WorldWideScience

Sample records for accident experimental facility

  1. Experimental programs and facilities for ASTRID development related to the Severe Accident Issue

    International Nuclear Information System (INIS)

    Journeau, C.; Suteau, C.; Trotignon, L.; Willermoz, G.; Ducros, G.; Courouau, J.L.; Ruggieri, J.M.; Serre, F.

    2013-01-01

    A comprehensive experimental program has been launched in order to gain new data in support of the severe accident studies related to the ASTRID demonstrator. The main new issues with respect to the historic experimental database are mainly related to new design options: heterogeneous core with thick pins; new materials; new severe accident mitigation systems such as - corium discharge channels; - core-catcher with sacrificial materials; - some issues remaining open as Fuel Coolant Interaction. Experiments are needed both in-pile and out of pile: - Depending on the objectives, the out of pile experiments can be conducted - with simulant; - with prototypic corium; - or with irradiated fuel. A new large scale corium facility, FOURNAISE, must be built to fulfill this program. Already, experimental R&D started in existing facilities, such as VITI or CORRONA

  2. A study on the establishment of severe accident experimental facility

    International Nuclear Information System (INIS)

    Yoo, Kun Joong; Kim, Sang Baek; Kim, In Sik; Nho, Ki Man; Bark, Rae Joon; Park, Chun Kyeong; Sim, Seok Koo; Lee, Seong Jae; Chung, Moon Ki; Cho, Yeong Ro; Chun, Shee Yeong

    1994-07-01

    Significant progress has been achieved during this year of the project. Planned DCH experiments on the sensitivity of the cavity geometry factors and the cavity capture volume effects were performed using the HPME facility for Kori-1/2 and YGN-3/4 cavity scale models. The Crust Formation Test Facility has been completed. Preliminary calculations were performed to predict test results. The experiments of the crust formation on the simulant and its heat transfer characteristic were performed to investigate the effects of coolant injection methods, bottom heating boundary surface temperatures, coolant temperatures and coolant flow rates. The design of the FCI Test Facility has been completed and the procurement of the materials is in progress. Also, the steam condensation experiment on the vertical containment walls and the research on the development of measuring techniques of the particle sizes and velocities are in progress as planned. Through international research collaboration with USNRC and CEA Cadarache, information of the experimental research on the severe fuel damage has been gathered and analyzed. Preliminary planning of the second phase tests has been launched this year. This study proposes the scope of the second phase and the strategy to implement the proposed second phase experimental program. This study also proposes a strategy to establish building blocks and infrastructure for the severe accident research in Korea. (Author)

  3. Criticality accident of nuclear fuel facility. Think back on JCO criticality accident

    International Nuclear Information System (INIS)

    Naito, Keiji

    2003-09-01

    This book is written in order to understand the fundamental knowledge of criticality safety or criticality accident of nuclear fuel facility by the citizens. It consists of four chapters such as critical conditions and criticality accident of nuclear facility, risk of criticality accident, prevention of criticality accident and a measure at an occurrence of criticality accident. A definition of criticality, control of critical conditions, an aspect of accident, a rate of incident, damage, three sufferers, safety control method of criticality, engineering and administrative control, safety design of criticality, investigation of failure of safety control of JCO criticality accident, safety culture are explained. JCO criticality accident was caused with intention of disregarding regulation. It is important that we recognize the correct risk of criticality accident of nuclear fuel facility and prevent disasters. On the basis of them, we should establish safety culture. (S.Y.)

  4. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    International Nuclear Information System (INIS)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-01-01

    Highlights: • A 1/8th geometric-scale test facility that models the VHTR hot plenum is proposed. • Geometric scaling analysis is introduced for VHTR to analyze air-ingress accident. • Design calculations are performed to show that accident phenomenology is preserved. • Some analyses include time scale, hydraulic similarity and power scaling analysis. • Test facility has been constructed and shake-down tests are currently being carried out. - Abstract: A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time

  5. Simulation of experiment on aerosol behaviour at severe accident conditions in the LACE experimental facility with the ASTEC CPA code

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.

    2007-01-01

    The experiment LACE LA4 on thermal-hydraulics and aerosol behavior in a nuclear power plant containment, which was performed in the LACE experimental facility, was simulated with the ASTEC CPA module of the severe accident computer code ASTEC V1.2. The specific purpose of the work was to assess the capability of the module (code) to simulate thermal-hydraulic conditions and aerosol behavior in the containment of a light-water-reactor nuclear power plant at severe accident conditions. The test was simulated with boundary conditions, described in the experiment report. Results of thermal-hydraulic conditions in the test vessel, as well as dry aerosol concentrations in the test vessel atmosphere, are compared to experimental results and analyzed. (author)

  6. Investigation of analytical and experimental behavior of nuclear facility ventilation systems

    International Nuclear Information System (INIS)

    Smith, P.R.; Ricketts, C.I.; Andrae, R.W.; Bolstad, J.W.; Horak, H.L.; Martin, R.A.; Tang, P.K.; Gregory, W.S.

    1979-01-01

    The behavior of nuclear facility ventilation systems subjected to both natural and man-caused accidents is being investigated. The purpose of the paper is to present a program overview and highlight recent results of the investigations. The program includes both analytical and experimental investigations. Computer codes for predicting accident-induced gas dynamics and test facilities to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. A unique test facility and recently obtained structural limits for high efficiency particulate air filters are reported

  7. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  8. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs

  9. Probabilistic risk assessment for the Los Alamos Meson Physics Facility worst-case design-basis accident

    International Nuclear Information System (INIS)

    Sharirli, M.; Butner, J.M.; Rand, J.L.; Macek, R.J.; McKinney, S.J.; Roush, M.L.

    1992-01-01

    This paper presents results from a Los Alamos National Laboratory Engineering and Safety Analysis Group assessment of the worse-case design-basis accident associated with the Clinton P. Anderson Meson Physics Facility (LAMPF)/Weapons Neutron Research (WNR) Facility. The primary goal of the analysis was to quantify the accident sequences that result in personnel radiation exposure in the WNR Experimental Hall following the worst-case design-basis accident, a complete spill of the LAMPF accelerator 1L beam. This study also provides information regarding the roles of hardware systems and operators in these sequences, and insights regarding the areas where improvements can increase facility-operation safety. Results also include confidence ranges to incorporate combined effects of uncertainties in probability estimates and importance measures to determine how variations in individual events affect the frequencies in accident sequences

  10. Accident-generated radioactive particle source term development for consequence assessment of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sutter, S.L.; Ballinger, M.Y.; Halverson, M.A.; Mishima, J.

    1983-04-01

    Consequences of nuclear fuel cycle facility accidents can be evaluated using aerosol release factors developed at Pacific Northwest Laboratory. These experimentally determined factors are compiled and consequence assessment methods are discussed. Release factors can be used to estimate the fraction of material initially made airborne by postulated accident scenarios. These release fractions in turn can be used in models to estimate downwind contamination levels as required for safety assessments of nuclear fuel cycle facilities. 20 references, 4 tables

  11. Molten Core - Concrete interactions in nuclear accidents. Theory and design of an experimental facility

    International Nuclear Information System (INIS)

    Sevon, T.

    2005-11-01

    In a hypothetical severe accident in a nuclear power plant, the molten core of the reactor may flow onto the concrete floor of containment building. This would cause a molten core . concrete interaction (MCCI), in which the heat transfer from the hot melt to the concrete would cause melting of the concrete. In assessing the safety of nuclear reactors, it is important to know the consequences of such an interaction. As background to the subject, this publication includes a description of the core melt stabilization concept of the European Pressurized water Reactor (EPR), which is being built in Olkiluoto in Finland. The publication includes a description of the basic theory of the interaction and the process of spalling or cracking of concrete when it is heated rapidly. A literature survey and some calculations of the physical properties of concrete and corium. concrete mixtures at high temperatures have been conducted. In addition, an equation is derived for conservative calculation of the maximum possible concrete ablation depth. The publication also includes a literature survey of experimental research on the subject of the MCCI and discussion of the results and deficiencies of the experiments. The main result of this work is the general design of an experimental facility to examine the interaction of molten metals and concrete. The main objective of the experiments is to assess the probability of spalling, or cracking, of concrete under pouring of molten material. A program of five experiments has been designed, and pre-test calculations of the experiments have been conducted with MELCOR 1.8.5 accident analysis program and conservative analytic calculations. (orig.)

  12. Introduction to Large-sized Test Facility for validating Containment Integrity under Severe Accidents

    International Nuclear Information System (INIS)

    Na, Young Su; Hong, Seongwan; Hong, Seongho; Min, Beongtae

    2014-01-01

    An overall assessment of containment integrity can be conducted properly by examining the hydrogen behavior in the containment building. Under severe accidents, an amount of hydrogen gases can be generated by metal oxidation and corium-concrete interaction. Hydrogen behavior in the containment building strongly depends on complicated thermal hydraulic conditions with mixed gases and steam. The performance of a PAR can be directly affected by the thermal hydraulic conditions, steam contents, gas mixture behavior and aerosol characteristics, as well as the operation of other engineering safety systems such as a spray. The models in computer codes for a severe accident assessment can be validated based on the experiment results in a large-sized test facility. The Korea Atomic Energy Research Institute (KAERI) is now preparing a large-sized test facility to examine in detail the safety issues related with hydrogen including the performance of safety devices such as a PAR in various severe accident situations. This paper introduces the KAERI test facility for validating the containment integrity under severe accidents. To validate the containment integrity, a large-sized test facility is necessary for simulating complicated phenomena induced by an amount of steam and gases, especially hydrogen released into the containment building under severe accidents. A pressure vessel 9.5 m in height and 3.4 m in diameter was designed at the KAERI test facility for the validating containment integrity, which was based on the THAI test facility with the experimental safety and the reliable measurement systems certified for a long time. This large-sized pressure vessel operated in steam and iodine as a corrosive agent was made by stainless steel 316L because of corrosion resistance for a long operating time, and a vessel was installed in at KAERI in March 2014. In the future, the control systems for temperature and pressure in a vessel will be constructed, and the measurement system

  13. Verification of fire and explosion accident analysis codes (facility design and preliminary results)

    International Nuclear Information System (INIS)

    Gregory, W.S.; Nichols, B.D.; Talbott, D.V.; Smith, P.R.; Fenton, D.L.

    1985-01-01

    For several years, the US Nuclear Regulatory Commission has sponsored the development of methods for improving capabilities to analyze the effects of postulated accidents in nuclear facilities; the accidents of interest are those that could occur during nuclear materials handling. At the Los Alamos National Laboratory, this program has resulted in three computer codes: FIRAC, EXPAC, and TORAC. These codes are designed to predict the effects of fires, explosions, and tornadoes in nuclear facilities. Particular emphasis is placed on the movement of airborne radioactive material through the gaseous effluent treatment system of a nuclear installation. The design, construction, and calibration of an experimental ventilation system to verify the fire and explosion accident analysis codes are described. The facility features a large industrial heater and several aerosol smoke generators that are used to simulate fires. Both injected thermal energy and aerosol mass can be controlled using this equipment. Explosions are simulated with H 2 /O 2 balloons and small explosive charges. Experimental measurements of temperature, energy, aerosol release rates, smoke concentration, and mass accumulation on HEPA filters can be made. Volumetric flow rate and differential pressures also are monitored. The initial experiments involve varying parameters such as thermal and aerosol rate and ventilation flow rate. FIRAC prediction results are presented. 10 figs

  14. Assessment of Loads and Performance of a Containment in a Hypothetical Accident (ALPHA). Facility design report

    International Nuclear Information System (INIS)

    Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Moriyama, Kiyofumi; Ito, Hideo; Komori, Keiichi; Sonobe, Hisao; Sugimoto, Jun

    1998-06-01

    In the ALPHA (Assessment of Loads and Performance of Containment in Hypothetical Accident) program, several tests have been performed to quantitatively evaluate loads to and performance of a containment vessel during a severe accident of a light water reactor. The ALPHA program focuses on investigating leak behavior through the containment vessel, fuel-coolant interaction, molten core-concrete interaction and FP aerosol behavior, which are generally recognized as significant phenomena considered to occur in the containment. In designing the experimental facility, it was considered to simulate appropriately the phenomena mentioned above, and to cover experimental conditions not covered by previous works involving high pressure and temperature. Experiments from the viewpoint of accident management were also included in the scope. The present report describes design specifications, dimensions, instrumentation of the ALPHA facility based on the specific test objectives and procedures. (author)

  15. Development of Accident Scenario for Interim Spent Fuel Storage Facility Based on Fukushima Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongjin; Choi, Kwangsoon; Yoon, Hyungjoon; Park, Jungsu [KEPCO-E and C, Yongin (Korea, Republic of)

    2014-05-15

    700 MTU of spent nuclear fuel is discharged from nuclear fleet every year and spent fuel storage is currently 70.9% full. The on-site wet type spent fuel storage pool of each NPP(nuclear power plants) in Korea will shortly exceed its storage limit. Backdrop, the Korean government has rolled out a plan to construct an interim spent fuel storage facility by 2024. However, the type of interim spent fuel storage facility has not been decided yet in detail. The Fukushima accident has resulted in more stringent requirements for nuclear facilities in case of beyond design basis accidents. Therefore, there has been growing demand for developing scenario on interim storage facility to prepare for beyond design basis accidents and conducting dose assessment based on the scenario to verify the safety of each type of storage.

  16. Improving aircraft accident forecasting for an integrated plutonium storage facility

    International Nuclear Information System (INIS)

    Rock, J.C.; Kiffe, J.; McNerney, M.T.; Turen, T.A.

    1998-06-01

    Aircraft accidents pose a quantifiable threat to facilities used to store and process surplus weapon-grade plutonium. The Department of Energy (DOE) recently published its first aircraft accident analysis guidelines: Accident Analysis for Aircraft Crash into Hazardous Facilities. This document establishes a hierarchy of procedures for estimating the small annual frequency for aircraft accidents that impact Pantex facilities and the even smaller frequency of hazardous material released to the environment. The standard establishes a screening threshold of 10 -6 impacts per year; if the initial estimate of impact frequency for a facility is below this level, no further analysis is required. The Pantex Site-Wide Environmental Impact Statement (SWEIS) calculates the aircraft impact frequency to be above this screening level. The DOE Standard encourages more detailed analyses in such cases. This report presents three refinements, namely, removing retired small military aircraft from the accident rate database, correcting the conversion factor from military accident rates (accidents per 100,000 hours) to the rates used in the DOE model (accidents per flight phase), and adjusting the conditional probability of impact for general aviation to more accurately reflect pilot training and local conditions. This report documents a halving of the predicted frequency of an aircraft impact at Pantex and points toward further reductions

  17. J-PARC Transmutation Experimental Facility Programme

    International Nuclear Information System (INIS)

    Sasa, T.; Takei, H.; Saito, S.; Obayashi, H.; Nishihara, K.; Sugawara, T.; Iwamoto, H.; Yamaguchi, K.; Tsujimoto, K.; Oigawa, H.

    2015-01-01

    Since the Fukushima accident, nuclear transmutation is considered as an option for waste management. Japan Atomic Energy Agency proposes the transmutation of minor actinides (MA) in accelerator-driven system (ADS) using lead-bismuth eutectic alloy (LBE) as a spallation target and a coolant of subcritical core. To obtain the data required for ADS design, we plan the building of a transmutation experimental facility (TEF) is planned within the J-PARC project. TEF consists of an ADS target test facility (TEF-T), which will be installed 400 MeV-250 kW LBE spallation target for material irradiations, and a transmutation physics experimental facility (TEF-P), which set up a fast critical/subcritical assembly driven by low power proton beam with MA fuel to study ADS neutronics. At TEF-T, various research plans to use emitted neutrons from LBE target are discussed. The paper summarises a road-map to establish the ADS transmuter and latest design activities for TEF construction. (authors)

  18. Accidents in nuclear facilities: classification, incidence and impact

    International Nuclear Information System (INIS)

    Galicia A, J.; Paredes G, L. C.

    2012-10-01

    A general analysis of the 146 accidents reported officially in nuclear facilities from 1945 to 2012 is presented, among them some took place in: power or research nuclear reactors, critical and subcritical nuclear assemblies, handling of nuclear materials inside laboratories belonging to institutes or universities, in radiochemistry industrial plants and nuclear fuel factories. In form graph the incidence of these accidents is illustrated classified for; category, decades, geographical localization, country classification before the OECD, failure type, and the immediate or later victims. On the other hand, the main learned lessons of the nuclear accidents of Three Mile Island, Chernobyl and Fukushima are stood out, among those that highlight; the human factors, the necessity of designs more innovative and major technology for the operation, control and surveillance of the nuclear facilities, to increase the criterions of nuclear, radiological and physics safety applied to these facilities, the necessity to carry out probabilistic analysis of safety more detailed for cases of not very probable accidents and their impact, to revalue the selection criterions of the sites for nuclear locations, the methodology of post-accident sites recovery and major instrumentation for parameters evaluation and the radiological monitoring among others. (Author)

  19. Thermal hydraulic behavior of a PWR under beyond-design-basis accident conditions: Conclusions from an experimental program in a 4-loop test facility (PKL)

    International Nuclear Information System (INIS)

    Umminger, K.J.; Kastner, W.; Mandl, R.M.; Weber, P.

    1993-01-01

    Within the scope of German reactor safety research, extensive experiments covering the behavior of nuclear power plants under accident conditions have been carried out in the PKL test facility which simulates a 4-loop, 1,300 MWe KWU-designed PWR. While the investigations dealing with design-basis accidents and with the efficiency of the emergency core cooling systems have been largely completed, the main interest nowadays concentrates on the investigation of beyond-design-basis accidents to demonstrate the safety margins of nuclear power plants and to investigate the contribution of the built-in safety features for a further reduction of the residual risk. The thermal hydraulic behavior of a PWR under these extreme accident conditions was experimentally investigated within the PKL III B test program. This paper presents the fundamental findings with some of the most important results being discussed in detail. Future plans are also outlined

  20. STACY and TRACY: nuclear criticality experimental facilities under construction

    International Nuclear Information System (INIS)

    Kobayashi, I.; Takeshita, I.; Yanagisawa, H.; Tsujino, T.

    1992-01-01

    Japan Atomic Energy Research Institute is constructing a Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF, where the following research themes essential for evaluating safety problems relating to back-end technology in nuclear fuel cycle facilities will be studied: nuclear criticality safety research; research on advanced reprocessing processes and partitioning; and research on transuranic waste treatment and disposal. To perform nuclear criticality safety research related to the reprocessing of light water reactor spent fuels, two criticality experimental facilities, STACY and TRACY, are under construction. STACY (Static Criticality Facility) will be used for the study of criticality conditions of solution fuels, uranium, plutonium and their mixtures. TRACY (Transient Criticality Facility) will be used to investigate criticality accident phenomena with uranium solutions. The construction progress and experimental programmes are described in this Paper. (author)

  1. Large eddy simulation of Loss of Vacuum Accident in STARDUST facility

    International Nuclear Information System (INIS)

    Benedetti, Miriam; Gaudio, Pasquale; Lupelli, Ivan; Malizia, Andrea; Porfiri, Maria Teresa; Richetta, Maria

    2013-01-01

    Highlights: ► Fusion safety, plasma material interaction. ► Numerical and experimental data comparison to analyze the consequences of Loss of Vacuum Accident that can provoke dust mobilization inside the Vacuum Vessel of the Nuclear Fusion Reactor ITER-like. -- Abstract: The development of computational fluid dynamic (CFD) models of air ingress into the vacuum vessel (VV) represents an important issue concerning the safety analysis of nuclear fusion devices, in particular in the field of dust mobilization. The present work deals with the large eddy simulations (LES) of fluid dynamic fields during a vessel filling at near vacuum conditions to support the safety study of Loss of Vacuum Accidents (LOVA) events triggered by air income. The model's results are compared to the experimental data provided by STARDUST facility at different pressurization rates (100 Pa/s, 300 Pa/s and 500 Pa/s). Simulation's results compare favorably with experimental data, demonstrating the possibility of implementing LES in large vacuum systems as tokamaks

  2. Severe accident analysis and management in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Golshan, Mina

    2013-01-01

    Within the UK regulatory regime, assessment of risks arising from licensee's activities are expected to cover both normal operations and fault conditions. In order to establish the safety case for fault conditions, fault analysis is expected to cover three forms of analysis: design basis analysis (DBA), probabilistic safety assessment (PSA) and severe accident analysis (SAA). DBA should provide a robust demonstration of the fault tolerance of the engineering design and the effectiveness of the safety measures on a conservative basis. PSA looks at a wider range of fault sequences (on a best estimate basis) including those excluded from the DBA. SAA considers significant but unlikely accidents and provides information on their progression and consequences, within the facility, on the site and off site. The assessment of severe accidents is not limited to nuclear power plants and is expected to be carried out for all plant states where the identified dose targets could be exceeded. This paper sets out the UK nuclear regulatory expectation on what constitutes a severe accident, irrespective of the type of facility, and describes characteristics of severe accidents focusing on nuclear fuel cycle facilities. Key rules in assessment of severe accidents as well as the relationship to other fault analysis techniques are discussed. The role of SAA in informing accident management strategies and offsite emergency plans is covered. The paper also presents generic examples of scenarios that could lead to severe accidents in a range of nuclear fuel cycle facilities. (authors)

  3. Relative evaluation on decommissioning accident scenarios of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jei-Kwon; Hyun, Dong-Jun; Kim, Geun-Ho; Kim, Tae-Hyoung; Jo, Kyung-Hwa; Seo, Jae-Seok; Jeong, Seong-Young; Lee, Jung-Jun

    2012-01-01

    Highlights: ► This paper suggests relative importance on accident scenarios during decommissioning of nuclear facilities. ► The importance of scenarios can be performed by using AHP and Sugeno fuzzy method. ► The AHP and Sugeno fuzzy method guarantee reliability of the importance evaluation. -- Abstract: This paper suggests the evaluation method of relative importance on accident scenarios during decommissioning of nuclear facilities. The evaluation method consists of AHP method and Sugeno fuzzy integral method. This method will guarantee the reliability of relative importance evaluation for decommissioning accident scenarios.

  4. The radiological accident at the irradiation facility in Nesvizh

    International Nuclear Information System (INIS)

    1996-01-01

    More than 40 years of experience in radiation processing has shown that such technology is generally used safely, and steady improvement in the design of facilities and careful selection and training of operators have contributed to this good safety record. However, some cases of circumvention of safety systems have been registered and it is documented that the consequences of radiological accidents at industrial radiation facilities can be extremely serious. The causes of accidents may have some points in common, but at the same time may be highly specific. A detailed study of these common and specific features seems to be of great importance for further improvements in safety systems. One such event occurred on 26 October 1991 at an industrial sterilization facility in Nesvizh, Belarus, when the operator entered the irradiation chamber and was severely exposed to a lethal dose of radiation. The significant feature of this case was related to the medical management. It should be underlined that some circumstances of the accident only came to light during the post-accident review made by the IAEA. To document the causes and consequences of the accident and to define the lessons learned are of help to those people with responsibility for the safety of such facilities and to those medical authorities who might be involved in the management of a radiation event. 16 refs, figs, tabs, photographs

  5. Lessons learned from accidents in industrial irradiation facilities

    International Nuclear Information System (INIS)

    1996-01-01

    Use of ionizing radiation in medicine, industry and research for technical development continues to increase throughout the world. One application with a high growth rate is irradiation suing high energy gamma photons and electron beams. There are currently more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation in almost all IAEA Member States. The most common uses of these facilities are to sterilize medical and pharmaceutical products, to preserve foodstuffs, to synthesize polymers and to eradicate insects. Although this industry has a good safety record, there is a potential for accidents with serious consequences to human health because of the high dose rates produced by these sources. Fatal accidents have occurred at installations in both developed and developing countries. Such accidents have prompted a review of several accidents, including five with fatalities, by a team of manufacturers, regulatory authorities and operating organizations. Having looked closely at the circumstances of each accident and the apparent deficiencies in design, safety and regulatory systems and personnel performance, the team made a number of recommendations on the ways in which the safety of irradiators can be improved. The findings of extensive research pertaining to the lessons that can be learned from irradiator accidents are presented. This publication is intended for manufacturers, regulatory authorities and operating organizations dealing with industrial irradiators. It was drafted by J.E. Glen, United States Nuclear Regulatory Commission, United States of America, and P. Zuniga-Bello, Consejo Nacional de Ciencia y Technologia, Mexico

  6. Experimental studies on helium release and stratification within the AIHMS facility

    International Nuclear Information System (INIS)

    Prabhakar, Aneesh; Agrawal, Nilesh; Raghavan, V.; Das, Sarit K.

    2015-01-01

    Hydrogen is generated during core meltdown accidents in nuclear power plants. The study of hydrogen release and mixing within the containment is an important area of safety research. An experimental setup called the AERB-IIT Madras Hydrogen Mixing Studies (AIHMS) facility is setup at IIT Madras to study the distribution of helium (an inert surrogate to hydrogen) subsequent to release as a jet. The present paper gives details of the design, fabrication and instrumentation of the AIHMS facility. It then compares the features of the facility with respect to other facilities existing for hydrogen mitigation studies. Then it gives details of the experiments on concentration build-up studies as a result of injection of gases (air and helium) performed in this experimental facility. (author)

  7. Questionnaire survey report about the criticality accident at a nuclear fuel processing facility

    International Nuclear Information System (INIS)

    2000-01-01

    The Radiation Protection Section of the Japanese Society of Radiological Technology conducted a questionnaire survey on the criticality accident at the nuclear fuel processing facility in Tokai village on September 30, 1999 in order to identify factors related to the accident and consider countermeasures to deal with such accidents. The questionnaire was distributed to 347 members (122 facilities) of the Japanese Society of Radiological Technology who were working or living in Ibaraki Prefecture, and replies were obtained from 104 members (75 facilities). Questions to elicit the opinions of individuals were as following: method of obtaining information about the accident, knowledge about radiation, opinions about the accident, and requests directed to the Society. Questions regarding facilities concerned the following: communication after the accident, requests for dispatch to the accident site, and possession of radiometry devices. In regard to acquisition of information, 91 of the 104 members (87.5%) answered 'television or radios' followed by newspapers. Forty-five of 101 members were questioned about radiation exposure and radiation effects by the public. There were many opinions that accurate news should be provided rapidly, by the mass media. Many members (75%) felt that they lacked knowledge about radiation, reconfirming the importance of education and instruction concerning radiation. Dispatch was requested of 36 of the 75 facilities (48%), and 44 of 83 facilities (53%) owned radiometry instruments. (K.H.)

  8. Severe accident analysis methodology in support of accident management

    International Nuclear Information System (INIS)

    Boesmans, B.; Auglaire, M.; Snoeck, J.

    1997-01-01

    The author addresses the implementation at BELGATOM of a generic severe accident analysis methodology, which is intended to support strategic decisions and to provide quantitative information in support of severe accident management. The analysis methodology is based on a combination of severe accident code calculations, generic phenomenological information (experimental evidence from various test facilities regarding issues beyond present code capabilities) and detailed plant-specific technical information

  9. Investigation of accident management procedures related to loss of feedwater and station blackout in PSB-VVER integral test facility

    Energy Technology Data Exchange (ETDEWEB)

    Bucalossi, A. [EC JRC, (JRC F.5) PO Box 2, 1755 ZG Petten (Netherlands); Del Nevo, A., E-mail: alessandro.delnevo@enea.it [ENEA, C.R. Brasimone, 40032 Camugnano (Italy); Moretti, F.; D' Auria, F. [GRNSPG, Universita di Pisa, via Diotisalvi 2, 56100 Pisa (Italy); Elkin, I.V.; Melikhov, O.I. [Electrogorsk Research and Engineering Centre, Electrogorsk, Moscow Region (Russian Federation)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Four integral test facility experiments related to VVER-1000 reactor. Black-Right-Pointing-Pointer TH response of the VVER-1000 primary system following total loss of feedwater and station blackout scenarios. Black-Right-Pointing-Pointer Accident management procedures in case of total loss of feedwater and station blackout. Black-Right-Pointing-Pointer Experimental data represent an improvement of existing database for TH code validation. - Abstract: VVER 1000 reactors have some unique and specific features (e.g. large primary and secondary side fluid inventory, horizontal steam generators, core design) that require dedicated experimental and analytical analyses in order to assess the performance of safety systems and the effectiveness of possible accident management strategies. The European Commission funded project 'TACIS 2.03/97', Part A, provided valuable experimental data from the large-scale (1:300) PSB-VVER test facility, investigating accident management procedures in VVER-1000 reactor. A test matrix was developed at University of Pisa (responsible of the project) with the objective of obtaining the experimental data not covered by the OECD VVER validation matrix and with main focus on accident management procedures. Scenarios related to total loss of feed water and station blackout are investigated by means of four experiments accounting for different countermeasures, based on secondary cooling strategies and primary feed and bleed procedures. The transients are analyzed thoroughly focusing on the identification of phenomena that will challenge the code models during the simulations.

  10. Cold Vacuum Drying facility design basis accident analysis documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    2000-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls

  11. Cold Vacuum Drying facility design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  12. THAI test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S., E-mail: gupta@becker-technologies.com [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Schmidt, E.; Laufenberg, B. von; Freitag, M.; Poss, G. [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Funke, F. [AREVA GmbH, P.O. Box 1109, 91001 Erlangen (Germany); Weber, G. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Forschungszentrum, Boltzmannstraße 14, 85748 Garching (Germany)

    2015-12-01

    Highlights: • Large scale facility for investigating representative LWR severe accident scenarios. • Coupled effect tests in the field of thermal-hydraulics, hydrogen, aerosol and iodine. • Measurement techniques improved and adapted for severe accident conditions. • Testing of passive mitigation systems (e.g. PAR) under accident conditions. • THAI data application for validation and development of CFD and LP codes. - Abstract: The test facility THAI (thermal-hydraulics, hydrogen, aerosol, and iodine) aims at addressing open questions concerning gas distribution, behaviour of hydrogen, iodine and aerosols in the containment of light water reactors during severe accidents. Main component of the facility is a 60 m{sup 3} stainless steel vessel, 9.2 m high and 3.2 m in diameter, with exchangeable internals for multi-compartment investigations. The maximal design pressure of the vessel is 14 bar which allows H{sub 2} combustion experiments at a severe accident relevant H{sub 2} concentration level. The facility is approved for the use of low-level radiotracer I-123 which enables the measurement of time resolved iodine behaviour. The THAI test facility allows investigating various accident scenarios, ranging from turbulent free convection to stagnant stratified containment atmospheres and can be combined with simultaneous use of hydrogen, iodine and aerosol issues. THAI experimental research also covers investigations related to mitigation systems employed in light water reactor containments by performing experiments on, e.g. pressure suppression pool hydrodynamics, performance behaviour of passive autocatalytic recombiners, and spray interaction with hydrogen–steam–air flames in phenomenon orientated and coupled-effects experiments. The THAI experimental data have been widely used for the validation and further development of Lumped Parameter and Computational Fluid Dynamics codes with 3D capabilities, e.g. International Standard Problems ISP-47 (thermal

  13. Cold Vacuum Drying Facility Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    PIEPHO, M.G.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR

  14. Analysis of the accident with the coolant discharge into the plasma vessel of the W7-X fusion experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Ušpuras, E.; Kaliatka, A.; Kaliatka, T., E-mail: tadas@mail.lei.lt

    2013-06-15

    Highlights: • The accident with water ingress into the plasma vessel in Wendelstein nuclear fusion device W7-X was analyzed. • The analysis of the processes in the plasma vessel and ventilation system was performed using thermal-hydraulic RELAP5 Mod3.3 code. • The suitability of pressure increase prevention system was assessed. • All analyses results will be used for the optimization of W7-X design and to ensure safe operation of this nuclear fusion device. -- Abstract: Fusion is the energy production technology, which could potentially solve problems with growing energy demand of population in the future. Starting 2007, Lithuanian Energy Institute (LEI) is a member of European Fusion Development Agreement (EFDA) organization. LEI is cooperating with Max Planck Institute for Plasma Physics (IPP, Germany) in the frames of EFDA project by performing safety analysis of fusion device W7-X. Wendelstein 7-X (W7-X) is an experimental stellarator facility currently being built in Greifswald, Germany, which shall demonstrate that in the future energy could be produced in such type of fusion reactors. In this paper the safety analysis of 40 mm inner diameter coolant pipe rupture in cooling circuit and discharge of steam–water mixture through the leak into plasma vessel during the W7-X no-plasma “baking” operation mode is presented. For the analysis the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers) and plasma vessel was developed by employing system thermal-hydraulic state-of-the-art RELAP5 Mod3.3 code. This paper demonstrated that the developed RELAP5 model enables to analyze the processes in divertor cooling system and plasma vessel. The results of analysis demonstrated that the proposed burst disc, connecting the plasma vessel with venting system, opens and pressure inside plasma vessel does not exceed the limiting 1.1 × 10{sup 5} Pa absolute pressure. Thus, the plasma vessel remains intact after loss

  15. Experimental facilities for plate-out investigations and future work

    International Nuclear Information System (INIS)

    Muenchow, K.; Dederichs, H.; Iniotakis, N.; Sackmann, B.

    1981-01-01

    The safety of HTR under normal operation and accident conditions, the possibility of inspection, maintenance and repair or decontamination of single primary components as well as the safety of maintenance personnel are essentially determined by the transport- and deposition behaviour of the non gaseous fission - and activation products in the primary loop of the reactor. A comprehensive program has been started in 1969 in KFA in collaboration with various industrial firms and foreign institutions to investigate these problems. The program includes in-pile and out-pile experiments, simulating reactor conditions and also different laboratory experiments and extensive theoretical investigations. The aim of these efforts is to test experimentally the models and computercodes, which are used for prediction of transport and deposition behaviour of fission products for HTR's as well under normal as under accident conditions. Further more a verified dataset is to be established. In this paper a survey is given of the experimental facilities carried out by KFA or in cooperation with KFA

  16. Natech accidents at industrial facilities. The case of the Wenchuan earthquake

    OpenAIRE

    Krausmann , Elisabeth; Cruz , Ana Maria; Affeltranger , Bastien

    2009-01-01

    International audience; Natural disasters can trigger chemical accidents (so-called Natech accidents) with severe consequences on man or the environment. This work highlights the main characteristics of earthquake-triggered Natechs by describing our insights from a field trip to chemical facilities in the area affected by the 12 May, 2008, Wenchuan earthquake in China. Our preliminary results indicate that damage was most severe in older facilities with masonry and un- or poorly reinforced co...

  17. Vulnerability assessment of chemical industry facilities in South Korea based on the chemical accident history

    Science.gov (United States)

    Heo, S.; Lee, W. K.; Jong-Ryeul, S.; Kim, M. I.

    2016-12-01

    The use of chemical compounds are keep increasing because of their use in manufacturing industry. Chemical accident is growing as the consequence of the chemical use increment. Devastating damages from chemical accidents are far enough to aware people's cautious about the risk of the chemical accident. In South Korea, Gumi Hydrofluoric acid leaking accident triggered the importance of risk management and emphasized the preventing the accident over the damage reducing process after the accident occurs. Gumi accident encouraged the government data base construction relate to the chemical accident. As the result of this effort Chemical Safety-Clearing-house (CSC) have started to record the chemical accident information and damages according to the Harmful Chemical Substance Control Act (HCSC). CSC provide details information about the chemical accidents from 2002 to present. The detail informations are including title of company, address, business type, accident dates, accident types, accident chemical compounds, human damages inside of the chemical industry facilities, human damage outside of the chemical industry facilities, financial damages inside of the chemical industry facilities, and financial damages outside of the chemical industry facilities, environmental damages and response to the chemical accident. Collected the chemical accident history of South Korea from 2002 to 2015 and provide the spatial information to the each accident records based on their address. With the spatial information, compute the data on ArcGIS for the spatial-temporal analysis. The spatial-temporal information of chemical accident is organized by the chemical accident types, damages, and damages on environment and conduct the spatial proximity with local community and environmental receptors. Find the chemical accident vulnerable area of South Korea from 2002 to 2015 and add the vulnerable area of total period to examine the historically vulnerable area from the chemical accident in

  18. Application of probabilistic methods to accident analysis at waste management facilities

    International Nuclear Information System (INIS)

    Banz, I.

