The aim of this work is to perform a neutronic assessment for several cladding candidates based on iron alloy considering a standard PWR fuel rod (fuel pellet and dimension). The purpose of the assessment is to address different parameters that might contribute for possible neutronic reactivity gain in order to overcome the penalty due to increase of neutron absorption in the cladding materials. All the neutronic assessment is performed using MCNP, Monte Carlo code. (author)

  9. A new NEA expert group on accident-tolerant fuels

    International Nuclear Information System (INIS)

    Massara, Simone

    2014-01-01

    After the events at the Fukushima Daiichi nuclear power plant in March 2011, enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion. One outcome of those discussions has been to promote research into the development of advanced fuels and more robust reactor system technologies with improved performance, reliability and safety characteristics during normal operations and under accident conditions. The Fukushima Daiichi accident has highlighted in particular the importance of reducing hydrogen production rates and increasing fission product retention during extended loss of cooling accidents. In this context, the NEA organised two international workshops to share information and discuss technical and safety issues associated with the development of accident-tolerant fuels (ATFs) for LWRs. Presentations were given by experts from various organisations, industry and regulatory bodies of NEA member countries, as well as from representatives of international bodies. The presentations focused on lessons learnt from the Fukushima Daiichi accident, the desired characteristics of ATFs, potential design options and candidate materials, as well as the current state of the art in related modelling and simulation methods. During discussions following these workshop presentations, delegates agreed to establish a collaborative framework on ATFs within the NEA. Reporting to the Nuclear Science Committee, the Expert Group on Accident-tolerant Fuels for Light Water Reactors (EGATFL) will define and carry out a programme of work to help advance the scientific knowledge needed to provide the technical underpinning for the development of advanced LWR fuels with more enhanced accident tolerance compared to currently used zircaloy/UO 2 fuels. The group will foster information exchange on material properties and relevant phenomenological experiments, carry out state-of-the-art reviews, organise benchmark studies and foster international

  10. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  11. Thermal behavior analysis of U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  12. Thermal behavior analysis of U-Mo/Al dispersion fuel

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu

    2004-01-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  13. High density dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1996-01-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm 3 of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm -3 with U 3 Si 2 as fuel. High-density uranium compounds offer no real density advantage over U 3 Si 2 and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U 3 Si has approximately a 30% higher uranium density but the density of the U 6 X compounds would yield the factor 1.5 needed to achieve 9 g cm -3 uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure α-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic γ phase at low temperatures where normally α phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing

  14. Fuel temperature analysis method for channel-blockage accident in HTTR

    International Nuclear Information System (INIS)

    Maruyama, So; Fujimoto, Nozomu; Sudo, Yukio; Kiso, Yoshihiro; Hayakawa, Hitoshi

    1994-01-01

    During operation of the High Temperature Engineering Test Reactor (HTTR), coolability must be maintained without core damage under all postulated accident conditions. Channel blockage of a fuel element was selected as one of the design-basis accidents in the safety evaluation of the reactor. The maximum fuel temperature for such a scenario has been evaluated in the safety analysis and is compared to the core damage limits.For the design of the HTTR, an in-core thermal and hydraulic analysis code ppercase[flownet/trump] was developed. This code calculates fuel temperature distribution, not only for a channel blockage accident but also for transient conditions. The validation of ppercase[flownet/trump] code was made by comparison of the analytical results with the results of thermal and hydraulic tests by the Helium Engineering Demonstration Loop (HENDEL) multi-channel test rig (T 1-M ), which simulated one fuel column in the core. The analytical results agreed well with the experiments in which the HTTR operating conditions were simulated.The maximum fuel temperature during a channel blockage accident is 1653 C. Therefore, it is confirmed that the integrity of the core is maintained during a channel blockage accident. ((orig.))

  15. Fuel Behaviour at High During RIA and LOCA Accidents

    International Nuclear Information System (INIS)

    Barrio del Juanes, M. T.; Garcia Cuesta, J. C.; Vallejo Diaz, I.; Herranz Puebla

    2001-01-01

    Safety analysis of high burnup fuel requires ensuring the acceptable performance under design basis accidents, in particular during conditions representative of Reactivity Accidents (RIA) and Loss-of-Coolant Accidents (LOCA). The report's objective is to compile the state of the art on these issues. This is mainly focused in the effort made to define the applicability of safety criteria to the high burnup fuel. Irradiation damage modifies fuel rod properties, thus the probability of fuel to withstand thermal and mechanical loads during an accident could be quite different compared with unirradiated fuel. From the thermal point of view, fuel conductivity is the most affected property, decreasing notably with irradiation. From the mechanical point of view, a change in the pellet microstructure at its periphery is observed at high burnup (remiffect). Cladding is also effected during operation, showing a significant external and internal corrosion. All these phenomena result in the decrease of efficiency in heat transfer an in the reduction of capability to accommodate mechanical loads; this situation is especially significant at high burnup, when pellet-cladding mechanical interaction is present. Knowledge about these phenomena is not possible without appropriate experimental programmes. The most relevant have been performed in France, Japan, United States and Russia. Results obtained with fuel at high burnup show significant differences with respect to the phenomena observed in fuel at the present discharge burnup. Indeed, this is the encouragement to research about this occurrence. This study is framed within the CSN-CIEMAT agreement, about Fuel Thermo-Mechanical Behaviour at High Burnup. (Author) 172 refs

  16. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    International Nuclear Information System (INIS)

    Gamble, K. A.; Hales, J. D.; Yu, J.; Zhang, Y.; Bai, X.; Andersson, D.; Patra, A.; Wen, W.; Tome, C.; Baskes, M.; Martinez, E.; Stanek, C. R.; Miao, Y.; Ye, B.; Hofman, G. L.; Yacout, A. M.; Liu, W.

    2015-01-01

    U 3 Si 2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy's Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U 3 Si 2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  17. Spent fuel shipping cask accident evaluation

    International Nuclear Information System (INIS)

    Fields, S.R.

    1975-12-01

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel

  18. 30 years of the Goiania Accident: a comparative study with other radioactivity dispersion events

    International Nuclear Information System (INIS)

    Smith, Ricardo Bastos; Vicente, Roberto

    2017-01-01

    The year 2017 marks 30 years since the radioactive accident that occurred in the city of Goiania, capital of the state of Goias. It was the largest radiological accident in Brazil, and one of the largest in the world occurring outside nuclear facilities. Regarding the accidents at nuclear power plants, two of the biggest were Chernobyl in Ukraine, a year and a half before Goiania, and the Fukushima accident in Japan, in 2011. Different amounts of radioactive material were dispersed in the environment in each of these events. However, each one’s main pathway of dispersion was different: the accident of Goiania was terrestrial, Chernobyl was at the atmosphere, and Fukushima was mainly in the ocean. This work aims to study these different amounts, comparing such activities. In addition, it proposes to compare the sea dispersion of Fukushima with the amount of radioactive waste dumped in the oceans, when the release of radioactive waste at sea was permitted. It also proposes to compare the Chernobyl aerial dispersion with the radioactive material dissipated in the atmosphere, resulting from the more than 500 atmospheric nuclear tests conducted between 1945 and 1962 by the United States, the former Soviet Union, England, France and China. (author)

  19. 30 years of the Goiania Accident: a comparative study with other radioactivity dispersion events

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ricardo Bastos; Vicente, Roberto, E-mail: rbsmith@ipen.br, E-mail: rvicente@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The year 2017 marks 30 years since the radioactive accident that occurred in the city of Goiania, capital of the state of Goias. It was the largest radiological accident in Brazil, and one of the largest in the world occurring outside nuclear facilities. Regarding the accidents at nuclear power plants, two of the biggest were Chernobyl in Ukraine, a year and a half before Goiania, and the Fukushima accident in Japan, in 2011. Different amounts of radioactive material were dispersed in the environment in each of these events. However, each one’s main pathway of dispersion was different: the accident of Goiania was terrestrial, Chernobyl was at the atmosphere, and Fukushima was mainly in the ocean. This work aims to study these different amounts, comparing such activities. In addition, it proposes to compare the sea dispersion of Fukushima with the amount of radioactive waste dumped in the oceans, when the release of radioactive waste at sea was permitted. It also proposes to compare the Chernobyl aerial dispersion with the radioactive material dissipated in the atmosphere, resulting from the more than 500 atmospheric nuclear tests conducted between 1945 and 1962 by the United States, the former Soviet Union, England, France and China. (author)

  20. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  1. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-I: Theory and method

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained

  2. Performance Evaluation of Metallic Dispersion Fuel for Advanced Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Park, Jong Man; Kim, Chang Kyu; Chae, Hee Taek; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, New York (United States)

    2007-07-01

    Uranium alloys with a high uranium density has been developed for high power research reactor fuel using low-enriched uranium (LEU). U-Mo alloys have been developed as candidate fuel material because of excellent irradiation behavior. Irradiation behavior of U-Mo/Al dispersion fuel has been investigated to develop high performance research reactor fuel as RERTR international research program. While plate-type and rod-type dispersion fuel elements are used for research reactors, HANARO uses rod-type dispersion fuel elements. PLATE code is developed by Argonne National Laboratory for the performance evaluation of plate-type dispersion fuel, but there is no counterpart for rod-type dispersion fuel. Especially, thermal conductivity of fuel meat decreases during the irradiation mainly because of interaction layer formation at the interface between the U-Mo fuel particle and Al matrix. The thermal conductivity of the interaction layer is not as high as the Al matrix. The growth of interaction layer is interactively affected by the temperature of fuel because it is associated with a diffusion reaction which is a thermally activated process. It is difficult to estimate the temperature profile during irradiation test due to the interdependency of fuel temperature and thermal conductivity changed by interaction layer growth. In this study, fuel performance of rod-type U-Mo/Al dispersion fuels during irradiation tests were estimated by considering the effect of interaction layer growth on the thermal conductivity of fuel meat.

  3. Performance Evaluation of Metallic Dispersion Fuel for Advanced Research Reactors

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Kim, Chang Kyu; Chae, Hee Taek; Song, Kee Chan; Kim, Yeon Soo

    2007-01-01

    Uranium alloys with a high uranium density has been developed for high power research reactor fuel using low-enriched uranium (LEU). U-Mo alloys have been developed as candidate fuel material because of excellent irradiation behavior. Irradiation behavior of U-Mo/Al dispersion fuel has been investigated to develop high performance research reactor fuel as RERTR international research program. While plate-type and rod-type dispersion fuel elements are used for research reactors, HANARO uses rod-type dispersion fuel elements. PLATE code is developed by Argonne National Laboratory for the performance evaluation of plate-type dispersion fuel, but there is no counterpart for rod-type dispersion fuel. Especially, thermal conductivity of fuel meat decreases during the irradiation mainly because of interaction layer formation at the interface between the U-Mo fuel particle and Al matrix. The thermal conductivity of the interaction layer is not as high as the Al matrix. The growth of interaction layer is interactively affected by the temperature of fuel because it is associated with a diffusion reaction which is a thermally activated process. It is difficult to estimate the temperature profile during irradiation test due to the interdependency of fuel temperature and thermal conductivity changed by interaction layer growth. In this study, fuel performance of rod-type U-Mo/Al dispersion fuels during irradiation tests were estimated by considering the effect of interaction layer growth on the thermal conductivity of fuel meat

  4. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion

    Science.gov (United States)

    Shibata, Hiroki; Ukai, Shigeharu; Oono, Naoko H.; Sakamoto, Kan; Hirai, Mutsumi

    2018-04-01

    FeCrAl-ODS ferritic steels with Ce-oxide dispersion instead of Y-oxide were produced for the accident tolerant fuel cladding of the light water reactor. Excess oxygen (Ex.O) was added to improve the mechanical property. The tensile strength at Ex.O = 0 is around 200 MPa at 700 °C, mainly owing to dispersed Ce2O3 particles in less than 10 nm size. The formation of the fine Ce2O3 particles is dominated by a coherent interface with ferritic matrix. With increasing Ex.O, an increased of number density of coarser Ce-Al type oxide particles over 10 nm size is responsible for the improvement of the tensile strength. Change of the type of oxide particle, CeO2, Ce2O3, CeAlO3, Al2O3, in FeCrAl-ODS steel was thermodynamically analyzed as a parameter of Ex.O.

  5. Accident consequence assessments with different atmospheric dispersion models

    International Nuclear Information System (INIS)

    Panitz, H.J.

    1989-11-01

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straight-line Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different dispersion models on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been performed. The study showed that there are trajectory models available which can be applied in ACAs and that they provide more realistic results of ACAs than straight-line Gaussian models. This led to a completely novel concept of atmospheric dispersion modelling in which two different distance ranges of validity are distinguished: the near range of some ten kilometres distance and the adjacent far range which are assigned to respective trajectory models. (orig.) [de

  6. Development Status of Accident Tolerant Fuels for Light Water Reactors in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Ho; Kim, Hyun Gil; In, Wang Kee; Kim, Weon Ju; Koo, Yang Hyum [KAERI, Daejeon (Korea, Republic of); Lee, Seung Jae [KEPCONF, Daejeon (Korea, Republic of)

    2016-05-15

    Research on accident tolerant fuels (ATFs) is aimed at developing innovative fuels, which can mitigate or prevent the consequences of accidents. In Korea, innovative concepts are being developed to improve fuel safety and reliability of LWRs during accident events and normal operations. ATF technologies will be developed and commercialized through a sequence of long-lead and extensive activities. The interim milestone for new fuel program is that we would be ready for an irradiation test in commercial reactor by 2021. This presentation deals with the status of ATF development in KOREA and plan to implement new fuel technology successfully in commercial nuclear power plants.

  7. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    Directory of Open Access Journals (Sweden)

    Yoonhee Lee

    2016-06-01

    Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  8. Modeling of corium dispersion in DCH accidents

    International Nuclear Information System (INIS)

    Wu, Q.

    1996-01-01

    A model that governs the dispersion process in the direct containment heating (DCH) reactor accident scenario is developed by a stepwise approach. In this model, the whole transient is subdivided into four phases with an isothermal assumption. These are the liquid and gas discharge, the liquid film flow in the cavity before gas blowdown, the liquid and gas flow in the cavity with droplet entrainment, and the liquid transport and re-entrainment in the subcompartment. In each step, the dominant driving mechanisms are identified to construct the governing equations. By combining all the steps together, the corium dispersion information is obtained in detail. The key parameters are predicted quantitatively. These include the fraction of liquid that flows out of the cavity before gas blowdown, the dispersion fraction and the mean droplet diameter in the cavity, the cavity pressure rise due to the liquid friction force, and the dispersion fractions in the containment via different paths. Compared with the data of the 1:10 scale experiments carried out at Purdue University, fairly good agreement is obtained. A stand-alone prediction of the corium dispersion under prototypic Zion reactor conditions is carried out by assuming an isothermal process without chemical reactions. (orig.)

  9. Dispersion fuel for nuclear research facilities

    International Nuclear Information System (INIS)

    Kushtym, A.V.; Belash, M.M.; Zigunov, V.V.; Slabospitska, O.O.; Zuyok, V.A.

    2017-01-01

    Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-XD with dispersion composition UO_2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metallographic analyses and corrosion tests of fuel pellets are given in this paper

  10. In-core fuel disruption experiments simulating LOF accidents for homogeneous and heterogeneous core LMFBRs: FD2/4 series

    International Nuclear Information System (INIS)

    Wright, S.A.; Mast, P.K.; Schumacher, Gustav; Fischer, E.A.

    1982-01-01

    A series of Fuel Disruption (FD) experiments simulating LOF accidents transients for homogeneous- and heterogeneous-core LMFBRs is currently being performed in the Annular Core Research Reactor at SNL. The test fuel is observed with high-speed cinematography to determine the timing and the mode of the fuel disruption. The five experiments performed to date show that the timing and mode of fuel disruption depend on the power level, fuel temperature (after preheat and at disruption), and the fuel temperature gradient. Two basic modes of fuel disruption were observed; solid-state disruption and liquid-state swelling followed by slumping. Solid-state dispersive fuel behavior (several hundred degrees prior to fuel melting) is only observed at high power levels (6P 0 ), low preheat temperatures (2000 K), and high thermal gradients (2800 K/mm). The swelling/slumping behavior was observed in all cases near the time of fuel melting. Computational models have been developed that predict the fuel disruption modes and timing observed in the experiments

  11. Development of Methodology for Spent Fuel Pool Severe Accident Analysis Using MELCOR Program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Tae; Shin, Jae-Uk [RETech. Co. LTD., Yongin (Korea, Republic of); Ahn, Kwang-Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The general reason why SFP severe accident analysis has to be considered is that there is a potential great risk due to the huge number of fuel assemblies and no containment in a SFP building. In most cases, the SFP building is vulnerable to external damage or attack. In contrary, low decay heat of fuel assemblies may make the accident processes slow compared to the accident in reactor core because of a great deal of water. In short, its severity of consequence cannot exclude the consideration of SFP risk management. The U.S. Nuclear Regulatory Commission has performed the consequence studies of postulated spent fuel pool accident. The Fukushima-Daiichi accident has accelerated the needs for the consequence studies of postulated spent fuel pool accidents, causing the nuclear industry and regulatory bodies to reexamine several assumptions concerning beyond-design basis events such as a station blackout. The tsunami brought about the loss of coolant accident, leading to the explosion of hydrogen in the SFP building. Analyses of SFP accident processes in the case of a loss of coolant with no heat removal have studied. Few studies however have focused on a long term process of SFP severe accident under no mitigation action such as a water makeup to SFP. USNRC and OECD have co-worked to examine the behavior of PWR fuel assemblies under severe accident conditions in a spent fuel rack. In support of the investigation, several new features of MELCOR model have been added to simulate both BWR fuel assembly and PWR 17 x 17 assembly in a spent fuel pool rack undergoing severe accident conditions. The purpose of the study in this paper is to develop a methodology of the long-term analysis for the plant level SFP severe accident by using the new-featured MELCOR program in the OPR-1000 Nuclear Power Plant. The study is to investigate the ability of MELCOR in predicting an entire process of SFP severe accident phenomena including the molten corium and concrete reaction. The

  12. Fuel oil and dispersant toxicity to the Antarctic sea urchin (Sterechinus neumayeri).

    Science.gov (United States)

    Alexander, Frances J; King, Catherine K; Reichelt-Brushett, Amanda J; Harrison, Peter L

    2017-06-01

    The risk of a major marine fuel spill in Antarctic waters is increasing, yet there are currently no standard or suitable response methods under extreme Antarctic conditions. Fuel dispersants may present a possible solution; however, little data exist on the toxicity of dispersants or fuels to Antarctic species, thereby preventing informed management decisions. Larval development toxicity tests using 3 life history stages of the Antarctic sea urchin (Sterechinus neumayeri) were completed to assess the toxicity of physically dispersed, chemically dispersed, and dispersant-only water-accommodated fractions (WAFs) of an intermediate fuel oil (IFO 180, BP) and the chemical dispersant Slickgone NS (Dasic International). Despite much lower total petroleum hydrocarbon concentrations, physically dispersed fuels contained higher proportions of low-to-intermediate weight carbon compounds and were generally at least an order of magnitude more toxic than chemically dispersed fuels. Based on concentrations that caused 50% abnormality (EC50) values, the embryonic unhatched blastula life stage was the least affected by fuels and dispersants, whereas the larval 4-armed pluteus stage was the most sensitive. The present study is the first to investigate the possible implications of the use of fuel dispersants for fuel spill response in Antarctica. The results indicate that the use of a fuel dispersant did not increase the hydrocarbon toxicity of IFO 180 to the early life stages of Antarctic sea urchins, relative to physical dispersal. Environ Toxicol Chem 2017;36:1563-1571. © 2016 SETAC. © 2016 SETAC.

  13. Fuel models and results from the TRAC-PF1/MIMAS TMI-2 accident calculation

    International Nuclear Information System (INIS)

    Schwegler, E.C.; Maudlin, P.J.

    1983-01-01

    A brief description of several fuel models used in the TRAC-PF1/MIMAS analysis of the TMI-2 accident is presented, and some of the significant fuel-rod behavior results from this analysis are given. Peak fuel-rod temperatures, oxidation heat production, and embrittlement and failure behavior calculated for the TMI-2 accident are discussed. Other aspects of fuel behavior, such as cladding ballooning and fuel-cladding eutectic formation, were found not to significantly affect the accident progression

  14. Influence of fuel-matrix interaction on the breakaway swelling of U-Mo dispersion fuel in Al

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Yeon Soo [Nuclear Engineering Division, Argonne National Laboratory, Arogonne (United States)

    2014-04-15

    In order to advance understanding of the breakaway swelling behavior of U-Mo/Al dispersion fuel under a high-power irradiation condition, the effects of fuel-matrix interaction on the fuel performance of U-Mo/Al dispersion fuel were investigated. Fission gas release into large interfacial pores between interaction layers and the Al matrix was analyzed using both mechanistic models and observations of the post-irradiation examination results of U-Mo dispersion fuels. Using the model predictions, advantageous fuel design parameters are recommended to prevent breakaway swelling.

  15. INFLUENCE OF FUEL-MATRIX INTERACTION ON THE BREAKAWAY SWELLING OF U-MO DISPERSION FUEL IN AL

    OpenAIRE

    HO JIN RYU; YEON SOO KIM

    2014-01-01

    In order to advance understanding of the breakaway swelling behavior of U-Mo/Al dispersion fuel under a high-power irradiation condition, the effects of fuel-matrix interaction on the fuel performance of U-Mo/Al dispersion fuel were investigated. Fission gas release into large interfacial pores between interaction layers and the Al matrix was analyzed using both mechanistic models and observations of the post-irradiation examination results of U-Mo dispersion fuels. Using the model prediction...

  16. Analysis of tritium mission FMEF/FAA fuel handling accidents

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1997-11-18

    The Fuels Material Examination Facility/Fuel Assembly Area is proposed to be used for fabrication of mixed oxide fuel to support the Fast Flux Test Facility (FFTF) tritium/medical isotope mission. The plutonium isotope mix for the new mission is different than that analyzed in the FMEF safety analysis report. A reanalysis was performed of three representative accidents for the revised plutonium mix to determine the impact on the safety analysis. Current versions computer codes and meterology data files were used for the analysis. The revised accidents were a criticality, an explosion in a glovebox, and a tornado. The analysis concluded that risk guidelines were met with the revised plutonium mix.

  17. Post-accident fuel relocation and heat removal in the LMFBR

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Tsai, S.S.; Gasser, R.D.

    1976-08-01

    Assessment of the dynamics of post-accident fuel relocation and heat removal is an important aspect of the evaluation of the consequences of a hypothetical accident in an LMFBR. Such an assessment is of particular importance in the evaluation of the post-accident radiological doses around the reactor site. In the present evaluation particular attention is given to the design features of the Clinch River Breeder Reactor Plant (CRBR). Fuel relocation and heat removal, assuming certain conditions have resulted in core disruption, are discussed. The discussion of events and phenomena involved in the relocation processes is centered around the resulting patterns of heat source distribution. The factors influencing fuel relocation and distribution in the inlet and outlet plena of the reactor vessel are discussed. The current technology of in-vessel heat removal is applied to the design of the CRBR reactor. Both fuel debris cooling limits and overall coolant flow in the reactor under natural convection conditions are explored. Some of the uncertainties in ex-vessel fuel behavior are addressed. In particular, the effect of melting the cavity bed on the rate of growth of a molten fuel pool is investigated

  18. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  19. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  20. Bioaccumulation and subacute toxicity of mechanically and chemically dispersed heavy fuel oil in sea urchin (Glyptocidaris crenulari

    Directory of Open Access Journals (Sweden)

    Bailin Yang

    2015-12-01

    Full Text Available Oil spills have a disastrous ecological impact on ecosystems but few data are available for the effects of dispersed oil on benthic marine organisms. In order to provide information for assessment, we analysed the hydrocarbon compositions of the mechanically dispersed water accommodated fraction (MDWAF and the chemically dispersed water accommodated fraction (CDWAF of No. 120 fuel oil, their bioaccumulation, and DNA damage related to oil exposure, using the sea urchin as a sentinel organism. The results show that the concentration of polycyclic aromatic hydrocarbon in the tissues of sea urchin exposed to the CDWAF is higher than that of those exposed to the MDWAF. The single cell gel electrophoresis assay results also indicated higher DNA damage from exposure to the CDWAF of oil. Thus, dispersants should be applied with caution in oil spill accidents.

  1. Reactivity Insertion Accident (RIA) Capability Status in the BISON Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Richard L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Folsom, Charles Pearson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-05-01

    One of the Challenge Problems being considered within CASL relates to modelling and simulation of Light Water Reactor LWR) fuel under Reactivity Insertion Accident (RIA) conditions. BISON is the fuel performance code used within CASL for LWR fuel under both normal operating and accident conditions, and thus must be capable of addressing the RIA challenge problem. This report outlines required BISON capabilities for RIAs and describes the current status of the code. Information on recent accident capability enhancements, application of BISON to a RIA benchmark exercise, and plans for validation to RIA behavior are included.

  2. Performance evaluation of large U-Mo particle dispersed fuel irradiated in HANARO

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Oh, Seok Jin; Jang, Se Jung; Yu, Byung Ok; Lee, Choong Seong; Seo, Chul Gyo; Chae, Hee Taek; Kim, Chang Kyu

    2008-01-01

    U-Mo/Al dispersion fuel is being developed as advanced fuel for research reactors. Irradiation behavior of U-Mo/Al dispersion fuel has been studied to evaluate its fuel performance. One of the performance limiting factors is a chemical interaction between the U-Mo particle and the Al matrix because the thermal conductivity of fuel meat is decreased with the interaction layer growth. In order to overcome the interaction problem, large-sized U-Mo particles were fabricated by controlling the centrifugal atomization conditions. The fuel performance behavior of U-Mo/Al dispersion fuel was estimated by using empirical models formulated based on the microstructural analyses of the post-irradiation examination (PIE) on U-Mo/Al dispersion fuel irradiated in HANARO reactor. Temperature histories of U-Mo/Al dispersion fuel during irradiation tests were estimated by considering the effect of an interaction layer growth on the thermal conductivity of the fuel meat. When the fuel performances of the dispersion fuel rods containing U-Mo particles with various sizes were compared, fuel temperature was decreased as the average U-Mo particle size was increases. It was found that the dispersion of a larger U-Mo particle was effective for mitigating the thermal degradation which is associated with an interaction layer growth. (author)

  3. A Deformation Model of TRU Metal Dispersion Fuel Rod for HYPER

    International Nuclear Information System (INIS)

    Lee, Byoung Oon; Hwang, Woan; Park, Won S.

    2002-01-01

    Deformation analysis in fuel rod design is essential to assure adequate fuel performance and integrity under irradiation conditions. An in-reactor performance computer code for a dispersion fuel rod is being developed in the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRU-Zr)-Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appeared that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel. Some experimental tests including in-pile and out-pile experiments are needed for verifying the predictive capability of the DIMAC code. An in-reactor performance analysis computer code for blanket fuel is being developed at the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRUZr)- Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appears that the deformation by swelling within fuel meat is very large for both fuels, and the major deformation mechanism at cladding is creep. The swelling strain is almost constant within the fuel meat, and is assumed to be zero in the cladding made of HT9. It is estimated that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel, and the dispersion fuel performance may be limited by swelling. But the predicted volume change of the (TRU-Zr)-Zr dispersion fuel models is about 6.1% at 30 at.% burnup. The value of cladding

  4. A general evaluation of the irradiation behaviour of dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1995-01-01

    The irradiation behaviour of aluminum-based dispersion fuels is evaluated with emphasis on metallurgical processes that control the dispersion behaviour. Phase transformations and microstructural changes resulting from fuel-matrix interactions and the effect of fissioning in fuel are discussed. (author)

  5. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ji-Han, E-mail: chunjh@kaeri.re.kr; Lim, Sung-Won; Chung, Bub-Dong; Lee, Won-Jae

    2015-08-15

    Highlights: • Thermal conductivity model of the FCM fuel was developed and adopted in the MARS. • Scoping analysis for candidate FCM FAs was performed to select feasible FA. • Preliminary safety criteria for FCM fuel and SiC/Zr cladding were set up. • Enhanced safety margin and accident tolerance for FCM-SiC/Zr core were demonstrated. - Abstract: The FCM fueled cores proposed as an accident tolerant concept is assessed against the design-basis-accident (DBA) and the beyond-DBA (BDBA) scenarios using MARS code. A thermal conductivity model of FCM fuel is incorporated in the MARS code to take into account the effects of irradiation and temperature that was recently measured by ORNL. Preliminary analyses regarding the initial stored energy and accident tolerant performance were carried out for the scoping of various cladding material candidates. A 16 × 16 FA with SiC-coated Zircalloy cladding was selected as the feasible conceptual design through a preliminary scoping analysis. For a selected design, safety analyses for DBA and BDBA scenarios were performed to demonstrate the accident tolerance of the FCM fueled core. A loss of flow accident (LOFA) scenario was selected for a departure-from-nucleate-boiling (DNB) evaluation, and large-break loss of coolant accident (LBLOCA) scenario for peak cladding temperature (PCT) margin evaluation. A control element assembly (CEA) ejection accident scenario was selected for peak fuel enthalpy and temperature. Moreover, a station blackout (SBO) and LBLOCA without a safety injection (SI) scenario were selected as a BDBA. It was demonstrated that the DBA safety margin of the FCM core is satisfied and the time for operator actions for BDBA s is evaluated.

  6. Assessment of clad integrity of PHWR fuel pin following a postulated severe accident

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-01-01

    A mechanistic fuel performance analysis code FAIR has been developed. The code can analyse fuel pins with free standing as well as collapsible clad under normal, off-normal and accident conditions of reactors. The code FAIR is capable of analysing the effects of high burnup on fuel behaviour. The code incorporates finite element based thermo-mechanical module for computing transient temperature distribution and thermal-elastic-plastic stresses in the fuel pin. A number of high temperature thermo-physical and thermo-mechanical models also have been incorporated for analysing fuel pins subjected to severe accident scenario. The present paper describes salient features of code FAIR and assessment of clad integrity of PHWR fuel pins with different initial burnup subjected to severe accident scenario. (author)

  7. Real time analysis for atmospheric dispersions for Fukushima nuclear accident: Mobile phone based cloud computing assessment

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2014-01-01

    Highlights: • Possible nuclear accident is simulated for the atmospheric contaminations. • The simulations results give the relative importance of the fallouts. • The cloud computing of IT is performed successfully. • One can prepare for the possible damages of such a NPP accident. • Some other variables can be considered in the modeling. - Abstract: The radioactive material dispersion is investigated by the system dynamics (SD) method. The non-linear complex algorithm could give the information about the hazardous material behavior in the case of nuclear accident. The prevailing westerlies region is modeled for the dynamical consequences of the Fukushima nuclear accident. The event sequence shows the scenario from earthquake to dispersion of the radionuclides. Then, the dispersion reaches two cities in Korea. The importance of the radioactive dispersion is related to the fast and reliable data processing, which could be accomplished by cloud computing concept. The values of multiplications for the wind, plume concentrations, and cloud computing factor are obtained. The highest value is 94.13 in the 206th day for Seoul. In Pusan, the highest value is 15.48 in the 219th day. The source is obtained as dispersion of radionuclide multiplied by 100. The real time safety assessment is accomplished by mobile phone

  8. Global atmospheric dispersion modelling after the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  9. Fuel relocation modeling in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Tentner, A.M.; Miles, K.J.

    1985-01-01

    SAS4A is a new code system which has been designed for analyzing the initial phase of Hypothetical Core Disruptive Accidents (HCDAs) up to gross melting or failure of the subassembly walls. During such postulated accident scenarios as the Loss-of-Flow (LOF) and Transient-Overpower (TOP) events, the relocation of the fuel plays a key role in determining the sequence of events and the amount of energy produced before neutronic shutdown. This paper discusses the general strategy used in modeling the various phenomena which lead to fuel relocation and presents the key fuel relocation models used in SAS4A. The implications of these models for the whole-core accident analysis as well as recent results of fuel motion experiment analyses are also presented

  10. Fuel relocation modeling in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Tentner, A.M.; Miles, K.J.; Kalimullah; Hill, D.J.

    1986-01-01

    The SAS4A code system has been designed for the analysis of the initial phase of Hypothetical Core Disruptive Accidents (HCDAs) up to gross melting or failure of the subassembly walls. During such postulated accident scenarios as the Loss-of-Flow (LOF) and Transient-Overpower (TOP) events, the relocation of the fuel plays a key role in determining the sequence of events and the amount of energy produced before neutronic shutdown. This paper discusses the general strategy used in modelong the various phenomena which lead to fuel relocation and presents the key fuel relocation models used in SAS4A. The implications of these models for the whole-core accident analysis as well as recent results of fuel relocation are emphasized. 12 refs

  11. Behavior of LWR fuel elements under accident conditions

    International Nuclear Information System (INIS)

    Albrecht, H.; Bocek, M.; Erbacher, F.; Fiege, A.; Fischer, M.; Hagen, S.; Hofmann, P.; Holleck, H.; Karb, E.; Leistikow, S.; Melang, S.; Ondracek, G.; Thuemmler, F.; Wiehr, K.

    1977-01-01

    In the frame of the German reactor safety research program, the Kernforschungszentrum Karlsruhe is carrying out a comprehensive program on the behavior of LWR fuel elements under a variety of power cooling mismatch conditions in particular during loss-of-coolant accidents. The major objectives are to establish a detailed quantitative understanding of fuel rod failures mechanisms and their thresholds, to evaluate the safety margins of power reactor cores under accident conditions and to investigate the feedback of fuel rod failures on the efficiency of emergency core cooling systems. This detailed quantitative understanding is achieved through extensive basic and integral experiments and is incorporated in a fuel behavior code. On the basis of these results the design of power reactor fuel elements and of safety devices can be further improved. The results of investigations on the inelastic deformation (ballooning) behavior of Zircaloy 4 cladding at LOCA temperatures in oxidizing atmosphere are presented. Depending upon strain rate and temperature superplastic deformation behavior was observed. In the equation of state of Zry 4 the strain rate sensitivity index depends strongly upon strain and in the superplastic region upon sample anisotropy. Oxidation kinetics experiments with Zry-tubes at 900-1300 0 C showed that the Baker-Just correlation describes the reality quite conservative. Therefore a reduction of the amount of Zry oxidation can be assumed in the course of a LOCA. The external oxidation of Zry-cladding by steam as well as internal oxidation by the oxygen in oxide fuel and fission products (Cs, I, Te) have an influence on the strain and rupture behavior of Zry-cladding at LOCA temperatures. In out-of-pile and inpile experiments the mechanical and thermal behavior of fuel rods during the blowdown, the heatup and the reflood phases of a LOCA are investigated under representative and controlled thermohydraulic conditions. The task of the inpile experiments is

  12. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    International Nuclear Information System (INIS)

    HUNT, J.W.

    1998-01-01

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool

  13. Study on recriticality of fuel debris during hypothetical severe accidents in the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.; Navarro-Valenti, S.; Shin, S.T.

    1995-09-01

    A study has been performed to measure the potential of recriticality during hypothetical severe accident in Advanced Neutron Source (ANS). For the lumped debris configuration in the Reactor Coolant System (RCS), as found in the previous study, recriticality potential may be very low. However, if fuel debris is dispersed and mixed with heavy water in RCS, recriticality potential has been predicted to be substantial depending on thermal-hydraulic conditions surrounding fuel debris mixture. The recriticality potential in RCS is substantially reduced for the three element core design with 50% enrichment. Also, as observed in the previous study, strong dependencies of k eff on key thermal hydraulic parameters are shown. Light water contamination is shown to provide a positive reactivity, and void formation due to boiling of mixed water provides enough negative reactivity and to bring the system down to subcritical. For criticality potential in the subpile room, the lumped debris configuration does not pose a concern. Dispersed configuration in light water pool of the subpile room is also unlikely to result in criticality. However, if the debris is dispersed in the pool that is mixed with heavy water, the results indicate that a substantial potential exists for the debris to reach the criticality. However, if prompt recriticality disperses the debris completely in the subpile room pool, subsequent recriticality may be prevented since neutron leakage effects become large enough

  14. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  15. Inert matrix fuel in dispersion type fuel elements

    Science.gov (United States)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  16. Fast reactor fuel failures and steam generator leaks: Transient and accident analysis approaches

    International Nuclear Information System (INIS)

    1996-10-01

    This report consists of a survey of activities on transient and accident analysis for the LMFR. It is focused on the following subjects: Fuel transient tests and analyses in hypothetical incident/accident situations; sodium-water interaction in steam generators, and sodium fires: test and analyses. There are also sections dealing with the experimental and analytical studies of: fuel subassembly failures; sodium boiling, molten fuel-coolant interaction; molten material movement and relocation in fuel bundles; heat removal after an accident or incident; sodium-water reaction in steam generator; steam generator protection systems; sodium-water contact in steam generator building; fire-fighting methods and systems to deal with sodium fires. Refs, figs, tabs

  17. Monte-Carlo simulation of dispersion fuel meat structure

    International Nuclear Information System (INIS)

    Xing Zhonghu; Ying Shihao

    2003-01-01

    Under the irradiation conditions in research reactors, the inter-diffusion occurs at the fuel particle and matrix interfaces of U 3 Si 2 -Al dispersion fuel. Because of the inter-diffusion reaction, the U 3 Al 7 Si 2 layer is formed around each U 3 Si 2 particle. The layer thickness grows up with irradiation duration and fission density. The formation of resultant layer causes the consumption of U 3 Si 2 fuel and aluminum matrix. This process leads to the evolution of geometrical structure of fuel meat. According to the stochastic locations of particles in dispersion, the authors developed a simulation method for the evolution of the fuel meat structure by utilizing Monte-Carlo method. Every particle is characterized by its diameter and location. The parameters of meat structure include particle size distribution, as-fabricated fuel volume fraction, resultant layer thickness, layer volume fraction, U 3 Si 2 fuel volume fraction, aluminum volume fraction, contiguity probability and inter-linkage fraction of particles. Particularly for the dispersion with as-fabricated fuel volume fraction of 43% and particle sizes in a well-defined normal distribution, more than 13000 sampling particles are simulated in the meat volume of 6 mm x 6 mm x 0.5 mm. The meat structure parameters are calculated as functions of layer thickness in the range from 0-16 μm. (authors)

  18. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  19. The potential importance of water pathways for spent fuel transportation accident risk

    International Nuclear Information System (INIS)

    Ostmeyer, R.M.

    1986-01-01

    This paper analyzes the potential importance of water pathway contamination for spent fuel transportation accident risk using a ''worst-case'' water contamination scenario. The scenario used for the analysis involves an accident release that occurs near a reservoir. Water pathway doses are compared to doses for accident releases in urban or agricultural areas. The results of the analysis indicate that water pathways are not important for assessing the risk of transporting spent reactor fuel by truck or by rail

  20. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  1. The use of U3Si2 dispersed in aluminum in plate-type fuel elements for research and test reactors

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01

    A high-density fuel based on U 3 Si 2 dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U 3 Si 2 fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U 3 Si 2 particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U 3 Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U 3 Si 2 -aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m 3 is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs

  2. Researches of WWER fuel rods behaviour under RIA accident conditions

    International Nuclear Information System (INIS)

    Nechaeva, O.; Medvedev, A.; Novikov, V.; Salatov, A.

    2003-01-01

    Unirradiated fuel rod and refabricated fuel rod tests in the BIGR as well as acceptance criteria proving absence of fragmentation and the settlement modeling of refabricated fuel rods thermomechanical behavior in the BIGR-tests using RAPTA-5 code are discussed in this paper. The behaviour of WWER type simulators with E110 and E635 cladding was researched at the BIGR reactor under power pulse conditions simulating reactivity initiated accident. The results of the tests in four variants of experimental conditions are submitted. The behaviour of 12 WWER type refabricated fuel rods was researched in the BIGR reactor under power pulse conditions simulating reactivity initiated accident: burnup 48 and 60 MWd/kgU, pulse width 3 ms, peak fuel enthalpy 115-190 cal/g. The program of future tests in the research reactor MIR with high burnup fuel rod (up to 70 MWd/kgU) under conditions simulating design RIA in WWER-1000 is presented

  3. Dispersion of radioactive materials from JRTR following a postulated accident using HOTSPOT code

    International Nuclear Information System (INIS)

    Mistarihi, Qusai M.; Lee, Kwan Hee

    2013-01-01

    Jordan Research and Training Reactor (JRTR) is the first nuclear facility in Jordan. The JRTR is 5 MW, light water moderated and open type pool reactor. In case of an accident, the radioactive materials will be released to the surrounding environment and endanger the people living in the vicinity of the reactor. However, up to now, no study has been published about the dispersion of radioactive materials from JRTR in case of an accident. As preliminary stage for the construction of the JRTR, the dispersion of the radioactive materials from JRTR in case of an accident was studied using HOTSOT code. The result of the report indicates that for ground level release with an average speed of 3.6 m/s of hourly averaged meteorological data for one year with a dominant direction from the west a person located at distance .062 km from the reactor site will receive .25 Sv

  4. Dispersion of radioactive materials from JRTR following a postulated accident using HOTSPOT code

    Energy Technology Data Exchange (ETDEWEB)

    Mistarihi, Qusai M.; Lee, Kwan Hee [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    Jordan Research and Training Reactor (JRTR) is the first nuclear facility in Jordan. The JRTR is 5 MW, light water moderated and open type pool reactor. In case of an accident, the radioactive materials will be released to the surrounding environment and endanger the people living in the vicinity of the reactor. However, up to now, no study has been published about the dispersion of radioactive materials from JRTR in case of an accident. As preliminary stage for the construction of the JRTR, the dispersion of the radioactive materials from JRTR in case of an accident was studied using HOTSOT code. The result of the report indicates that for ground level release with an average speed of 3.6 m/s of hourly averaged meteorological data for one year with a dominant direction from the west a person located at distance .062 km from the reactor site will receive .25 Sv.

  5. Fuel Behaviour at High During RIA and LOCA Accidents; Comportamiento del Combustible de Alto Quemado en Accidents RIA y LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Barrio del Juanes, M T; Garcia Cuesta, J C; Vallejo Diaz, I; Puebla, Herranz

    2001-07-01

    Safety analysis of high burnup fuel requires ensuring the acceptable performance under design basis accidents, in particular during conditions representative of Reactivity Accidents (RIA) and Loss-of-Coolant Accidents (LOCA). The report's objective is to compile the state of the art on these issues. This is mainly focused in the effort made to define the applicability of safety criteria to the high burnup fuel. Irradiation damage modifies fuel rod properties, thus the probability of fuel to withstand thermal and mechanical loads during an accident could be quite different compared with unirradiated fuel. From the thermal point of view, fuel conductivity is the most affected property, decreasing notably with irradiation. From the mechanical point of view, a change in the pellet microstructure at its periphery is observed at high burnup (remiffect). Cladding is also effected during operation, showing a significant external and internal corrosion. All these phenomena result in the decrease of efficiency in heat transfer an in the reduction of capability to accommodate mechanical loads; this situation is especially significant at high burnup, when pellet-cladding mechanical interaction is present. Knowledge about these phenomena is not possible without appropriate experimental programmes. The most relevant have been performed in France, Japan, United States and Russia. Results obtained with fuel at high burnup show significant differences with respect to the phenomena observed in fuel at the present discharge burnup. Indeed, this is the encouragement to research about this occurrence. This study is framed within the CSN-CIEMAT agreement, about Fuel Thermo-Mechanical Behaviour at High Burnup. (Author) 172 refs.

  6. Fuel Behaviour at High During RIA and LOCA Accidents; Comportamiento del Combustible de Alto Quemado en Accidents RIA y LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Barrio del Juanes, M.T.; Garcia Cuesta, J.C.; Vallejo Diaz, I.; Herranz Puebla

    2001-07-01

    Safety analysis of high burnup fuel requires ensuring the acceptable performance under design basis accidents, in particular during conditions representative of Reactivity Accidents (RIA) and Loss-of-Coolant Accidents (LOCA). The report's objective is to compile the state of the art on these issues. This is mainly focused in the effort made to define the applicability of safety criteria to the high burnup fuel. Irradiation damage modifies fuel rod properties, thus the probability of fuel to withstand thermal and mechanical loads during an accident could be quite different compared with unirradiated fuel. From the thermal point of view, fuel conductivity is the most affected property, decreasing notably with irradiation. From the mechanical point of view, a change in the pellet microstructure at its periphery is observed at high burnup (remiffect). Cladding is also effected during operation, showing a significant external and internal corrosion. All these phenomena result in the decrease of efficiency in heat transfer an in the reduction of capability to accommodate mechanical loads; this situation is especially significant at high burnup, when pellet-cladding mechanical interaction is present. Knowledge about these phenomena is not possible without appropriate experimental programmes. The most relevant have been performed in France, Japan, United States and Russia. Results obtained with fuel at high burnup show significant differences with respect to the phenomena observed in fuel at the present discharge burnup. Indeed, this is the encouragement to research about this occurrence. This study is framed within the CSN-CIEMAT agreement, about Fuel Thermo-Mechanical Behaviour at High Burnup. (Author) 172 refs.

  7. Site restoration: Estimation of attributable costs from plutonium-dispersal accidents

    International Nuclear Information System (INIS)

    Chanin, D.I.; Murfin, W.B.

    1996-05-01

    A nuclear weapons accident is an extremely unlikely event due to the extensive care taken in operations. However, under some hypothetical accident conditions, plutonium might be dispersed to the environment. This would result in costs being incurred by the government to remediate the site and compensate for losses. This study is a multi-disciplinary evaluation of the potential scope of the post-accident response that includes technical factors, current and proposed legal requirements and constraints, as well as social/political factors that could influence decision making. The study provides parameters that can be used to assess economic costs for accidents postulated to occur in urban areas, Midwest farmland, Western rangeland, and forest. Per-area remediation costs have been estimated, using industry-standard methods, for both expedited and extended remediation. Expedited remediation costs have been evaluated for highways, airports, and urban areas. Extended remediation costs have been evaluated for all land uses except highways and airports. The inclusion of cost estimates in risk assessments, together with the conventional estimation of doses and health effects, allows a fuller understanding of the post-accident environment. The insights obtained can be used to minimize economic risks by evaluation of operational and design alternatives, and through development of improved capabilities for accident response

  8. Site restoration: Estimation of attributable costs from plutonium-dispersal accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I.; Murfin, W.B. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

    1996-05-01

    A nuclear weapons accident is an extremely unlikely event due to the extensive care taken in operations. However, under some hypothetical accident conditions, plutonium might be dispersed to the environment. This would result in costs being incurred by the government to remediate the site and compensate for losses. This study is a multi-disciplinary evaluation of the potential scope of the post-accident response that includes technical factors, current and proposed legal requirements and constraints, as well as social/political factors that could influence decision making. The study provides parameters that can be used to assess economic costs for accidents postulated to occur in urban areas, Midwest farmland, Western rangeland, and forest. Per-area remediation costs have been estimated, using industry-standard methods, for both expedited and extended remediation. Expedited remediation costs have been evaluated for highways, airports, and urban areas. Extended remediation costs have been evaluated for all land uses except highways and airports. The inclusion of cost estimates in risk assessments, together with the conventional estimation of doses and health effects, allows a fuller understanding of the post-accident environment. The insights obtained can be used to minimize economic risks by evaluation of operational and design alternatives, and through development of improved capabilities for accident response.