    1986-01-01

    Probabilistic risk assessment is a technique used to systematically analyze complex technical systems, such as nuclear waste management facilities, in order to identify and measure their public health, environmental, and economic risks. Probabilistic techniques have been utilized at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, to evaluate the probability of a catastrophic waste hoist accident. A probability model was developed to represent the hoisting system, and fault trees were constructed to identify potential sequences of events that could result in a hoist accident. Quantification of the fault trees using statistics compiled by the Mine Safety and Health Administration (MSHA) indicated that the annual probability of a catastrophic hoist accident at WIPP is less than one in 60 million. This result allowed classification of a catastrophic hoist accident as ''not credible'' at WIPP per DOE definition. Potential uses of probabilistic techniques at other waste management facilities are discussed

  19. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  20. Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Baker, W.H.; Wittman, R.S.; Amos, C.N.

    1993-01-01

    The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility

  1. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, Troy P.; Andrus, Jason

    2016-07-01

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excess of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the

  2. Accident Fault Trees for Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  3. Descriptions of selected accidents that have occurred at nuclear reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, H.W.

    1980-04-01

    This report was prepared at the request of the President's Commission on the Accident at Three Mile Island to provide the members of the Commission with some insight into the nature and significance of accidents that have occurred at nuclear reactor facilities in the past. Toward that end, this report presents a brief description of 44 accidents which have occurred throughout the world and which meet at least one of the severity criteria that were established.

  4. Descriptions of selected accidents that have occurred at nuclear reactor facilities

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1980-04-01

    This report was prepared at the request of the President's Commission on the Accident at Three Mile Island to provide the members of the Commission with some insight into the nature and significance of accidents that have occurred at nuclear reactor facilities in the past. Toward that end, this report presents a brief description of 44 accidents which have occurred throughout the world and which meet at least one of the severity criteria that were established

  5. Facility accident considerations in the US Department of Energy Waste Management Program

    International Nuclear Information System (INIS)

    Mueller, C.

    1994-01-01

    A principal consideration in developing waste management strategies is the relative importance of Potential radiological and hazardous releases to the environment during postulated facility accidents with respect to protection of human health and the environment. The Office of Environmental Management (EM) within the US Department of Energy (DOE) is currently formulating an integrated national program to manage the treatment, storage, and disposal of existing and future wastes at DOE sites. As part of this process, a Programmatic Environmental impact Statement (PEIS) is being prepared to evaluate different waste management alternatives. This paper reviews analyses that have been Performed to characterize, screen, and develop source terms for accidents that may occur in facilities used to store and treat the waste streams considered in these alternatives. Preliminary results of these analyses are discussed with respect to the comparative potential for significant releases due to accidents affecting various treatment processes and facility configurations. Key assumptions and sensitivities are described

  6. Analysis of Consequences in the Loss-of-Coolant Accident in Wendelstein 7-X Experimental Nuclear Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Uspuras, E., E-mail: algis@mail.lei.lt [Laboratory of Nuclear Installations Safety, Lithuanian Energy Institute, Kaunas (Lithuania)

    2012-09-15

    . The results of analysis demonstrated that proposed burst disk, connecting the plasma vessel with torus hall, opens and pressure inside plasma vessel do not exceed the limiting 1100 kPa absolute pressure. Thus, the plasma vessel remains intact after loss-of-coolant accident during no-plasma operation of Wendelstein 7-X experimental nuclear fusion facility. (author)

  7. Research on the improvement of nuclear safety -A study on the establishment of severe accident experimental facility-

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kune Yull; Ryu, Keon Joong; Park, Chang Kyu; Sim, Seok Ku; Kim, Sang Baek; Nho, Ki Mann; Bang, Kwang Hyun; Park, Rae Jun; Lee, Seong Jae; Kang, Kyung Ho; Jo, Young Ro; Hong, Sung Wan; Jeong, Moon Ki; Park, Chun Kyung; Cheon, Se Young; Kim, In Sik; Moon, Sang Ki; Kim, Jong Hwan; Kim, Seong Ho; Sin, Ki Yeol; Cho, Jae Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For the first phase (1992-1995) of the current research program under nuclear reactor safety enhancement project, the primary objective was placed on the development of an improved cavity design and on the improvement of theoretical models of the separate effects for major severe accident phenomena occurring in the reactor cavity. Also, during the fourth year of this project, small-scale experiments were performed to visualize the fundamental phenomena of boiling in narrow spaces that may exist between the debris crust and the reactor vessel lower head in preparation for the large-scale in-vessel cooling experiment planned for the second phase of the project (1996-2001). Separate effect tests have been performed during the first phase spanning the high pressure melt ejection (HPME) resulting in the direct containment heating (DCH), crust formation during cooling of the high temperature melt, fuel coolant interaction (FCI) in the process of injecting coolant onto the reactor cavity, and the molten core concrete interaction (MCCI). Some research programs were subcontracted with universities. Steam condensation on the containment inner wall was investigated by the POSTECH, while the experimental technique for the simultaneous measurement of particle size and velocity was developed by the KAIST. The second phase experimental projects center about the in-vessel accident management tests SONATA-IV (Simulation of Naturally Arrested Thermal Attack in Vessel) and ex-vessel accident management tests TOCATA-XV (Tests on Cavity Arrested Thermal Attack ex Vessel). In preparation for the second phase in-vessel experimental program, one of our research staff has participated in the PHEBUS-FP program in CEA Cadarache, France. Small-scale scoping tests were performed for the study of in-vessel cooling of debris in the lower head. (Abstract Truncated)

  8. Experimental platforms in support of the ASTRID program: existing and planned facilities - 15126

    International Nuclear Information System (INIS)

    Gastaldi, O.; Rodriguez, G.; Ayrault, L.; Collard, B.; Dumesnil, J.; Dujet, F.; Journeau, C.; Latge, C.; Sanseigne, E.; Serre, F.; Tkatschenko, I.; Willermoz, G.

    2015-01-01

    The sodium cooled fast reactors (SFR) French program currently focused on the design of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) reactor in different fields: energy conversion system, instrumentation for continuous monitoring, In Service Inspection and Repair, core design, fuel handling, thermo hydraulic, severe accidents, large flow electromagnetic pumps... Even if the French experimental prototype implies the development of innovative techniques, concepts and feedback of operations of SFRs are important, the new challenges coming from the objectives to meet GEN-IV requirements need some research and development. To achieve this goal, the generation four French SFR program includes the development of technological platforms with experimental facilities to develop and evaluate innovative options and also qualify some ASTRID specific components. The needs in terms of development, validation and qualification of techniques, components or systems to be used on ASTRID have been reviewed exhaustively in 2014. It allowed to consolidate or to precise the experimental purposes of the four CEA platforms regrouping technological facilities with different strategy of erection. PAPIRUS platform (largely already constructed) is dedicated to in-sodium experimental testing; GISEH platform (also largely already constructed) is devoted to water and air tests in support to hydraulic, thermal-hydraulic and fluid-structure interaction studies; CHEOPS platform (detailed studies and realization contract launched in 2014 aiming at commissioning and start up in 2018) deals with in sodium research and development and some qualifications requiring large scale; and last, PLINIUS-2 platform (commissioning and start up in 2019) concerns prototypic corium behavior studies in severe accident conditions and mitigation device qualification. This paper presents the four platforms and for each of them the experimental needs which are covered by their facilities

  9. Loss of vacuum accident (LOVA): Comparison of computational fluid dynamics (CFD) flow velocities against experimental data for the model validation

    International Nuclear Information System (INIS)

    Bellecci, C.; Gaudio, P.; Lupelli, I.; Malizia, A.; Porfiri, M.T.; Quaranta, R.; Richetta, M.

    2011-01-01

    A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. Several mechanisms resulting from material response to plasma bombardment in normal and off-normal conditions are responsible for generating dust of micron and sub-micron length scales inside the VV (Vacuum Vessel) of experimental fusion facilities. The loss of coolant accidents (LOCA), loss of coolant flow accidents (LOFA) and loss of vacuum accidents (LOVA) are types of accidents, expected in experimental fusion reactors like ITER, that may jeopardize components and plasma vessel integrity and cause dust mobilization risky for workers and public. The air velocity is the driven parameter for dust resuspension and its characterization, in the very first phase of the accidents, is critical for the dust release. To study the air velocity trend a small facility, Small Tank for Aerosol Removal and Dust (STARDUST), was set up at the University of Rome 'Tor Vergata', in collaboration with ENEA Frascati laboratories. It simulates a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air inlet from two different positions of the leak: at the equatorial port level and at the divertor port level. The velocity magnitude in STARDUST was investigated in order to map the velocity field by means of a punctual capacitive transducer placed inside STARDUST without obstacles. FLUENT was used to simulate the flow behavior for the same LOVA scenarios used during the experimental tests. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected for the first four seconds, because at the beginning of the experiments the maximum velocity values (that could cause the almost complete dust mobilization) have been measured. In this paper the authors present and discuss the

  10. Development of likelihood estimation method for criticality accidents of mixed oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tamaki, Hitoshi; Yoshida, Kazuo; Kimoto, Tatsuya; Hamaguchi, Yoshikane

    2010-01-01

    A criticality accident in a MOX fuel fabrication facility may occur depending on several parameters, such as mass inventory and plutonium enrichment. MOX handling units in the facility are designed and operated based on the double contingency principle to prevent criticality accidents. Control failures of at least two parameters are needed for the occurrence of criticality accident. To evaluate the probability of such control failures, the criticality conditions of each parameter for a specific handling unit are necessary for accident scenario analysis to be clarified quantitatively with a criticality analysis computer code. In addition to this issue, a computer-based control system for mass inventory is planned to be installed into MOX handling equipment in a commercial MOX fuel fabrication plant. The reliability analysis is another important issue in evaluating the likelihood of control failure caused by software malfunction. A likelihood estimation method for criticality accident has been developed with these issues been taken into consideration. In this paper, an example of analysis with the proposed method and the applicability of the method are also shown through a trial application to a model MOX fabrication facility. (author)

  11. On-site habitability in the event of an accident at a nuclear facility

    International Nuclear Information System (INIS)

    1989-01-01

    This publication is intended to provide technical guidance and a methodology for regulatory bodies, designers, constructors and operators of nuclear facilities to assist them in assessing the current situation as regards on-site habitability for their specific nuclear facilities. Initially, the aim will be to ensure that the ''vital areas'' of the facility which are necessary for the safe operation and shutdown of the facility will remain habitable, in some cases continuously and in others transiently, in the event of an accident inside or outside the installation. The assessment procedure can be used not only for potential radiation accidents but also to consider the effects on habitability of those probable non-radiological events which, if not correctly and effectively countered, could lead to the development of potentially unsafe conditions in the facility itself. 30 refs, 4 figs, 8 tabs

  12. Source term evaluation for accident transients in the experimental fusion facility ITER

    Energy Technology Data Exchange (ETDEWEB)

    Virot, F.; Barrachin, M.; Cousin, F. [IRSN, BP3-13115, Saint Paul lez Durance (France)

    2015-03-15

    We have studied the transport and chemical speciation of radio-toxic and toxic species for an event of water ingress in the vacuum vessel of experimental fusion facility ITER with the ASTEC code. In particular our evaluation takes into account an assessed thermodynamic data for the beryllium gaseous species. This study shows that deposited beryllium dusts of atomic Be and Be(OH){sub 2} are formed. It also shows that Be(OT){sub 2} could exist in some conditions in the drain tank. (authors)

  13. The composition of aerosols generated during a severe reactor accident: Experimental results from the Power Burst Facility Severe Fuel Damage Test 1-4

    International Nuclear Information System (INIS)

    Petti, D.A.; Hobbins, R.R.; Hagrman, D.L.

    1994-01-01

    Experimental results on fission product and aerosol release during the Power Burst Facility Severe Fuel Damages (SFD) Test 1-4 are examined to determine the composition of aerosols that would be generated during a severe reactor accident. The SFD 1-4 measured aerosol contained significant quantities of volatile fission products (VFPs) (cesium, iodine, tellurium), control materials (silver and cadmium), and structural materials (tin), indicating that fission product release, vaporization of control material, and release of tin from oxidized Zircaloy were all important aerosol sources. On average the aerosol composition is between one-quarter and one-half VFPs (especially cesium), with the remainder being control material (especially cadmium), and structural material (especially tin). Source term computer codes like CORSOR-M tend to overpredict the release of structural and control rod material relative to fission products by a factor of between 2 and 15 because the models do not account for relocation of molten control, fuel, and structural material during the degradation process, which tends to reduce the aerosol source. The results indicate that the aerosol generation in a severe reactor accident is intimately linked to the core degradation process. They recommend that these results be used to improve the models in source term computer codes

  14. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    International Nuclear Information System (INIS)

    Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

    1986-01-01

    This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs

  15. Fuel elements and fuel element materials. Experimental facilities for fission products lift-off tests

    International Nuclear Information System (INIS)

    Blanchard, R.J.; Veyrat, J.F.

    1978-01-01

    One of the hypothetical accidents on the HTGR primary cooling circuits is the failure of a circuit resulting in a depressurization in the primary loops of the reactor. There is a risk of release of fission products in relation to the size of the failure. Experimental facilities for HTGR tests were developed: an in pile helium loop Comedie and an out of pile helium loop

  16. Severe accident experiments on PLINIUS platform. Results of first experiments on COLIMA facility related to VVER-440. Presentation of planned VULCANO and KROTOS tests

    International Nuclear Information System (INIS)

    Piluso, P.; Boccaccio, E.; Bonnet, J.-M.; Journeau, C.; Fouquart, P.; Magallon, D.; Ivanov, I.; Mladenov, I.; Kalchev, S.; Grudev, P.; Alsmeyer, H.; Fluhrer, B.; Leskovar, M.

    2005-01-01

    In the hypothetical case of a nuclear reactor severe accident, the reactor core could melt and form a mixture of nuclear fuel (UO 2 + Fission Products), metallic or oxidized cladding + steel, called c orium , of highly refractory oxides (UO 2 , ZrO 2 ) and metallic or oxidized steel, that could eventually flow out of the vessel and mix with the substrate decomposition products (generally oxides such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 ). The French Atomic Energy Commission (CEA) has launched a R and D programme aimed at providing the tools for improving the mastering of severe accidents. It encompasses the development of models and codes, performance of experiments in simulant and prototypic materials and the analysis of international experiments. The experiments with prototypic corium (i.e. material containing depleted UO 2 ) are performed in the PLINIUS experimental platform at CEA Cadarache. It comprises the VULCANO facility for 50-100 kg tests (corium-material interactions, corium solidification etc.), the COLIMA facility for smaller scale (∼1 kg) experiments, the VITI facility for corium properties measurement and the KROTOS facility for corium-water interaction (a few kg). In the framework of the 5 th European Framework Programme, free trans-national access to these facilities has been offered to EU and Associated States researchers. For the first PLINIUS access, COLIMA experiments have been conducted with a Bulgarian Team (TU/SOFIA, BAS/INRNE and NPP/KOZLODUY). This series of tests was devoted to experimental studies on fission products release and corium behaviour in the late phase in a hypothetic case of severe accident in a PWR type VVER-440. The COLIMA experimental results are consistent with previous experiments on irradiated fuels (VERCORS, PHEBUS) with small differences for some fission products and show new results for the remaining corium. For the second visit, scientific users from FZK in Germany were selected to validate the COMET core

  17. Numerical and experimental simulation of accident processes using KMS large-scale test facility under the program of training university students for nuclear power industry

    International Nuclear Information System (INIS)

    Aniskevich, Yu.N.

    2005-01-01

    The KMS large-scale test facility is being constructed at NITI site and designed to model accident processes in VVER reactor plants and provide experimental data for safety analysis of both existing and future NPPs. The KMS phase I is at the completion stage. This is a containment model of 2000 m3 volume intended for experimentally simulating heat and mass transfers of steam-gas mixtures and aerosols inside containment. The KMS phase II will incorporate a reactor model (1:27 scale) and be used for analysing a number of events including primary and secondary LOCA. The KMS program for background training of university students in the nuclear field will include preparation and conduction of experiments, analysis of experiment data. The KMS program for background training of university students in nuclear will include: participation in the development and application of experiment procedures, preparation and carrying out experiments; carrying out pretest and post-test calculations with different computer codes; on-the-job training as operators of experiment scenarios; training of specialists in measurement and information acquisition technologies. (author)

  18. Accident simulation in a chemical process facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Hope, E.P.

    1993-01-01

    The US Department of Energy requires Westinghouse Savannah River Company to safely operate the chemical separations facilities at the Savannah River Site (SRS). As part of the safety analysis program, simulation of a proposed frame waste recovery (FWR) system is needed to determine the possible accident consequences that may affect public safety. This paper details the simulation process for the proposed frame waste recovery process and describes the analytical tools used in order to make estimates of accident consequences. Since the process in question has been operated, historical data and statistics about its operation are available. Software tools have been developed to allow analysis of the frame waste recovery system, including the generation of system specific dose conversion factors for a number of unique situations. Accident scenarios involving spilled liquid material are analyzed and account for the specific floor geometry of the facility. Confinement and filtration systems are considered. Analysis of source terms is a limiting factor which affects the entire evaluation process. In the past, facility source terms were generally constant with occasional variations from established patterns. As new site missions unfold, significant variations in source terms can be expected. The impact of these variations on the safety analysis is discussed

  19. The scenario-based system of workers training to prevent accidents during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, DongJun; Lee, JongHwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok

    2014-01-01

    Highlights: • This paper is meant to develop the training system to prevent accidents during decommissioning of nuclear facilities. • Requirements of the system were suggested. • Data management modules of the system were designed. • The system was developed on virtual reality environment. - Abstract: This paper is meant to develop the training system to prevent accidents during decommissioning of nuclear facilities. Requirements of the system were suggested. Data management modules of the system were designed. The system was developed on virtual reality environment. The performance test of the system was proved to be appropriate to decommissioning of nuclear facilities

  20. Accidents and failures in reactor facilities for test and research and reactor facilities in the stage of research and development in fiscal year 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The number of accidents and failures reported in fiscal year 1987 in conformity with the law on the regulation of nuclear reactors and others was three. One case occurred during operation, and two cases occurred in shutdown state. One case was caused by improper construction management, and two cases were due to improper maintenance management. The effect of radioactivity to the surrounding environment of reactor facilities due to these accidents and failures did not arise. These occurred in the NSRR of Japan Atomic Energy Research Institute (Tokai), the experimental FBR Joyo and the ATR Fugen Power Station of Power Reactor and Nuclear Fuel Development Corp. In addition to these, the light troubles reported on the basis of the notice from the director of Science and Technology Agency dated September 1, 1981, were three cases. (K.I.)

  1. Development of training system to prevent accidents during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, Geunho; Seo, Jaeseok

    2014-01-01

    Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities

  2. Development of training system to prevent accidents during decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, Geunho; Seo, Jaeseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities.

  3. Accident risks in nuclear facilities (a bibliography with abstracts). Report for 1964-Sep 77

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-10-01

    The bibliography presents risk analysis and hazards evaluation of the design, construction and operation of nuclear facilities, including the risk and hazards of transporting radioactive materials to and from these facilities. Radiological calculations for environmental effects of nuclear accidents are also included

  4. Planning for off-site response to radiation accidents in nuclear facilities

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this publication is to give guidance to those who are responsible for the protection of the public in the event of an accident occurring at a land-based nuclear facility. This guidance should assist in the advance preparation of emergency response plans and implementing procedures. Basic principles of protective measures along with their advantages and disadvantages are discussed. Other principles related to emergency planning and the operational response to an emergency are outlined. Although the guidance is primarily oriented towards land-based nuclear power facilities, the guidance does have general application to other types of nuclear facility

  5. Planning for off-site response to radiation accidents in nuclear facilities

    International Nuclear Information System (INIS)

    1979-01-01

    The purpose of this manual is to give guidance to those who are responsible for the protection of the public in the event of an accident occurring at a land-based nuclear facility. This guidance should assist in the advance preparation of emergency response plans and implementing procedures. Basic principles of protective measures along with their advantages and disadvantages are discussed. Other principles related to emergency planning and the operational response to an emergency are outlined. Although the guidance is primarily oriented toward land-based nuclear power facilities, the guidance does have general application to other types of nuclear facilities

  6. Development and qualification of a thermal-hydraulic nodalization for modeling station blackout accident in PSB-VVER test facility

    Energy Technology Data Exchange (ETDEWEB)

    Saghafi, Mahdi [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Ghofrani, Mohammad Bagher, E-mail: ghofrani@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); D’Auria, Francesco [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, San Piero a Grado, Pisa (Italy)

    2016-07-15

    Highlights: • A thermal-hydraulic nodalization for PSB-VVER test facility has been developed. • Station blackout accident is modeled with the developed nodalization in MELCOR code. • The developed nodalization is qualified at both steady state and transient levels. • MELCOR predictions are qualitatively and quantitatively in acceptable range. • Fast Fourier Transform Base Method is used to quantify accuracy of code predictions. - Abstract: This paper deals with the development of a qualified thermal-hydraulic nodalization for modeling Station Black-Out (SBO) accident in PSB-VVER Integral Test Facility (ITF). This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr nuclear power plant. In this regard, a nodalization has been developed for thermal-hydraulic modeling of the PSB-VVER ITF by MELCOR integrated code. The nodalization is qualitatively and quantitatively qualified at both steady-state and transient levels. The accuracy of the MELCOR predictions is quantified in the transient level using the Fast Fourier Transform Base Method (FFTBM). FFTBM provides an integral representation for quantification of the code accuracy in the frequency domain. It was observed that MELCOR predictions are qualitatively and quantitatively in the acceptable range. In addition, the influence of different nodalizations on MELCOR predictions was evaluated and quantified using FFTBM by developing 8 sensitivity cases with different numbers of control volumes and heat structures in the core region and steam generator U-tubes. The most appropriate case, which provided results with minimum deviations from the experimental data, was then considered as the qualified nodalization for analysis of SBO accident in the PSB-VVER ITF. This qualified nodalization can be used for modeling of VVER-1000 nuclear power plants when performing SBO accident analysis by MELCOR code.

  7. Installation places of criticality accident detectors in the plutonium conversion development facility

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Tsujimura, Norio; Shimizu, Yoshio; Izaki, Kenji; Furuta, Sadaaki

    2008-01-01

    At the Plutonium Conversion Development Facility (PCDF) in the Nuclear Fuel Cycle Engineering Laboratories, the co-conversion technologies to purify the mixed plutonium and uranium nitrate solution discharged from a reprocessing plant have been developed. The probability of a criticality accident in PCDF is extremely low. However, the criticality accident alarm system (CAAS) has been in place since 1982 to reduce the radiation dose to workers in case of such a rare criticality accident. The CAAS contains criticality accident detector units (CADs), one unit consisting of three plastic scintillation detectors, and using the 2 out of 3 voting system for the purpose of high reliability. Currently, eight CADs are installed in PCDF evaluating the dose using a simple equation allowing for a safety margin. The purpose of this study is to show the determination procedures for the adequate relocation of the CADs which adequately ensures safety in PCDF. (author)

  8. Review of design criteria for Criticality Accident Alarm System (CAAS) used in Fuel Reprocessing Facility

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Basu, Pew; Sivasubramaniyan, K.; Venkatraman, B.

    2016-01-01

    Though fuel cycle facilities handling fissile materials are designed with careful criticality safety analysis, the criticality accident cannot be ruled out completely. Criticality Accident Alarm System (CAAS) is being installed as part of criticality safety management in fuel cycle facilities. CAAS system being used in India, is ECIL make, ionization chamber based gamma detector, which houses three identical detectors and works on 2/3 logic. As per ISO 7753 and ANSI/ANS-8.3, the CAAS must be designed to be capable of detecting any minimum accident occurs which could be of concern. Based on this, alarm limit used in CAAS is: 4 R/h (fast transient excursion) and 3 mR in 0.5 sec (slow excursion). In case of reprocessing facilities wherein process tanks located in heavy shielding, identification of CAAS installation locations require detailed radiation transport calculations. A study has been taken to estimate the gamma dose rate from thick concrete hot cells in order to determine the locations of CAAS to meet the present design criteria of alarm limit

  9. Experimental and theoretical study of large scale debris bed reflood in the PEARL facility

    Energy Technology Data Exchange (ETDEWEB)

    Chikhi, Nourdine, E-mail: nourdine.chikhi@irsn.fr; Fichot, F.

    2017-02-15

    Highlights: • Five reflooding tests have been carried out with an experimental bed, 500 mm in height and 500 mm in diameter, made of 4 mm stainless steel balls. • For the first time, such a large bed was heated practically homogenously. • The quench front velocity was determined according to thermocouple measurements inside the bed. • An analytical model, assuming a quasi-steady progression of the quench front, allows to predict the conversion ratio in most cases. • It appears that the efficiency of cooling can be increased only up to a certain limit when increasing the inlet water flow rate. - Abstract: During a severe accident in a nuclear power plant, the degradation of fuel rods and melting of materials lead to the accumulation of core materials, which are commonly, called “debris beds”. To stop core degradation and avoid the reactor vessel rupture, the main accident management procedure consists in injecting water. In the case of debris bed, the reflooding models used for Loss of Coolant Accident are not applicable. The IRSN has launched an experimental program on debris bed reflooding to develop new models and to validate severe accident codes. The PEARL facility has been designed to perform, for the first time, the reflooding of large scale debris bed (Ø540 mm, h = 500 mm and 500 kg of steel debris) in a pressurized containment. The bed is heated by means of an induction system. A specific instrumentation has been developed to measure the debris bed temperature, pressure drop inside the bed and the steam flow rate during the reflooding. In this paper, the results of the first integral reflooding tests performed in the PEARL facility at atmospheric pressure up to 700 °C are presented. Focus is made on the quench front propagation and on the steam flow rate during reflooding. The effect of water injection flow rate, debris initial temperature and residual power are also discussed. Finally, an analytical model providing the steam flow rate and

  10. A study on items necessary to develop the requirements for the management of serious accidents postulated in fuel fabrication, enrichment and reprocessing facilities

    International Nuclear Information System (INIS)

    Takanashi, Mitsuhiro; Yamate, Kazuki; Asada, Kazuo; Yamada, Takashi; Endo, Shigeki

    2013-05-01

    The purpose of this study is to supply the points to discuss on new rules of fuel fabrication, enrichment and reprocessing facilities (hereinafter referred to as 'fuel cycle facilities') conducted by Nuclear Regulation Authority. Requirements for management of serious accidents in the fuel cycle facilities were summarized in this study. Taking into account the lessons learned from the accident of TEPCO Fukushima Daiichi Nuclear Power Plant in Mar. 2011, Act for the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors was amended in June 2012. The main items of the amendment were as follows: Preparation for the management of serious accidents, Introduction of evaluation system for safety improvement, Application of new standards to existing nuclear facilities (back-fitting). Japan Nuclear Energy Safety organization (JNES) conducted a fundamental study on serious accidents and their management in the fuel cycle facilities and made a report. In the report, the concept of Defense in Depth and the definition of serious accidents for the fuel cycle facilities were discussed. Those discussions were conducted by reference to new regulation rules (draft) for power reactors and from the view of features of the fuel cycle facilities. However, further detailed studies are necessary in order to clarify some issues in it. It was also reflected opinions from experts in JNES technical meetings on accident management of the fuel cycle facilities to brush up this report. (author)

  11. Report of investigation regarding accident in Tomsk reprocessing facilities in Russia

    International Nuclear Information System (INIS)

    1994-01-01

    At 1258 on April 6, 1993, the explosion accident of a welded tank occurred in the military reprocessing facilities in Tomsk, Siberia District, Russia. Japan carried out the investigation of the effect on the environmental radiation in Japan, dispatched the investigation mission to Russia, and explained the way of thinking on securing the safety of Japanese reprocessing plants to local communities. Science and Technology Agency organized the working group for investigating the accident, which exerted efforts to collect the information, analyze and examine it. This report is the summary of its results. The explosion occurred in the tank for adjusting the acid concentration of the solution to be supplied to the solvent extraction shop, and the building was destructed. No one died or was injured. The results of the radioactivity examination are reported. The process of the accident was inferred, and described. The factors that caused the accident were the mixing of organic impurities the use of the diluting liquid containing aromatic hydrocarbon, the contact of nitric acid with organic substances at high temperature, in sufficient agitation at the time of pouring nitric acid and so on. The safety countermeasures in Japanese reprocessing plants and the response by Japan based on the accident are described. (K.I.)

  12. Emergency preparedness and response to 'Not-in-a-Facility' radiological accidents

    International Nuclear Information System (INIS)

    Grlicarev, Igor

    2008-01-01

    The paper provides an overview of lessons learned from the past radiological accidents, which have not occurred in an operating facility, i.e. 'not-in-a-facility' radiological emergencies. A method to analyze status of prevention of accidents is proposed taking into account the experiences and findings from the past events. The main emergency planning items are discussed, which would render effective response in case of such emergencies. Although the IAEA has published many documents about establishing an adequate emergency response capability, it is not an easy task to bring these recommendations into life. This paper gives some hints how to overcome the most obvious difficulties while users of these documents trying to adapt the guidance to their own needs. The special cases of alpha emitters and radiological dispersal devices were considered separately. The balanced approach to emergency response is promoted throughout the text, which means that a level of preparedness should be commensurate to the threat and the existing resources should be used to the extent possible. (author)

  13. Hypothetical accidents at disposal facilities for high-level liquid radioactive wastes and pulps

    International Nuclear Information System (INIS)

    Kabakchi, S.A.; Zagainov, V.A.; Lishnikov, A.A.; Nazin, E.R.

    1994-01-01

    Four accidents are postulated and analyzed for interim storage of high-level, liquid radioactive wastes at a fuel reprocessing facility. Normal waste storage operation is based on wastes stored in steel drums, partially buried in concrete canyons, and equipped with heat exchangers for cooling and ventilation systems for removal of explosive gases and vapors. The accident scenarios analyzed are: (1) shutdown of ventilation with open entrance and exit ventilation pipes, (2) shutdown of ventilation with closed entrance and exit ventilation pipes, (3) shutdown of the cooling system with normally functioning ventilation, and (4) simultaneous cooling and ventilation system failure (worst case). A mathematical model was developed and used to calculate radiation consequences of various accidents. Results are briefly presented for the worst case scenario and compared to an actual accident for model validation. 17 refs., 3 figs., 1 tab

  14. Experimental results of the SMART ECC injection performance with reduced scale of test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Il; Cho, Seok; Ko, Yung Joo; Shin, Yong Cheol; Kwon, Tae Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    SMART pressurized water reactor type is different from the existing integral NSSS commercial pressurized water reactor system which is equipped with the main features. In addition, RCS piping is removed and the feature of the SBLOCA is a major design break accident. SWAT (SMART ECC Water Asymmetric Two-phase choking test facility) test facility is to simulate the 2 inch SBLOCA of the SMART using with reduced scale. The Test was performed to produce experimental data for the validation of the TASS/SMR-S thermal hydraulic analysis code, and to investigate the related thermal hydraulic phenomena in the down-comer region during the 2 inch SBLOCA of the safety inject line. The particular phenomena for the observation are ECC bypass and multi-dimensional flow characteristics to verify the effectiveness and performance of the safety injection system. In this paper, the corresponding steady state test conditions, including initial and boundary conditions along with major measuring parameters, and related experimental results were described

  15. Accident risks in nuclear facilities (a bibliography with abstracts). Report for 1964-Sep 76

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1976-10-01

    The bibliography presents risk analysis and hazards evaluation of the design, construction and operation of nuclear facilities including the risk and hazards of transporting radioactive materials to and from these facilities. Radiological calculations for environmental effects of nuclear accidents are included. (This updated bibliography contains 195 abstracts, 64 of which are new entries to the previous edition.)

  16. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress

  17. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  18. Radionuclide release rate inversion of nuclear accidents in nuclear facility based on Kalman filter

    International Nuclear Information System (INIS)

    Tang Xiuhuan; Bao Lihong; Li Hua; Wan Junsheng

    2014-01-01

    The rapidly and continually back-calculating source term is important for nuclear emergency response. The Gaussian multi-puff atmospheric dispersion model was used to produce regional environment monitoring data virtually, and then a Kalman filter was designed to inverse radionuclide release rate of nuclear accidents in nuclear facility and the release rate tracking in real time was achieved. The results show that the Kalman filter combined with Gaussian multi-puff atmospheric dispersion model can successfully track the virtually stable, linear or nonlinear release rate after being iterated about 10 times. The standard error of inversion results increases with the true value. Meanwhile extended Kalman filter cannot inverse the height parameter of accident release as interceptive error is too large to converge. Kalman filter constructed from environment monitoring data and Gaussian multi-puff atmospheric dispersion model can be applied to source inversion in nuclear accident which is characterized by static height and position, short and continual release in nuclear facility. Hence it turns out to be an alternative source inversion method in nuclear emergency response. (authors)

  19. Phenomenological analyses and their application to the Defense Waste Processing Facility probabilistic safety analysis accident progression event tree. Revision 1

    International Nuclear Information System (INIS)

    Kalinich, D.A.; Thomas, J.K.; Gough, S.T.; Bailey, R.T.; Kearnaghan, D.P.

    1995-01-01

    In the Defense Waste Processing Facility (DWPF) Safety Analysis Reports (SARs) for the Savannah River Site (SRS), risk-based perspectives have been included per US Department of Energy (DOE) Order 5480.23. The NUREG-1150 Level 2/3 Probabilistic Risk Assessment (PRA) methodology was selected as the basis for calculating facility risk. The backbone of this methodology is the generation of an Accident Progression Event Tree (APET), which is solved using the EVNTRE computer code. To support the development of the DWPF APET, deterministic modeling of accident phenomena was necessary. From these analyses, (1) accident progressions were identified for inclusion into the APET; (2) branch point probabilities and any attendant parameters were quantified; and (3) the radionuclide releases to the environment from accidents were determined. The phenomena of interest for accident progressions included explosions, fires, a molten glass spill, and the response of the facility confinement system during such challenges. A variety of methodologies, from hand calculations to large system-model codes, were used in the evaluation of these phenomena

  20. A probabilistic risk assessment of the LLNL Plutonium facility's evaluation basis fire operational accident

    International Nuclear Information System (INIS)

    Brumburgh, G.

    1994-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  1. Improvement in post test accident analysis results prediction for the test no. 2 in PSB test facility by applying UMAE methodology

    International Nuclear Information System (INIS)

    Dubey, S.K.; Petruzzi, A.; Giannotti, W.; D'Auria, F.

    2006-01-01

    This paper mainly deals with the improvement in the post test accident analysis results prediction for the test no. 2, 'Total loss of feed water with failure of HPIS pumps and operator actions on primary and secondary circuit depressurization', carried-out on PSB integral test facility in May 2005. This is one the most complicated test conducted in PSB test facility. The prime objective of this test is to provide support for the verification of the accident management strategies for NPPs and also to verify the correctness of some safety systems operating only during accident. The objective of this analysis is to assess the capability to reproduce the phenomena occurring during the selected tests and to quantify the accuracy of the code calculation qualitatively and quantitatively for the best estimate code Relap5/mod3.3 by systematically applying all the procedures lead by Uncertainty Methodology based on Accuracy Extrapolation (UMAE), developed at University of Pisa. In order to achieve these objectives test facility nodalisation qualification for both 'steady state level' and 'on transient level' are demonstrated. For the 'steady state level' qualification compliance to acceptance criteria established in UMAE has been checked for geometrical details and thermal hydraulic parameters. The following steps have been performed for evaluation of qualitative qualification of 'on transient level': visual comparisons between experimental and calculated relevant parameters time trends; list of comparison between experimental and code calculation resulting time sequence of significant events; identification/verification of CSNI phenomena validation matrix; use of the Phenomenological Windows (PhW), identification of Key Phenomena and Relevant Thermal-hydraulic Aspects (RTA). A successful application of the qualitative process constitutes a prerequisite to the application of the quantitative analysis. For quantitative accuracy of code prediction Fast Fourier Transform Based

  2. Simulation of a loss of coolant accident

    International Nuclear Information System (INIS)

    1987-06-01

    An essential component of nuclear safety activities is the analysis of postulated accidents which are taken as a design basis for a facility. This analysis is usually carried out by using complex computer codes to simulate the behaviour of the plant and to calculate vital plant parameters, which are then compared with the design limits. Since these simulations cannot be verified at the plant itself, computer codes must be validated by comparing the results of calculations with experimental data obtained in test facilities. With this objective in mind, the Central Research Institute for Physics (CRIP) of the Hungarian Academy of Sciences designed and constructed the PMK-NVH (Paks Model Circuit) test facility, a scaled down model of the WWER-440 Paks nuclear power plant. Hungary with the aim of strengthening the international co-operation on nuclear safety, made the PMK-NVH facility available to the IAEA to conduct a standard problem exercise. In this exercise, experimental data from the simulation of a 7.4% break loss of coolant accident were compared with analytical predictions of the behaviour of the facility calculated with computer codes. This document presents a complete overview of the Standard Problem Exercise, including description of the facility, the experiment, the codes and models used by the participants and a detailed intercomparison of calculated and experimental results. It is recognized that code assessment is a long process which involves many inter-related steps, therefore, no general conclusion on optimum code or best model was reached. However, the exercise was recognized as an important contributor to code validation

  3. Release fractions for Rocky Flats specific accidents

    International Nuclear Information System (INIS)

    Weiss, R.C.