  9. Development of U-Mo/Al dispersion fuel for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Man; Ryu, Ho Jin; Yang, Jae Ho; Jeong, Yong Jin; Lee, Yoon Sang [Korea Atomic Energy Research Inst., Research Reactor Fuel Development Division, Daejeon (Korea, Republic of)

    2012-03-15

    Currently, the KOMO-5 irradiation test for full size U-Mo/Al dispersion fuel rods has been underway since May 23, 2011. The purpose of the KOMO-5 test includes an investigation of the irradiation behaviors of silicide or nitride coated U-7Mo/Al(-Si) dispersion fuels and the effects of pre-formed interaction layers on U-Mo particles. It is expected that the irradiation test will be finished after attaining 60 at% U-235 burnup in May 2012, and the first PIE results of the KOMO-5 will be obtained in September 2012. In addition, an international cooperation program on the qualification of U-Mo dispersion fuels for small and medium size research reactors is going to be proposed in cooperation with the IAEA. Conversion from silicide fuel to U-Mo fuel will increase the cycle length with a smaller number of fuel assemblies and allow more flexible back-end options for spent fuel due to of the reprocessibility of U-Mo. (author)

  10. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  11. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  12. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  13. Severe accident analysis and management in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Golshan, Mina

    2013-01-01

    Within the UK regulatory regime, assessment of risks arising from licensee's activities are expected to cover both normal operations and fault conditions. In order to establish the safety case for fault conditions, fault analysis is expected to cover three forms of analysis: design basis analysis (DBA), probabilistic safety assessment (PSA) and severe accident analysis (SAA). DBA should provide a robust demonstration of the fault tolerance of the engineering design and the effectiveness of the safety measures on a conservative basis. PSA looks at a wider range of fault sequences (on a best estimate basis) including those excluded from the DBA. SAA considers significant but unlikely accidents and provides information on their progression and consequences, within the facility, on the site and off site. The assessment of severe accidents is not limited to nuclear power plants and is expected to be carried out for all plant states where the identified dose targets could be exceeded. This paper sets out the UK nuclear regulatory expectation on what constitutes a severe accident, irrespective of the type of facility, and describes characteristics of severe accidents focusing on nuclear fuel cycle facilities. Key rules in assessment of severe accidents as well as the relationship to other fault analysis techniques are discussed. The role of SAA in informing accident management strategies and offsite emergency plans is covered. The paper also presents generic examples of scenarios that could lead to severe accidents in a range of nuclear fuel cycle facilities. (authors)

  14. Analytical criteria for fuel failure modes observed in reactivity initiated accidents

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2005-01-01

    The behaviour of nuclear fuel subjected to a short duration power pulse is of relevance to LWR and CANDU reactor safety. A Reactivity Initiated Accident (RIA) in an LWR would subject fuel to a short duration power pulse of large amplitude, whereas in CANDU a large break Loss of Coolant Accident (LOCA) would subject fuel to a longer duration, lower amplitude power excursion. The energy generated in the fuel during the power pulse is a key parameter governing the fuel response. This paper reviews the various power pulse tests that have been conducted in research reactors over the past three decades and summarizes the fuel failure modes that that have been observed in these tests. A simple analytical model is developed to characterize fuel behaviour under power pulse conditions and the model is applied to assess the experimental data from the power pulse tests. It is shown that the simple model provides a good basis for establishing criteria that demarcate the observed fuel failure modes for the various fuel designs that have been used in these tests. (author)

  15. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  16. Environmental Impact Assessment following a Nuclear Accident to a Candu NPP

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Margeanu, S.; Olteanu, Gh.

    2009-01-01

    The paper presents calculations of nuclear accident consequences to public and environment, for a Candu NPP using advanced fuel in two hypothetical accident scenarios: (1) large LOCA followed by partial core melting with early containment failure; (2) late core disassembly and containment bypass through ECCS. During both accidents a release occurs, radioactive contaminants being dispersed into atmosphere. As reference, estimations for Candu standard UO 2 fuel were used. The radioactive core inventory was obtained by using ORIGEN-S computer code included in ORNL,SCALE 5 programs package. Radiological consequences assessment to public and environment was performed by means of PC COSYMA computer code

  17. Computational analysis of the behaviour of nuclear fuel under steady state, transient and accident conditions

    International Nuclear Information System (INIS)

    2007-12-01

    Accident analysis is an important tool for ensuring the adequacy and efficiency of the provision in the defence in depth concept to cope with challenges to plant safety. Accident analysis is the milestone of the demonstration that the plant is capable of meeting any prescribed limits for radioactive releases and any other acceptable limits for the safe operation of the plant. It is used, by designers, utilities and regulators, in a number of applications such as: (a) licensing of new plants, (b) modification of existing plants, (c) analysis of operational events, (d) development, improvement or justification of the plant operational limits and conditions, and (e) safety cases. According to the defence in depth concept, the fuel rod cladding constitutes the first containment barrier of the fission products. Therefore, related safety objectives and associated criteria are defined, in order to ensure, at least for normal operation and anticipated transients, the integrity of the cladding, and for accident conditions, acceptable radiological consequences with regard to the postulated frequency of the accident, as usually identified in the safety analysis reports. Therefore, computational analysis of fuel behaviour under steady state, transient and accident conditions constitutes a major link of the safety case in order to justify the design and the safety of the fuel assemblies, as far as all relevant phenomena are correctly addressed and modelled. This publication complements the IAEA Safety Report on Accident Analysis for Nuclear Power Plants (Safety Report Series No. 23) that provides practical guidance for establishing a set of conceptual and formal methods and practices for performing accident analysis. Computational analysis of the behaviour of nuclear fuel under transient and accident conditions, including normal operation (e.g. power ramp rates) is developed in this publication. For design basis accidents, depending on the type of influence on a fuel element

  18. Full-length fuel rod behavior under severe accident conditions

    International Nuclear Information System (INIS)

    Lombardo, N.J.; Lanning, D.D.; Panisko, F.E.

    1992-12-01

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors

  19. Validation of the metal fuel version of the SAS4A accident analysis code

    International Nuclear Information System (INIS)

    Tentner, A.M.

    1991-01-01

    This paper describes recent work directed towards the validation of the metal fuel version of the SAS4A accident analysis code. The SAS4A code system has been developed at Argonne National Laboratory for the simulation of hypothetical severe accidents in Liquid Metal-Cooled Reactors (LMR), designed to operate in a fast neutron spectrum. SAS4A was initially developed for the analysis of oxide-fueled liquid metal-cooled reactors and has played an important role in the simulation and assessment of the energetics potential for postulated severe accidents in these reactors. Due to the current interest in the metal-fueled liquid metal-cooled reactors, a metal fuel version of the SAS4A accident analysis code is being developed in the Integral Fast Reactor program at Argonne. During such postulated accident scenarios as the unprotected (i.e. without scram) loss-of-flow and transient overpower events, a large number of interrelated physical phenomena occur during a relatively short time. These phenomena include transient heat transfer and hydrodynamic events, coolant boiling, and fuel and cladding melting and relocation. Due to strong neutronic feedbacks these events can significantly influence the reactor power history in the accident progression. The paper presents the results of a recent SAS4A simulation of the M7 TREAT experiment. 6 refs., 5 figs

  20. Homogeneous forming technology of composite materials and its application to dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Hong, Soon Hyun; Ryu, Ho Jin; Sohn, Woong Hee; Kim, Chang Kyu

    1997-01-01

    Powder metallurgy processing technique of metal matrix composites is reviewed and its application to process homogeneous dispersion nuclear fuel is considered. The homogeneous mixing of reinforcement with matrix powders is very important step to process metal matrix composites. The reinforcement with matrix powders is very important step to process metal matrix composites. The reinforcement can be ceramic particles, whiskers or chopped fibers having high strength and high modulus. The blended powders are consolidated into billets and followed by various deformation processing, such as extrusion, forging, rolling or spinning into final usable shapes. Dispersion nuclear fuel is a class of metal matrix composite consisted of dispersed U-compound fuel particles and metallic matrix. Dispersion nuclear fuel is fabricated by powder metallurgy process such as hot pressing followed by hot extrusion, which is similar to that of SiC/Al metal matrix composite. The fabrication of homogeneous dispersion nuclear fuel is very difficult mainly due to the inhomogeneous mixing characteristics of the powders from quite different densities between uranium alloy powders and aluminum powders. In order to develop homogeneous dispersion nuclear fuel, it is important to investigate the effect of powder characteristics and mixing techniques on homogeneity of dispersion nuclear fuel. An new quantitative analysis technique of homogeneity is needed to be developed for more accurate analysis of homogeneity in dispersion nuclear fuel. (author). 28 refs., 7 figs., 1tab

  1. Fuel and control rod failure behavior during degraded core accidents

    International Nuclear Information System (INIS)

    Chung, K.S.

    1984-01-01

    As a part of the pretest and posttest analyses of Light Water Reactor Source Term Experiments (STEP) which are conducted in the Transient Reactor Test (TREAT) facility, this paper investigates the thermodynamic and material behaviors of nuclear fuel pins and control rods during severe core degradation accidents. A series of four STEP tests are being performed to simulate the characteristics of the power reactor accidents and investigate the behavior of fission product release during these accidents. To determine the release rate of the fission products from the fuel pins and the control rod materials, information concerning the timing of the clad failure and the thermodynamic conditions of the fuel pins and control rods are needed to be evaluated. Because the phase change involves a large latent heat and volume expansion, and the phase change is a direct cause of the clad failure, the understanding of the phase change phenomena, particularly information regarding how much of the fuel pin and control rod materials are melted are very important. A simple energy balance model is developed to calculate the temperature profile and melt front in various heat transfer media considering the effects of natural convection phenomena on the melting and freezing front behavior

  2. Development of methodology for the analysis of fuel behavior in light water reactor in design basis accidents

    International Nuclear Information System (INIS)

    Salatov, A. A.; Goncharov, A. A.; Eremenko, A. S.; Kuznetsov, V. I.; Bolnov, V. A.; Gusev, A. S.; Dolgov, A. B.; Ugryumov, A. V.

    2013-01-01

    The report attempts to analyze the current experience of the safety fuel for light-water reactors (LWRs) under design-basis accident conditions in terms of its compliance with international requirements for licensing nuclear power plants. The components of fuel behavior analysis methodology in design basis accidents in LWRs were considered, such as classification of design basis accidents, phenomenology of fuel behavior in design basis accidents, system of fuel safety criteria and their experimental support, applicability of used computer codes and input data for computational analysis of the fuel behavior in accidents, way of accounting for the uncertainty of calculation models and the input data. A brief history of the development of probabilistic safety analysis methodology for nuclear power plants abroad is considered. The examples of a conservative approach to safety analysis of VVER fuel and probabilistic approach to safety analysis of fuel TVS-K are performed. Actual problems in development of the methodology of analyzing the behavior of VVER fuel at the design basis accident conditions consist, according to the authors opinion, in following: 1) Development of a common methodology for analyzing the behavior of VVER fuel in the design basis accidents, implementing a realistic approach to the analysis of uncertainty - in the future it is necessary for the licensing of operating VVER fuel abroad; 2) Experimental and analytical support to the methodology: experimental studies to identify and study the characteristics of the key uncertainties of computational models of fuel and the cladding, development of computational models of key events in codes, validation code on the basis of integral experiments

  3. Impacts on the marine environment in the case of a hypothetical accident involving the recovery of the dumped Russian submarine K-27, based on dispersion of 137Cs.

    Science.gov (United States)

    Hosseini, A; Amundsen, I; Brown, J; Dowdall, M; Karcher, M; Kauker, F; Schnur, R

    2017-02-01

    There is increasing concern regarding the issue of dumped nuclear waste in the Arctic Seas and in particular dumped objects with Spent Nuclear Fuel (SNF). Amongst dumped objects in the Arctic, the dumped Russian submarine K-27 has received great attention as it contains two reactors with highly enriched fuel and lies at a depth of about 30 m under water. To address these concerns a health and environmental impact assessment has been undertaken. Marine dispersion of potentially released radionuclides as a consequence of different hypothetical accident scenarios was modelled using the model NAOSIM. The outputs from the dispersion modelling have been used as inputs to food-chain transfer and environmental dosimetry models. The annual effective doses for subsistence fishing communities of the Barents-Kara seas region do not exceed 0.6 mSv for hypothetical accidents located at Stepovogo fjord or the Barents Sea. For high rate consumers of fish in Norway, following a potential accident at the Gremikha Bay, annual effects doses would be at around 0.15 mSv. Accumulated doses (over 90 days) for various organisms and for all release scenarios considered were never in excess of 150 μGy. The levels of 137 Cs derived for marine organism in areas close to Norway were not values that would likely cause concern from a regulatory perspective although for subsistence fishing communities close to the considered accident locations, it is not inconceivable that some restrictions on fishing etc. would need to be introduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Proceedings of the Second OECD/NEA Organisation Meeting on Increased Accident Tolerance of Fuels for LWRs

    International Nuclear Information System (INIS)

    Massara, Simone; ); Bragg-Sitton, Shannon; Braase, Lori; Merrill, Brad; Teague, Melissa; Stanek, Chris R.; Montgomery, Robert H.; Ott, Larry J.; Robb, Kevin; Snead, Lance; Farmer, Mitch; Billone, Michael C.; Todosow, Michael; Brown, Nicholas; Brachet, J.C.; Le Flem, M.; Sauder, C.; Idarraga-Trujillo, I.; Michaux, A.; Lorrette, C.; Le Saux, M.; Blanpain, P.; Park, Jeong-Yong; Yang, Jae-Ho; Kim, Weon-Ju; Koo, Yang-Hyun; Liu, T.; Hallstadius, Lars; Lahoda, Ed; Waeckel, N.; Bonnet, J.M.; Vitanza, Carlo; Ohta, Hirokazu; Ogata, Takanari; Nakamura, Kinya; Dyck, Gary; Inozemtsev, Victor; )

    2013-01-01

    Under the guidance of the OECD-NEA Nuclear Science Committee, the expert group acts as a forum for scientific and technical information exchange on advanced light water reactor (LWR) fuels with enhanced accident tolerance. The expert group focusses on the fundamental properties and behaviour under normal operations and accident conditions for advanced core materials and components (fuels, cladding, control rods, etc.). The materials considered are applicable to Gen II and Gen III Light Water Reactors, as well as Gen III+ reactors under construction. The objective of the expert group is to define and coordinate a programme of work to help advance the scientific knowledge needed to provide the technical underpinning for the development of advanced LWR fuels with enhanced accident tolerance compared to currently used zircaloy/UO 2 fuel systems, as well as other non-fuel core components with important roles in LWR performance under accident conditions. This document brings together the available presentations (slides) given at the 2. Meeting on Increased Accident Tolerance of Fuels for LWRs. Content: 1 - Overview of the exchanges after the December-2012 Workshop through the discussion forum established at the OECD-NEA (S. Massara, NEA); 2 - Metrics Development for Enhanced Accident Tolerant LWR Fuels (S. Bragg-Sitton, INL); 3 - Candidate ATF Clad Technologies and Key Feasibility Issues (L. Snead, ORNL); 4 - CEA studies on nuclear fuel claddings for LWRs enhanced accident tolerant fuel. Some recent results, pending issues and prospects (J.C. Brachet, CEA); 5 - Current status on the accident tolerant fuel development in the Republic of Korea (J.Y. Park, J.H. Chang, KAERI); 6 - The current status of fuel R and D in the P.R. of China (T. Liu, CGN). Session 2: Key elements for a work programme on ATF: 7 - Beneficial characteristics of ATF (metrics) (L. Hallstadius, Westinghouse); 8 - Reactor types of interest (applicability) (L. Ott, ORNL); 9 - Impact on normal operations

  5. Spent nuclear fuel structural response when subject to an end impact accident

    Energy Technology Data Exchange (ETDEWEB)

    Tang, D.T.; Guttmann, J. [United States Nuclear Regulatory Commission, Rockville, MD (United States)]|[United States Nuclear Regulatory Commission, Washington, DC (United States); Koeppel, B.J.; Adkins, H.E.

    2004-07-01

    The US Nuclear Regulatory Commission (USNRC) is responsible for licensing spent fuel storage and transportation systems. A subset of this responsibility is to investigate and understand the structural performance of these systems. Studies have shown that the fuel rods of intact spent fuel assemblies with burn-ups up to 45 gigawatt days per metric ton of uranium (Gwd/MTU) are capable of resisting the normally expected impact loads subjected during drop accident conditions. However, effective cladding thickness for intact spent fuel assemblies with burn ups greater than 45 Gwd/MTU can be reduced due to corrosion. The capability of the fuel rod to withstand the expected loads encountered under normal and accident conditions may also be reduced, given degradation of the material properties under extended use, such as decrease in ductility. The USNRC and Pacific Northwest Laboratory (PNNL) performed computational studies to predict the structural response of spent nuclear fuel in a transport system that is subjected to a hypothetical regulatory impact accident, as defined in 10 CFR71.73. This study performs a structural analysis of a typical high burn up Pressurized Water Reactor (PWR) fuel assembly using the ANSYS {sup registered} ANSYS {sup registered} /LS- DYNA {sup registered} finite element analysis (FEA) code. The material properties used in the analyses were based on expert judgment and included uncertainties. Ongoing experimental programs will reduce the uncertainties. The current evaluations include the pins, spacer grids, and tie plates to assess possible cladding failure/rupture under hypothetical impact accident loading. This paper describes the USNRC and PNNL staff's analytical approach, provides details on the single pin model developed for this assessment, and presents the results.

  6. Assessment of Neutronic Characteristics of Accident-Tolerant Fuel and Claddings for CANDU Reactors

    Directory of Open Access Journals (Sweden)

    Simon Younan

    2018-01-01

    Full Text Available The objective of this study was to evaluate accident-tolerant fuel (ATF concepts being considered for CANDU reactors. Several concepts, including uranium dioxide/silicon carbide (UO2-SiC composite fuel, dense fuels, microencapsulated fuels, and ATF cladding, were modelled in Serpent 2 to obtain reactor physics parameters, including important feedback parameters such as coolant void reactivity and fuel temperature coefficient. In addition, fuel heat transfer was modelled, and a simple accident model was tested on several ATF cases to compare with UO2. Overall, several concepts would require enrichment of uranium to avoid significant burnup penalties, particularly uranium-molybdenum (U-Mo and fully ceramic microencapsulated (FCM fuels. In addition, none of the fuel types have a significant advantage over UO2 in terms of overall accident response or coping time, though U-9Mo fuel melts significantly sooner due to its low melting point. Instead, the different ATF concepts appear to have more modest advantages, such as reduced fission product release upon cladding failure, or reduced hydrogen generation, though a proper risk assessment would be required to determine the magnitude of these advantages to weigh against economic disadvantages. The use of uranium nitride (UN enriched in N15 would increase exit burnup for natural uranium, providing a possible economic advantage depending on fuel manufacturing costs.

  7. Radiation dose assessment of ACP hot cell in accident

    International Nuclear Information System (INIS)

    Kook, D. H.; Jeong, W. M.; Koo, J. H.; Jeo, I. J.; Lee, E. P.; Ryu, K. S.

    2003-01-01

    The Advanced spent fuel Condition in Process(ACP) is under development for the effective management of spent fuel which had been generated in nuclear plants. The ACP needs a hot cell where most operations will be performed. To give priority to the environments safety, radiation doses evaluations for the radioactive nuclides in accident cases were preliminarily performed with the meteorological data around facility site. Fire accident prevails over several accidnets. Internal Dose and External Dose evaluation according to short dispersion data for that case show a safe margin for regulation limits and SAR limit of IMEF where this facility will be constructed

  8. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  9. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Laug, David V.; Scates, Dawn M.; Reber, Edward L.; Roybal, Lyle G.; Walter, John B.; Harp, Jason M. [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Morris, Robert N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A system has been developed for safety testing of irradiated coated particle fuel. Black-Right-Pointing-Pointer FACS system is designed to facilitate remote operation in a shielded hot cell. Black-Right-Pointing-Pointer System will measure release of fission gases and condensable fission products. Black-Right-Pointing-Pointer Fuel performance can be evaluated at temperatures as high as 2000 Degree-Sign C in flowing helium. - Abstract: The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 Degree-Sign C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated

  10. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2015-11-01

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  11. Modeling a failure criterion for U-Mo/Al dispersion fuel

    Science.gov (United States)

    Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik

    2016-05-01

    The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.

  12. Modeling a failure criterion for U–Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong, E-mail: tylor@kaeri.re.kr [Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik [Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2016-05-15

    The breakaway swelling in U–Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U–Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.

  13. Transuranium contamination in BWRs after fuel accidents and its impact on decommissioning exposures and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, K.

    1996-12-01

    The theme of the present study is to quantify the amount of transuranium activity in different parts of the plant after various fuel accidents, and which impact such contamination has on radiation exposure and costs for decommissioning the plant. The consequences of four different accident degrees have been treated: Common fuel failures, e.g. in line with recent experiences from Swedish BWRs; Fuel channel obstruction resulting in partial melting of one fuel assembly; Total loss of electric power resulting in partial meltdown of the core, but with primary circuit intact preventing a massive contamination of the containment; A LOCA followed by a core meltdown and melting and penetration of the reactor pressure vessel. The amount of transuranium activity distributed, the form of this activity and the plant contamination are evaluated for these accidents. The costs and exposures have been split up on cleanup activities after the accident and decommissioning. 75 refs.

  14. Transuranium contamination in BWRs after fuel accidents and its impact on decommissioning exposures and costs

    International Nuclear Information System (INIS)

    Lundgren, K.

    1996-12-01

    The theme of the present study is to quantify the amount of transuranium activity in different parts of the plant after various fuel accidents, and which impact such contamination has on radiation exposure and costs for decommissioning the plant. The consequences of four different accident degrees have been treated: Common fuel failures, e.g. in line with recent experiences from Swedish BWRs; Fuel channel obstruction resulting in partial melting of one fuel assembly; Total loss of electric power resulting in partial meltdown of the core, but with primary circuit intact preventing a massive contamination of the containment; A LOCA followed by a core meltdown and melting and penetration of the reactor pressure vessel. The amount of transuranium activity distributed, the form of this activity and the plant contamination are evaluated for these accidents. The costs and exposures have been split up on cleanup activities after the accident and decommissioning. 75 refs

  15. Sensitivity assessment of fuel performance codes for LOCA accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Alfredo; Gomes, Daniel; Silva, Antonio Teixeira e; Muniz, Rafael O.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia; Martins, Marcelo, E-mail: ayabe@ipen.br, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LABRISCO/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco

    2017-07-01

    FRAPCON code predicts fuel rod performance in LWR (Light Water Reactor) by modeling fuel responses under normal operating conditions and anticipated operational occurrences; FRAPTRAN code is applied for fuel transient under fast transient and accident conditions. The codes are well known and applied for different purposes and one of the use is to address sensitivity analysis considering fuel design parameters associated to fabrication, moreover can address the effect of physical models bias. The objective of this work was to perform an assessment of fuel manufacturing parameters tolerances and fuel models bias using FRAPCON and FRAPTRAN codes for Loss of Coolant Accident (LOCA) scenario. The preliminary analysis considered direct approach taken into account most relevant manufacturing tolerances (lower and upper bounds) related to design parameters and physical models bias without considering their statistical distribution. The simulations were carried out using the data available in the open literature related to the series of LOCA experiment performed at the Halden reactor (specifically IFA-650.5). The manufacturing tolerances associated to design parameters considered in this paper were: enrichment, cladding thickness, pellet diameter, pellet density, and filling gas pressure. The physical models considered were: fuel thermal expansion, fission gas release, fuel swelling, irradiation creep, cladding thermal expansion, cladding corrosion, and cladding hydrogen pickup. The results obtained from sensitivity analysis addressed the impact of manufacturing tolerances and physical models in the fuel cladding burst time observed for the IFA-650.5 experiment. (author)

  16. Sensitivity assessment of fuel performance codes for LOCA accident scenario

    International Nuclear Information System (INIS)

    Abe, Alfredo; Gomes, Daniel; Silva, Antonio Teixeira e; Muniz, Rafael O.R.; Giovedi, Claudia; Martins, Marcelo

    2017-01-01

    FRAPCON code predicts fuel rod performance in LWR (Light Water Reactor) by modeling fuel responses under normal operating conditions and anticipated operational occurrences; FRAPTRAN code is applied for fuel transient under fast transient and accident conditions. The codes are well known and applied for different purposes and one of the use is to address sensitivity analysis considering fuel design parameters associated to fabrication, moreover can address the effect of physical models bias. The objective of this work was to perform an assessment of fuel manufacturing parameters tolerances and fuel models bias using FRAPCON and FRAPTRAN codes for Loss of Coolant Accident (LOCA) scenario. The preliminary analysis considered direct approach taken into account most relevant manufacturing tolerances (lower and upper bounds) related to design parameters and physical models bias without considering their statistical distribution. The simulations were carried out using the data available in the open literature related to the series of LOCA experiment performed at the Halden reactor (specifically IFA-650.5). The manufacturing tolerances associated to design parameters considered in this paper were: enrichment, cladding thickness, pellet diameter, pellet density, and filling gas pressure. The physical models considered were: fuel thermal expansion, fission gas release, fuel swelling, irradiation creep, cladding thermal expansion, cladding corrosion, and cladding hydrogen pickup. The results obtained from sensitivity analysis addressed the impact of manufacturing tolerances and physical models in the fuel cladding burst time observed for the IFA-650.5 experiment. (author)

  17. Routine methods for post-transportation accident recovery of spent fuel casks

    International Nuclear Information System (INIS)

    Shappert, L.B.; Pope, R.B.; Best, R.E.; Jones, R.H.

    1991-01-01

    Spent fuel casks and other large radioactive material packages have been examined to determine whether the designs are adequate to allow the casks to be recovered using conventional recovery methods following a transportation accident. Casks and similar packages are typically designed with, and handled by, trunnions that support the package during transport. These trunnions are considered the best cask feature with which to grapple the cask once it is no longer in its usual shipping mode. Following a transport accident, the trunnions may be buried or entangled so that they are not readily accessible to initiate the recovery process. To evaluate the effectiveness of applying traditional recovery methods to spent fuel casks, a workshop was held in which a series of accidents involving casks were postulated; the modes of transportation considered included truck, rail, and barge. These participants knowledgeable in transport, handling, and, in some cases, recovery of large, heavy containers attended. Participants concluded that the physical recovery of a cask involved in an accident, irrespective of where the accident occurs, would be a straightforward rigging operation and that the addition of specific recovery features (e.g., additional trunnions) to the cask appears unnecessary

  18. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  19. A highway accident involving unirradiated nuclear fuel in Springfield, Massachusetts, on December 16, 1991

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.

    1992-06-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 unirradiated nuclear fuel assemblies in 12 containers on Interstate I-91 in Springfield, Massachusetts. The purpose of this report is to document the mechanical circumstances of the severe accident, confirm the nature and quantity of the radioactive materials involved, and assess the physical environment to which the containers were exposed and the response of the containers and their contents. The report consists of five major sections. The first section describes the circumstances and conditions of the accident and the finding of facts. The second describes the containers, the unirradiated nuclear fuel assemblies, and the tie down arrangement used for the trailer. The third describes the damage sustained during the accident to the tractor, trailer, containers, and unirradiated nuclear fuel assemblies. The fourth evaluates the accident environment and its effects on the containers and their contents. The final section gives conclusions derived from the analysis and fact finding investigation. During this severe accident, only minor injuries occurred, and at no time was the public health and safety at risk

  20. Accident Tolerant Fuel Concepts for Light Water Reactors. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2016-06-01

    Nuclear fuel is a highly complex material that has been subject to continuous development over the past 40 years and has reached a stage where it can be safely and reliably irradiated up to 65 GWd/tU in commercial nuclear reactors. During this time, there have been many improvements to the original designs and materials used. However, the basic design of uranium oxide fuel pellets clad with zirconium alloy tubing has remained the fuel choice for the vast majority of commercial nuclear power plants. Severe accidents, such as those at the Three Mile Island and Fukushima Daiichi have shown that under such extreme conditions, nuclear fuel will fail and the high temperature reactions between zirconoi alloys and water will lead to the generation of hydrogen, with the potential for explosions to occur, daming the plant further. Recognizing that the current fuel designs are vulnerable to severe accident conditions, tehre is renewed interesst in alternative fuel designs that would be more resistant to fuel failure and hydrogen production. Such new fuel designs will need to be compatible with existing fuel and reactor systems if they are to be utilized in the current reactor fleet and in current new build designs, but there is also the possibility of new designs for new reactor systems. This publication provides a record of the Technical Meeting on Accident Tolerant Fuel Concepts for Light Water Reactors, held at Oak Ridge National Laboratories (ORNL), United States of America, 13-16 October 2014, to consider the early stages of research and development into accident tolerant fuel. There were 45 participants from 10 countries taking part in the meeting, with 32 papers organized into 7 sessions, of which 27 are included in this publication. This meeting is part of a wider investigation into such designs, and it is anticipated that further Technical Meetings and research programmes will be undertaken in this field

  1. Behaviour of gas cooled reactor fuel under accident conditions

    International Nuclear Information System (INIS)

    1991-11-01

    The Specialists Meeting on Behaviour of Gas Cooled Reactor Fuel under Accident Conditions was convened by the International Atomic Energy Agency on the recommendation of the International Working Group on Gas Cooled Reactors. The purpose of the meeting was to provide an international forum for the review of the development status and for the discussion on the behaviour of gas cooled reactor fuel under accident conditions and to identify areas in which additional research and development are still needed and where international co-operation would be beneficial for all involved parties. The meeting was attended by 45 participants from France, Germany, Japan, Switzerland, the Union of Soviet Socialists Republics, the United Kingdom, the United States of America, CEC and the IAEA. The meeting was subdivided into five technical sessions: Summary of Current Research and Development Programmes for Fuel; Fuel Manufacture and Quality Control; Safety Requirements; Modelling of Fission Product Release - Part I and Part II; Irradiation Testing/Operational Experience with Fuel Elements; Behaviour at Depressurization, Core Heat-up, Power Transients; Water/Steam Ingress - Part I and Part II. 22 papers were presented. A separate abstract was prepared for each of these papers. At the end of the meeting a round table discussion was held on Directions for Future R and D Work and International Co-operation. Refs, figs and tabs

  2. Calculation simulation of equivalent irradiation swelling for dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Cai Wei; Zhao Yunmei; Gong Xin; Ding Shurong; Huo Yongzhong

    2015-01-01

    The dispersion nuclear fuel was regarded as a kind of special particle composites. Assuming that the fuel particles are periodically distributed in the dispersion nuclear fuel meat, the finite element model to calculate its equivalent irradiation swelling was developed with the method of computational micro-mechanics. Considering irradiation swelling in the fuel particles and the irradiation hardening effect in the metal matrix, the stress update algorithms were established respectively for the fuel particles and metal matrix. The corresponding user subroutines were programmed, and the finite element simulation of equivalent irradiation swelling for the fuel meat was performed in Abaqus. The effects of the particle size and volume fraction on the equivalent irradiation swelling were investigated, and the fitting formula of equivalent irradiation swelling was obtained. The results indicate that the main factors to influence equivalent irradiation swelling of the fuel meat are the irradiation swelling and volume fraction of fuel particles. (authors)

  3. A methodology for the evaluation of fuel rod failures under transportation accidents

    International Nuclear Information System (INIS)

    Rashid, J.Y.R.; Machiels, A.J.

    2004-01-01

    Recent studies on long-term behavior of high-burnup spent fuel have shown that under normal conditions of stor-age, challenges to cladding integrity from various postulated damage mechanisms, such as delayed hydride crack-ing, stress-corrosion cracking and long-term creep, would not lead to any significant safety concerns during dry storage, and regulatory rules have subsequently been established to ensure that a compatible level of safety is maintained. However, similar safety assurances for spent fuel transportation have not yet been developed, and further studies are currently being conducted to evaluate the conditions under which transportation-related safety issues can be resolved. One of the issues presently under evaluation is the ability and the extent of the fuel as-semblies to maintain non-reconfigured geometry during transportation accidents. This evaluation may determine whether, or not, the shielding, confinement, and criticality safety evaluations can be performed assuming initial fuel assembly geometries. The degree to which spent fuel re-configuration could occur during a transportation accident would depend to a large degree on the number of fuel rod failures and the type and geometry of the failure modes. Such information can only be developed analytically, as there is no direct experimental data that can provide guidance on the level of damage that can be expected. To this end, the paper focuses on the development of a modeling and analysis methodology that deals with this general problem on a generic basis. First consideration is given to defining acci-dent loading that is equivalent to the bounding, although analytically intractable, hypothetical transportation acci-dent of a 9-meter drop onto essentially unyielding surface, which is effectively a condition for impact-limiters de-sign. Second, an analytically robust material constitutive model, an essential element in a successful structural analysis, is required. A material behavior model

  4. Properties of U3Si2-Al dispersion fuel element and its application

    International Nuclear Information System (INIS)

    Yin Changgeng

    2001-01-01

    The properties of U 3 Si 2 fuel and U 3 Si 2 -Al dispersion fuel element are introduced, which include U-loading; the banding quality, U-homogeneity and 'dog-bone' phenomenon, the minimum thickness of cladding and the corrosion performances. The fabrication technique of fuel elements, NDT for fuel plates, assemble technique of fuel elements and the application of U 3 Si 2 -Al dispersion fuel elements in the world are introduced

  5. Requirements for materials of dispersion fuel elements

    International Nuclear Information System (INIS)

    Samojlov, A.G.; Kashtanov, A.I.; Volkov, V.S.

    1982-01-01

    Requirements for materials of dispersion fuel elements are considered. The necessity of structural and fissile materials compatibility at maximum permissible operation temperatures and temperatures arising in a fuel element during manufacture is pointed out. The fuel element structural material must be ductile, possess high mechanical strength minimum neutron absorption cross section, sufficient heat conductivity, good corrosion resistance in a coolant and radiation resistance. The fissile material must have high fissile isotope concentration, radiation resistance, high thermal conductivity, certain porosity high melting temperature must not change the composition under irradiation

  6. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonne (United States)

    2014-05-15

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model.

  7. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    International Nuclear Information System (INIS)

    Jeong, Gwan Yoon; Sohn, Dong Seong; Kim, Yeon Soo

    2014-01-01

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model

  8. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    International Nuclear Information System (INIS)

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-01-01

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization

  9. Accident situations tests HTR fuel with the device Kufa

    International Nuclear Information System (INIS)

    Kellerbauer, A. I.; Freis, D.

    2010-01-01

    The ceramic and ceramic-like coating materials in modern high-temperature reactor fuel are designed to ensure mechanical stability and retention of fission products under normal and transient conditions, regardless of the radiation damage sustained in-pile. In hypothetical depressurization and loss-of-forced-circulation (D LOFC) accidents, fuel elements of modular high-temperate reactors are exposed to temperatures several hundred degrees higher than during normal operation, causing increased thermo-mechanical stress on the coating layers. At the Institute for Transuranium Elements of the European Commission, a vigorous experimental program is being pursued with the aim of characterizing the performance of irradiated HTR fuel under such accident conditions. A cold finger device (Kufa), operational in ITUs hot cells since 2006, has been used to perform heating experiments on eight irradiated HTR fuel pebbles from the AVR experimental reactor and from dedicated irradiation campaigns at the High-Flux Reactor in Petten, the Netherlands. Gaseous fission products are collected in a cryogenic charcoal trap, while volatiles,are plated out on a water-cooled condensate plate. A quantitative measurement of the release is obtained by gamma spectroscopy. We highlight experimental results from the Kufa testing as well as the on-going development of new experimental facilities. (Author) 9 refs.

  10. Analysis of the loss of pool cooling accident in a PWR spent fuel pool with MAAP5

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2014-01-01

    Highlights: • A PWR spent fuel pool was modeled by using MAAP5. • Loss of pool cooling severe accident scenarios were studied. • Loss of pool cooling accidents with two mitigation measures were analyzed. - Abstract: The Fukushima Daiichi nuclear accident shows that it is necessary to study potential severe accidents and corresponding mitigation measures for the spent fuel pool (SFP) of a nuclear power plant (NPP). This paper presents the analysis of loss of pool cooling accident scenarios and the discussion of mitigation measures for the SFP at a pressurized water reactor (PWR) NPP with the MAAP5 code. Analysis of uncompensated loss of water due to the loss of pool cooling with different initial pool water levels of 12.2 m (designated as a reference case) and 10.7 m have been performed based on a MAAP5 input model. Scenarios of the accident such as overheating of uncovered fuel assemblies, oxidation of claddings and hydrogen generation, loss of intactness of fuel rod claddings, and release of radioactive fission products were predicted with the assumption that mitigation measures were unavailable. The results covered a broad spectrum of severe accident evaluations in the SFP. Furthermore, as important mitigation measures, the effects of recovering the SFP cooling system and makeup water in SFP on the accident progressions have also been investigated respectively based on the events of pool water boiling and spent fuels uncovery. Based upon the reference case, three cases with the recovery of SFP cooling system and three other cases with makeup water in SFP have been studied. The results showed that, severe accident might happen if SFP cooling system was not restored timely before the spent fuels started to become uncovered; spent fuels could be completely submerged and severe accident might be avoided if SFP makeup water system provided water with a mass flow rate larger than the average evaporation rate defined as the division of pool water mass above the

  11. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofmann, G.L.; Ryu, Woo-Seog

    1991-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and micro structural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide dispersion fuel. (orig.)

  12. Analysis of molten fuel behavior in coolant channel during severe accidents in KALIMER

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Lee, Yong Bum; Hahn, Do Hee

    2004-11-01

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double fault initiators such as ATWS events without boiling coolant or melting fuel. For the future design of liquid metal reactor, however, the evaluation of the safety performance and the determination of containment requirements may require consideration of tripe-fault accident sequences of extremely low probability of occurrence that leads to fuel melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will required as a design requirement for the future design of LMR. For sodium-cooled core designs with metallic fuel, one of the major phenomenological modeling uncertainties to be resolved is the potential for freezing and plugging of molten metallic fuel in above- and below-core structures and possibly in inter-subassembly spaces. In this study, scoping analyses were carried out to evaluate the penetration depths in the coolant channels by molten fuel mixture during the unprotected loss-of-flow accidents in the core of the KALIMER-600. It is assumed in the analyses that a solid fuel crust would start to form upon contact with the coolant channel structure temperature of which is below the fuel solidus. The analysis results predict that the coolant channels would be plugged by the freezing molten fuel in the inlet lower shield as well as in the outlet, fission-gas-plenum region for the KALIMER-600 design

  13. Status report on the EPRI fuel cycle accident risk assessment

    International Nuclear Information System (INIS)

    Erdmann, R.C.; Fullwood, R.R.; Garcia, A.A.; Mendoza, Z.T.; Ritzman, R.L.; Stevens, C.A.

    1979-07-01

    This report summarizes and extends the work reported in five unpublished draft reports: the accidental radiological risk of reprocessing spent fuel, mixed oxide fuel fabrication, the transportation of materials within the fuel cycle, and the disposal of nuclear wastes, and the routine atmospheric radiological risk of mining and milling uranium-bearing ore. Results show that the total risk contribution of the fuel cycle is only about 1% of the accident risk of the power plant and hence, with little error, the accident risk of nuclear electric power is that of the power plant itself. The power plant risk, assuming a very large usage of nuclear power by the year 2005, is only about 0.5% of the radiological risk of natural background. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihoods and estimated errors. The primary probabilistic estimation tool is fault tree analysis with the release source terms calculated using physical--chemical processes. Doses and health effects are calculated with the CRAC code. No evacuation or mitigation is considered: source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/T) and short cooling (90 to 150 d); HEPA filter efficiencies are derived from experiments

  14. The WWER fuel element safety research under the design and heavy accident imitation on the 'PARAMETR' stand

    International Nuclear Information System (INIS)

    Deniskin, V.P.; Nalivaev, V.I.; Parshin, N. Ya.; Fedik, I.I.

    2000-01-01

    Analysis of fuel element behavior in the course of the design and heavy accidents is the component of reactor facility safety prevention. Many tasks of fuel element behavior research may be solved with the help of thermophysical stands. One of such stands implemented in 1991 was thermophysical stand 'PARAMETER'.Several experiments on model assemblies chiefly imitating both heavy accident and design basic accident have already been conducted in 'PARAMETER' stand. There were obtained data about fuel claddings seal failure and deformation condition. In particular it was defined that seal failure of all fuel claddings occurs on stage of fuel element warming, in temperature range (770-900) degree celsius and almost does not depend on inner pressure level

  15. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2016-02-01

    Full Text Available In severe loss of coolant accidents (LOCA, similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in 1,200–1,500°C steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstrated corrosion resistance. As these composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Mo alloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are

  16. Randomly dispersed particle fuel model in the PSG Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Leppaenen, J.

    2007-01-01

    High-temperature gas-cooled reactor fuels are composed of thousands of microscopic fuel particles, randomly dispersed in a graphite matrix. The modelling of such geometry is complicated, especially using continuous-energy Monte Carlo codes, which are unable to apply any deterministic corrections in the calculation. This paper presents the geometry routine developed for modelling randomly dispersed particle fuels using the PSG Monte Carlo reactor physics code. The model is based on the delta-tracking method, and it takes into account the spatial self-shielding effects and the random dispersion of the fuel particles. The calculation routine is validated by comparing the results to reference MCNP4C calculations using uranium and plutonium based fuels. (authors)

  17. The Chernobyl accident: Causes and consequences

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1987-01-01

    Two explosions, one immediately following the other, in Unit 4 of the Chernobyl nuclear power station in the Soviet Union signaled the worst disaster ever to befall the commercial nuclear power production industry. This accident, which occurred at 1:24 a.m. on April 26, 1986, resulted from an almost incredible series of operational errors associated, ironically, with an attempt to enhance the capability of the reactor to safely accommodate station blackout accidents (i.e., accidents arising from a loss of station electrical power). Disruption of the core, due to a prompt criticality excursion, resulted in the destruction of the core vault and reactor building and the sudden dispersal of about 3% of the fuel from the core region into the environment. Lesser but significant releases of radioactivity continued through May 6, 1986, before attempts to certain the radioactivity and cool the remnants of the core were successful. The amount and composition of material released in the course of the accident remain somewhat uncertain, and inconsistencies in the release estimates are evident. The Soviet estimates, in addition to the dispersal of about 3% of the fuel, include complete release of the noble gas core inventory, 20% of the fission product iodine inventory, 15% of the tellurium inventory, and 10 to 13% of the fission product cesium inventory. The iodine and cesium release estimates are not consistent with the noble gas values, and are as much as a factor of two less than some estimates made by experts outside the Soviet Union

  18. Status of USNRC research on fuel behavior under accident conditions

    International Nuclear Information System (INIS)

    Johnston, W.V.

    1976-01-01

    The program of the Fuel Behaviour Research is directed at providing a detailed understanding of the response of nuclear fuel assemblies to off-normal or accident conditions. This understanding is expressed in physical and analytical correlations which are incorporated into computer codes. The results of these experiments and the resulting codes are available to the licensing authorities for use in evaluating utility submissions. (orig.) [de

  19. Steady-state thermal hydraulic analysis and flow channel blockage accident analysis of JRR-3 silicide core

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-03-01

    JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)

  20. Radiological health risks from accidents during transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Potential radiological health risks from severe accident scenarios during the transportation of spent nuclear fuels are estimated. These extremely low probability, but potentially credible, scenarios are characterized by the U.S. Nuclear Regulatory Commission's Modal Study in terms of the maximum credible structural responses and/or the maximum credible cask temperature responses. In some accident scenarios, the spent nuclear fuel casks are assumed to be breached, resulting in the release of radioactivity to the atmosphere. Models have been developed to estimate radiological health consequences, including potential short-term exposures and health effects to individuals and potential long-term environmental dose commitments and health effects to the population. The population risks are calculated using state-level data, and the resulting overall health risks are compared for several levels of cleanup effort to determine the relative effects on long-term risks to the population in the event of an accident. 4 refs., 3 figs., 3 tabs

  1. Use of fuel failure correlations in accident analysis

    International Nuclear Information System (INIS)

    O'Dell, L.D.; Baars, R.E.; Waltar, A.E.

    1975-05-01

    The MELT-III code for analysis of a Transient Overpower (TOP) accident in an LMFBR is briefly described, including failure criteria currently applied in the code. Preliminary results of calculations exploring failure patterns in time and space in the reactor core are reported and compared for the two empirical fuel failure correlations employed in the code. (U.S.)

  2. Deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail.

  3. Accommodation of unprotected accidents by inherent safety design features in metallic and oxide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Sevy, R.H.; Su, S.F.

    1985-01-01

    This paper presents the results of a study of the effectivness of intrinsic design features to mitigate the consequences of unprotected accidents in metallic and oxide-fueled LMFBRs. The accidents analyzed belong to the class generally considered to lead to core disruption; unprotected loss-of-flow (LOF) and transient over-power (TOP). Results of the study demonstrate the potential for design features to meliorate accident consequences, and in some cases to render them benign. Emphasis is placed on the relative performance of metallic and oxide-fueled core designs

  4. Study on the irradiation swelling of U3Si2-Al dispersion fuel

    International Nuclear Information System (INIS)

    Xing Zhonghu; Ying Shihao

    2001-01-01

    The dominant modeling mechanisms on irradiation swelling of U 3 Si 2 -Al dispersion fuel are introduced. The core of dispersion fuel is looked to as micro-fuel elements of continuous matrix. The formation processes of gas bubbles in the fuel phase are described through the behavior mechanisms of fission gases. The swelling in the fuel phase causes the interaction between fuel particles and metal matrix, and the metal matrix can restrain the irradiation swelling of fuel particles. The developed code can predict irradiation-swelling values according to the parameters of fuel elements and irradiation conditions, and the predicted values are in agreement with the measured results

  5. Characteristics of severely damaged fuel from PBF tests and the TMI-2 accident

    International Nuclear Information System (INIS)

    Osetek, D.J.; Cook, B.A.; Dallman, R.J.; Broughton, J.M.

    1986-01-01

    As a result of the TMI-2 reactor accident, the US Nuclear Regulatory Commission initiated a research program to investigate phenomena associated with severe fuel damage accidents. This program is sponsored by several countries and includes in-pile and out-of-pile experiments, separate effects studies, and computer code development. The principal in-pile testing portion of the program includes four integral severe fuel damage (SFD) tests in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL). The INEL is also responsible for examining the damaged core in the Three Mile Island-Unit 2 (TMI-2) reactor, which offers the unique opportunity to directly compare the findings of an experimental program to those of an actual reactor accident. The principal core damage phenomena which can occur during a severe accident are discussed, and examples from the INEL research programs are used to illustrate the characteristics of these phenomena. The preliminary results of the programs are presented, and their impact on plant operability during severe accidents is discussed

  6. Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.

    2011-12-01

    The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.

  7. Review of accident analyses of RB experimental reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2003-01-01

    The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VINCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62; yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin) consisting of 2% enriched uranium metal and 80% enriched U0 2 , dispersed in aluminum matrix, have been available since 1962 and 1976, respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements, as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINCA Institute, an independent regulator)' body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety' Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed) to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given. (author)

  8. Review of accident analyses of RB experimental reactor

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2003-01-01

    Full Text Available The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VTNCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62 yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin consisting of 2% enriched uranium metal and 80% enriched UO2 dispersed in aluminum matrix, have been available since 1962 and 1976 respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINĆA Institute, an independent regulatory body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given.

  9. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    International Nuclear Information System (INIS)

    Zhang, Yongfeng

    2016-01-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  10. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Laboratory

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  11. Influence of Fuel-Matrix Interaction on the Deformation of U-Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Chicago (United States)

    2014-05-15

    In order to predict the fuel plate failure leading to breakaway swelling in the meat, an understanding of the effects of the fuel-matrix interaction behavior on the deformation of fuel meat is necessary. However, the effects of IL formation on the development of breakaway swelling have not been studied thoroughly. A mechanism that explains large pore growth that leads to breakaway swelling has not been included in the existing fuel performance models. In this study, the effect of the fuel-matrix interaction on large interfacial porosity development at the IL-Al interface is analyzed using both mechanistic correlations and observations from the post-irradiation examination results of U-Mo Dispersion fuels. The effects of fuel-matrix interaction on the fuel performance of U-Mo/Al Dispersion fuel were investigated. Fuel-matrix interaction bears the causes for breakaway swelling that can lead to a fuel failure under a high-power irradiation condition. Fission gas atoms are released from U-Mo particles to the interaction layer via diffusion and recoil. The fission gases released from the U-Mo and produced in the ILs are further released to the IL-Al interface by diffusion in the IL and recoil. Large pore formation at the IL-Al interface is attributed to the active diffusion of fission gas atoms in the ILs and coalescence between the small bubbles there. A model calculation showed that IL growth increases the probability of forming a breakaway swelling condition. ILs are connected to each other and the Al matrix decreases as ILs grow. When more ILs are interconnected, breakaway swelling can occur when the effective stress from the fission gas pressure in the IL-Al interfacial pore becomes larger than the yield strength of the Al matrix.