    1992-01-01

    As Rocky Flats and other DOE facilities begin the transition process towards decommissioning, the nature of the scenarios to be studied in safety analysis will change. Whereas the previous emphasis in safety accidents related to production, now the emphasis is shifting to accidents related tc decommissioning and waste management. Accident scenarios of concern at Rocky Flats now include situations of a different nature and different scale than are represented by most of the existing experimental accident data. This presentation will discuss approaches at sign to use for applying the existing body of release fraction data to this new emphasis. Mention will also be made of ongoing efforts to produce new data and improve the understanding of physical mechanisms involved

  4. LMFBR post accident heat removal testing needs and conceptual design of a test facility

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Kuechle, M.; Royl, P.; Werle, H.; Boenisch, G.; Heinzel, V.; Mueller, R.A.; Schramm, K.; Smidt, D.

    1977-03-01

    A study has been carried out in which the needs and requirements for a test facility were derived, enabling detailed investigation of key phenomena anticipated during the post accident heat removal (PAHR) phase as a consequence of a postulated LMFBR whole core accident. Part I of the study concentrates on demonstrating the PAHR phenomena and related testing needs. Three types of experiments were identified which require in-pile testing, ranging from 10 to 70 cm test bed diameter and correspondingly, 30 to 5 W/g minimum power density in the test fuel. In part II a conceptual design for a test facility is presented, emphasizing the capability for accomodating large test beds. This is achieved by a below-reactor-vessel testing device, neutronically coupled to a 100 MWt sodium cooled fast reactor. (orig.) [de

  5. An Accident of History: Breaking the District Monopoly on Public School Facilities

    Science.gov (United States)

    Smith, Nelson

    2012-01-01

    Traditional public school districts hold a monopoly over the financing and ownership of public education facilities. With rare exceptions, public charter schools have no legal claim to these buildings. This monopoly is an accident of history. It would never have developed had there been substantial numbers of other public schools, not supervised…

  6. Operational accidents and radiation exposures at DOE facilities. Fiscal year 1978

    International Nuclear Information System (INIS)

    1978-01-01

    Comprehensive safety programs are maintained at DOE facilities in order to protect both personnel and property from accidents. To ensure compliance with safety standards and regulations and maximize effectiveness of the safety programs, an extensive inspection and appraisal program is conducted at the contractor and field office levels by both DOE field and Headquarters safety personnel. When accidents do occur, investigations are conducted to identify causes and determine managerial or safety actions needed to prevent similar occurrences. DOE safety requirements include the reporting of personnel injury, property and motor vehicle losses on a quarterly basis, and radiation doses on an annual basis. The radiation dose data for CY 1978 are presented and reviewed in this report. All other data in this report are for FY 1978

  7. Criticality accident studies and methodology implemented at the CEA

    International Nuclear Information System (INIS)

    Barbry, Francis; Fouillaud, Patrick; Reverdy, Ludovic; Mijuin, Dominique

    2003-01-01

    Based on the studies and results of experimental programs performed since 1967 in the CRAC, then SILENE facilities, the CEA has devised a methodology for criticality accident studies. This methodology integrates all the main focuses of its approach, from criticality accident phenomenology to emergency planning and response, and thus includes aspects such as criticality alarm detector triggering, airborne releases, and irradiation risk assessment. (author)

  8. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  9. Experimental investigations relevant for hydrogen and fission product issues raised by the Fukushima accident

    Directory of Open Access Journals (Sweden)

    Sanjeev Gupta

    2015-02-01

    with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine test facility (9.2 m high, 3.2 m in diameter, and 60 m3 volume are discussed in the light of the Fukushima accident.

  10. Operational accidents and radiation exposures at ERDA facilities, 1975-1977

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The Energy Research and Development Administration (ERDA) accident frequency and losses were similar to that of the Atomic Energy Commission (AEC) from 1970 through 1974. The ERDA incidence rates per 200,000 work hours were 1.05 for lost workday injuries and 17.8 for workdays lost. These rates are about one-third of the national industrial averages reported by the National Safety Council (NSC). Ten fatalities occurred at ERDA facilities resulting in an average annual rate of three deaths per 100,000 workers compared to the national rate of 14 deaths per 100,000 workers. ERDA's total property loss from 1975 to 1977 was $11.9 million; $1.8 million caused by fires. The average annual loss rates, in cents loss per $100 valuation, were 1.15 for non-fire and 0.18 for fire. These rates are higher than the AEC post; Rocky Flats period (1970 through 1974) which were 0.60 non-fire and 0.10 fire; but are lower than the average annual rates which were 2.4 non-fire and 1.7 fire for the entire history of the AEC. Accidents causing more than $50,000 in property damage are tabulated. ERDA continued to make a strong effort to eliminate unnecessary radiation exposure to workers. The number of employees exceeding 1 rem decreased from 2999 in 1975 to 2274 in 1977. The two appendixes include criteria for accident investigations and summaries of accident investigation reports.

  11. Accident risks in nuclear facilities. (Latest citations from the NTIS Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1994-02-01

    The bibliography contains citations concerning risk analysis and hazards evaluation of the design, construction, and operation of nuclear facilities. The citations also explore the risk and hazards of transporting radioactive materials to and from these facilities. Radiological calculations for environmental effects of nuclear accidents and the use of computer models in risk analysis are also included. (Contains 250 citations and includes a subject term index and title list.)

  12. Hazards and accident analyses, an integrated approach, for the Plutonium Facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.; Goen, L.K.; Letellier, B.C.; Sasser, M.K.

    1995-01-01

    This paper describes an integrated approach to perform hazards and accident analyses for the Plutonium Facility at Los Alamos National Laboratory. A comprehensive hazards analysis methodology was developed that extends the scope of the preliminary/process hazard analysis methods described in the AIChE Guidelines for Hazard Evaluations. Results fro the semi-quantitative approach constitute a full spectrum of hazards. For each accident scenario identified, there is a binning assigned for the event likelihood and consequence severity. In addition, each accident scenario is analyzed for four possible sectors (workers, on-site personnel, public, and environment). A screening process was developed to link the hazard analysis to the accident analysis. Specifically the 840 accident scenarios were screened down to about 15 accident scenarios for a more through deterministic analysis to define the operational safety envelope. The mechanics of the screening process in the selection of final scenarios for each representative accident category, i.e., fire, explosion, criticality, and spill, is described

  13. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  14. Accident Management ampersand Risk-Based Compliance With 40 CFR 68 for Chemical Process Facilities

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Taylor, R.P. Jr.; Ashbaugh, S.G.

    1995-01-01

    A risk-based logic model is suggested as an appropriate basis for better predicting accident progression and ensuing source terms to the environment from process upset conditions in complex chemical process facilities. Under emergency conditions, decision-makers may use the Accident Progression Event Tree approach to identify the best countermeasure for minimizing deleterious consequences to receptor groups before the atmospheric release has initiated. It is concluded that the chemical process industry may use this methodology as a supplemental information provider to better comply with the Environmental Protection Agency's proposed 40 CFR 68 Risk Management Program rule. An illustration using a benzene-nitric acid potential interaction demonstrates the value of the logic process. The identification of worst-case releases and planning for emergency response are improved through these methods, at minimum. It also provides a systematic basis for prioritizing facility modifications to correct vulnerabilities

  15. The experimental sodium facility NAVA

    International Nuclear Information System (INIS)

    Langenbrunner, H.; Grunwald, G.; May, R.

    1976-01-01

    Within the framework of preparations for the introduction of sodium cooled fast breeder reactors an experimental sodium facility was installed at the Central Institute of Nuclear Research at Rossendorf. Design, engineering aspects and operation of this facility are described; operating experience is briefly discussed. (author)

  16. Safety analysis of the Los Alamos critical experiments facility

    International Nuclear Information System (INIS)

    Paxton, H.C.

    1975-10-01

    The safety of Pajarito Site critical assembly operations depends upon protection built into the facility, upon knowledgeable personnel, and upon good practice as defined by operating procedures and experimental plans. Distance, supplemented by shielding in some cases, would protect personnel against an extreme accident generating 10 19 fissions. During the facility's 28-year history, the direct cost of criticality accidents has translated to a risk of less than $200 per year

  17. Study of fast reactor safety test facilities. Preliminary report

    International Nuclear Information System (INIS)

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods

  18. Experimental Setup for Reflood Quench of Accident Tolerant Fuel Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan; Lee, Kwan Geun; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of accident tolerant fuel (ATF) is a solution to suppress the hydrogen generation in loss of coolant accident (LOCA) situation without safety injection, which was the critical incident in the severe accident in the Fukushima. The changes in fuel and cladding materials may cause a significant difference in reactor performance in long term operation. Properties in terms of material science and engineering have been tested and showed promising results. However, numerous tests are still required to ensure the design performance and safety. Thermal hydraulic tests including boiling and quenching are partly confirmed, but not yet complete. We have been establishing the experimental setup to confirm the properties in the terms of thermal hydraulics. Design considerations and preliminary tests are introduced in this paper. An experimental setup to test thermal hydraulic characteristics of new ATF claddings are established and tested. The W heater set inside the cladding is working properly, exceeding 690 W/m linear power with thermocouples and insulating ceramic sheaths inside. The coolant injection control was also working in good conditions. The setup is about to complete and going to simulate quenching behavior of the ATF in the LOCA situation.

  19. Multi-Directional Experimental Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The ATLSS Multi-directional Experimental Laboratory was constructed in 1987 under funding from the National Science Foundation to be a major facility for large-scale...

  20. Large-scale experimental facility for emergency condition investigation of a new generation NPP WWER-640 reactor with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Aniskevich, Y.N.; Vasilenko, V.A.; Zasukha, V.K.; Migrov, Y.A.; Khabensky, V.B. [Research Inst. of Technology NITI (Russian Federation)

    1997-12-31

    The creation of the large-scale integral experimental facility (KMS) is specified by the programme of the experimental investigations to justify the engineering decisions on the safety of the design of the new generation NPP with the reactor WWER-640. The construction of KMS in a full volume will allow to conduct experimental investigations of all physical phenomena and processes, practically, occurring during the accidents on the NPPs with the reactor of WWER type and including the heat - mass exchange processes with low rates of the coolant, which is typical during the utilization of the passive safety systems, process during the accidents with a large leak, and also the complex intercommunicated processes in the reactor unit, passive safety systems and in the containment with the condition of long-term heat removal to the final absorber. KMS is being constructed at the Research Institute of Technology (NITI), Sosnovy Bor, Leningrad region, Russia. (orig.). 5 refs.

  1. Large-scale experimental facility for emergency condition investigation of a new generation NPP WWER-640 reactor with passive safety systems

    International Nuclear Information System (INIS)

    Aniskevich, Y.N.; Vasilenko, V.A.; Zasukha, V.K.; Migrov, Y.A.; Khabensky, V.B.

    1997-01-01

    The creation of the large-scale integral experimental facility (KMS) is specified by the programme of the experimental investigations to justify the engineering decisions on the safety of the design of the new generation NPP with the reactor WWER-640. The construction of KMS in a full volume will allow to conduct experimental investigations of all physical phenomena and processes, practically, occurring during the accidents on the NPPs with the reactor of WWER type and including the heat - mass exchange processes with low rates of the coolant, which is typical during the utilization of the passive safety systems, process during the accidents with a large leak, and also the complex intercommunicated processes in the reactor unit, passive safety systems and in the containment with the condition of long-term heat removal to the final absorber. KMS is being constructed at the Research Institute of Technology (NITI), Sosnovy Bor, Leningrad region, Russia. (orig.)

  2. Large-scale experimental facility for emergency condition investigation of a new generation NPP WWER-640 reactor with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Aniskevich, Y N; Vasilenko, V A; Zasukha, V K; Migrov, Y A; Khabensky, V B [Research Inst. of Technology NITI (Russian Federation)

    1998-12-31

    The creation of the large-scale integral experimental facility (KMS) is specified by the programme of the experimental investigations to justify the engineering decisions on the safety of the design of the new generation NPP with the reactor WWER-640. The construction of KMS in a full volume will allow to conduct experimental investigations of all physical phenomena and processes, practically, occurring during the accidents on the NPPs with the reactor of WWER type and including the heat - mass exchange processes with low rates of the coolant, which is typical during the utilization of the passive safety systems, process during the accidents with a large leak, and also the complex intercommunicated processes in the reactor unit, passive safety systems and in the containment with the condition of long-term heat removal to the final absorber. KMS is being constructed at the Research Institute of Technology (NITI), Sosnovy Bor, Leningrad region, Russia. (orig.). 5 refs.

  3. Utilization of dose assessment models to facilitate off-site recovery operations for accidents at nuclear facilities

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Foster, K.T.

    1989-09-01

    One of the most important uses of dose assessment models in response to accidents at nuclear facilities is to help provide guidance to emergency response managers for identifying, and mitigating, the consequences of an accident once the accident has been terminated. By combining results from assessment models with radiological measurements, a qualitative methodology can be developed to aid emergency response managers in determining the total dose received by the population and to minimize future doses through the use of mitigation procedures. To illustrate the methodology, this discussion focuses on the use of models to estimate the dose delivered to the public both during and after a nuclear accident. 4 refs., 10 figs., 1 tab

  4. Review and compilation of criticality accidents in nuclear fuel processing facilities outside of Japan

    International Nuclear Information System (INIS)

    Watanabe, Norio; Tamaki, Hitoshi

    2000-04-01

    On September 30, 1999, a criticality accident occurred at the Tokai-mura uranium processing plant operated by JCO Co., Ltd., which resulted in the first nuclear accident involving a fatality, in Japan, and forced the residents in the vicinity of the site to be evacuated and be sheltered indoors. There have now been 21 criticality accidents reported in nuclear fuel processing facilities in foreign countries: seven in the United States, one in the United Kingdom and thirteen in Russia. Most of them occurred during the period from mid-1950's to mid-1960's, but one criticality accident tool place in Russian in 1997. This report reviews and compiles the published information on these accidents, including the latest information, focusing on the event sequence, the consequence of accident, and the cause of accident. The observations from the reviews are summarized as follows: Twenty of the 21 accidents occurred with the fissile material in a liquid. Twenty of the 21 accidents occurred in vessels/tanks with unfavorable geometry but one occurred in the vessel with favorable geometry. There were seven fatalities that were involved in five accidents. Three accidents involved a re-criticality condition caused by inadequate operator actions and two of them led to the death of the operators. One accident reached a re-criticality condition several hours after the first excursion was terminated by injecting borated water into the affected vessel. This accident implies the possibility that the borated water injection might not be effective to the criticality termination due to solubility of boric acid. Mechanisms of the criticality termination vary as follows: ejection or splashing of the solution at the time of power excursion, boiling or evaporation, addition of neutron poisons, or manual draining of solutions. (author)

  5. Review and compilation of criticality accidents in nuclear fuel processing facilities outside of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio [Planning and Analysis Division, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Tamaki, Hitoshi [Department of Safety Research Technical Support, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-04-01

    On September 30, 1999, a criticality accident occurred at the Tokai-mura uranium processing plant operated by JCO Co., Ltd., which resulted in the first nuclear accident involving a fatality, in Japan, and forced the residents in the vicinity of the site to be evacuated and be sheltered indoors. There have now been 21 criticality accidents reported in nuclear fuel processing facilities in foreign countries: seven in the United States, one in the United Kingdom and thirteen in Russia. Most of them occurred during the period from mid-1950's to mid-1960's, but one criticality accident tool place in Russian in 1997. This report reviews and compiles the published information on these accidents, including the latest information, focusing on the event sequence, the consequence of accident, and the cause of accident. The observations from the reviews are summarized as follows: Twenty of the 21 accidents occurred with the fissile material in a liquid. Twenty of the 21 accidents occurred in vessels/tanks with unfavorable geometry but one occurred in the vessel with favorable geometry. There were seven fatalities that were involved in five accidents. Three accidents involved a re-criticality condition caused by inadequate operator actions and two of them led to the death of the operators. One accident reached a re-criticality condition several hours after the first excursion was terminated by injecting borated water into the affected vessel. This accident implies the possibility that the borated water injection might not be effective to the criticality termination due to solubility of boric acid. Mechanisms of the criticality termination vary as follows: ejection or splashing of the solution at the time of power excursion, boiling or evaporation, addition of neutron poisons, or manual draining of solutions. (author)

  6. Experimental facilities and simulation means

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2009-01-01

    This paper and its associated series of slides review the experimental facilities and the simulation means used for the development of nuclear reactors in France. These experimental facilities include installations used for the measurement and qualification of nuclear data (mainly cross-sections) like EOLE reactor and Minerve zero power reactor, installations like material testing reactors, installations dedicated to reactor safety experiments like Cabri reactor, and other installations like accelerators (Jannus accelerator, GANIL for instance) that are complementary to neutron irradiations in experimental reactors. The simulation means rely on a series of advanced computer codes: Tripoli-Apollo for neutron transport, Numodis for irradiation impact on materials, Neptune and Cathare for 2-phase fluid dynamics, Europlexus for mechanical structures, and Pleiades (with Alcyone) for nuclear fuels. (A.C.)

  7. Experimental study of heat transfer in the slotted channels at CTF facility

    International Nuclear Information System (INIS)

    Asmolov, V.; Kobzar, L.; Nickulshin, V.; Strizhov, V.

    1999-01-01

    During core melt accident significant amount of core may relocate in the reactor pressure vessel lower head. During its cooling it may form cracks inside the corium and gap between corium and reactor vessel. Gap also may appear due to deformation of the lower head if its temperature exceed creep limit. Slotted channels ensure ingress of the cooling water into the corium, and exit of the generated steam. Study of the cool-down mechanism of the solid core debris in the lower head of the reactor vessel through gap and cracks is the objective of experimental work on the CTF facility. Thermal hydraulics in the heated channels closed from the bottom and flooded with the saturated water from the top of the channel, is characterized by the counterflow of the steam and water, attended by such specific phenomena as the dry out when boiling, flooding and overturning of the coming down flow of water at the certain flow rates of the steam going up, partial dry out of the channel, and reflooding from the top of the heated channel with the saturated water. The above phenomena may reveal independently or in different combinations depending on geometric parameters of the channel, heat release, and coolant parameters. Interchange of these processes with a certain cyclic sequence is possible. Experimental study was performed at the CTF (Coolability Test Facility) facility, which is a part of the thermohydraulic KC test facility in the RRC 'Kurchatov Institute'. Presented results are obtained at the CTF-1 test section which represents a vertical flat channel modeling a single crack in the solidified corium or the gap between the corium and reactor vessel

  8. Atmospheric dispersion calculation for posturated accident of nuclear facilities and the computer code: PANDA

    International Nuclear Information System (INIS)

    Kitahara, Yoshihisa; Kishimoto, Yoichiro; Narita, Osamu; Shinohara, Kunihiko

    1979-01-01

    Several Calculation methods for relative concentration (X/Q) and relative cloud-gamma dose (D/Q) of the radioactive materials released from nuclear facilities by posturated accident are presented. The procedure has been formulated as a Computer program PANDA and the usage is explained. (author)

  9. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  10. GERDA test facility for pressurized water reactors with straight tube steam generators

    International Nuclear Information System (INIS)

    Ahrens, G.; Haury, G.; Lahner, K.; Schatz, A.

    1983-01-01

    A number of large-scale experimental facilities have been constructed and operate in order to experiment on the thermodynamic and thermohydraulic behaviour of nuclear facilities in case of LOCA. Most of them were designed for ''large leak'' accidents, but as ''small leak'' accidents became the focus of interest, such experiments were also carried out. Experiments carried out with this arrangement for PWR-type reactors with straight-tube steam generators are only partially evaluable. BBR and B and W therefore cooperated in the construction of the test facility GERDA, designed for testing reactors of BBR design. It supplied relevant experimental results for the nuclear power plant at Muelheim-Kaerlich. (orig.) [de

  11. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    International Nuclear Information System (INIS)

    Elder, J.; Graf, J.M.

    1984-01-01

    DOE Office of Nuclear Safety has sponsored preparation of a guidance document to aid field offices and contractors in their analyses of consequences of postulated major accidents. The guide addresses the requirements of DOE Orders 5480.1A, Chapter V, and 6430.1, including the general requirement that DOE nuclear facilities be sited, designed, and operated in accordance with standards, codes, and guides consistent with those applied to comparable licensed nuclear facilities. The guide includes both philosophical and technical information in the areas of: siting guidelines doses applied to an offsite reference person; consideration also given to an onsite reference person; physical parameters, models, and assumptions to be applied when calculating doses for comparison to siting criteria; and potential accident consequences other than radiological dose to a reference person which might affect siting and major design features of the facility, such as environmental contamination, population dose, and associated public health effects. Recommendations and/or clarifications are provided where this could be done without adding new requirements. In this regard, the guide is considered a valuable aid to the safety analyst, especially where requirements have been subject to inconsistent interpretation or where analysis methods are in transition, such as use of dose model (ICRP 2 or ICRP 30) or use of probabilistic methods of risk analysis in the siting and design of nuclear facilities

  12. A DOE-STD-3009 hazard and accident analysis methodology for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    MAHN, JEFFREY A.; WALKER, SHARON ANN

    2000-01-01

    This paper demonstrates the use of appropriate consequence evaluation criteria in conjunction with generic likelihood of occurrence data to produce consistent hazard analysis results for nonreactor nuclear facility Safety Analysis Reports (SAR). An additional objective is to demonstrate the use of generic likelihood of occurrence data as a means for deriving defendable accident sequence frequencies, thereby enabling the screening of potentially incredible events ( -6 per year) from the design basis accident envelope. Generic likelihood of occurrence data has been used successfully in performing SAR hazard and accident analyses for two nonreactor nuclear facilities at Sandia National Laboratories. DOE-STD-3009-94 addresses and even encourages use of a qualitative binning technique for deriving and ranking nonreactor nuclear facility risks. However, qualitative techniques invariably lead to reviewer requests for more details associated with consequence or likelihood of occurrence bin assignments in the test of the SAR. Hazard analysis data displayed in simple worksheet format generally elicits questions about not only the assumptions behind the data, but also the quantitative bases for the assumptions themselves (engineering judgment may not be considered sufficient by some reviewers). This is especially true where the criteria for qualitative binning of likelihood of occurrence involves numerical ranges. Oftentimes reviewers want to see calculations or at least a discussion of event frequencies or failure probabilities to support likelihood of occurrence bin assignments. This may become a significant point of contention for events that have been binned as incredible. This paper will show how the use of readily available generic data can avoid many of the reviewer questions that will inevitably arise from strictly qualitative analyses, while not significantly increasing the overall burden on the analyst

  13. Radiation management at the occurrence of accident and restoration works. Fire and explosion of asphalt solidification processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Kenjiro; Jin, K; Namiki, A; Mizutani, K; Horiuchi, N; Saruta, J [Power Reactor and Nuclear Fuel Development Corp., Health and Safety Division, Tokai, Ibaraki (Japan); Ninomiya, Kazushige [Power Reactor and Nuclear Fuel Development Corp., Tsuruga, Fukui (Japan). Monju Construction Office

    1998-06-01

    Fire and explosion accident in the cell of Asphalt Solidification Processing Facility(ASP) in PNC took placed at March 11 in 1997. Following to the alarm of many radiation monitoring system in the facility, some of workers inhale radioactive materials in their bodies. Indication values of an exhaust monitor installed in the first auxiliary exhaust stack increased suddenly. A large number of windows, doors, and shutters in the facility were raptured by the explosion. A lot of radioactive materials blew up and were released to the outside of the facility. Reinforcement of radiation surveillance function, nose smearing test for the workers and confirmation of contamination situation were implemented on the fire. Investigation of radiation situation, radiation management on the site, exposure management for the workers, surveillance of exhaustion, and restoration works of the damaged radiation management monitoring system were carried out after the explosion. The detailed data of radiation management measures taken during three months after the accident are described in the paper. (M. Suetake)

  14. Cause finding experiments and environmental analysis on the accident of the fire and explosion in TRP bituminization facility

    International Nuclear Information System (INIS)

    Fujine, Sachio; Murata, Mikio; Abe, Hitoshi

    1999-09-01

    This report is the summary of the cause finding experiments and environmental analysis on the accident of the fire and explosion occurred at March 11th, 1997, in TRP bituminization facility of PNC (Power Reactor and Nuclear Fuel Development Corporation). Regarding the cause finding experiments, chemical components have been analyzed for the effluent samples taken from PNC's facility, bituminized mock waste has been produced using the simulated salt effluent prepared according to the results of chemical analysis, thermal analysis and experiment of runaway exothermic reaction have been conducted using the mock waste, and the component of flammable gases emitted from the heated waste have been collected and analyzed. Regarding environmental analysis on the accident, the amount of radioactive cesium released by the accident has been calculated by the comparative analysis using the atmospheric dispersion simulation code SPEEDI with the data of environmental monitoring and the public dose has been assessed. (author)

  15. Overview of the Neutron experimental facilities at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This presentation gives an overview of the neutron experimental facilities at LANSCE. The layout is mentioned in detail, with a map of the south-side experimental facilities, information on Target-4 and the Lujan Center. Then it goes into detail about neutron sources, specifically continuous versus pulsed. Target 4 is then discussed. In conclusion, we have introduced the south-side experimental facilities in operation at LANSCE. 1L target and Target 4 provide complementary neutron energy spectra. Two spallation neutron sources taken together cover more than 11 orders of magnitude in neutron energy.

  16. Accidents and troubles in nuclear fuel facilities in fiscal year 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The number of the accidents and troubles reported in fiscal year 1987 in relation to nuclear fuel facilities based on the stipulation of the law on the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors was two. In Tokai Works, Power Reactor and Nuclear Fuel Development Corp., on September 17, 1987, the conveyor for transporting spent fuel in the separation and refining shop of the reprocessing plant broke down, consequently, the operation of the reprocessing plant was stopped for about five months. In Tokai Testing Works, Mitsubishi Heavy Industries Ltd., on February 7, 1988, a worker who was putting up posters in the control area of the uranium experiment facilities fell from a stepladder, and required treatment by entering a hospital for about one month, suffering bone fracture. (K.I.)

  17. Application of FFTBM to severe accidents

    International Nuclear Information System (INIS)

    Prosek, A.; Leskovar, M.

    2005-01-01

    In Europe an initiative for the reduction of uncertainties in severe accident safety issues was initiated. Generally, the error made in predicting plant behaviour is called uncertainty, while the discrepancies between measured and calculated trends related to experimental facilities are called the accuracy of the prediction. The purpose of the work is to assess the accuracy of the calculations of the severe accident International Standard Problem ISP-46 (Phebus FPT1), performed with two versions of MELCOR 1.8.5 for validation purposes. For the quantitative assessment of calculations the improved fast Fourier transform based method (FFTBM) was used with the capability to calculate time dependent code accuracy. In addition, a new measure for the indication of the time shift between the experimental and the calculated signal was proposed. The quantitative results obtained with FFTBM confirm the qualitative conclusions made during the Jozef Stefan Institute participation in ISP-46. In general good agreement of thermal-hydraulic variables and satisfactory agreement of total releases for most radionuclide classes was obtained. The quantitative FFTBM results showed that for the Phebus FPT1 severe accident experiment the accuracy of thermal-hydraulic variables calculated with the MELCOR severe accident code is close to the accuracy of thermal-hydraulic variables for design basis accident experiments calculated with best-estimate system codes. (author)

  18. German offsite accident consequence model for nuclear facilities: further development and application

    International Nuclear Information System (INIS)

    Bayer, A.

    1985-01-01

    The German Offsite Accident Consequence Model - first applied in the German Risk Study for nuclear power plants with light water reactors - has been further developed with the improvement of several important submodels in the areas of atmospheric dispersion, shielding effects of houses, and the foodchains. To aid interpretation, the presentation of results has been extended with special emphasis on the presentation of the loss of life expectancy. The accident consequence model has been further developed for application to risk assessments for other nuclear facilities, e.g., the liquid metal fast breeder reactor (SNR-300) and the high temperature gas cooled reactor. Moreover the model have been further developed in the area of optimal countermeasure strategies (sheltering, evacuation, etc.) in the case of the Central European conditions. Preliminary considerations has been performed in connection with safety goals on the basis of doses

  19. The development of severe accident analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heuy Dong; Cho, Sung Won; Kim, Sang Baek; Park, Jong Hwa; Lee, Kyu Jung; Park, Lae Joon; Hu, Hoh; Hong, Sung Wan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    The objective of the development of severe accident analysis technology is to understand the severe accident phenomena such as core melt progression and to provide a reliable analytical tool to assess severe accidents in a nuclear power plant. Furthermore, establishment of the accident management strategies for the prevention/mitigation of severe accidents is also the purpose of this research. The study may be categorized into three areas. For the first area, two specific issues were reviewed to identify the further research direction, that is the natural circulation in the reactor coolant system and the fuel-coolant interaction as an in-vessel and an ex-vessel phenomenological study. For the second area, the MELCOR and the CONTAIN codes have been upgraded, and a validation calculation of the MELCOR has been performed for the PHEBUS-B9+ experiment. Finally, the experimental program has been established for the in-vessel and the ex-vessel severe accident phenomena with the in-pile test loop in KMRR and the integral containment test facilities, respectively. (Author).

  20. A probabilistic risk assessment of the LLNL Plutonium Facility's evaluation basis fire operational accident. Revision 1

    International Nuclear Information System (INIS)

    Brumburgh, G.P.

    1995-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous programmatic activities involving plutonium to include device fabrication, development of improved and/or unique fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed in July 1994 to address operational safety and acceptable risk to employees, the public, government property, and the environmental. This paper outlines the PRA analysis of the Evaluation Basis Fire (EBF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  1. PWR accident management realated tests: some Bethsy results

    International Nuclear Information System (INIS)

    Clement, P.; Chataing, T.; Deruaz, R.

    1993-01-01

    The BETHSY integral test facility which is a scaled down model of a 3 loop FRAMATOME PWR and is currently operated at the Nuclear Center of Grenoble, forms an important part of the French strategy for PWR Accident Management. In this paper the features of both the facility and the experimental program are presented. Two accident transients: a total loss of feedwater and a 2'' cold leg break in case of High Pressure Safety Injection System failure, involving either Event Oriented - or State Oriented-Emergency Operating Procedures (EO-EOP or SO-EOP) are described and the system response analyzed. CATHARE calculation results are also presented which illustrate the ability of this code to adequately predict the key phenomena of these transients. (authors). 13 figs., 11 refs., 2 tabs

  2. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  3. Development of the scenario-based training system to reduce hazards and prevent accidents during decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, KwanSeong; Choi, Jong-Won; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Kang, ShinYoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Decommissioning of nuclear facilities has to be accomplished by assuring the safety of workers. Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities. In the end, the safety during decommissioning of nuclear facilities will be guaranteed under the principle of ALARA.

  4. Development of the scenario-based training system to reduce hazards and prevent accidents during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, Jong-Won; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Kang, ShinYoung

    2015-01-01

    Decommissioning of nuclear facilities has to be accomplished by assuring the safety of workers. Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities. In the end, the safety during decommissioning of nuclear facilities will be guaranteed under the principle of ALARA

  5. NIF: Impacts of chemical accidents and comparison of chemical/radiological accident approaches

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Rhodes, M.

    1996-01-01

    The US Department of Energy (DOE) proposes to construct and operate the National Ignition Facility (NIF). The goals of the NIF are to (1) achieve fusion ignition in the laboratory for the first time by using inertial confinement fusion (ICF) technology based on an advanced-design neodymium glass solid-state laser, and (2) conduct high-energy-density experiments in support of national security and civilian applications. The primary focus of this paper is worker-public health and safety issues associated with postulated chemical accidents during the operation of NIF. The key findings from the accident analysis will be presented. Although NIF chemical accidents will be emphasized, the important differences between chemical and radiological accident analysis approaches and the metrics for reporting results will be highlighted. These differences are common EIS facility and transportation accident assessments

  6. Los Alamos Experimental Engineering Waste Burial Facility: design considerations and preliminary experimental plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1981-01-01

    The Experimental Engineered Waste Burial Facility is a field test site where generic experiments can be performed on several scales to get the basic information necessary to understand the processes occurring in low-level waste disposal facilities. The experiments include hydrological, chemical, mechanical, and biological factors. In order to separate these various factors in the experiments and to extrapolate the experimental results to actual facilities, experiments will be performed on several different scales

  7. Improvement of safety approach for accident during operation of LILW disposal facility: Application for operational safety assessment of the near-surface LILW disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Kim, Min Seong; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2017-06-15

    To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classifcation logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper.

  8. Improvement of safety approach for accident during operation of LILW disposal facility: Application for operational safety assessment of the near-surface LILW disposal facility in Korea

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Kim, Min Seong; Park, Jin Beak

    2017-01-01

    To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classifcation logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper

  9. Simulation of a loss of coolant accident with hydroaccumulator injection

    International Nuclear Information System (INIS)

    1988-10-01

    An essential component of nuclear safety activities is the analysis of postulated accidents which are taken as a design basis for a facility. This analysis is usually carried out by using complex computer codes to simulate the behaviour of the plant and to calculate vital plant parameters, which are then compared with the design limits. Since these simulations cannot be verified at the plant itself, computer codes must be validated by comparing the results of calculations with experimental data obtained in test facilities. The IAEA, having identified the need for experimental data due to the difficulties of building integral test facilities and the high costs of these experiments, has accepted the offer of the Hungarian Academy of Sciences and organized two standard problem exercises. In these exercises, experimental data from the simulation of a 7.4% break loss of coolant accident was compared with analytical prediction of the behaviour of the facility calculated with computer codes. The second standard problem exercise involved a similar test, with the exception that in this case hydroaccumulator of the safety injection system were allowed to inject water in the system as anticipated in the design of the plant. This document presents a complete overview of the Second Standard Problem Exercise, including description of the facility, the experiment, the codes and models used by the participants and a detailed intercomparison of calculated and experimental results. It is recognized that code assessment is a long process which involves many inter-related steps, therefore, no general conclusion on optimum code or best model was reached. However, the exercise was recognized as an important contributor to code validation. 22 refs, figs and tabs

  10. Accident analysis. A review of the various accidents classifications

    International Nuclear Information System (INIS)

    Martin Martin, L.; Figueras, J.M.

    1982-01-01

    The objective of the accident analysis, in relation with the safety evaluation, environmental impact and emergency planning, should be to identify the total risk to the population and workers from potential accidents in the facility, analizing it over full spectrum of severity. (auth.)

  11. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  12. Integrated assessment of thermal hydraulic processes in W7-X fusion experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, T., E-mail: tadas.kaliatka@lei.lt; Uspuras, E.; Kaliatka, A.

    2017-02-15

    Highlights: • The model of Ingress of Coolant Event experiment facility was developed using the RELAP5 code. • Calculation results were compared with Ingress of Coolant Event experiment data. • Using gained experience, the numerical model of Wendelstein 7-X facility was developed. • Performed analysis approved pressure increase protection system for LOCA event. - Abstract: Energy received from the nuclear fusion reaction is one of the most promising options for generating large amounts of carbon-free energy in the future. However, physical and technical problems existing in this technology are complicated. Several experimental nuclear fusion devices around the world have already been constructed, and several are under construction. However, the processes in the cooling system of the in-vessel components, vacuum vessel and pressure increase protection system of nuclear fusion devices are not widely studied. The largest amount of radioactive materials is concentrated in the vacuum vessel of the fusion device. Vacuum vessel is designed for the vacuum conditions inside the vessel. Rupture of the in-vessel components of the cooling system pipe may lead to a sharp pressure increase and possible damage of the vacuum vessel. To prevent the overpressure, the pressure increase protection system should be designed and implemented. Therefore, systematic and detailed experimental and numerical studies, regarding the thermal-hydraulic processes in cooling system, vacuum vessel and pressure increase protection system, are important and relevant. In this article, the numerical investigation of thermal-hydraulic processes in cooling systems of in-vessel components, vacuum vessels and pressure increase protection system of fusion devices is presented. Using the experience gained from the modelling of “Ingress of Coolant Event” experimental facilities, the numerical model of Wendelstein 7-X (W7-X) experimental fusion device was developed. The integrated analysis of the

  13. Experimental facilities of Valduc critical station

    International Nuclear Information System (INIS)

    Mangin, D.; Maubert, L.

    1975-01-01

    The critical facility of Valduc and its experimentation possibilities are described. The different experimental programs carried out since 1962 are briefly reviewed. The last program involving a plutonium nitrate solution (18.9wt% 240 Pu) in a large parallelepipedic tank is presented and main results given [fr

  14. Post-test analysis of the experiment 5.2C - total loss of feed water at the BETHSY test facility

    Energy Technology Data Exchange (ETDEWEB)

    Krepper, E; Schaefer, F

    1998-10-01

    The BETHSY-test facility is a 1:100 scaled thermohydraulic model of a 900 MW(el) pressurized water reactor (FRAMATOME). The test facility is mainly designed to investigate various accident scenarios and to provide an experimental data base for code validation and for the verification of accident management measures. (orig.)

  15. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    International Nuclear Information System (INIS)

    Gerton, R.E.

    1997-01-01

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board's investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63)

  16. Passive decay heat removal by natural air convection after severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, F.J.; Neitzel, H.J. [Forschungszentrum Karlsruhe Institut fur Angewandte Thermo- und Fluiddynamik, Karlsruhe (Germany); Cheng, X. [Technische Universitaet Karlsruhe Institut fur Stroemungslehre und Stroemungsmaschinen, Karlsruhe (Germany)

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  17. Experimental equipment for an advanced ISOL facility

    International Nuclear Information System (INIS)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    1999-01-01

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting. The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams

  18. Overview of the facility accident analysis for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Mueller, C.; Habegger, L.; Huizenga, D.

    1994-01-01

    An integrated risk-based approach has been developed to address the human health risks of radiological and chemical releases from potential facility accidents in support of the U.S. Department of Energy (DOE) Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Accordingly, the facility accident analysis has been developed to allow risk-based comparisons of EM PEIS strategies for consolidating the storage and treatment of wastes at different sites throughout the country. The analysis has also been developed in accordance with the latest DOE guidance by considering the spectrum of accident scenarios that could occur in implementing the various actions evaluated in the EM PEIS. The individual waste storage and treatment operations and inventories at each site are specified by the functional requirements defined for each waste management alternative to be evaluated. For each alternative, the accident analysis determines the risk-dominant accident sequences and derives the source terms from the associated releases. This information is then used to perform health effects and risk calculations that are used to evaluate the various alternatives

  19. Investigation of primary-to-secondary leakage accident on the PSB-VVER integral test facility

    International Nuclear Information System (INIS)

    Lipatov, I.A.; Dremin, G.I.; Galtchanskaya, S.A.; Chmal, I.I.; Moloshnikov, A.S.; Gorbunov, Y.S.; Antonova, A.I.; Elkin, I.V.

    2001-01-01

    The full text follows. The paper presents the main results from the test on primary-to-secondary leakage of 100 mm in equivalent diameter. The test was performed on the PSB-VVER integral test facility. PSB-VVER is a 4-loops scaled down model of primary system of NPP with VVER-1000 Russian type reactor. Volume - power scale is about 1/300 while elevation scale is 1/1. All components of the primary system of the reference NPP are modeled on PSB-VVER. Both passive (accumulators) and active (high and low pressure) ECCSs, pressurizer spray and relief circuits, feed water system and atmospheric dumping system (ADS) as well as the primary circuit gas remove emergency system are also simulated. The primary-to-secondary leakage was simulated using an external break line which connects the upper part of the hot header to SG water volume. The break line included a break nozzle (a cylindrical channel d = 5.8 mm, l/d = 10 with sharp inlet edge), quick-acting valve and two-phase mass flow rate measurement system. In addition loss of off-site power at the moment when a scram-signal is generated was assumed in the experiment. Thus the accident is to be considered as a beyond-design-basic one. The loss of off-site power results in the following: -main circulation pump shutdown; -pressurizer heaters switching off; -HPIS water cooling flow rate and number of points of water injection are reduced The study focuses on the adequacy of the associated accident management (AM) procedure developed by EDO ''GIDROPRESS'' as a General Designer of VVER-type reactors. The AM-procedure was adopted to the PSB-VVER test facility conditions using CATHARE (France) and DINAMIKA (Russia) codes analysis. The AM-procedure in PSB-VVER is as follows: after about 30 min of the onset of the accident, when the accident type and the localization of the SG affected become evident for the operator, he closes all the main steam isolation valves, inhibits the ADS actuation in the affected SG and begins to remove

  20. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M.

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  1. Thermal Analysis Of A 9975 Package In A Facility Fire Accident

    International Nuclear Information System (INIS)

    Gupta, N.

    2011-01-01

    Surplus plutonium bearing materials in the U.S. Department of Energy (DOE) complex are stored in the 3013 containers that are designed to meet the requirements of the DOE standard DOE-STD-3013. The 3013 containers are in turn packaged inside 9975 packages that are designed to meet the NRC 10 CFR Part 71 regulatory requirements for transporting the Type B fissile materials across the DOE complex. The design requirements for the hypothetical accident conditions (HAC) involving a fire are given in 10 CFR 71.73. The 9975 packages are stored at the DOE Savannah River Site in the K-Area Material Storage (KAMS) facility for long term of up to 50 years. The design requirements for safe storage in KAMS facility containing multiple sources of combustible materials are far more challenging than the HAC requirements in 10 CFR 71.73. While the 10 CFR 71.73 postulates an HAC fire of 1475 F and 30 minutes duration, the facility fire calls for a fire of 1500 F and 86 duration. This paper describes a methodology and the analysis results that meet the design limits of the 9975 component and demonstrate the robustness of the 9975 package.

  2. Report on the preliminary fact finding mission following the accident at the nuclear fuel processing facility in Tokaimura, Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Following the accident on 30 September 1999 at the nuclear fuel processing facility at Tokaimura, Japan, the IAEA Emergency Response Centre received numerous requests for information about the event's causes and consequences from Contact Points under the Conventions on Early Notification of a Nuclear Accident and on Assistance in the Case of a Nuclear Accident or Radiological Emergency. Although the lack of transboundary consequences of the accident meant that action under the Early Notification Convention was not triggered, the Emergency Response Centre issued several advisories to Member States which drew on official reports received from Japan. After discussions with the Government of Japan, the IAEA dispatched a team of three experts from the Secretariat on a fact finding mission to Tokaimura from 13 to 17 October 1999. The present preliminary report by that team documents key technical information obtained during the mission. At this stage, the report can in no way provide conclusive judgements on the causes and consequences of the accident. Investigations are proceeding in Japan and more information is expected to be made available after access has been gained to the building where the accident occurred. Moreover, much of the information already made available will be revised as more accurate assessments are made, for example of the radiation doses to the three individuals who received the highest exposures. Notwithstanding the preliminary nature of this report, it is clear that the accident was not one involving widespread contamination of the environment as in the 1986 Chernobyl accident. Although there was little risk off the site once the accident had been brought under control, the authorities evacuated the population living within a few hundred metres and advised people within about 10 km of the facility to take shelter for a period of about one day. The event at Tokaimura was nevertheless a serious industrial accident. The results of the detailed

  3. Ice condenser testing facility and plans

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Ross, B.A.; Eschbach, E.J.; Ligotke, M.W.

    1987-01-01

    A facility is being constructed to experimentally validate the ICEDF computer code. The code was developed to estimate the extent of fission product retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The design and construction of the facility is based on a test design that addresses the validation needs of the code for conditions typical of those expected to occur during severe pressurized water reactor accidents. Detailed facility design has followed completion of a test design (i.e., assembled test cases each involving a different set of aerosol and thermohydraulic flow conditions). The test design was developed with the aid of statistical test design software and was scrutinized for applicability with the aid of ICEDF simulations. The test facility will incorporate a small section of a prototypic ice condenser (e.g., a cross section comprising the equivalent of four 1-ft-diameter ice baskets to their full prototypic height of 48 ft). The development of the test design, the detailed facility design, and the construction progress are described in this paper

  4. Accidents, troubles and others in nuclear fuel facilities in fiscal year 1988

    International Nuclear Information System (INIS)

    1990-01-01

    The number of the accidents, troubles and others reported on the basis of the 'Law concerning the regulation of nuclear raw material substances, nuclear fuel substances and nuclear reactors' in fiscal year 1988 was one. On February 23, 1989, in the controlled area of the plutonium waste treatment development facilities in Tokai Works. Power Reactor and Nuclear Fuel Development Corp., when one worker entered from a corridor into the material store, he fell down by mistake and broke the left collarbone, which required the hospitalization for about one month. (K.I.)

  5. Investigation of air cleaning system response to accident conditions

    International Nuclear Information System (INIS)

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.; Gregory, W.S.; Horak, H.L.; Idar, E.S.; Martin, R.A.; Ricketts, C.I.; Smith, P.R.; Tang, P.K.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported

  6. Analysis of eventual accidents in a water experimental loop, using the Relap 4 computer code

    International Nuclear Information System (INIS)

    Fernandes Filho, T.L.

    1981-01-01

    Transients caused by accidents as (1) loss of coolant, (2) failure in the principal pump and (3) power excursions were analysed. In the accident simulation, the Relap 4/Mod 3 computer code was used. The results obtained with the steady state model showed to be consistent with the project-and operation data of the experimental loop. For all the accidents analysed that considered the performance of safety systems, the highest temperature of the heating rods in the testing section did not exceed the permissible temperature. (E.G.) [pt

  7. Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities. Volume 1, Analysis of experimental data

    International Nuclear Information System (INIS)

    1994-12-01

    This handbook contains (1) a systematic compilation of airborne release and respirable fraction experimental data for nonreactor nuclear facilities, (2) assessments of the data, and (3) values derived from assessing the data that may be used in safety analyses when the data are applicable. To assist in consistent and effective use of this information, the handbook provides: identification of a consequence determination methodology in which the information can be used; discussion of the applicability of the information and its general technical limits; identification of specific accident phenomena of interest for which the information is applicable; and examples of use of the consequence determination methodology and airborne release and respirable fraction information

  8. Confinement of airborne particulate radioactivity in the case of an accident

    International Nuclear Information System (INIS)

    Ruedinger, V.; Wilhelm, J.G.

    1984-01-01

    In the case of an accident, the filter elements on the inlets and exhausts of the air-cleaning systems of a nuclear facility may become a part of the remaining fission product barrier. Among others, the Project Nuclear Safety is pursuing the information necessary to insure safe operation of air-cleaning systems under accident conditions. Experimental investigations into the response of HEPA filters to differential presssures involving both dry and moist air have demonstrated the occurrence of structural failure with subsequent loss of efficiency at low values of differential pressures. Contributions are being made to the development and verification of computer codes used to calculate those fluid-dynamic and thermodynamic conditions expected to prevail in an air-cleaning system as a result of potential accident situations. With regard to further investigations, a new test facility was put into operation for the realization of superimposed challenges and a new method for testing particulate removal efficiency under high temperature or high humidity was developed. (orig./HP)

  9. Defense In-Depth Accident Analysis Evaluation of Tritium Facility Bldgs. 232-H, 233-H, and 234-H

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    'The primary purpose of this report is to document a Defense-in-Depth (DID) accident analysis evaluation for Department of Energy (DOE) Savannah River Site (SRS) Tritium Facility Buildings 232-H, 233-H, and 234-H. The purpose of a DID evaluation is to provide a more realistic view of facility radiological risks to the offsite public than the bounding deterministic analysis documented in the Safety Analysis Report, which credits only Safety Class items in the offsite dose evaluation.'

  10. Specific features of RBMK severe accidents progression and approach to the accident management

    International Nuclear Information System (INIS)

    Vasilevskij, V.P.; Nikitin, Yu.M.; Petrov, A.A.; Potapov, A.A.; Cherkashov, Yu.M.

    2001-01-01

    Fundamental construction features of the LWGR facilities (absence of common external containment shell, disintegrated circulation circuit and multichannel reactor core, positive vapor reactivity coefficient, high mass of thermally capacious graphite moderator) predetermining development of assumed heavy non-projected accidents and handling them are treated. Rating the categories of the reactor core damages for non-projected accidents and accident types producing specific grope of damages is given. Passing standard non-projected accidents, possible methods of attack accident consequences, as well as methods of calculated analysis of non-projected accidents are demonstrated [ru

  11. Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010

    International Nuclear Information System (INIS)

    Hickman, D.P.; Wysong, A.R.; Heinrichs, D.P.; Wong, C.T.; Merritt, M.J.; Topper, J.D.; Gressmann, F.A.; Madden, D.J.

    2011-01-01

    The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE

  12. Minimization of the occupational doses during the liquidation of the radiation accident consequences

    International Nuclear Information System (INIS)

    Kuryndina, Lidia; Stroganov, Anatoly; Kuryndin, Anton

    2008-01-01

    Full text: As known the accident on the Chernobylskaya npp is the heaviest one in the nuclear energy history. It showed how considerable can be radiation levels on the breakdown nuclear facility. Nevertheless Russian specialists on radiation protection worked out and successfully realized a conception of the working in such conditions during the liquidation of the accident consequences. The conception based out on using ALARA principle, included the methods of radiation fields structure analysis and allowed to minimize of the occupational doses at operations of the accident consequences liquidation. The main idea of the conception is in strongly dependence between the radiation dose of the personnel performing the liquidation operations and concrete sequence of these operations. Also it is necessary from time to time to receive the experimental information about radiation situation dynamics on the breakdown facility and to make variant calculations for optimizing for the successful implementation of such approach. The structure of these calculations includes variable fraction for the actual state of the facility before the accident and after one and not variable fraction depend on the geometric and protection characteristics of the facility. And the second part is more complicated and bigger. Therefore the most part of these calculations required for the any successful liquidation of the accident consequences can be made on the facility projecting stage. If it will be made the following tasks can be solved in case of the accident: 1) To estimate a distribution of the contamination source using the radiation control system indications; 2) To determine a contribution from each source to the dose rate for any contaminated area; 3) To estimate the radiation doses of the personnel participated in the accident consequences liquidation; 4) To select and to realize the sequence of the liquidation operations giving the minimal doses. The paper will overview the description

  13. Fukushima accident - reasons and impacts

    International Nuclear Information System (INIS)

    Slugen, V.

    2011-01-01

    The Fukushima accident influenced dramatically the current view on safety of nuclear facilities. Consideration about possible impacts of natural catastrophe in design of nuclear facilities seems to be much more important than before. European commission is focused on the stress-tests at nuclear power plants. His paper will go more in details having in mind reasons and impacts of Fukushima accident (Author)

  14. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  15. Investigation of primary-to-secondary leakage accident on the PSB-VVER integral test facility

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, I.A.; Dremin, G.I.; Galtchanskaya, S.A.; Chmal, I.I.; Moloshnikov, A.S.; Gorbunov, Y.S.; Antonova, A.I. [Electrogorsk Research and Engineering Center, EREC, Moscow (Russian Federation); Elkin, I.V. [RRC ' ' Kurchatov Institute, Moscow (Russian Federation)

    2001-07-01

    The full text follows. The paper presents the main results from the test on primary-to-secondary leakage of 100 mm in equivalent diameter. The test was performed on the PSB-VVER integral test facility. PSB-VVER is a 4-loops scaled down model of primary system of NPP with VVER-1000 Russian type reactor. Volume - power scale is about 1/300 while elevation scale is 1/1. All components of the primary system of the reference NPP are modeled on PSB-VVER. Both passive (accumulators) and active (high and low pressure) ECCSs, pressurizer spray and relief circuits, feed water system and atmospheric dumping system (ADS) as well as the primary circuit gas remove emergency system are also simulated. The primary-to-secondary leakage was simulated using an external break line which connects the upper part of the hot header to SG water volume. The break line included a break nozzle (a cylindrical channel d = 5.8 mm, l/d = 10 with sharp inlet edge), quick-acting valve and two-phase mass flow rate measurement system. In addition loss of off-site power at the moment when a scram-signal is generated was assumed in the experiment. Thus the accident is to be considered as a beyond-design-basic one. The loss of off-site power results in the following: -main circulation pump shutdown; -pressurizer heaters switching off; -HPIS water cooling flow rate and number of points of water injection are reduced The study focuses on the adequacy of the associated accident management (AM) procedure developed by EDO ''GIDROPRESS'' as a General Designer of VVER-type reactors. The AM-procedure was adopted to the PSB-VVER test facility conditions using CATHARE (France) and DINAMIKA (Russia) codes analysis. The AM-procedure in PSB-VVER is as follows: after about 30 min of the onset of the accident, when the accident type and the localization of the SG affected become evident for the operator, he closes all the main steam isolation valves, inhibits the ADS actuation in the affected SG

  16. Defense In-Depth Accident Analysis Evaluation of Tritium Facility Bldgs. 232-H, 233-H, and 234-H

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-05-10

    'The primary purpose of this report is to document a Defense-in-Depth (DID) accident analysis evaluation for Department of Energy (DOE) Savannah River Site (SRS) Tritium Facility Buildings 232-H, 233-H, and 234-H. The purpose of a DID evaluation is to provide a more realistic view of facility radiological risks to the offsite public than the bounding deterministic analysis documented in the Safety Analysis Report, which credits only Safety Class items in the offsite dose evaluation.'

  17. Lesson from a 60Co source radiation accident

    International Nuclear Information System (INIS)

    Guo Yong; Zhang Wenzhong

    2002-01-01

    A serious radiation accident happened an a 60 Co irradiation facility in Shanghai. 7 workers were uniformly exposed acutely. An investigation was done after the accident and a conclusion was achieved that the irregular operation was the direct reason for the accident. The operation of these workers did not comply with the requirements specified in the national standards-- 60 irradiation facility>> which demands that the examination should be done every day before operation, and the irradiation facility does not stop running when the auto-lock safety system on that facility has been removed. Some lessons should be drawn from the accident: popularizing the culture of safety, enhancing the law of safety, and ensuring the operation of radiation devices within the demands of safety

  18. CATHARE-2 prediction of large primary to secondary leakage (PRISE) at PSB-VVER experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Sabotinov, L.; Chevrier, P. [Institut de Radioprotection et de Surete Nucleaire, 92 - Fontenay aux Roses (France)

    2007-07-01

    The large primary to secondary leakage (PRISE) is a specific loss-of-coolant accident in VVER reactors, related to the break of the steam generator collector cover, leading to loss of primary mass inventory and possible direct radioactive release to atmosphere. The best estimate thermal-hydraulic computer code CATHARE-2 Version 2.5-1 was used for post-test analysis of a PRISE experiment, conducted at the large scale test facility PSB-VVER in Russia. The PSB rig is 1:300 scaled model of VVER-1000 NPP. The accident is calculated with a 1.4% break size, which corresponds to 100 mm leak from primary to secondary side in the real NPP. A computer model has been developed for CATHARE-2 V2.5-1, taking into account all important components of the PSB facility: reactor model (lower plenum, core, bypass, upper plenum, downcomer), 4 separate loops, pressurizer, horizontal multi-tube steam generators, break section. The secondary side is presented by recirculation model. A large number of sensitivity calculations has been performed regarding break modeling, reactor pressure vessel modeling, counter current flow modeling, hydraulic losses, heat losses, steam generator level regulation. Comparison between calculated and experimental results shows good prediction of the basic thermal-hydraulic phenomena and parameters such as primary and secondary pressures, temperatures, loop flows, etc. Some discrepancies were observed in the calculations of primary mass inventory and loop seal clearance. Nevertheless the final core heat up, which is one of the most important safety criteria, was correctly predicted. (authors)

  19. Assessment of radiation doses in normal operation, upset accident conditions at the Olkiluoto nuclear waste facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.

    2009-09-01

    Radiation doses for workers of the facility, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facility to be built at Olkiluoto during its operation were considered in the study. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical abnormal fault and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that on average one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The critical group is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. The dose value to a member of the critical group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The results obtained indicate that during normal operation the doses to workers remain small and the dose to the member of the critical group is less than 0,001 mSv per year. In the case of hypothetical fault and accident releases the offsite doses do not exceed either the limit values set by the safety authority. The highest dose rates to the reference organisms of the terrestrial ecosystem with conservative assumptions from the largest release were estimated to be of the order of 100 μ Gy/h at the distance of 200 m. As a chronic exposure this dose rate is expected to bring up detrimental

  20. On the removal of airborne particulate radioactivity under accident conditions

    International Nuclear Information System (INIS)

    Ruedinger, V.; Wilhelm, J.G.

    1985-03-01

    In the case of an accident, the filter elements in the ventilation systems of a nuclear facility may become a part of the remaining fission product barrier. Within the framework of the Project Nuclear Safety of the Karlsruhe Nuclear Research Center, contributions are made to an increase in reliability of the air cleaning systems under accident conditions. These include the development and verification of computer programs for the estimation of those conditions prevailing inside the air cleaning systems in the case of an accident. Experimental investigations into the response of HEPA filters to differential pressures involving both dry and moist air have demonstrated the occurence of structural failures with subsequent loss of efficiency at relatively low values of differential pressures. With regard to further investigations, a new test facility was put into operation for the realization of superimposed challenges. A new method for testing particulate removal efficiency under high temperature or high humidity was developed. Finally, first results of code development work and of the corresponding verification experiments are reported on. (orig.) [de

  1. Performance and first results of fission product release and transport provided by the VERDON facility

    Energy Technology Data Exchange (ETDEWEB)

    Gallais-During, A., E-mail: annelise.gallais-during@cea.fr [CEA, DEN, DEC, F-13108 Saint-Paul-lez-Durance (France); Bonnin, J.; Malgouyres, P.-P. [CEA, DEN, DEC, F-13108 Saint-Paul-lez-Durance (France); Morin, S. [IRSN, F-13108 Saint-Paul-lez-Durance (France); Bernard, S.; Gleizes, B.; Pontillon, Y.; Hanus, E.; Ducros, G. [CEA, DEN, DEC, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-01

    Highlights: • A new facility to perform experimental LWR severe accidents sequences is evaluated. • In the furnace a fuel sample is heated up to 2600 °C under a controlled gas atmosphere. • Innovative thermal gradient tubes are used to study fission product transport. • The new VERDON facility shows an excellent consistency with results from VERCORS. • Fission product re-vapourization results confirm the correct functioning of the gradient tubes. - Abstract: One of the most important areas of research concerning a hypothetical severe accident in a light water reactor (LWR) is determining the source term, i.e. quantifying the nature, release kinetics and global released fraction of the fission products (FPs) and other radioactive materials. In line with the former VERCORS programme to improve source term estimates, the new VERDON laboratory has recently been implemented at the CEA Cadarache Centre in the LECA-STAR facility. The present paper deals with the evaluation of the experimental equipment of this new VERDON laboratory (furnace, release and transport loops) and demonstrates its capability to perform experimental sequences representative of LWR severe accidents and to supply the databases necessary for source term assessments and FP behaviour modelling.

  2. Improved worst-case and liely accident definition in complex facilities for 40 CFR 68 compliance

    International Nuclear Information System (INIS)

    O'Kula, K.R., Taylor, Robert P., Jr; Hang, P.

    1997-04-01

    Many DOE facilities potentially subject to compliance with offsite consequence criteria under the 40 CFR 68 Risk Management Program house significant inventories of toxic and flammable chemicals. The accident progression event tree methodology is suggested as a useful technical basis to define Worst-Case and Alternative Release Scenarios in facilities performing operations beyond simple storage and/or having several barriers between the chemical hazard and the environment. For multiple chemical release scenarios, a chemical mixture methodology should be applied to conservatively define concentration isopleths. In some instances, the region requiring emergency response planning is larger under this approach than if chemicals are treated individually

  3. Large experimental facilities of the UKAEA

    International Nuclear Information System (INIS)

    Hills, P.R.

    1987-10-01

    This list of UKAEA capital equipment was first assembled for the Interdepartmental Committee on Large Experimental Facilities as a contribution to a directory of national installations with a replacement value of Pound 1M or more. It is now being circulated in report form within the Authority, to assist staff to demonstrate to customers the wide range of facilities the Authority has available to carry out contract work, and to help them identify where customers' work can best be placed. (author)

  4. Drivers of accident preparedness and safety: evidence from the RMP Rule

    International Nuclear Information System (INIS)

    Kleindorfer, Paul R.; Elliott, Michael R.; Wang Yanlin; Lowe, Robert A.

    2004-01-01

    This paper provides an overview of recent results derived from the accident history data collected under 112(r) of the Clean Air Act Amendments (the Risk Management Program (RMP) Rule) covering the period 1994-2000, together with a preliminary assessment of the effectiveness of the RMP Rule as a form of Management System Regulation. These were undertaken at the University of Pennsylvania by a multi-disciplinary team of economists, statisticians and epidemiologists with the support of the US Environmental Protection Agency and its Office of Emergency Prevention, Preparedness and Response (OEPPR, formerly CEPPO). Section 112(r) of the Clean Air Act Amendments of 1990 requires that chemical facilities in the US that had on premises more than specified quantities of toxic or flammable chemicals file a 5-year history of accidents. The initial data reported under the RMP Rule covered roughly the period from mid-1994 through mid-2000, and provided details on economic, environmental and acute health affects resulting from accidents at some 15,000 US chemical facilities for this period. This paper reviews research based on this data. The research is in the form of a retrospective cohort study that considers the statistical associations between accident frequency and accident severity at covered facilities (the outcome variables of interest) and a number of facility characteristics (the available predictor variables provided by the RMP Rule), the latter including such facility characteristics as size, hazardousness, financial characteristics of parent company-owners of the facility, regulatory programs in force at the facility, and host community characteristics for the surrounding county in which the facility was located, as captured in the 1990 Census. Among the findings reviewed are: (1) positive associations with (a measure of) facility hazardousness and accident, injury and economic costs of accidents; (2) positive (resp., negative) associations between accident

  5. Experimental measurements at the MASURCA facility

    International Nuclear Information System (INIS)

    Assal, W.; Bosq, J.C.; Mellier, F.

    2012-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented. (authors)

  6. Experimental Measurements at the MASURCA Facility

    Science.gov (United States)

    Assal, W.; Bosq, J. C.; Mellier, F.

    2012-12-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.

  7. Experimental measurements at the Masurca facility

    International Nuclear Information System (INIS)

    AssaI, W.; Bosq, J. C.; Mellier, F.

    2009-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, Masurca (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems...). For this purpose electronics modules are implemented to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electrical and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at Masurca will be presented. (authors)

  8. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    CERN Document Server

    Balda, F

    2002-01-01

    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  9. Accident selection methodology for TA-55 FSAR

    International Nuclear Information System (INIS)

    Letellier, B.C.; Pan, P.Y.; Sasser, M.K.

    1995-01-01

    In the past, the selection of representative accidents for refined analysis from the numerous scenarios identified in hazards analyses (HAs) has involved significant judgment and has been difficult to defend. As part of upgrading the Final Safety Analysis Report (FSAR) for the TA-55 plutonium facility at the Los Alamos National Laboratory, an accident selection process was developed that is mostly mechanical and reproducible in nature and fulfills the requirements of the Department of Energy (DOE) Standard 3009 and DOE Order 5480.23. Among the objectives specified by this guidance are the requirements that accident screening (1) consider accidents during normal and abnormal operating conditions, (2) consider both design basis and beyond design basis accidents, (3) characterize accidents by category (operational, natural phenomena, etc.) and by type (spill, explosion, fire, etc.), and (4) identify accidents that bound all foreseeable accident types. The accident selection process described here in the context of the TA-55 FSAR is applicable to all types of DOE facilities

  10. Study on the experimental VHTR safety with analysis for a hypothetical rapid depressurization accident

    International Nuclear Information System (INIS)

    Mitake, S.; Suzuki, K.; Ohno, T.; Okada, T.

    1982-01-01

    A hypothetical rapid depressurization accident of the experimental VHTR has been analyzed, including all phenomena in the accident, from its initiating depressurization of the coolant to consequential radiological hazard. Based on reliability analysis of the engineered safety features, all possible sequences, in which the safety systems are in success or in failure, have been investigated with event tree analysis. The result shows the inherent safety characteristics of the reactor and the effectiveness of the engineered safety features. And through the analysis, it has been indicated that further investigations on some phenomena in the accident, e.g., air ingress by natural circulation flow and fission product transport in the plant, will bring forth more reasonable and sufficient safety of the reactor

  11. Upper plenum break LOCA investigation in the ISB-VVER and PSB-VVER facilities

    Energy Technology Data Exchange (ETDEWEB)

    Blinkov, V. N.; Melikhov, O. I.; Lipatov, I. A.; Nikonov, S. M.; Dremin, G. I.; Galchanskaya, S. A.; Gashenko, M. P.; Rovnov, A. A.; Kapustin, A. V.; Elkin, I. V. [EREC, Moscow (Russian Federation)

    2003-07-01

    The capability to define the actual NPP transient/accident scenario depends to a great extent on facilities' scaling and reliability of the system thermalhydraulic codes which, in turn, are assessed against the experimental data taken in the same facilities. At the present time, it is received fact that the rigorous modeling of the cumulative set of all thermalhydraulic processes in the plant primary and secondary sides during accident is unfeasible. Therefore, the extrapolation of the facilities loops behavior to the actual systems constitutes a fundamental problem in this area. In the paper, some aspects for the problem have been discussed in the course of comparative analysis of the data derived from the 11 % upper plenum break LOCA tests performed in the PSB-VVER and ISB-VVER integral test facilities under the close scenarios. Both facilities, PSB-VVER and ISB-VVER, are modeled the same VVER-1000 reactor in different scales. The thermalhydraulic behavior of the primary systems in both facilities has been discussed in the paper, and shown to be similar. Also, the attention has been focused upon the discrepancies in the significant variables trends. The discrepancies are shown to be caused by influence of peculiarities of the facilities hardware and due to the scale factor. The scaling study is an important aspect of the thermalhydraulic codes verification procedure. Being qualified against the experimentally simulated accident sequence in two test facilities of different scales, the thermalhydraulic codes will be capable of evaluation of the prototype behavior to greater accuracy.

  12. The design of PSB-VVER experiments relevant to accident management

    International Nuclear Information System (INIS)

    Del Nevo, Alessandro; D'auria, Francesco; Mazzini, Marino; Bykov, Michael; Elkin, Ilya V.; Suslov, Alexander

    2008-01-01

    Experimental programs carried-out in integral test facilities are relevant for validating the best estimate thermal-hydraulic codes, which are used for accident analyses, design of accident management procedures, licensing of nuclear power plants, etc. The validation process, in fact, is based on well designed experiments. It consists in the comparison of the measured and calculated parameters and the determination whether a computer code has an adequate capability in predicting the major phenomena expected to occur in the course of transient and/or accidents. University of Pisa was responsible of the numerical design of the 12 experiments executed in PSB-VVER facility, operated at Electrogorsk Research and Engineering Center (Russia), in the framework of the TACIS 2.03/97 Contract 3.03.03 Part A, EC financed. The paper describes the methodology adopted at University of Pisa, starting form the scenarios foreseen in the final test matrix until the execution of the experiments. This process considers three key topics: a) the scaling issue and the simulation, with unavoidable distortions, of the expected performance of the reference nuclear power plants; b) the code assessment process involving the identification of phenomena challenging the code models; c) the features of the concerned integral test facility (scaling limitations, control logics, data acquisition system, instrumentation, etc.). The activities performed in this respect are discussed, and emphasis is also given to the relevance of the thermal losses to the environment. This issue affects particularly the small scaled facilities and has relevance on the scaling approach related to the power and volume of the facility. (author)

  13. The Design of PSB-VVER Experiments Relevant to Accident Management

    Science.gov (United States)

    Nevo, Alessandro Del; D'Auria, Francesco; Mazzini, Marino; Bykov, Michael; Elkin, Ilya V.; Suslov, Alexander

    Experimental programs carried-out in integral test facilities are relevant for validating the best estimate thermal-hydraulic codes(1), which are used for accident analyses, design of accident management procedures, licensing of nuclear power plants, etc. The validation process, in fact, is based on well designed experiments. It consists in the comparison of the measured and calculated parameters and the determination whether a computer code has an adequate capability in predicting the major phenomena expected to occur in the course of transient and/or accidents. University of Pisa was responsible of the numerical design of the 12 experiments executed in PSB-VVER facility (2), operated at Electrogorsk Research and Engineering Center (Russia), in the framework of the TACIS 2.03/97 Contract 3.03.03 Part A, EC financed (3). The paper describes the methodology adopted at University of Pisa, starting form the scenarios foreseen in the final test matrix until the execution of the experiments. This process considers three key topics: a) the scaling issue and the simulation, with unavoidable distortions, of the expected performance of the reference nuclear power plants; b) the code assessment process involving the identification of phenomena challenging the code models; c) the features of the concerned integral test facility (scaling limitations, control logics, data acquisition system, instrumentation, etc.). The activities performed in this respect are discussed, and emphasis is also given to the relevance of the thermal losses to the environment. This issue affects particularly the small scaled facilities and has relevance on the scaling approach related to the power and volume of the facility.

  14. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Maolong; Ryals, Matthew; Ali, Amir; Blandford, Edward; Jensen, Colby; Condie, Keith; Svoboda, John; O' Brien, Robert

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentally investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.

  15. Containment accident analysis using CONTEMPT4/M0D2 compared with experimental data

    International Nuclear Information System (INIS)

    Metcalfe, L.J.; Hargroves, D.W.; Wells, R.A.

    1978-01-01

    CONTEMPT4/MOD2 is a new computer program developed to predict the long-term thermal hydraulic behavior of light-water reactor and experimental containment systems during postulated loss-of-coolant accident (LOCA) conditions. Improvements over previous containment codes include multicompartment capability and ice condenser analytical models. A program description and comparisons of calculated results with experimental data are presented

  16. Criticality accident in Argentina

    International Nuclear Information System (INIS)

    Oliveira, A.R. de.

    1984-01-01

    A recent criticality type accident, ocurred in Argetina, is commented. Considerations about the nature of the facility where this accident took place, its genesis, type of operation carried out on the day of the event, and the medical aspects involved are done. (Author) [pt

  17. The COLIMA experiment on aerosol retention in containment leak paths under severe nuclear accidents

    Energy Technology Data Exchange (ETDEWEB)

    Parozzi, Flavio, E-mail: flavio.parozzi@rse-web.it [RSE, Power Generation Department, via Rubattino 54, I-20134 Milano (Italy); Caracciolo, Eduardo D.J., E-mail: eduardo.caracciolo@rse-web.it [RSE, Power Generation Department, via Rubattino 54, I-20134 Milano (Italy); Journeau, Christophe, E-mail: christophe.journeau@cea.fr [CEA Cadarache (France); Piluso, Pascal, E-mail: pascal.piluso@cea.fr [CEA Cadarache (France)

    2013-08-15

    Highlights: ► Experiment investigating aerosol retention within concrete containment cracks under nuclear severe accident conditions. ► Provided representative conditions of the aerosols suspended inside the containment of PWRs under a severe accident. ► Prototypical aerosol particles generated with a thermite reaction and transported through the crack sample reproducing surface characteristics, temperature, pressure drop and gas leakage. ► The results indicate the significant retention due to zig-zag path. -- Abstract: CEA and RSE managed an experimental research concerning the investigation of aerosol retention within concrete containment cracks under severe accident conditions. The main experiment was carried out in November 2008 with aerosol generated from the COLIMA facility and a sample of cracked concrete with defined geometric characteristics manufactured by RSE. The facility provided representative conditions of the aerosols suspended inside the containment of PWRs under a severe accident. Prototypical aerosol particles were generated with a thermite reaction and transported through the crack sample, where surface characteristics, temperature, pressure drop and gas leakage were properly reproduced. The paper describes the approach adopted for the preparation of the cracked concrete sample and the dimensioning of the experimental apparatus, the test procedure and the measured parameters. The preliminary results, obtained from this single test, are also discussed in the light of the present knowledge about aerosol phenomena and the theoretical analyses of particle behaviour with the crack path.