  12. Prevention of criticality accidents in a fuel cycle plant

    International Nuclear Information System (INIS)

    Gatti, A.M.; Canavese, S.I.; Capadona, N.M.

    1990-01-01

    This work reports the basic considerations on criticality accidents applied to an uranium dioxide fuel cycle production plant. The different fabrication stages are briefly described, with the identification of the neutronically isolated areas. Once the areas have been defined, an evaluation is made, setting up the control parameters to be used in each of them and their variation ranges; normal operation limitations based on experimental data or validating calculations, applied specifically to 5% enriched uranium, are established. Afterwards, defined parameters deviations are analyzed due to incidental conditions in order to prevent criticality accidents under normal conditions and maintenance operations. (Author) [es

  13. Modeling of high-density U-MO dispersion fuel plate performance

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    2002-01-01

    Results from postirradiation examinations (PIE) of highly loaded U-Mo/Al dispersion fuel plates over the past several years have shown that the interaction between the metallic fuel particles and the matrix aluminum can be extensive, reducing the volume of the high-conductivity matrix phase and producing a significant volume of low-conductivity reaction-product phase. This phenomenon results in a significant decrease in fuel meat thermal conductivity during irradiation. PIE has further shown that the fuel-matrix interaction rate is a sensitive function of irradiation temperature. The interplay between fuel temperature and fuel-matrix interaction makes the development of a simple empirical correlation between the two difficult. For this reason a comprehensive thermal model has been developed to calculate temperatures throughout the fuel plate over its lifetime, taking into account the changing volume fractions of fuel, matrix and reaction-product phases within the fuel meat owing to fuel-matrix interaction; this thermal model has been incorporated into the dispersion fuel performance code designated PLATE. Other phenomena important to fuel thermal performance that are also treated in PLATE include: gas generation and swelling in the fuel and reaction-product phases, incorporation of matrix aluminum into solid solution with the unreacted metallic fuel particles, matrix extrusion resulting from fuel swelling, and cladding corrosion. The phenomena modeled also make possible a prediction of fuel plate swelling. This paper presents a description of the models and empirical correlations employed within PLATE as well as validation of code predictions against fuel performance data for U-Mo experimental fuel plates from the RERTR-3 irradiation test. (author)

  14. Experimental Setup for Reflood Quench of Accident Tolerant Fuel Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan; Lee, Kwan Geun; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of accident tolerant fuel (ATF) is a solution to suppress the hydrogen generation in loss of coolant accident (LOCA) situation without safety injection, which was the critical incident in the severe accident in the Fukushima. The changes in fuel and cladding materials may cause a significant difference in reactor performance in long term operation. Properties in terms of material science and engineering have been tested and showed promising results. However, numerous tests are still required to ensure the design performance and safety. Thermal hydraulic tests including boiling and quenching are partly confirmed, but not yet complete. We have been establishing the experimental setup to confirm the properties in the terms of thermal hydraulics. Design considerations and preliminary tests are introduced in this paper. An experimental setup to test thermal hydraulic characteristics of new ATF claddings are established and tested. The W heater set inside the cladding is working properly, exceeding 690 W/m linear power with thermocouples and insulating ceramic sheaths inside. The coolant injection control was also working in good conditions. The setup is about to complete and going to simulate quenching behavior of the ATF in the LOCA situation.

  15. Characterization of dispersed type fuel miniplates based in alloy UMo by evaluation of changes volumetrics and thermal conductivity

    International Nuclear Information System (INIS)

    Salinas Valero, Pablo Ignacio

    2016-01-01

    The development of new technologies in the nuclear area is extremely important to achieve greater efficiency and security in the production of electrical energy in the case of power reactors and for the production of radioisotopes and neutrons in research reactors. Throughout history, uranium-based nuclear fuels evolved in parallel with the requirements of nuclear reactors, this emphasis was increased when the RERTR program was created, which restricts the use of fuels with a maximum enrichment of 20% of the isotope U 235 (fissile isotope), which makes it necessary to increase the mass of uranium to compensate the amount of fissile material to maintain a neutron flux necessary for the reactors to operate with the same power. The search for new nuclear fuels has reached the UMo alloy with which densities of 18 gU/cm 3 are achieved in type fuels and 8 gU/cm 3 in dispersed type fuels, properties under irradiation due to their cubic crystalline structure. This type of fuel, when used dispersed in an aluminum matrix, becomes thermodynamically unstable by increasing the fission temperature of the U 235 isotope, due to this, compounds of lower density are formed, which causes an increase in volume (swelling). ). This swelling is studied throughout the present work, to relate the changes of UMo-Al / 4% volume of thermally induced miniecography in thermal treatments, with the purpose of evaluating changes in the thermal conductivity of the material. In this study it was detected that the swelling in miniplates is related in some way to the reduction of thermal conductivity, it was also recorded that the volume of change is irregular increasing and decreasing its volume according to the hours of induced swelling. The purpose of this work is to contribute to the development of dispersed fuels based on the UMo alloy in order to control the variables and reduce the probability of faults and possible accidents, such as fission products, or an increase in temperature in the core

  16. Irradiation behavior of uranium oxide - Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Rest, Jeffrey; Snelgrove, James L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products and as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show that, with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 g U/cm 3 ) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼63% 235 U burnup). (author)

  17. Irradiation behavior of uranium oxide-aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products, as well as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show, that with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 gm/cc) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼ 63% 235 U burnup)

  18. Chernobyl and Fukushima nuclear accidents: what has changed in the use of atmospheric dispersion modeling?

    International Nuclear Information System (INIS)

    Benamrane, Y.; Wybo, J.-L.; Armand, P.

    2013-01-01

    The threat of a major accidental or deliberate event that would lead to hazardous materials emission in the atmosphere is a great cause of concern to societies. This is due to the potential large scale of casualties and damages that could result from the release of explosive, flammable or toxic gases from industrial plants or transport accidents, radioactive material from nuclear power plants (NPPs), and chemical, biological, radiological or nuclear (CBRN) terrorist attacks. In order to respond efficiently to such events, emergency services and authorities resort to appropriate planning and organizational patterns. This paper focuses on the use of atmospheric dispersion modeling (ADM) as a support tool for emergency planning and response, to assess the propagation of the hazardous cloud and thereby, take adequate counter measures. This paper intends to illustrate the noticeable evolution in the operational use of ADM tools over 25 y and especially in emergency situations. This study is based on data available in scientific publications and exemplified using the two most severe nuclear accidents: Chernobyl (1986) and Fukushima (2011). It appears that during the Chernobyl accident, ADM were used few days after the beginning of the accident mainly in a diagnosis approach trying to reconstruct what happened, whereas 25 y later, ADM was also used during the first days and weeks of the Fukushima accident to anticipate the potentially threatened areas. We argue that the recent developments in ADM tools play an increasing role in emergencies and crises management, by supporting stakeholders in anticipating, monitoring and assessing post-event damages. However, despite technological evolutions, its prognostic and diagnostic use in emergency situations still arise many issues. -- Highlights: • Study of atmospheric dispersion modeling use during nuclear accidents. • ADM tools were mainly used in a diagnosis approach during Chernobyl accident. • ADM tools were also used

  19. Full scale simulations of accidents on spent-nuclear-fuel shipping systems

    International Nuclear Information System (INIS)

    Yoshimura, H.R.

    1978-01-01

    In 1977 and 1978, five first-of-a-kind full scale tests of spent-nuclear-fuel shipping systems were conducted at Sandia Laboratories. The objectives of this broad test program were (1) to assess and demonstrate the validity of current analytical and scale modeling techniques for predicting damage in accident conditions by comparing predicted results with actual test results, and (2) to gain quantitative knowledge of extreme accident environments by assessing the response of full scale hardware under actual test conditions. The tests were not intended to validate the present regulatory standards. The spent fuel cask tests fell into the following configurations: crashes of a truck-transport system into a massive concrete barrier (100 and 130 km/h); a grade crossing impact test (130 km/h) involving a locomotive and a stalled tractor-trailer; and a railcar shipping system impact into a massive concrete barrier (130 km/h) followed by fire. In addition to collecting much data on the response of cask transport systems, the program has demonstrated thus far that current analytical and scale modeling techniques are valid approaches for predicting vehicular and cask damage in accident environments. The tests have also shown that the spent casks tested are extremely rugged devices capable of retaining their radioactive contents in very severe accidents

  20. Noble gas confinement for reactor fuel melting accidents

    International Nuclear Information System (INIS)

    Monson, P.R.

    1984-01-01

    In the unlikely event of a fuel melting accident, radioactive material would be released into the reactor room. This radioactive material would consist of particulate matter, iodine, tritium, and the noble gases krypton and xenon. In the case of reactors with containment domes the gases would be contained for subsequent cleanup. For reactors without contaiment the particulates and the iodine can be effectively removed with HEPA and carbon filters of current technology; however, noble gases cannot be easily removed and would be released to the atmosphere. In either case, it would be highly desirable to have a system that could be brought online to treat this contaminated air to minimize the population dose. A low temperature adsorption system has been developed at the Savannah River Laboratory to remove the airborne radioactive material from such a fuel melting accident. Over two dozen materials have been tested in extensive laboratory studies, and hydrogen mordenite and silver mordenite were found to be the most promising adsorbents. A full-scale conceptual design has also been developed. Results of the laboratory studies and the conceptual design are discussed along with plans for further development of this concept

  1. Noble gas confinement for reactor fuel melting accidents

    International Nuclear Information System (INIS)

    Monson, P.R.

    1985-01-01

    In the unlikely event of a fuel melting accident radioactive material would be released into the reactor room. This radioactive material would consist of particulate matter, iodine, tritium, and the noble gases krypton and xenon. In the case of reactors with containment domes, the gases would be contained for subsequent cleanup. For reactors without containment the particulates and the iodine can be effectively removed with HEPA and carbon filters of current technology; however, noble gases cannot be easily removed and would be released to the atmosphere. In either case, it would be highly desirable to have a system that could be brought online to treat this contaminated air to minimize the population dose. A low temperature adsorption system has been developed at the Savannah River Laboratory to remove the airborne radioactive material from such a fuel melting accident. Over two dozen materials have been tested in extensive laboratory studies, and hydrogen mordensite and silver mordenite were found to be the most promising absorbents. A full-scale conceptual design has also been developed. Results of the laboratory studies and the conceptual design will be discussed along with plans for further development of this concept

  2. Analysis of high burnup fuel behavior under control rod ejection accident in Korea standard nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Chan Bok; Lee, Chung Chan; Kim, Oh Hwan; Kim, Jong Jin

    1996-07-01

    Test results of high burnup fuel behavior under RIA(reactivity insertion accident) indicated that fuel might fail at the fuel enthalpy lower than that in the current fuel failure criteria was derived by the conservative assumptions and analysis of fuel failure mechanisms, and applied to the analysis of control rod ejection accident in the 1,000 MWe Korea standard PWR. Except that three dimensional core analysis was performed instead of conventional zero dimensional analysis, all the other conservative assumptions were kept. Analysis results showed that less than on percent of the fuel rods in the core has failed which was much less than the conventional fuel failure fraction, 9.8 %, even though a newly derived fuel failure criteria -Fuel failure occurs at the power level lower than that in the current fuel failure criteria. - was applied, since transient fuel rod power level was significantly decreased by analyzing the transient fuel rod power level was significantly decreased by analyzing the transient core three dimensionally. Therefore, it can be said that results of the radiological consequence analysis for the control rod ejection accident in the FSAR where fuel failure fraction was assumed 9.8 % is still bounding. 18 tabs., 48 figs., 39 refs. (Author)

  3. Simulation of the mechanical behavior of a spent fuel shipping cask in a rail accident environment

    International Nuclear Information System (INIS)

    Fields, S.R.

    1977-02-01

    A preliminary mathematical model has been developed to simulate the dynamic mechanical response of a large spent fuel shipping cask to the impact experienced in a hypothetical rail accident. The report was written to record the status of the development of the mechanical response model and to supplement an earlier report on spent fuel shipping cask accident evaluation

  4. Loss of cooling accident simulation of nuclear power station spent-fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.; Liang, K-S., E-mail: mlee@ess.nthu.edu.tw, E-mail: ksliang_1@hotmail.com [National Tsing Hua Univ., Hsinchu, Taiwan (China); Lin, K-Y., E-mail: syrup760914@gmail.com [Taiwan Power Company, Taiwan (China)

    2014-07-01

    The core melt down accident of Fukushima Nuclear Power Station on March 11th, 2011 alerted nuclear industry that the long term loss of cooling of spent fuel pool may need some attention. The target plant analyzed is the Chinshan Nuclear Power Station of Taiwan Power Company. The 3-Dimensional RELAP5 input deck of the spent fuel pool of the station is built. The results indicate that spent fuel of Chinshan Nuclear Power Station is uncovered at 6.75 days after an accident of loss cooling takes place and cladding temperature rises above 2,200{sup o}F around 8 days. The time is about 13 hours earlier than the results predicted using simple energy balance method. The results also show that the impact of Counter Current Flow Limitation (CCFL) and radiation heat transfer model is marginal. (author)

  5. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    OpenAIRE

    Bo Cheng; Young-Jin Kim; Peter Chou

    2016-01-01

    In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident managem...

  6. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements; Calculos neutronicos, termo-hidraulicos e de seguranca de um dispositivo para Irradiacao de miniplacas (DIM) de elementos combustiveis tipo dispersao

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges

    2010-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U{sub 3}O{sub 8}-Al and U{sub 3}Si{sub 2}- Al dispersion fuels, LEU type (19.75 % {sup 235}U) with uranium densities of, respectively, 3.2 gU/cm{sup 3} and 4.8 gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  7. Safety demonstration analyses at JAERI for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Kitao, Kohichi; Karasawa, Kiyonori; Yamada, Kenji; Takahashi, Satoshi; Watanabe, Kohji; Okuno, Hiroshi; Miyoshi, Yoshinori

    2005-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted in a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident postulated to occur during transportation, for the purpose of gaining acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and thus, accident conditions leading to mechanical damages and thermal failure were determined to characterize the scenarios. As a result, the worst-case conditions of run-off-the-road accidents were set up to define the impact against a concrete or asphalt surface. For fire accident scenarios to be set up, collisions were assumed to occur with an oil tanker carrying lots of inflammable material in open air, or with a commonly used two-ton-truck inside a tunnel without ventilation. Then the cask models were determined for these safety demonstration analyses to represent those commonly used for fresh nuclear fuel transported throughout Japan. Following the postulated accident scenarios, the mechanical damages were analyzed by using the general-purpose finite element code LS-DYNA with three-dimensional elements. It was found that leak tightness of the package be maintained even in the severe impact scenario. Then the thermal safety was analyzed by using the general-purpose finite element code ABAOUS with three-dimensional elements to describe cask geometry. As a result of the thermal analyses, the integrity of the containment

  8. A major technological accident: the dispersion of a radioactive cesium - 137 pellet in Goiania, Brazil (1987)

    International Nuclear Information System (INIS)

    Guertzon, C.

    1994-01-01

    This study concerns the accidental dispersion of cesium 137 chloride via an abandoned radiotherapy device in Brazil, in september 1987. Since the accident occurred recently in a confined area and concerned a single radiochemical agent, it was possible to delimit the study parameters in each discipline: post-accident management, physics, medicine, environment, law, psychology, socio-economics and communication. Costs are difficult to evaluate but obviously very important. It is difficult to analyze all consequences. No official has been accused, there were no sentence. The results demonstrate the critical importance of the human factor in technological accidents. (A.L.B.)

  9. Effects of spent fuel types on offsite consequences of hypothetical accidents

    International Nuclear Information System (INIS)

    Courtney, J. C.; Dwight, C. C.; Lehto, M. A.

    2000-01-01

    Argonne National Laboratory (ANL) conducts experimental work on the development of waste forms suitable for several types of spent fuel at its facility on the Idaho National Engineering and Environmental Laboratory (INEEL) located 48 km West of Idaho Falls, ID. The objective of this paper is to compare the offsite radiological consequences of hypothetical accidents involving the various types of spent nuclear fuel handled in nonreactor nuclear facilities. The highest offsite total effective dose equivalents (TEDEs) are estimated at a receptor located about 5 km SSE of ANL facilities. Criticality safety considerations limit the amount of enriched uranium and plutonium that could be at risk in any given scenario. Heat generated by decay of fission products and actinides does not limit the masses of spent fuel within any given operation because the minimum time elapsed since fissions occurred in any form is at least five years. At cooling times of this magnitude, fewer than ten radionuclides account for 99% of the projected TEDE at offsite receptors for any credible accident. Elimination of all but the most important nuclides allows rapid assessments of offsite doses with little loss of accuracy. Since the ARF (airborne release fraction), RF (respirable fraction), LPF (leak path fraction) and atmospheric dilution factor (χ/Q) can vary by orders of magnitude, it is not productive to consider nuclides that contribute less than a few percent of the total dose. Therefore, only 134 Cs, 137 Cs- 137m Ba, and the actinides significantly influence the offsite radiological consequences of severe accidents. Even using highly conservative assumptions in estimating radiological consequences, they remain well below current Department of Energy guidelines for highly unlikely accidents

  10. The deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail. (author)

  11. Nuclear Fuel Behaviour during Reactivity Initiated Accidents. Workshop Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    A reactivity initiated accident (RIA) is a nuclear reactor accident that involves an unwanted increase in fission rate and reactor power. The power increase may damage the reactor core. The main objective of the workshop was to review the current status of the experimental and analytical studies of the fuel behavior during the RIA transients in PWR and BWR reactors and the acceptance criteria for RIA in use and under consideration. The workshop was organized in an opening session and 5 technical sessions: 1) Recent experimental results and experimental techniques used; 2) Modelling and Data Interpretation; 3) Code Assessment; 4) RIA Core Analysis and 5) Revision and application of safety criteria

  12. Classification of the railway accident in accordance with the requirement of the safety analysis of transporting spent fuel

    International Nuclear Information System (INIS)

    Wu Tao

    1993-01-01

    Based on the analysis of the difference between the accident severity categorization used in the Ministry of Railway and that used in the safety analysis of the transporting spent fuel, a method used for the classification of the railway accident in accordance with the requirement of the safety analysis of transporting spent fuel is suggested. The method classifies the railway accidents into 10 scenarios and make it possible to scale the accident through directly using the data documented by the Ministry of Railway without any additional effort

  13. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    International Nuclear Information System (INIS)

    Rebak, Raul B.

    2014-01-01

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  14. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, Raul B. [General Electric Global Research, Schnectady, NY (United States)

    2014-09-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  15. Transmission electron microscopy characterization of irradiated U-7Mo/Al-2Si dispersion fuel

    International Nuclear Information System (INIS)

    Gan, J.; Keiser, D.D.; Wachs, D.M.; Robinson, A.B.; Miller, B.D.; Allen, T.R.

    2010-01-01

    The plate-type dispersion fuels, with the atomized U(Mo) fuel particles dispersed in the Al or Al alloy matrix, are being developed for use in research and test reactors worldwide. It is found that the irradiation performance of a plate-type dispersion fuel depends on the radiation stability of the various phases in a fuel plate. Transmission electron microscopy was performed on a sample (peak fuel mid-plane temperature ∼109 deg. C and fission density ∼4.5 x 10 27 f m -3 ) taken from an irradiated U-7Mo dispersion fuel plate with Al-2Si alloy matrix to investigate the role of Si addition in the matrix on the radiation stability of the phase(s) in the U-7Mo fuel/matrix interaction layer. A similar interaction layer that forms in irradiated U-7Mo dispersion fuels with pure Al matrix has been found to exhibit poor irradiation stability, likely as a result of poor fission gas retention. The interaction layer for both U-7Mo/Al-2Si and U-7Mo/Al fuels is observed to be amorphous. However, unlike the latter, the amorphous layer for the former was found to effectively retain fission gases in areas with high Si concentration. When the Si concentration becomes relatively low, the fission gas bubbles agglomerate into fewer large pores. Within the U-7Mo fuel particles, a bubble superlattice ordered as fcc structure and oriented parallel to the bcc metal lattice was observed where the average bubble size and the superlattice constant are 3.5 nm and 11.5 nm, respectively. The estimated fission gas inventory in the bubble superlattice correlates well with the fission density in the fuel.

  16. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated.

    Science.gov (United States)

    Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y

    2014-09-15

    Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Accommodation of unprotected accidents by inherent safety design features in metallic and oxide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Su, S.F.; Cahalan, J.E.; Sevy, R.H.

    1985-01-01

    This paper presents the results of a systematic study of the effectiveness of intrinsic design features to mitigate the consequences of unprotected accidents in metallic and oxide-fueled LMFBRs. The accidents analyzed belong to the class generally considered to lead to core disruption; unprotected loss-of-flow (LOF) and transient over-power (TOP). The results of the study demonstrate the potential for design features to meliorate accident consequences, and in some cases to render them benign. Emphasis is placed on the relative performance of metallic and oxide-fueled core designs, and safety margins are quantified in sensitivity studies. All analyses were carried out using the SASSYS LMFBR systems analysis code (1)

  18. Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident

    Science.gov (United States)

    Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.

    2012-04-01

    Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.

  19. Modeling and preliminary analysis on the temperature profile of the (TRU-Zr)-Zr dispersion fuel rod for HYPER

    International Nuclear Information System (INIS)

    Lee, B. W.; Hwang, W.; Lee, B. S.; Park, W. S.

    2000-01-01

    Either TRU-Zr metal alloy or (TRU-Zr)-Zr dispersion fuel is considered as a blanket fuel for HYPER(Hybrid Power Extraction Reactor). In order to develop the code for dispersion fuel rod performance analysis under steady state condition, the fuel temperature distribution model which is the one of the most important factors in a fuel performance code has been developed in this paper,. This developed model computes the one dimensional radial temperature distribution of a cylindrical fuel rod. The temperature profile results by this model are compared with the temperature distributions of U 3 Si-A1 dispersion fuel and TRU-Zr metal alloy fuel. This model will be installed in performance analysis code for dispersion fuel

  20. Predicted irradiation behavior of U3O8-Al dispersion fuels for production reactor applications

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Rest, J.

    1990-01-01

    Candidate fuels for the new heavy-water production reactor include uranium/aluminum alloy and U 3 O 8 -Al dispersion fuels. The U 3 O 8 -Al dispersion fuel would make possible higher uranium loadings and would facilitate uranium recycle. Research efforts on U 3 O 8 -Al fuel include in-pile irradiation studies and development of analytical tools to characterize the behavior of dispersion fuels at high-burnup. In this paper the irradiation performance of U 3 O 8 -Al is assessed using the mechanistic Dispersion Analysis Research Tool (DART) code. Predictions of fuel swelling and alteration of thermal conductivity are presented and compared with experimental data. Calculational results indicate good agreement with available data where the effects of as-fabricated porosity and U 3 O 8 -Al oxygen exchange reactions are shown to exert a controlling influence on irradiation behavior. The DART code is judged to be a useful tool for assessing U 3 O 8 -Al performance over a wide range of irradiation conditions

  1. POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

    Directory of Open Access Journals (Sweden)

    H.J. RYU

    2013-12-01

    Full Text Available Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4–5 g-U/cm3 were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr, additional protective coatings (silicide or nitride, and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

  2. Fuel disruption mechanisms determined in-pile in the ACRR

    International Nuclear Information System (INIS)

    Wright, S.A.; Fischer, E.A.

    1984-09-01

    Over thirty in-pile experiments were performed to investigate fuel disruption behavior for LMFBR loss of flow (LOF) accidents. These experiments reproduced the heating transients for a variety of accidents ranging from slow LOF accidents to rapid LOF-driven-TOP accidents. In all experiments the timing and mode of the fuel disruption were observed with a high speed camera, enabling detailed comparisons with a fuel pin code, SANDPIN. This code transient intra- and inter-granular fission gas behavior to predict the macroscopic fuel behavior, such as fission gas induced swelling and frothing, cracking and breakup of solid fuel, and fuel vapor pressure driven dispersal. This report reviews the different modes of fuel disruption as seen in the experiments and then describes the mechanism responsible for the disruption. An analysis is presented that describes a set of conditions specifying the mode of fuel disruption and the heating conditions required to produce the disruption. The heating conditions are described in terms of heating rate (K/s), temperature gradient, and fuel temperature. A fuel disruption map is presented which plots heating rate as a function of fuel temperature to illustrate the different criteria for disruption. Although this approach to describing fuel disruption oversimplifies the fission gas processes modeled by SANDPIN, it does illustrate the criteria used to determine which fuel disruption mechanism is dominant and on what major fission gas parameters it depends

  3. Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Chung, Haijung; ); Billone, Michael; Fuketa, Toyoshi; Nagase, Fumihisa; Grandjean, Claude; Hache, George; Papin, Joelle; Heins, Lothar; Hozer, Zoltan; In de Betou, Jan; Kelppe, Seppo; Mayer, Ralph; Scott, Harold; Voglewede, John; Sonnenburg, Heinz; Sunder, Sham; Valach, Mojmir; Vrtilkova, Vera; Waeckel, Nicolas; Wiesenack, Wolfgang; Zimmermann, Martin

    2009-01-01

    The NEA Working Group on Fuel Safety (WGFS) is tasked with advancing the current understanding of fuel safety issues by assessing the technical basis for current safety criteria and their applicability to high burn-up and to new fuel designs and materials. The group aims at facilitating international convergence in this area, including as regards experimental approaches and interpretation and the use of experimental data relevant for safety. In 1986, a working group of the NEA Committee on the Safety of Nuclear Installations (CSNI) issued a state-of-the-art report on water reactor fuel behaviour in design-basis accident (DBA) conditions. The 1986 report was limited to the oxidation, embrittlement and deformation of pressurised water reactor (PWR) fuel in a loss-of-coolant accident (LOCA). Since then, considerable experimental and analytical work has been performed, which has led to a broader and deeper understanding of LOCA-related phenomena. Further, new cladding alloys have been produced, which might behave differently than the previously used Zircaloy-4, both under normal operating conditions and during transients. Compared with 20 years ago, fuel burn-up has been significantly increased, which requires extending the LOCA database in order to cover the high burnup range. There was also a clear need to address LOCA performance for reactor types other than PWRs. The present report has been prepared by the WGFS and covers the following technical aspects: - Description of different LOCA scenarios for major types of reactors: BWRs, PWRs, VVERs and to a lesser extent CANDUs. - LOCA phenomena: ballooning, burst, oxidation, fuel relocation and possible fracture at quench. - Details of high-temperature oxidation behaviour of various cladding materials. - Metallurgical phase change, effect of hydrogen and oxygen on residual cladding ductility. - Methods for LOCA testing, for example two-sided oxidation and ring compression for ductility, and integral quench test for

  4. Visual observations of fuel disruption in in-pile LMFBR accident experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Mast, P.K.

    1982-01-01

    Sandia National Laboratories has been investigating initiation phase phenomena in a series of Fuel Disruption (FD) experiments since 1977. In this program high speed cinematography is used to observe fuel disruption in in-pile experiments that simulate loss of flow accidents. Thus, these experiments provide high resolution measurements of initial fuel and clad motion with prototypic materials and prototypic heating conditions. The main objective of the FD experiment is to determine the timing (relative to fuel temperature) and the mode of fuel disruption under LOF heating conditions. Observed modes of disruption include fuel swelling, solid state breakup, cracking, ejection of a molten fuel jet, slumping, and rapid expansion of small particles. Because the temperature and character of the fuel at disruption are known, disruption can be correlated with the mechanisms driving the disruption such as fuel vapor pressure, molten fuel expansion, fission gases, and impurity gases

  5. An assessment of fuel freezing and drainage phenomena in a reactor shield plug following a core disruptive accident

    International Nuclear Information System (INIS)

    El-Genk, M.; Cronenberg, A.W.

    1978-01-01

    An important problem related to the assessment of the recriticality potential for an LMFBR following a core disruptive accident is an understanding of the freezing phenomena of molten fuel on a cold structure which may prevent fuel dispersal and sunsequent shutdown. Transient analytical freezing and drainage calculations have been applied to molten UO 2 travel through the rather cold lower shield plug of the Clinch River Breeder Reactor (CRBR). The successive approximation technique is used to obtain a solution of the non-linear freezing problem, where such effects as heat generation, viscous heat dissipation, temperature dependent thermophysical properties and a convective boundary condition at the solidification front have been incorporated into the present analytical formulation. Results indicate that previous steady-state analysis overestimate the rate of frozen layer build-up by about a factor of two. However, of primary importance is the driving force for drainage and the diameter of the shield plug flow channel. (Auth.)

  6. Westinghouse accident tolerant fuel program. Current results and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Sumit; Xu, Peng; Lahoda, Edward; Hallstadius, Lars; Boylan, Frank [Westinghouse Electric Company LLC, Hopkins, SC (United States)

    2016-07-15

    This paper discusses the current status, results from initial tests, as well as the future direction of the Westinghouse's Accident Tolerant Fuel (ATF) program. The current preliminary testing is addressed that is being performed on these samples at the Massachusetts Institute of Technology (MIT) test reactor, initial results from these tests, as well as the technical learning from these test results. In the Westinghouse ATF approach, higher density pellets play a significant role in the development of an integrated fuel system.

  7. A comparison of the metallurgical behaviour of dispersion fuels with uranium silicides and U6Fe as dispersants

    International Nuclear Information System (INIS)

    Nazare, S.

    1984-01-01

    In the past few years metallurgical studies have been carried out to develop fuel dispersions with U-densities up to 7.0 Mg U m -3 . Uranium silicides have been considered to be the prime candidates as dispersants; U 6 Fe being a potential alternative on account of its higher U-density. The objective of this paper is to compare the metallurgical behaviour of these two material combinations with regard to the following aspects: (1) preparation of the compounds U 3 Si, U 3 Si 2 and U 6 Fe; (2) powder metallurgical processing to miniature fuel element plates; (3) reaction behaviour under equilibrium conditions in the relevant portions of the ternary U-Si-Al and U-Fe-Al systems; (4) dimensional stability of the fuel plates after prolonged thermal treatment; (5) thermochemical behaviour of fuel plates at temperatures near the melting point of the cladding. Based on this data, the possible advantages of each fuel combination are discussed. (author)

  8. Development of Collision Accident Scenario during Nuclear Spent Fuel Maritime Transportation

    International Nuclear Information System (INIS)

    Yoo, Min; Kang, Hyun Gook

    2015-01-01

    Population density of South Korea is much higher than the other countries, and it is peninsula. Therefore, it is expected that major means of transportation of the spent fuel will be maritime transportation rather than overland transportation. Korea Maritime safety Tribunal (KMST) categorized various maritime accident, see table I. Among them, collision accident is one of the most important and complicated accident from Probabilistic Safety Analysis (PSA) point of view. We will show what will happen if the transportation ship is struck by other ship, how to calculate collision energy and probability of the branches on ship-ship collision with Event Tree Analysis (ETA) method. We selected and re-categorized maritime accident that KMST categorized for ship-ship collision analysis of spent fuel transportation ship. Event tree is constructed and collision energy distribution is derived from statistics and equation. And outer and inner hull fracture probabilities are calculated. If outer hull is broken but inner hull is fine, water will be flooded into the space between outer and inner hull. It will decrease mobility of the ship. If inner hull is fractured, water will be flooded into the ship inside. The ship has compartment structure to resist from foundering. Loss of mobility and compartment damage (ultimately it ends with sink) mechanism need to be analyzed to complete transportation ship collision event tree

  9. Transportation accident response of a high-capacity truck cask for spent fuel

    International Nuclear Information System (INIS)

    O'Connell, W.J.; Glaser, R.E.; Johnson, G.L.; Perfect, S.A.; McGuinn, E.J.; Lake, W.H.

    1995-11-01

    Two of the primary goals of this study were (i) to check the structural and thermal performance of the GA-4 cask in a broad range of accidents and (ii) to carry out a severe-accidents analysis as had been addressed in the Modal Study but now using a specific recent cask design and using current-generation computer models and capabilities. At the same time, it was desired to compare the accident performance of the Ga-4 cask to that of the generic truck cask analyzed in the Modal Study. The same range of impact and fire accidents developed in the Modal Study was adopted for this study. The accident-description data base of the Modal Study categorizes accidents into types of collisions with mobile or fixed objects, non-collision accidents, and fires. The mechanical modes of damage may be via crushing, impact, or puncture. The fire occurrences in the Modal Study data are based on truck accident statistics. The fire types are taken to be pool fires of petroleum products from fuel tanks and/or cargoes

  10. Safety demonstration analyses for severe accident of fresh nuclear fuel transport packages at JAERI

    International Nuclear Information System (INIS)

    Yamada, K.; Watanabe, K.; Nomura, Y.; Okuno, H.; Miyoshi, Y.

    2004-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses of these methods are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted part of a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident envisioned to occur during transportation, for the purpose of gaining public acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and, thus, accident conditions leading to mechanical damage and thermal failure were selected for inclusion in the scenario. As a result, the worst-case conditions of run-off-the-road accidents were incorporated, where there is impact against a concrete or asphalt surface. Fire accidents were assumed to occur after collision with a tank truck carrying lots of inflammable material or destruction by fire after collision inside a tunnel. The impact analyses were performed by using three-dimensional elements according to the general purpose impact analysis code LS-DYNA. Leak-tightness of the package was maintained even in the severe impact accident scenario. In addition, the thermal analyses were performed by using two-dimensional elements according to the general purpose finite element method computer code ABAQUS. As a result of these analyses, the integrity of the inside packaging component was found to be sufficient to maintain a leak-tight state, confirming its safety

  11. Reliability analysis of dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  12. Reliability analysis of dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ding Shurong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: dsr1971@163.com; Jiang Xin [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: yzhuo@fudan.edu.cn; Li Linan [Department of Mechanics, Tianjin University, Tianjin 300072 (China)

    2008-03-15

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  13. Improved atmospheric dispersion modelling in the new program system UFOMOD for accident consequence assessments

    International Nuclear Information System (INIS)

    Panitz, H.J.

    1988-01-01

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straightline Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different concepts of dispersion modelling on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been carried out. The study showed that there are trajectory models available which can be applied in ACAs and that these trajectory models provide more realistic results of ACAs than straight-line Gaussian models. This led to a completly novel concept of atmospheric dispersion modelling which distinguish between two different distance ranges of validity: the near range ( 50 km). The two ranges are assigned to respective trajectory models

  14. Modeling the influence of interaction layer formation on thermal conductivity of U–Mo dispersion fuel

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Casella, Andrew M.; Huber, Tanja K.

    2015-01-01

    Highlights: • Hsu equation provides best thermal conductivity estimate of U–Mo dispersion fuel. • Simple model considering interaction layer formation was coupled with Hsu equation. • Interaction layer thermal conductivity is not the most important attribute. • Effective thermal conductivity is mostly influenced by interaction layer formation. • Fuel particle distribution also influences the effective thermal conductivity. - Abstract: The Global Threat Reduction Initiative Program continues to develop existing and new test reactor fuels to achieve the maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix, porosity that forms during fabrication of the fuel plates or rods, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation, dispersed particle size, and volume fraction of dispersed phase in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be as important in determining the effective conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the dispersed particle distribution by minimizing interaction

  15. Accident-generated radioactive particle source term development for consequence assessment of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sutter, S.L.; Ballinger, M.Y.; Halverson, M.A.; Mishima, J.

    1983-04-01

    Consequences of nuclear fuel cycle facility accidents can be evaluated using aerosol release factors developed at Pacific Northwest Laboratory. These experimentally determined factors are compiled and consequence assessment methods are discussed. Release factors can be used to estimate the fraction of material initially made airborne by postulated accident scenarios. These release fractions in turn can be used in models to estimate downwind contamination levels as required for safety assessments of nuclear fuel cycle facilities. 20 references, 4 tables

  16. A model to predict failure of irradiated U–Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas E., E-mail: Douglas.Burkes@pnnl.gov; Senor, David J.; Casella, Andrew M.

    2016-12-15

    Highlights: • Simple model to predict failure of dispersion fuel meat designs. • Evaluated as a function of fabrication parameters and irradiation conditions. • Predictions compare well with experimental measurements of miniature fuel plates. • Interaction layer formation reduces matrix strength and increases temperature. • Si additions to the matrix appear effective only at moderate heat flux and burnup. - Abstract: Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO{sub 2}-stainless steel dispersion fuels and uses currently available thermal–mechanical property information for the materials of interest in the currently proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as onset of pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the {sup 235}U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of

  17. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  18. Progress in development of low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.; Snelgrove, J.L.; Hayes, S.L.; Meyer, M.K.

    2002-01-01

    Results from post irradiation examinations and analyses of U-Mo/Al dispersion mini plates are presented. Irradiation test RERTR-5 contained mini- fuel plates with fuel loadings of 6 and 8 g U cm -3 . The fuel material consisted of 6, 7 and 10 wt. % Mo-uranium-alloy powders in atomized and machined form. The swelling behavior of the various fuel types is analyzed, indicating athermal swelling of the U-Mo alloy and temperature-dependent swelling owing to U-Mo/Al interdiffusion. (author)

  19. Thermal analyses for the spend fuel pool of Taiwan BWR plants during the loss of cooling accident

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B-Y.; Yeh, C-L.; Wei, W-C.; Chen, Y-S., E-mail: onepicemine@iner.gov.tw, E-mail: clinyeh@iner.gov.tw, E-mail: hn150456@iner.gov.tw, E-mail: yschen@iner.gov.tw [Inst. of Nuclear Energy Research, Longtan Township, Taoyuan County, Taiwan (China)

    2014-07-01

    After the Fukushima nuclear accident, the safety of the spent fuel pool has become an important concern. In this study, thermal analysis of the spent fuel pool under a loss of cooling accident is performed. The BWR spent fuel pools in Taiwan are investigated, including the Chinshan, Kuosheng, and Lungmen plants. The transient pool temperature and level behaviors are calculated based on lumped energy balance. After the pool level drops below the top of the fuel, the peak cladding temperature is predicted by the Computational Fluid Dynamics (CFD) analysis. The influence to the cladding temperature of the uniform and checkboard fuel loading patterns is also investigated. (author)

  20. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  1. Development of likelihood estimation method for criticality accidents of mixed oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tamaki, Hitoshi; Yoshida, Kazuo; Kimoto, Tatsuya; Hamaguchi, Yoshikane

    2010-01-01

    A criticality accident in a MOX fuel fabrication facility may occur depending on several parameters, such as mass inventory and plutonium enrichment. MOX handling units in the facility are designed and operated based on the double contingency principle to prevent criticality accidents. Control failures of at least two parameters are needed for the occurrence of criticality accident. To evaluate the probability of such control failures, the criticality conditions of each parameter for a specific handling unit are necessary for accident scenario analysis to be clarified quantitatively with a criticality analysis computer code. In addition to this issue, a computer-based control system for mass inventory is planned to be installed into MOX handling equipment in a commercial MOX fuel fabrication plant. The reliability analysis is another important issue in evaluating the likelihood of control failure caused by software malfunction. A likelihood estimation method for criticality accident has been developed with these issues been taken into consideration. In this paper, an example of analysis with the proposed method and the applicability of the method are also shown through a trial application to a model MOX fabrication facility. (author)

  2. An investigation on the irradiation behavior of atomized U-Mo/Al dispersion rod fuels

    International Nuclear Information System (INIS)

    Park, J.M.; Ryu, H.J.; Lee, Y.S.; Lee, D.B.; Oh, S.J.; Yoo, B.O.; Jung, Y.H.; Sohn, D.S.; Kim, C.K.

    2005-01-01

    The second irradiation fuel experiment, KOMO-2, for the qualification test of atomized U-Mo dispersion rod fuels with U-loadings of 4-4.5 gU/cc at KAERI was finished after an irradiation up to 70 at% U 235 peak burn-up and subjected to the IMEF (Irradiation material Examination Facility) for a post-irradiation analysis in order to understand the fuel irradiation performance of the U-Mo dispersion fuel. Current results for PIE of KOMO-2 revealed that the U-Mo/Al dispersion fuel rods exhibited a sound performance without any break-away swelling, but most of the fuel rods irradiated at a high linear power showed an extensive formation of the interaction phase between the U-Mo particle and the Al matrix. In this paper, the analysis of the PIE results, which focused on the diffusion related microstructures obtained from the optical and EPMA (Electron Probe Micro Analysis) observations, will be presented in detail. And a thermal modeling will be carried out to calculate the temperature of the fuel rod during an irradiation. (author)

  3. Collective radiation doses following a hypothetical, very severe accident to an irradiated fuel transport flask containing AGR fuel

    International Nuclear Information System (INIS)

    Corbett, J.O.

    1985-05-01

    Studies of the consequences of very severe, although unlikely, accidents to irradiated fuel transport flasks are made in order to evaluate risks. If an irradiated fuel transport flask carrying AGR fuel were damaged in a hypothetical accident involving a severe impact followed by a prolonged fire, a small proportion of caesium and other fission products might be released to the atmosphere from the gap inventory of broken fuel pins. The consequent radiation dose to the public would arise predominantly by direct irradiation from ground deposits and the ingestion of slightly contaminated foodstuffs. Although these collective doses must generally be estimated with the aid of computer codes, it is shown here that the worst case, when a high proportion of the radioactivity is deposited in a densely population area, can be assessed approximately by a much simpler method, an approach which is of great value in explaining the calculation in a manner that can be readily understood. A comparison is made between the simple approach and equivalent results from the NECTAR code, the worst case is compared with an ensemble average over all weather conditions, and the relative contributions of the two main routes to collective dose are discussed. (author)

  4. Simulation of fuel dispersion in the MYRRHA-FASTEF primary coolant with CFD and SIMMER-IV

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Sophia, E-mail: sophia.buckingham@vki.ac.be [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Eboli, Marica [University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Moreau, Vincent [CRS4, Science and Technology Park Polaris – Piscina Manna, 09010 Pula (Italy); Van Tichelen, Katrien [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2015-12-15

    Highlights: • A comparison between CFD and system codes applied to long-term dispersion of fuel particles inside the MYRRHA reactor is proposed. • Important accumulations at the free-surface level are to be expected. • The risk of core blockage should not be neglected. • Numerical approach and modeling assumptions have a strong influence on the simulation results and accuracy. - Abstract: The objective of this work is to assess the behavior of fuel redistribution in heavy liquid metal nuclear systems under fuel pin failure conditions. Two different modeling approaches are considered using Computational Fluid Dynamics (CFD) codes and a system code, applied to the MYRRHA facility primary coolant loop version 1.4. Two different CFD models are constructed: the first is a single-phase steady model prepared in ANSYS Fluent, while the second is a two-phase model based on the volume of fluid (VOF) method in STARCCM+ to capture the upper free-surface dynamics. Both use a Lagrangian tracking approach with oneway coupling to follow the particles throughout the reactor. The system code SIMMER-IV is used for the third model, without neutronic coupling. Although limited regarding the fluid dynamic aspects compared to the CFD codes, comparisons of particle distributions highlight strong similarities despite quantitative discrepancies in the size of fuel accumulations. These disparities should be taken into account while performing the safety analysis of nuclear systems and developing strategies for accident mitigation.

  5. Fission induced swelling of U–Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Uljoo-gun, Ulsan 689-798 (Korea, Republic of); Park, J.M. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2015-10-15

    Fission-induced swelling of U–Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U–Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U–Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U–Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U–Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  6. Fuel solution criticality accident studies with the SILENE reactor: phenomenology, consequences and simulated intervention

    International Nuclear Information System (INIS)

    Barbry, F.

    1984-01-01

    After defining the content and the objectives of criticality accident studies, the SILENE reactor, a means of studying fuel solution criticality accidents, is presented. Information obtained from the CRAC and SILENE experimental programs are then presented; they concern power excursion phenomenology, radiological consequences, and finally guide-lines for current and future programs

  7. Experiments to quantify airborne release from packages with dispersible radioactive materials under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martens, R.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50667 Koeln (Germany); Koch, W.; Nolte, O. [Fraunhofer-Institut fuer Toxikologie und Experimentelle Medizin (ITEM), Nikolai-Fuchs-Str.1, 30625 Hannover (Germany)

    2005-07-01

    For transport or handling accidents involving packages with radioactive materials and the assessment of potential radiological consequences, for the review of current requirements of the IAEA Transport Regulations, and for their possible further development reliable release data following mechanical impact are required. Within this context a research project was carried out which extends the basis for a well-founded examination of the contemporary system of requirements of 'Low Specific Activity' (LSA)-type materials and allows for its further development where appropriate. This project comprises a prior system-analytical examination and an experimental programme aiming at improving the general physical understanding of the release process as well as the quantity and the characteristics of airborne released material for non-fixed dispersible LSA-II material upon mechanical impact. Impaction experiments applying small, medium and real sized specimens of different dispersible materials revealed that the release behaviour of dispersible powders strongly depends upon material properties, e.g. particle size distribution and cohesion forces. The highest experimentally determined release fraction of respirable mass (AED < 10 {mu}m) amounted to about 2 % and was obtained for 2 kg of un-contained easily dispersible pulverized fly ash (PFA). For larger un-contained PFA specimen the release fraction decreases. However, packaging containing powdery material substantially reduces the airborne release fraction. The measured airborne release fractions for a 200 l drum with Type A certificate containing PFA were about a factor of 50 to 100 lower than for un-contained material. For a drop height of 9 m the airborne release fraction amounted to about 4 x 10{sup -5}. This value should be applicable for most of transport and handling accidents with mechanical impact. For a metal container of Type IP-2 or better which contains powder masses of 100 kg or more this release

  8. Irradiation behavior of low-enriched U/sub 6/Fe-Al dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, G.L.; Domagala, R.F.; Copeland, G.L.

    1987-10-01

    An irradiation test of miniature fuel plates containing low-enriched (20% /sup 235/U)U/sub 6/Fe dispersed and clad in Al was performed. The postirradiation examination shows U/sub 6/Fe to form extensive fission gas bubbles at burnups of only approx. = 20% of the original 20% fuel enrichment. Plate failure by fission gas-driven pillowing occurred at approx. = 40% burnup. This places U/sub 6/FE at the lowest burnup capability among low enriched dispersion fuels that have been tested for use in research and test reactors

  9. Fuel behavior and fission product release under HTGR accident conditions

    International Nuclear Information System (INIS)

    Fukuda, K.; Hayashi, K.; Shiba, K.