  18. Experimental investigation of H2 combustion in the Sandia VGES Intermediate-scale burn tank

    International Nuclear Information System (INIS)

    Benedick, W.B.; Berman, M.; Cummings, J.C.; Prassinos, P.G.

    1983-01-01

    Sandia National Laboratories is presently involved in several NRC-sponsored experimental projects to provide data that will help quantify the threat of hydrogen combustion during LWR accidents. One project, which employs several experimental facilities is the Variable Geometry Experimental System (VGES). The purpose of this paper is to present the experimental results from one of these facilities; the intermediate-scale burn tank ( about5m 3 ). The data provided by this facility can be used in the development and assessment of analytical models used to predict hydrogen combustion behavior

  19. Development of the criticality accident analysis code, AGNES

    International Nuclear Information System (INIS)

    Nakajima, Ken

    1989-01-01

    In the design works for the facilities which handle nuclear fuel, the evaluation of criticality accidents cannot be avoided even if their possibility is as small as negligible. In particular in the system using solution fuel like uranyl nitrate, solution has the property easily becoming dangerous form, and all the past criticality accidents occurred in the case of solution, therefore, the evaluation of criticality accidents becomes the most important item of safety analysis. When a criticality accident occurred in a solution fuel system, due to the generation and movement of radiolysis gas voids, the oscillation of power output and pressure pulses are observed. In order to evaluate the effect of criticality accidents, these output oscillation and pressure pulses must be calculated accurately. For this purpose, the development of the dynamic characteristic code AGNES (Accidentally Generated Nuclear Excursion Simulation code) was carried out. The AGNES is the reactor dynamic characteristic code having two independent void models. Modified energy model and pressure model, and as the benchmark calculation of the AGNES code, the results of the experimental analysis on the CRAC experiment are reported. (K.I.)

  20. Review of Atomic Energy Laws Related to Radiological Accidents and Methods of Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gun Hyun; Kim, Sang Won; Yoo, Jeong; Ahn, Hyoung Jun; Park, Young Sik; Kim, Hong Suk; Kwon, Jeong Wan; Jang, Ki Won; Kim, Sok Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-05-15

    Atomic energy-related laws in Korea have a two pronged management system for radiological accidents. To be specific, the Atomic Energy Act is applicable to all radiological accidents, i.e. accidents pertaining to nuclear facilities and radioactive materials while the Act for Physical Protection and Radiological Emergency ('APPRE') applies to accidents related to nuclear materials and large-scale nuclear facilities. The Atomic Energy Act contains three provisions directly related with radiological accidents (Articles 89, 98 and 102). Article 89 provides for the obligations of nuclear licensees or consigned transporters to institute safety measures and file a report to the head of the Ministry of Education, Science and Technology ('MEST') in the event of any radiological accident during transport or packing of radioactive materials, etc. Article 98 stipulates obligations of nuclear licensees to implement safety procedures and submit a report to the Minister of Education, Science and Technology concerning radiation hazards arising in the event a radiological accident occurs in connection with nuclear projects, as well as the Minister's requests to implement necessary measures. Article 102 explicitly provides for obligations to file a report to the Minister in the event of theft, loss, fire or other accidents involving radioactive materials, etc. in the possession of nuclear licensees. The APPRE classifies radiological accidents according to location and scale of the accidents. Based on location, accidents are divided into accidents inside or outside nuclear facilities. Accidents inside nuclear facilities refer to accidents that occur at nuclear reactors, nuclear fuel cycling facilities, radioactive waste storage, treatment and disposal facilities, facilities using nuclear materials and facilities related to radioisotopes of not lower than 18.5PBq (Subparagraph 2, Article 2 of the APPRE) while accidents outside nuclear facilities mean accidents

  1. Review of Atomic Energy Laws Related to Radiological Accidents and Methods of Improvement

    International Nuclear Information System (INIS)

    Chang, Gun Hyun; Kim, Sang Won; Yoo, Jeong; Ahn, Hyoung Jun; Park, Young Sik; Kim, Hong Suk; Kwon, Jeong Wan; Jang, Ki Won; Kim, Sok Chul

    2009-01-01

    Atomic energy-related laws in Korea have a two pronged management system for radiological accidents. To be specific, the Atomic Energy Act is applicable to all radiological accidents, i.e. accidents pertaining to nuclear facilities and radioactive materials while the Act for Physical Protection and Radiological Emergency ('APPRE') applies to accidents related to nuclear materials and large-scale nuclear facilities. The Atomic Energy Act contains three provisions directly related with radiological accidents (Articles 89, 98 and 102). Article 89 provides for the obligations of nuclear licensees or consigned transporters to institute safety measures and file a report to the head of the Ministry of Education, Science and Technology ('MEST') in the event of any radiological accident during transport or packing of radioactive materials, etc. Article 98 stipulates obligations of nuclear licensees to implement safety procedures and submit a report to the Minister of Education, Science and Technology concerning radiation hazards arising in the event a radiological accident occurs in connection with nuclear projects, as well as the Minister's requests to implement necessary measures. Article 102 explicitly provides for obligations to file a report to the Minister in the event of theft, loss, fire or other accidents involving radioactive materials, etc. in the possession of nuclear licensees. The APPRE classifies radiological accidents according to location and scale of the accidents. Based on location, accidents are divided into accidents inside or outside nuclear facilities. Accidents inside nuclear facilities refer to accidents that occur at nuclear reactors, nuclear fuel cycling facilities, radioactive waste storage, treatment and disposal facilities, facilities using nuclear materials and facilities related to radioisotopes of not lower than 18.5PBq (Subparagraph 2, Article 2 of the APPRE) while accidents outside nuclear facilities mean accidents that take place on

  2. Release of radionuclides following severe accident in interim storage facility. Source term determination

    International Nuclear Information System (INIS)

    Morandi, S.; Mariani, M.; Giacobbo, F.; Covini, R.

    2006-01-01

    Among the severe accidents that can cause the release of radionuclides from an interim storage facility, with a consequent relevant radiological impact on the population, there is the impact of an aircraft on the facility. In this work, a safety assessment analysis for the case of an aircraft crash into an interim storage facility is tackled. To this aim a methodology, based upon DOE, IAEA and NUREG standard procedures and upon conservative yet realistic hypothesis, has been developed in order to evaluate the total radioactivity, source term, released to the biosphere in consequence of the impact, without recurring to the use of complicated numerical codes. The procedure consists in the identification of the accidental scenarios, in the evaluation of the consequent damage to the building structures and to the waste packages and in the determination of the total release of radionuclides through the building-atmosphere interface. The methodology here developed has been applied to the case of an aircraft crash into an interim storage facility currently under design. Results show that in case of perforation followed by a fire incident the total released activity would be greater of some orders of magnitude with respect to the case of mere perforation. (author)

  3. Experimental observation of a multi-dimensional mixing behavior of steam-water flow in the MIDAS test facility

    International Nuclear Information System (INIS)

    Kweon, T. S.; Yun, B. J.; Ah, D. J.; Ju, I. C.; Song, C. H.; Park, J. K.

    2001-01-01

    Multi-dimensional thermal-hydraulic hehavior, such as ECC (Emergency Core Cooling) bypass, ECC penetration, steam-water condensation and accumulated water level, in an annular downcomer of a PWR (Pressurized Water Reactor) reactor vessel with a DVI(Direct Vessel Injection) injection mode is presented based on the experimental observations in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water facility. From the steady-state tests to similate a late reflood phase of LBLOCA (Large Break Loss-of-Coolant Accidents), major thermal-hydraulic phenomena in the downcomer are quantified under a wide range of test conditions. Especially, isothermal lines show well multi-dimensional phenomena of phase interaction between steam and water in the annulus downcomer. Overall test results show that multi-dimensional thermal-hydraulic behaviors occur in the downcomer annulus region as expected. The MIDAS test facility is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of a 1400 MWe PWR type of nuclear reactor, with focusing on understanding multi-dimensional thermal-hydraulic phenomena in annulus downcomer with various types of safety injection location during refill or reflood phase of a LBLOCA in PWR

  4. Aircraft accident analysis for emergency planning and safety analysis

    International Nuclear Information System (INIS)

    Nicolosi, S.L.; Jordan, H.; Foti, D.; Mancuso, J.

    1996-01-01

    Potential aircraft accidents involving facilities at the Rocky Flats Environmental Technology Site (Site) are evaluated to assess their safety significance. This study addresses the probability and facility penetrability of aircraft accidents at the Site. The types of aircraft (large, small, etc.) that may credibly impact the Site determine the types of facilities that may be breached. The methodology used in this analysis follows elements of the draft Department of Energy Standard ''Accident Analysis for Aircraft Crash into Hazardous Facilities'' (July 1995). Key elements used are: the four-factor frequency equation for aircraft accidents; the distance criteria for consideration of airports, airways, and jet routes; the consideration of different types of aircraft; and the Modified National Defense Research Committee (NDRC) formula for projectile penetration, perforation, and minimum resistant thickness. The potential aircraft accident frequency for each type of aircraft applicable to the Site is estimated using a four-factor formula described in the draft Standard. The accident frequency is the product of the annual number of operations, probability of an accident, probability density function, and area. The annual number of operations is developed from site-specific and state-wide data

  5. Biomass accident investigations – missed opportunities for learning and accident prevention

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2017-01-01

    The past decade has seen a major increase in the production of energy from biomass. The growth has been mirrored in an increase of serious biomass related accidents involving fires, gas explosions, combustible dust explosions and the release of toxic gasses. There are indications that the number...... of bioenergy related accidents is growing faster than the energy production. This paper argues that biomass accidents, if properly investigated and lessons shared widely, provide ample opportunities for improving general hazard awareness and safety performance of the biomass industry. The paper examines...... selected serious accidents involving biogas and wood pellets in Denmark and argues that such opportunities for learning were missed because accident investigations were superficial, follow-up incomplete and information sharing absent. In one particularly distressing case, a facility saw a repeat accident...

  6. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  7. Development of a fault test experimental facility model using Matlab

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Moraes, Davi Almeida

    2015-01-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  8. Industrial accidents triggered by lightning.

    Science.gov (United States)

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. PSB-VVER experimental and analytical investigation of station blackout accident in VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, I.A.; Kapustin, A.V.; Nikonov, S.M.; Rovnov, A.A.; Basov, A.V. [Electrogorsk Research and Engineering Centre (EREC), Moscow Region (Russian Federation); Elkin, I.V. [NSI RRC, Kurchatov Institute, Moscow (Russian Federation)

    2007-07-01

    In November 2003, an experiment simulating station blackout accident was carried out in the PSB-VVER integral test facility at the Electrogorsk Research and Engineering Centre (Russia). The purpose of the experiment was to provide missing data for code validation as well as to investigate the VVER thermohydraulics in the blackout conditions. The experiment covers a wide range of phenomena relating not only to transients but also to small break loss-of-coolant accidents. The data gained in the test has been used to assess the RELAP5/MOD3.3 code. In this paper, a special attention has been paid to the code assessment regarding the mixture level and entrainment in steam generator secondary side. The analysis of the recorded transient has shown that the calculation of the heat transfer on the secondary side of steam generators is very sensitive to the steam generator nodalization. (authors)

  10. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    International Nuclear Information System (INIS)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report

  11. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

  12. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities

    International Nuclear Information System (INIS)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J.; Laub, T.W.

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10 -11 /yr to 10 -5 /yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10 -9 /yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution

  13. Reactivity insertion accident analysis

    International Nuclear Information System (INIS)

    Moreira, J.M.L.; Nakata, H.; Yorihaz, H.

    1990-04-01

    The correct prediction of postulated accidents is the fundamental requirement for the reactor licensing procedures. Accident sequences and severity of their consequences depend upon the analysis which rely on analytical tools which must be validated against known experimental results. Present work presents a systematic approach to analyse and estimate the reactivity insertion accident sequences. The methodology is based on the CINETHICA code which solves the point-kinetics/thermohydraulic coupled equations with weighted temperature feedback. Comparison against SPERT experimental results shows good agreement for the step insertion accidents. (author) [pt

  14. Fusion Materials Irradiation Test Facility: experimental capabilities and test matrix

    International Nuclear Information System (INIS)

    Opperman, E.K.

    1982-01-01

    This report describes the experimental capabilities of the Fusion Materials Irradiation Test Facility (FMIT) and reference material specimen test matrices. The description of the experimental capabilities and the test matrices has been updated to match the current single test cell facility ad assessed experimenter needs. Sufficient detail has been provided so that the user can plan irradiation experiments and conceptual hardware. The types of experiments, irradiation environment and support services that will be available in FMIT are discussed

  15. Technical Meeting on Existing and Proposed Experimental Facilities for Fast Neutron Systems. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Existing and proposed experimental facilities for fast neutron systems” is threefold: first, it is intended for presenting and exchanging information about existing and planned experimental facilities in support of the development of innovative fast neutron systems; second, it will allow to create a catalogue of existing and planned experimental facilities currently operated/developed within national or international fast reactors programmes; third, once a clear picture of the existing experimental infrastructures is defined, new experimental facilities will be discussed and proposed, on the basis of the identified R&D needs

  16. PWR-related integral safety experiments in the PKL 111 test facility SBLOCA under beyond-design-basis accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.; Umminger, K.J.; Schoen, B. [Siemens AG Power Generation Group (KWU), Erlangen (France)

    1995-09-01

    The thermal hydraulic behavior of a PWR during beyond-design-basis accident scenarios is of vital interest for the verification and optimization of accident management procedures. Within the scope of the German reactor safety research program experiments were performed in the volumetrically scaled PKL 111 test facility by Siemens/KWU. This highly instrumented test rig simulates a KWU-design PWR (1300 MWe). In particular, the latest tests performed related to a SBLOCA with additional system failures, e.g. nitrogen entering the primary system. In the case of a SBLOCA, it is the goal of the operator to put the plant in a condition where the decay heat can be removed first using the low pressure emergency core cooling system and then the residual heat removal system. The experimental investigation presented assumed the following beyond-design-basis accident conditions: 0.5% break in a cold leg, 2 of 4 steam generators (SGs) isolated on the secondary side (feedwater- and steam line-valves closed), filled with steam on the primary side, cooldown of the primary system using the remaining two steam generators, high pressure injection system only in the two loops with intact steam generators, if possible no operator actions to reach the conditions for residual heat removal system activation. Furthermore, it was postulated that 2 of the 4 hot leg accumulators had a reduced initial water inventory (increased nitrogen inventory), allowing nitrogen to enter the primary system at a pressure of 15 bar and nearly preventing the heat transfer in the SGs ({open_quotes}passivating{close_quotes} U-tubes). Due to this the heat transfer regime in the intact steam generators changed remarkably. The primary system showed self-regulating system effects and heat transfer improved again (reflux-condenser mode in the U-tube inlet region).

  17. Bounding Accident Analysis for LLNL BSL-3 Facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-09-14

    The conclusion of this evaluation is that the consequence estimates in the EA can be reproduced using a public-accessible Gaussian plume-dispersion model and conservative modeling assumptions consistent with the accident scenario postulated in the EA. Also, the potential consequences to the public for the postulated accident would be far below the minimum infectious dose of one organism.

  18. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  19. Overview of severe accident research at the USNRC

    International Nuclear Information System (INIS)

    Basu, S.; Ader, C.E.

    1999-01-01

    This paper summarizes the U.S. Nuclear Regulatory Commission's (USNRC) severe accident research activities, in particular, progress made in the past year toward the resolution and/or improved understanding of a number of severe accident issues. The direct containment heating (DCH) is nearing resolution for Combustion Engineering and Babcock and Wilcox type pressurized water reactors (PWRs) are well as for ice condensers. Additionally, two lower pressure DCH tests were conducted recently at the Sandia National Laboratories (SNL) under the NRC/IPSN/FzK sponsorship to provide data regarding intentional depressurization as an accident management strategy to mitigate DCH loads. In the area of lower head integrity, the experimental program to investigate boiling heat transfer on downward facing curved surfaces with insulation was completed. Finally, the SNL program investigating the creep rupture behavior of the lower head under the combined thermo-mechanical loading was completed recently. Additional lower head experiments at SNL are being planned as an OECD project. During the past year, the USNRC participated in two programs aimed at extending the data base on hydrogen combustion into more prototypic situations. Testing was performed at the Brookhaven National Laboratory (BNL) to investigate detonation transmission at elevated temperatures. In a cooperative program under the sponsorship of NRC/IPSN/FzK, Russian Research Center (RRC) investigated hydrogen combustion issues at large scale at the RUT facility. The experimental program at the SNL to examine the performance of Passive Autocatalytic Recombiners (PARs) was completed also this year. In the fuel-coolant interaction (FCI) area, the experimental work at the Argonne National Laboratory (ANL) to investigate chemical augmentation of FCI energetics was completed as was the experimental work at the University of Wisconsin (UW) involving one-dimensional propagation experiments (similar to KROTOS). The USNRC is

  20. Experimental platforms in support of the ASTRID program: existing and planned facilities at CEA

    International Nuclear Information System (INIS)

    Gastaldi, O.; Rodriguez, G.; Ayrault, L.; Tkaschenko, I.; Collard, B.; Sanseigne, E.; Dumesnil, J.; Dujet, F.; Serre, F.; Willermoz, G.

    2013-01-01

    Various experimental needs in different fields: • Thermohydraulics: • In water: Fuel subassemblies (single and multiple), hot plenum, control plug …; • In sodium: 3rd shutdown system qualification; • In gas with sodium aerosols (heat and mass transfer modelling in cover gas); – Instrumentation: • In sodium telemetry, defectometry and visualisation by acoustic means (techniques and transducer development and qualification); • Robotics and thigthness development for in sodium repair; – Aerosols behaviour; – Safety: severe accidents studies, dedicated instrumentation or systems; – Instrumentation: • Optical fiber development; • Eddy current flowmeter development; • O, H meters development ...; – Energy conversion system: • Development of sodium/gas compact heat exchangers; • Development of cleaning techniques for SGHE; – Materials: • Corrosion studies, • Tribology studies, … – Physico-chemistry: ACP mass transfer…; – Components development: EMP, valves,...; … – Behavior under irradiation … ⇒ Different facilities are needed with different features in term of: • Used fluids: simulant fluid or sodium; • Static or dynamic conditions; • Large, medium or small scale; • Level of temperature; • …; ⇒ CEA strategy relies on several experimental platforms

  1. Counterpart experimental study of ISP-42 PANDA tests on PUMA facility

    International Nuclear Information System (INIS)

    Yang, Jun; Choi, Sung-Won; Lim, Jaehyok; Lee, Doo-Yong; Rassame, Somboon; Hibiki, Takashi; Ishii, Mamoru

    2013-01-01

    Highlights: ► Counterpart tests were performed on two large-scale BWR integral facilities. ► Similarity of post-LOCA system behaviors observed between two tests. ► Passive core and containment cooling systems work as design in both tests. -- Abstract: A counterpart test to the Passive Nachwärmeabfuhr und Druckabbau Test Anlage (Passive Decay Heat Removal and Depressurization Test Facility, PANDA) International Standard Problem (ISP)-42 test was conducted at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. Aimed to support code validation on a range of light water reactor (LWR) containment issues, the ISP-42 test consists of six sequential phases (Phases A–F) with separately defined initial and boundary conditions, addressing different stages of anticipated accident scenario and system responses. The counterpart test was performed from Phases A to D, which are within the scope of the normal integral tests performed on the PUMA facility. A scaling methodology was developed by using the PANDA facility as prototype and PUMA facility as test model, and an engineering scaling has been applied to the PUMA facility. The counterpart test results indicated that functions of passive safety systems, such as passive containment cooling system (PCCS) start-up, gravity-driven cooling system (GDCS) discharge, PCCS normal operation and overload function were confirmed in both the PANDA and PUMA facilities with qualitative similarities

  2. Experimental study on iodine chemistry (EXSI) - Containment experiments with elemental iodine

    Energy Technology Data Exchange (ETDEWEB)

    Kaerkelae, T.; Auvinen, A. (VTT Technical Research Centre of Finland (Finland)); Holm, J.; Ekberg, C. (Chalmers Univ. of Technology (Sweden)); Glaenneskog, H. (Vattenfall Power Consultant (Sweden))

    2009-10-15

    The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. Oxidation of iodine in gas phase has been one of the greatest remaining uncertainties in iodine behaviour during a severe accident. In this study the possible formation of iodine oxide aerosol due to radiolytic oxidation of gaseous iodine is experimentally tested and the reaction products are analysed. The experimental facility applied in this study is based on the sampling system built at VTT for ISTP program project CHIP conducted IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. The results from the experiments show an extensive particle formation when ozone and gaseous iodine react with each other. The formed particles were collected on filters, while gaseous iodine was trapped into bubbles. The particles were iodine oxides and the size of particles was approximately 100 nm. The transport of gaseous iodine through the facility decreased when both gaseous iodine and ozone were fed together into facility. Experimental study on radiolytic oxidation of iodine was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. (author)

  3. Experimental study on iodine chemistry (EXSI) - Containment experiments with elemental iodine

    International Nuclear Information System (INIS)

    Kaerkelae, T.; Auvinen, A.; Holm, J.; Ekberg, C.; Glaenneskog, H.

    2009-10-01

    The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. Oxidation of iodine in gas phase has been one of the greatest remaining uncertainties in iodine behaviour during a severe accident. In this study the possible formation of iodine oxide aerosol due to radiolytic oxidation of gaseous iodine is experimentally tested and the reaction products are analysed. The experimental facility applied in this study is based on the sampling system built at VTT for ISTP program project CHIP conducted IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. The results from the experiments show an extensive particle formation when ozone and gaseous iodine react with each other. The formed particles were collected on filters, while gaseous iodine was trapped into bubbles. The particles were iodine oxides and the size of particles was approximately 100 nm. The transport of gaseous iodine through the facility decreased when both gaseous iodine and ozone were fed together into facility. Experimental study on radiolytic oxidation of iodine was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. (author)

  4. Experimental investigations of pressure and temperature loads on a containment after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kanzleiter, T.F.

    1976-01-01

    For the design of an LWR containment one of the important conditions to be considered is the rapid rise of internal pressure and temperature caused by a loss-of-coolant accident (LOCA) of the primary cooling system. The phenomena occurring within a containment during a LOCA are currently investigated through experiments with a model containment. The experimental results are compared with the results of model calculations to improve the calculational methods. An experimental facility was built, consisting of a primary coolant circuit and a special model containment. The model containment, built in conventional reinforced concrete, has a diameter of 12 m, a height of 12.5 m, a capacity of 580 m 3 and is designed for an internal pressure of 6 bar. The interior is divided by concrete walls and removable partitions into several compartments, which are interconnected through openings with adjustable cross sections. By exchanging the removable partitions it is possible to modify the interior of the containment and to simulate different containment shapes. For the first experiments a PWR configuration with nine compartments has been installed. The model scales of the compartment volumes and the overflow areas are about 1 : 64 compared to the 1200 MW PWR plant Biblis A. (Auth.)

  5. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  6. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S; Lischke, W [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1998-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  7. Experiments with the HORUS-II test facility

    International Nuclear Information System (INIS)

    Alt, S.; Lischke, W.

    1997-01-01

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA's fourth phase at the original plant

  8. The Assesment Of Radioactive Accident Management On The RSG-GAS

    International Nuclear Information System (INIS)

    Soejoedi, Agoes; Karmana, Endang

    2000-01-01

    In the operational reactor facilities include RSG-GAS, safety factor for radioactive accident very important to be prioritized. Till now the anticipate happening radioactive accident on the RSG-GAS threat only by the RSG-GAS Operation Manual. For increasing the working function need to create radioactive accident management by facility level. From studying result which source IAEA guidebook, can be composed the assessment accident management of radioactive the RSG-GAS.The sketching this accident management of radioactive to be hoped can helping P2TRR organization by handling radioactive accident if this moment happen on the RSG-GAS

  9. Solid waste accident analysis in support of the Savannah River Waste Management Environmental Impact Statement

    International Nuclear Information System (INIS)

    Copeland, W.J.; Crumm, A.T.; Kearnaghan, D.P.; Rabin, M.S.; Rossi, D.E.

    1994-07-01

    The potential for facility accidents and the magnitude of their impacts are important factors in the evaluation of the solid waste management addressed in the Environmental Impact Statement. The purpose of this document is to address the potential solid waste management facility accidents for comparative use in support of the Environmental Impact Statement. This document must not be construed as an Authorization Basis document for any of the SRS waste management facilities. Because of the time constraints placed on preparing this accident impact analysis, all accident information was derived from existing safety documentation that has been prepared for SRS waste management facilities. A list of facilities to include in the accident impact analysis was provided as input by the Savannah River Technology Section. The accident impact analyses include existing SRS waste management facilities as well as proposed facilities. Safety documentation exists for all existing and many of the proposed facilities. Information was extracted from this existing documentation for this impact analysis. There are a few proposed facilities for which safety analyses have not been prepared. However, these facilities have similar processes to existing facilities and will treat, store, or dispose of the same type of material that is in existing facilities; therefore, the accidents can be expected to be similar

  10. SBLOCA AND LOFW EXPERIMENTS IN A SCALED-DOWN IET FACILITY OF REX-10 REACTOR

    Directory of Open Access Journals (Sweden)

    YEON-GUN LEE

    2013-06-01

    Full Text Available This paper presents an experimental investigation of the small-break loss-of-coolant accident (SBLOCA and the loss-of-feedwater accident (LOFW in a scaled integral test facility of REX-10. REX-10 is a small integral-type PWR in which the coolant flow is driven by natural circulation, and the RCS is pressurized by the steam-gas pressurizer. The postulated accidents of REX-10 include the system depressurization initiated by the break of a nitrogen injection line connected to the steam-gas pressurizer and the complete loss of normal feedwater flow by the malfunction of control systems. The integral effect tests on SBLOCA and LOFW are conducted at the REX-10 Test Facility (RTF, a full-height full-pressure facility with reduced power by 1/50. The SBLOCA experiment is initiated by opening a flow passage out of the pressurizer vessel, and the LOFW experiment begins with the termination of the feedwater supply into the helical-coil steam generator. The experimental results reveal that the RTF can assure sufficient cooldown capability with the simulated PRHRS flow during these DBAs. In particular, the RTF exhibits faster pressurization during the LOFW test when employing the steam-gas pressurizer than the steam pressurizer. This experimental study can provide unique data to validate the thermal-hydraulic analysis code for REX-10.

  11. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  12. Exposure to static magnetic fields and risk of accidents among a cohort of workers from a medical imaging device manufacturing facility.

    Science.gov (United States)

    Bongers, Suzan; Slottje, Pauline; Portengen, Lützen; Kromhout, Hans

    2016-05-01

    To study the association between occupational MRI-related static magnetic fields (SMF) exposure and the occurrence of accidents. Recent and career SMF exposure was assessed by linking a retrospective job exposure matrix to payroll based job histories, for a cohort of (former) workers of an imaging device manufacturing facility in the Netherlands. Occurrence of accidents was collected through an online questionnaire. Self-reported injuries due to accidents in the past 12 months, and the first (near) traffic accident while commuting to work and from work were analyzed with logistic regression and discrete-time survival analyses, respectively. High recent SMF exposure was associated with an increased risk of accidents leading to injuries [odds ratio (OR) 4.16]. For high recent and career SMF exposure, an increased risk was observed for accidents resulting in physician-treated injuries (OR 5.78 and 2.79, respectively) and an increased lifetime risk of (near) accidents during commute to work (hazard ratios 2.49 and 2.45, respectively), but not from work. We found an association between MRI-related occupational SMF exposure and an increased risk of accidents leading to injury, and for commute-related (near) accidents during the commute from home to work. Further research into health effects of (long-term) SMF exposure is warranted to corroborate our findings. © 2015 Wiley Periodicals, Inc.

  13. Enclosed Small and Medium Caliber Firing Experimental Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility conducts completely instrumented terminal ballistics experimental tests with small and medium-caliber tungsten alloy penetrators against advanced armor...

  14. Hazardous waste storage facility accident scenarios for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Policastro, A.; Roglans-Ribas, J.; Marmer, D.; Lazaro, M.; Mueller, C.; Freeman, W.

    1994-01-01

    This paper presents the methods for developing accident categories and accident frequencies for internally initiated accidents at hazardous waste storage facilities (HWSFs) at US Department of Energy (DOE) sites. This categorization is a necessary first step in evaluating the risk of accidents to workers and the general population at each of the sites. This risk evaluation is part of the process of comparing alternative management strategies in DOE's Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Such strategies involve regionalization, decentralization, and centralization of waste treatment, storage, and disposal activities. Potential accidents at the HWSFs at the DOE sites are divided into categories of spill alone, spill plus fire, and other event combinations including spill plus fire plus explosion, fire only, spill and explosion, and fire and explosion. One or more accidents are chosen to represent the types of accidents for FY 1992 for 12 DOE sites were studied to determine the most representative set of possible accidents at all DOE sites. Each accident scenario is given a probability of occurrence that is adjusted, depending on the throughput and waste composition that passes through the HWSF at the particular site. The justification for the probabilities chosen is presented

  15. Hazardous waste storage facility accident scenarios for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.; Roglans-Ribas, J.; Marmer, D.; Lazaro, M.; Mueller, C. [Argonne National Lab., IL (United States); Freeman, W. [Univ. of Illinois, Chicago, IL (United States). Dept. of Chemistry

    1994-03-01

    This paper presents the methods for developing accident categories and accident frequencies for internally initiated accidents at hazardous waste storage facilities (HWSFs) at US Department of Energy (DOE) sites. This categorization is a necessary first step in evaluating the risk of accidents to workers and the general population at each of the sites. This risk evaluation is part of the process of comparing alternative management strategies in DOE`s Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Such strategies involve regionalization, decentralization, and centralization of waste treatment, storage, and disposal activities. Potential accidents at the HWSFs at the DOE sites are divided into categories of spill alone, spill plus fire, and other event combinations including spill plus fire plus explosion, fire only, spill and explosion, and fire and explosion. One or more accidents are chosen to represent the types of accidents for FY 1992 for 12 DOE sites were studied to determine the most representative set of possible accidents at all DOE sites. Each accident scenario is given a probability of occurrence that is adjusted, depending on the throughput and waste composition that passes through the HWSF at the particular site. The justification for the probabilities chosen is presented.

  16. Technical Meeting on Existing and Proposed Experimental Facilities for Fast Neutron Systems. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Existing and proposed experimental facilities for fast neutron systems” was threefold: 1) presenting and exchanging information about existing and planned experimental facilities in support of the development of innovative fast neutron systems; 2) allow creating a catalogue of existing and planned experimental facilities currently operated/developed within national or international fast reactors programmes; 3) once a clear picture of the existing experimental infrastructures is defined, new experimental facilities are discussed and proposed, on the basis of the identified R&D needs

  17. GASFLOW: A computational model to analyze accidents in nuclear containment and facility buildings

    International Nuclear Information System (INIS)

    Travis, J.R.; Nichols, B.D.; Wilson, T.L.; Lam, K.L.; Spore, J.W.; Niederauer, G.F.

    1993-01-01

    GASFLOW is a finite-volume computer code that solves the time-dependent, compressible Navier-Stokes equations for multiple gas species. The fluid-dynamics algorithm is coupled to the chemical kinetics of combusting liquids or gases to simulate diffusion or propagating flames in complex geometries of nuclear containment or confinement and facilities' buildings. Fluid turbulence is calculated to enhance the transport and mixing of gases in rooms and volumes that may be connected by a ventilation system. The ventilation system may consist of extensive ductwork, filters, dampers or valves, and fans. Condensation and heat transfer to walls, floors, ceilings, and internal structures are calculated to model the appropriate energy sinks. Solid and liquid aerosol behavior is simulated to give the time and space inventory of radionuclides. The solution procedure of the governing equations is a modified Los Alamos ICE'd-ALE methodology. Complex facilities can be represented by separate computational domains (multiblocks) that communicate through overlapping boundary conditions. The ventilation system is superimposed throughout the multiblock mesh. Gas mixtures and aerosols are transported through the free three-dimensional volumes and the restricted one-dimensional ventilation components as the accident and fluid flow fields evolve. Combustion may occur if sufficient fuel and reactant or oxidizer are present and have an ignition source. Pressure and thermal loads on the building, structural components, and safety-related equipment can be determined for specific accident scenarios. GASFLOW calculations have been compared with large oil-pool fire tests in the 1986 HDR containment test T52.14, which is a 3000-kW fire experiment. The computed results are in good agreement with the observed data

  18. The AWAKE Experimental Facility at CERN

    CERN Document Server

    Gschwendtner, E; Bracco, C; Butterworth, A; Cipiccia, S; Doebert, S; Fedosseev, V; Feldbaumer, E; Hessler, C; Hofle, W; Martyanov, M; Meddahi, M; Osborne, J; Pardons, A; Petrenko, A; Vincke, H

    2014-01-01

    AWAKE, an Advanced Wakefield Experiment is launched at CERN to verify the proton driven plasma wakefield acceleration concept. Proton bunches at 400 GeV/c will be extracted from the CERN SPS and sent along a 750 m long proton line to a plasma cell, a Rubidium vapour source, where the proton beam drives wakefields reaching accelerating gradients of several gigavolts per meter. A high power laser pulse will copropagate within the proton bunch creating the plasma by ionizing the (initially) neutral gas. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility. First proton beam to the plasma cell is expected by end 2016. The installation planning and the baseline parameters of the experiment are shown. The design of the experimental area and the integration of the new beam-lines as well as the experimental equipment are presented. The needed modifications of the infrastructure in the facility and a few challenges are h...

  19. Sodium cleaning and disposal methods in experimental facilities

    International Nuclear Information System (INIS)

    Rajan, K.K.; Gurumoorthy, K.; Rajan, M.; Kale, R.D.

    1997-01-01

    At Indira Gandhi Centre for Atomic Research, major sodium facilities are designed and operated at Engineering Development Group as a part of development programme towards experimental and Prototype Fast Reactor. After the test programme many equipment and components were removed from the sodium facilities and sodium removal and disposal was carried out. The experience gained in different cleaning methods and waste sodium disposal are discussed. (author)

  20. Fire-accident analysis code (FIRAC) verification

    International Nuclear Information System (INIS)

    Nichols, B.D.; Gregory, W.S.; Fenton, D.L.; Smith, P.R.

    1986-01-01

    The FIRAC computer code predicts fire-induced transients in nuclear fuel cycle facility ventilation systems. FIRAC calculates simultaneously the gas-dynamic, material transport, and heat transport transients that occur in any arbitrarily connected network system subjected to a fire. The network system may include ventilation components such as filters, dampers, ducts, and blowers. These components are connected to rooms and corridors to complete the network for moving air through the facility. An experimental ventilation system has been constructed to verify FIRAC and other accident analysis codes. The design emphasizes network system characteristics and includes multiple chambers, ducts, blowers, dampers, and filters. A larger industrial heater and a commercial dust feeder are used to inject thermal energy and aerosol mass. The facility is instrumented to measure volumetric flow rate, temperature, pressure, and aerosol concentration throughout the system. Aerosol release rates and mass accumulation on filters also are measured. We have performed a series of experiments in which a known rate of thermal energy is injected into the system. We then simulated this experiment with the FIRAC code. This paper compares and discusses the gas-dynamic and heat transport data obtained from the ventilation system experiments with those predicted by the FIRAC code. The numerically predicted data generally are within 10% of the experimental data

  1. Experimental Breeder Reactor II (EBR-II) Fuel-Performance Test Facility (FPTF)

    International Nuclear Information System (INIS)

    Pardini, J.A.; Brubaker, R.C.; Veith, D.J.; Giorgis, G.C.; Walker, D.E.; Seim, O.S.

    1982-01-01

    The Fuel-Performance Test Facility (FPTF) is the latest in a series of special EBR-II instrumented in-core test facilities. A flow control valve in the facility is programmed to vary the coolant flow, and thus the temperature, in an experimental-irradiation subassembly beneath it and coupled to it. In this way, thermal transients can be simulated in that subassembly without changing the temperatures in surrounding subassemblies. The FPTF also monitors sodium flow and temperature, and detects delayed neutrons in the sodium effluent from the experimental-irradiation subassembly beneath it. This facility also has an acoustical detector (high-temperature microphone) for detecting sodium boiling

  2. Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (5). Evaluation method and trial evaluation of criticality accident

    International Nuclear Information System (INIS)

    Yamane, Yuichi; Abe, Hitoshi; Nakajima, Ken; Hayashi, Yoshiaki; Arisawa, Jun; Hayami, Satoru

    2010-01-01

    A special committee of 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for the Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objectives of this research are to obtain information useful for establishing quantitative performance objectives and to demonstrate risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the consequence analysis method for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution and fire (including the rapid decomposition of TBP complexes), resulting in the release of radioactive materials to the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this report, the evaluation methods of criticality accident, such as simplified methods, one-point reactor kinetics codes and quasi-static method, were investigated and their features were summarized to provide information useful for the safety evaluation of NFFs. In addition, several trial evaluations were performed for a hypothetical scenario of criticality accident using the investigated methods, and their results were compared. The release fraction of volatile fission products in a criticality accident was also investigated. (author)

  3. Simulation of small break loss of coolant accident using relap 5/ MOD 2 computer code

    International Nuclear Information System (INIS)

    Megahed, M.M.

    1992-01-01

    An assessment of relap 5 / MOD 2/Cycle 36.05 best estimate computer code capabilities in predicting the thermohydraulic response of a PWR following a small break loss of coolant accident is presented. The experimental data base for the evaluation is the results of Test S-N H-3 performed in the semi scale MOD-2 c Test facility which modeled a 0.5% small break loss of coolant accident with an accompanying failure of the high pressure injection emergency core cooling system. A conclusion was reached that the code is capable of making small break loss of coolant accident calculations efficiently. However, some of the small break loss of coolant accident related phenomena were not properly predicted by the code, suggesting a need for code improvement.9 fig., 3 tab

  4. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  5. Experimental Facilities for Performance Evaluation of Fast Reactor Components

    International Nuclear Information System (INIS)

    Chandramouli, S.; Kumar, V.A. Suresh; Shanmugavel, M.; Vijayakumar, G.; Vinod, V.; Noushad, I.B.; Babu, B.; Kumar, G. Padma; Nashine, B.K.; Rajan, K.K.

    2013-01-01

    Brief details about various experimental facilities catering to the testing and performance evaluation requirements of fast reactor components have been brought out. These facilities have been found to be immensely useful to continue research and development activities in the areas of component development and testing, sodium technology, thermal hydraulics and sodium instrumentation for the SFR’s. In addition new facilities which have been planned will be of great importance for the developmental activities related to future SFR’s

  6. Accident analysis and DOE criteria

    International Nuclear Information System (INIS)

    Graf, J.M.; Elder, J.C.

    1982-01-01

    In analyzing the radiological consequences of major accidents at DOE facilities one finds that many facilities fall so far below the limits of DOE Order 6430 that compliance is easily demonstrated by simple analysis. For those cases where the amount of radioactive material and the dispersive energy available are enough for accident consequences to approach the limits, the models and assumptions used become critical. In some cases the models themselves are the difference between meeting the criteria or not meeting them. Further, in one case, we found that not only did the selection of models determine compliance but the selection of applicable criteria from different chapters of Order 6430 also made the difference. DOE has recognized the problem of different criteria in different chapters applying to one facility, and has proceeded to make changes for the sake of consistency. We have proposed to outline the specific steps needed in an accident analysis and suggest appropriate models, parameters, and assumptions. As a result we feed DOE siting and design criteria will be more fairly and consistently applied

  7. Effects of spent fuel types on offsite consequences of hypothetical accidents

    International Nuclear Information System (INIS)

    Courtney, J. C.; Dwight, C. C.; Lehto, M. A.

    2000-01-01

    Argonne National Laboratory (ANL) conducts experimental work on the development of waste forms suitable for several types of spent fuel at its facility on the Idaho National Engineering and Environmental Laboratory (INEEL) located 48 km West of Idaho Falls, ID. The objective of this paper is to compare the offsite radiological consequences of hypothetical accidents involving the various types of spent nuclear fuel handled in nonreactor nuclear facilities. The highest offsite total effective dose equivalents (TEDEs) are estimated at a receptor located about 5 km SSE of ANL facilities. Criticality safety considerations limit the amount of enriched uranium and plutonium that could be at risk in any given scenario. Heat generated by decay of fission products and actinides does not limit the masses of spent fuel within any given operation because the minimum time elapsed since fissions occurred in any form is at least five years. At cooling times of this magnitude, fewer than ten radionuclides account for 99% of the projected TEDE at offsite receptors for any credible accident. Elimination of all but the most important nuclides allows rapid assessments of offsite doses with little loss of accuracy. Since the ARF (airborne release fraction), RF (respirable fraction), LPF (leak path fraction) and atmospheric dilution factor (χ/Q) can vary by orders of magnitude, it is not productive to consider nuclides that contribute less than a few percent of the total dose. Therefore, only 134 Cs, 137 Cs- 137m Ba, and the actinides significantly influence the offsite radiological consequences of severe accidents. Even using highly conservative assumptions in estimating radiological consequences, they remain well below current Department of Energy guidelines for highly unlikely accidents

  8. Overview of severe accident research at JAERI

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1999-01-01

    Severe accident research at JAERI aims at the confirmation of the safety margin, the quantification of the associated risk, and the evaluation of the effectiveness of the accident management measures of the nuclear power reactors, in accordance with the government five-year nuclear safety research program. JAERI has been conducting a wide range of severe accident research activities both in experiment and analysis, such as melt coolant interactions, fission product behaviors in coolant system, containment integrity and assessment of accident management measures. Molten core/coolant interaction and in-vessel molten coolability have been investigated in ALPHA Program. MUSE experiments in ALPHA Program has been conducted for the precise energy measurement due to steam explosion in melt jet and stratified geometries. In VEGA Program, which aims at FP release from irradiated fuels at high temperature and high pressure under various atmospheric conditions, the facility construction is almost completed. In WIND Program the revaporization of aerosols due to decay heating and also the integrity of the piping from this heat source are being investigated. Code development activities are in progress for an integrated source term analysis with THALES, fission product behaviors with ART, steam explosion with JASMINE, and in-vessel debris behaviors with CAMP. The experimental analyses and reactor application have made progress by participating international standard problem and code comparison exercises, along with the use of introduced codes, such as SCDAP/RELAP5 and MELCOR. The outcome of the severe accident research will be utilized for the evaluation of more reliable severe accident scenarios, detailed implementation of the accident management measures, and also for the future reactor development, basically through the sophisticated use of verified analytical tools. (author)

  9. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    International Nuclear Information System (INIS)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable

  10. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

  11. Accident situations tests HTR fuel with the device Kufa

    International Nuclear Information System (INIS)

    Kellerbauer, A. I.; Freis, D.

    2010-01-01

    The ceramic and ceramic-like coating materials in modern high-temperature reactor fuel are designed to ensure mechanical stability and retention of fission products under normal and transient conditions, regardless of the radiation damage sustained in-pile. In hypothetical depressurization and loss-of-forced-circulation (D LOFC) accidents, fuel elements of modular high-temperate reactors are exposed to temperatures several hundred degrees higher than during normal operation, causing increased thermo-mechanical stress on the coating layers. At the Institute for Transuranium Elements of the European Commission, a vigorous experimental program is being pursued with the aim of characterizing the performance of irradiated HTR fuel under such accident conditions. A cold finger device (Kufa), operational in ITUs hot cells since 2006, has been used to perform heating experiments on eight irradiated HTR fuel pebbles from the AVR experimental reactor and from dedicated irradiation campaigns at the High-Flux Reactor in Petten, the Netherlands. Gaseous fission products are collected in a cryogenic charcoal trap, while volatiles,are plated out on a water-cooled condensate plate. A quantitative measurement of the release is obtained by gamma spectroscopy. We highlight experimental results from the Kufa testing as well as the on-going development of new experimental facilities. (Author) 9 refs.

  12. Critical experiments facility and criticality safety programs at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Miyoshi, Yoshinori; Nomura, Yasushi

    1985-10-01

    The nuclear criticality safety is becoming a key point in Japan in the safety considerations for nuclear installations outside reactors such as spent fuel reprocessing facilities, plutonium fuel fabrication facilities, large scale hot alboratories, and so on. Especially a large scale spent fuel reprocessing facility is being designed and would be constructed in near future, therefore extensive experimental studies are needed for compilation of our own technical standards and also for verification of safety in a potential criticality accident to obtain public acceptance. Japan Atomic Energy Research Institute is proceeding a construction program of a new criticality safety experimental facility where criticality data can be obtained for such solution fuels as mainly handled in a reprocessing facility and also chemical process experiments can be performed to investigate abnormal phenomena, e.g. plutonium behavior in solvent extraction process by using pulsed colums. In FY 1985 detail design of the facility will be completed and licensing review by the government would start in FY 1986. Experiments would start in FY 1990. Research subjects and main specifications of the facility are described. (author)

  13. Nuclear Facility Accident (NFAC) Unit Test Report For HPAC Version 6.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ronald W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division; Morris, Robert W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division; Sulfredge, Charles David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division

    2015-12-01

    This is a unit test report for the Nuclear Facility Accident (NFAC) model for the Hazard Prediction and Assessment Capability (HPAC) version 6.3. NFAC’s responsibility as an HPAC component is three-fold. First, it must present an interactive graphical user interface (GUI) by which users can view and edit the definition of an NFAC incident. Second, for each incident defined, NFAC must interact with RTH to create activity table inputs and associate them with pseudo materials to be transported via SCIPUFF. Third, NFAC must create SCIPUFF releases with the associated pseudo materials for transport and dispersion. The goal of NFAC unit testing is to verify that the inputs it produces are correct for the source term or model definition as specified by the user via the GUI.

  14. Nuclear Facility Accident (NFAC) Unit Test Report For HPAC Version 6.3

    International Nuclear Information System (INIS)

    Lee, Ronald W.; Morris, Robert W.; Sulfredge, Charles David

    2015-01-01

    This is a unit test report for the Nuclear Facility Accident (NFAC) model for the Hazard Prediction and Assessment Capability (HPAC) version 6.3. NFAC's responsibility as an HPAC component is three-fold. First, it must present an interactive graphical user interface (GUI) by which users can view and edit the definition of an NFAC incident. Second, for each incident defined, NFAC must interact with RTH to create activity table inputs and associate them with pseudo materials to be transported via SCIPUFF. Third, NFAC must create SCIPUFF releases with the associated pseudo materials for transport and dispersion. The goal of NFAC unit testing is to verify that the inputs it produces are correct for the source term or model definition as specified by the user via the GUI.

  15. Natural phenomena risk analysis - an approach for the tritium facilities 5480.23 SAR natural phenomena hazards accident analysis

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.; Joshi, J.R.; Long, T.A.; Taylor, R.P.

    1997-01-01

    A Tritium Facilities (TF) Safety Analysis Report (SAR) has been developed which is compliant with DOE Order 5480.23. The 5480.23 SAR upgrades and integrates the safety documentation for the TF into a single SAR for all of the tritium processing buildings. As part of the TF SAR effort, natural phenomena hazards (NPH) were analyzed. A cost effective strategy was developed using a team approach to take advantage of limited resources and budgets. During development of the Hazard and Accident Analysis for the 5480.23 SAR, a strategy was required to allow maximum use of existing analysis and to develop a cost effective graded approach for any new analysis in identifying and analyzing the bounding accidents for the TF. This approach was used to effectively identify and analyze NPH for the TF. The first part of the strategy consisted of evaluating the current SAR for the RTF to determine what NPH analysis could be used in the new combined 5480.23 SAR. The second part was to develop a method for identifying and analyzing NPH events for the older facilities which took advantage of engineering judgment, was cost effective, and followed a graded approach. The second part was especially challenging because of the lack of documented existing analysis considered adequate for the 5480.23 SAR and a limited budget for SAR development and preparation. This paper addresses the strategy for the older facilities

  16. Lessons learned from on-site safety assessments performed by DOE in response to the Tomsk accident

    International Nuclear Information System (INIS)

    Witmer, F.E.

    1995-01-01

    In response to the accident, in April 1993, at the nuclear fuel reprocessing plant of the Siberian chemical Combine, Tomsk, Russia, the U.S. Department of Energy (DOE) initiated concurrent efforts to understand the causes for the accident and to review potential vulnerabilities for similar occurrences across the DOE radiochemical complex. Because the accident occurred in the feed adjustment stage of a Purex type process, US facilities which contained significant inventories of TBP, organic diluent and nitric acid were evaluated by expert teams. From accident conditions, prior experience, modeling and experimental programs and confirmatory dialogue with the Russians, enhanced understanding was achieved and vulnerabilities (e.g., lack of safety analysis, organic layering, inadvertent acid addition, use of aromatic diluents, uncertain venting capability, no mitigative/emergency procedures, etc.) were identified and corrected

  17. Review of accident analyses of RB experimental reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2003-01-01

    The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VINCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62; yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin) consisting of 2% enriched uranium metal and 80% enriched U0 2 , dispersed in aluminum matrix, have been available since 1962 and 1976, respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements, as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINCA Institute, an independent regulator)' body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety' Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed) to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given. (author)

  18. Review of accident analyses of RB experimental reactor

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2003-01-01

    Full Text Available The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VTNCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62 yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin consisting of 2% enriched uranium metal and 80% enriched UO2 dispersed in aluminum matrix, have been available since 1962 and 1976 respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINĆA Institute, an independent regulatory body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given.

  19. Identification and selection of initiating events for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    This paper describes the current approaches used in probabilistic risk assessment (PRA) to identify and select accident initiating events for study in either probabilistic safety analysis or PRA. Current methods directly apply to fusion facilities as well as other types of industries, such as chemical processing and nuclear fission. These identification and selection methods include the Master Logic Diagram, historical document review, system level Failure Modes and Effects Analysis, and others. A combination of the historical document review, such as Safety Analysis Reports and fusion safety studies, and the Master Logic Diagram with appropriate quality assurance reviews, is suggested for standardizing US fusion PRA effects. A preliminary set of generalized initiating events applicable to fusion facilities derived from safety document review is presented as a framework to start from for the historical document review and Master Logic Diagram approach. Fusion designers should find this list useful for their design reviews. 29 refs., 2 tabs

  20. Identification and selection of initiating events for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    This paper describes the current approaches used in probabilistic risk assessment (PRA) to identify and select accident initiating events for study in either probabilistic safety analysis or PRA. Current methods directly apply to fusion facilities as well as other types of industries, such as chemical processing and nuclear fission. These identification and selection methods include the Master Logic Diagram, historical document review, system level Failure Modes and Effects Analysis, and others. A combination of the historical document review, such as Safety Analysis Reports and fusion safety studies, and the Master Logic Diagram with appropriate quality assurance reviews, is suggested for standardizing U.S. fusion PRA efforts. A preliminary set of generalized initiating events applicable to fusion facilities derived from safety document review is presented as a framework to start from for the historical document review and Master Logic Diagram approach. Fusion designers should find this list useful for their design reviews. 29 refs., 1 tab

  1. Thermal-hydraulically controlled blowdown tests in the experimental facility COSIMA to study PWR fuel behavior: experimental and theoretical results

    International Nuclear Information System (INIS)

    Class, G.; Hain, K.; Meyder, R.

    1978-01-01

    The fuel behavior in the blow-down phase of a LOCA is of importance for fuel rods with high internal pressure and high rod power, because of the effects on clad failure of the small cladding deformations occurring. The operating results of the COSIMA facility show that, on the basis of the new developments for measuring technique and fuel rod simulators performed, reactor relevant blow-down performances can be conducted in a controlled and reproduceable manner. The mechanical and thermal-hydraulic states occurring in the test bed may be subject to computational checking. This permits on one hand to improve the computing models and on the other yields a confirmation of the high state of development of the available computer codes. Therefore it appears that, with the results from COSIMA and the associated theoretical work in the field of the blow-down process, difficult to treat experimentally, an essential contribution to verifying the models for accident calculations is given. The work scheduled for the next about 1 1/2 years will serve to further support the rather preliminary results and to extend the range of then application. (orig.) [de

  2. Experimental Investigation of Operation of VVER Steam Generator in Condensation Mode in the Event of the Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Andrey [Institute for Physics and Power Engineering by A.I. Leypunsky, 1 Bondarenko sq. Obninsk, 249033 (Russian Federation)

    2008-07-01

    For new Russian nuclear power plants with VVER-1200 reactor in the event of a beyond design basis accident, provision is made for the use of passive safety systems for necessary core cooling. These safety systems include the passive heat removal system (PHRS). In the case of leakage in the primary circuit this system assures the transition of steam generators (SG) to operation in the mode of condensation of the primary circuit steam. As a result, the condensate from SG arrives at the core providing its additional cooling. To investigate the condensation mode of VVER SG operation, a large scale HA2M-SG test facility was constructed. The rig incorporates: buffer tank, SG model with scale is 1:46, PHRS heat exchanger. Experiments at the test facility have been performed to investigate condensation mode of operation of SG model at the pressure 0.4 MPa, correspond to VVER reactor pressure at the last stage of the beyond design basis accident. The report presents the test procedure and the basic obtained test results. (authors)

  3. Overview of Fukushima accident and regulatory issues for FCFS after the accident

    International Nuclear Information System (INIS)

    Ueda, Y.

    2013-01-01

    In the first part of his presentation Yoshinori Ueda (JNES, Japan) gave an overview of the Fukushima accident and an outline of the emergency safety measures and response at the NPP site. The second part was focused on the regulatory issues for FCFs after the accident. The first issue was the emergency safety measures in case of total loss of AC power (loss capabilities of decay heat removal and hydrogen accumulation prevention) and tsunami in the reprocessing facilities and associated spent fuel storages at Tokai and Rokkasho plants. The second issue was the directions to the licensees of these facilities to secure the work environment in the main control rooms in case of complete loss of AC power, to secure communication within the facility in case of such emergency, and to secure material and equipment for radiation protection, and to deploy heavy tools for rubble removal. No paper has been made available for this presentation

  4. Description of the blowdown test facility COG program on in-reactor fission product release, transport, and deposition under severe accident conditions

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.; Wood, J.C.

    1987-06-01

    Loss-of-coolant accidents with additional impairment of emergency cooling would probably result in high fuel temperatures leading to severe fuel damage (SFD) and significant fission product activity would then be transported along the PHTS to the break where a fraction of it would be released and transport under such conditions, there are many interacting and sometimes competing phenomena to consider. Laboratory simulations are being used to provide data on these individual phenomena, such as UO 2 oxidation and Zr-UO 2 interaction, from which mathematical models can be constructed. These are then combined into computer codes to include the interaction effects and assess the overall releases. In addition, in-reactor tests are the only source of data on release and transport of short-lived fission product nuclides, which are important in the consequence analysis of CANDU reactor accidents. Post-test decontamination of an in-reactor test facility also provides a unique opportunity to demonstrate techniques and obtain decontamination data relevant to post-accident rehabilitation of CANDU power reactors. Specialized facilities are required for in-reactor testing because of the extensive release of radioactive fission products and the high temperatures involved (up to 2500 degrees Celsius). To meet this need for the Canadian program, the Blowdown Test Facility (BTF) has been built in the NRU reactor at Chalk River. Between completion of construction in mid-1987 and the first Zircaloy-sheathed fuel test in fiscal year 1987/88, several commissioning tests are being performed. Similarly, extensive development work has been completed to permit application of instrumentation to irradiated fuel elements, and in support of post-test fuel assembly examination. A program of decontamination studies has also been developed to generate information relevant to post-accident decontamination of power reactors. The BTF shared cost test program funded by the COG High Temperature

  5. Experimental facility of innovative types as the laboratory analog of research reactor experimental device

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Zabud'ko, A.N.; Kremenetskij, A.K.; Nikolaev, A.N.; Trykov, L.A.

    1991-01-01

    The paper analyses capability of creating laboratory analogs of complex experimental facilities at research reactors utilizing power radionuclide neutron sources fabricated in industrial conditions. Some experimental and calculational investigations of neutron-physical characteristics are presented, which have been attained at the RIZ research reactor laboratory analog. Experimental results are supplemented by calculational investigations, fulfilled by means of the BRAND three-dimensional computational complex and the ROZ-6 one-dimensional program. 4 refs.; 3 figs

  6. Characteristics of severely damaged fuel from PBF tests and the TMI-2 accident

    International Nuclear Information System (INIS)

    Osetek, D.J.; Cook, B.A.; Dallman, R.J.; Broughton, J.M.

    1986-01-01

    As a result of the TMI-2 reactor accident, the US Nuclear Regulatory Commission initiated a research program to investigate phenomena associated with severe fuel damage accidents. This program is sponsored by several countries and includes in-pile and out-of-pile experiments, separate effects studies, and computer code development. The principal in-pile testing portion of the program includes four integral severe fuel damage (SFD) tests in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL). The INEL is also responsible for examining the damaged core in the Three Mile Island-Unit 2 (TMI-2) reactor, which offers the unique opportunity to directly compare the findings of an experimental program to those of an actual reactor accident. The principal core damage phenomena which can occur during a severe accident are discussed, and examples from the INEL research programs are used to illustrate the characteristics of these phenomena. The preliminary results of the programs are presented, and their impact on plant operability during severe accidents is discussed

  7. CFD Analyses of Air-Ingress Accident for VHTRs

    Science.gov (United States)

    Ham, Tae Kyu

    The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air

  8. Experimental study on in-vessel debris coolability during severe accident

    International Nuclear Information System (INIS)

    Kim, S. B.; Park, R. J.; Kim, H. D.

    2002-05-01

    A research program, called SONATA-IV(Simulation of Naturally Arrested Thermal Attack In-Vessel), has been performed to verify the gap cooling mechanism of corium in the lower plenum, and to develop management and mitigation strategies under severe accident conditions. For the proof-of-principles experiment, the LAVA(Lower-plenum Arrested Vessel Attack) experiments have been performed to gather proof of gap formation and to evaluate the gap effect on in-vessel cooling, using Al 2 O 3 /Fe (or Al 2 O 3 only) thermite melt as corium simulant. And also the CHFG(Critical Heat Flux in Gap) experiments have been performed to measure the critical power and to investigate the inherent cooling mechanism in the hemispherical narrow gap. In addition to the experiments, LILAC code was developed to analyze and predict the thermo-hydraulic phenomena of the corium relocated in the reactor lower plenum. It could be found from the LAVA and CHFG experimental results that continuous gap ranged from 1 to 5 mm was formed and that maximum heat removal capacity through a gap is a key factor in determining the potentials of the integrity of the vessel. After all the possibility of IVR(In-Vessel corium Retention) through gap cooling highly depends on the melt relocated into the lower plenum and the gap size. So, feasibility experiments have been performed for the assessment of improved IVR concepts using an internal engineered gap device and a dual strategy of In/Ex-vessel cooling using the LAVA facility. It is preliminarily concluded that these cooling measures lead to an enhanced cooling of the corium in the lower plenum of the reactor vessel. The additional studies will be performed to verify the quantitative heat removal capacity for these cooling measures in the 2nd phase of mid- and long term project period

  9. Medical care of radiation accidents

    International Nuclear Information System (INIS)

    Nakao, Isamu

    1986-02-01

    This monograph, divided into six chapters, focuses on basic knowledge and medical strategies for radiation accidents. Chapters I to V deal with practice in emergency care for radiation exposure, covering 1) medical strategies for radiation accidents, 2) personnel dosimetry and monitoring, 3) nuclear facilities and their surrounding areas with the potential for creating radiation accidents, and emergency medical care for exposed persons, 4) emergency care procedures for radiation exposure and radioactive contamination, and 5) radiation hazards and their treatment. The last chapter provides some references. (Namekawa, K.)

  10. French policy for managing the post-accident phase of a nuclear accident.

    Science.gov (United States)

    Gallay, F; Godet, J L; Niel, J C

    2015-06-01

    In 2005, at the request of the French Government, the Nuclear Safety Authority (ASN) established a Steering Committee for the Management of the Post-Accident Phase of a Nuclear Accident or a Radiological Emergency, with the objective of establishing a policy framework. Under the supervision of ASN, this Committee, involving several tens of experts from different backgrounds (e.g. relevant ministerial offices, expert agencies, local information commissions around nuclear installations, non-governmental organisations, elected officials, licensees, and international experts), developed a number of recommendations over a 7-year period. First published in November 2012, these recommendations cover the immediate post-emergency situation, and the transition and longer-term periods of the post-accident phase in the case of medium-scale nuclear accidents causing short-term radioactive release (less than 24 h) that might occur at French nuclear facilities. They also apply to actions to be undertaken in the event of accidents during the transportation of radioactive materials. These recommendations are an important first step in preparation for the management of a post-accident situation in France in the case of a nuclear accident. © The Chartered Institution of Building Services Engineers 2014.

  11. Prediction accident triangle in maintenance of underground mine facilities using Poisson distribution analysis

    Science.gov (United States)

    Khuluqi, M. H.; Prapdito, R. R.; Sambodo, F. P.

    2018-04-01

    In Indonesia, mining is categorized as a hazardous industry. In recent years, a dramatic increase of mining equipment and technological complexities had resulted in higher maintenance expectations that accompanied by the changes in the working conditions, especially on safety. Ensuring safety during the process of conducting maintenance works in underground mine is important as an integral part of accident prevention programs. Accident triangle has provided a support to safety practitioner to draw a road map in preventing accidents. Poisson distribution is appropriate for the analysis of accidents at a specific site in a given time period. Based on the analysis of accident statistics in the underground mine maintenance of PT. Freeport Indonesia from 2011 through 2016, it is found that 12 minor accidents for 1 major accident and 66 equipment damages for 1 major accident as a new value of accident triangle. The result can be used for the future need for improving the accident prevention programs.

  12. ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility

    International Nuclear Information System (INIS)

    Hardy, J.E.; Hess, R.A.; Hylton, J.O.

    1983-11-01

    Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions

  13. On preparation for accident management in LWR power stations

    International Nuclear Information System (INIS)

    1996-01-01

    Nuclear Safety Commission received the report from Reactor Safety General Examination Committee which investigated the policy of executing the preparation for accident management. The basic policy on the preparation for accident management was decided by Nuclear Safety Commission in May, 1992. This Examination Committee investigated the policy of executing the preparation for accident management, which had been reported from the administrative office, and as the result, it judged the policy as adequate, therefore, the report is made. The course to the foundation of subcommittee is reported. The basic policy of the examination on accident management by the subcommittee conforming to the decision by Nuclear Safety Commission, the measures of accident management which were extracted for BWR and PWR facilities, the examination of the technical adequacy of selecting accident sequences in BWR and PWR facilities and the countermeasures to them, the adequacy of the evaluation of the possibility of executing accident management measures and their effectiveness and the adequacy of the evaluation of effect to existing safety functions, the preparation of operation procedure manual, and education and training plan are reported. (K.I.)

  14. Analysis of multidimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1991-01-01

    The presence of parallel enclosed channels in a boiling water reactor (BWR) provides opportunities for multiple flow regimes in cocurrent and countercurrent flow under loss-of-coolant accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the steam sector test facility (SSFT), which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests an integral transients with vessel vlowdown and refill were performed. The presence of multidimensional and parallel-channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  15. Review of specific radiological accident considerations

    International Nuclear Information System (INIS)

    Elder, J.

    1984-01-01

    Specific points of guidance provided in the forthcoming document A Guide to Radiological Accident Considerations for Siting and Design of Nonreactor Nuclear Facilities are discussed. Of these, the following are considered of particular interest to analysts of hypothetical accidents: onsite dose limits; population dose, public health effects, and environmental contamination as accident consequences which should be addressed; risk analysis; natural phenomena as accident initiators; recommended dose models; multiple organ equivalent dose; and recommended methods and parameters for source terms and release amount calculations. Comments are being invited on this document, which is undergoing rewrite after the first stage of peer review

  16. Analytical and Experimental Study for Validation of the Device to Confine BN Reactor Melted Fuel

    International Nuclear Information System (INIS)

    Rogozhkin, S.; Osipov, S.; Sobolev, V.; Shepelev, S.; Kozhaev, A.; Mavrin, M.; Ryabov, A.

    2013-01-01

    To validate the design and confirm the design characteristics of the special retaining device (core catcher) used for protection of BN reactor vessel in the case of a severe beyond-design basis accident with core melting, computational and experimental studies were carried out. The Tray test facility that uses water as coolant was developed and fabricated by OKBM; experimental studies were performed. To verify the methodical approach used for the computational study, experimental results obtained in the Tray test facility were compared with numerical simulation results obtained by the STAR-CCM+ CFD code

  17. Experimental Facilities Division. Progress report 1996-97

    International Nuclear Information System (INIS)

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD

  18. Experimental Facilities Division progress report 1996--97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD.

  19. Pressure analysis in ventilation ducts at bituminization facility

    International Nuclear Information System (INIS)

    Kikuchi, Naoki; Iimura, Masato; Takahashi, Yuki; Omori, Eiichi; Yamanouchi, Takamichi

    1997-09-01

    Pressure analysis in cell ventilation ducts at bituminization facility where the fire and explosion accident occured was carried out. This report also describes the results of bench mark calculations for computer code EVENT84 which was used for the accident analysis. The bench mark calculations were performed by comparing the analytical results by EVENT84 code with the experimental data of safety demonstration tests of ventilation system which were carried out by JAERI. We confirmed the applicability of EVENT84 code with the conservative results. The pressure analysis in cell ventilation ducts at bituminization facility were performed by comparing the analytical results of duct pressure by EVENT84 code with the yield stress of destroyed ducts by explosion, in order to estimate the scale of explosion. As a result, we could not explain the damage of ducts quantitatively, but we found the local pressure peaks analytically in downstream ducts where the serious damages were observed. (author)

  20. Monitoring system for an experimental facility using GMDH methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Bueno, Elaine Inacio, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br, E-mail: ebueno@ifsp.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), São Paulo, SP (Brazil)

    2017-07-01

    This work presents a Monitoring System developed based on the GMDH - Group Method of Data Handling methodology to be used in an Experimental Test Facility. GMDH is a combinatorial multi-layer algorithm in which a network of layers and nodes is generated using a number of inputs from the data stream being evaluated. The GMDH network topology has been traditionally determined using a layer by layer pruning process based on a pre-selected criterion of what constitutes the best nodes at each level. The traditional GMDH method is based on an underlying assumption that the data can be modeled by using an approximation of the Volterra Series or Kolmorgorov-Gabor polynomial. The Fault Test Experimental Facility was designed to simulate a PWR nuclear power plant and is composed by elements that correspond to the pressure vessel, steam generator, pumps of the primary and secondary reactor loops. The nuclear reactor core is represented by an electrical heater with different values of power. The experimental plant will be fully instrumented with sensors and actuators, and the data acquisition system will be constructed in order to enable the details of the temporal analysis of process variables. The Fault Test Experimental Facility can be operated to generate normal and fault data. These failures can be added initially with small magnitude, and their magnitude being increasing gradually in a controlled way. The database will interface with the plant supervisory system SCADA (Supervisory Control and Data Acquisition) that provides the data through standard interface. (author)

  1. Monitoring system for an experimental facility using GMDH methodology

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Moraes, Davi Almeida; Bueno, Elaine Inacio

    2017-01-01

    This work presents a Monitoring System developed based on the GMDH - Group Method of Data Handling methodology to be used in an Experimental Test Facility. GMDH is a combinatorial multi-layer algorithm in which a network of layers and nodes is generated using a number of inputs from the data stream being evaluated. The GMDH network topology has been traditionally determined using a layer by layer pruning process based on a pre-selected criterion of what constitutes the best nodes at each level. The traditional GMDH method is based on an underlying assumption that the data can be modeled by using an approximation of the Volterra Series or Kolmorgorov-Gabor polynomial. The Fault Test Experimental Facility was designed to simulate a PWR nuclear power plant and is composed by elements that correspond to the pressure vessel, steam generator, pumps of the primary and secondary reactor loops. The nuclear reactor core is represented by an electrical heater with different values of power. The experimental plant will be fully instrumented with sensors and actuators, and the data acquisition system will be constructed in order to enable the details of the temporal analysis of process variables. The Fault Test Experimental Facility can be operated to generate normal and fault data. These failures can be added initially with small magnitude, and their magnitude being increasing gradually in a controlled way. The database will interface with the plant supervisory system SCADA (Supervisory Control and Data Acquisition) that provides the data through standard interface. (author)

  2. Realistic minimum accident source terms - Evaluation, application, and risk acceptance

    International Nuclear Information System (INIS)

    Angelo, P. L.

    2009-01-01

    The evaluation, application, and risk acceptance for realistic minimum accident source terms can represent a complex and arduous undertaking. This effort poses a very high impact to design, construction cost, operations and maintenance, and integrated safety over the expected facility lifetime. At the 2005 Nuclear Criticality Safety Division (NCSD) Meeting in Knoxville Tenn., two papers were presented mat summarized the Y-12 effort that reduced the number of criticality accident alarm system (CAAS) detectors originally designed for the new Highly Enriched Uranium Materials Facility (HEUMF) from 258 to an eventual as-built number of 60. Part of that effort relied on determining a realistic minimum accident source term specific to the facility. Since that time, the rationale for an alternate minimum accident has been strengthened by an evaluation process that incorporates realism. A recent update to the HEUMF CAAS technical basis highlights the concepts presented here. (authors)

  3. Thermal-hydraulic and aerosol containment phenomena modelling in ASTEC severe accident computer code

    International Nuclear Information System (INIS)

    Kljenak, Ivo; Dapper, Maik; Dienstbier, Jiri; Herranz, Luis E.; Koch, Marco K.; Fontanet, Joan

    2010-01-01

    Transients in containment systems of different scales (Phebus.FP containment, KAEVER vessel, Battelle Model Containment, LACE vessel and VVER-1000 nuclear power plant containment) involving thermal-hydraulic phenomena and aerosol behaviour, were simulated with the computer integral code ASTEC. The results of the simulations in the first four facilities were compared with experimental results, whereas the results of the simulated accident in the VVER-1000 containment were compared to results obtained with the MELCOR code. The main purpose of the simulations was the validation of the CPA module of the ASTEC code. The calculated results support the applicability of the code for predicting in-containment thermal-hydraulic and aerosol phenomena during a severe accident in a nuclear power plant.

  4. Experimental area plans for an advanced hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

  5. Experimental area plans for an advanced hadron facility

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs

  6. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - summary report

    International Nuclear Information System (INIS)

    Gerton, R.E.

    1997-01-01

    This report is a summary of the Accident Investigation Board Report on the May 14, 1997, Chemical Explosion at the Plutonium Reclamation Facility, Hanford Site, Richland, Washington (DOE/RL-97-59). The referenced report provides a greater level of detail and includes a complete discussion of the facts identified, analysis of those facts, conclusions derived from the analysis, identification of the accident's causal factors, and recommendations that should be addressed through follow-up action by the U.S. Department of Energy and its contractors. This companion document provides a concise summary of that report, with emphasis on management issues. Evaluation of emergency and occupational health response to, and radiological and chemical releases from, this accident was not within the scope of this investigation, but is the subject of a separate investigation and report (see DOE/RL-97-62)

  7. Introduction to flow visualization system in SPARC test facility

    International Nuclear Information System (INIS)

    Lee, Wooyoung; Song, Simon; Na, Young Su; Hong, Seong Wan

    2016-01-01

    The released hydrogen can be accumulated and mixed by steam and air depending on containment conditions under severe accident, which generates flammable mixture. Hydrogen explosion induced by ignition source cause severe damage to a structure or facility. Hydrogen risk regarding mixing, distribution, and combustion has been identified by several expert groups and studied actively since TMI accident. A large-scale thermal-hydraulic experimental facility is required to simulate the complex severe accident phenomena in the containment building. We have prepared the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk. Gas mixing and stratification test using helium instead of hydrogen and estimation of a stratification surface erosion of helium owing to the vertical jet flow will be performed in SPARC. The measurement system is need to observe the gas flow in the large scale test facility such as SPARC. The PIV (particle image velocimetry) system have been installed to visualize gas flow. We are preparing the test facility, called the SPARC, for estimation the thermal-hydraulic process of hydrogen in a closed containment building and the PIV system for quantitative assessment of gas flow. In particular, we will perform gas mixing and erosion of stratification surface test using helium which is the replacement of hydrogen. It will be evaluated by measuring 2D velocity field using the PIV system. The PIV system mainly consists of camera, laser and tracer particle. Expected maximum size of FOV is 750 x 750 mm 2 limited by focal length of lens and high power laser corresponding to 425mJ/pulse at 532 wavelength is required due to large FOV

  8. Dose assessment in radiological accidents

    International Nuclear Information System (INIS)

    Donkor, S.