    1990-01-01

    In early 1989 a final decision was made over construction of a 30 MWth HTGR called the High Temperature Engineering Test Reactor, HTTR, in Japan in order to utilize it for high temperature gas engineering tests and various nuclear material tests. The HTTR fuel is a pin-in-block type fuel element which is composed of a hexagonal graphite block with dimension of 580 mm in length and 360 mm in face-to-face distance and about 30 of the fuel rods inserted into the coolant channels drilled in the block. The TRISO coated fuel particles for HTTR are incorporated with graphite powder and phenol resin into the fuel compacts, 19 of which are encased into a graphite sleeve as a fuel rod. It is necessary for the HTTR licensing to prove the fuel stability under predicted accidents related to the high temperature events. Therefore, the release of the fission products and the fuel failure have been investigated in the irradiation---and the heating experiments simulating these conditions at JAERI. This report describes the HTTR fuel behavior at extreme temperature, made clear in these experiments

  10. Reconstruction of the size of nuclear fuel particle aerosol by the investigation of a radionuclide behaviour in body of the Chernobyl accident witnesses

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    1996-01-01

    As a result of the Chernobyl NPP (ChNPP) accident aerosol particles of dispersed nuclear fuel were released to the atmosphere. Inhalation of those aerosol became the source of internal exposure for witnesses of the Chernobyl accident. To assess correctly internal doses from a mixture of radionuclides present in air in the form of aerosol particles one mast assign each radionuclide to a certain inhalation class by its chemical speciation in aerosol and define the airborne characteristics (the activity median aerodynamic diameter, AMAD and the standard geometric deviation, fig) of that particular aerosol. Moreover, information on any particular radionuclide is useless for other components since, in such a mixture, the radionuclides are generally independent and may belong to different particles. On the contrary, all nuclear fuel particle (NFP) radionuclides belong to the same particle, being matrix-bound. The collective behaviour of the matrix-bound radionuclides in the environment and in the human barrier organs makes it possible to spread to the aerosol of NFP any estimates of AMAD and β g obtained for any particular NFP radionuclide. This is principal feature of NFP aerosol as distinguished from a mere mixture of aerosol particles carry different radionuclides. (author)

  11. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  12. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  13. Fuel assembly stress and deflection analysis for loss-of-coolant accident and seismic excitation

    International Nuclear Information System (INIS)

    DeMars, R.V.; Steinke, R.R.

    1975-01-01

    Babcock and Wilcox has evaluated the capability of the fuel assemblies to withstand the effects of a loss-of-coolant accident (LOCA) blowdown, the operational basis earthquake (OBE) and design basis earthquake (DBE), and the simultaneous occurrence of the DBE and LOCA. This method of analysis is applicable to all of B and W's nuclear steam system contracts that specify the skirt-supported pressure vessel. Loads during the saturated and subcooled phases of blowdown following a loss-of-coolant accident were calculated. The maximum loads on the fuel assemblies were found to be below allowable limits, and the maximum deflections of the fuel assemblies were found to be less than those that could prevent the insertion of control rods or the flow of coolant through the core. (U.S.)

  14. Uranium dispersion in the coating of weak-acid-resin-deprived HTGR fuel microspheres

    International Nuclear Information System (INIS)

    Weber, G.W.; Beatty, R.L.; Tennery, V.J.; Lackey, W.J. Jr.

    1976-02-01

    The current reference HTGR recycle fuel particle is a UO 2 /UC 2 kernel with a Triso coating comprising a low-density pyrocarbon (PyC) buffer, a high-density PyC inner LTI coating, SiC, and a high-density PyC outer LTI. The kernel is fabricated from a weak-acid ion exchange resin (WAR). Microradiographic examination of coated WAR particles has demonstrated that considerable U can be transferred from the kernel to the buffer coating during fabrication. Investigation of causes of fuel dispersion has indicated several different factors that contribute to fuel redistribution if not properly controlled. The presence of a nonequilibrium UC/sub 1-x/O/sub x/ (0 less than or equal to x less than or equal to 0.3) phase had no significant effect on initiating fuel dispersion. Gross exposure of the completed fuel kernel to ambient atmosphere or to water vapor at room temperature produced very minimal levels of dispersion. Exposure of the fuel to perchloroethylene during buffer and inner LTI deposition produced massive redistribution. Fuel redistribution observed in Triso-coated particles results from permeation of the inner LTI by HCl during SiC deposition. As the decomposition of CH 3 Cl 3 Si is used to deposit SiC, chlorine is readily available during this process. The permeability of the inner LTI coating has a marked effect on the extent of this mode of fuel dispersion. LTI permeability was determined by chlorine leaching studies to be a strong function of density, coating gas dilution, and coating temperature but relatively unaffected by application of a seal coat, variations in coating thickness, and annealing at 1800 0 C. Mechanical attrition of the kernels during processing was identified as a potential source of U-bearing fines that may be incorporated into the coating in some circumstances

  15. Simulation of atmospheric dispersion of radioactivity from the Chernobyl accident

    International Nuclear Information System (INIS)

    Lange, R.; Sullivan, T.J.; Gudiksen, P.H.

    1989-07-01

    Measurements of airborne radioactivity over Europe, Japan, and the United States indicated that the release from the Chernobyl reactor accident in the Soviet Union on April 26, 1986 contained a wide spectrum of fission up to heights of 7 km or more within a few days after the initial explosion. This high-altitude presence of radioactivity would in part be attributable to atmospheric dynamics factors other than the thermal energy released in the initial explosion. Indications were that two types of releases had taken place -- an initial powerful explosion followed by days of a less energetic reactor fire. The Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) utilized three-dimensional atmospheric dispersion models to determine the characteristics of the source term (release) and the evolution of the spatial distributions of the airborne radioactivity as it was transported over Europe and subsequently over the northern hemisphere. This paper describes the ARAC involvement and the results of the hemispheric model calculations which graphically depict the extensive dispersal of radioactivity. 1 fig

  16. Study of the residual porosity in fuel plate cores based on U3O8 - Al dispersions

    International Nuclear Information System (INIS)

    Durazzo, M.

    2005-01-01

    The residual porosity in the meat of nuclear dispersion fuel plates, the fabrication voids, explains the corrosion behaviour of the meats when exposed to the water used as coolant and moderator of MTR type research reactors. The fabrication voids also explain variations in irradiation performance of many fuel dispersion for nuclear reactors. To obtain improved corrosion and irradiation performance, we must understand the fabrication factors that control the amount of void volume in fuel plate meats. The purpose of this study was to investigate the void content of aluminum-base dispersion-type U 3 O 8 -Al fuel plates depending on the characteristics of the starting fuel dispersion used to produce the fuel meat, which is fabricated by pressing. The void content depends on the U 3 O 8 concentration. For a particular U 3 O 8 content, the rolling process establishes a constant void concentration, which is called equilibrium porosity. The equilibrium quantity of voids is insensitive to the initial density of the fuel compact. (author)

  17. Review of the accident source terms for aluminide fuel: Application to the BR2 reactor

    International Nuclear Information System (INIS)

    Joppen, F.

    2005-01-01

    A major safety review of the BR2, a material test reactor, is to be conducted for the year 2006. One of the subjects selected for the safety review is the definition of source terms for emergency planning and in particular the development of accident scenarios. For nuclear power plants the behaviour of fuel under accident conditions is a well studied object. In case of non-power reactors this basic knowledge is rather scarce. The usefulness of information from power plant fuels is limited due to the differences in fuel type, power level and thermohydraulical conditions. First investigation indicates that using data from power plant fuel leads to an overestimation of the source terms. Further research on this subject could be very useful for the research reactor community, in order to define more realistic source terms and to improve the emergency preparedness. (author)

  18. Mechanical analysis of UMo/Al dispersion fuel

    International Nuclear Information System (INIS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Sohn, Dong-Seong

    2015-01-01

    Deformation of fuel particles and mass transfer from the transverse end of fuel meat toward the meat center was observed. This caused plate thickness peaking at a location between the meat edge and the meat center. The underlying mechanism for this fuel volume transport is believed to be fission induced creep of the U–Mo/Al meat. Fuel meat swelling was measured using optical microscopy images of the cross sections of the irradiated test plates. The time-dependent meat swelling was modeled for use in numerical simulation. A distinctive discrepancy between the predicted and measured meat thickness was found at the meat ends, which was assumed to be due to creep-induced mass relocation from the meat end to the meat center region that was not considered in the meat swelling model. ABAQUS FEA simulation was performed to reproduce the observed phenomenon at the meat ends. Through the simulation, we obtained the effective creep rate constants for the interaction layers (IL) and aluminum matrix. In addition, we obtained the corresponding stress and strain analysis results that can be used to understand mechanical behavior of U–Mo/Al dispersion fuel.

  19. Mechanical analysis of UMo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon [Ulsan National Institute of Science and Technology, Department of Nuclear Engineering, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Sohn, Dong-Seong, E-mail: dssohn@unist.ac.kr [Ulsan National Institute of Science and Technology, Department of Nuclear Engineering, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of)

    2015-11-15

    Deformation of fuel particles and mass transfer from the transverse end of fuel meat toward the meat center was observed. This caused plate thickness peaking at a location between the meat edge and the meat center. The underlying mechanism for this fuel volume transport is believed to be fission induced creep of the U–Mo/Al meat. Fuel meat swelling was measured using optical microscopy images of the cross sections of the irradiated test plates. The time-dependent meat swelling was modeled for use in numerical simulation. A distinctive discrepancy between the predicted and measured meat thickness was found at the meat ends, which was assumed to be due to creep-induced mass relocation from the meat end to the meat center region that was not considered in the meat swelling model. ABAQUS FEA simulation was performed to reproduce the observed phenomenon at the meat ends. Through the simulation, we obtained the effective creep rate constants for the interaction layers (IL) and aluminum matrix. In addition, we obtained the corresponding stress and strain analysis results that can be used to understand mechanical behavior of U–Mo/Al dispersion fuel.

  20. Fate of dispersed marine fuel oil in sediment under pre-spill application strategy

    International Nuclear Information System (INIS)

    Jian Hua

    2004-01-01

    A comparison of the movement of dispersed oil in marine sediment under two dispersant application scenarios, applied prior to and after oil being spilled overboard, was examined. The pre-spill application scenario caused much less oil to be retained in the top sediment than post-spill scenario. The difference in oil retention in the top sediment between pre- and post-spill application scenario increased with increase in fuel oil temperature. For fuel oil above 40 o C, the difference in the effect of pre-spill application strategy under various water temperatures was negligible. When soap water was used as replacement for chemical dispersant, almost one-half as much oil was retained in the top sediment as that when using chemical dispersant. The adsorption of dispersed oil to the top sediment was almost proportionally decreased with doubling of soap dosage. (Author)

  1. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  2. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes

    2011-01-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  3. Accident Testing of High Temperature Reactor Fuel Elements with the KueFA Device

    International Nuclear Information System (INIS)

    Seeger, O.; Laurie, M.; Bottomley, P.D.W.; Ferreira-Teixeira, A.E.; Van Winckel, S.; Rondinella, V.V.; Allelein, H.J.

    2013-06-01

    The High Temperature Reactor (HTR) is characterised by an advanced design with passive safety features. Fuel elements are constituted by a graphite matrix containing sub-mm-sized fuel particles with Tri-Isotropic (TRISO) coating, designed to provide high fission product retention. During a loss of coolant accident scenario in a HTR the maximum temperature is foreseen to be in the range of 1600-1650 deg. C, remaining well below the melting point of the fuel. The Cold Finger Apparatus (KueFA) is used to observe the combined effects of Depressurization and Loss of Forced Circulation (DLOFC) accident scenarios on HTR fuel. Originally designed at the Forschungszentrum Juelich (FZJ), an adapted KueFA operates on irradiated fuel in hot cell at JRC-ITU. A fuel pebble is heated in He atmosphere for several hundred hours, mimicking accident temperatures up to 1800 deg. C and realistic temperature transients. Non-gaseous volatile fission products released from the fuel condense on a water cooled stainless steel plate dubbed 'Cold Finger'. Exchanging plates frequently during the experiment and analysing plate deposits by means of HPGe gamma spectroscopy allows a reconstruction of the fission product release as a function of time and temperature. In order to achieve a good quantification of the release, a careful calibration of the setup is mandatory. An especially tailored collimator was designed to perform plate scanning with high spatial resolution, thus yielding information about the fission product distribution on the condensation plates. The analysis of condensation plates from recent KueFA tests shows that fission product release quantification is possible at high and low activity levels. Chemical dissolution has been performed for some condensation plates in order to assess beta nuclides of interest such as 90 Sr and possibly 129 I using an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and to cross check the HPGe gamma spectroscopy measurements

  4. Fission product release from HTGR fuel under core heatup accident conditions - HTR2008-58160

    International Nuclear Information System (INIS)

    Verfondern, K.; Nabielek, H.

    2008-01-01

    Various countries engaged in the development and fabrication of modern fuel for the High Temperature Gas-Cooled Reactor (HTGR) have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under operating and accidental conditions of future HTGRs. Within the IAEA directed Coordinated Research Project CRP6 on 'Advances in HTGR Fuel Technology Development' active since 2002, the 13 participating Member States have agreed upon benchmark studies on fuel performance during normal operation and under accident conditions. While the former has been completed in the meantime, the focus is now on the extension of the national code developments to become applicable to core heatup accident conditions. These activities are supported by the fact that core heatup simulation experiments have been resumed recently providing new, highly valuable data. Work on accident performance will be - similar to the normal operation benchmark - consisting of three essential parts comprising both code verification that establishes the correspondence of code work with the underlying physical, chemical and mathematical laws, and code validation that establishes reasonable agreement with the existing experimental data base, but including also predictive calculations for future heating tests and/or reactor concepts. The paper will describe the cases to be studied and the calculational results obtained with the German computer model FRESCO. Among the benchmark cases in consideration are tests which were most recently conducted in the new heating facility KUEFA. Therefore this study will also re-open the discussion and analysis of both the validity of diffusion models and the transport data of the principal fission product species in the HTGR fuel materials as essential input data for the codes. (authors)

  5. Study of behavior of cermet fuel elements on IGR reactor under RIA type accident condition

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.S.; Vurim, A.D.; Koltyshev, S.M.; Pakhnits, V.A.; Tukhvatulin, Sh.T.; Popov, V.V.; Ryzhkov, A.N.

    1996-01-01

    In 1993 December in IGR reactor of Inst. of Atomic Energy of National Nuclear Center of Republic of Kazakstan the second batch of in-pile testing of perspective cermet fuel elements under the condition, simulating RIA type accident was conducted. In the second batch of testing during eight start-ups 10 cermet fuel elements were examined. Among which 8 of monolith type and 2 fuel elements with false jacket beside cladding (FJF), as well as, 6 standard fuel elements of WWER-1000 type reactor with dioxide fuel were tested. 2 fuel elements - cermet and standard were placed into capsule filled with water. To measure energy release for the each start-up two fission monitor and inside core control gauge were placed. In all the start-ups operation mode of IGR was neutron pulse. Power of fuel element kept changing from 151 to 336 k W; energy release was 38-93 kJ/gr m 235 U; maximum temperature of cermet fuel was 1943-2173 K, of dioxide fuel - 1923-2843 K. The testing has demonstrated that operability of cermet fuel elements under reactivity accident condition with pulse width of 0,2 s is, at least, not less that operability of dioxide fuel elements, through advantages of cermet fuel under these conditions are revealed to the least extent

  6. A study on items necessary to develop the requirements for the management of serious accidents postulated in fuel fabrication, enrichment and reprocessing facilities

    International Nuclear Information System (INIS)

    Takanashi, Mitsuhiro; Yamate, Kazuki; Asada, Kazuo; Yamada, Takashi; Endo, Shigeki

    2013-05-01

    The purpose of this study is to supply the points to discuss on new rules of fuel fabrication, enrichment and reprocessing facilities (hereinafter referred to as 'fuel cycle facilities') conducted by Nuclear Regulation Authority. Requirements for management of serious accidents in the fuel cycle facilities were summarized in this study. Taking into account the lessons learned from the accident of TEPCO Fukushima Daiichi Nuclear Power Plant in Mar. 2011, Act for the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors was amended in June 2012. The main items of the amendment were as follows: Preparation for the management of serious accidents, Introduction of evaluation system for safety improvement, Application of new standards to existing nuclear facilities (back-fitting). Japan Nuclear Energy Safety organization (JNES) conducted a fundamental study on serious accidents and their management in the fuel cycle facilities and made a report. In the report, the concept of Defense in Depth and the definition of serious accidents for the fuel cycle facilities were discussed. Those discussions were conducted by reference to new regulation rules (draft) for power reactors and from the view of features of the fuel cycle facilities. However, further detailed studies are necessary in order to clarify some issues in it. It was also reflected opinions from experts in JNES technical meetings on accident management of the fuel cycle facilities to brush up this report. (author)

  7. Experimental studies of thermal and chemical interactions between molten aluminum and nuclear dispersion fuels with water

    International Nuclear Information System (INIS)

    Farahani, A.A.

    1997-01-01

    Because of the possibility of rapid physical and chemical molten fuel-water interactions during a core melt accident in noncommercial or experimental reactors, it is important to understand the interactions that might occur if these materials were to contact water. An existing vertical 1-D shock tube facility was improved and a gas sampling device to measure the gaseous hydrogen in the upper chamber of the shock tube was designed and built to study the impact of a water column driven downward by a pressurized gas onto both molten aluminum (6061 alloy) and oxide and silicide depleted nuclear dispersion fuels in aluminum matrices. The experiments were carried out with melt temperatures initially at 750 to 1,000 C and water at room temperature and driving pressures of 0.5 and 1 MPa. Very high transient pressures, in many cases even larger than the thermodynamic critical pressure of the water (∼ 20 MPa), were generated due to the interactions between the water and the crucible and its contents. The molten aluminum always reacted chemically with the water but the reaction did not increase consistently with increasing melt temperature. An aluminum ignition occurred when water at room temperature impacted 28.48 grams of molten aluminum at 980.3 C causing transient pressures greater than 69 MPa. No signs of aluminum ignition were observed in any of the experiments with the depleted nuclear dispersion fuels, U 3 O 8 -Al and U 3 Si 2 -Al. The greater was the molten aluminum-water chemical reaction, the finer was the debris recovered for a given set of initial conditions. Larger coolant velocities (larger driving pressures) resulted in more melt fragmentation but did not result in more molten aluminum-water chemical reaction. Decreasing the water temperature also resulted in more melt fragmentation and did not suppress the molten aluminum-water chemical reaction

  8. Characterization of the Microstructure of Irradiated U-Mo Dispersion Fuel with a Matrix that Contains Si

    International Nuclear Information System (INIS)

    Keiser, Jr. D.D.; Robinson, A.B.; Jue, J.F.; Medvedev, P.; Finlay, M.R.

    2009-01-01

    RERTR U-Mo dispersion fuel plates are being developed for application in research reactors throughout the world. Of particular interest is the irradiation performance of U-Mo dispersion fuels with Si added to the Al matrix. Si is added to improve the performance of U-Mo dispersion fuels. Microstructural examinations have been performed on fuel plates with Al-2Si matrix after irradiation to around 50% LEU burnup. Si-rich layers were observed in many areas around the various U-7Mo fuel particles. In one local area of one of the samples, where the Si-rich layer had developed into a layer devoid of Si, relatively large fission gas bubbles were observed in the interaction phase. There may be a connection between the growth of these bubbles and the amount of Si present in the interaction layer. Overall, it was found that having Si-rich layers around the fuel particles after fuel plate fabrication positively impacted the overall performance of the fuel plate

  9. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Cahalan, J.; Wigeland, R.; Friedel, G.; Kussmaul, G.; Royl, P.; Moreau, J.; Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs

  10. Study on characteristics of U-Mo/Al-Si interaction layers of dispersion fuel plates

    International Nuclear Information System (INIS)

    Liu Lijian; Yin Changgeng; Chen Jiangang; Sun Changlong; Liu Yunming

    2014-01-01

    In this paper, we analyzed the characteristics of U-Mo/Al-Si interaction layers of dispersion fuel plates. The results show that the interaction layers (IL) are with irregular morphology and uneven thickness, and are mainly formed in the internal micro cracks of the dispersion fuel particles or at the interface between the particles and the substrates. The diffusion mechanism of U-Mo/Al-Si is the vacancy diffusion, Al and Si are migrating elements, and the diffusion reaction is that Al and Si diffuse to U-Mo alloy. Inside the interaction layers, the Al content keeps constant basically, but the Si content gradually increases with the substrate-fuel direction, and the maximum content of Si appears interaction layers near the U-Mo side. Adding about 5 wt% Si into Al matrix can restrain the diffusion reaction, and improve the performance of dispersion fuel plates finally. (authors)

  11. Analysis of simulation results of damaged nuclear fuel accidents at NPPs with shell-type nuclear reactors

    Directory of Open Access Journals (Sweden)

    Igor L. Kozlov

    2015-03-01

    Full Text Available Lessons from the accident at the Fukushima Daiichi NPP made it necessary to reevaluate and intensificate the work on modeling and analyzing various scenarios of severe accidents with damage to the nuclear fuel in the reactor, containment and spent nuclear fuel storage pool with the expansion of the primary initiating event causes group listing. Further development of computational tools for modeling the explosion prevention criteria as to steam and gas mixtures, considering the specific thermal-hydrodynamic conditions and mechanisms of explosive situations arrival at different stages of a severe accident development, is substantiated. Based on the analysis of the known shell-type nuclear reactors accidents results the explosion safety thermodynamic criteria are presented, the parameters defining the steam and gas explosions conditions are found, the need to perform the further verification and validation of deterministic codes serving to simulate general accident processes behavior as well as phase-to-phase interaction calculated dependencies is established. The main parameters controlling and defining the criteria explosion safety effective regulation areas and their optimization conditions are found.

  12. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  13. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  14. Influence of the silicon content on the core corrosion properties of dispersion type fuel plates

    International Nuclear Information System (INIS)

    Calvo, C.; Saenz de Tejada, L. M.; Diaz Diaz, J.

    1969-01-01

    A new process to produce aluminium base dispersion type fuel plates has been developed at the Spanish JEN (Junta de Energia Nuclear). The dispersed fuel material is obtained by an aluminothermic process to render a stoichiometric cermet of UAI 3 and AI 2 O 3 according to the reaction. (Author)

  15. Study on light water reactor fuel behavior under reactivity initiated accident condition in TREAT

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Ishijima, Kiyomi; Ochiai, Masaaki; Tanzawa, Sadamitsu; Uemura, Mutsumi

    1981-05-01

    This report reviews the results of the fuel failure experiments performed in TREAT in the U.S.A. simulating Reactivity Initiated Accidents. One of the main purposes of the TREAT experiments is the study of the fuel failure behavior, and the other is the study of the molten fuel-water coolant interaction and the consequent hydrogen behavior. This report mainly shows the results of the TREAT experiments studying the fuel failure behavior in Light Water Reactor, and then it describes the fuel failure threshold and the fuel failure mechanism, considering the results of the photographic experiments of the fuel failure behavior with transparent capsules. (author)

  16. Accidents and troubles in nuclear fuel facilities in fiscal year 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The number of the accidents and troubles reported in fiscal year 1987 in relation to nuclear fuel facilities based on the stipulation of the law on the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors was two. In Tokai Works, Power Reactor and Nuclear Fuel Development Corp., on September 17, 1987, the conveyor for transporting spent fuel in the separation and refining shop of the reprocessing plant broke down, consequently, the operation of the reprocessing plant was stopped for about five months. In Tokai Testing Works, Mitsubishi Heavy Industries Ltd., on February 7, 1988, a worker who was putting up posters in the control area of the uranium experiment facilities fell from a stepladder, and required treatment by entering a hospital for about one month, suffering bone fracture. (K.I.)

  17. Growth of the interaction layer around fuel particles in dispersion fuel

    International Nuclear Information System (INIS)

    Olander, D.

    2009-01-01

    Corrosion of uranium particles in dispersion fuel by the aluminum matrix produces interaction layers (an intermetallic-compound corrosion product) around the shrinking fuel spheres. The rate of this process was modeled as series resistances due to Al diffusion through the interaction layer and reaction of aluminum with uranium in the fuel particle to produce UAl x . The overall kinetics are governed by the relative rates of these two steps, the slowest of which is reaction at the interface between Al in the interaction layer and U in the fuel particle. The substantial volume change as uranium is transferred from the fuel to the interaction layer was accounted for. The model was compared to literature data on in-reactor growth of the interaction layer and the Al/U gradient in this layer, the latter measured in ex-reactor experiments. The rate constant of the Al-U interface reaction and the diffusivity of Al in the interaction layer were obtained from this fitting procedure. The second feature of the corrosion process is the transfer of fission products from the fuel particle to the interaction layer due to the reaction. It is commonly assumed that the observed swelling of irradiated fuel elements of this type is due to release of fission gas in the interaction layer to form large bubbles. This hypothesis was tested by using the model to compute the quantity of fission gas available from this source and comparing the pressure of the resulting gas with the observed swelling of fuel plates. It was determined that the gas pressure so generated is too small to account for the observed delamination of the fuel

  18. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  19. Evolution of dispersion fuel meat structure caused by interface reaction

    International Nuclear Information System (INIS)

    Xing Zhonghu; Ying Shihao

    2000-01-01

    In reactor operation, the resultant layers are formed by interdiffusion at the fuel particle-matrix interfaces of U 3 Si 2 -Al dispersion fuel. This results in the evolution of meat structure. On the basis of Monte-Carlo method, the author developed simulation method of fuel meat, and simulated the stochastic space locations of spherical fuel particles in the meat. The fuel volume fraction is 43%, and the particles are in definite size distribution. For the 13551 simulated particle samples, the evolution of meat structure is calculated with layer thickness ranging from 0 to 16 μm. The parameters of meat structure include the U 3 Si 2 fuel volume fraction, resultant layer volume fraction, Al matrix volume fraction, particle contact probability and overlap degree as functions of layer thickness

  20. Release behavior of fission products from irradiated dispersion fuels at high temperatures

    International Nuclear Information System (INIS)

    Iwai, Takashi; Shimizu, Michio; Nakagawa, Tetsuya

    1990-02-01

    As a framework of reduced enrichment fuel program of JMTR Project, the measurements of fission products release rates at high temperatures (600degC - 1100degC) were performed in order to take the data to use for safety evaluation of LEU fuel. Three type miniplates of dispersion silicide and aluminide fuel, 20% enrichment LEU fuel with 4.8 gU/cc (U 3 Si 2 90 %, USi 10 % and U 3 Si 2 50 %, U 3 Si 50 % dispersed in aluminium) and 45 % enrichment MEU fuel with 1.6 gU/cc, were irradiated in JMTR. The burnups attained by one cycle (22 days) irradiation were within 21.6 % - 22.5 % of initial 235 U. The specimens cut down from miniplates were measured on fission products release rates by means of new apparatus specially designed for this experiment. The specimens were heated up within 600degC - 1100degC in dry air. Then fission products such as 85 Kr, 133 Xe, 131 I, 137 Cs, 103 Ru, 129m Te were collected at each temperature and measured on release rates. In the results of measurement, the release rates of 85 Kr, 133 Xe, 131 I, 129m Te from all specimens were slightly less than that of G.W. Parker's data on U-Al alloy fuel. For 137 Cs and 103 Ru from a silicide specimen (U 3 Si 2 90 %, USi 10 % dispersed in aluminium) and 137 Cs from an aluminide specimen, the release rates were slightly higher than that of G.W. Parker's. (author)

  1. Modélisation de la combustion de fuels lourds prenant en compte la dispersion des asphaltènes Modeling Heavy Fuel-Oil Combustion (While Considering Or Including Asphaltene Dispersion

    Directory of Open Access Journals (Sweden)

    Audibert F.

    2006-11-01

    Full Text Available Divers modèles, ayant pour but de prédire le taux d'imbrûlés solides lors de la combustion du fuel lourd, ont été mis au point dans le passé. Les paramètres entrant en ligne de compte sont le plus souvent les teneurs en résidus lourds hydrocarbonés (asphaltènes précipités au pentane ou à l'heptane et carbone Conradson et en métaux : c'est le cas des modèles Exxon et Shell développés respectivement en 1979 et 1981. D'autres modèles tiennent compte, en plus de la composition du fuel, de son mode d'atomisation, de son mode de diffusion dans le foyer et de la cinétique de combustion : on peut citer les travaux du Laboratoire Energie du MIT publiés en 1986. Néanmoins, ces facteurs ne sont pas les seuls à intervenir : l'expérience a montré que l'état de dispersion des asphaltènes peut jouer également un grand rôle, notamment dans le cas d'installations de combustion à injection mécanique, pour lesquelles la dispersion des gouttelettes n'est pas aussi fine que pour des installations munies d'une injection assistée par la vapeur. Cette influence de la dispersion des asphaltènes sur la combustion a été mise en évidence dans le passé par l'utilisation d'additifs dispersants et également par la combustion de fuels lourds constitués par dilution d'asphaltes précipités au pentane avec un gas-oil de cracking catalytique de raffinerie (LCO. Ce sont ces fuels que l'on a considérés dans la présente étude. L'effet de ce facteur dispersion n'a pas été quantifié jusqu'alors, la difficulté étant de définir une grandeur mesurable représentant la répartition des agglomérats d'asphaltènes. Dans cette étude, on a essayé en un premier temps de faire une approche fractale de la répartition des asphaltènes à partir de clichés (préparés par la société Total, cette méthode ayant déjà été utilisée avec succès pour décrire des structures d'aspects comparables. Malheureusement, on s'est heurté à des

  2. An investigation on fuel meats extruded with atomized U-10wt% Mo powder for uranium high-density dispersion fuel

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Don-Bae; Sohn, Dong-Seong

    1997-01-01

    The RERTR program has been making an effort to develop dispersion fuels with uranium densities of 8 to 9 g U/cm3 for research and test reactors. Using atomized U-10wt%Mo powder, fuel meats have been fabricated successfully up to 55 volume % of fuel powder. The uranium density of an extruded meat with a 55 volume % of fuel powder was obtained to be 7.7 g/cm3. A relatively high porosity of 7.3% was formed due to cracking of particles, presumably induced by the impingement among agglomerated particles. Tensile test results indicated that the strength of fuel meats with 55% volume fraction decreased some and a little of ductility was maintained. Examination on the fracture surface revealed that some U-10%Mo particles appeared to be broken by the tensile force in brittle rupture mode. The increase of broken particles in high fuel fraction is considered to be induced mainly by the impingement among agglomerated particles. Uranium loading density is assumed to be improved through the development of the better homogeneous dispersion technology. (author)

  3. Progress in qualifying low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Hayes, S.L.; Meyer, M.K.

    2001-01-01

    The U.S. Reduced Enrichment for Research and Test Reactors program is working to qualify dispersions of U-Mo alloys in aluminum with fuel-meat densities of 8 to 9 gU cm -3 . Post irradiation examinations of the small fuel plates irradiated in the Advanced Test Reactor during the high-temperature RERTR-3 tests are virtually complete, and analysis of the large quantity of data obtained is underway. We have observed that the swelling of the fuel plates is stable and modest and that the swelling is dominated by the temperature-dependent interaction of the U-Mo fuel and the aluminum matrix. In order to extract detailed information about the behavior of these fuels from the data, a complex fuel-plate thermal model is being developed to account for the effects of the changing fission rate and thermal conductivity of the fuel meat during irradiation. This paper summarizes the empirical results of the post irradiation examinations and the preliminary results of the model development. In addition, the schedule for irradiation of full-sized elements in the HFR-Petten is briefly discussed. (author)

  4. Irradiation behavior of uranium-silicide dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.

    1984-01-01

    This paper describes and analyzes the irradiation behavior of experimental fuel plates containing U 3 Si, U 3 Si-1.5 w/o Al, and U 3 Si 2 particulate fuel dispersed and clad in aluminum. The fuel is nominally 19.9%-enriched 235 U and the fuel volume fraction in the central ''meat'' section of the plates is approximately 33%. Sets of fuel plates were removed from the Oak Ridge Research reactor at burnup levels of 35, 83, and 94% 235 U depletion and examined at the Alpha-Gamma Hot-Cell Facility at Argonne National Laboratory. The results of the examination may be summarized as follows. The dimensional stability of the U 3 Si 2 and pure U 3 Si fuel was excellent throughout the entire burnup range, with uniform plate thickness increases up to a maximum of 4 mils at the highest burnup level (94% 235 U depletion). This corresponds to a meat volume increase of 11%. The swelling was partially due to solid fission products but to a larger extent to fission gas bubbles. The fission gas bubbles in U 3 Si 2 were small (submicrometer size) and very uniformly distributed, indicating great stability. To a large extent this was also the case for U 3 Si; however, larger bubbles ( 3 Si-1.5 w/o Al fuel became unstable at the higher burnup levels. Fission gas bubbles were larger than in the other two fuels and were present throughout the fuel particles. At 94% 235 U depletion, the formation of fission gas bubbles with diameters up to 20 mils caused the plates to pillow. It is proposed that aluminum in U 3 Si destabilizes fission gas bubble formation to the point of severe breakaway swelling in the prealloyed silicide fuel. (author)

  5. Proceedings of the Third Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs, 3-5 March 2015, OECD-NEA HQ

    International Nuclear Information System (INIS)

    Bischoff, Jeremy; Gandrille, Pascal; Forgeron, Thierry; Brachet, Jean-Christophe; Lorrette, Christophe; Valot, C.; Freyss, M.; Braun, J.; Sauder, C.; Moatti, Marie; Waeckel, Nicolas; Ambard, Antoine; Pasamehmetoglu, Kemal; Johnston, Emma; Bragg-Sitton, Shannon M.; Kurata, M.; Hallstadius, Lars; Ohta, H.; Ogata, T.; Besmann, T.; Chauvin, Nathalie; Cornet, Stephanie; Massara, S.; Kohyama, Akira; Kishimoto, Hirotatsu; Park, Joon Soo; Nakazato, Naofumi; Hayasaka, Daisuke; Asakura, Yuuki; Kanda, Chisato; Kohyama, Akira; Terrani, Kurt; Katoh, Yutai; Yamamoto, Yukinori; Field, Kevin; Snead, Lance; Hu, Xunxiang; Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Pint, Bruce A.; Besmann, T.; Steinbrueck, M.; Grosse, M.; Jianu, A.; Weisenburger, A.; Avincola, V.; Ahmad, S.; Tang, C.; Heuser, Brent J.; Sickafus, Kurt; Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Koo, Yang-Hyun; Lee, B.O.; Van Nieuwenhove, Rudi; Kim, Young; Rebak, Raul; Dolly, Evan; Dolley, E.J.; Rebak, R.B.; Maloy, Stu; Yang, Jae-Ho; Kim, Dong-Joo; Kim, Keon-Sik; Koo, Yang-Hyun; Lee, Won Jae; Tulenko, James S.; Puide, Mattias; Liu, T.; Gueneau, C.; Gosse, S.; Dupin, N.; Barber, D.; Corcoran, E.; Dumas, J.C.; Hania, R.; Kaye, M.; Turchi, P.

    2015-03-01

    Under the guidance of the OECD-NEA Nuclear Science Committee, the expert group acts as a forum for scientific and technical information exchange on advanced light water reactor (LWR) fuels with enhanced accident tolerance. The expert group focusses on the fundamental properties and behaviour under normal operations and accident conditions for advanced core materials and components (fuels, cladding, control rods, etc.). The materials considered are applicable to Gen II and Gen III Light Water Reactors, as well as Gen III+ reactors under construction. The objective of the expert group is to define and coordinate a programme of work to help advance the scientific knowledge needed to provide the technical underpinning for the development of advanced LWR fuels with enhanced accident tolerance compared to currently used zircaloy/UO 2 fuel systems, as well as other non-fuel core components with important roles in LWR performance under accident conditions. This document brings together the available presentations (slides) given at the Third Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs. Content: 1 - Task Force 1 (Systems assessment) meeting, 3-4 March 2015: - French evaluation of ATF Concepts (J. Bischoff, AREVA); - Technology Readiness Levels - TRL - for Fuels (K. Pasamehmetoglu, INL); - TRL-definition for advanced fuel concept applied for commercial LWRs in Japan (M. Kurata, JAEA); - Application of TRLs in NNL (E. Johnston, NNL); - Technology Readiness Levels for Advanced Nuclear Fuel and Materials (S. Bragg-Sitton, INL); 1a - Definition of the illustrative scenarios: - AREVA's proposal concerning scenario for Accident Tolerant Fuel studies (P. Gandrille); - A Simplified Accident Scenario (L. Hallstadius); - Accident Scenarios for ATF Performance Evaluation of BWR and PWR in Japan (H. Ohta, CRIEPI); 1b - Related NEA activities: - Working Party on Multi-scale Modelling of Fuels and Structural Materials for Nuclear Systems - WPMM, Expert

  6. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Massey, Caleb P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y2O3 (+ ZrO2 or TiO2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ball milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.

  7. Development of Innovative Accident Tolerant High Thermal Conductivity UO2-Diamond Composite Fuel Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Tulenko, James [Univ. of Florida, Gainesville, FL (United States); Subhash, Ghatu [Univ. of Florida, Gainesville, FL (United States)

    2016-01-01

    The University of Florida (UF) evaluated a composite fuel consisting of UO2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO2 – SiC and UO2 – Carbon Nanotube fuel pins. UF is proving with the current research results that the addition of diamond micro particles to UO2 may greatly enhanced the thermal conductivity of the UO2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.

  8. Status Report on Spent Fuel Pools under Loss-of-Cooling and Loss-of-Coolant Accident Conditions - Final Report

    International Nuclear Information System (INIS)

    Adorni, M.; Esmaili, H.; Grant, W.; Hollands, T.; Hozer, Z.; Jaeckel, B.; Munoz, M.; Nakajima, T.; Rocchi, F.; Strucic, M.; ); Tregoures, N.; Vokac, P.; Ahn, K.I.; Bourgue, L.; Dickson, R.; Douxchamps, P.A.; Herranz, L.E.; Jernkvist, L.O.; Amri, A.; Kissane, M.P.; )

    2015-01-01

    Following the 2011 accident at the Fukushima Daiichi Nuclear Power Station, the Nuclear Energy Agency Committee on the Safety of Nuclear Installations decided to launch several high-priority activities to address certain technical issues. Among other things, it was decided to prepare a status report on spent fuel pools (SFPs) under loss of cooling accident conditions. This activity was proposed jointly by the CSNI Working Group on Analysis and Management of Accidents (WGAMA) and the Working Group on Fuel Safety (WGFS). The main objectives, as defined by these working groups, were to: - Produce a brief summary of the status of SFP accident and mitigation strategies, to better contribute to the post-Fukushima accident decision making process; - Provide a brief assessment of current experimental and analytical knowledge about loss of cooling accidents in SFPs and their associated mitigation strategies; - Briefly describe the strengths and weaknesses of analytical methods used in codes to predict SFP accident evolution and assess the efficiency of different cooling mechanisms for mitigation of such accidents; - Identify and list additional research activities required to address gaps in the understanding of relevant phenomenological processes, to identify where analytical tool deficiencies exist, and to reduce the uncertainties in this understanding. The proposed activity was agreed and approved by CSNI in December 2012, and the first of four meetings of the appointed writing group was held in March 2013. The writing group consisted of members of the WGAMA and the WGFS, representing the European Commission and the following countries: Belgium, Canada, Czech Republic, France, Germany, Hungary, Italy, Japan, Korea, Spain, Sweden, Switzerland and the USA. This report mostly covers the information provided by these countries. The report is organised into 8 Chapters and 4 Appendices: Chapter 1: Introduction; Chapter 2: Spent fuel pools; Chapter 3: Possible accident

  9. SSYST-1. A computer code system to analyse the fuel rod behaviour during a loss of coolant accident

    International Nuclear Information System (INIS)

    Gulden, W.

    1977-08-01

    The modules of the SSYST program system allow the detailed analysis of an LWR fuel rod in the course of a postulated loss-of-coolant accident. They provide a tool for considering the interaction between the heat conduction in the fuel rod, heat transfer in the gap, fuel and cladding tube deformation, pressure in the coolant, as well as thermal and fluid dynamics in the cooling channel and for calculating the time and location of ballooning and rod failure, respectively. They can be used both to precalculate the behaviour of fuel rods during LWR accidents and in support of the design of experiments. Depending on the problem to be solved, the individual modules can be easily combined. (orig.) [de

  10. Irradiation behavior of U 6Mn-Al dispersion fuel elements

    Science.gov (United States)

    Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.

    2000-02-01

    Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.

  11. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  12. Safety demonstration analyses on criticality for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Takahashi, Satoshi; Okuno, Hiroshi; Yamada, Kenji; Watanabe, Kouji; Nomura, Yasushi; Miyoshi, Yoshinori

    2005-01-01

    Criticality safety analysis was performed for transport packages of uranium dioxide powder or of fresh PWR fuel involved in a severe accident during overland transportation, and as a result, sub-criticality was confirmed against impact accident conditions such as loaded by a drop from high position to a concrete or asphalt surface, and fire accident conditions such as caused by collisions with an oil tank trailer carrying lots of inflammable material in open air, or with a commonly used two-ton-truck inside an unventilated tunnel. (author)

  13. Site Specific Analyses of a Spent Nuclear Fuel Transportation Accident

    International Nuclear Information System (INIS)

    Biwer, B. M.; Chen, S. Y.

    2003-01-01

    The number of spent nuclear fuel (SNF) shipments is expected to increase significantly during the time period that the United States' inventory of SNF is sent to a final disposal site. Prior work estimated that the highest accident risks of a SNF shipping campaign to the proposed geologic repository at Yucca Mountain were in the corridor states, such as Illinois. The largest potential human health impacts would be expected to occur in areas with high population densities such as urban settings. Thus, our current study examined the human health impacts from the most plausible severe SNF transportation accidents in the Chicago metropolitan area. The RISKIND 2.0 program was used to model site-specific data for an area where the largest impacts might occur. The results have shown that the radiological human health consequences of a severe SNF rail transportation accident on average might be similar to one year of exposure to natural background radiation for those persons living a nd working in the most affected areas downwind of the actual accident location. For maximally exposed individuals, an exposure similar to about two years of exposure to natural background radiation was estimated. In addition to the accident probabilities being very low (approximately 1 chance in 10,000 or less during the entire shipping campaign), the actual human health impacts are expected to be lower if any of the accidents considered did occur, because the results are dependent on the specific location and weather conditions, such as wind speed and direction, that were selected to maximize the results. Also, comparison of the results of longer duration accident scenarios against U.S. Environmental Protection Agency guidelines was made to demonstrate the usefulness of this site-specific analysis for emergency planning purposes

  14. Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea

    Directory of Open Access Journals (Sweden)

    Hyun-Gil Kim

    2016-02-01

    Full Text Available For a long time, a top priority in the nuclear industry was the safe, reliable, and economic operation of light water reactors. However, the development of accident-tolerant fuel (ATF became a hot topic in the nuclear research field after the March 2011 events at Fukushima, Japan. In Korea, innovative concepts of ATF have been developing to increase fuel safety and reliability during normal operations, operational transients, and also accident events. The microcell UO2 and high-density composite pellet concepts are being developed as ATF pellets. A microcell UO2 pellet is envisaged to have the enhanced retention capabilities of highly radioactive and corrosive fission products. High-density pellets are expected to be used in combination with the particular ATF cladding concepts. Two concepts—surface-modified Zr-based alloy and SiC composite material—are being developed as ATF cladding, as these innovative concepts can effectively suppress hydrogen explosions and the release of radionuclides into the environment.

  15. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Science.gov (United States)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  16. Estimated consequences from severe spent nuclear fuel transportation accidents

    International Nuclear Information System (INIS)

    Arnish, J.J.; Monette, F.; LePoire, D.; Biwer, B.M.

    1996-01-01

    The RISKIND software package is used to estimate radiological consequences of severe accident scenarios involving the transportation of spent nuclear fuel. Radiological risks are estimated for both a collective population and a maximally exposed individual based on representative truck and rail cask designs described in the U.S. Nuclear Regulatory Commission (NRC) modal study. The estimate of collective population risk considers all possible environmental pathways, including acute and long-term exposures, and is presented in terms of the 50-y committed effective dose equivalent. Radiological risks to a maximally exposed individual from acute exposure are estimated and presented in terms of the first year and 50-y committed effective dose equivalent. Consequences are estimated for accidents occurring in rural and urban population areas. The modeled pathways include inhalation during initial passing of the radioactive cloud, external exposure from a reduction of the cask shielding, long-term external exposure. from ground deposition, and ingestion from contaminated food (rural only). The major pathways and contributing radionuclides are identified, and the effects of possible mitigative actions are discussed. The cask accident responses and the radionuclide release fractions are modeled as described in the NRC modal study. Estimates of severe accident probabilities are presented for both truck and rail modes of transport. The assumptions made in this study tend to be conservative; however, a set of multiplicative factors are identified that can be applied to estimate more realistic conditions

  17. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  18. Pore growth in U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y.; Sohn, D.-S. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Jamison, L.M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2016-09-15

    U-Mo/Al dispersion fuel is currently under development in the DOE’s Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  19. Spent fuel transportation accident: a state's involvement

    International Nuclear Information System (INIS)

    Neuweg, M.

    1978-01-01

    On February 9, 1978 at 8:20 p.m., the duty officer for the Illinois Radiological Assistance Team was notified that a shipment containing uranium and plutonium was involved in an accident near Gibson City, Illinois on Route 54. It was reported that a pig containing an unknown amount of uranium and plutonium was involved. The Illinois District 6A State Police were called to the scene and secured the area. The duty officer in the meantime learned after numerous telephone calls, approximately 1 hour after the first notice was received, that the pig actually was a 48,000 pound cask containing 6 spent fuel rods and the tractor-trailer had split apart and was blocking one lane of the highway. The shipment had departed from Dresden Nuclear Power Station, Morris, Illinois, enroute to Babcox and Wilcox in Lynchburg, Virginia. Initial reports indicated the vehicle had split apart. Actually, the semi-trailer bed had buckled beneath the cask due to apparent excess stress. The cask remained entirely intact and was not damaged, but the state highway was closed to traffic. The State Radiological Assistance Team was dispatched and arrived on the scene at 12:45 a.m. Immediate radiation monitoring revealed a reading of 4 milliroentgen per hour at 10 feet from the cask. No contamination existed nor was anyone exposed to radiation unnecessarily. The cask was transferred to a Tri-State semi-trailer vehicle the following morning at approximately 6:30 a.m. At 9:30 a.m., February 10, the new vehicle was again enroute to its destination. This incident demonstrated typical occurrences involving transportation radiation accident: misinformation and/or lack of information on the initial response notification, inaccuracies of radiation monitorings at the scene of the accident, inconsistencies concerning the occurrences of the accident and unfamiliar terminology utilized by personnel first on the scene, i.e., pig, cask, vehicle split apart, etc

  20. Proceedings of the Second Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs, 23-25 September 2014, OECD-NEA HQ

    International Nuclear Information System (INIS)

    Massara, S.; ); Bragg-Sitton, Shannon; Pasamehmetoglu, K.; Yang, Jae Ho; Dolley, Evan J.; Rebak, Raul B.; Sowder, Andrew; Cheng, Bo; Kurata, Masaki; Van Nieuwenhove, Rudi; Li, R.; McClellan, Ken; Nelson, Andy; Carmack, Jon; Harp, Jason; Finck, Phillip; ); Kakicuhi, K.