    2013-04-01

    The applications of ionizing radiation bring many benefits to humankind, ranging from power generation to uses in medicine, industry and agriculture. Facilities that use radiation source require special care in the design and operation of equipment to prevent radiation injury to workers or to the public. Despite considerable development of radiation safety, radiation accidents do happen. The purpose of this study is therefore to discuss how to assess doses to people who will be exposed to a range of internal and external radiation sources in the event of radiological accidents. This will go a long way to complement their medical assessment thereby helping to plan their treatment. Three radiological accidents were reviewed to learn about the causes of those accidents and the recommendations that were put in place to prevent recurrence of such accidents. Various types of dose assessment methods were discussed.(au)

  9. Conservatism of loss-of-coolant accident licensing analysis compared to experimental results and best-estimate calculation

    International Nuclear Information System (INIS)

    Winkler, F.; Friedmann, P.

    1986-01-01

    The paper compares results of loss-of-coolant accident licensing analysis with experimental results and results of best-estimate calculations. The large safety margins resulting from the more realistic best-estimate results are used to show the high conservatism inherent in the licensing process of pressurized water reactors. (orig.) [de

  10. Links between operating experience feedback of industrial accidents and nuclear safety

    International Nuclear Information System (INIS)

    Eury, S.P.

    2012-01-01

    Since 1992, the bureau for analysis of industrial risks and pollutions (BARPI) collects, analyzes and publishes information on industrial accidents. The ARIA database lists over 40.000 accidents or incidents, most of which occurred in French classified facilities (ICPE). Events occurring in nuclear facilities are rarely reported in ARIA because they are reported in other databases. This paper describes the process of selection, characterization and review of these accidents, as well as the following consultation with industry trade groups. It is essential to publicize widely the lessons learned from analyzing industrial accidents. To this end, a web site (www.aria.developpement-durable.gouv.fr) gives free access to the accidents summaries, detailed sheets, studies, etc. to professionals and the general public. In addition, the accidents descriptions and characteristics serve as inputs to new regulation projects or risk analyses. Finally, the question of the links between operating experience feedback of industrial accidents and nuclear safety is explored: if the rigorous and well-documented methods of experience feedback in the nuclear field certainly set an example for other activities, nuclear safety can also benefit from inputs coming from the vast diversity of accidents arisen into industrial facilities because of common grounds. Among these common grounds we can find: -) the fuel cycle facilities use many chemicals and chemical processes that are also used by chemical industries; -) the problems resulting from the ageing of equipment affect both heavy and nuclear industries; -) the risk of hydrogen explosion; -) the risk of ammonia, ammonia is a gas used by nuclear power plants as an ingredient in the onsite production of mono-chloramine and ammonia is involved in numerous accidents in the industry: at least 900 entries can be found in the ARIA database. The paper is followed by the slides of the presentation

  11. Overview of LWR severe accident research activities at the Karlsruhe Institute of Technology

    International Nuclear Information System (INIS)

    Miassoedov, Alexei; Albrecht, Giancarlo; Foit, Jerzy-Jan; Jordan, Thomas; Steinbrück, Martin; Stuckert, Juri; Tromm, Walter

    2012-01-01

    The research activities in the light water reactor (LWR) severe accidents domain at Karlsruhe Institute of Technology (KIT) are concentrated on the in- and ex-vessel core melt behavior. The overall objective is to investigate the core melt scenarios from the beginning of core degradation to melt formation and relocation in the vessel, possible melt dispersion to the reactor cavity and to the containment, corium concrete interaction and corium coolability in the reactor cavity, and hydrogen behaviour in reactor systems. The results of the experiments contribute to a better understanding of the core melt sequences and thus improve safety of existing and, in the long-term, of future reactors by severe accident mitigation measures and by safety installations where required. This overview paper describes the experimental facilities used at KIT for severe accident research and gives an overview of the main directions and objectives of the R&D work. (author)

  12. Analysis of multi-dimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1989-01-01

    The presence of parallel enclosed channels in a BWR provides opportunities for multiple flow regimes in co-current and countercurrent flow under Loss-of-Coolant Accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the Steam Sector Test Facility (SSTF) which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests and integral transients with vessel blowdown and refill were performed. The present of multi-dimensional and parallel channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  13. Validation of Code ASTEC with LIVE-L1 Experimental Results

    International Nuclear Information System (INIS)

    Bachrata, Andrea

    2008-01-01

    The severe accidents with core melting are considered at the design stage of project at Generation 3+ of Nuclear Power Plants (NPP). Moreover, there is an effort to apply the severe accident management to the operated NPP. The one of main goals of severe accidents mitigation is corium localization and stabilization. The two strategies that fulfil this requirement are: the in-vessel retention (e.g. AP-600, AP- 1000) and the ex-vessel retention (e.g. EPR). To study the scenario of in-vessel retention, a large experimental program and the integrated codes have been developed. The LIVE-L1 experimental facility studied the formation of melt pools and the melt accumulation in the lower head using different cooling conditions. Nowadays, a new European computer code ASTEC is being developed jointly in France and Germany. One of the important steps in ASTEC development in the area of in-vessel retention of corium is its validation with LIVE-L1 experimental results. Details of the experiment are reported. Results of the ASTEC (module DIVA) application to the analysis of the test are presented. (author)

  14. In vessel retention for VVER 1000 - Experimental work

    International Nuclear Information System (INIS)

    Batek, D.

    2015-01-01

    After Fukushima accident, the nuclear community realized that it is necessary to have strategy and solution for severe accident management. In Vessel Retention (IVR) of corium is an important strategy to mitigate the consequences of a severe accident. In this poster the author reviews the present status of experimental works made by UJV (Czech Republic) from 2012 until now, on the IVR strategy specifically applied for the VVER 1000 unit. The BESTH 1 experiment was prepared to test the behavior of the RPV (Reactor Pressure Vessel) surface under 2 configurations: clean and corroded. BESTH 2 experiment is a modification of BESTH 1 experiment in order to get greater thermal fluxes. The BESTH 3 facility is a large scale experiment that is under extensive design (2016-2017) whose main objective will be to investigate the results of vast analytical works made by experts with specialization of severe accident phenomenology

  15. Modelling of atmosphere mixing and stratification in the Tosqan experimental facility with the CFX code

    International Nuclear Information System (INIS)

    Kljenak, I.; Babic, M.; Mavko, B.; Bajsic, I.

    2005-01-01

    Full text of publication follows: During the course of a severe accident in a Light Water Reactor nuclear power plant, large amounts of hydrogen would presumably be generated and released into the containment. The integrity of the containment could be threatened due to hydrogen combustion. The prediction of hydrogen behaviour at severe accident conditions is thus important for devising adequate accident management procedures. Lately, investigations about the possible application of so-called Computational Fluid Dynamics (CFD) codes for this purpose have been started within the nuclear community. These investigations are complemented by adequate experiments. In the proposed work, the CFD code CFX4.4 was used to simulate an experiment in the TOSQAN facility, which is located at the Institut de Radioprotection et de Surete Nucleaire (IRSN) in Saclay (France). The facility consists of a cylindrical vessel (volume: 7 m3), in which gases are injected. The temperature of the vessel walls may be controlled. Steam may condense on some parts of the walls, where the controlled temperature is maintained at sufficiently low levels. In the considered experiment, which was also proposed for the OECD/NEA International Standard Problem No.47, air was initially present in the vessel, and steam, air and helium were injected during different phases of the experiment at various mass flow rates. The thermal-hydraulic behaviour was determined by the dominant physical phenomena: gas injection, steam condensation, heat transfer and buoyant flow. During certain phases of the experiment, steady states were reached when the steam condensation rate became equal to the steam injection rate, with all boundary conditions (wall temperatures and injection rates) remaining constant. In the proposed work, three intermediate steady states, which were obtained with different boundary conditions, were simulated independently. The main purpose was to reproduce the non-homogeneous temperature, species

  16. Assessment of SPACE code for multiple failure accident: 1% Cold Leg Break LOCA with HPSI failure at ATLAS Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Lee, Seung Wook; Kim, Kyung-Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Design extension conditions (DECs) is a popular key issue after the Fukushima accident. In a viewpoint of the reinforcement of the defense in depth concept, a high-risk multiple failure accident should be reconsidered. The target scenario of ATLAS A5.1 test was LSTF (Large Scale Test Facility) SB-CL-32 test, a 1% SBLOCA with total failure of high pressure safety injection (HPSI) system of emergency core cooling system (ECCS) and secondary side depressurization as the accident management (AM) action, as a counterpart test. As the needs to prepare the DEC accident because of a multiple failure of the present NPPs are emphasized, the capability of SPACE code, just like other system analysis code, is required to expand the DEC area. The objectives of this study is to validate the capability of SPACE code for a DEC scenario, which represents multiple failure accident like as a SBLOCA with HPSI fail. Therefore, the ATLAS A5.1 test scenario was chosen. As the needs to prepare the DEC accident because of a multiple failure of operating NPPs are emphasized, the capability of SPACE code is needed to expand the DEC area. So the capability of SPACE code was validated for one of a DEC scenario. The target scenario was selected as the ATLAS A5.1 test, which is a 1% SBLOCA with total failure of HPSI system of ECCS and secondary side depressurization. Through the sensitivity study on discharge coefficient of break flow, the best fit of integrated mass was found. Using the coefficient, the ATLAS A5.1 test was analyzed using the SPACE code. The major thermal hydraulic parameters such as the system pressure, temperatures were compared with the test and have a good agreement. Through the simulation, it was concluded that the SPACE code can effectively simulate one of multiple failure accidents like as SBLOCA with HPSI failure accident.

  17. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations. Volume 1: Sections 1-9

    International Nuclear Information System (INIS)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report

  18. NARCISS critical stand experiments for studying the nuclear safety in accident water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoj, N.N.; Glushkov, E.S.; Bubelev, V.G.

    2005-01-01

    A brief description of the Topaz-2 SNPS designed under scientific supervision of RRC KI in Russia, and of the NARCISS critical facility, is given. At the NARCISS critical facility, neutronic peculiarities and nuclear safety issues of the Topaz-2 system reactor were studied experimentally. This work is devoted to a detailed description of experiments on investigation of criticality safety in accident water immersion og highly enriched uranium dioxide fuel elements, performed at the NARCISS facility. The experiments were carried out at water-moderated critical assemblies with varying height, number, and spacing of fuel elements. The results obtained in the critical experiments, computational models of the investigated critical configurations, and comparison of the computational and experimental results are given [ru

  19. Preliminary Assessment of ICRP Dose Conversion Factor Recommendations for Accident Analysis Applications

    International Nuclear Information System (INIS)

    Vincent, A.M.

    2002-01-01

    Accident analysis for U.S. Department of Energy (DOE) nuclear facilities is an integral part of the overall safety basis developed by the contractor to demonstrate facility operation can be conducted safely. An appropriate documented safety analysis for a facility discusses accident phenomenology, quantifies source terms arising from postulated process upset conditions, and applies a standardized, internationally-recognized database of dose conversion factors (DCFs) to evaluate radiological conditions to offsite receptors

  20. Explanation of procedure on site medical emergency response for nuclear accident

    International Nuclear Information System (INIS)

    Liu Yulong; Jiang Zhong

    2012-01-01

    National occupational health standard-Procedure on Site Medical Emergency Response for Nuclear Accident has been approved and issued by the Ministry of Health. This standard is formulated according to the Emergency Response Law of the People's Republic of China, Law of the People 's Republic of China on Prevention and Control of Occupational Diseases, Regulations on Emergency Measures for Nuclear Accidents at Nuclear Power Plants, and Health Emergency Plans for Nuclear and Radiological Accidents of Ministry of Health, supporting the use of On-site Medical Emergency Planning and Preparedness for Nuclear Accidents and Off-site Medical Emergency Planning and Preparedness for Nuclear Accidents. Nuclear accident on-site medical response procedure is a part of the on-site emergency plan. The standard specifies the basic content and requirements of the nuclear accident on-site medical emergency response procedures of nuclear facilities operating units to guide and regulate the work of nuclear accident on-site medical emergency response of nuclear facilities operating units. The criteria-related contents were interpreted in this article. (authors)

  1. Learning lessons from Natech accidents - the eNATECH accident database

    Science.gov (United States)

    Krausmann, Elisabeth; Girgin, Serkan

    2016-04-01

    When natural hazards impact industrial facilities that house or process hazardous materials, fires, explosions and toxic releases can occur. This type of accident is commonly referred to as Natech accident. In order to prevent the recurrence of accidents or to better mitigate their consequences, lessons-learned type studies using available accident data are usually carried out. Through post-accident analysis, conclusions can be drawn on the most common damage and failure modes and hazmat release paths, particularly vulnerable storage and process equipment, and the hazardous materials most commonly involved in these types of accidents. These analyses also lend themselves to identifying technical and organisational risk-reduction measures that require improvement or are missing. Industrial accident databases are commonly used for retrieving sets of Natech accident case histories for further analysis. These databases contain accident data from the open literature, government authorities or in-company sources. The quality of reported information is not uniform and exhibits different levels of detail and accuracy. This is due to the difficulty of finding qualified information sources, especially in situations where accident reporting by the industry or by authorities is not compulsory, e.g. when spill quantities are below the reporting threshold. Data collection has then to rely on voluntary record keeping often by non-experts. The level of detail is particularly non-uniform for Natech accident data depending on whether the consequences of the Natech event were major or minor, and whether comprehensive information was available for reporting. In addition to the reporting bias towards high-consequence events, industrial accident databases frequently lack information on the severity of the triggering natural hazard, as well as on failure modes that led to the hazmat release. This makes it difficult to reconstruct the dynamics of the accident and renders the development of

  2. Experimental study of in-and-ex-vessel melt cooling during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Baik; Yoo, K J; Park, C K; Seok, S D; Park, R J; Yi, S J; Kang, K H; Ham, Y S; Cho, Y R; Kim, J H; Jeong, J H; Shin, K Y; Cho, J S; Kim, D H

    1997-07-01

    After code damage during a severe accident in a nuclear reactor, the degraded core has to be cooled down and the decay heat should be removed in order to cease the accident progression and maintain a stable state. The cooling of core melt is divided into in-vessel and ex-vessel cooling depending on the location of molten core which is dependent on the timing of vessel failure. Since the cooling mechanism varies with the conditions of molten core and surroundings and related phenomena, it contains many phenomenological uncertainties so far. In this study, an experimental study for verification of in-vessel corium cooling and several separate effect experiments for ex-vessel cooling are carried out to verify in- and ex-vessel cooling phenomena and finally to develop the accident management strategy and improve engineered reactor design for the severe accidents. SONATA-IV (Simulation of Naturally Arrested Thermal Attack in Vessel) program is set up for in-vessel cooling and a progression of the verification experiment has been done, and an integral verification experiment of the containment integrity for ex-vessel cooling is planned to be carried out based on the separate effect experiments performed in the first phase. First phase study of SONATA-IV is proof of principle experiment and it is composed of LALA (Lower-plenum Arrested Vessel Attack) experiment to find the gap between melt and the lower plenum during melt relocation and to certify melt quenching and CHFG (Critical Heat Flux in Gap) experiment to certify heat transfer mechanism in an artificial gap. As separate effect experiments for ex-vessel cooling, high pressure melt ejection experiment related to the initial condition for debris layer formation in the reactor cavity, crust formation and heat transfer experiment in the molten pool and molten core concrete interaction experiment are performed. (author). 150 refs., 24 tabs., 127 figs.

  3. Current state of the construction of SPARC test facility for observing hydrogen′s behavior

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong-Ho; Park, Ki Han; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen combustion can make a dynamic load, which can cause severe damage to a structure or facility. Many studies on hydrogen behavior, such as distribution, combustion and mitigation, have been conducted since the TMI accident, and they were recently summarized in. A large-scaled experimental facility is required for simulating the complex severe accident phenomena in a closed containment building. We are preparing the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk as well as the validation of the Korean PAR (Passive Auto-catalytic Recombiner). This paper summarized the previous study submitted to the NUTHOS-11, which introduced the SPARC test facility. KAERI (Korea Atomic Energy Research Institute) is preparing a test facility, called the SPARC for an assessment of the containment integrity under a severe accident. In the SPARC test facility, the hydrogen behavior such as mixing with steam and air, distribution, and combustion will be observed under various thermal-hydraulic conditions. We will carry out the performance tests of the safety systems such as the spray, cooling fan, PAR, and igniter. The SPARC test facility consists of a pressure vessel with a 9.5 m height and 3.4 m diameter, and an operating system to control and measure the thermal hydraulic conditions. In a commissioning test, we verified the controllable thermal conditions. It took about 8,400 seconds to increase up to 5 bar. The increment rate of the atmosphere temperature is about 34° C/h from room temperature to 100° C.

  4. Accident sequences and causes analysis in a hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moo Sung; Hwang, Seok Won; Kang, Kyong Min; Ryu, Jung Hyun; Kim, Min Soo; Cho, Nam Chul; Jeon, Ho Jun; Jung, Gun Hyo; Han, Kyu Min; Lee, Seng Woo [Hanyang Univ., Seoul (Korea, Republic of)

    2006-03-15

    Since hydrogen production facility using IS process requires high temperature of nuclear power plant, safety assessment should be performed to guarantee the safety of facility. First of all, accident cases of hydrogen production and utilization has been surveyed. Based on the results, risk factors which can be derived from hydrogen production facility were identified. Besides the correlation between risk factors are schematized using influence diagram. Also initiating events of hydrogen production facility were identified and accident scenario development and quantification were performed. PSA methodology was used for identification of initiating event and master logic diagram was used for selection method of initiating event. Event tree analysis was used for quantification of accident scenario. The sum of all the leakage frequencies is 1.22x10{sup -4} which is similar value (1.0x10{sup -4}) for core damage frequency that International Nuclear Safety Advisory Group of IAEA suggested as a criteria.

  5. Development of BNL Heat Transfer Facility 1: flashing experiments

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Klein, J.H.; Zimmer, G.A.; Abuaf, N.; Jones, O.C. Jr.

    1979-01-01

    A major area of interest to reactor safety technology is the prediction of actual vapor generation rates under conditions of thermal nonequilibrium as would be encountered during a loss-of-coolant accident (LOCA) in a light water reactor. In support of the development of advanced codes dealing with LOCA induced flashing, analytical models of the nonequilibrium vapor generation processes of interest have been formulated, and an experimental facility has been constructed to provide data to verify these models. This facility is known as BNL Heat Transfer Facility. The experimental facility consists of a flow loop, test section and the data acquisition and analysis system. The main portion of the flow loop is constructed from three inch nominal (7.6 cm) stainless steel pipe. High purity water is circulated through the loop using a centrifugal pump rated 1500 l/min at 600 kPa. Very close and stable control of all loop parameters is required since flashing is sensitive to very small changes in such parameters as flow rate, subcooling, and pressure

  6. Modeling bubble condenser containment with computer code COCOSYS: post-test calculations of the main steam line break experiment at ELECTROGORSK BC V-213 test facility

    International Nuclear Information System (INIS)

    Lola, I.; Gromov, G.; Gumenyuk, D.; Pustovit, V.; Sholomitsky, S.; Wolff, H.; Arndt, S.; Blinkov, V.; Osokin, G.; Melikhov, O.; Melikhov, V.; Sokoline, A.

    2005-01-01

    Containment of the WWER-440 Model 213 nuclear power plant features a Bubble Condenser, a complex passive pressure suppression system, intended to limit pressure rise in the containment during accidents. Due to lack of experimental evidence of its successful operation in the original design documentation, the performance of this system under accidents with ruptures of large high-energy pipes of the primary and secondary sides remains a known safety concern for this containment type. Therefore, a number of research and analytical studies have been conducted by the countries operating WWER-440 reactors and their Western partners in the recent years to verify Bubble Condenser operation under accident conditions. Comprehensive experimental research studies at the Electrogorsk BC V-213 test facility, commissioned in 1999 in Electrogorsk Research and Engineering Centre (EREC), constitute essential part of these efforts. Nowadays this is the only operating large-scale facility enabling integral tests on investigation of the Bubble Condenser performance. Several large international research projects, conducted at this facility in 1999-2003, have covered a spectrum of pipe break accidents. These experiments have substantially improved understanding of the overall system performance and thermal hydraulic phenomena in the Bubble Condenser Containment, and provided valuable information for validating containment codes against experimental results. One of the recent experiments, denoted as SLB-G02, has simulated steam line break. The results of this experiment are of especial value for the engineers working in the area of computer code application for WWER-440 containment analyses, giving an opportunity to verify validity of the code predictions and identify possibilities for model improvement. This paper describes the results of the post-test calculations of the SLB-G02 experiment, conducted as a joint effort of GRS, Germany and Ukrainian technical support organizations for

  7. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  8. Reactivity accident analysis in MTR cores

    International Nuclear Information System (INIS)

    Waldman, R.M.; Vertullo, A.C.

    1987-01-01

    The purpose of the present work is the analysis of reactivity transients in MTR cores with LEU and HEU fuels. The analysis includes the following aspects: the phenomenology of the principal events of the accident that takes place, when a reactivity of more than 1$ is inserted in a critical core in less than 1 second. The description of the accident that happened in the RA-2 critical facility in September 1983. The evaluation of the accident from different points of view: a) Theoretical and qualitative analysis; b) Paret Code calculations; c) Comparison with Spert I and Cabri experiments and with post-accident inspections. Differences between LEU and HEU RA-2 cores. (Author)

  9. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year

  10. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs

  11. Radiation accident/disaster

    International Nuclear Information System (INIS)

    Kida, Yoshiko; Hirohashi, Nobuyuki; Tanigawa, Koichi

    2013-01-01

    Described are the course of medical measures following Fukushima Daiichi Nuclear Power Plant (FNPP) Accident after the quake and tsunami (Mar. 11, 2011) and the future task for radiation accident/disaster. By the first hydrogen explosion in FNPP (Mar. 12), evacuation of residents within 20 km zone was instructed, and the primary base for measures of nuclear disaster (Off-site Center) 5 km afar from FNPP had to work as a front base because of damage of communicating ways, of saving of injured persons and of elevation of dose. On Mar. 13, the medical arrangement council consisting from stuff of Fukushima Medical University (FMU), National Institute of Radiological Sciences, Nuclear Safety Research Association and Prefectural officers was setup in residents' hall of Fukushima City, and worked for correspondence to persons injured or exposed, where communication about radiation and between related organizations was still poor. The Off-site Center's head section moved to Prefectural Office on Mar. 15 as headquarters. Early in the period, all residents evacuated from the 20 km zone, and in-hospital patients and nursed elderly were transported with vehicles, >50 persons of whom reportedly died mainly by their base diseases. The nation system of medicare for emergent exposure had consisted from the network of the primary to third facilities; there were 5 facilities in the Prefecture, 3 of which were localized at 4-9 km distance from FNPP and closed early after the Accident; and the secondary facility of FMU became responsible to all exposed persons. There was no death of workers of FNPP. Medical stuff also measured the ambient dose at various places near FNPP, having had risk of exposure. At the Accident, the important system of command, control and communication was found fragile and measures hereafter should be planned on assumption of the worst scenario of complete damage of the infrastructure and communication. It is desirable for Disaster Medical Assistance Team which

  12. Severe accident tests and development of domestic severe accident system codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  13. Severe accident tests and development of domestic severe accident system codes

    International Nuclear Information System (INIS)

    2013-01-01

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  14. Technique of research of severe accidents and substantiation of safety of nuclear systems

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Tchenov, S.V.

    2001-01-01

    Work is devoted to development of possible ways of solution of the problems of nuclear safety substantiation. We believe that safety in severe accidents is one of significant factors, which restrict value of nuclear industry in future power production. In connection with it we can conclude followed items: -) Substantiation of safety in severe accidents in nuclear system should be built on a deterministic way of guaranteed exception of heavy consequences; -) It is easy that this aim can be achieved by modeling in functions of common type; -) Main purpose of this work is to show that it is possible to estimate physical allowed state of system in emergency and find of trajectory of heaviest scenarios by optimization procedure; and -) In this work we have developed new method and computer code purposed for study of accident conditions of water cooled un-managed nuclear systems such as cooling ponds of spent fuel, experimental facilities etc. (authors)

  15. Upgrading of TREAT experimental capabilities

    International Nuclear Information System (INIS)

    Dickerman, C.E.; Rose, D.; Bhattacharyya, S.K.

    1982-01-01

    The TREAT facility at the Argonne National Laboratory site in the Idaho National Engineering Laboratory is being upgraded to provide capabilities for fast-reactor-safety transient experiments not possible at any other experimental facility. Principal TREAT Upgrade (TU) goal is provision for 37-pin size experiments on energetics of core-disruptive accidents (CDA) in fast breeder reactor cores with moderate sodium void coefficients. this goal requires a significant enhancement of the capabilities of the TREAT facility, specifically including reactor control, hardened neutron spectrum incident on the test sample, and enlarged building. The upgraded facility will retain the capability for small-size experiments of the types currently being performed in TREAT. Reactor building and crane upgrading have been completed. TU schedules call for the components of the upgraded reactor system to be finished in 1984, including upgraded TREAT fuel and control system, and expanded coverage by the hodoscope fuel-motion diagnostics system

  16. Design and development of microcontroller based programmable ramp generator for AC-DC converter for simulating decay power transient in experimental facility for nuclear power plants

    International Nuclear Information System (INIS)

    Srivastava, Gaurava Deep; Kulkarni, R.D.

    2015-01-01

    In nuclear power plants, fuel is subjected to a wide range of power and temperature transients during normal and abnormal conditions. The reactor setback and step-back power pattern, fast temperature profile occurred during Loss of Coolant Accident and decay power followed by shutdown of power plant are the typical transients in nuclear power plant. For a variety of reactor engineering and reactor safety related study, one needs to simulate these transients in experimental facility. In experimental facilities, high response AC-DC converters are used to handle these power and temperature transients safely in a controlled manner for generating a database which is utilized for design of thermal hydraulic system, development of computer codes, study of reliability of reactor safety system, etc. for nuclear power plants. The paper presents the methodology developed for simulating the typical reactor decay power transient in an experimental facility. The design and simulation of AC-DC power electronic converter of 3 MW capacity is also presented. The microcontroller based programmable ramp generator is designed and hardware implemented for feeding reference voltage to the closed loop control system of AC-DC converter for obtaining the decay power profile at the converter output. The typical decay power transient of the nuclear power plant is divided into several small power ramps for simulating the transient. The signal corresponding to each power ramp is generated by programmable ramp generator and fed to the comparator for generating control signal for the converter. The actual decay power transient obtained from the converter is compared with the theoretical decay power transient. (author)

  17. Performance analysis of small-scale experimental facility of TWDEC

    International Nuclear Information System (INIS)

    Kawana, Ryoh; Ishikawa, Motoo; Takeno, Hiromasa; Yamamoto, Takayoshi; Yasaka, Yasuyoshi

    2008-01-01

    The objective of the present paper is to analyze small-scale experimental facilities of TWDEC (Travelling Wave type Direct Energy Converter) and to propose a modification in regard to a measuring device of the facilities by means of numerical simulation with the axisymmetrical two-dimensional approximation (a PIC method). The numerical simulation has given the following results: (1) tendency of the numerical results agree with the experimental results on the measured deceleration efficiency, (2) the deceleration efficiency measured in the experiment will increase if the radius of Faraday cup installed in the experiment increases and (3) the wave of condensation and rarefaction of measured electric charge density, which is averaged in the r-direction below the radius of Faraday cup, is not formed enough with a small radius of Faraday cup because of the r component of electric field which is induced by the electrode geometry

  18. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  19. Review of the CRAC and SILENE Criticality Accident Studies

    International Nuclear Information System (INIS)

    Barbry, F.; Fouillaud, P.; Grivot, P.; Reverdy, L.

    2009-01-01

    In 1967, the Commissariat et l'Energie Atomique (French Atomic Energy Agency) performed its first research on criticality accidents for the purpose of limiting their impact on people, the environment, and nuclear facilities themselves. A criticality accident is accompanied by intense neutron and gamma emissions and release of radioactive fission products-gases and aerosols-gene rating risk of irradiation and contamination. This work has supplemented earlier work in criticality safety, which concentrated on critical mass measurements and computations. Understanding of the consequences of criticality accidents was limited. Emergency planning was hampered by lack of data. Information became available from pulsed reactor experiments, but the experiments were restricted to the established reactor configurations. The objectives of research performed at the Valduc criticality laboratory, mainly on aqueous fissile media, using the CRAC and SILENE facilities, by multidisciplinary teams of physicists, dosimetry specialists, and radio-biologists, were to model criticality accident physics, estimate irradiation risks and radioactive releases, detect excursions, and organize emergency response. The results of the Valduc experiments have contributed toward improved understanding of criticality accident phenomenology and better evaluation of the risks associated with such accidents. (authors)

  20. Review of the CRAC and SILENE Criticality Accident Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barbry, F.; Fouillaud, P.; Grivot, P.; Reverdy, L. [CEA Valduc, Serv Rech Neutron and Critcite, 21 - Is-sur-Tille (France)

    2009-02-15

    In 1967, the Commissariat et l'Energie Atomique (French Atomic Energy Agency) performed its first research on criticality accidents for the purpose of limiting their impact on people, the environment, and nuclear facilities themselves. A criticality accident is accompanied by intense neutron and gamma emissions and release of radioactive fission products-gases and aerosols-gene rating risk of irradiation and contamination. This work has supplemented earlier work in criticality safety, which concentrated on critical mass measurements and computations. Understanding of the consequences of criticality accidents was limited. Emergency planning was hampered by lack of data. Information became available from pulsed reactor experiments, but the experiments were restricted to the established reactor configurations. The objectives of research performed at the Valduc criticality laboratory, mainly on aqueous fissile media, using the CRAC and SILENE facilities, by multidisciplinary teams of physicists, dosimetry specialists, and radio-biologists, were to model criticality accident physics, estimate irradiation risks and radioactive releases, detect excursions, and organize emergency response. The results of the Valduc experiments have contributed toward improved understanding of criticality accident phenomenology and better evaluation of the risks associated with such accidents. (authors)

  1. Hot Cell Installation and Demonstration of the Severe Accident Test Station

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Zachary M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    A Severe Accident Test Station (SATS) capable of examining the oxidation kinetics and accident response of irradiated fuel and cladding materials for design basis accident (DBA) and beyond design basis accident (BDBA) scenarios has been successfully installed and demonstrated in the Irradiated Fuels Examination Laboratory (IFEL), a hot cell facility at Oak Ridge National Laboratory. The two test station modules provide various temperature profiles, steam, and the thermal shock conditions necessary for integral loss of coolant accident (LOCA) testing, defueled oxidation quench testing and high temperature BDBA testing. The installation of the SATS system restores the domestic capability to examine postulated and extended LOCA conditions on spent fuel and cladding and provides a platform for evaluation of advanced fuel and accident tolerant fuel (ATF) cladding concepts. This document reports on the successful in-cell demonstration testing of unirradiated Zircaloy-4. It also contains descriptions of the integral test facility capabilities, installation activities, and out-of-cell benchmark testing to calibrate and optimize the system.

  2. Hazards assessment for the Waste Experimental Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  3. Fast instrumentation for loss of coolant accident (LOCA) experimental studies pertaining to nuclear reactors

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Sreenivas Rao, G.; Belokar, D.G.; Dolas, P.K.

    1989-01-01

    The loss of coolant accident (LOCA) which involves a breach in the pressure boundary of the primary coolant system (PCS) is one of the postulated accident conditions against which the safety of the reactor system is to be ensured. Mathematical models have been developed to analyse this kind of transients. However, because of the extremely complicated nature of the phenomena involved, it is necessary to validate the analytical models with appropriate experimental data. Many parameters are to be measured during the experiments, out of which temperature, pressure, void fraction and two-phase mass flow rate are the most important parameters. Since the phenomenon is very fast, special fast response instruments are required. This paper deals with the considerations that govern the selection of appropriate instruments and the development of suitable instruments for transient two-phase flow and void fraction measurements. The requirements of the associated fast data acquisition system are also discussed. (author). 4 figs

  4. Experimental program at the LOTUS facility

    International Nuclear Information System (INIS)

    Azam, S.; Haldy, P.A.; Kumar, A.; Leo, W.R.; Sahraoui, C.; Schneeberger, J.P.; Tsang, F.; Green, L.

    1986-01-01

    The objectives of the LOTUS experimental program are to study, from a neutronics point of view, blanket modules having features representative of conceptual fusion reactor blanket designs. Such small-scale generic experiments should help to eliminate possible blind alleys, and thus save much time and money later when commercial-size devices will be constructed. At present, two different types of blanket designs are being studied at the LOTUS facility. The first one represents a hybrid fission-suppressed blanket developed at IGA. It is a parallelepiped-shaped assembly, with a fissile breeding zone made of aluminum-clad thorium oxide rods, and a tritium breeding zone simulated by lithium carbonate compressed powder in aluminum boxes. The second blanket that is currently being tested at IGA is the Lithium Blanket Module (LBM) developed by PPPL under the sponsorship of the Electric Power Research Institute. Essentially, the same kind of experiments will be carried out in all the blanket modules. Measurement of foil activities as well as tritium production in the blanket are the primary diagnostic means in the current LOTUS experimental program. Preanalyses of the experimental data have been carried out at IGA with the help of the two-dimensional discrete ordinates transport code DOT3.5 coupled to the GRTUNCL first collision routine. For the experiments described above, the agreement between experimental and computed results is generally fair

  5. Analysis of Elektrogorsk 108 test facility experimental data

    International Nuclear Information System (INIS)

    Urbonas, R.

    2001-01-01

    In the paper an evaluation of experimental data obtained at Russian Elektrogorsk 108 (E-108) test facility is presented. E-108 facility is a scaled model of Russian RBMK design reactor. An attempt to validate state-of-the-art thermal hydraulic codes on the basis of E-108 test facility was made. Originally these codes were developed and validated for BWRs and PWRs. Since state-of-art thermal hydraulic codes are widely used for simulation of RBMK reactors further codes' implementation and validation is required. The facility was modelled by employing RELAP5 (INEEL, USA) thermal hydraulic system analysis best estimate code. The results show dependence from number of nodes used in the heated channels, frictional and form losses employed. The obtained oscillatory behaviour is resulted by density wave and critical heat flux. It is shown that codes are able to predict thermal hydraulic instability and sudden heat structure temperature excursion, when critical heat flux is approached, well. In addition, an uncertainty analysis of one of the experiments was performed by employing GRS developed System for Uncertainty and Sensitivity Analysis (SUSA). It was one of the first attempts to use this statistic-based methodology in Lithuania.(author)

  6. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Krecanova, E.; Di Gabriele, F.; Berka, J.; Zychova, M.; Macak, J.; Vojacek, A.

    2013-06-01

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  7. Presentations for the 1st muon science experimental facility advisory committee meeting (MuSAC)

    International Nuclear Information System (INIS)

    2003-03-01

    The J-PARC Muon Science Advisory Committee, so called 'MuSAC', is organized under the J-PARC Project Director during construction period, in order to discuss the following items related to the Muon Science Facility at J-PARC and to report to the Project Director and Muon Science Facility construction team. The committee will review and advise the following subjects: 1) Project definition of the experimental facility to be constructed in Materials and Life Science Facility of J-PARC, 2) Content of the 1st phase experimental program. This issue is the collection of the documents presented at the title meeting. (J.P.N.)

  8. Experimental research of vehicle traction properties for reconstruction of traffic accidents

    Directory of Open Access Journals (Sweden)

    Dudziak Marian

    2018-01-01

    Full Text Available In order to broaden the database of motor vehicle traction properties in unusual conditions, the research team has performed experimental studies: on wet and snow-covered surfaces. Tests of vehicles equipped with winter tyres with non-skid snow chains have been performed on snow-covered surfaces. It has been shown that on snowy surface chains affect vehicle traction properties, mostly during acceleration. They increase the rate of acceleration up to 50% compared to a vehicle with winter tyres without chains. The results of the performed research can be the basis for the full reconstruction of road accidents under these conditions. Knowledge of traction properties of cars in difficult and unusual conditions is an important cognitive factor and serves to improve road safety.

  9. Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

    1996-12-01

    This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented

  10. The FENIX [Fusion ENgineering International EXperimental] test facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Chaplin, M.R.; Miller, J.R.; Shen, S.S.; Summers, L.T.; Kerns, J.A.