    2014-09-01

    Under the guidance of the OECD-NEA Nuclear Science Committee, the expert group acts as a forum for scientific and technical information exchange on advanced light water reactor (LWR) fuels with enhanced accident tolerance. The expert group focusses on the fundamental properties and behaviour under normal operations and accident conditions for advanced core materials and components (fuels, cladding, control rods, etc.). The materials considered are applicable to Gen II and Gen III Light Water Reactors, as well as Gen III+ reactors under construction. The objective of the expert group is to define and coordinate a programme of work to help advance the scientific knowledge needed to provide the technical underpinning for the development of advanced LWR fuels with enhanced accident tolerance compared to currently used zircaloy/UO 2 fuel systems, as well as other non-fuel core components with important roles in LWR performance under accident conditions. This document brings together the available presentations (slides) given at the Second Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs. Content: 1 - Proposed Agenda; 2 - Expert Group meeting - 23 September 2014: - Introduction and background (S. Massara, OECD-NEA) - Expected outcomes from the TFs meetings scheduled on 24-25 September (K. Pasamehmetoglu, EG Chair, INL); 3 - Task Force 1 (Systems assessment) meeting - 24 September 2014: - Metrics for the Evaluation of LWR Accident Tolerant Fuel (S. Bragg-Sitton, INL); 4 - Task Force 2 (Cladding/core materials) meeting - 24 September 2014: - Summary on SiC Task Force 2 (Clad) meeting (J.H. Yang, KAERI); - Accident Tolerant Advanced Steels Cladding for Commercial Light Water Reactors (E. Dolley, GE); - Molybdenum-Alloy Fuel Cladding Development and Testing - Update from April 2014 NEA ATF Meeting (A. Sowder, EPRI); - Accident Tolerant Control Rod Development in Japan (M. Kurata, JAEA); - IFA-774: The first in-pile test with coated fuel rods (R. Van

  1. Calculation of health risks from spent-nuclear-fuel transportation accidents

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1987-01-01

    Models developed to analyze potential radiological health risks from various accident scenarios during transportation of spent nuclear fuels are described. The models are designed both for detailed route-specific risk analyses and for use in conducting overall risk analyses for route selection and related decision-making activities. The radiological risks calculated include individual dose commitments, collective dose commitments, and long-term (100-year) environmental dose commitments to a population following release of radioactivity. To facilitate route-specific analysis, a state-level database was developed and incorporated into the model. Route-specific analysis is demonstrated by the calculation of radiological risks resulting from various accident scenarios, as postulated by the recent US Nuclear Regulatory Commission Modal Study, for four representative states selected from various regions of the United States. 10 refs., 3 figs., 3 tabs

  2. Identification of the security threshold by logistic regression applied to fuel under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Baptista Filho, Benedito; Oliveira, Fabio Branco de, E-mail: dsgomes@ipen.br, E-mail: bdbfilho@ipen.br, E-mail: fabio@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    A reactivity-initiated Accident (RIA) is a disastrous failure, which occurs because of an unexpected rise in the fission rate and reactor power. This sudden increase in the reactor power may activate processes that might lead to the failure of fuel cladding. In severe accidents, a disruption of fuel and core melting can occur. The purpose of the present research is to study the patterns of such accidents using exploratory data analysis techniques. A study based on applied statistics was used for simulations. Then, we chose peak enthalpy, pulse width, burnup, fission gas release, and the oxidation of zirconium as input parameters and set the safety boundary conditions. This new approach includes the logistic regression. With this, the present research aims also to develop the ability to identify the conditions and the probability of failures. Zirconium-based alloys fabricating the cladding of the fuel rod elements with niobium 1% were analyzed for high burnup limits at 65 MWd/kgU. The data based on six decades of investigations from experimental programs. In test, perform in American reactors such as the transient reactor test (TREAT), and power Burst Facility (PBF). In experiments realized in Japanese program at nuclear in the safety research reactor (NSRR), and in Kazakhstan as impulse graphite reactor (IGR). The database obtained from the tests and served as a support for our study. (author)

  3. Identification of the security threshold by logistic regression applied to fuel under accident conditions

    International Nuclear Information System (INIS)

    Gomes, Daniel de Souza; Baptista Filho, Benedito; Oliveira, Fabio Branco de; Giovedi, Claudia

    2015-01-01

    A reactivity-initiated Accident (RIA) is a disastrous failure, which occurs because of an unexpected rise in the fission rate and reactor power. This sudden increase in the reactor power may activate processes that might lead to the failure of fuel cladding. In severe accidents, a disruption of fuel and core melting can occur. The purpose of the present research is to study the patterns of such accidents using exploratory data analysis techniques. A study based on applied statistics was used for simulations. Then, we chose peak enthalpy, pulse width, burnup, fission gas release, and the oxidation of zirconium as input parameters and set the safety boundary conditions. This new approach includes the logistic regression. With this, the present research aims also to develop the ability to identify the conditions and the probability of failures. Zirconium-based alloys fabricating the cladding of the fuel rod elements with niobium 1% were analyzed for high burnup limits at 65 MWd/kgU. The data based on six decades of investigations from experimental programs. In test, perform in American reactors such as the transient reactor test (TREAT), and power Burst Facility (PBF). In experiments realized in Japanese program at nuclear in the safety research reactor (NSRR), and in Kazakhstan as impulse graphite reactor (IGR). The database obtained from the tests and served as a support for our study. (author)

  4. Simulation of << Hot >> particles formation during the accident at the Chernobyl NPP.; Modelirovanie obrazovaniya << goryachikh >> chastits vo vremya avarii na ChAEhS.

    Energy Technology Data Exchange (ETDEWEB)

    Kashparov, V A; Ivanov, Yu A; Prister, B S; Zvarich, S I; Protsak, V P; Khomutinin, Yu V; Polyakov, V D; Gudkov, A N; Kurepin, A D; Pazukhin, Eh M [Yinstitut Syil` s` kogospodars` koyi Radyiologyiyi, Kyiv (Ukraine); [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation)

    1994-12-31

    Dispersal composition of fuel << hot >> particles formed after oxidation of real Chernobyl nuclear fuel in the air for 3-21 hours at 673-1173 K was obtained. Mechanism of ruthenium particles formation during the accident (with dispersion of nuclear fuel) as a result of ruthenium oxidation, its sublimation, condensation and restoration on materials, presented by the elements of iron group was modelled. Dynamics of relative release of fission products, as well as of transuranium and transplutonium elements from real and modeled << hot >> particles at their high temperature incineration (1273-2273 K) in the inert media was measured.

  5. Predicted HIFAR fuel element temperatures for postulated loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Green, W.J.

    1987-04-01

    A two-dimensional theoretical heat transfer model of a HIFAR Mark IV/Va fuel element has been developed and validated by comparing predicted thermal performances with experimental temperature responses obtained from irradiated fuel elements during simulated accident conditions. Full details of the model's development and its verification have been reported elsewhere. In this report, the model has been further used to ascertain acceptable limits of fuel element decay power for the start of two specific LOCAs which have been identified by the Regulatory Bureau of the AAEC. For a single fuel element which is positioned within a fuel load/unload flask and is not subjected to any forced convective air cooling, the model indicates that fission product decay powers must not exceed 1.86 kW if fuel surface temperatures are not to exceed 450 deg C. In the case of a HIFAR core LOCA in which the complete inventory of heavy water is lost, it is calculated that the maximum fission product decay power of a central element must not exceed 1.1 kW if fuel surface temperatures are not to exceed 450 deg C anywhere in the core

  6. Radiological consequences of accidents during disposal of spent nuclear fuel in a deep borehole

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-07-15

    In this report, an analysis of the radiological consequences of potential accidents during disposal of spent nuclear fuel in deep boreholes is presented. The results presented should be seen as coarse estimates of possible radiological consequences of a canister being stuck in a borehole during disposal rather than being the results of a full safety analysis. In the concept for deep borehole disposal of spent nuclear fuel developed by Sandia National Laboratories, the fuel is assumed to be encapsulated in mild steel canisters and stacked between 3 and 5 km depth in boreholes that are cased with perforated mild steel casing tubes. The canisters are joined together by couplings to form strings of 40 canisters and lowered into the borehole. When a canister string has been emplaced in the borehole, a bridge plug is installed above the string and a 10 metres long concrete plug is cast on top of the bridge plug creating a floor for the disposal of the next sting. In total 10 canister strings, in all 400 canisters, are assumed to be disposed of at between 3 and 5 kilometres depth in one borehole. An analysis of potential accidents during the disposal operations shows that the potentially worst accident would be that a canister string is stuck above the disposal zone of a borehole and cannot be retrieved. In such a case, the borehole may have to be sealed in the best possible way and abandoned. The consequences of this could be that one or more leaking canisters are stuck in a borehole section with mobile groundwater. In the case of a leaking canister being stuck in a borehole section with mobile groundwater, the potential radiological consequences are likely to be dominated by the release of the so-called Instant Release Fraction (IRF) of the radionuclide inventory, i.e. the fraction of the radionuclides that as a consequence of the in-core conditions are present in the annulus between the fuel pellets and the cladding or on the grain boundaries of the UO{sub 2} matrix

  7. Radiological consequences of accidents during disposal of spent nuclear fuel in a deep borehole

    International Nuclear Information System (INIS)

    Grundfelt, Bertil

    2013-07-01

    In this report, an analysis of the radiological consequences of potential accidents during disposal of spent nuclear fuel in deep boreholes is presented. The results presented should be seen as coarse estimates of possible radiological consequences of a canister being stuck in a borehole during disposal rather than being the results of a full safety analysis. In the concept for deep borehole disposal of spent nuclear fuel developed by Sandia National Laboratories, the fuel is assumed to be encapsulated in mild steel canisters and stacked between 3 and 5 km depth in boreholes that are cased with perforated mild steel casing tubes. The canisters are joined together by couplings to form strings of 40 canisters and lowered into the borehole. When a canister string has been emplaced in the borehole, a bridge plug is installed above the string and a 10 metres long concrete plug is cast on top of the bridge plug creating a floor for the disposal of the next sting. In total 10 canister strings, in all 400 canisters, are assumed to be disposed of at between 3 and 5 kilometres depth in one borehole. An analysis of potential accidents during the disposal operations shows that the potentially worst accident would be that a canister string is stuck above the disposal zone of a borehole and cannot be retrieved. In such a case, the borehole may have to be sealed in the best possible way and abandoned. The consequences of this could be that one or more leaking canisters are stuck in a borehole section with mobile groundwater. In the case of a leaking canister being stuck in a borehole section with mobile groundwater, the potential radiological consequences are likely to be dominated by the release of the so-called Instant Release Fraction (IRF) of the radionuclide inventory, i.e. the fraction of the radionuclides that as a consequence of the in-core conditions are present in the annulus between the fuel pellets and the cladding or on the grain boundaries of the UO 2 matrix. The

  8. DART model for thermal conductivity of U3Si2 aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Rest, J.; Snelgrove, J.L.; Hofman, G.L.

    1995-09-01

    This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminium dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values

  9. In-reactor behaviour of centrifugally atomized U3Si dispersion fuel irradiated at high temperature in HANARO

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Park, Jong Man; Yoo, Byeong Ok; Park, Dae Kyu; Lee, Choong Sung; Kim, Chang Kyu

    2002-01-01

    The irradiation test on full-size U 3 Si dispersion fuel elements, prepared by centrifugal atomization and conventional comminution method, has been performed up to about 77 at.% U-235 in maximum burn-up at CT hole position having the highest power condition in the HANARO reactor, in order to examine the irradiation performance of the atomized U 3 Si for the driver fuels of HANARO. The in-reactor interaction of the atomized U 3 Si dispersion fuel meats is generally assumed to be acceptable with the range of 5-15 μm in average thickness. The atomized spherical particles have more uniform and thinner reaction layer than the comminuted irregular particles. The U 3 Si particles have relatively fine and uniform size distribution of fission gas bubbles, irrespective of the powdering method. The bubble population in the atomized particles appears to be finer and more homogeneous with the characteristics of narrower bubble size distribution than that of the comminuted fuel. The atomized U 3 Si dispersion fuel elements exhibit sound swelling behaviours of 5 % in ΔV/V m even at ∼77 at.% U-235 burn-up, which meets with the safety criterion of the fuel rod, 20vol.% for HANARO. The atomized U3Si dispersion fuel elements show smaller swelling than the comminuted fuel elements

  10. Relevance of IAEA tests to severe accidents in nuclear fuel cycle transport

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    2004-01-01

    The design and performance standards for packages used for the transport of nuclear fuel cycle materials, are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials, TS-R-1, in order to ensure safety under both normal and accident conditions of transport. The underlying philosophy is that safety is vested principally in the package and the design and performance criteria are related to the potential hazard. Type B packages are high duty packages which are used for the transport of the more radioactive materials, notably spent fuel and vitrified high-level waste (VHLW). Tests are specified in the IAEA Regulations to ensure the integrity of these packages in potential transport accidents involving impacts, fires or immersion in water. The mechanical tests for Type B packages include drop tests onto an unyielding surface without giving rise to a significant release of radioactivity. The objects which a package could impact in real life transport accidents, such as concrete roads, bridge abutments and piers, will yield to some extent and absorb some of the energy of the moving package. Impact tests onto an unyielding surface are therefore relevant to impacts onto real-life objects at much higher speeds. The thermal test specifies that Type B packages should be able to withstand a fully engulfing fire of 8000 C for 30 minutes. Analytical studies backed up by experimental tests have shown that these packages can withstand such conditions without significant release of radioactivity. The Regulations also specify immersion tests for Type B packages; 15 metres for 8 hours without significant release of radioactivity and, in addition for spent fuel and VHLW packages, 200 metres for 1 hour without rupture of the containment. Studies have shown that spent fuel and VHLW casks would meet these conditions. Therefore, there is a large body of evidence to show that the current IAEA Type B test requirements are severe and cover all the situations which can

  11. Results of in vivo monitoring of the witnesses of the Chernobyl accident (invited paper)

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    2000-01-01

    About 1500 people were involved in emergency operations on 26-27 April 1986 at the site of the Chernobyl Nuclear Power Plant. They worked in different working conditions and were exposed to aerosols of different characteristics. The Chernobyl accident was the first accident in which, when the reactor core was destroyed, aerosol of the dispersed spent nuclear fuel became a significant source of internal and external exposure for a large group of people. Detailed information on the properties of the Chernobyl aerosol for the first post-accident period is absent. Therefore, results of in vivo monitoring of the witnesses of the Chernobyl accident can be an important source of information for assessing the radiological properties of the Chernobyl aerosol. (author)

  12. Transport of volatile fission products in the fuel-to-sheath gap of defective fuel elements during normal and reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bonin, H.W.

    1995-01-01

    An analytical treatment has been used to model the vapour transport of radioactive fission products released into the fuel-to-sheath gap of defective nuclear fuel elements. The model accounts for both diffusive and bulk-convective transport. Convective transport becomes important as a result of a significant release of gaseous fission products into the gap during a high-temperature reactor accident. However, during normal reactor operation, diffusion is shown to be the dominant process of transport. The model is based on an analysis of several in-reactor tests with operating defective fuel elements, and high-temperature annealing experiments with irradiated fuel specimens. ((orig.))

  13. Atmospheric dispersion modeling and radiological safety analysis for a hypothetical accident of Ghana Research Reactor -1 (GHARR-1)

    International Nuclear Information System (INIS)

    Lunguya, J. M.

    2013-06-01

    This work presents the environmental impact analysis of some selected radionuclides released from the Ghana Research Reactor- 1 (GHARR-1) after a hypothetical postulated accidents scenario. The source term was identified and generated from an inventory of radioisotopes released during the accident. Atmospheric transport model was then applied to calculate the total effective dose and how it would be distributed to different organs of the human body as a function of distance downwind. All accident scenarios were selected from GHARR-1 Safety Analysis Report. After the source term was identified the MCNPX code was used to perform the core burnup/depletion analysis. The assumption was made that the activities were released to the atmosphere under a horse design basis accident scenario. The gaussian dose calculation method was applied, coded in Hotspot, a Healthy Physics computer code. This served as the computational tool to perform the atmospheric dispersion modeling and was used to calculate radionuclide concentration at downwind location. Based upon predominant meteorological conditions at the site, the adopted strategy was to use site-specific meteorological data and dispersion modeling to analyze the hypothetical release to the environment of radionuclides and evaluate to what extent such a release may have radiological effects on the public. Final data were processed and presented as Total Effective Dose Equivalent as a function of time and distance of deposition. The results indicate that all the values of Effective dose obtained are far below the regulatory limits, making the use of the reactor safe, even in the case of worst accident scenario where all the fission products were released into the atmosphere. (au)

  14. The Effect of Uncertainties on the Operating Temperature of U-Mo/Al Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sweidana, Faris B.; Mistarihia, Qusai M.; Ryu Ho Jin [KAIST, Daejeon (Korea, Republic of); Yim, Jeong Sik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, uncertainty and combined uncertainty studies have been carried out to evaluate the uncertainty of the parameters affecting the operational temperature of U-Mo/Al fuel. The uncertainties related to the thermal conductivity of fuel meat, which consists of the effects of thermal diffusivity, density and specific heat capacity, the interaction layer (IL) that forms between the dispersed fuel and the matrix, fuel plate dimensions, heat flux, heat transfer coefficient and the outer cladding temperature were considered. As the development of low-enriched uranium (LEU) fuels has been pursued for research reactors to replace the use of highly-enriched uranium (HEU) for the improvement of proliferation resistance of fuels and fuel cycle, U-Mo particles dispersed in an Al matrix (UMo/Al) is a promising fuel for conversion of the research reactors that currently use HEU fuels to LEUfueled reactors due to its high density and good irradiation stability. Several models have been developed for the estimation of the thermal conductivity of U–Mo fuel, mainly based on the best fit of the very few measured data without providing uncertainty ranges. The purpose of this study is to provide a reasonable estimation of the upper bounds and lower bounds of fuel temperatures with burnup through the evaluation of the uncertainties in the thermal conductivity of irradiated U-Mo/Al dispersion fuel. The combined uncertainty study using RSS method evaluated the effect of applying all the uncertainty values of all the parameters on the operational temperature of U-Mo/Al fuel. The overall influence on the value of the operational temperature is 16.58 .deg. C at the beginning of life and it increases as the burnup increases to reach 18.74 .deg. C at a fuel meat fission density of 3.50E+21 fission/cm{sup 3}. Further studies are needed to evaluate the behavior more accurately by including other parameters uncertainties such as the interaction layer thermal conductivity.

  15. Postirradiation analysis of experimental uranium-silicide dispersion fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.

    1985-01-01

    Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of 235 U. Fuel plates containing 33 v/o U 3 Si and U 3 Si 2 behaved very well up to this burnup. Plates containing 33 v/o U 3 Si-Al pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded U 3 Si-Al plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U 3 Si showed an increase swelling rate around 85% burnup. 5 refs., 10 figs

  16. Models of fuel masses transition during second stage of the accident on Chernobyl NPP

    International Nuclear Information System (INIS)

    Tarapon, A.

    2002-01-01

    In ISPE NASU of Ukraine are developed mathematical models and software, which allow to research the processes of fuel masses transition during the accident at ChNPP. We found out, that the main reason of accident on ChNPP is the happening in the reactor of crisis of heat exchange of the second sort, instead of the effect positive output of reactivity from displacers of rods of system of emergency protection, as is accepted in official version

  17. Accidents, troubles and others in nuclear fuel facilities in fiscal year 1988

    International Nuclear Information System (INIS)

    1990-01-01

    The number of the accidents, troubles and others reported on the basis of the 'Law concerning the regulation of nuclear raw material substances, nuclear fuel substances and nuclear reactors' in fiscal year 1988 was one. On February 23, 1989, in the controlled area of the plutonium waste treatment development facilities in Tokai Works. Power Reactor and Nuclear Fuel Development Corp., when one worker entered from a corridor into the material store, he fell down by mistake and broke the left collarbone, which required the hospitalization for about one month. (K.I.)

  18. DART model for thermal conductivity of U3Si2 Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Rest, J.; Snelgrove, J.L.; Hofman, G.L.

    2004-01-01

    This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminum dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values. (author)

  19. Dynamic modeling of physical phenomena for probabilistic assessment of spent fuel accidents

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1997-01-01

    If there should be an accident involving drainage of all the water from a spent fuel pool, the fuel elements will heat up until the heat produced by radioactive decay is balanced by that removed by natural convection to air, thermal radiation, and other means. If the temperatures become high enough for the cladding or other materials to ignite due to rapid oxidation, then some of the fuel might melt, leading to an undesirable release of radioactive materials. The amount of melting is dependent upon the fuel loading configuration and its age, the oxidation and melting characteristics of the materials, and the potential effectiveness of recovery actions. The authors have developed methods for modeling the pertinent physical phenomena and integrating the results with a probabilistic treatment of the uncertainty distributions. The net result is a set of complementary cumulative distribution functions for the amount of fuel melted

  20. Severe accident recriticality analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. E-mail: wiktor.frid@ski.se; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Nilsson, L.; Puska, E.K.; Sjoevall, H

    2001-11-01

    Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the following issues have been investigated in the SARA project: (1) the energy deposition in the fuel during super-prompt power burst; (2) the quasi steady-state reactor power following the initial power burst; and (3) containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality--both super-prompt power bursts and quasi steady-state power generation--for the range of parameters studied, i.e. with core uncovering and heat-up to maximum core temperatures of approximately 1800 K, and water flow rates of 45-2000 kg s{sup -1} injected into the downcomer. Since recriticality takes place in a small fraction of the core, the power densities are high, which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal g{sup -1}, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding rate of 2000 kg s{sup -1}. In most cases, however, the predicted energy deposition was smaller, below the regulatory limits for fuel failure, but close to or above recently observed thresholds for fragmentation and dispersion of high burn-up fuel. The highest calculated

  1. Severe accident recriticality analyses (SARA)

    International Nuclear Information System (INIS)

    Frid, W.; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Nilsson, L.; Puska, E.K.; Sjoevall, H.

    2001-01-01

    Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the following issues have been investigated in the SARA project: (1) the energy deposition in the fuel during super-prompt power burst; (2) the quasi steady-state reactor power following the initial power burst; and (3) containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality--both super-prompt power bursts and quasi steady-state power generation--for the range of parameters studied, i.e. with core uncovering and heat-up to maximum core temperatures of approximately 1800 K, and water flow rates of 45-2000 kg s -1 injected into the downcomer. Since recriticality takes place in a small fraction of the core, the power densities are high, which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal g -1 , was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding rate of 2000 kg s -1 . In most cases, however, the predicted energy deposition was smaller, below the regulatory limits for fuel failure, but close to or above recently observed thresholds for fragmentation and dispersion of high burn-up fuel. The highest calculated quasi steady

  2. Observation on the irradiation behavior of U-Mo alloy dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Park, Jong-Man

    2000-01-01

    Initial results from the postirradiation examination of high-density dispersion fuel test RERTR-3 are discussed. The U-Mo alloy fuels in this test were irradiated to 40% U-235 burnup at temperature ranging from 140 0 C to 240 0 C. Temperature has a significant effect on overall swelling of the test plates. The magnitude of the swelling appears acceptable and no unstable irradiation behavior is evident. (author)

  3. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.

  4. Proceedings of the Start-up Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs, 28-29 April 2014, OECD-NEA HQ

    International Nuclear Information System (INIS)

    Kurata, Masaki; Bragg-Sitton, Shannon; Pasamehmetoglu, K.; Sowder, Andrew; Koo, Yang-Hyun; Yang, Jae-Ho; Kim, Hyun-Gil; Zhou, Y.; Forgeron, T.; Guedeney, Ph.; Brachet, J.C.; Michaux, A.; Chauvin, Nathalie; Waeckel, N.; Ambard, A.; Blanpain, P.; Bischoff, J.; Zvonarev, Yu.; Verwerft, M.; Weber, M.; Lambrinou, K.; Koonen, E.; Van Dyck, S.; PETIT, Marc; Cornet, Stephanie; ); YAMAJI, Akifumi; ); Inozemtsev, V.; )

    2014-04-01

    Under the guidance of the OECD-NEA Nuclear Science Committee, the expert group acts as a forum for scientific and technical information exchange on advanced light water reactor (LWR) fuels with enhanced accident tolerance. The expert group focusses on the fundamental properties and behaviour under normal operations and accident conditions for advanced core materials and components (fuels, cladding, control rods, etc.). The materials considered are applicable to Gen II and Gen III Light Water Reactors, as well as Gen III+ reactors under construction. The objective of the expert group is to define and coordinate a programme of work to help advance the scientific knowledge needed to provide the technical underpinning for the development of advanced LWR fuels with enhanced accident tolerance compared to currently used zircaloy/UO 2 fuel systems, as well as other non-fuel core components with important roles in LWR performance under accident conditions. This document brings together the available presentations (slides) given at the Start-up Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs. Content: 1 - Final Agenda; 2 - Draft mandate of EGATFL: Discussion of Scope and Objectives (K. Pasamehmetoglu, INL); 3 - Technical updates since the 2. meeting on ATF (28-29 October 2013): - Overview on ATF R and D in Japan (M. Kurata, JAEA); - Update on Development of Enhanced Accident Tolerant Fuel for Light Water Reactors in the United States (S. Bragg-Sitton, INL); - EPRI Update Since the 2. OECD/NEA Meeting on ATF - 28-29 October 2013 (A. Sowder, EPRI); - Accident Tolerant Fuel (ATF) Development: KAERI's R and D Status (Y.H. Koo, KAERI); - Accident Tolerant Fuel Research Activities in China General Nuclear Power Corporation - CGN (Y. Zhou, CGN); - ATF R and D Status and Perspectives (Th. Forgeron, CEA); - Proposals of NRC 'Kurchatov Institute' on Contributions to Collaborative Framework on ATF Activity (Y. Zvonarev, NRC KI); - Input to the

  5. Analysis of metal fuel transient overpower experiments with the SAS4A accident analysis code

    International Nuclear Information System (INIS)

    Tentner, A.M.; Kalimullah; Miles, K.J.

    1990-01-01

    The results of the SAS4A analysis of the M7 TREAT Metal fuel experiment are presented. New models incorporated in the metal fuel version of SAS4A are described. The computational results are compared with the experimental observations and this comparison is used in the interpretation of physical phenomena. This analysis was performed using the integrated metal fuel SAS4A version and covers a wide range of events, providing an increased degree of confidence in the SAS4A metal fuel accident analysis capabilities

  6. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, main report

    International Nuclear Information System (INIS)

    Harper, F.T.; Young, M.L.; Miller, L.A.; Hora, S.C.; Lui, C.H.; Goossens, L.H.J.; Cooke, R.M.; Paesler-Sauer, J.; Helton, J.C.

    1995-01-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The ultimate objective of the joint effort was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. Experts developed their distributions independently. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. To validate the distributions generated for the dispersion code input variables, samples from the distributions and propagated through the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the first of a three-volume document describing the project

  7. Study on the code system for the off-site consequences assessment of severe nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

  8. Study on the code system for the off-site consequences assessment of severe nuclear accident

    International Nuclear Information System (INIS)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents

  9. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M.

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  10. Comparison of irradiation behavior of different uranium silicide dispersion fuel element designs

    International Nuclear Information System (INIS)

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1995-01-01

    Calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 were performed for various dispersion fuel element designs. Breakaway swelling criteria in the form of critical fuel volume fractions were derived with data obtained from U 3 SiAl-Al plate irradiations. The results of the analysis show that rod-type elements remain well below the pillowing threshold. However, tubular fuel elements, which behave essentially like plates, will likely develop pillows or blisters at around 90% 235 U burnup. The U 3 Si 2 -Al compounds demonstrate stable swelling behavior throughout the entire burnup range for all fuel element designs

  11. High Temperature Steam Oxidation Testing of Candidate Accident Tolerant Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nelson, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkison, Adam [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-12-23

    The Fuel Cycle Research and Development (FCRD) program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels in order to overcome the inherent shortcomings of light water reactor (LWR) fuels when exposed to beyond design basis accident conditions. The campaign has invested in development of experimental infrastructure within the Department of Energy complex capable of chronicling the performance of a wide range of concepts under prototypic accident conditions. This report summarizes progress made at Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory (LANL) in FY13 toward these goals. Alternative fuel cladding materials to Zircaloy for accident tolerance and a significantly extended safety margin requires oxidation resistance to steam or steam-H2 environments at ≥1200°C for short times. At ORNL, prior work focused attention on SiC, FeCr and FeCrAl as the most promising candidates for further development. Also, it was observed that elevated pressure and H2 additions had minor effects on alloy steam oxidation resistance, thus, 1 bar steam was adequate for screening potential candidates. Commercial Fe-20Cr-5Al alloys remain protective up to 1475°C in steam and CVD SiC up to 1700°C in steam. Alloy development has focused on Fe-Cr-Mn-Si-Y and Fe-Cr-Al-Y alloys with the aluminaforming alloys showing more promise. At 1200°C, ferritic binary Fe-Cr alloys required ≥25% Cr to be protective for this application. With minor alloy additions to Fe-Cr, more than 20%Cr was still required, which makes the alloy susceptible to α’ embrittlement. Based on current results, a Fe-15Cr-5Al-Y composition was selected for initial tube fabrication and welding for irradiation experiments in FY14. Evaluations of chemical vapor deposited (CVD) SiC were conducted up to 1700°C in steam. The reaction of H2O with the alumina reaction tube at 1700°C resulted in Al(OH)3

  12. Analysis of Accident Scenarios for the Development of Probabilistic Safety Assessment Model for the Metallic Fuel Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Park, S. Y.; Yang, J. E.; Kwon, Y. M.; Jeong, H. Y.; Suk, S. D.; Lee, Y. B.

    2009-03-01

    The safety analysis reports which were reported during the development of sodium cooled fast reactors in the foreign countries are reviewed for the establishment of Probabilistic Safety Analysis models for the domestic SFR which are under development. There are lots of differences in the safety characteristics between the mixed oxide (MOX) fuel SFR and metallic fuel SFR. Metallic fuel SFR is under development in Korea while MOX fuel SFR is under development in France, Japan, India and China. Therefore the status on the development of fast reactors in the foreign countries are reviewed at first and then the safety characteristics between the MOX fuel SFR and the metallic fuel SFR are reviewed. The core damage can be defined as coolant voiding, fuel melting, cladding damage. The melting points of metallic fuel and the MOX fuel is about 1000 .deg. C and 2300 .deg. C, respectively. The high energy stored in the MOX fuel have higher potential to voiding of coolant compared to the possibility in the metallic fuel. The metallic fuel has also inherent reactivity feedback characteristic that the metallic fuel SFR can be shutdown safely in the events of transient overpower, loss of flow, and loss of heat sink without scram. The metallic fuel has, however, lower melting point due to the eutectic formation between the uranium in metallic fuel and the ferrite in metallic cladding. It is needed to identify the core damage accident scenarios to develop Level-1 PSA model. SSC-K computer code is used to identify the conditions in which the core damage can occur in the KALIMER-600 SFR. The accident cases which are analyzed are the triple failure accidents such as unprotected transient over power events, loss of flow events, and loss of heat sink events with impaired safety systems or functions. Through the analysis of the triple failure accidents for the KALIMER-600 SFR, it is found that the PSA model developed for the PRISM reactor design can be applied to KALIMER-600. However

  13. A Deformation Analysis Code of CANDU Fuel under the Postulated Accident: ELOCA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jung, Jong Yeob

    2006-11-15

    Deformations of the fuel element or fuel channel might be the main cause of the fuel failure. Therefore, the accurate prediction of the deformation and the analysis capabilities are closely related to the increase of the safety margin of the reactor. In this report, among the performance analysis or the transient behavior prediction computer codes, the analysis codes for deformation such as the ELOCA, HOTSPOT, CONTACT-1, and PTDFORM are briefly introduced and each code's objectives, applicability, and relations are explained. Especially, the user manual for ELOCA code which is the analysis code for the fuel deformation and the release of fission product during the transient period after the postulated accidents is provided so that it can be the guidance to the potential users of the code and save the time and economic loss by reducing the trial and err000.

  14. A Deformation Analysis Code of CANDU Fuel under the Postulated Accident: ELOCA

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Jung, Jong Yeob

    2006-11-01

    Deformations of the fuel element or fuel channel might be the main cause of the fuel failure. Therefore, the accurate prediction of the deformation and the analysis capabilities are closely related to the increase of the safety margin of the reactor. In this report, among the performance analysis or the transient behavior prediction computer codes, the analysis codes for deformation such as the ELOCA, HOTSPOT, CONTACT-1, and PTDFORM are briefly introduced and each code's objectives, applicability, and relations are explained. Especially, the user manual for ELOCA code which is the analysis code for the fuel deformation and the release of fission product during the transient period after the postulated accidents is provided so that it can be the guidance to the potential users of the code and save the time and economic loss by reducing the trial and error

  15. Stepwise integral scaling method for severe accident analysis and its application to corium dispersion in direct containment heating

    International Nuclear Information System (INIS)

    Ishii, M.; Zhang, G.; No, H. C.; Eltwila, F.

    1994-01-01

    Accident sequences which lead to severe core damage and to possible radioactive fission products into the environment have a very low probability. However, the interest in this area increased significantly due to the occurrence of the small break loss-of-coolant accident at TMI-2 which led to partial core damage, and of the Chernobyl accident in the former USSR which led to extensive core disassembly and significant release of fission products over several countries. In particular, the latter accident raised the international concern over the potential consequences of severe accidents in nuclear reactor systems. One of the significant shortcomings in the analyses of severe accidents is the lack of well-established and reliable scaling criteria for various multiphase flow phenomena. However, the scaling criteria are essential to the severe accident, because the full scale tests are basically impossible to perform. They are required for (1) designing scaled down or simulation experiments, (2) evaluating data and extrapolating the data to prototypic conditions, and (3) developing correctly scaled physical models and correlations. In view of this, a new scaling method is developed for the analysis of severe accidents. Its approach is quite different from the conventional methods. In order to demonstrate its applicability, this new stepwise integral scaling method has been applied to the analysis of the corium dispersion problem in the direct containment heating. ((orig.))

  16. A radiological consequence analysis with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Woodruff, W.L.; Warinner, D.K.; Matos, J.E.

    1985-01-01

    A model for estimating the radiological consequences from a hypothetical accident in HEU and LEU fueled research and test reactors is presented. Simple hand calculations based on fission product yield table inventories and nonsite specific dispersion data may be adequate in many cases. However, more detailed inventories and site specific data on meteorological conditions and release rates and heights can result in substantial reductions in the dose estimates. LEU fuel gives essentially the same doses as HEU fuel. The plutonium buildup in the LEU fuel does not significantly increase the radiological consequences. The dose to the thyroid is the limiting dose. (author)

  17. Reaction layer growth and reaction heat of U-Mo/Al dispersion fuels using centrifugally atomized powders

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Han, Young Soo; Park, Jong Man; Park, Soon Dal; Kim, Chang Kyu

    2003-01-01

    The growth behavior of reaction layers and heat generation during the reaction between U-Mo powders and the Al matrix in U-Mo/Al dispersion fuels were investigated. Annealing of 10 vol.% U-10Mo/Al dispersion fuels at temperatures from 500 to 550 deg. C was carried out for 10 min to 36 h to measure the growth rate and the activation energy for the growth of reaction layers. The concentration profiles of reaction layers between the U-10Mo vs. Al diffusion couples were measured and the integrated interdiffusion coefficients were calculated for the U and Al in the reaction layers. Heat generation of U-Mo/Al dispersion fuels with 10-50 vol.% of U-Mo fuel during the thermal cycle from room temperature to 700 deg. C was measured employing the differential scanning calorimetry. Exothermic heat from the reaction between U-Mo and the Al matrix is the largest when the volume fraction of U-Mo fuel is about 30 vol.%. The unreacted fraction in the U-Mo powders increases as the volume fraction of U-Mo fuel increases from 30 to 50 vol.%

  18. Questionnaire survey report about the criticality accident at a nuclear fuel processing facility

    International Nuclear Information System (INIS)

    2000-01-01

    The Radiation Protection Section of the Japanese Society of Radiological Technology conducted a questionnaire survey on the criticality accident at the nuclear fuel processing facility in Tokai village on September 30, 1999 in order to identify factors related to the accident and consider countermeasures to deal with such accidents. The questionnaire was distributed to 347 members (122 facilities) of the Japanese Society of Radiological Technology who were working or living in Ibaraki Prefecture, and replies were obtained from 104 members (75 facilities). Questions to elicit the opinions of individuals were as following: method of obtaining information about the accident, knowledge about radiation, opinions about the accident, and requests directed to the Society. Questions regarding facilities concerned the following: communication after the accident, requests for dispatch to the accident site, and possession of radiometry devices. In regard to acquisition of information, 91 of the 104 members (87.5%) answered 'television or radios' followed by newspapers. Forty-five of 101 members were questioned about radiation exposure and radiation effects by the public. There were many opinions that accurate news should be provided rapidly, by the mass media. Many members (75%) felt that they lacked knowledge about radiation, reconfirming the importance of education and instruction concerning radiation. Dispatch was requested of 36 of the 75 facilities (48%), and 44 of 83 facilities (53%) owned radiometry instruments. (K.H.)

  19. Review of design criteria for Criticality Accident Alarm System (CAAS) used in Fuel Reprocessing Facility

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Basu, Pew; Sivasubramaniyan, K.; Venkatraman, B.

    2016-01-01

    Though fuel cycle facilities handling fissile materials are designed with careful criticality safety analysis, the criticality accident cannot be ruled out completely. Criticality Accident Alarm System (CAAS) is being installed as part of criticality safety management in fuel cycle facilities. CAAS system being used in India, is ECIL make, ionization chamber based gamma detector, which houses three identical detectors and works on 2/3 logic. As per ISO 7753 and ANSI/ANS-8.3, the CAAS must be designed to be capable of detecting any minimum accident occurs which could be of concern. Based on this, alarm limit used in CAAS is: 4 R/h (fast transient excursion) and 3 mR in 0.5 sec (slow excursion). In case of reprocessing facilities wherein process tanks located in heavy shielding, identification of CAAS installation locations require detailed radiation transport calculations. A study has been taken to estimate the gamma dose rate from thick concrete hot cells in order to determine the locations of CAAS to meet the present design criteria of alarm limit

  20. The improvement of technology for high-uranium-density Al-base dispersion fuel plates

    International Nuclear Information System (INIS)

    Shouhui, Dai; Rongxian, Sun; Hejian, Mao; Baosheng, Zhao; Changgen, Yin

    1987-01-01

    An improved rolling process was developed for manufacturing Al-base dispersion fuel plates. When the fuel content in the meat increased up to 50 vol%, the non-uniformity of uranium is not more than ± 7.2%, and the minimum cladding thickness is not less than 0.32 mm. (Author)

  1. Unirradiated characteristics of U-Si alloys as dispersed-phase fuels

    International Nuclear Information System (INIS)

    Domagala, R.F.; Wiencek, T.C.

    1987-06-01

    To satisfy the power demands of many research reactors, a new LEU fuel with a high density and U content was needed. Any fuel must be compatible with Al and its alloys so that it may be fabricable as a dispersed-phase in Al alloy and Al matrix plate-type elements following, as nearly as possible, established commercial manufacturing techniques. U-Si and U-Si-Al alloys at or near the composition of U 3 Si were immediately attractive because of work documented by the Canadians. 8 refs., 2 figs

  2. Development of a FBR fuel pin bundle deformation analysis code 'BAMBOO' . Development of a dispersion model and its validation

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu; Asaga, Takeo

    2002-03-01

    Bundle Duct Interaction (BDI) is one of the life limiting factors of a FBR fuel subassembly. Under the BDI condition, the fuel pin dispersion would occur mainly by the deviation of the wire position due to the irradiation. In this study the effect of the dispersion on the bundle deformation was evaluated by using the BAMBOO code and following results were obtained. (1) A new contact analysis model was introduced in BAMBOO code. This model considers the contact condition at the axial position other than the nodal point of the beam element that composes the fuel pin. This improvement made it possible in the bundle deformation analysis to cause fuel pin dispersion due to the deviations of the wire position. (2) This model was validated with the results of the out-of-pile compression test with the wire deviation. The calculated pin-to-duct and pin-to-pin clearances with the dispersion model almost agreed with the test results. Therefore it was confirmed that the BAMBOO code reasonably predicts the bundle deformation with the dispersion. (3) In the dispersion bundle the pin-to-pin clearances widely scattered. And the minimum pin-to-duct clearance increased or decreased depending on the dispersion condition compared to the no-dispersion bundle. This result suggests the possibility that the considerable dispersion would affect the thermal integrity of the bundle. (author)

  3. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    Science.gov (United States)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  4. Prevention of pedestrian accidents.

    OpenAIRE

    Kendrick, D

    1993-01-01

    Child pedestrian accidents are the most common road traffic accident resulting in injury. Much of the existing work on road traffic accidents is based on analysing clusters of accidents despite evidence that child pedestrian accidents tend to be more dispersed than this. This paper analyses pedestrian accidents in 573 children aged 0-11 years by a locally derived deprivation score for the years 1988-90. The analysis shows a significantly higher accident rate in deprived areas and a dose respo...

  5. Radiological consequence analysis with HEU and LEU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.L.; Warinner, D.K.; Matos, J.E.

    1984-01-01

    A model for estimating the radiological consequences from a hypothetical accident in HEU and LEU fueled research and test reactors is presented. Simple hand calculations based on fission product yield table inventories and non-site specific dispersion data may be adequate in many cases. However, more detailed inventories and site specific data on meteorological conditions and release rates and heights can result in substantial reductions in the dose estimates. LEU fuel gives essentially the same doses as HEU fuel. The plutonium buildup in the LEU fuel does not significantly increase the radiological consequences. The dose to the thyroid is the limiting dose. 10 references, 3 figures, 7 tables.

  6. Radiological consequence analysis with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Woodruff, W.L.; Warinner, D.K.; Matos, J.E.

    1984-01-01

    A model for estimating the radiological consequences from a hypothetical accident in HEU and LEU fueled research and test reactors is presented. Simple hand calculations based on fission product yield table inventories and non-site specific dispersion data may be adequate in many cases. However, more detailed inventories and site specific data on meteorological conditions and release rates and heights can result in substantial reductions in the dose estimates. LEU fuel gives essentially the same doses as HEU fuel. The plutonium buildup in the LEU fuel does not significantly increase the radiological consequences. The dose to the thyroid is the limiting dose. 10 references, 3 figures, 7 tables

  7. Status of ANL out-of-pile investigations of severe accident phenomena for liquid metal reactors

    International Nuclear Information System (INIS)

    Spencer, B.W.; Marchaterre, J.F.; Anderson, R.P.

    1986-01-01

    Research addressing LMFBR whole core accidents has been terminated, and there is now emphasis on quantifying reactivity feedbacks, and in particular enhancing negative feedback, so that advanced LMR designs will provide inherently safe operation. The status of recent HCDA-related laboratory research performed at ANL, up to the time that such activities were no longer needed to support CRBR licensing, is described. Included are descriptions of programs addressing sodium channel voiding, fuel sweepout, fuel dispersal and plugging, boiled-up pool, UO 2 /sodium FCI, and debris coolability. Descriptions of recent investigations involving the metal fuel/sodium system are also included

  8. Fuel elements based on U3O8 dispersions in aluminium

    International Nuclear Information System (INIS)

    Haydt, H.M.

    1990-01-01

    A review of the Nuclear Metallurgy Division, now Nuclear and Energetic Research Institute, to the national Know-how development of fuel elements fabrication from U 3 O 8 dispersions in aluminium, during 1962 to 1977, are described. (C.G.C.)

  9. Irradiation behavior of U{sub 6}Mn-Al dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.K. E-mail: mitchell.meyer@anl.gov; Wiencek, T.C.; Hayes, S.L.; Hofman, G.L

    2000-04-01

    Irradiation testing of U{sub 6}Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U{sub 6}Mn in an unrestrained plate configuration performs similarly to U{sub 6}Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3x10{sup 27} m{sup -3}. Fuel plate failure occurs by fission gas pressure driven 'pillowing' on continued irradiation.

  10. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-01-01

    This paper focuses on the use and potential of oxide fuel systems for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Examples are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  11. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-04-01

    This paper focuses on the use and potential of oxide fuel system for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Exampled are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  12. Linking of FRAP-T, FRAPCON and RELAP-4 codes for transient analysis and accidents of light water reactors fuel rods

    International Nuclear Information System (INIS)

    Marra Neto, A.; Silva, A.T. e; Sabundjian, G.; Freitas, R.L.; Neves Conti, T. das.

    1991-09-01

    The computer codes FRAP-T, FRAPCON and RELAP-4 have been linked for the fuel rod behavior analysis under transients and hypothetical accidents in light water reactors. The results calculated by thermal hydraulic code RELAP-4 give input in file format into the transient fuel analysis code FRAP-T. If the effect of fuel burnup is taken into account, the fuel performance code FRAPCON should provide the initial steady state data for thhe transient analysis. With the thermal hydraulic boundary conditions provided by RELAP-4 (MOD3), FRAP-T6 is used to analyse pressurized water reactor fuel rod behavior during the blowdown phase under large break loss of coolant accident conditions. Two cases have been analysed: without and with initialization from FRAPCON-2 steady state data. (author)

  13. The influence of a non-uniform radial temperature distribution in the fuel on the results of calculation of transients

    International Nuclear Information System (INIS)

    Goltsev, A.O.; Davidenko, V.D.; Tsibulsky, V.F.; Lekomtsev, A.A.

    2003-01-01

    The paper is devoted to the discussion of results of computational studies of transients for different ways of accounting the temperature of the fuel in the full-scale comprehensive calculations of neutron physics. The paper demonstrates that in calculation of the neutron physics, it is necessary to use the effective temperature of the fuel in order to provide for correct accounting of the fuel temperature feedback, since the value of volume-averaged temperature being used in calculations of neutron physics with feedbacks would result in underestimation of consequences of accidents, especially accidents involving the dispersion of radiation

  14. Structures of the particles of the condensed dispersed phase in solid fuel combustion products plasma

    International Nuclear Information System (INIS)

    Samaryan, A.A.; Chernyshev, A.V.; Nefedov, A.P.; Petrov, O.F.; Fortov, V.E.; Mikhailov, Yu.M.; Mintsev, V.B.

    2000-01-01

    The results of experimental investigations of a type of dusty plasma which has been least studied--the plasma of solid fuel combustion products--were presented. Experiments to determine the parameters of the plasma of the combustion products of synthetic solid fuels with various compositions together with simultaneous diagnostics of the degree of ordering of the structures of the particles of the dispersed condensed phase were performed. The measurements showed that the charge composition of the plasma of the solid fuels combustion products depends strongly on the easily ionized alkali-metal impurities which are always present in synthetic fuel in one or another amount. An ordered arrangement of the particles of a condensed dispersed phase in structures that form in a boundary region between the high-temperature and condensation zones was observed for samples of aluminum-coated solid fuels with a low content of alkali-metal impurities

  15. Fuel pin behaviour under conditions of control rod withdrawal accident in CABRI-2 experiments

    International Nuclear Information System (INIS)

    Papin, Joelle; Lemoine, Francette; Sato, Ikken; Struwe, Dankward; Pfrang, Werner

    1994-01-01

    Simulation of the control rod withdrawal accident has been performed in the international CABRI-2 experimental programme. The tests realized with industrial pins led to clarification of the influence of the pellet design and have shown the important role of fission products on the solid fuel swelling which promotes early pin failure with solid fuel pellet. With annular pellet design, large fuel swelling combined to low smear density leads to degradation of fuel thermal conductivity and thus reduces power to melt. However, the high margin to deterministic failure is confirmed with hollow pellets. Improvements of the modelling were necessary to describe such behaviours in computer codes as SAS-4A, PAPAS-2S and PHYSURAC. (author)

  16. Accident tolerant fuel analysis

    International Nuclear Information System (INIS)

    2014-01-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant

  17. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  18. Study of fission products (Cs, Ba, Mo, Ru) behaviour in irradiated and simulated nuclear fuels during severe accidents using X-ray absorption Spectroscopy, SIMS and EPMA

    International Nuclear Information System (INIS)

    Geiger, Ernesto

    2016-01-01

    The identification of Fission Products (FP) release mechanism from irradiated nuclear fuels during a severe accident is of main importance for the development of codes for the estimation of the source-term (nature and quantity of radionuclides released into the environment). among the many FP Ba, Cs, Mo and Ru present a particular interest, since they may interact with each other or other elements and thus affect their release. In the framework of this thesis, two work axes have been set up in order to identify, firstly, the chemical phases initially present before the accident and, secondly, their evolution during the accident itself. The experimental approach consisted in reproducing nuclear severe accidents conditions at laboratory scale using both irradiated fuels and model materials (natural UO_2 doped with 12 FP). The advantage of these latter is the possibility of using characterization methods such as X-ray absorption Spectroscopy which are not available for irradiated fuels. Three irradiated fuel samples have been studied, representative to an initial state (before the accident), to an intermediate stage (1773 K) and to an advanced stage (2873 K) of a nuclear severe accident. Regarding to model materials, many accident sequences have been carried out, from 573 to 1973 K. Experimental results have allowed to establish a new release mechanism, considering both reducing and oxidizing conditions during an accident. These results have also demonstrated the importance of model materials as a complement to irradiated nuclear fuels in the study of nuclear severe accidents. (author) [fr

  19. Analysis of reactivity accidents of the RSG-GAS core with silicide fuel

    International Nuclear Information System (INIS)

    Tukiran

    2002-01-01

    The fuels of RSG-GAS reactor is changed from uranium oxide to uranium silicide. For time being, the fuel of RSG-GAS core are mixed up between oxide and silicide fuels with 250 gr of loading and 2.96 g U/cm 3 of density, respectively. While, silicide fuel with 300 gr of loading is still under research. The advantages of silicide fuels are can be used in high density, so that, it can be stayed longer in the core at higher burn-up, therefore, the length of cycle is longer. The silicide fuel in RSG-GAS core is used in step-wise by using mixed up core. Firstly, it is used silicide fuel with 250 gr of loading and then, silicide fuel with 300 gr of loading (3.55 g U/cm 3 of density). In every step-wise of fuel loading must be analysed its safety margin. In this occasion, it is analysed the reactivity accident of RSG-GAS core with 300 gr of silicide fuel loading. The calculation was done by using POKDYN code which available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. From all cases which were have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 gr silicide fuel loading

  20. Behavior of irradiated ATR/MOX fuel under reactivity initiated accident conditions (Joint research)

    International Nuclear Information System (INIS)

    Sasajima, Hideo; Fuketa, Toyoshi; Nakamura, Takehiko; Nakamura, Jinichi; Uetsuka, Hiroshi

    2000-03-01

    Pulse irradiation experiments with irradiated ATR/MOX fuel rods of 20 MWd/kgHM were conducted at the NSRR in JAERI to study the transient behavior of MOX fuel rod under reactivity initiated accident conditions. Four pulse irradiation experiments were performed with peak fuel enthalpy ranging from 335 J/g to 586 J/g, resulted in no failure of fuel rods. Deformation of the fuel rods due to PCMI occurred in the experiments with peak fuel enthalpy above 500 J/g. Significant fission gas release up to 20% was measured by rod puncture measurement. The generation of fine radial cracks in pellet periphery, micro-cracks and boundary separation over the entire region of pellet were observed. These microstructure changes might contribute to the swelling of fuel pellets during the pulse irradiation. This could cause the large radial deformation of fuel rod and high fission gas release when the pulse irradiation conducted at relatively high peak fuel enthalpy. In addition, fine grain structures around the plutonium spot and cauliflower structure in cavity of the plutonium spot were observed in the outer region of the fuel pellet. (author)

  1. Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

    Directory of Open Access Journals (Sweden)

    Isabelle Guénot-Delahaie

    2018-03-01

    Full Text Available The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs, power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs. As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on PWR-UO2 fuel rods with advanced claddings such as M5® under “low pressure–low temperature” or “high pressure–high temperature” water coolant conditions.This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on UO2-M5® fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE—starting from base irradiation conditions it itself computes—is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur.Areas of improvement are finally discussed with a view to simulating and

  2. Extending the application range of a fuel performance code from normal operating to design basis accident conditions

    International Nuclear Information System (INIS)

    Van Uffelen, P.; Gyori, C.; Schubert, A.; Laar, J. van de; Hozer, Z.; Spykman, G.

    2008-01-01

    Two types of fuel performance codes are generally being applied, corresponding to the normal operating conditions and the design basis accident conditions, respectively. In order to simplify the code management and the interface between the codes, and to take advantage of the hardware progress it is favourable to generate a code that can cope with both conditions. In the first part of the present paper, we discuss the needs for creating such a code. The second part of the paper describes an example of model developments carried out by various members of the TRANSURANUS user group for coping with a loss of coolant accident (LOCA). In the third part, the validation of the extended fuel performance code is presented for LOCA conditions, whereas the last section summarises the present status and indicates needs for further developments to enable the code to deal with reactivity initiated accident (RIA) events

  3. Dose calculation for accident situations at WWR-S type spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Margeanu, S.; Florescu, G.

    2006-01-01

    Full text: The Spent Nuclear Fuel Repository at IFIN-HH Bucharest (SNFR IFIN-HH) consists in four pools, repository hall, radiological monitoring system, ventilation system and auxiliary systems. At the moment the remaining activity in the repository is about 3500 Ci. Despite of the small activity, for emergency preparedness purposes, several accident scenarios, with a non zero probability of occurrence during the repository lifetime, have been postulated. Evaluations of radiological consequences to personnel, general public and environment, for each accident scenario have been performed. The radioactive inventory was evaluated with ORIGEN code from SCALE computer code system and radiological consequences were evaluated with COSYMA computer code. Assumptions for the source term determination, meteorological conditions and release, are presented. The calculated values of doses and risk are also presented. The impact of these accident scenarios on population and environment is also discussed. (authors)

  4. Severe Accident Recriticality Analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hoejerup, F. [Risoe National Lab. (Denmark); Lindholm, I.; Miettinen, J.; Puska, E.K. [VTT Energy, Helsinki (Finland); Nilsson, Lars [Studsvik Eco and Safety AB, Nykoeping (Sweden); Sjoevall, H. [Teoliisuuden Voima Oy (Finland)

    1999-11-01

    rate of 2000 kg/s. In most cases, however, the predicted energy deposition was much smaller, below the regulatory limits for fuel failure, but close or above recently observed thresholds for fragmentation and dispersion of high burn-up fuel. The highest calculated quasi steady-state power following initial power excursion was in most cases about 20 % of the nominal reactor power, according to SIMULATE-3K and APROS. RECRIT predictions were in general different in this respect with either oscillating power or power increase approaching 50 % of nominal power which in both cases resulted in fuel temperatures above the melting point as a result of insufficient cooling. Long-term containment response to recriticality was assessed through MELCOR calculations for Olkiluoto 1 plant. At stabilised reactor power of 19 % of nominal power the containment failure due to overpressurization was predicted to occur 1.3 h after recriticality, if the accident is not mitigated. The SARA studies have clearly shown the sensitivity of recriticality phenomena to thermal-hydraulic modelling, the specifics of accident scenario, such as distribution of boron-carbide, and importance of multi-dimensional kinetics for determination of local power distribution in the core. The results of the project have pointed out the importance of adequate accident management procedures to be used by reactor operators and emergency staff during recovery actions. Recommendations in this area are given in the report.

  5. Severe Accident Recriticality Analyses (SARA)

    International Nuclear Information System (INIS)

    Frid, W.; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Puska, E.K.; Nilsson, Lars; Sjoevall, H.

    1999-11-01

    rate of 2000 kg/s. In most cases, however, the predicted energy deposition was much smaller, below the regulatory limits for fuel failure, but close or above recently observed thresholds for fragmentation and dispersion of high burn-up fuel. The highest calculated quasi steady-state power following initial power excursion was in most cases about 20 % of the nominal reactor power, according to SIMULATE-3K and APROS. RECRIT predictions were in general different in this respect with either oscillating power or power increase approaching 50 % of nominal power which in both cases resulted in fuel temperatures above the melting point as a result of insufficient cooling. Long-term containment response to recriticality was assessed through MELCOR calculations for Olkiluoto 1 plant. At stabilised reactor power of 19 % of nominal power the containment failure due to overpressurization was predicted to occur 1.3 h after recriticality, if the accident is not mitigated. The SARA studies have clearly shown the sensitivity of recriticality phenomena to thermal-hydraulic modelling, the specifics of accident scenario, such as distribution of boron-carbide, and importance of multi-dimensional kinetics for determination of local power distribution in the core. The results of the project have pointed out the importance of adequate accident management procedures to be used by reactor operators and emergency staff during recovery actions. Recommendations in this area are given in the report

  6. Modeling of in-vessel fission product release including fuel morphology effects for severe accident analyses

    International Nuclear Information System (INIS)

    Suh, K.Y.

    1989-10-01

    A new in-vessel fission product release model has been developed and implemented to perform best-estimate calculations of realistic source terms including fuel morphology effects. The proposed bulk mass transfer correlation determines the product of fission product release and equiaxed grain size as a function of the inverse fuel temperature. The model accounts for the fuel-cladding interaction over the temperature range between 770 K and 3000 K in the steam environment. A separate driver has been developed for the in-vessel thermal hydraulic and fission product behavior models that were developed by the Department of Energy for the Modular Accident Analysis Package (MAAP). Calculational results of these models have been compared to the results of the Power Burst Facility Severe Fuel Damage tests. The code predictions utilizing the mass transfer correlation agreed with the experimentally determined fractional release rates during the course of the heatup, power hold, and cooldown phases of the high temperature transients. Compared to such conventional literature correlations as the steam oxidation model and the NUREG-0956 correlation, the mass transfer correlation resulted in lower and less rapid releases in closer agreement with the on-line and grab sample data from the Severe Fuel Damage tests. The proposed mass transfer correlation can be applied for best-estimate calculations of fission products release from the UO 2 fuel in both nominal and severe accident conditions. 15 refs., 10 figs., 2 tabs

  7. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    International Nuclear Information System (INIS)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable

  8. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

  9. Fuel Retrieval and Management of Fuel Element Debris

    International Nuclear Information System (INIS)

    Chande, Shridhar; Lachaume, J. L.

    2013-01-01

    Nuclear accidents involving core meltdown have not been so rare. While the first occurred in early fifties, it is reported that about 20 have occurred worldwide in military and commercial reactors. The more recent and major accidents are 1. Three Mile Island, USA in 1979: Approximately half the core was melted, and flowed to the bottom of the reactor pressure vessel however the pressure vessel remained intact and contained the damaged fuel. 2. Chernobyl, former USSR in 1984: Explosive release of radioactive material occurred. About 6 tons of fuel was dispersed as air-borne particles. Most of the core was damaged or melted. 3. Fukushima, Japan 2011: Three units suffered melt down. In unit 1 almost all the fuel assemblies melted and accumulated at the bottom of the vessel. It is reported that the vessel failed and the molten corium has penetrated the concrete. In the units 2 and 3, partial melting of cores has occurred. In several of these cases, fuel retrieval and management activities have been carried out. The experience and insights gained from these activities will be extremely useful for planning and execution of similar activities in future if ever they are needed. The purpose of this session was to exchange this experience and also to share the lessons learned. This is of particularly important, at this juncture, when planning and preparation for retrieval of damaged cores in Fukushima NPP is in progress. (author)

  10. Phase 1A Final Report for the AREVA Team Enhanced Accident Tolerant Fuels Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Morrell, Mike E. [AREVA Federal Services LLC, Charlotte, NC (United States)

    2015-03-19

    In response to the Department of Energy (DOE) funded initiative to develop and deploy lead fuel assemblies (LFAs) of Enhanced Accident Tolerant Fuel (EATF) into a US reactor within 10 years, AREVA put together a team to develop promising technologies for improved fuel performance during off normal operations. This team consisted of the University of Florida (UF) and the University of Wisconsin (UW), Savannah River National Laboratory (SRNL), Duke Energy and Tennessee Valley Authority (TVA). This team brought broad experience and expertise to bear on EATF development. AREVA has been designing; manufacturing and testing nuclear fuel for over 50 years and is one of the 3 large international companies supplying fuel to the nuclear industry. The university and National Laboratory team members brought expertise in nuclear fuel concepts and materials development. Duke and TVA brought practical utility operating experience. This report documents the results from the initial “discovery phase” where the team explored options for EATF concepts that provide enhanced accident tolerance for both Design Basis (DB) and Beyond Design Basis Events (BDB). The main driver for the concepts under development were that they could be implemented in a 10 year time frame and be economically viable and acceptable to the nuclear fuel marketplace. The economics of fuel design make this DOE funded project very important to the nuclear industry. Even incremental changes to an existing fuel design can cost in the range of $100M to implement through to LFAs. If this money is invested evenly over 10 years then it can take the fuel vendor several decades after the start of the project to recover their initial investment and reach a breakeven point on the initial investment. Step or radical changes to a fuel assembly design can cost upwards of $500M and will take even longer for the fuel vendor to recover their investment. With the projected lifetimes of the current generation of nuclear power

  11. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  12. Reactivity feedbacks of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The reactivity feedbacks of a material test research reactor using various low enriched uranium fuels, having same uranium density were calculated. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Calculations were carried out to find the fuel temperature reactivity feedback, moderator temperature reactivity feedback, moderator density reactivity feedback and moderator void reactivity feedback. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that the magnitudes all the respective reactivity feedbacks from 38 deg. C to 50 deg. C and 100 deg. C, at the beginning of life, of all the fuels were very close to each other. The fuel temperature reactivity feedback of the U 3 O 8 -Al was about 2% more than the original UAl x -Al fuel. The magnitudes of the moderator temperature, moderator density and moderator void reactivity feedbacks of all the fuels, showed very minor variations from the original aluminide fuel.

  13. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    Veen, A. van; Konings, R.J.M.; Fedorov, A.V.

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2 , MgAl 2 O 4 , MgO and Al 2 O 3 ) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  14. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  15. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  16. Review and compilation of criticality accidents in nuclear fuel processing facilities outside of Japan

    International Nuclear Information System (INIS)

    Watanabe, Norio; Tamaki, Hitoshi

    2000-04-01

    On September 30, 1999, a criticality accident occurred at the Tokai-mura uranium processing plant operated by JCO Co., Ltd., which resulted in the first nuclear accident involving a fatality, in Japan, and forced the residents in the vicinity of the site to be evacuated and be sheltered indoors. There have now been 21 criticality accidents reported in nuclear fuel processing facilities in foreign countries: seven in the United States, one in the United Kingdom and thirteen in Russia. Most of them occurred during the period from mid-1950's to mid-1960's, but one criticality accident tool place in Russian in 1997. This report reviews and compiles the published information on these accidents, including the latest information, focusing on the event sequence, the consequence of accident, and the cause of accident. The observations from the reviews are summarized as follows: Twenty of the 21 accidents occurred with the fissile material in a liquid. Twenty of the 21 accidents occurred in vessels/tanks with unfavorable geometry but one occurred in the vessel with favorable geometry. There were seven fatalities that were involved in five accidents. Three accidents involved a re-criticality condition caused by inadequate operator actions and two of them led to the death of the operators. One accident reached a re-criticality condition several hours after the first excursion was terminated by injecting borated water into the affected vessel. This accident implies the possibility that the borated water injection might not be effective to the criticality termination due to solubility of boric acid. Mechanisms of the criticality termination vary as follows: ejection or splashing of the solution at the time of power excursion, boiling or evaporation, addition of neutron poisons, or manual draining of solutions. (author)

  17. Review and compilation of criticality accidents in nuclear fuel processing facilities outside of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio [Planning and Analysis Division, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Tamaki, Hitoshi [Department of Safety Research Technical Support, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-04-01

    On September 30, 1999, a criticality accident occurred at the Tokai-mura uranium processing plant operated by JCO Co., Ltd., which resulted in the first nuclear accident involving a fatality, in Japan, and forced the residents in the vicinity of the site to be evacuated and be sheltered indoors. There have now been 21 criticality accidents reported in nuclear fuel processing facilities in foreign countries: seven in the United States, one in the United Kingdom and thirteen in Russia. Most of them occurred during the period from mid-1950's to mid-1960's, but one criticality accident tool place in Russian in 1997. This report reviews and compiles the published information on these accidents, including the latest information, focusing on the event sequence, the consequence of accident, and the cause of accident. The observations from the reviews are summarized as follows: Twenty of the 21 accidents occurred with the fissile material in a liquid. Twenty of the 21 accidents occurred in vessels/tanks with unfavorable geometry but one occurred in the vessel with favorable geometry. There were seven fatalities that were involved in five accidents. Three accidents involved a re-criticality condition caused by inadequate operator actions and two of them led to the death of the operators. One accident reached a re-criticality condition several hours after the first excursion was terminated by injecting borated water into the affected vessel. This accident implies the possibility that the borated water injection might not be effective to the criticality termination due to solubility of boric acid. Mechanisms of the criticality termination vary as follows: ejection or splashing of the solution at the time of power excursion, boiling or evaporation, addition of neutron poisons, or manual draining of solutions. (author)

  18. The behaviour of spherical HTR fuel elements under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, W; Naoumidis, A [Institute for Reactor Material, KFA Juelich (Germany)

    1985-07-01

    Hypothetical accidents may lead to significantly higher temperatures in HTR fuel than during normal operation. In order to obtain meaningful statements on fission product behaviour and release, irradiated spherical fuel elements containing a large number of coated particles (20,000-40,000) with burnups between 6 and 16% FIMA were heated at temperatures between 1400 and 2500 deg. C. HTI-pyrocarbon coating retains the gaseous fission products (e.g. Kr) very well up to about 2400 deg. C if the burnup does not exceed the specified value for THTR (11.5%). Cs diffuses through the pyrocarbon significantly faster than Kr and the diffusion is enhanced at higher fuel burnups because of irradiation induced kernel microstructure changes. Below about 1800 deg. C the Cs release rate is controlled by diffusion in the fuel kernel; above this temperature the diffusion in the pyrocarbon coating is the controlling parameter. An additional SiC coating interlayer (TRISO) ensures Cs retention up to 1600 deg. C. However, the release obtained in the examined fuel elements was only by a factor of three lower than through the HTI pyrocarbon. Solid fission products added to UO{sub 2}-TRISO particles to simulate high burnup behave in various ways and migrate to attack the SiC coating. Pd migrates fastest and changes the SiC microstructure making it permeable.

  19. Behavior of small-sized BWR fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio; Horiki, Oichiro; Chen Dianshan; Takeuchi, Kiyoshi.

    1992-01-01

    The present work was performed on this small-sized BWR fuel, where Zr liner and rod prepressurization were taken as experimental parameters. Experiment was done under simulated reactivity initiated accident (RIA) conditions at Nuclear Safety Research Reactor (NSRR) belonged to Japan Atomic Energy Research Institute (JAERI). Major remarks obtained are as follows: (1) Three different types of the fuel rods consisted of (a) Zr lined/pressurized (0.65MPa), (b) Zr lined/non-pressurized and (c) non-Zr lined/pressurized (o.65MPa) were used, respectively. Failure thresholds of these were not less than that (260 cal/g·fuel) described in Japanese RIA Licensing Guideline. Small-sized BWR and conventional 8 x 8 BWR fuels were considered to be in almost the same level in failure threshold. Failure modes of the three were (a) cladding melt/brittle, (b) cladding melt/brittle and (c) rupture by large ballooning, respectively. (2) The magnitude of pressure pulse at fuel fragmentation was also studied by lined/pressurized and non-lined/pressurized fuels. Above the energy deposition of 370 cal/g·fuel, mechanical energy (or pressure) was found to be released from these fragmented fuels. No measurable difference was, however, observed between the tested fuels and NSRR standard (and conventional 8 x 8 BWR) fuels. (3) It is worthy of mentioning that Zr liner tended to prevent the cladding from large ballooning. Non-lined/pressurized fuel tended to cause wrinkle deformation at cladding. Hence, cladding external was notched much by the wrinkles. (4) Time to fuel failure measured from the tested BWR fuels (pressurization < 0.6MPA) was longer than that measured from PWR fuels (pressurization < 3.2MPa). The magnitude of the former was of the order of 3 ∼ 6s, while that of the latter was < 1s. (J.P.N.)

  20. PLACA/DPLACA: a code to simulate the behavior of a monolithic/dispersed plate type fuel

    International Nuclear Information System (INIS)

    Denis, Alicia; Soba, Alejandro

    2005-01-01

    The PLACA code was originally built to simulate monolithic plate fuels contained in a metallic cladding, with a gap in between. The international program of high density fuels was recently oriented to the development of a plate-type fuel of a uranium rich alloy with a molybdenum content between 6 to 10 w %, without gap and with a Zircaloy cladding. To give account of these fuels, the DPLACA code was elaborated as a modification of the original code. The extension of the calculation tool to disperse fuels involves a detailed study of the properties and models (still in progress). Of special interest is the material formed by U Mo particles dispersed in an Al matrix. This material has appeared as a candidate fuel for high flux research reactors. However, the interaction layer that grows around the particles has a deleterious effect on the material performance in operation conditions and may represent a limit for its applicability. A number of recent experiments carried out on this material provide abundant information that allows testing of the numerical models. (author)

  1. Fuel gases generation in the primary contention during a coolant loss accident in a nuclear power plant with reactor type BWR

    International Nuclear Information System (INIS)

    Salaices, M.; Salaices, E.; Ovando, R.; Esquivias, J.

    2011-11-01

    During an accident design base of coolant loos, the hydrogen gas can accumulate inside the primary contention as a result of several generation mechanisms among those that are: 1) the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant, 2) the metals corrosion for the solutions used in the emergency cooling and dew of the contention, and 3) the radio-decomposition of the cooling solutions of post-accident emergency. In this work the contribution of each generation mechanism to the hydrogen total in the primary contention is analyzed, considering typical inventories of zirconium, zinc, aluminum and fission products in balance cycle of a reactor type BWR. In the analysis the distribution model of fission products and hydrogen production proposed in the regulator guide 1.7, Rev. 2 of the US NRC was used. The results indicate that the mechanism that more contributes to the hydrogen generation at the end of a period of 24 hours of initiate the accident is the radio-decomposition of the cooling solutions of post-accident emergency continued by the reaction metal-water involving the zirconium of the fuel cladding with the reactor coolant, and lastly the aluminum and zinc oxidation present in the primary contention. However, the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant is the mechanism that more contributes to the hydrogen generation in the first moments after the accident. This study constitutes the first part of the general analysis of the generation, transport and control of fuel gases in the primary contention during a coolant loss accident in BWRs. (Author)

  2. Increased Accident Tolerance of Fuels for Light Water Reactors - Workshop Proceedings, OECD/NEA Headquarters, Issy-les-Moulineaux, France, 10-12 December 2012

    International Nuclear Information System (INIS)

    2013-01-01

    The Fukushima accident in March 2011 raised concerns about the safety of current and future nuclear power plants both inside and outside the international nuclear energy community. With a view to learning lessons from this accident a large consensus emerged on the need to strengthen each level of Defence-In-Depth, reinforcing both prevention and mitigation. The fuel performance characteristics identified as being central to increased accident tolerance for long-term loss of coolant include reduced clad-steam reactions, reduced hydrogen production and improved fission product retention. New fuel designs which offered the potential to incorporate these characteristics, while retaining the operational performance of existing designs, would therefore be considered as suitable candidates for further investigation. Under the auspices of the NEA Nuclear Science Committee, a workshop has been organised to bring together international experts from the modelling, safety, operations and regulatory technical disciplines to discuss the various issues related to increased accident tolerance of fuels for Light Water Reactors and to help establish a co-ordinated international approach in this field. The organisation of this workshop was also supported by the NEA Committee on the Safety of Nuclear Installations. These proceedings include all the abstract papers presented at this workshop. The programme was comprised of 4 sessions: - Session 1: Lessons learned from the Fukushima accident; - Session 2: Accident-tolerant fuel design; - Session 3: Reactor operation, safety, fuel cycle constraints, economics and licensing; - Session 4: Synthesis and future programmes. A total of 55 participants from 16 countries attended the workshop, with 26 technical presentations and 2 breakout parallel sessions (one on safety issues, the other on reactor performance, R and D and technological issues). The attendees represented a broad spectrum of stakeholders involved in different nuclear energy

  3. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    Science.gov (United States)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  4. A global-scale dispersion analysis of iodine-129 from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishizawa, Masato; Suzuki, Takashi; Nagai, Haruyasu; Togawa, Orihiko

    2010-01-01

    A three-dimensional global chemical transport model, MOZART-2, is applied to investigate the global-sale dispersion of Iodine-129 from nuclear fuel reprocessing plants. The concentration and deposition of 129 I obtained by MOZART-2 are dispersed all over the Northern Hemisphere. The emission of 129 I to the atmosphere is thus important in considering the transport of 129 I to remote sites. (author)

  5. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu; Terada, Hiroaki; Chino, Masamichi; Nagai, Haruyasu

    2012-01-01

    The atmospheric release of 131 I and 137 Cs in the early phase of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident from March 12 to 14, 2011 was estimated by combining environmental data with atmospheric dispersion simulations under the assumption of a unit release rate (1 Bq h −1 ). For the simulation, WSPEEDI-II computer-based nuclear emergency response system was used. Major releases of 131 I (>10 15 Bq h −1 ) were estimated when air dose rates increased in FNPP1 during the afternoon on March 12 after the hydrogen explosion of Unit 1 and late at night on March 14. The high-concentration plumes discharged during these periods flowed to the northwest and south–southwest directions of FNPP1, respectively. These plumes caused a large amount of dry deposition on the ground surface along their routes. Overall, the spatial pattern of 137 Cs and the increases in the air dose rates observed at the monitoring posts around FNPP1 were reproduced by WSPEEDI-II using estimated release rates. The simulation indicated that air dose rates significantly increased in the south–southwest region of FNPP1 by dry deposition of the high-concentration plume discharged from the night of March 14 to the morning of March 15. - Highlights: ► Source term during the Fukushima Dai-ichi Nuclear Power Plant accident was estimated. ► Atmospheric dispersion simulation was carried out for estimation. ► Major releases were estimated in the afternoon on March 12 and the night on March 14. ► Air dose rate increased due to dry deposition during the night of March 14.

  6. Postulated accident scenarios for the on-site transport of spent nuclear fuel

    International Nuclear Information System (INIS)

    Morandin, G.; Sauve, R.

    2004-01-01

    Once a spent fuel container is loaded with spent fuel it typically travels on-site to a processing building for permanent lid attachment. During on-site transport a lid clamp is utilized to ensure the container lid remains in place. The safe on-site transport of spent nuclear fuel must rely on the structural integrity of the transport container and system of transport. Regard for on-site traffic and safe, efficient travel routes are important and manageable with well thought-out planning. Non-manageable incidences, such as flying debris from tornado force winds or postulated blasts in proximity to the transport container, that may result in high velocity impact and shock loading on the transport system must be considered. This paper consists of simulations that consider these types of postulated accident scenarios using detailed nonlinear finite element techniques

  7. Coupled fuel performance and thermal-hydraulics simulation with BISON and RELAP-7 at accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, R.C., E-mail: Richard.Martineau@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' RELAP-7 is expected to be the next in the RELAP nuclear reactor safety/systems analysis application series developed at the Idaho National Laboratory (INL). The development of RELAP-7 began in 2011 to support the Risk Informed Safety Margins Characterization (RISMC) Pathway of Department of Energy's (DOE) Light Water Reactor Sustainability (LWRS) Program. The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in software design, numerical methods, and physical models in order to provide capabilities needed for the RISMC methodology and to support modern nuclear power safety analysis. RELAP-7 is built using the INL's modern scientific software development framework, MOOSE (Multi-physics Object Oriented Simulation Environment). MOOSE provides improved implicit numerical schemes, including higher-order integration in both space and time, and yielding converged second-order accuracy for RELAP-7. The code structure is based on multiple physical component models such as pipes, junctions, pumps, etc. This component-based software architecture allows RELAP-7 to quickly adopt different physical models for different applications. One of the main advantages of building RELAP-7 on the MOOSE framework is that tight coupling with other MOOSE-based applications solving physics not present in RELAP-7 requires little to no additional lines of code. For example, the RELAP-7 core channel component is based upon a one-dimensional flow channel and a three-zone two-dimensional heat structure designed to represent fuel, gap, and cladding conjugate heat transfer with the coolant. However, the RELAP-7 application does not carry the fuels performance physics to analyze irradiated fuel, especially for accident scenarios. Here, we demonstrate the tightly coupled capability of the BISON nuclear fuels performance application with RELAP-7 for the station black out (SBO) accident scenario (Fukushima type event) and

  8. Modification of MELCOR for severe accident analysis of candidate accident tolerant cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J., E-mail: brad.merrill@inl.gov; Bragg-Sitton, Shannon M., E-mail: shannon.bragg-sitton@inl.gov; Humrickhouse, Paul W., E-mail: paul.humrickhouse@inl.gov

    2017-04-15

    Highlights: • Accident tolerant fuels (ATF) systems are currently under development for LWRs. • Many performance analysis tools are specifically developed for UO{sub 2}–Zr alloy fuel. • Modifications were made to the MELCOR code for candidate ATF cladding. • Preliminary analysis results for SiC and FeCrAl cladding concepts are presented. - Abstract: A number of materials are currently under development as candidate accident tolerant fuel and cladding for application in the current fleet of commercial light water reactors (LWRs). The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident tolerant fuel (ATF) systems for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs, or in reactor concepts with design certifications (GEN-III+), to achieve their goal enhanced ATF must endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system, while maintaining or improving performance during normal operation. Many available nuclear fuel performance analysis tools are specifically developed for the current UO{sub 2}–Zirconium alloy fuel system. The MELCOR severe-accident analysis code, under development at the Sandia National Laboratory in New Mexico (SNL-NM) for the US Nuclear Regulatory Commission (NRC), is one of these tools. This paper describes modifications

  9. Sensitivity study for accident tolerant fuels: Property comparisons and behavior simulations in a simplified PWR to enable ATF development and design

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Kristina Yancey, E-mail: kristina.yancey@gmail.com; Sudderth, Laura; Brito, Ryan A.; Evans, Jordan A.; Hart, Clifford S.; Hu, Anbang; Jati, Andi; Stern, Karyn; McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu

    2016-12-01

    Highlights: • This study compared four accident tolerant fuels against uranium dioxide. • Material property correlations were developed to evaluate fuel performance. • The fuels’ neutronic and thermal hydraulic behaviors were studied in the AP1000. • No fuel type performed better in all areas, but each has strengths and weaknesses. • More research is needed to build a complete model of the fuel performances. - Abstract: Since the events at the Fukushima-Daiichi nuclear power plant, there has been increased interest in developing fuels to better withstand accidents for current light water reactors. Four accident tolerant fuel candidates are uranium oxide with beryllium oxide additives, uranium oxide with silicon carbide matrix additives, uranium nitride, and uranium nitride with uranium silicide composite. The first two candidates represent near-term high performance uranium oxide with high thermal conductivity and neutron transparency, and the second two represent mid-term high-density fuels with highly beneficial thermal properties. This study seeks to understand the benefits and drawbacks of each option in place of uranium dioxide. To assess the material properties for each of the fuel types, an extensive literature review was performed for material property data. Correlations were then made to evaluate the properties during reactor operation. Neutronics and thermal hydraulics studies were also completed to determine the impact of the use of each candidate in an AP1000 reactor. In most cases, the candidate fuels performed more desirably than uranium dioxide, but no fuel type performed better in all aspects. Much more research needs to be performed to build a complete model of the fuel performances, primarily experimental data for uranium silicide. Each of the fuels studied has its own benefits and drawbacks, and the comparisons discussed in this report can be used to aid in determining the most appropriate fuel depending on the desired specifications.

  10. Chernobyl and Fukushima nuclear accidents: what has changed in the use of atmospheric dispersion modeling?

    Science.gov (United States)

    Benamrane, Y; Wybo, J-L; Armand, P

    2013-12-01

    The threat of a major accidental or deliberate event that would lead to hazardous materials emission in the atmosphere is a great cause of concern to societies. This is due to the potential large scale of casualties and damages that could result from the release of explosive, flammable or toxic gases from industrial plants or transport accidents, radioactive material from nuclear power plants (NPPs), and chemical, biological, radiological or nuclear (CBRN) terrorist attacks. In order to respond efficiently to such events, emergency services and authorities resort to appropriate planning and organizational patterns. This paper focuses on the use of atmospheric dispersion modeling (ADM) as a support tool for emergency planning and response, to assess the propagation of the hazardous cloud and thereby, take adequate counter measures. This paper intends to illustrate the noticeable evolution in the operational use of ADM tools over 25 y and especially in emergency situations. This study is based on data available in scientific publications and exemplified using the two most severe nuclear accidents: Chernobyl (1986) and Fukushima (2011). It appears that during the Chernobyl accident, ADM were used few days after the beginning of the accident mainly in a diagnosis approach trying to reconstruct what happened, whereas 25 y later, ADM was also used during the first days and weeks of the Fukushima accident to anticipate the potentially threatened areas. We argue that the recent developments in ADM tools play an increasing role in emergencies and crises management, by supporting stakeholders in anticipating, monitoring and assessing post-event damages. However, despite technological evolutions, its prognostic and diagnostic use in emergency situations still arise many issues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fission product release profiles from spherical HTR fuel elements at accident temperatures

    International Nuclear Information System (INIS)

    Schenk, W.; Pitzer, D.; Nabielek, H.

    1986-10-01

    A total of 22 fuel elements with modern TRISO particles has been tested in the temperature range 1500-2500 0 C. Additionally, release profiles of iodine and other isotopes have been obtained with seven UO 2 samples at 1400-1800 0 C. For heating times up to 100 hours at the maximum temperature, the following results are pertinent to HTR accident conditions: Ag 110 m is the only fission products to be released at 1200-1600 0 C by diffusion through intact SiC, but it is of low significance in accident assessments; cesium, iodine, strontium, and noble gas releases up to 1600 0 C are solely due to various forms of contamination; at 1700-1800 0 C, corrosion induced SiC defects cause the release of Cs, Sr, I/Xe/Kr; above 2000 0 C, thermal decomposition of the silicon carbide layer sets in while pyrocarbons still remain intact. Around 1600 0 C, the accident specific contribution of cesium, strontium, iodine, and noble gases is negligible. (orig./HP) [de

  12. Comparison of thermal compatibility between atomized and comminuted U3Si dispersion fuels

    International Nuclear Information System (INIS)

    Ryu, Woo-Seog; Park, Jong-Man; Kim, Chang-Kyu; Kuk, II-Hyun

    1997-01-01

    Thermal compatibility of atomized U 3 Si dispersion fuels were evaluated up to 2600 hours in the temperature range from 250 to 500 degrees C, and compared with that of comminuted U 3 Si. Atomized U 3 Si showed better performance in terms of volume expansion of fuel meats. The reaction zone of U 3 Si and Al occurred along the grain boundaries and deformation bands in U 3 Si particles. Pores around fuel particles appeared at high temperature or after long-term annealing tests to remain diffusion paths over the trench of the pores. The constraint effects of cladding on fuel rod suppressed the fuel meat, and reduced the volume expansion

  13. Study on severe accident fuel dispersion behavior in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.; Xiang, J.Y.

    1995-01-01

    Core flow blockage events are a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel could result in core heatup and melting under full coolant flow condition. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Heat transfer between melt particle and coolant, which affects particle breakup, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to relative motion of particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. Results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also core debris tends to move together upon melting and entrainment

  14. Results of recent reactor-material tests on dispersal of oxide fuel from a disrupted core

    International Nuclear Information System (INIS)

    Spencer, B.W.; Wilson, R.J.; Vetter, D.L.; Erickson, E.G.; Dewey, G.

    1985-01-01

    The results of experimental investigations and related analyses are reported addressing the dispersal of molten oxide fuel from a disrupted core via various available pathways for the CRBR system. These investigations included the GAPFLOW tests in which pressure-driven and gravity drainage tests were performed using dispersal pathways mocking up the intersubassembly gaps, the CAMEL C6 and C7 tests in which molten fuel entered sodium-filled control assembly ducts under prototypic thermal-hydraulic conditions, and the Lower Internals Drainage (LID) tests in which molten fuel drained downward through simulated below-core structure (orifice plate stacks) as the bottom of control assembly ducts. The results of SHOTGUN tests addressing basic freezing of molten UO 2 and UO 2 /metal mixtures flowing through circular tubes are also reported. Test results have invariably shown the existance of stable UO 2 crusts on the inside surfaces of the flow paths. Appreciable removal of fuel was indicated prior to freezing-induced immobilization. Application of heat transfer models based upon the presence of stable, insulating fuel crusts tends to overpredict the removal process

  15. Criticality accident in uranium fuel processing plant. Questionnaires from Research Committee of Nuclear Safety

    International Nuclear Information System (INIS)

    Kataoka, Isao; Sekimoto, Hiroshi

    2000-01-01

    The Research Committee of Nuclear Safety carried out a research on criticality accident at the JCO plant according to statement of president of the Japan Atomic Energy Society on October 8, 1999, of which results are planned to be summarized by the constitutions shown as follows, for a report on the 'Questionnaires of criticality accident in the Uranium Fuel Processing Plant of the JCO, Inc.': general criticality safety, fuel cycle and the JCO, Inc.; elucidation on progress and fact of accident; cause analysis and problem picking-up; proposals on improvement; and duty of the Society. Among them, on last two items, because of a conclusion to be required for members of the Society at discussions of the Committee, some questionnaires were send to more than 1800 of them on April 5, 2000 with name of chairman of the Committee. As results of the questionnaires contained proposals and opinions on a great numbers of fields, some key-words like words were found on a shape of repeating in most questionnaires. As they were thought to be very important nuclei in these two items, they were further largely classified to use for summarizing proposals and opinions on the questionnaires. This questionnaire had a big characteristic on the duty of the Society in comparison with those in the other organizations. (G.K.)

  16. Statistical analysis of fuel failures in large break loss-of-coolant accident (LBLOCA) in EPR type nuclear power plant

    International Nuclear Information System (INIS)

    Arkoma, Asko; Hänninen, Markku; Rantamäki, Karin; Kurki, Joona; Hämäläinen, Anitta

    2015-01-01

    Highlights: • The number of failing fuel rods in a LB-LOCA in an EPR is evaluated. • 59 scenarios are simulated with the system code APROS. • 1000 rods per scenario are simulated with the fuel performance code FRAPTRAN-GENFLO. • All the rods in the reactor are simulated in the worst scenario. • Results suggest that the regulations set by the Finnish safety authority are met. - Abstract: In this paper, the number of failing fuel rods in a large break loss-of-coolant accident (LB-LOCA) in EPR-type nuclear power plant is evaluated using statistical methods. For this purpose, a statistical fuel failure analysis procedure has been developed. The developed method utilizes the results of nonparametric statistics, the Wilks’ formula in particular, and is based on the selection and variation of parameters that are important in accident conditions. The accident scenario is simulated with the coupled fuel performance – thermal hydraulics code FRAPTRAN-GENFLO using various parameter values and thermal hydraulic and power history boundary conditions between the simulations. The number of global scenarios is 59 (given by the Wilks’ formula), and 1000 rods are simulated in each scenario. The boundary conditions are obtained from a new statistical version of the system code APROS. As a result, in the worst global scenario, 1.2% of the simulated rods failed, and it can be concluded that the Finnish safety regulations are hereby met (max. 10% of the rods allowed to fail)

  17. Statistical analysis of fuel failures in large break loss-of-coolant accident (LBLOCA) in EPR type nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Arkoma, Asko, E-mail: asko.arkoma@vtt.fi; Hänninen, Markku; Rantamäki, Karin; Kurki, Joona; Hämäläinen, Anitta

    2015-04-15

    Highlights: • The number of failing fuel rods in a LB-LOCA in an EPR is evaluated. • 59 scenarios are simulated with the system code APROS. • 1000 rods per scenario are simulated with the fuel performance code FRAPTRAN-GENFLO. • All the rods in the reactor are simulated in the worst scenario. • Results suggest that the regulations set by the Finnish safety authority are met. - Abstract: In this paper, the number of failing fuel rods in a large break loss-of-coolant accident (LB-LOCA) in EPR-type nuclear power plant is evaluated using statistical methods. For this purpose, a statistical fuel failure analysis procedure has been developed. The developed method utilizes the results of nonparametric statistics, the Wilks’ formula in particular, and is based on the selection and variation of parameters that are important in accident conditions. The accident scenario is simulated with the coupled fuel performance – thermal hydraulics code FRAPTRAN-GENFLO using various parameter values and thermal hydraulic and power history boundary conditions between the simulations. The number of global scenarios is 59 (given by the Wilks’ formula), and 1000 rods are simulated in each scenario. The boundary conditions are obtained from a new statistical version of the system code APROS. As a result, in the worst global scenario, 1.2% of the simulated rods failed, and it can be concluded that the Finnish safety regulations are hereby met (max. 10% of the rods allowed to fail)

  18. Trial evaluation on criticality safety of the fuel assemblies at falling accident as spent fuel transport and storage cask

    International Nuclear Information System (INIS)

    Tadano, Tomoaki

    2016-01-01

    The authors conducted critical safety assessment on the supposed event at the time of a fall accident of cask, and examined the influence on criticality safety. If the spacer of fuel assembly is sound, it is assumed that the pitch of fuel rod interval changes, and if the spacer is broken, it is assumed that the fuel rod is unevenly distributed in the basket. For the critical calculation of fuel assembly basket system, they performed it using a calculation code. For both of the single cell and assembly, calculation results showed an increase in the effective multiplication factor of reactivity of 2-3%. When this reactivity is applied to the criticality analysis result of PWR fuel assembly, the value approaches to the limit 0.95 of the neutron effective multiplication factor keff. However, the keff when new fuel is loaded is sufficiently lower than 0.93. Therefore, it is unlikely that the criticality analysis result approaches to 0.95 at all burnups, and the possibility to become criticality is very low in actual spent fuel transport. When considering the reactivity of this research, it is possible that the design condition for the assumption of novel fuel loading becomes severer. Furthermore, criticality analysis under non-uniform pitch will become necessary, and criticality safety analysis for BWR fuel with heterogeneous enrichment degree and burnup degree will become also necessary. (A.O.)

  19. Application of laser ablation inductivly coupled plasma mass spectrometry for characterization of U-7Mo/Al-55i dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Mook; Park, Jai Il; Youn, Young Sang; Ha, Yeong Keong; Kim, Jong Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-04-15

    This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U–7Mo/Al–5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured {sup 98}Mo/{sup 238}U ratios in fuel particles from spot analysis, and 3.4% RSD for {sup 98}Mo/{sup 238}U ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U–7Mo fuel particles from the Al–5Si matrix. Each mass spectrum peak indicates the presence of U–7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for {sup 98}Mo by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U–Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

  20. Release of fission products during controlled loss-of-coolant accidents and hypothetical core meltdown accidents

    International Nuclear Information System (INIS)

    Albrecht, H.; Malinauskas, A.P.

    1978-01-01

    A few years ago the Projekt Nukleare Sicherheit joined the United States Nuclear Regulatory Commission in the development of a research program which was designed to investigate fission product release from light water reactor fuel under conditions ranging from spent fuel shipping cask accidents to core meltdown accidents. Three laboratories have been involved in this cooperative effort. At Argonne National Laboratory (ANL), the research effort has focused on noble gas fission product release, whereas at Oak Ridge National Laboratory (ORNL) and at Kernforschungszentrum Karlsruhe (KfK), the studies have emphasized the release of species other than the noble gases. In addition, the ORNL program has been directed toward the development of fission product source terms applicable to analyses of spent fuel shipping cask accidents and controlled loss-of-coolant accidents, and the KfK program has been aimed at providing similar source terms which are characteristic of core meltdown accidents. The ORNL results are presented for fission product release from defected fuel rods into a steam atmosphere over the temperature range 500 to 1200 0 C, and the KfK results for release during core meltdown sequences

  1. DEFORM-4: fuel pin characterization and transient response in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Miles, K.J.; Hill, D.J.

    1986-01-01

    The DEFORM-4 module is the segment of the SAS4A Accident Analysis Code System that calculates the fuel pin characterization in response to a steady state irradiation history, thereby providing the initial conditions for the transient calculation. The various phenomena considered include fuel porosity migration, fission gas bubble induced swelling, fuel cracking and healing, fission gas release, cladding swelling, and the thermal-mechanical state of the fuel and cladding. In the transient state, the module continues the thermal-mechanical response calculation, including fuel melting and central cavity pressurization, until cladding failure is predicted and one of the failed fuel modules is initiated. Comparisons with experimental data have demonstrated the validity of the modeling approach

  2. Postirradiation examination of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Strain, R.V.

    1998-01-01

    Two irradiation test vehicles, designated RERTR-2, were inserted into the Advanced Test reactor in Idaho in August 1997. These tests were designed to obtain irradiation performance information on a variety of potential new, high-density uranium alloy dispersion fuels, including U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru and U-10Mo-0.05Sn: the intermetallic compounds U 2 Mo and U-10Mo-0.-5Sn; the intermetallic compounds U 2 Mo and U 3 Si 2 were also included in the fuel test matrix. These fuels are included in the experiments as microplates (76 mm x 22 mm x 1.3mm outer dimensions) with a nominal fuel volume loading of 25% and irradiated at relatively low temperature (∼100 deg C). RERTR-1 and RERTR-2 were discharged from the reactor in November 1997 and July 1998, respectively at calculated peak fuel burnups of 45 and 71 at %-U 235 Both experiments are currently under examination at the Alpha Gamma Hot Cell Facility at Argonne National Laboratory in Chicago. This paper presents the postirradiation examination results available to date from these experiments. (author)

  3. Fabrication of CNT Dispersion Fluid by Wet-Jet Milling Method for Coating on Bipolar Plate of Fuel Cell

    Directory of Open Access Journals (Sweden)

    Anas Almowarai

    2015-01-01

    Full Text Available Water based carbon nanotube (CNT dispersion was produced by wet-jet milling method. Commercial CNT was originally agglomerated at the particle size of less than 1 mm. The wet-jet milling process exfoliated CNTs from the agglomerates and dispersed them into water. Sedimentation of the CNTs in the dispersion fluid was not observed for more than a month. The produced CNT dispersion was characterized by the SEM and the viscometer. CNT/PTFE composite film was formed with the CNT dispersion in this study. The electrical conductivity of the composite film increased to 10 times when the CNT dispersion, which was produced by the wet-jet milling method, was used as a constituent of the film. Moreover, the composite film was applied to bipolar plate of fuel cell and increased the output power of the fuel cell to 1.3 times.

  4. The coupling algorithm between fuel pin and coolant channel in the European Accident Code EAC-2

    International Nuclear Information System (INIS)

    Goethem, G. van; Lassmann, K.

    1989-01-01

    In the field of fast breeder reactors the Commission of the European Communities (CEC) is conducting coordination and harmonisation activities as well as its own research at the CEC's Joint Research Centre (JRC). The development of the modular European Accident Code (EAC) is a typical example of concerted action between EC Member States performed under the leadership of the JRC. This computer code analyzes the initiation phase of low-probability whole-core accidents in LMFBRs with the aim of predicting the rapidity of sodium voiding, the mode of pin failure, the subsequent fuel redistribution and the associated energy release. This paper gives a short overview on the development of the EAC-2 code with emphasis on the coupling mechanism between the fuel behaviour module TRANSURANUS and the thermohydraulics modules which can be either CFEM or BLOW3A. These modules are also briefly described. In conclusion some numerical results of EAC-2 are given: they are recalculations of an unprotected LOF accident for the fictitious EUROPE fast breeder reactor which was earlier analysed in the frame of a comparative exercise performed in the early 80s and organised by the CEC. (orig.)

  5. Kinetic parameters of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The effects of using different low enriched uranium fuels, having same uranium density, on the kinetic parameters of a material test research reactor were studied. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Simulations were carried out to calculate prompt neutron generation time, effective delayed-neutron fraction, core excess reactivity and neutron flux spectrum. Nuclear reactor analysis codes including WIMS-D4 and CITATION were used to carry out these calculations. It was observed that both the silicide fuels had the same prompt neutron generation time 0.02% more than that of the original aluminide fuel, while the oxide fuel had a prompt neutron generation time 0.05% less than that of the original aluminide fuel. The effective delayed-neutron fraction decreased for all the fuels; the decrease was maximum at 0.06% for U 3 Si 2 -Al followed by 0.03% for U 3 Si-Al, and 0.01% for U 3 O 8 -Al fuel. The U 3 O 8 -Al fueled reactor gave the maximum ρ excess at BOL which was 21.67% more than the original fuel followed by U 3 Si-Al which was 2.55% more, while that of U 3 Si 2 -Al was 2.50% more than the original UAl x -Al fuel. The neutron flux of all the fuels was more thermalized, than in the original fuel, in the active fuel region of the core. The thermalization was maximum for U 3 O 8 -Al followed by U 3 Si-Al and then U 3 Si 2 -Al fuel.

  6. Numerical Analysis of Molten Corium Dispersion during Hypothetical High-Pressure Accidents in APR1400 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Ha, Kwang Soon; Kim, Sang Baik; Kim, Hee Dong; Jeong, Jae Sik

    2010-01-01

    During a hypothetical high-pressure accident in a nuclear power plant (NPP), molten corium can be ejected through a breach of a reactor pressure vessel (RPV) and dispersed by the following jet of a high pressure steam in the RPV. The dispersed corium is fragmented into smaller droplets in a reactor cavity of the NPP by the steam jet with very high velocity and is released into the upper compartment of the NPP by an overpressure in the cavity. The heat-carrying fragments of the corium transfer the thermal energy to the ambient air in the containment and react chemically with steam and generate hydrogen which may be burnt in the containment. The thermal loads from the ejected molten corium on the containment which is called direct containment heating (DCH) can threaten the integrity of the containment. New generation NPPs such as APR1400 and EPR have been designed in consideration of reducing the possibility of the containment failure from the DCH. In order for that, APR1400 has a convolute-type corium chamber connected to the reactor cavity. In the case of EPR, severe-accident dedicated depressurization valves are installed to preclude a high pressure melt ejection (HPME). DCH in a NPP containment is related to many physical phenomena such as multi-phase hydrodynamics, thermodynamics and chemical reaction. In the evaluation of the DCH load, the melt dispersion rates depending on the RPV pressure are the most important parameter. Mostly, DCH was evaluated by using lumped-analysis codes with some correlations obtained from experiments for the dispersion rates. The corium dispersion rates for many types of the NPP containments had been obtained by experiments in 90s. And some correlations from the experimental data were developed. As mentioned above, APR1400 has a corium chamber to reduce the corium dispersion rate. But there is no experimental data for the dispersion rate specific to the APR1400 cavity geometry. So its performance for capturing of the dispersed corium

  7. ORNL experiments to characterize fuel release from the reactor primary containment in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wright, A.L.; Kress, T.S.; Smith, A.M.

    1980-01-01

    This paper presents results from aerosol source term experiments performed in the ORNL Aerosol Release and Transport (ART) Program sponsored by the US NRC. The tests described were performed to provide information on fuel release from an LMFBR primary containment as a result of a hypothetical core-disruptive accident (HCDA). The release path investigated in these tests assumes that a fuel/sodium bubble is formed after disassembly that transports fuel and fission products through the sodium coolant and cover gas to be relased into the reactor secondary containment. Due to the excellent heat transfer characteristics of the sodium, there is potential for large attenuation of the maximum release

  8. Database development for understanding the wet deposition and dispersion processes after the Fukushima nuclear plant accident. Radar data

    International Nuclear Information System (INIS)

    Yatagai, Akiyo; Takara, Kaoru; Ishihara, Masahito; Ishikawa, Hirohiko; Watanabe, Akira; Murata, Ken T.

    2015-01-01

    This manuscript describes datasets of meteorological information being developed for understanding the dispersion and deposition process of radionuclides associated with the Fukushima accident in March 2011. Among several products, this paper reports mainly our original radar data images including the X-band radar data from Fukushima University as well as the three-dimensional reflectivity data from the Japan Meteorological Agency C-band radar network. (author)

  9. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, appendices A and B

    International Nuclear Information System (INIS)

    Harper, F.T.; Young, M.L.; Miller, L.A.; Hora, S.C.; Lui, C.H.; Goossens, L.H.J.; Cooke, R.M.; Paesler-Sauer, J.; Helton, J.C.

    1995-01-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project

  10. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, appendices A and B

    Energy Technology Data Exchange (ETDEWEB)

    Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States); Lui, C.H. [Nuclear Regulatory Commission, Washington, DC (United States); Goossens, L.H.J.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Paesler-Sauer, J. [Research Center, Karlsruhe (Germany); Helton, J.C. [and others

    1995-01-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project.

  11. Large scale experiments simulating hydrogen distribution in a spent fuel pool building during a hypothetical fuel uncovery accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Mignot, Guillaume; Paranjape, Sidharth; Paladino, Domenico; Jaeckel, Bernd; Rydl, Adolf [Paul Scherrer Institute, Villigen (Switzerland)

    2016-08-15

    Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012–2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.

  12. Mechanical energy release and fuel fragmentation in high energy deposition into fuel under a reactivity initiated accident condition

    International Nuclear Information System (INIS)

    Tsuruta, Takaharu; Saito, Shinzo; Ochiai, Masaaki

    1985-01-01

    The fuel fragmentation is one of important subjects to be studied, since it is one of basic processes of molten fuel-coolant interaction (MFCI) and it has not yet been made clear enough. Accordingly, UO 2 fuel fragmentation was studied in the NSRR experiments simulating a reactivity initiated accident (RIA). As results of the experiments, the distribution of the size of fuel fragments was obtained and the mechanism of fuel fragmentation was discussed as described below. It was revealed that the distribution was well displayed in the form of logarithmic Rosin-Rammler's distribution law. It was shown that the conversion ratio from thermal energy to mechanical in the experiment was in inverse propotion to the volume-surface mean diameter defined as a ratio of the total volume of fragments to the total surface. Consequently, it was confirmed that the mean diameter was proper as an index for the degree of the fuel fragmentation. It was also pointed out that the Weber-type hydraulic instability model for fragmentation was consistent with the experimental results. The mechanism of the fuel fragmentation is understood as follows. Cladding tube is ruptured due to the increase in rod pressure when fuel is molten, and then molten fuel spouts through the openings in the form of jet. As a result of molten fuel spouting, fuel is fragmented by the Weber-type of hydraulic instability. The model well explains the effects of experimental parameters as heat deposition, subcooling of cooling water and capsule diameter, on the fuel fragmentation. According to the model, fuel fragments have to be spherical. There were many spherical particles which had hollow and burst crack. This may be due to internal burst during solidification process. The items which should be studied further are also described in the end of this report. (author)

  13. International Experts’ Meeting on Reactor and Spent Fuel Safety in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant. Presentations

    International Nuclear Information System (INIS)

    2012-01-01

    The primary objectives of this International Experts’ Meeting (IEM) were: to analyse relevant technical aspects of reactor and spent nuclear fuel management safety and performance related to severe accidents; to review what is known to date about the accident at the Fukushima Daiichi nuclear power plant in order to understand more fully its root causes; and to share the lessons learned from the accident. The meeting identified the necessary priorities for further actions in these areas in different power reactor types, focusing in particular on boiling water reactors (BWRs) and pressurized water reactors (PWRs). The meeting provided a forum for discussions and exchange of information among technical experts from Member States on reactor and spent nuclear fuel safety and performance under severe conditions. The meeting was of particular interest to technical experts from utilities, research and design organizations, regulatory bodies, manufacturing and service companies and other stakeholders. In particular, the objectives of the meeting was to: • Identify and analyse reactor and spent nuclear fuel safety and performance issues; • Consider the design, engineering and analysis of current and new systems for accident prevention and mitigation; • Exchange information on national assessments of reactor and spent nuclear fuel safety and performance; and • Identify potential priority areas for research and development, technology development and management

  14. Recovery of UMo alloy from UMo/Al dispersion fuel plates by dissolution

    International Nuclear Information System (INIS)

    Ren Meng; Li Jia; Liu Jinhong; Zhu Changgui

    2011-01-01

    Methods for dissolving UMo/Al dispersion fuel plates in the compounded mixed basic aqueous (NaOH and NaNO 3 ) are studied on laboratory scale. After removing the clad and the matrix of the substandard UMo/Al dispersion fuel elements, the U loss ratios are calculated and the granularity distributions of the recovered UMo alloy powder are analyzed by the metallurgical microscope. Besides, the phase structure and the composition of the recovered UMo alloy powder are analyzed by the XRD. The results indicate that as the concentration of NaOH increases, uranium loss ratio increases; but as the concentration of NaNO 3 increases, U loss ration increases firstly and then decreases subsequently; generally, the U recovery ratios are more than 99.3%. The granularity of recovered UMo powders are very small and most parts of γ-U have been oxidated to UO 2 . Therefore, further study is required to determined whether the recovered UMo alloy could be returned to the product line. (authors)

  15. Post-accident core coolability of light water reactors

    International Nuclear Information System (INIS)

    Michio, I.; Teruo, I.; Tomio, Y.; Tsutao, H.

    1983-01-01

    A study on post-accident core coolability of LWR is discussed based on the practical fuel failure behavior experienced in NSRR, PBF, PNS and others. The fuel failure behavior at LOCA, RIA and PCM conditions are reviewed, and seven types of fuel failure modes are extracted as the basic failure mechanism at accident conditions. These are: cladding melt or brittle failure, molten UO 2 failure, high temperature cladding burst, low temperature cladding burst, failure due to swelling of molten UO 2 , failure due to cracks of embrittled cladding for irradiated fuel rods, and TMI-2 core failure. The post-accident core coolability at each failure mode is discussed. The fuel failures caused actual flow blockage problems. A characteristic which is common among these types is that the fuel rods are in the conditions violating the present safety criteria for accidents, and UO 2 pellets are in melting or near melting hot conditions when the fuel rods failed

  16. Radiological Consequence Analyses Following a Hypothetical Severe Accident in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juyub; Kim, Juyoul [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    In order to reflect the lessons learned from the Fukushima Daiichi nuclear power plant accident, a simulator which is named NANAS (Northeast Asia Nuclear Accident Simulator) for overseas nuclear accident has been developed. It is composed of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. For the source-term estimation module, the representative reactor types were selected as CPR1000, BWR5 and BWR6 for China, Japan and Taiwan, respectively. Considering the design characteristics of each reactor type, the source-term estimation module simulates the transient of design basis accident and severe accident. The atmospheric dispersion prediction module analyzes the transport and dispersion of radioactive materials and prints out the air and ground concentration. Using the concentration result, the dose assessment module calculates effective dose and thyroid dose in the Korean Peninsula region. In this study, a hypothetical severe accident in Japan was simulated to demonstrate the function of NANAS. As a result, the radiological consequence to Korea was estimated from the accident. PC-based nuclear accident simulator, NANAS, has been developed. NANAS contains three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. The source-term estimation module simulates a nuclear accident for the representative reactor types in China, Japan and Taiwan. Since the maximum calculation speed is 16 times than real time, it is possible to estimate the source-term release swiftly in case of the emergency. The atmospheric dispersion prediction module analyzes the transport and dispersion of radioactive materials in wide range including the Northeast Asia. Final results of the dose assessment module are a map projection and time chart of effective dose and thyroid dose. A hypothetical accident in Japan was simulated by NANAS. The radioactive materials were released during the first 24 hours and the source

  17. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs

  18. CEA studies on advanced nuclear fuel claddings for enhanced accident tolerant LWRs fuel (LOCA and beyond LOCA conditions)

    International Nuclear Information System (INIS)

    Brachet, J.C.; Lorrette, C.; Michaux, A.; Sauder, C.; Idarraga-Trujillo, I.; Le Saux, M.; Le Flem, M.; Schuster, F.; Billard, A.; Monsifrot, E.; Torres, E.; Rebillat, F.; Bischoff, J.; Ambard, A.

    2015-01-01

    This paper gives an overview of CEA studies on advanced nuclear fuel claddings for enhanced Accident Tolerant LWR Fuel in collaboration with industrial partners AREVA and EDF. Two potential solutions were investigated: chromium coated zirconium based claddings and SiC/SiC composite claddings with a metallic liner. Concerning the first solution, the optimization of chromium coatings on Zircaloy-4 substrate has been performed. Thus, it has been demonstrated that, due in particular to their slower oxidation rate, a significant additional 'grace period( can be obtained on high temperature oxidized coated claddings in comparison to the conventional uncoated ones, regarding their residual PQ (Post-Quench) ductility and their ability to survive to the final water quenching in LOCA and, to some extent, beyond LOCA conditions. Concerning the second solution, the innovative 'sandwich' SiC/SiC cladding concept is introduced. Initially designed for the next generation of nuclear reactors, it can be adapted to obtain high safety performance for LWRs in LOCA conditions. The key findings of this work highlight the low sensitivity of SiC/SiC composites under the explored steam oxidation conditions. No signification degradation of the mechanical properties of CVI-HNI SiC/SiC specimen is particularly acknowledged for relatively long duration (beyond 100 h at 1200 Celsius degrees). Despite these very positive preliminary results, significant studies and developments are still necessary to close the technology gap. Qualification for nuclear application requires substantial irradiation testing, additional characterization and the definition of design rules applicable to such a structure. The use of a SiC-based fuel cladding shows promise for the highest temperature accident conditions but remains a long term perspective

  19. Analyses of Interaction Phases of U Mo Dispersion Fuel by Synchrotron X ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Jeong; Nam, Ji Min; Ryu, Ho Jin; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Herve, Palancher; Charollais, Francois [Saint Paul Lez Durance Cedex, Rhone (France); Bonnin, Anne; Honkimaeki, Veijo [Grenoble Cedex, Grenoble (France); Patrick Lemoined [Gif sur Yvette, Paris (France)

    2012-10-15

    Gamma phase U Mo alloys are one of the promising candidates to be used as advanced high uranium density fuel for high power research reactors due to their excellent irradiation performance. However, formation of interaction layers between the U Mo particles and Al matrix degrades the irradiation performance of U Mo dispersion fuel. One of the remedies to the interaction problem is a Si addition to the Al matrix. Recent irradiation tests have shown that the use of Al (2{approx}5wt%)Si matrices retarded the growth of interaction layers effectively during irradiation. Recently, KAERI has proposed silicide or nitride coated U Mo fuel for the minimization of the interaction layer growth. The silicide or nitride coatings are expected to act as interdiffusion barriers and their out of pile tests showed the improved diffusion barrier performances of the silicide and nitride layers. In order to characterize constituent phases in the coated layers on U Mo particles and the interaction layers of coated U Mo particle dispersed fuel, synchrotron X ray diffraction experiments have been performed at the ESRF (European Synchrotron Radiation Facility), France as a KAERI CEA cooperation program.

  20. Study on severe accident fuel dispersion behavior in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S. [Oak Ridge National Lab., TN (United States)] [and others

    1995-09-01

    Core flow blockage events have been determined to represent a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel in a few adjacent blocked coolant channels out of several hundred channels, could also result in core heatup and melting under full coolant flow condition in other coolant channels. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Hat transfer between melt particle and coolant, which affects the particle breakup characteristics, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to the relative motion of the particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. The results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also they are entrained and move together in a cloud.

  1. Scratch Behaviors of Cr-Coated Zr-Based Fuel Claddings for Accident-Tolerant Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ho; Kim, Il-Hyun; Kim, Hyun-Gil; Kim, Hyung-Kyu; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As the progression of Fukushima accident is worsened by the runaway reaction at a high temperature above 1200 .deg. C, it is essential to ensure the stabilities of coating layers on conventional Zr-based alloys during normal operations as well as severe accident conditions. This is because the failures of coating layer result in galvanic corrosion phenomenon by potential difference between coating layer and Zr alloy. Also, it is possible to damage the coating layer during handling and manufacturing process by contacting structural components of a fuel assembly. So, adhesion strength is one of the key factors determining the reliability of the coating layer on conventional Zr-based alloy. In this study, two kinds of Cr-coated Zr-based claddings were prepared using arc ion plating (AIP) and direct laser (DL) coating methods. The objective is to evaluate the scratch deformation behaviors of each coating layers on Zr alloys. Large area spallation below normal load of about 15 N appeared to be the predominant mode of failure in the AIP coating during scratch test. However, no tensile crack were found in entire stroke length. In DL coating, small plastic deformation and grooving behavior are more dominant scratching results. It was observed that the change of the slope of the COF curve did not coincide with the failure of coating layer.

  2. Comparison of the Transportation Risks Resulting from Accidents during the Transportation of the Spent Fuel

    International Nuclear Information System (INIS)

    Jeong Jong Tae; Cho, Dong Kuen; Choi, Heui Joo; Choi, Jong Won

    2007-01-01

    The safe, environmentally sound and publicly acceptable disposal of high level wastes and spent fuels is becoming a very important issue. The operational safety assessment of a repository including a transportation safety assessment is a fundamental part in order to achieve this goal. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for spent fuels. Also, we estimated and compared the transportation risks resulting from the accidents during the transportation of spent fuels for these four transportation scenarios

  3. A study on gap heat transfer of LWR fuel rods under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Fujishiro, Toshio

    1984-03-01

    Gap heat transfer between fuel pellet and cladding have a large influence on the LWR fuel behaviors under reactivity initiated accident (RIA) conditions. The objective of the present study is to investigate the effects of gap heat transfer on RIA fuel behaviors based on the results of the gap-gas parameter tests in NSRR and on their analysis with NSR-77 code. Through this study, transient variations of gap heat transfer, the effects of the gap heat transfer on fuel thermal behaviors and on fuel failure, effects of pellet-cladding sticking by eutectic formation, and the effects of cladding collapse under high external pressure have been clearified. The studies have also been performed on the applicability and its limit of modified Ross and Stoute equation which is extensively utilized to evaluate the gap heat transfer coefficient in the present fuel behavior codes. The method to evaluate the gap conductance to the conditions beyond the applicability limit of the Ross and Stoute equation has also been proposed. (author)

  4. Comparison of thermal compatibility between atomized and comminuted U{sub 3}Si dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo-Seog; Park, Jong-Man; Kim, Chang-Kyu; Kuk, II-Hyun [Korea Atomic Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    Thermal compatibility of atomized U{sub 3}Si dispersion fuels were evaluated up to 2600 hours in the temperature range from 250 to 500{degrees}C, and compared with that of comminuted U{sub 3}Si. Atomized U{sub 3}Si showed better performance in terms of volume expansion of fuel meats. The reaction zone of U{sub 3}Si and Al occurred along the grain boundaries and deformation bands in U{sub 3}Si particles. Pores around fuel particles appeared at high temperature or after long-term annealing tests to remain diffusion paths over the trench of the pores. The constraint effects of cladding on fuel rod suppressed the fuel meat, and reduced the volume expansion.

  5. Atmospheric transport of radioactive debris to Norway in case of a hypothetical accident related to the recovery of the Russian submarine K-27

    International Nuclear Information System (INIS)

    Bartnicki, Jerzy; Amundsen, Ingar; Brown, Justin; Hosseini, Ali; Hov, Øystein; Haakenstad, Hilde; Klein, Heiko; Lind, Ole Christian; Salbu, Brit; Szacinski Wendel, Cato C.; Ytre-Eide, Martin Album

    2016-01-01

    The Russian nuclear submarine K-27 suffered a loss of coolant accident in 1968 and with nuclear fuel in both reactors it was scuttled in 1981 in the outer part of Stepovogo Bay located on the eastern coast of Novaya Zemlya. The inventory of spent nuclear fuel on board the submarine is of concern because it represents a potential source of radioactive contamination of the Kara Sea and a criticality accident with potential for long-range atmospheric transport of radioactive particles cannot be ruled out. To address these concerns and to provide a better basis for evaluating possible radiological impacts of potential releases in case a salvage operation is initiated, we assessed the atmospheric transport of radionuclides and deposition in Norway from a hypothetical criticality accident on board the K-27. To achieve this, a long term (33 years) meteorological database has been prepared and used for selection of the worst case meteorological scenarios for each of three selected locations of the potential accident. Next, the dispersion model SNAP was run with the source term for the worst-case accident scenario and selected meteorological scenarios. The results showed predictions to be very sensitive to the estimation of the source term for the worst-case accident and especially to the sizes and densities of released radioactive particles. The results indicated that a large area of Norway could be affected, but that the deposition in Northern Norway would be considerably higher than in other areas of the country. The simulations showed that deposition from the worst-case scenario of a hypothetical K-27 accident would be at least two orders of magnitude lower than the deposition observed in Norway following the Chernobyl accident. - Highlights: • Long-term meteorological database has been developed for atmospheric dispersion. • Using this database, the worst case meteorological scenarios have been selected. • Mainly northern parts of Norwegian territory will be

  6. Development of the model for the stress calculation of fuel assembly under accident load

    International Nuclear Information System (INIS)

    Kim, Il Kon

    1993-01-01

    The finite element model for the stress calculation in guide thimbles of a fuel assembly (FA) under seismic and loss-of-coolant-accident (LOCA) load is developed. For the stress calculation of FA under accident load, at first the program MAIN is developed to select the worst bending mode shaped FA from core model. And then the model for the stress calculation of FA is developed by means of the finite element code. The calculated results of program MAIN are used as the kinematic constraints of the finite element model of a FA. Compared the calculated results of the stiffness of the finite element model of FA with the test results they have good agreements. (Author)

  7. DART-TM: A thermomechanical version of DART for LEU VHD dispersed and monolithic fuel analysis

    International Nuclear Information System (INIS)

    Saliba, Roberto; Taboada, Horacio; Moscarda, Ma.Virginia; Rest, Jeff

    2003-01-01

    A collaboration agreement between ANL/USDOE and CNEA Argentina, in the area of Low Enriched Uranium Advanced Fuels has been in place since October 16, 1997 under the 'Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy'. An annex concerning DART code optimization has been operative since February 8, 1999. Previously, as a part of this annex a visual thermal FASTDART version was developed that includes mechanistic models for the calculation of the fission-gas-bubble and fuel particle size distribution, reaction layer thickness, and meat thermal conductivity. FASTDART was presented at the last RERTR Meeting that included validation against RERTR 3 irradiation data. The thermal FASTDART version was assessed as an adequate tool for modeling the behavior of LEU U-Mo dispersed fuels under irradiation against PIE RERTR irradiation data. During this past year the development of a 3-D thermo-mechanical version of the code for modeling the irradiation behavior of LEU U-Mo monolithic and dispersion fuel was initiated. Some preliminary results of this work will be shown during RERTR-2003 meeting. (author)

  8. Progress in irradiation performance of experimental uranium - Molybdenum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.

    2002-01-01

    High-density dispersion fuel experiment, RERTR-4, was removed from the Advanced Test Reactor (ATR) after reaching a peak U-235 burnup of ∼80% and is presently undergoing postirradiation examination at the ANL alpha-gamma hot cells. This test consists of 32 mini fuel plates of which 27 were fabricated with nominally 6 and 8 g cm -3 atomized and machined uranium alloy powders containing 7 wt% and 10 wt% molybdenum. In addition, two miniplates containing solid U-10 wt% Mo foils and three containing 6 g cm -3 U 3 Si 2 are part of the test. The results of the postirradiation examination and analysis of RERTR-4 in conjunction with data from previous tests performed to lower burnup will be presented. (author)

  9. A source term estimation method for a nuclear accident using atmospheric dispersion models

    DEFF Research Database (Denmark)

    Kim, Minsik; Ohba, Ryohji; Oura, Masamichi

    2015-01-01

    The objective of this study is to develop an operational source term estimation (STE) method applicable for a nuclear accident like the incident that occurred at the Fukushima Dai-ichi nuclear power station in 2011. The new STE method presented here is based on data from atmospheric dispersion...... models and short-range observational data around the nuclear power plants.The accuracy of this method is validated with data from a wind tunnel study that involved a tracer gas release from a scaled model experiment at Tokai Daini nuclear power station in Japan. We then use the methodology developed...... and validated through the effort described in this manuscript to estimate the release rate of radioactive material from the Fukushima Dai-ichi nuclear power station....

  10. Scoping studies of vapor behavior during a severe accident in a metal-fueled reactor

    International Nuclear Information System (INIS)

    Spencer, B.W.; Marchaterre, J.F.

    1985-01-01

    Scoping calculations have been performed examining the consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel. The principal gas and vapor species released are shown to be Xe, Cs,and bond sodium contained within the fuel porosity. Fuel vapor pressure is insignificant, and there is no energetic fuel-coolant interaction for the conditions considered. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core (although reactor-material experiments are needed to confirm these high condensation rates). If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the implication is that the ability of vapor expansion to perform appreciable work on the system is largely eliminated. Furthermore, the ability of an expanding vapor bubble to transport fuel and fission product species to the cover gas region where they may be released to the containment is also largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool

  11. Behavior of U3Si2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions

    International Nuclear Information System (INIS)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso; Pizzocri, Davide; Pastore, Giovanni

    2016-01-01

    As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.

  12. Impact of reducing sodium void worth on the severe accident response of metallic-fueled sodium-cooled reactors

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Turski, R.B.; Pizzica, P.A.

    1994-01-01

    Analyses have performed on the severe accident response of four 90 MWth reactor cores, all designed using the metallic fuel of the Integrated Fast Reactor (IFR) concept. The four core designs have different sodium void worth, in the range of -3$ to 5$. The purpose of the investigation is to determine the improvement in safety, as measured by the severe accident consequences, that can be achieved from a reduction in the sodium void worth for reactor cores designed using the IFR concept

  13. Retrieval system for emplaced spent unreprocessed fuel (SURF) in salt bed depository: accident event analysis and mechanical failure probabilities. Final report

    International Nuclear Information System (INIS)

    Bhaskaran, G.; McCleery, J.E.

    1979-10-01

    This report provides support in developing an accident prediction event tree diagram, with an analysis of the baseline design concept for the retrieval of emplaced spent unreprocessed fuel (SURF) contained in a degraded Canister. The report contains an evaluation check list, accident logic diagrams, accident event tables, fault trees/event trees and discussions of failure probabilities for the following subsystems as potential contributors to a failure: (a) Canister extraction, including the core and ram units; (b) Canister transfer at the hoist area; and (c) Canister hoisting. This report is the second volume of a series. It continues and expands upon the report Retrieval System for Emplaced Spent Unreprocessed Fuel (SURF) in Salt Bed Depository: Baseline Concept Criteria Specifications and Mechanical Failure Probabilities. This report draws upon the baseline conceptual specifications contained in the first report

  14. Framatome-ANP France UO2 fuel fabrication. Criticality safety analysis in the light of the JCO accident

    International Nuclear Information System (INIS)

    Doucet, M.; Zheng, S.; Mouton, J.; Porte, R.

    2003-01-01

    In France the 1999' Tokai Mura criticality accident in Japan had a big impact on the nuclear fuel manufacturing facility community. Moreover this accident led to a large public discussion about all the nuclear facilities. The French Safety Authorities made strong requirements to the industrials to revisit completely their safety analysis files mainly those concerning nuclear fuels treatments. The FRAMATOME-ANP production of its French low enriched (5 w/o) UO2 fuel fabrication plant (FBFC/Romans) exceeds 1000 metric tons a year. Special attention was given to the emergency evacuation plan that should be followed in case of a criticality accident. If a criticality accident happens, site internal and external radioprotection requirements need to have an emergency evacuation plan showing the different routes where the absorbed doses will be as low as possible for people. The French Safety Authorities require also an update of the old based neutron source term accounting for state of the art methodology. UO2 blenders units contain a large amount of dry powder strictly controlled by moderation; a hypothetical water leakage inside one of these apparatus is simulated by increasing the water content of the powder. The resulted reactivity insertion is performed by several static calculations. The French IRSN/CEA CRISTAL codes are used to perform these static calculations. The kinetic criticality code POWDER simulates the power excursion versus time and determines the consequent total energy source term. MNCP4B performs the source term propagation (including neutrons and gamma) used to determine the isodose curves needed to define the emergency evacuation plant. This paper deals with the approach FRAMATOME-ANP has taken to assess Safety Authorities demands using the more up to date calculation tools and methodology. (author)

  15. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO 2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm 3 /s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO 2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%

  16. Assessment of radiation doses in normal operation, upset accident conditions at the Olkiluoto nuclear waste facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.

    2009-09-01

    Radiation doses for workers of the facility, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facility to be built at Olkiluoto during its operation were considered in the study. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical abnormal fault and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that on average one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The critical group is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. The dose value to a member of the critical group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The results obtained indicate that during normal operation the doses to workers remain small and the dose to the member of the critical group is less than 0,001 mSv per year. In the case of hypothetical fault and accident releases the offsite doses do not exceed either the limit values set by the safety authority. The highest dose rates to the reference organisms of the terrestrial ecosystem with conservative assumptions from the largest release were estimated to be of the order of 100 μ Gy/h at the distance of 200 m. As a chronic exposure this dose rate is expected to bring up detrimental

  17. Pressure and Temperature of the Room 1 for the Pipe Break Accidents of the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R

    2005-08-15

    This report deals with the prediction of the pressure and temperature of the room 1 for the pipe break accidents of the 3-pin fuel test loop. The 3-pin fuel test loop is an experimental facility for nuclear fuel tests at the operation conditions similar to those of PWR and CANDU power plants. Because the most processing systems of the 3-pin fuel test loop are placed in the room 1. The structural integrity of the room 1 should be evaluated for the postulated accident conditions. Therefore the pressures and temperatures of the room 1 needed for the structural integrity evaluation have been calculated by using MARS code. The pressures and temperatures of the room 1 have been calculated in various conditions such as the thermal hydraulic operation parameters, the locations of pipe break, and the thermal properties of the room 1 wall. It is assumed that the pipe break accident occurs in the letdown operation without regeneration, because the mass and energy release to the room 1 is expected to be the largest. As a result of the calculations the maximum pressure and temperature are predicted to be 208kPa and 369.2K(96.0 .deg. C) in case the heat transfer is considered in the room 1 wall. However the pressure and temperature are asymptotically 243kPa and 378.1K(104.9 .deg. C) assuming that the heat transfer does not occur in the room 1 wall.

  18. Engineered zircaloy cladding modifications for improved accident tolerance of LWR fuel: US DOE NEUP Integrated Research Project

    International Nuclear Information System (INIS)

    Heuser, Brent

    2013-01-01

    An integrated research project (IRP) to fabricate and evaluate modified zircaloy LWR cladding under normal BWR/PWR operation and off-normal events has been funded by the US DOE. The IRP involves three US academic institutions, a US national laboratory, an intermediate stock industrial cladding supplier, and an international academic institution. A combination of computational and experimental protocols will be employed to design and test modified zircaloy cladding with respect to corrosion and accelerated oxide growth, the former associated with normal operation, the latter associated with steam exposure during loss of coolant accidents (LOCAs) and low-pressure core re-floods. Efforts will be made to go beyond design-base accident (DBA) scenarios (cladding temperature equal to or less than 1204 deg. C) during the experimental phase of modified zircaloy performance characterisation. The project anticipates the use of the facilities at ORNL to achieve steam exposure beyond DBA scenarios. In addition, irradiation of down-selected modified cladding candidates in the ATR may be performed. Cladding performance evaluation will be incorporated into a reactor system modelling effort of fuel performance, neutronics, and thermal hydraulics, thereby providing a holistic approach to accident-tolerant nuclear fuel. The proposed IRP brings together personnel, facilities, and capabilities across a wide range of technical areas relevant to the study of modified nuclear fuel and LWR performance during normal operation and off-normal scenarios. Two pathways towards accident-tolerant LWR fuel are envisioned, both based on the modification of existing zircaloy cladding. The first is the modification of the cladding surface by the application of a coating layer designed to shift the M + O→MO reaction away from oxide growth during steam exposure at elevated temperatures. This pathway is referred to as the 'surface coating' solution. The second is the modification of the bulk

  19. Simulation of accident-tolerant U3Si2 fuel using FRAPCON code

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia

    2017-01-01

    The research on accident-tolerant fuels (ATFs) increased after the Fukushima event. This benefited risk management in nuclear operations. In this investigation, the physical properties of the materials being developed for the ATF program were compared with those of the standard UO 2 - Zr fuel system. The research efforts in innovative fuel design include rigorous characterization of thermal, mechanical, and chemical assessment, with the objectives of making the burnup cycle longer, increasing power density, and improving safety performance. Fuels must reach a high uranium density - above that supported by UO 2 - and possess coating that exhibits better oxidation resistance than Zircaloy. The uranium density and thermal conductivity of ATFs, such as U 3 Si 2 , UN, and UC, is higher than that of UO 2 ; their combination with advanced cladding provides possible fuel - cladding options. An ideal combination of fuel and cladding must increase fuel performance in loss-of-coolant scenarios. The disadvantages of U 3 Si 2 , UN, and UC are their swelling rates, which are higher than that of UO 2 . The thermal conductivities of ATFs are approximately four times higher than that of UO2. To prevent the generation of hydrogen due to oxidation of zirconium-based alloys in contact with steam, cladding options, such as ferritic alloys, were studied. It was verified that FeCrAl alloys and SiC provide better response under severe conditions because of their thermophysical properties. The findings of this study indicate that U 3 Si 2 and the FeCrAl fuel cladding concept should replace UO 2 - Zr as the fuel system of choice. (author)

  20. Safety characteristics of mid-sized MOX fueled liquid metal reactor core of high converter type in the initiating phase of unprotected loss of flow accident. Effect of low specific fuel power density on ULOF behavior brought by employment of large diameter fuel pins

    International Nuclear Information System (INIS)

    Ishida, Masayoshi; Kawada, Kenichi; Niwa, Hajime

    2003-07-01

    Safety characteristics in core disruptive accidents (CDAs) of mid-sized MOX fueled liquid metal reactor core of high converter type have been examined by using the CDA initiating phase analysis code SAS4A. The design concept of high converter type reactor core has been studied as one of options in the category of sodium-cooled reactor in Phase II of Feasibility Study on Commercialized Fast Reactor Cycle System. An unprotected loss-of-flow accident (ULOF) has been selected as a representative CDA initiator for this study. A core concept of high converter type, which employed a large diameter fuel pin of 11.1 mm with 1.2 m core height to get a large fuel volume fraction in the core to achieve high internal conversion ratio was proposed in JFY2001. Each fuel subassembly of the core (abbreviated here as UPL120)was provided with an upper sodium plenum directly above the core to reduce the sodium void reactivity worth. Because of the large fuel pin diameter, average specific fuel power density (31 kW/kg-MOX) of UPL120 is about one half of those of conventional large MOX cores. The reactivity worth of sodium voiding is 6$ in the whole core, and -1$ in the all upper plenums. Initiating phase of ULOF accident in UPL120 under the conditions of nominal design and best estimate analysis resulted in a slightly super-prompt critical power burst. The causes of the super-prompt criticality have been identified twofold: (a) the low specific fuel power density of core reduced the effectiveness of prompt negative reactivity feedback of Doppler and axial fuel expansion effects upon increase in reactor power, and (b) the longer core height compared with conventional 1m cores brought, together with the lower specific power density, a remarkable delay in insertion of negative fuel dispersion reactivity after the onset of fuel disruption in sodium voided subassembly due to the lower linear heat rating in the top portion of the core. During the delay, burst-type fuel failures in sodium un

  1. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Pal, S.; Mishra, G.P.

    2012-01-01

    CERMET fuel with either PuO 2 or enriched UO 2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO 2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO 2 , U–25 wt%UO 2 and U–30 wt%UO 2 . It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO 2 compositions.

  2. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    Science.gov (United States)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  3. Dispersants in an organic medium: synthesis and physicochemical study of dispersants for fuels and lubricants; Dispersants en milieu organique: synthese et etude physicochimique de dispersants pour carburants et lubrifiants

    Energy Technology Data Exchange (ETDEWEB)

    Dubois-Clochard, M.C.

    1998-11-19

    Carbonaceous deposits coming from the fuel and the lubricant are known to form over time at critical locations in an engine. In general, the deposits have an adverse effect on four functional areas which are the fuel metering system, the intake system, the lubrication system and the combustion chambers. These deposits can degrade vehicle performance and drive-ability, reduce fuel economy, increase fuel consumption and pollutant emissions and may lead to the destruction of the engine. In order to remedy these problems, detergent-dispersant additives are used in fuels and lubricants to avoid or decrease deposit adhesion on metallic surfaces and prevent from deposit aggregation. These products are mainly polymer surfactants and in this work, poly-iso-butenyl-succinimide of different structures have been studied. Firstly, 'comb like' polymers have been synthesized. Then they have been compared to classical di-bloc additives in terms of performance and action mechanism. These additives are adsorbed from their hydrophilic polyamine part on the acidic functions of the carbon black surface chosen as an engine deposit model and on the aluminium oxide function of an aluminium powder chosen as an engine wall model. The adsorption increases with temperature on the two solids. Their affinity with the solid surface increases with the length of the hydrophilic part. In the same way, changing the di-bloc structure for a comb like one lead to a better adsorption. At low concentration, it has been shown that the adsorption phenomenon was irreversible, due to the polymer structure of the polar part. Depending on the space required by the hydrophilic part on the solid surface, a more of less dense monolayer is formed. At higher concentrations, an important increase of the adsorbed amount appears. This phenomenon is totally reversible showing that the interactions additive / additive are weak. The dispersing efficiency of a comb like structure is better than a di-bloc one as

  4. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Katata, G.; Chino, M.; Kobayashi, T. [Japan Atomic Energy Agency (JAEA), Ibaraki (Japan); and others

    2015-07-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I{sub 2} and CH{sub 3}I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of

  5. COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

    OpenAIRE

    ALEKSEY. L. IZHUTOV; VALERIY. V. IAKOVLEV; ANDREY. E. NOVOSELOV; VLADIMIR. A. STARKOV; ALEKSEY. A. SHELDYAKOV; VALERIY. YU. SHISHIN; VLADIMIR. M. KOSENKOV; ALEKSANDR. V. VATULIN; IRINA. V. DOBRIKOVA; VLADIMIR. B. SUPRUN; GENNADIY. V. KULAKOV

    2013-01-01

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; th...

  6. TEM characterization of irradiated U-7Mo/Mg dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J. F.; Robinson, A. B.; Madden, J.

    2017-10-01

    This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 1021 f/cm3, 7.4 × 1014 f/cm3/s and 123 °C, and 5.5 × 1021 f/cm3, 11.0 × 1014 f/cm3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al3Mg2 and Al12Mg17 along with precipitates of MgO, Mg2Si and FeAl5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.

  7. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    Science.gov (United States)

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  8. Fundão Dam collapse: Oceanic dispersion of River Doce after the greatest Brazilian environmental accident.

    Science.gov (United States)

    Marta-Almeida, Martinho; Mendes, Renato; Amorim, Fabiola N; Cirano, Mauro; Dias, João M

    2016-11-15

    On 5 November 2015, the Fundão tailings dam collapsed and its content first reached River Doce and then the Atlantic Ocean by 22 November. This study focuses on the oceanic time and space patterns of river discharge dispersion. By using an ocean model together with nLw(555) and RGB images from MODIS sensors, the river plume was followed for 2months after the arrival of the tailings at the ocean. The results show the huge effect of this accident and reveal that riverine waters may have dispersed hundreds of kilometres, reaching regions as far as the shelf in front of the city of Rio de Janeiro. The movement of the freshwater was essentially to the south in accordance with the seasonal wind regime. Episodic frontal systems, leading to wind reversion, and oceanic mesoscale features contribute to the offshore dispersion of the plume. The region more often in contact with the riverine waters was located at the inner shelf between the river mouth and the city of Vitória, turning to the outer shelf and shelf break at lower latitudes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Analytical and experimental assessment of TVS-2006 fuel assembly thermal-mechanical shape deformation at temperature modeling of a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Afanasiev, A.; Semishkin, V.; Makarov, V.; Matvienko, I.; Puzanov, D.

    2015-01-01

    Full or partial core drying-out takes place in loss-of-coolant accidents, which leads to worsening of heat removal from the fuel rods. Depending on the accident scenario the fuel rod cladding temperature can be in a wide range from 350 to 1200°C. It is worth mentioning, that the length of the process can considerably affect the fuel rod cladding loadcarrying capacity and the FA structure as a whole, and in the long run it defines the radiation consequences of the accident and the possibility of postaccident core disassembly at low cost. Most experiments staged of late were devoted to a study of FA behaviour in the temperature range 800-900°C of α→β phase transition that is characterized by a sharp increase in the rate of zirconium alloy creep which leads to fuel rod cladding ballooning and loss of their tightness within a short period of time. The 600-700°C temperature range turned out to be less investigated whereas this is the range where the change of zirconium alloy mechanical properties is also observed but only with the retention of α-phase. The tests of a full-scale FA dummy with the skeleton of guide tubes and spacer grids connected by friction forces, carried out at the testing facility of JSC OKB “GIDROPRESS”, were devoted to a study of FA behaviour in this temperature range. The model was heated up with hot air to 650°C for 6 hours. The tests ended with fuel rod cladding ballooning due to gauge pressure and shape deformation. No loss of fuel rod cladding integrity was observed. Therefore, a conclusion can be made that a long-time core holdup at the parameters implemented at the test facility is permitted and the deformations of the FA structure do not lead to the damage that could considerably complicate the core disassembly. The test results were used for the verification of the calculational model of FA TVS-2006 structure with a welded skeleton by ANSYS code. On the basis of the verified calculational model a calculational model was

  10. Comparison of US/FRG accident condition models for HTGR fuel failure and radionuclide release

    International Nuclear Information System (INIS)

    Verfondern, K.

    1991-03-01

    The objective was to compare calculation models used in safety analyses in the US and FRG which describe fission product release behavior from TRISO coated fuel particles under core heatup accident conditions. The frist step performed is the qualitative comparison of both sides' fuel failure and release models in order to identify differences and similarities in modeling assumptions and inputs. Assumptions of possible particle failure mechanisms under accident conditions (SiC degradation, pressure vessel) are principally the same on both sides though they are used in different modeling approaches. The characterization of a standard (= intact) coated particle to be of non-releasing (GA) or possibly releasing (KFA/ISF) type is one of the major qualitative differences. Similar models are used regarding radionuclide release from exposed particle kernels. In a second step, a quantitative comparison of the calculation models was made by assessing a benchmark problem predicting particle failure and radionuclide release under MHTGR conduction cooldown accident conditions. Calculations with each side's reference method have come to almost the same failure fractions after 250 hours for the core region with maximum core heatup temperature despite the different modeling approaches of SORS and PANAMA-I. The comparison of the results of particle failure obtained with the Integrated Failure and Release Model for Standard Particles and its revision provides a 'verification' of these models in this sense that the codes (SORS and PANAMA-II, and -III, respectively) which were independently developed lead to very good agreement in the predictions. (orig./HP) [de

  11. Study of a criticality accident involving fuel rods and water outside a power reactor

    International Nuclear Information System (INIS)

    Beloeil, L.

    2000-01-01

    It is possible to imagine highly unlikely but numerous accidental situations where fuel rods come into contact with water under conditions close to atmospheric values. This work is devoted to modelling and simulation of first instants of the power excursion that may result from such configurations. We show that void effect is a preponderant feedback for most severe accidents. The formation of a vapour film around the rods is put forward and confirmed with the help of experimental transients using electrical heating. We propose then a vapour/liquid flow model able to reproduce void fraction evolution. The vapour film is treated as a compressible medium. Conservation balance equations are solved on a moving mesh with a two-dimensional scheme and boundary conditions taking notice of interfacial phenomena and axial escape possibility. Movements of the liquid phase are modelled through a non-stationary integral equation and a dissipative term suited to the particular geometry of this flow. The penetration of energy into the liquid is also calculated. Thus, the coupling of aerodynamic and hydrodynamic modules gives results in excellent agreement with experiments. Next, neutronic phenomena into the fuel pellet, their feedback effects and the distribution of power through the rod are numerically translated. For each developed module, validation tests are provided. Then, it is possible to simulate the first seconds of the whole criticality accident. Even if this calculation tool is only a way of study as a first approach, performed simulations are proving coherent with reported data on recorded accidents. (author)

  12. Computational sensitivity study of spray dispersion and mixing on the fuel properties in a gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Grosshans, Holger; Szász, Robert-Zoltán [Division of Fluid Mechanics, Lund University (Sweden); Cao, Le [Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing (China); Fuchs, Laszlo, E-mail: holger.grosshans@uclouvain.be [Department of Mechanics, KTH, Stockholm (Sweden)

    2017-04-15

    A swirl stabilized gas turbine burner has been simulated in order to assess the effects of the fuel properties on spray dispersion and fuel–air mixing. The properties under consideration include fuel surface tension, viscosity and density. The turbulence of the gas phase is modeled applying the methodology of large eddy simulation whereas the dispersed liquid phase is described by Lagrangian particle tracking. The exchange of mass, momentum and energy between the two phases is accounted for by two-way coupling. Bag and stripping breakup regimes are considered for secondary droplet breakup, using the Reitz–Diwakar and the Taylor analogy breakup models. Moreover, a model for droplet evaporation is included. The results reveal a high sensitivity of the spray structure to variations of all investigated parameters. In particular, a decrease in the surface tension or the fuel viscosity, or an increase in the fuel density, lead to less stable liquid structures. As a consequence, smaller droplets are generated and the overall spray surface area increases, leading to faster evaporation and mixing. Furthermore, with the trajectories of the small droplets being strongly influenced by aerodynamic forces (and less by their own inertia), the spray is more affected by the turbulent structures of the gaseous phase and the spray dispersion is enhanced. (paper)

  13. Modeling the atmospheric dispersion of radioactive effluents in a nuclear accident situation

    International Nuclear Information System (INIS)

    Margeanu, Sorin

    2002-01-01

    In case of a nuclear accident, which could lead to release of radioactive contaminants, fastest countermeasures are needed related to sheltering, iodine distribution, evacuation and interdiction of food and water consumption. All these decisions should be based either on estimation of inhaled dose and the dose due to external exposure for public, or on the estimation of radioactive concentration in food (which will depend on the radioactive concentration in air and ground deposition). The dispersion model used, was a Gaussian 'puff' model. The vertical dispersion was considered not dependent on the release high. The used meteorological data are specific for the SCN - Pitesti site, collected every hour for one year. The meteorological data file contains: the wind speed (in m/s), wind direction (degrees clockwise from north), atmospheric stability category, precipitation rate (in mm/h) and the high of the mixing layer (in m). A hypothetical major nuclear accident at TRIGA - SSR of INR - Pitesti, due to a serious damage of the reactor core leading, to a large release of radioactive contaminants was examined. The release was considered as a single phase with of one hour duration. The release factors for the considered isotopic mixture are 100% noble gases (of the reactor core inventory), 40% iodine (of the reactor core inventory) and 40% particulate, i.e., 40% of the fission products of core fission products inventory, released as particles. The accuracy of the model could be increased by implementation of the code on a real-time system, where the acquisition of the parameters done is on-line, namely, the data are introduced as soon as the modification of meteorological and dosimetric conditions are produced. In this case, the parameters used in formulas can be adjusted according with the field situation. Unfortunately the real-time systems need more powerful resources: monitoring stations which can measure and send on-line the data and which can cover a large area

  14. Reactivity initiated accident test series Test RIA 1-4 fuel behavior report

    International Nuclear Information System (INIS)

    Cook, B.A.; Martinson, Z.R.

    1984-09-01

    This report presents and discusses results from the final test in the Reactivity Initiated Accident (RIA) Test Series, Test RIA 1-4, conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. Nine preirradiated fuel rods in a 3 x 3 bundle configuration were subjected to a power burst while at boiling water reactor hot-startup system conditions. The test resulted in estimated axial peak, radial average fuel enthalpies of 234 cal/g UO 2 on the center rod, 255 cal/g UO 2 on the side rods, and 277 cal/g UO 2 on the corner rods. Test RIA 1-4 was conducted to investigate fuel coolability and channel blockage within a bundle of preirradiated rods near the present enthalpy limit of 280 cal/g UO 2 established by the US Nuclear Regulatory Commission. The test design and conduct are described, and the bundle and individual rod thermal and mechanical responses are evaluated. Conclusions from this final test and the entire PBF RIA Test Series are presented

  15. HTGR fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-01-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents. The slow release of fission products over hundreds of hours allows for decay of short-lived isotopes. The slow and limited release of fission products under HTGR accident conditions results in very low off-site doses. The slow nature of the accident provides more time for operator action to mitigate the accident and for local and state authorities to respond. These features can be used to take advantage of close-in siting for process applications, flexibility in site selection, and emergency planning

  16. Severe Accident Test Station Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  17. Severe Accident Test Station Design Document

    International Nuclear Information System (INIS)

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-01-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  18. Characterization of SiC–SiC composites for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C.P., E-mail: Christian.Deck@ga.com; Jacobsen, G.M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC–SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC–SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  19. Theoretical analysis of the temperature changes and resultant loss of fuel integrity in the IEA-R1 research reactor fuel elements following a loss of coalant accident

    International Nuclear Information System (INIS)

    Garone, J.G.M.

    1983-01-01

    The IEA-R1 core following a loss of coolant accident (LOCA) is analysed. THe AIRLOCA code was used to calculate fuel temperatures, heat generation due to fission product decay and convective and radiative heat transfer from the fuel elements to the surrounding air both during and following the loss of coolant. The influence of certain critical parameters, such as log time, specific power was studied in detail. Representative results are presented and suggestions made to ensure that fuel integrity is maintained following a LOCA. (Author) [pt

  20. Computer code for the analysis of destructive pressure generation process during a fuel failure accident, PULSE-2

    International Nuclear Information System (INIS)

    Fujishiro, Toshio

    1978-03-01

    The computer code PULSE-2 has been developed for the analysis of pressure pulse generation process when hot fuel particles come into contact with the coolant in a fuel rod failure accident. In the program, it is assumed that hot fuel fragments mix with the coolant instantly and homogeneously in the failure region. Then, the rapid vaporization of the coolant and transient pressure rise in failure region, and the movement of ejected coolant slugs are calculated. The effect of a fuel-particle size distribution is taken into consideration. Heat conduction in the fuel particles and heat transfer at fuel-coolant interface are calculated. Temperature, pressure and void fraction in the mixed region are calculated from the average enthalpy. With physical property subroutines for liquid sodium and water, the model is usable for both LMFBR and LWR conditions. (auth.)

  1. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    DeVault, G.P.; Bell, C.R.

    1985-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  2. Release of fission products from irradiated SRP fuels at elevated temperature. Data report on the first stage of the SRP source term study

    International Nuclear Information System (INIS)

    Woodley, R.E.

    1986-06-01

    For a sound evaluation of the consequences of a hypothetical nuclear reactor accident, a knowledge of the extent of fission product release from the fuel at anticipated temperatures and atmosphere conditions is required. Measurements of fission product release have been performed with a variety of nuclear fuels under various conditions of temperature and atmosphere. While the use of data obtained on fuels similar to the fuel of interest may provide a reasonable estimate of release fractions, precise information of this nature can only be obtained from measurements employing specimens of the actual fuels used in the nuclear reactor under consideration. The two fuels of interest in the present study are an alloy, a dispersion of UAl 4 in an aluminum matrix, and a cermet, a dispersion of U 3 O 8 in an aluminum matrix. Both fuels are clad in aluminum

  3. Thermal conductivity of U–Mo/Al dispersion fuel. Effects of particle shape and size, stereography, and heat generation

    International Nuclear Information System (INIS)

    Cho, Tae Won; Sohn, Dong-Seong; Kim, Yeon Soo

    2015-01-01

    This paper describes the effects of particle sphericity, interfacial thermal resistance, stereography, and heat generation on the thermal conductivity of U–Mo/Al dispersion fuel. The ABAQUS finite element method (FEM) tool was used to calculate the effective thermal conductivity of U–Mo/Al dispersion fuel by implementing fuel particles. For U–Mo/Al, the particle sphericity effect was insignificant. However, if the effect of the interfacial thermal resistance between the fuel particles and Al matrix was considered, the thermal conductivity of U–Mo/Al was increased as the particle size increases. To examine the effect of stereography, we compared the two-dimensional modeling and three-dimensional modeling. The results showed that the two-dimensional modeling predicted lower than the three-dimensional modeling. We also examined the effect of the presence of heat sources in the fuel particles and found a decrease in thermal conductivity of U–Mo/Al from that of the typical homogeneous heat generation modeling. (author)

  4. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiming; Yan Xiaoqing [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.co [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  5. Criticality safety assessment of a TRIGA reactor spent-fuel pool under accident conditions

    International Nuclear Information System (INIS)

    Glumac, B.; Ravnik, M.; Logar, M.

    1997-01-01

    Additional criticality safety analysis of a pool-type storage for TRIGA spent fuel at the Jozef Stefan Institute in Ljubljana, Slovenia, is presented. Previous results have shown that subcriticality is not guaranteed for some postulated accidents (earthquake with subsequent fuel rack disintegration resulting in contact fuel pitch) under the assumption that the fuel rack is loaded with fresh 12 wt% standard fuel. To mitigate this deficiency, a study was done on replacing a certain number of fuel elements in the rack with cadmium-loaded absorber rods. The Monte Carlo computer code MCNP4A with an ENDF/B-V library and detailed three-dimensional geometrical model of the spent-fuel rack was used for this purpose. First, a minimum critical number of fuel elements was determined for contact pitch, and two possible geometries of rack disintegration were considered. Next, it was shown that subcriticality can be ensured when pitch is decreased from a rack design pitch of 8 cm to contact, if a certain number of fuel elements (8 to 20 out of 70) are replaced by absorber rods, which are uniformly mixed into the lattice. To account for the possibility that random mixing of fuel elements and absorber rods can occur during rack disintegration and result in a supercritical configuration, a probabilistic study was made to sample the probability density functions for random absorber rod lattice loadings. Results of the calculations show that reasonably low probabilities for supercriticality can be achieved (down to 10 -6 per severe earthquake, which would result in rack disintegration and subsequent maximum possible pitch decrease) even in the case where fresh 12 wt% standard TRIGA fuel would be stored in the spent-fuel pool

  6. Hot Cell Installation and Demonstration of the Severe Accident Test Station

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Zachary M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    A Severe Accident Test Station (SATS) capable of examining the oxidation kinetics and accident response of irradiated fuel and cladding materials for design basis accident (DBA) and beyond design basis accident (BDBA) scenarios has been successfully installed and demonstrated in the Irradiated Fuels Examination Laboratory (IFEL), a hot cell facility at Oak Ridge National Laboratory. The two test station modules provide various temperature profiles, steam, and the thermal shock conditions necessary for integral loss of coolant accident (LOCA) testing, defueled oxidation quench testing and high temperature BDBA testing. The installation of the SATS system restores the domestic capability to examine postulated and extended LOCA conditions on spent fuel and cladding and provides a platform for evaluation of advanced fuel and accident tolerant fuel (ATF) cladding concepts. This document reports on the successful in-cell demonstration testing of unirradiated Zircaloy-4. It also contains descriptions of the integral test facility capabilities, installation activities, and out-of-cell benchmark testing to calibrate and optimize the system.

  7. Radioecological consequences of a potential accident during transport of spent nuclear fuel along an Arctic coastline

    International Nuclear Information System (INIS)

    Iosjpe, M.; Reistad, O.; Amundsen, I.B.

    2009-01-01

    This article presents results pertaining to a risk assessment of the potential consequences of a hypothetical accident occurring during the transportation by ship of spent nuclear fuel (SNF) along an Arctic coastline. The findings are based on modelling of potential releases of radionuclides, radionuclide transport and uptake in the marine environment. Modelling work has been done using a revised box model developed at the Norwegian Radiation Protection Authority. Evaluation of the radioecological consequences of a potential accident in the southern part of the Norwegian Current has been made on the basis of calculated collective dose to man, individual doses for the critical group, concentrations of radionuclides in seafood and doses to marine organisms. The results of the calculations indicate a large variability in the investigated parameters above mentioned. On the basis of the calculated parameters the maximum total activity ('accepted accident activity') in the ship, when the parameters that describe the consequences after the examined potential accident are still in agreement with the recommendations and criterions for protection of the human population and the environment, has been evaluated

  8. Reactor physics modelling of accident tolerant fuel for LWRs using ANSWERS codes

    International Nuclear Information System (INIS)

    Lindley, B.A.; Lillington, J.N.; Kotlyar, D.; Parks, G.T.; Petrovic, B.

    2016-01-01

    The majority of nuclear reactors operating in the world today and similarly the majority of near-term new build reactors will be LWRs. These currently accommodate traditional Zr clad UO_2/PuO_2 fuel designs which have an excellent performance record for normal operation. However, the events at Fukushima culminated in significant hydrogen production and hydrogen explosions, resulting from high temperature Zr/steam interaction following core uncovering for an extended period. These events have resulted in increased emphasis towards developing more accident tolerant fuels (ATFs)-clad systems, particularly for current and near-term build LWRs. R and D programmes are underway in the US and elsewhere to develop ATFs and the UK is engaging in these international programmes. Candidate advanced fuel materials include uranium nitride (UN) and uranium silicide (U_3Si_2). Candidate cladding materials include advanced stainless steel (FeCrAl) and silicon carbide. The UK has a long history in industrial fuel manufacture and fabrication for a wide range of reactor systems including LWRs. This is supported by a national infrastructure to perform experimental and theoretical R and D in fuel performance, fuel transient behaviour and reactor physics. In this paper, an analysis of the Integral Inherently Safe LWR design (I"2S-LWR), a reactor concept developed by an international collaboration led by the Georgia Institute of Technology, within a US DOE Nuclear Energy University Program (NEUP) Integrated Research Project (IRP) is considered. The analysis is performed using the ANSWERS reactor physics code WIMS and the EDF Energy core simulator PANTHER by researchers at the University of Cambridge. The I"2S-LWR is an advanced 2850 MWt integral PWR with inherent safety features. In order to enhance the safety features, the baseline fuel and cladding materials that were chosen for the I"2S-LWR design are U_3Si_2 and advanced stainless steel respectively. In addition, the I"2S-LWR design

  9. Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (5). Evaluation method and trial evaluation of criticality accident

    International Nuclear Information System (INIS)

    Yamane, Yuichi; Abe, Hitoshi; Nakajima, Ken; Hayashi, Yoshiaki; Arisawa, Jun; Hayami, Satoru

    2010-01-01

    A special committee of 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for the Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objectives of this research are to obtain information useful for establishing quantitative performance objectives and to demonstrate risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the consequence analysis method for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution and fire (including the rapid decomposition of TBP complexes), resulting in the release of radioactive materials to the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this report, the evaluation methods of criticality accident, such as simplified methods, one-point reactor kinetics codes and quasi-static method, were investigated and their features were summarized to provide information useful for the safety evaluation of NFFs. In addition, several trial evaluations were performed for a hypothetical scenario of criticality accident using the investigated methods, and their results were compared. The release fraction of volatile fission products in a criticality accident was also investigated. (author)

  10. Sensitivity of numerical dispersion modeling to explosive source parameters

    International Nuclear Information System (INIS)

    Baskett, R.L.; Cederwall, R.T.

    1991-01-01

    The calculation of downwind concentrations from non-traditional sources, such as explosions, provides unique challenges to dispersion models. The US Department of Energy has assigned the Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) the task of estimating the impact of accidental radiological releases to the atmosphere anywhere in the world. Our experience includes responses to over 25 incidents in the past 16 years, and about 150 exercises a year. Examples of responses to explosive accidents include the 1980 Titan 2 missile fuel explosion near Damascus, Arkansas and the hydrogen gas explosion in the 1986 Chernobyl nuclear power plant accident. Based on judgment and experience, we frequently estimate the source geometry and the amount of toxic material aerosolized as well as its particle size distribution. To expedite our real-time response, we developed some automated algorithms and default assumptions about several potential sources. It is useful to know how well these algorithms perform against real-world measurements and how sensitive our dispersion model is to the potential range of input values. In this paper we present the algorithms we use to simulate explosive events, compare these methods with limited field data measurements, and analyze their sensitivity to input parameters. 14 refs., 7 figs., 2 tabs

  11. HANARO thermal hydraulic accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  12. Post-irradiation analysis of low enriched U-Mo/Al dispersions fuel miniplate tests, RERTR 4 and 5

    International Nuclear Information System (INIS)

    Hofman, G.L.; Finlay, M.R.; Kim, Y.S.

    2005-01-01

    Interpretation of the post irradiation data of U-Mo/Al dispersion fuel mini plates irradiated in the Advanced Test Reactor to a maximum U-235 burn up of 80% are presented. The analyses addresses fuel swelling and porosity formation as these fuel performance issues relate to fuel fabrication and irradiation parameters. Specifically, mechanisms involved in the formation of porosity observed in the U-Mo/Al interaction phase are discussed and, means of mitigating or eliminating this irradiation phenomenon are offered. (author)

  13. Fission product release in conditions of a spent fuel pool severe accident

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2007-01-01

    Full text: Depending on the residence time, fuel burnup, and fuel rack configuration, there may be sufficient decay heat for the fuel clad to heat up, swell, and burst in case of a loss of pool water. Initiating event categories can be: loss of offsite power from events initiated by severe weather, internal fire, loss of pool cooling, loss of coolant inventory, seismic event, aircraft impact, tornado, missile attack. The breach in the clad releases the radioactive gases present in the gap between the fuel and clad, what is called 'gap release'. If the fuel continues to heat up, the zirconium clad will reach the point of rapid oxidation in air. This reaction of zirconium and air, or zirconium and steam is exothermic. The energy released from the reaction, combined with the fuel's decay energy, can cause the reaction to become self-sustaining and ignite the zirconium. The increase in heat from the oxidation reaction can also raise the temperature in adjacent fuel assemblies and propagate the oxidation reaction. Simultaneously, the sintered UO 2 pellets resulting from pins destroying are oxidized. Due to the self-disintegration of pellets by oxidation, fission gases and low volatile fission products are released. The release rate, the chemical nature and the amount of fission products depend on powder granulation distribution and environmental conditions. The zirconium burning and pellets self-disintegration will result in a significant release of spent fuel fission products that will be dispersed from the reactor site. (author)

  14. The role of grain boundary fission gases in high burn-up fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Papin, J.; Frizonnet, J.M.; Cazalis, B.; Rigat, H.

    2002-01-01

    In the frame of reactivity-initiated accidents (RIA) studies, the CABRI REP-Na programme is currently performed, focused on high burn-up UO 2 and MOX fuel behaviour. From 1993 to 1998, seven tests were performed with UO 2 fuel and three with MOX fuel. In all these tests, particular attention has been devoted to the role of fission gases in transient fuel behaviour and in clad loading mechanisms. From the analysis of experimental results, some basic phenomena were identified and a better understanding of the transient fission gas behaviour was obtained in relation to the fuel and clad thermo-mechanical evolution in RIA, but also to the initial state of the fuel before the transient. A high burn-up effect linked to the increasing part of grain boundary gases is clearly evidenced in the final gas release, which would also significantly contribute to the clad loading mechanisms. (authors)

  15. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de

    2011-07-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm{sup 3} for U{sub 3}Si{sub 2}-Al dispersion-based and 2.3 gU/cm{sup 3} for U{sub 3}O{sub 8}-Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm{sup 3} in U{sub 3}Si{sub 2}-Al dispersion and 3.2 gU/cm{sup 3} U{sub 3}O{sub 8}-Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U{sub 3}Si{sub 2}-Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U{sub 3}O{sub 8}-Al dispersion fuel plates with 3.2 gU/cm{sup 3} showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U{sub 3}Si{sub 2} production at 4.8 gU/cm{sup 3}, with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  16. Review of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Connelly, J.W.; Storr, G.J.

    1989-01-01

    Two types of severe reactor accidents - loss of coolant or coolant flow and transient overpower (TOP) accidents - are described and compared. Accidents in research reactors are discussed. The 1961 SL1 accident in the US is used as an illustration as it incorporates the three features usually combined in a severe accident - a design flaw or flaws in the system, a circumvention of safety circuits or procedures, and gross operator error. The SL1 reactor, the reactivity accident and the following fuel-coolant interaction and steam explosion are reviewed. 3 figs

  17. Study on fracture of fuel element cladding for naval reactor during typical accidents

    International Nuclear Information System (INIS)

    Zhang Fan; Shang Xueli; Zheng Zhongliang; Yu Lei

    2011-01-01

    Aiming at defining the grade of nuclear emergency response, the best estimate model has been adopted; the simulation of large break loss of coolant accident (LBLOCA) has been carried out by the radioactive analysis software coupled with relap5/mod 3.2 and core physics model. First, the peak clad temperature of the critical failure channel is calculated in relap5 code, and simultaneously its power factor is obtained. Second, pin power distribution of the fuel assemblies has been calculated in coarse-mesh nodal method. According to the pin power distribution in the whole core and the result gained above, the fraction of fuel element fracture is calculated. Finally, the radioactive analysis has been carried out and the reasonable source term is gotten, which can offer reference for the nuclear emergency decision making. (authors)

  18. Modeling the consequences of hypothetical accidents for the Titan II system

    International Nuclear Information System (INIS)

    Greenly, G.D.; Sullivan, T.J.

    1981-11-01

    Calculations have been made with the Atmospheric Release Advisory Capability (ARAC) suite of three-dimensional transport and diffusion codes MATHEW/ADPIC to assess the consequences of severe, hypothetical accident scenarios. One set of calculations develops the integrated dose and surface deposition patterns for a non-nuclear, high explosive detonation and dispersal of material. A second set of calculations depicts the time integrated dose and instantaneous concentration patterns for a substantial, continuous leak of the missile fuel oxidizer converted to nitrogen dioxide (NO 2 ). The areas affected and some of the implications for emergency response management are discussed

  19. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, P.C. [BNFL International Transport, Spent Fuel Services (United Kingdom); Dallongeville, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme.

  20. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    International Nuclear Information System (INIS)

    Purcell, P.C.; Dallongeville, M.

    2004-01-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme

  1. Dilatational behaviour of ZrNb1 fuel cans of a WWER-type reactor during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Adam, E.; Stephan, M.; Wetzel, L.

    1987-01-01

    Based on an assessment of various factors of influence on the performance of fuel cans during normal operation and imaginable accidents, the necessity of studying creep and burst behaviour of WWER-type fuel cans of ZrNb1 under simulated LOCA conditions has been proved and an experimental facility designed for this purpose is described. Control of fuel can temperature is accomplished through a minicomputer during the creep and bursts experiments. With this, various temperature loading profiles of the fuel cans can be realized. Experimental results on dilatational behaviour of ZrNb1 fuel cans from isothermal creep and burst experiments in air are presented and compared with values for Zircaloy. (author)

  2. Development of MTR fuel plate with U-Al dispersion core constituents

    International Nuclear Information System (INIS)

    Bressiani, Jose Carlos

    1979-01-01

    This work is a contribution to the development of fuel plates for Research Nuclear Reaction Materials Test Reactors. The plates have the core constituted by dispersions of metallic uranium in aluminum. The main topics of this work are: 1) The preparation of uranium powder with particle sizes in the 53-105μm diameter range; 2) The mixture and cold-pressing of uranium and aluminum powders for different uranium concentrations; 3) The behavior of the dispersions in the roll milling conditions; 4) Blister, radiographic, metallographic and irradiation tests for quality control of the plates. The irradiation test was performed in the IEA-R1 swimming-pool reactor using a prototype with a dispersion of aluminum and natural uranium (45 w/o ), reaching an integrated neutron flux of 8.663 X 10 18 n/cm 2 , no visual changes being noticed after the completion of the experiment. The behavior of the uranium-aluminum reaction for dispersions with 45% w/o uranium also studied. X-ray diffraction experiments showed the formation of UAl 2 UAl 3 and UAl 4 , while energy dispersive analysis of X-rays(EDAX) demonstrated that the diffusion of aluminum in uranium is the mechanism responsible for that reaction. The activation energy for the U-Al reaction was determined by dilatometric experiments yielding 20.2 kcal/mol.The aluminum-uranium reaction reaches an end when extended to 96 h at 600 deg C, namely, when all the uranium is found in the UAl 4 composition. (author)

  3. Scanning electron microscopy analysis of fuel/matrix interaction layers in highly-irradiated U-Mo dispersion fuel plates with Al and Al-Si alloy matrices

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D. Jr; Jue, Jan Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adom B.; Medvedev, Pavel; Madden, James; Wachs, Dan; Meyer, Mitch [Nuclear Fuels and Materials Division, Idaho National Laboratory (United States)

    2014-04-15

    In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U-7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifically, samples from irradiated U-7Mo dispersion fuel elements with pure Al, Al-2Si and AA4043 (-4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U-7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission gas bubbles. Additionally, solid fission product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U-7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al-Si matrices.

  4. Fission products and nuclear fuel behaviour under severe accident conditions part 2: Fuel behaviour in the VERDON-1 sample

    Science.gov (United States)

    Geiger, E.; Le Gall, C.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.

    2017-11-01

    Within the framework of the International Source Term Programme (ISTP), the VERDON programme aims at quantifying the source term of radioactive materials in case of a hypothetical severe accident in a light water reactor (LWR). Tests were performed in a new experimental laboratory (VERDON) built in the LECA-STAR facility (CEA Cadarache). The VERDON-1 test was devoted to the study of a high burn-up UO2 fuel and FP releases at very high temperature (≈2873 K) in a reducing atmosphere. Post-test qualitative and quantitative characterisations of the VERDON-1 sample led to the proposal of a scenario explaining the phenomena occurring during the experimental sequence. Hence, the fuel and the cladding may have interacted which led to the melting of UO2-ZrO2 alloy. Although no relocation was observed during the test, it may have been imminent.

  5. Chemical phenomena under severe accident conditions

    International Nuclear Information System (INIS)

    Powers, D.A.

    1988-01-01

    A severe nuclear reactor accident is expected to involve a vast number of chemical processes. The chemical processes of major safety significance begin with the production of hydrogen during steam oxidation of fuel cladding. Physico-chemical changes in the fuel and the vaporization of radionuclides during reactor accidents have captured much of the attention of the safety community in recent years. Protracted chemical interactions of core debris with structural concrete mark the conclusion of dynamic events in a severe accident. An overview of the current understanding of chemical processes in severe reactor accident is provided in this paper. It is shown that most of this understanding has come from application of findings from other fields though a few areas have in the past been subject to in-depth study of a fundamental nature. Challenges in the study of severe accident chemistry are delineated

  6. Chernobyl accident and Denmark

    International Nuclear Information System (INIS)

    1986-12-01

    The report describes the Chernobyl accident and its consequences for Denmark in particular. It was commissioned by The Secretary of State for the Environment. The event at the accident site, the release and dispersal of radioactive substances into the atmosphere and over Europe, is described. A discussion of the Danish organisation for nuclear emergencies, how it was activated and adapted to the actual situation, is given. A comprehensive description of the radiological contamination in Denmark following the accident and the estimated health effects, is presented. The situation in other European countries is mentioned. (author)

  7. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    International Nuclear Information System (INIS)

    Susmikanti, Mike; Sulistyo, Jos

    2014-01-01

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to develop code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix

  8. HTGR Fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents

  9. Control rod ejection accident analysis for a PWR with thorium fuel loading

    Energy Technology Data Exchange (ETDEWEB)

    Da Cruz, D.F. [Nuclear Research and Consultancy Group NRG, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2010-07-01

    This paper presents the results of 3-D transient analysis of a pressurized water reactor (PWR) core loaded with 100% Th-Pu MOX fuel assemblies. The aim of this study is to evaluate the safety impact of applying a full loading of this innovative fuel in PWRs of the current generation. A reactivity insertion accident scenario has been simulated using the reactor core analysis code PANTHER, used in conjunction with the lattice code WIMS. A single control rod assembly, with the highest reactivity worth, has been considered to be ejected from the core within 100 milliseconds, which may occur due to failure of the casing of the control rod driver mechanism. Analysis at both hot full power and hot zero power reactor states have been taken into account. The results were compared with those obtained for a representative PWR fuelled with UO{sub 2} fuel assemblies. In general the results obtained for both cores were comparable, with some differences associated mainly to the harder neutron spectrum observed for the Th-Pu MOX core, and to some specific core design features. The study has been performed as part of the LWR-DEPUTY project of the EURATOM 6. Framework Programme, where several aspects of novel fuels are being investigated for deep burning of plutonium in existing nuclear power plants. (authors)

  10. An introduction to serious nuclear accident chemistry

    Directory of Open Access Journals (Sweden)

    Mark Russell St. John Foreman

    2015-12-01

    Full Text Available A review of the chemistry occurring inside a nuclear power plant during a serious reactor accident is presented. This includes some aspects of the behavior of nuclear fuel, its cladding, cesium and iodine. This review concentrates on the chemistry of an accident in a water-cooled reactor loaded with uranium dioxide or mixed metal oxide fuel.

  11. TEM investigation of irradiated U-7 weight percent Mo dispersion fuel

    International Nuclear Information System (INIS)

    Van den Berghe, S.

    2009-01-01

    In the FUTURE experiment, fuel plates containing U-7 weight percent Mo atomized powder were irradiated in the BR2 reactor. At a burn-up of approximately 33 percent 235 U (6.5 percent FIMA or 1.41 10 21 fissions/cm 3 meat), the fuel plates showed an important deformation and the irradiation was stopped. The plates were submitted to detailed PIE at the Laboratory for High and Medium level Activity. The results of these examinations were reported in the scientific report of last year and published in open literature. Since then, the microstructural aspects of the FUTURE fuel were studied in more detail using transmission electron microscopy (TEM), in an attempt to understand the nature of the interaction phase and the fission gas behavior in the atomized U(Mo) fuel. The FUTURE experiment is regarded as the definitive proof that the classical atomized U(Mo) dispersion fuel is not stable under irradiation, at least in the conditions required for normal operation of plate-type fuel. The main cause for the instability was identified to be the irradiation behavior of the U(Mo)-Al interaction phase which is formed between the U(Mo) particles and the pure aluminum matrix during irradiation. It is assumed to become amorphous under irradiation and as such cannot retain the fission gas in stable bubbles. As a consequence, gas filled voids are generated between the interaction layer and the matrix, resulting in fuel plate pillowing and failure. The objective of the TEM investigation was the confirmation of this assumption of the amorphisation of the interaction phase. A deeper understanding of the actual nature of this layer and the fission gas behaviour in these fuels in general can allow a more oriented search for a solution to the fuel failures

  12. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  13. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

    Directory of Open Access Journals (Sweden)

    Cheng Bo

    2016-01-01

    Full Text Available Molybdenum based alloy is selected as a candidate to enhance tolerance of fuel to severe loss of coolant accidents due to its high melting temperature of ∼2600 °C and ability to maintain sufficient mechanical strength at temperatures exceeding 1200 °C. An outer layer of either a Zr-alloy or Al-containing stainless steel is designed to provide corrosion resistance under normal operation and oxidation resistance in steam exceeding 1000 °C for 24 hours under severe loss of coolant accidents. Due to its higher neutron absorption cross-sections, the Mo-alloy cladding is designed to be less than half the thickness of the current Zr-alloy cladding. A feasibility study has been undertaken to demonstrate (1 fabricability of long, thin wall Mo-alloy tubes, (2 formability of a protective outer coating, (3 weldability of Mo tube to endcaps, (4 corrosion resistance in autoclaves with simulated LWR coolant, (5 oxidation resistance to steam at 1000–1500 °C, and (6 sufficient axial and diametral strength and ductility. High purity Mo as well as Mo + La2O3 ODS alloy have been successfully fabricated into ∼2-meter long tubes for the feasibility study. Preliminary results are encouraging, and hence rodlets with Mo-alloy cladding containing fuel pellets have been under preparation for irradiation at the Advanced Test Reactor (ATR in Idaho National Laboratory. Additional efforts are underway to enhance the Mo cladding mechanical properties via process optimization. Oxidation tests to temperatures up to 1500 °C, and burst and creep tests up to 1000 °C are also underway. In addition, some Mo disks in close contact with UO2 from a previous irradiation program (to >100 GWd/MTU at the Halden Reactor have been subjected to post-irradiation examination to evaluate the chemical compatibility of Mo with irradiated UO2 and fission products. This paper will provide an update on results from the feasibility study and discuss the attributes of the

  14. Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer We in-pile tested U-Mo dispersion in Al matrix. Black-Right-Pointing-Pointer We observed interaction layer growth between U-Mo and Al and pore formation there. Black-Right-Pointing-Pointer Pores degrades thermal conductivity and structural integrity of the fueled zone. Black-Right-Pointing-Pointer The amorphous behavior of interaction layers is thought to be the main reason for unstable large pore growth. Black-Right-Pointing-Pointer A mechanism for pore formation and possible remedy to prevent it are proposed. - Abstract: Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced.

  15. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  16. Workbench experiments on interaction of nuclear fuel with channel reactor materials: the LFCM congestions criticality and accident scenario in both re-examinations

    International Nuclear Information System (INIS)

    Baryakhtar, V.; Gonchar, V.; Zhidkov, A.

    2002-01-01

    The heavy radioecological consequences of 1986 accident were mainly stipulated by destruction of both a significant part of fuel envelopes and fuel matrix due to high-temperature interaction with silicates, when nuclear fuel has lost an important property to keep the fission products inside its volume. In this respect the silicate material application in thermal-insulating filling is a crucial fault had been made when Chornobyl NPP channel reactor designing

  17. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.A.B.; Durazzo, M., E-mail: jasouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm{sup 3} by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm{sup 3} for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  18. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale U3Si2 Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miao, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Andersson, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-26

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced accident tolerance when compared to traditional \\uo~fuel zircaloy clad fuel rods. One of the potential replacement fuels is uranium silicide (\\usi) for its higher thermal conductivity and uranium density. The lower melting temperature is of potential concern during postulated accident conditions. Another disadvantage for \\usi~ is the lack of experimental data under power reactor conditions. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022~\\cite{bragg-sitton_2014} multiscale multiphysics modeling approaches have been used to provide insight into these materials. \\\\ \

  19. Fuel safety research 1999

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-07-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a result of reorganization of the Nuclear Safety Research Center, JAERI. The laboratory was organized by combining three laboratories, the Reactivity Accident Laboratory, the Fuel Reliability Laboratory, and a part of the Sever Accident Research Laboratory. Consequently, the Fuel Safety Research Laboratory is now in charge of all the fuel safety research in JAERI. Various types of experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of five research groups corresponding to each research fields. They are; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). This report summarizes the outline of research activities and major outcomes of the research executed in 1999 in the Fuel Safety Research Laboratory. (author)

  20. Computer simulation of fuel behavior during loss-of-flow accidents in a gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Wehner, T.R.

    1980-01-01

    The sequence of events in a loss-of-flow accident without reactor shutdown in a gas-cooled fast breeder reactor is strongly influenced by the manner in which the fuel deforms. In order to predict the mode of initial gross fuel deformation, welling, melting or cracking, a thermomechanical computer simulation program was developed. Methods and techniques used make the simulation an economical, efficient, and flexible engineering tool. An innovative application of the enthalpy model within a finite difference scheme is used to caculate temperatures in the fuel rod. The method of successive elastic solutions is used to calculate the thermoelastic-creep response. Calculated stresses are compared with a brittle-fracture stress criterion. An independent computer code is used to calculate fission-gas-induced fuel swelling. Results obtained with the computer simulation indicate that swelling is not a mode of initial fuel deformation. Faster transients result in fuel melting, while slower transients result in fuel cracking. For investigated faster coolant flow coastdowns with time constants of 1 second and 10 seconds, compressive stresses in the outer radial portion of the fuel limit fuel swelling and inhibit fuel cracking. For a slower coolant flow coastdown with a 300 second time constant, tensile stresses in the outer radial portion of the fuel induce early fuel cracking before any melting or significant fuel swelling has occurred. Suggestions for further research are discussed. A derived noniterative solution for mechanics calculations may offer an order of magnitude decrease in computational effort

  1. Dispersion of long-lived radionuclides from uranium mining, milling and fuel fabrication facilities

    International Nuclear Information System (INIS)

    Pettersson, H.B.L.

    1990-11-01

    The principal aim of the study was to gain further insight into the environmental dispersion of long-lived U series radionuclides from selected part of the nuclear fuel cycle and to assess the resulting exposure of members of the public. The specific objectives of this study were: 1. To determine the levels of natural radioactivity in the vicinity of two U deposits in Sweden and to establish whether U prospecting had generated significant radiological impact on man. 2. To investigate the spatial distributions of long-lived U series radionuclides caused by the dispersion of dust from the Ranger open-pit U mine in Australia. 3. To study the uptakes of long-lived U and T series radionuclides by the waterlily in order to facilitate assessment of natural exposures to the public and predictions of exposures arising from consumption of the plant due to any subsequent discharges of water from the Ranger U mine. 4. To investigate the spatial distributions of U isotopes in environmental air as a result of the release of radionuclides from the ABB-ATOM nuclear fuel factory at Vaesteraas in Sweden. In these investigations special emphasis was given to - activity ratio techniques suitable for distinguishing between natural and operation-related concentrations and for facilitating determination of the source of radionuclide uptake in the waterlily, and - the use of passive air samplers such as 'sticky vinyl' and bioindicators in investigating the aerial dispersion of radionuclides. (author)

  2. Numerical modelling and parametric study of the atmospheric dispersion after radionuclide releases: the Chernobyl accident and the Algeciras incident. Comparison with observation data

    International Nuclear Information System (INIS)

    Minier, Y.; Mathieu, A.; Quelo, D.; Sportisse, B.; Isnard, O.; Krysta, M.; Bocquet, M.

    2006-01-01

    Full text: The attempts of modelling the release following upon the Chernobyl accident and the Algeciras incident are reported. Computing power and observation database are used for sensitivity and parametric studies. The meteorological mesoscale model MM5 is nudged with the ERA-40 reanalysis to simulate the meteorological conditions used by the dispersion model, POLAIR3D. In case of the Chernobyl accident the points of interest are many: the representativity of the meteorological simulations is evaluated using observations with a special focus on precipitation events. The radionuclide dispersion, the dry deposition and scavenging simulated by POLAIR3D are compared with European measurements of activities and depositions. Results of the sensitivity studies are done to evaluate the impact of the deposition parameterizations and source-term characteristics (height of release, quantities). The time dynamic of the contaminated cloud is also investigated with regard to the arrival time on different countries. Similarly, for the Algeciras release, sensitivity to the meteorological fields, source term and depletion processes are analyzed. For the available activity concentrations in the air, data-model comparisons are performed. (author)

  3. Advanced fuels safety comparisons

    International Nuclear Information System (INIS)

    Grolmes, M.A.

    1977-01-01

    The safety considerations of advanced fuels are described relative to the present understanding of the safety of oxide fueled Liquid Metal Fast Breeder Reactors (LMFBR). Safety considerations important for the successful implementation of advanced fueled reactors must early on focus on the accident energetics issues of fuel coolant interactions and recriticality associated with core disruptive accidents. It is in these areas where the thermal physical property differences of the advanced fuel have the greatest significance

  4. Improvement of the homogeneity of atomized particles dispersed in high uranium density research reactor fuels

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Yoon-Sang; Lee, Don-Bae; Sohn, Woong-Hee; Hong, Soon-Hyung

    1998-01-01

    A study on improving the homogeneous dispersion of atomized spherical particles in fuel meats has been performed in connection with the development of high uranium density fuel. In comparing various mixing methods, the better homogeneity of the mixture could be obtained as in order of Spex mill, V-shape tumbler mixer, and off-axis rotating drum mixer. The Spex mill mixer required some laborious work because of its small capacity per batch. Trough optimizing the rotating speed parameter for the V-shape tumbler mixer, almost the same homogeneity as with the Spex mill could be obtained. The homogeneity of the extruded fuel meats appeared to improve through extrusion. All extruded fuel meats with U 3 Si powder of 50-volume % had fairly smooth surfaces. The homogeneity of fuel meats by V-shaped tumbler mixer revealed to be fairly good on micrographs. (author)

  5. Characterization of fuel distributions in the Three-Mile Island Unit 2 (TMI-2) reactor system by neutron and gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McNeece, J.P.; Kaiser, B.J.; McElroy, W.N.

    1984-04-01

    The resolution of technical issues generated by the accident at Three-Mile Island Unit 2 (TMI-2) will inevitably be of long range benefit. Determination of the fuel debris dispersal in the TMI-2 reactor system represents a major technical issue. In reactor recovery operations, such as for the safe handling and final disposal of TMI-2 waste, quantitative fuel assessments are being conducted throughout the reactor core and primary coolant system

  6. Reactivity feedback coefficients of a material test research reactor fueled with high-density U{sub 3}Si{sub 2} dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)], E-mail: farhan73@hotmail.com; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2008-10-15

    The reactivity feedback coefficients of a material test research reactor fueled with high-density U{sub 3}Si{sub 2} dispersion fuels were calculated. For this purpose, the low-density LEU fuel of an MTR was replaced with high-density U{sub 3}Si{sub 2} LEU fuels currently being developed under the RERTR program. Calculations were carried out to find the fuel temperature reactivity coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the average values of fuel temperature reactivity feedback coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient from 20 deg. C to 100 deg. C, at the beginning of life, followed the relationships (in units of {delta}k/k x 10{sup -5} K{sup -1}) -2.116 - 0.118 {rho}{sub U}, 0.713 - 37.309/{rho}{sub U} and -12.765 - 34.309/{rho}{sub U}, respectively for 4.0 {<=} {rho}{sub U} (g/cm{sup 3}) {<=} 6.0.

  7. PCDP [Prototypical Spent Fuel Consolidation Equipment Demonstration Project] design basis accident report 9315-P-103, Rev. A

    International Nuclear Information System (INIS)

    1987-12-01

    The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) has identified a requirement to integrate the spent fuel rod consolidation design activities of each of several proposed geological repository facilities and the Monitored Retrievable Storage (MRS) facility, and to develop efficient and cost-effective equipment for the consolidation process. The equipment to be developed for the rod consolidation system will be required to operate in a dry environment at rates which can be appropriately scaled to approximate the waste management system acceptance rates, irrespective of repository geologic characteristics or the existence of an MRS facility in the waste management system. The purpose of this report is to identify and analyze the range of facility credible events and accident occurrences (from minor to the design basis accidents) and their causes and consequences. For each situation, the considerations to prevent or mitigate the event or accident is addressed

  8. Fuel design and operational experience in Loviisa NPP, future trends in fuel issues

    International Nuclear Information System (INIS)

    Terasvirta, R.

    2001-01-01

    This paper summarizes the past operational experience of nuclear fuel with reference to most significant design changes during the years. In general, the fuel behaviour in Loviisa NPP in terms of leaking fuel assemblies has been good. The major improvements by fuel design changes in Lovissa NPP, including rod elongation margin, change in the pellet design and manufacturing process, upper grid modifications, change of material in the spacer grids and reduction of the shroud tube thickness are discussed and related to the number of failed fuel assemblies. The detailed investigation of fuel failure rates as function of different fuel and operation characteristics allows to classify the leaking fuel assemblies according to the cause of failure. In a brief discussion concerning new changes in the safety guide for nuclear design limits, re-issued by the Finnish Safety Authority (STUK), the frequencies for class 1 and class 2 accidents are determined. Another change in this guide is the introduction of design limits for the number of fuel rods experiencing DNB in class 1 accidents and number of failed rods in class 2 accidents. It is concluded that as far as normal operation is concerned, there seems to be sufficiently large margin between present operational limits in Loviisa and the design limits. The real limits do not come from fuel behaviour in the normal operation or operational occurrences but from the accident behaviour. At the moment, fuel assembly burnup extension beyond 45 MWd/kgU is clearly out of the question before further information and positive results are obtained on high burnup fuel behaviour in accident conditions

  9. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Cahalan, J.E.

    2009-01-01

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to

  10. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  11. Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect II: Effects of variations of the fuel particle diameters

    International Nuclear Information System (INIS)

    Ding Shurong; Wang Qiming; Huo Yongzhong

    2010-01-01

    In order to predict the irradiation mechanical behaviors of plate-type dispersion nuclear fuel elements, the total burnup is divided into two stages: the initial stage and the increasing stage. At the initial stage, the thermal effects induced by the high temperature differences between the operation temperatures and the room temperature are mainly considered; and at the increasing stage, the intense mechanical interactions between the fuel particles and the matrix due to the irradiation swelling of fuel particles are focused on. The large-deformation thermo-elasto-plasticity finite element analysis is performed to evaluate the effects of particle diameters on the in-pile mechanical behaviors of fuel elements. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the fuel particle diameters; the effects of particle diameters on the maximum first principal stresses vary with burnup, and the considered case with the largest particle diameter holds the maximum values all along; (2) at the cladding near the interface between the fuel meat and the cladding, the Mises stresses and the first principal stresses undergo major changes with increasing burnup, and different variations exist for different particle diameter cases; (3) the maximum Mises stresses at the fuel particles rise with the particle diameters.

  12. Simulation of accident-tolerant U{sub 3}Si{sub 2} fuel using FRAPCON code

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R., E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    The research on accident-tolerant fuels (ATFs) increased after the Fukushima event. This benefited risk management in nuclear operations. In this investigation, the physical properties of the materials being developed for the ATF program were compared with those of the standard UO{sub 2} - Zr fuel system. The research efforts in innovative fuel design include rigorous characterization of thermal, mechanical, and chemical assessment, with the objectives of making the burnup cycle longer, increasing power density, and improving safety performance. Fuels must reach a high uranium density - above that supported by UO{sub 2} - and possess coating that exhibits better oxidation resistance than Zircaloy. The uranium density and thermal conductivity of ATFs, such as U{sub 3}Si{sub 2}, UN, and UC, is higher than that of UO{sub 2}; their combination with advanced cladding provides possible fuel - cladding options. An ideal combination of fuel and cladding must increase fuel performance in loss-of-coolant scenarios. The disadvantages of U{sub 3}Si{sub 2}, UN, and UC are their swelling rates, which are higher than that of UO{sub 2}. The thermal conductivities of ATFs are approximately four times higher than that of UO2. To prevent the generation of hydrogen due to oxidation of zirconium-based alloys in contact with steam, cladding options, such as ferritic alloys, were studied. It was verified that FeCrAl alloys and SiC provide better response under severe conditions because of their thermophysical properties. The findings of this study indicate that U{sub 3}Si{sub 2} and the FeCrAl fuel cladding concept should replace UO{sub 2} - Zr as the fuel system of choice. (author)

  13. Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels

    Directory of Open Access Journals (Sweden)

    Т. Н. Митусова

    2017-12-01

    Full Text Available The article offers a definition of the stability of marine high-viscosity fuel from the point of view of the colloid-chemical concept of oil dispersed systems. The necessity and importance of the inclusion in the current regulatory requirements of this quality parameter of high-viscosity marine fuel is indicated. The objects of the research are high-viscosity marine fuels, the basic components of which are heavy oil residues: fuel oil that is the atmospheric residue of oil refining and viscosity breaking residue that is the product of light thermal cracking of fuel oil. As a thinning agent or distillate component, a light gas oil was taken from the catalytic cracking unit. The stability of the obtained samples was determined through the xylene equivalent index, which characterizes the stability of marine high-viscosity fuel to lamination during storage, transportation and operation processes. To improve performance, the resulting base compositions of high-viscosity marine fuels were modified by introducing small concentrations (0.05 % by weight of stabilizing additives based on oxyethylated amines of domestic origin and alkyl naphthalenes of foreign origin.

  14. Fuel performance of rod-type research reactor fuel using a centrifugally atomized U-Mo powder

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Lee, Yoon Sang; Kim, Chang Kyu

    2009-01-01

    A low enriched uranium nuclear fuel for research reactors has been developed in order to replace a highly enriched uranium fuel according to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program. In KAERI, a rod-type U 3 Si dispersion fuel has been developed for a localization of the HANARO fuel and a U 3 Si/Al dispersion fuel of 3.15 gU/cc has been used at HANARO as a driver fuel since 2005. Although uranium silicide dispersion fuels such as U 3 Si 2 /Al and U 3 Si/Al are being used widely, high uranium density dispersion fuels (8-9 g/cm 3 ) are required for some high performance research reactors. U-Mo alloys have been considered as one of the most promising uranium alloys for a dispersion fuel due to their good irradiation performance. An international qualification program on U-Mo fuel to replace a uranium silicide dispersion fuel with a U-Mo dispersion fuel has been carried out

  15. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    Directory of Open Access Journals (Sweden)

    Itamar Iliuk

    2016-01-01

    Full Text Available Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was proposed. A partial loss of flow accident was simulated to show the behavior of the model under this type of accident. The results show that the critical heat flux was detected in the central region along the axial direction of the plate when the right water channel was blocked.

  16. Nuclear Reactor RA Safety Report, Vol. 13, Causes of possible accidents

    International Nuclear Information System (INIS)

    1986-11-01

    This volume includes the analysis of possible accidents on the RA research reaktor. Any unwanted action causing decrease of integrity of any of the reactor safety barriers is considered to be a reactor accident. Safety barriers are: fuel element cladding, reactor vessel, biogical shield, and reactor building. Reactor accidents can be classified in four categories: (1) accidents caused by reactivity changes; (2) accidents caused by mis function of the cooling system; (3) accidents caused by errors in fuel management and auxiliary systems; (4) accidents caused by natural or other external disasters. The analysis of possible causes of reactor accidents includes the analysis of possible impacts on the reactor itself and the environment [sr

  17. Chernobyl dose for population of areas radiocontaminated after the Chernobyl accident

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1996-01-01

    The parameters and consequences of the Chernobyl accident that took place on 26 April 1986 are of special interest, because it was an extremely serious accident of an operating power nuclear reactor, one of over four hundred in the world. The basic specific feature of this accident determining the complex character of radiation impact on man was the explosive destruction and subsequent high-temperature burning of the reactor, which caused not only the release of inert radioactive gases and radioisotopes of volatile elements (iodine, cesium, tellurium, etc.), but also the evaporation of refractory fission products (barium, strontium, etc.), and the dispersion of fuel particles. Another important feature of the radioactive contamination of the area as compared with that of the global fallout from nuclear weapons testing is a single or short-term deposition which nevertheless leads to long-term exposure of man by long-lived radionuclides. The third specific feature is the combined and strong influence of natural soil and climate factors, on the one hand, and of anthropogenic factors, basically, of wide-scale countermeasures. on the other hand, on the level of exposure of man. 20 refs., 11 figs., 12 tabs

  18. A summary of the assessment of fuel behaviour, fission product release and pressure tube integrity following a postulated large loss-of-coolant accident

    International Nuclear Information System (INIS)

    Langman, V.J.; Weaver, K.R.

    1984-05-01

    The Ontario Hydro analyses of fuel and pressure tube temperatures, fuel behaviour, fission product release and pressure tube integrity for large break loss-of-coolant accidents in Bruce A or Pickering A have been critically reviewed. The determinations of maximum fuel temperatures and fission product release are very uncertain, and pressure tube integrity cannot be assured where low steam flows are predicted to persist for times on the order of minutes

  19. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    International Nuclear Information System (INIS)

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs

  20. NUMERICAL SIMULATION OF TOXIC CHEMICAL DISPERSION AFTER ACCIDENT AT RAILWAY

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-04-01

    Full Text Available Purpose. This research focuses on the development of an applied numerical model to calculate the dynamics of atmospheric pollution in the emission of dangerous chemical substances in the event of transportation by railway. Methodology. For the numerical simulation of transport process of the dangerous chemical substance in the atmosphere the equation of convection-diffusion pollutant transport is used. This equation takes into account the effect of wind, atmospheric diffusion, the power of emission source, as well as the movement of the source of emission (depressurized tank on the process of pollutant dispersion. When carrying out computing experiment one also takes into account the profile of the speed of the wind flow. For the numerical integration of pollutant transport in the atmosphere implicit finite-difference splitting scheme is used. The numerical calculation is divided into four steps of splitting and at each step of splitting the unknown value of the concentration of hazardous substance is determined by the explicit running account scheme. On the basis of the numerical model it was created the code using the algorithmic language FORTRAN. One conducted the computational experiments to assess the level of air pollution near the railway station «Illarionovo» in the event of a possible accident during transportation of ammonia. Findings. The proposed model allows you to quickly calculate the air pollution after the emission of chemically hazardous substance, taking into account the motion of the emission source. The model makes it possible to determine the size of the land surface pollution zones and the amount of pollutants deposited on a specific area. Using the developed numerical model it was estimated the environmental damage near the railway station «Illarionovo». Originality. One can use the numerical model to calculate the size and intensity of the chemical contamination zones after accidents on transport. Practical value