    1989-01-01

    The Fusion ENgineering International EXperimental Magnet Facility (FENIX), under construction at Lawrence Livermore National Laboratory (LLNL), is a significant step forward in meeting the testing requirements necessary for the development of superconductor for large-scale, superconducting magnets. A 14-T, transverse field over a test volume of 150 x 60 x 150 mm in length will be capable of testing conductors the size of the International Thermonuclear Experimental Reactor (ITER). Proposed conductors for ITER measure ∼35 mm on one side and will operate at currents of up to 40 kA at fields of ∼14 T. The testing of conductors and associated components, such as joints, will require large-bore, high-field magnet facilities. FENIX is being constructed using the existing A 2o and A 2i magnets from the idle MFTF. The east and west A 2 pairs will be mounted together to form a split-pair solenoid. The pairs of magnets will be installed in a 4.0-m cryostat vessel located in the HFTF building at LLNL. Each magnet is enclosed in its own cryostat, the existing 4.0-m vessel serving only as a vacuum chamber. 4 refs., 8 figs

  11. A cost effective approach for criticality accident analysis of a DOE SNF storage facility

    International Nuclear Information System (INIS)

    Garrett, R.L.; Couture, G.F.; Gough, S.T.

    1997-01-01

    This paper presents the methodologies used to derive criticality accident analyses for a spent nuclear fuel receipt, storage, handling, and shipping facility. Two criticality events are considered: process-induced and Natural Phenomena Hazards (NPH)-induced. The criticality analyses required the development of: (1) the frequency at which each sceanario occurred, (2) the estimated number of fissions for each scenario, and (3) the consequences associated with each criticality scenario. A fault tree analysis was performed to quantify the frequency of criticality due to process-induced events. For the frequency analysis of NPH-induced criticality, a probabilistic approach was employed. To estimate the consequences of a criticality event, the resulting fission yield was determined using a probabilistic approach. For estimating the source term, a 95% amount of overall conservatism was targeted. This methodology applied to the facility criticality scenarios indicated that: (1) the 95th percentile yield levels from the historical yield distributions are approximately 5 x 10 17 fissions and 5 x 10 18 fissions for internal event and NPH-induced criticality event, respectively; and (2) using probabilistic Latin Hypercube Sampling, the downwind 95th percentile dose to a receptor at the US DOE reservation boundary is 2.2 mrem. This estimate is compared to the bounding dose of 1.4 rem. 4 refs., 1 fig

  12. Simulation of natural circulation on an integral type experimental facility, MASLWR

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Youngjong; Lim, Sungwon; Ha, Jaejoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The OSU MASLWR test facility was reconfigured to eliminate a recurring grounding problem and improve facility reliability in anticipation of conducting an IAEA International Collaborative Standard Problem (ICSP). The purpose of ICSP is to provide experimental data on flow instability phenomena under natural circulation conditions and coupled containment/reactor vessel behavior in integral-type reactors, and to evaluate system code capabilities to predict natural circulation phenomena for integral type PWR, by simulating an integrated experiment. A natural circulation in the primary side during various core powers is analyzed using TASS/SMR code for the integral type experimental facility. The calculation results show higher steady state primary flow than experiment. If it matches the initial flow with experiment, it shows lower primary flow than experiment according to the increase of power. The code predictions may be improved by applying a Reynolds number dependent form loss coefficient to accurately account for unrecoverable pressure losses.

  13. Experimental Studies for the VVER-440/213 Bubble Condenser System for Kola NPP at the Integral Test Facility BC V-213

    International Nuclear Information System (INIS)

    Blinkov, V.N.; Melikhov, O.I.; Melikhov, V.I.; Davydov, M.V.; Wolff, H.; Arndt, S.

    2012-01-01

    In the frame of Tacis Project R2.01/99, which was running from 2003 to 2005, the bubble condenser system of Kola NPP (unit 3) was qualified at the integral test facility BC V-213. Three LB LOCA tests, two MSLB tests, and one SB LOCA test were performed. The appropriate test scenarios for BC V-213 test facility, modeling accidents in the Kola NPP unit 3, were determined with pretest calculations. Analysis of test results has shown that calculated initial conditions and test scenarios were properly reproduced in the tests. The detailed posttest analysis of the tests performed at BC V-213 test facility was aimed to validate the COCOSYS code for the calculation of thermohydraulic processes in the hermetic compartments and bubble condenser. After that the validated COCOSYS code was applied to NPP calculations for Kola NPP (unit 3). Results of Tacis R2.01/99 Project confirmed the bubble condenser functionality during large and small break LOCAs and MSLB accidents. Maximum loads were reached in the LB LOCA case. No condensation oscillations were observed.

  14. JAERI's activities in JCO accident

    International Nuclear Information System (INIS)

    2000-09-01

    The Japan Atomic Energy Research Institute (JAERI) was actively involved in a variety of technical supports and cooperative activities, such as advice on terminating the criticality condition, contamination checks of the residents and consultation services for the residents, as emergency response actions to the criticality accident at the uranium processing facility operated by the JCO Co. Ltd., which occurred on September 30, 1999. These activities were carried out in collaborative ways by the JAERI staff from the Tokai Research Establishment, Naka Fusion Research Establishment, Oarai Research Establishment, and Headquarter Office in Tokyo. As well, the JAERI was engaged in the post-accident activities such as identification of accident causes, analyses of the criticality accident, and dose assessment of exposed residents, to support the Headquarter for Accident Countermeasures of the Science and Technology Agency (STA), the Accident Investigation Committee and the Health Control Committee of the Nuclear Safety Commission of Japan (NSC). This report compiles the activities, that the JAERI has conducted to date, including the discussions on measures for terminating the criticality condition, evaluation of the fission number, radiation monitoring in the environment, dose assessment, analyses of criticality dynamics. (author)

  15. 2010 Criticality Accident Alarm System Benchmark Experiments At The CEA Valduc SILENE Facility

    International Nuclear Information System (INIS)

    Miller, Thomas Martin; Dunn, Michael E.; Wagner, John C.; McMahan, Kimberly L.; Authier, Nicolas; Jacquet, Xavier; Rousseau, Guillaume; Wolff, Herve; Piot, Jerome; Savanier, Laurence; Baclet, Nathalie; Lee, Yi-kang; Masse, Veronique; Trama, Jean-Christophe; Gagnier, Emmanuel; Naury, Sylvie; Lenain, Richard; Hunter, Richard; Kim, Soon; Dulik, George Michael; Reynolds, Kevin H.

    2011-01-01

    Several experiments were performed at the CEA Valduc SILENE reactor facility, which are intended to be published as evaluated benchmark experiments in the ICSBEP Handbook. These evaluated benchmarks will be useful for the verification and validation of radiation transport codes and evaluated nuclear data, particularly those that are used in the analysis of CAASs. During these experiments SILENE was operated in pulsed mode in order to be representative of a criticality accident, which is rare among shielding benchmarks. Measurements of the neutron flux were made with neutron activation foils and measurements of photon doses were made with TLDs. Also unique to these experiments was the presence of several detectors used in actual CAASs, which allowed for the observation of their behavior during an actual critical pulse. This paper presents the preliminary measurement data currently available from these experiments. Also presented are comparisons of preliminary computational results with Scale and TRIPOLI-4 to the preliminary measurement data.

  16. Maximal design basis accident of fusion neutron source DEMO-TIN

    Energy Technology Data Exchange (ETDEWEB)

    Kolbasov, B. N., E-mail: Kolbasov-BN@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission–fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or the first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.

  17. Radiation accidents and dosimetry

    International Nuclear Information System (INIS)

    Sagstuen, E.; Theisen, H.; Henriksten, T.

    1982-12-01

    On September 2nd 1982 one of the employees of the gamma-irradiation facility at Institute for Energy Technology, Kjeller, Norway entered the irradiation cell with a 65.7 kCi *sp60*Co- source in unshielded position. The victim received an unknown radiation dose and died after 13 days. Using electron spin resonance spectroscopy, the radiation dose in this accident was subsequently determined based on the production of longlived free radicals in nitroglycerol tablets borne by the operator during the accident. He used nitroglycerol for heart problems and free radical are easily formed and trapped in sugar which is the main component of the tablets. Calibration experiments were carried out and the dose given to the tablets during the accident was determined to 37.2 +- 0.5 Gy. The general use of free radicals for dose determinations is discussed. (Auth.)

  18. Hazards assessment for the Waste Experimental Reduction Facility

    International Nuclear Information System (INIS)

    Calley, M.B.; Jones, J.L. Jr.

    1994-01-01

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high

  19. A review of experiments and results from the TREAT facility

    International Nuclear Information System (INIS)

    Deitrich, L.W.; Dickerman, C.E.; Klickman, A.E.; Wright, A.E.

    1998-01-01

    The Transient Reactor Test (TREAT) facility was designed and built in the late 1950s at Argonne National Laboratory (ANL) to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off-normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light water reactor (LWR) elements in a steam environment to obtain fission product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  20. What has become obvious from an agricultural perspective in these 5 years after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2017-01-01

    Five years have passed since the Fukushima nuclear accident. Immediately after the accident, 40 to 50 academic staff members of Agricultural Dept. of The University of Tokyo started to study the movement of radioactive materials emitted from the nuclear reactor, since most of the contaminated area in Fukushima is related to agriculture. They are still continuing their research to find out the effects of the accident in agricultural fields. Our Graduate School holds many research fields, and there are many facilities attached to the School, such as meadows, experimental forests, farming fields, etc. Together with these facilities a lot of on-site studies have been conducted in Fukushima. One of the most important findings was that the fallout was found at the surface of anything exposed to air at the time of the accident. The main radioactive nuclides are now "1"3"7Cs and "1"3"4Cs. However, the radioactive nuclides were hardly moved from the original point that they touched, which was very difficult to estimate from our understanding of the chemical behavior of cesium. Since the carrier free Cs amount is extremely small, there is an obvious difference between the behavior of the fallout and that of the macroscopic Cs. (author)

  1. Analysis of the radiation accident in El Salvador

    International Nuclear Information System (INIS)

    Melara, N.E.

    1998-01-01

    On 5 February 1989 at 2 a.m. local time in a cobalt-60 industrial irradiation facility, a series of events started leading to one of the most serious radiation accidents in this type of installation. It took place in Soyapango, a city situated 5 km from San Salvador, the capital of the Republic of El Salvador. In this accident, three workers were involved in the first event and a further four in the second. When the accident took place, the activity level was approximately 0.66 PBq (18,000 Ci). The source became blocked when being lowered to its safe position, where upon the technician responsible for the irradiator entered the chamber in breach of the few inadequate safety procedures, accompanied by two colleagues from an adjacent department; the three workers suffered acute radiation exposure, with the result that one of them died six-and-a-half months later, the second had both his legs amputated at mid-thigh, while the third recovered completely. This article describes the irradiator, outlines the causes of the accident and analyses the economic and social repercussions, with the aim of helping teams responsible for radiation protection and safety in industrial irradiation facilities to identify potentially hazardous circumstances and avoid accidents. (author)

  2. Principles and techniques for post-accident assessment and recovery in a contaminated environment of a nuclear facility

    International Nuclear Information System (INIS)

    1989-01-01

    To assist operators and public authorities alike in their advance preparation of emergency plans and in the establishment of emergency preparedness infrastructures, the IAEA has already issued several Safety Series publications dealing with these matters. This Safety Guide complements the technical guidance already published. It provides: a) Information and practical guidance relevant to assessing the off-site consequences during the late phase of a serious accident in a nuclear facility; b) Guidance on recovery operations off the site and the associated decision making process; and c) Proposals for consideration by national authorities regarding the organizational structure for the conduct of recovery operations. 52 refs, 8 figs, 4 tabs.

  3. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States); Laub, T.W. [Sandia National Labs., Albuquerque, NM (United States)

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  4. Summary on experimental facilities and future developments at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    With 13 experimental facilities under construction to become available during the first year of SINQ operation, a nearly complete suite of options for users will be made available to carry out research with neutrons at PSI. Three more facilities are under design and will come on line somewhat later. To complete the suite, three more specialized instruments are being evaluated. SINQ being a novel neutron source concept, significant scope for improvement is also seen on the source side. It is a major goal of PSI to exploit these opportunities and to make - among others - use of neutron instruments to carry out the necessary research. (author) 9 figs., 1 tab., 11 refs.

  5. Visualization test facility of nuclear fuel rod emergency cooling system

    International Nuclear Information System (INIS)

    Candido, Marcos Antonio; Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Santos, Andre Augusto Campagnole

    2013-01-01

    The nuclear reactors safety is determined according to their protection against the consequences that may result from postulated accidents. The Loss of Coolant Accident (LOCA) is one the most important design basis accidents (DBA). The failure may be due to rupture of the primary loop piping. Another accident postulated is due to lack of power in the pump motors in the primary circuit. In both cases the reactor shut down automatically due to the decrease of reactivity to maintain the fissions, and to the drop of control rods. In the event of an accident it is necessary to maintain the coolant flow to remove the fuel elements residual heat, which remains after shut down. This heat is a significant amount of the maximum thermal power generated in normal operation (about 7%). Recently this event has been quite prominent in the press due to the reactor accident in Fukushima nuclear power station. This paper presents the experimental facility under rebuilding at the Thermal Hydraulic Laboratory of the Nuclear Technology Development Center (CDTN) that has the objective of monitoring and visualization of the process of emergency cooling of a nuclear fuel rod simulator, heated by Joule effect. The system will help the comprehension of the heat transfer process during reflooding after a loss of coolant accident in the fuel of light water reactor core. (author)

  6. An experimental facility for studying delayed neutron emission

    International Nuclear Information System (INIS)

    Dermendzhiev, E.; Nazarov, V.M.; Pavlov, S.S.; Ruskov, Iv.; Zamyatin, Yu.S.

    1993-01-01

    A new experimental facility for studying delayed neutron emission has been designed and tested. A method based on utilization of the Dubna IBR-2 pulsed reactor, has been proposed and realized for periodical irradiation of targets composed of fissionable isotopes. Such a powerful pulsed neutron source in combination with a slow neutron chopper synchronized with the reactor bursts makes possible variation of the exposure duration and effective suppression of the fast neutron background due to delay neutrons emitted from the reactor core. Detection of delayed neutrons from the target is carried out by a high-efficiency multicounter neutron detector with a near-4π geometry. Some test measurements and results are briefly described. Possible use of the facility for other tasks is also discussed. 14 refs.; 14 figs

  7. Radiological accident 'The Citadel' medical aspects

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan; Fernandez, Isis M.; Lopez, Gladys; Garcia, Omar; Lamadrid, Ana I.; Ramos, Enma O.; Villa, Rosario; Giron, Carmen M.; Escobar, Myrian; Zerpa, Miguel; Romero, Argenis H.; Medina, Julio; Laurenti, Zenia; Oliva, Maria T.; Sierra, Nitza; Lorenzo, Alexis

    2008-01-01

    The work exposes the medical actions carried out in the mitigation of the consequences of the accident and its main results. In a facility of storage of radioactive waste in Caracas, Venezuela, it was happened a radiological accident. This event caused radioactive contamination of the environment, as well as the irradiation and radioactive contamination of at least 10 people involved in the fact, in its majority children. Cuban institutions participated in response to the accident. Among the decisions adopted by the team of combined work Cuban-Venezuelan, we find the one of transferring affected people to Cuba, for their dosimetric and medical evaluation. Being designed a work strategy to develop the investigations to people affected by the radiological accident, in correspondence with the circumstances, magnitude and consequences of the accident. The obtained main results are: 100% presented affectations in its health, not associate directly to the accident, although the accident influenced in its psychological state. In 3 of studied people they were detected radioactive contamination with Cesium -137 with dose among 2.01 X 10-4 Sv up to 2.78 X 10-4 Sv. This accident demonstrated the necessity to have technical capacities to face these events and the importance of the international solidarity. (author)

  8. Use of risk information to safety regulation. Reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    A procedure of probabilistic risk assessment (PRA) for a reprocessing facility has been under the development aiming to utilize risk information for safety regulations in this project. Activities in the fiscal year 2012 are summarized in the paper. A major activity is a fundamental study on a concept of serious accidents, requirements of serious accident management, and a policy of utilizing risk information for fabrication and reprocessing facilities. Other than the activity a study on release and transport of aerial radioactive materials at a serious accident in a reprocessing facility has been conducted. The outline and results are provided in the chapter 1 and 2 respectively. (author)

  9. Severe Accident Test Station Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  10. Severe Accident Test Station Design Document

    International Nuclear Information System (INIS)

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-01-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  11. Early results from an experimental program to determine the behavior of containment piping penetration bellows subjected to severe accident conditions

    International Nuclear Information System (INIS)

    Lambert, L.D.; Parks, M.B.

    1994-01-01

    Containment piping penetration bellows are an integral part of the pressure boundary in steel containments in the United States (US). Their purpose is to minimize loading on the containment shell caused by differential movement between the piping and the containment. This differential movement is typically caused by thermal gradients generated during startup and shutdown of the reactor, but can be caused by earthquake, a loss-of-coolant accident (LOCA), or ''severe'' accidents. In the event of a severe accident, the bellows would be subjected to pressure, temperature, and deflection well beyond the design basis. Most bellows are installed such that they would be subjected to elevated internal pressure, elevated temperature, axial compression, and lateral deflection during a severe accident. A few bellows would be subjected to external pressure and axial elongation, as well as elevated temperature and lateral deflection. The purpose of this experimental program is to examine the potential for leakage of containment bellows during a severe accident. The test series subjects bellows to various levels and combinations of internal pressure, elevated temperature, axial compression or elongation, and lateral deformation. The experiments are being conducted in two parts. For Part 1, all bellows specimens are tested in ''like-new'' condition, without regard for the possible degrading effect of corrosion that has been observed in some containment piping bellows in the US Part I testing, which included 13 bellows tests, has been completed. The second part of the experimental program, in which bellows are subjected to simulated corrosive environments prior to testing, has just just begun. The Part I experiments have shown that bellows in ''like-new'' condition can withstand elevated temperatures and pressures along with large deformations before leaking. In most cases, the like-new bellows were fully compressed without developing any leakage

  12. Cable systems for experimental facilities in JAERI TANDEM ACCELERATOR BUILDING

    International Nuclear Information System (INIS)

    Tukihashi, Yoshihiro; Yoshida, Tadashi; Takekoshi, Eiko

    1979-03-01

    Measuring cable systems for experimental facilities in JAERI TANDEM ACCELERATOR BUILDING were completed recently. Measures are taken to prevent penetration of noises into the measuring systems. The cable systems are described in detail, including power supplies and grounding for the measuring systems. (author)

  13. Ecological Realism of U.S. EPA Experimental Stream Facility Studies

    Science.gov (United States)

    The USEPA’s Experimental Stream Facility (ESF) conducts meso-scale ecotoxicology studies that account for both structural and functional responses of whole stream communities to contaminants or other stressors. The 16 mesocosms of ESF are indoors and consist of a tiled run sectio...

  14. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    International Nuclear Information System (INIS)

    Macek, R.J.

    1994-01-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D)

  15. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9

    International Nuclear Information System (INIS)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report

  16. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  17. Radiological safety evaluation for a Waste Transfer Facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.

    1993-01-01

    This paper provides a review of the radiological safety evaluation performed for a Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste between various waste processing facilities and waste storage facilities. The WTF includes functional components such as the diversion box and the pump pits, waste transfer lines, and the outside yard service piping and electrical services. The WSRC methodology is used to evaluate the consequences of postulated accidents that result in the release of radioactive material. Such accidents include transfer line breaks, underground liquid pathway release, fire in pump tank cells and HEPA filters, accidents due to natural phenomena, and externally induced events. Chemical hazards accidents are not considered. The analysis results indicate that the calculated mean onsite and offsite radiological consequences are bounded by the corresponding WSRC dose limits for each accident considered. Moreover, the results show that the maximum onsite and offsite doses calculated for the WTF are lower than the maximum doses determined for the whole radioactive waste facility where the WTF is located

  18. Monitoring severe accidents using AI techniques

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Lim, Dong Hyuk [Korea Institute of Nuclear Nonproliferation and Control, Daejon (Korea, Republic of)

    2012-05-15

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  19. Monitoring severe accidents using AI techniques

    International Nuclear Information System (INIS)

    No, Young Gyu; Ahn, Kwang Il; Kim, Ju Hyun; Na, Man Gyun; Lim, Dong Hyuk

    2012-01-01

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  20. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    International Nuclear Information System (INIS)

    Warner, C.L.

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described

  1. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L. (comp.)

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described.

  2. Post-processing activities after Chernobyl accident in Ukraine and lesson learned to the response Fukushima Dai-ichi accident

    International Nuclear Information System (INIS)

    Fujii, Yuzo

    2012-01-01

    After the accident of Chernobyl NPP no.4 1986, various activities including the construction of the shelter, prevention of the release of radioactive dust and liquid from the shelter, monitoring the condition of the damaged core, and disposal of radioactive waste have been implemented in the Chernobyl site for mitigating the nuclear and radioactive risks of damaged nuclear facilities, and the reducing radiation dose of working personnel. The construction of new shelter started for the decommissioning of the damaged unit no.4. facility. For reducing the radiation dose to the inhabitants from the contaminated land and feedstuff, the countermeasures including the set of the exclusive zone and permissible level of radionuclide in the foodstuff have been conducted for the countrywide. These activities include many valuable information about how to recover the condition of the site and maintain the social activities after the severe accident of NPP, and it would be important to learn the above activities in conducting the post-processing activities on the Fukushima-Daiichi accident successfully. (author)

  3. Spallation Neutron Source Accident Terms for Environmental Impact Statement Input

    Energy Technology Data Exchange (ETDEWEB)

    Devore, J.R.; Harrington, R.M.

    1998-08-01

    This report is about accidents with the potential to release radioactive materials into the environment surrounding the Spallation Neutron Source (SNS). As shown in Chap. 2, the inventories of radioactivity at the SNS are dominated by the target facility. Source terms for a wide range of target facility accidents, from anticipated events to worst-case beyond-design-basis events, are provided in Chaps. 3 and 4. The most important criterion applied to these accident source terms is that they should not underestimate potential release. Therefore, conservative methodology was employed for the release estimates. Although the source terms are very conservative, excessive conservatism has been avoided by basing the releases on physical principles. Since it is envisioned that the SNS facility may eventually (after about 10 years) be expanded and modified to support a 4-MW proton beam operational capability, the source terms estimated in this report are applicable to a 4-MW operating proton beam power unless otherwise specified. This is bounding with regard to the 1-MW facility that will be built and operated initially. See further discussion below in Sect. 1.2.

  4. Radiation dose assessment of ACP hot cell in accident

    International Nuclear Information System (INIS)

    Kook, D. H.; Jeong, W. M.; Koo, J. H.; Jeo, I. J.; Lee, E. P.; Ryu, K. S.

    2003-01-01

    The Advanced spent fuel Condition in Process(ACP) is under development for the effective management of spent fuel which had been generated in nuclear plants. The ACP needs a hot cell where most operations will be performed. To give priority to the environments safety, radiation doses evaluations for the radioactive nuclides in accident cases were preliminarily performed with the meteorological data around facility site. Fire accident prevails over several accidnets. Internal Dose and External Dose evaluation according to short dispersion data for that case show a safe margin for regulation limits and SAR limit of IMEF where this facility will be constructed

  5. The new STRESA tool for preservation of thermalhydraulic experimental data produced in the European Commission

    International Nuclear Information System (INIS)

    Pla, Patricia; Pascal, Ghislain; Tanarro, Jorge; Annunziato, Alessandro

    2015-01-01

    Highlights: • ITFs and severe accident data is of high importance to validate thermal hydraulic codes for NPPs. • LOBI, FARO, KROTOS and STORM produced a lot of TH and SA experimental data. • The JRC facilities data was stored in the JRC STRESA database developed by JRC. • The paper presents the new JRC STRESA database developed by JRC in 2014–2015. • The long-term importance of well maintained ITF databases (like STRESA) is demonstrated. - Abstract: The experimental data recorded in Integral Effect Test Facilities (ITFs) are traditionally used in order to validate best estimate (BE) system codes and to investigate the behaviour of nuclear power plants (NPPs) under accident scenarios. In the same way, facilities dedicated to specific thermal-hydraulic (TH) severe accident (SA) phenomena are used for the development and improvement of specific analytical models and codes used in the SA analysis for light water reactors (LWR). The extent to which the existing reactor safety experimental databases are preserved was well known and frequently debated and questioned in the nuclear community. The Joint Research Centre (JRC) of the European Commission (EC) has been deeply involved in several projects for experimental data production and experimental data preservation. In this context the STRESA (Storage of Thermal REactor Safety Analysis Data) web-based informatics platform was developed by JRC-Ispra in the year 2000. At present the JRC STRESA database is hosted and maintained by JRC-Petten. The Nuclear Reactor Safety Assessment Unit (NRSA) of the JRC-Petten is engaged in the administration of a new STRESA tool that secures EU storage for SA experimental data and calculations. The development of this new STRESA tool was completed by early 2015 and published on the 25/06/2015 in the URL: (http://stresa.jrc.ec.europa.eu/). The target was to keep the main features of the original STRESA structure but using the new informatics technologies that are nowadays

  6. Use of analytical aids for accident management

    International Nuclear Information System (INIS)

    Ward, L.W.

    1991-01-01

    The use of analytical aids by utility technical support teams can enhance the staff's ability to manage accidents. Since instrumentation is exposed to environments beyond design-basis conditions, instruments may provide ambiguous information or may even fail. While it is most likely that many instruments will remain operable, their ability to provide unambiguous information needed for the management of beyond-design-basis events and severe accidents is questionable. Furthermore, given these limitation in instrumentation, the need to ascertain and confirm current plant status and forecast future behavior to effectively manage accidents at nuclear facilities requires a computational capability to simulate the thermal and hydraulic behavior in the primary, secondary, and containment systems. With the need to extend the current preventive approach in accident management to include mitigative actions, analytical aids could be used to further enhance the current capabilities at nuclear facilities. This need for computational or analytical aids is supported based on a review of the candidate accident management strategies discussed in NUREG/CR-5474. Based on the review of the NUREG/CR-5474 strategies, two major analytical aids are considered necessary to support the implementation and monitoring of many of the strategies in this document. These analytical aids include (1) An analytical aid to provide reactor coolant and secondary system behavior under LOCA conditions. (2) An analytical aid to predict containment pressure and temperature response with a steam, air, and noncondensable gas mixture present

  7. Development of Accident Scenarios and Quantification Methodology for RAON Accelerator

    International Nuclear Information System (INIS)

    Lee, Yongjin; Jae, Moosung

    2014-01-01

    The RIsp (Rare Isotope Science Project) plans to provide neutron-rich isotopes (RIs) and stable heavy ion beams. The accelerator is defined as radiation production system according to Nuclear Safety Law. Therefore, it needs strict operate procedures and safety assurance to prevent radiation exposure. In order to satisfy this condition, there is a need for evaluating potential risk of accelerator from the design stage itself. Though some of PSA researches have been conducted for accelerator, most of them focus on not general accident sequence but simple explanation of accident. In this paper, general accident scenarios are developed by Event Tree and deduce new quantification methodology of Event Tree. In this study, some initial events, which may occur in the accelerator, are selected. Using selected initial events, the accident scenarios of accelerator facility are developed with Event Tree. These results can be used as basic data of the accelerator for future risk assessments. After analyzing the probability of each heading, it is possible to conduct quantification and evaluate the significance of the accident result. If there is a development of the accident scenario for external events, risk assessment of entire accelerator facility will be completed. To reduce the uncertainty of the Event Tree, it is possible to produce a reliable data via the presented quantification techniques

  8. Analysis of an AP600 intermediate-size loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, B.E.; Lime, J.F. [Los Alamos National Lab., NM (United States)

    1995-09-01

    A postulated double-ended guillotine break of an AP600 direct-vessel-injection line has been analyzed. This event is characterized as an intermediate-break loss-of-coolant accident. Most of the insights regarding the response of the AP600 safety systems to the postulated accident are derived from calculations preformed with the TRAC-PF1/MOD2 code. However, complementary insights derived from a scaled experiment conducted in the ROSA facility, as well as insights based upon calculations by other codes, are also presented. Based upon the calculated and experimental results, the AP600 will not experience a core heat up and will reach a safe shutdown state using only safety-class equipment. Only the early part of the long-term cooling period initiated by In-containment Refueling Water Storage Tank injection was evaluated. Thus, the observation that the core is continuously cooled should be verified for the later phase of the long-term cooling period when sump injection and containment cooling processes are important.

  9. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  10. A review of experiments and results from the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    Deitrich, L. W.

    1998-01-01

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  11. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Nuclear installations are designed, constructed and operated in such a way that the probability for an incident or accident is very low and the probability for a severe accident with catastrophic consequences is extremely small. These accidents represent the residual risk of the nuclear installation, and this residual risk can be decreased on one hand by a better design, construction and operation and on the other hand by planning and taking emergency measures inside the facility and in the environment of the facility. By way of introduction and definition it may be indicated to define some terms pertaining to the subject in order to make for more uniform understanding. (orig./DG)

  12. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  13. DDG Opening Remarks [International Experts' Meeting on Decommissioning and Remediation after a Nuclear Accident

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Any significant nuclear accident results in challenges in terms of the decommissioning of the damaged facilities and in many cases also in the remediation of contaminated areas outside the site boundary. These challenges include the application of appropriate technological and human resources, public involvement and the allocation of the necessary financing, which is of course considerable. There can be no real future for nuclear energy unless the global community is convinced that the legacies associated with its use can be addressed satisfactorily, whether in connection with facilities contaminated as a result of a nuclear or radiological accident, or indeed large facilities used for research or other purposes during the developmental phase of the nuclear industry. It is evident that decommissioning and remediation projects, especially for nuclear facilities and sites after an accident, will continue to be undertaken for many decades, over which time it is expected that technological developments will occur. It will be important that the new and more sophisticated technologies of the future are applied to these activities. However we should also be aware that in case of dealing with accident-damaged facilities there is a great deal to be learnt from the experience from the past 60 years and this meeting is focused directly on reviewing and distilling that experience

  14. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  15. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  16. The Fukushima Daiichi Accident. Technical Volume 1/5. Description and Context of the Accident. Annexes

    International Nuclear Information System (INIS)

    2015-08-01

    The Fukushima Daiichi Accident consists of a Report by the IAEA Director General and five technical volumes. It is the result of an extensive international collaborative effort involving five working groups with about 180 experts from 42 Member States with and without nuclear power programmes and several international bodies. It provides a description of the accident and its causes, evolution and consequences, based on the evaluation of data and information from a large number of sources available at the time of writing. The Fukushima Daiichi Accident will be of use to national authorities, international organizations, nuclear regulatory bodies, nuclear power plant operating organizations, designers of nuclear facilities and other experts in matters relating to nuclear power, as well as the wider public. The set contains six printed parts and five supplementary CD-ROMs. Contents: Report by the Director General; Technical Volume 1/5, Description and Context of the Accident; Technical Volume 2/5, Safety Assessment; Technical Volume 3/5, Emergency Preparedness and Response; Technical Volume 4/5, Radiological Consequences; Technical Volume 5/5, Post-accident Recovery; Annexes. The Report by the Director General is available separately in Arabic, Chinese, English, French, Russian, Spanish and Japanese

  17. Fan Cooler Operation in Kori 1 for Mitigating Severe Accident

    International Nuclear Information System (INIS)

    Suh, Nam Duk; Park, Jae Hong

    2005-01-01

    The Korea Ministry of Science and Technology (MOST) issued the 'Policy on Severe Accident of Nuclear Power Plants' in August 2001. According to the policy it was required for the licensee to develop a plant specific severe accident management guideline (SAMG) and to implement it. Thus the utility has made an implementation plan to develop SAMGs for operating plants. The SAMG for Kori unit 1 was submitted to the government on January 2004. Since then, the government trusted KINS to review the submitted SAMG in view of its feasibility and effectiveness. The first principle of the developed SAMG is to use only the available facilities as it is without introducing any system change. Because Kori-1 has no mitigative facility against combustible gases during severe accident, it relies heavily both on spray and on fan cooler systems to control the containment condition. Thus one of the issues raised during the review is to know whether the fan coolers which are designed for DBA LOCA can be effective in mitigating the severe accident conditions. This paper presents an analysis result of fan cooler operation in controlling the containment condition during severe accident of Kori 1

  18. International aspects of nuclear accidents

    International Nuclear Information System (INIS)

    Uematsu, K.

    1989-09-01

    The accident at Chernobyl revealed that there were shortcomings and gaps in the existing international mechanisms and brought home to governments the need for stronger measures to provide better protection against the risks of severe accidents. The main thrust of international co-operation with regard to nuclear safety issues is aimed at achieving a uniformly high level of safety in nuclear power plants through continuous exchanges of research findings and feedback from reactor operating experience. The second type of problem posed in the event of an accident resulting in radioactive contamination of several countries relates to the obligation to notify details of the circumstances and nature of the accident speedily so that the countries affected can take appropriate protective measures and, if necessary, organize mutual assistance. Giving the public accurate information is also an important aspect of managing an emergency situation arising from a severe accident. Finally, the confusion resulting from the unwarranted variety of protective measures implemented after the Chernobyl accident has highlighted the need for international harmonization of the principles and scientific criteria applicable to the protection of the public in the event of an accident and for a more consistent approach to emergency plans. The international conventions on third party liability in the nuclear energy sector (Paris/Brussels Conventions and the Vienna Convention) provide for compensation for damage caused by nuclear accidents in accordance with the rules and jurisdiction that they lay down. These provisions impose obligations on the operator responsible for an accident, and the State where the nuclear facility is located, towards the victims of damage caused in another country

  19. Severe accidents in nuclear reactors

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Dumitrescu, Iulia; Tunaru, Mariana

    2004-01-01

    The likelihood of accidents leading to core meltdown in nuclear reactors is low. The consequences of such an event are but so severe that developing and implementing of adequate measures for preventing or diminishing the consequences of such events are of paramount importance. The analysis of major accidents requires sophisticated computation codes but necessary are also relevant experiments for checking the accuracy of the predictions and capability of these codes. In this paper an overview of the severe accidents worldwide with definitions, computation codes and relating experiments is presented. The experimental research activity of severe accidents was conducted in INR Pitesti since 2003, when the Institute jointed the SARNET Excellence Network. The INR activity within SARNET consists in studying scenarios of severe accidents by means of ASTEC and RELAP/SCDAP codes and conducting bench-scale experiments

  20. Computational modeling and experimental characterization of indoor aerosol transport

    International Nuclear Information System (INIS)

    Konecni, Snezana; Whicker, Jeffrey J.; Martin, Richard A.

    2002-01-01

    When a hazardous aerosol or gas is inadvertently or deliberately released in an occupied facility, the airborne material presents a hazard to people. Inadvertent accidents and exposures continue to occur in Los Alamos and other nuclear facilities despite state-of-art engineering and administrative controls, and heightened diligence. Despite the obvious need in occupational settings and for homeland defense, the body of research in hazardous aerosol dispersion and control in large, complex, ventilated enclosures is extremely limited. The science governing generation, transport, inhalation, and detection of airborne hazards is lacking and must be developed to where it can be used by engineers or safety professionals in the prediction of worker exposure, in the prevention of accidents, or in the mitigation of terrorist actions. In this study, a commercial computational fluid dynamics (CFD) code, CFX5.4, and experiments were used to assess flow field characteristics, and to investigate aerosol release and transport in a large, ventilated workroom in a facility at Savannah River Site. Steady state CFD results illustrating a complex, ventilation-induced, flow field with vortices, velocity gradients, and quiet zones are presented, as are time-dependent CFD and experimental aerosol dispersion results. The comparison of response times between CFD and experimental results was favorable. It is believed that future applications of CFD and experiments can have a favorable impact on the design of ventilation (HVAC) systems and worker safety with consideration to facility costs. Ultimately, statistical methods will be used in conjunction with CFD calculations to determine the optimal number and location of detectors, as well as optimal egress routes in event of a release.

  1. Environmental measurements during the TMI-2 accident

    International Nuclear Information System (INIS)

    Hull, A.P.

    1988-01-01

    Although the environmental consequences of the TMI accident were relatively insignificant, it was a major test of the ability of the involved state and federal radiological agencies to make a coordinated environmental monitoring response. This was accomplished largely on an ad hoc basis under the leadership of DOE. With some fine tuning, it is the basis for today's integrated FRMAP monitoring plan, which would be put into operation should another major accident occur at a US nuclear facility

  2. Performance of the Argonne Wakefield Accelerator facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator (AWA) facility has begun its experimental program. This unique facility is designed to address advanced acceleration research which requires very short, intense electron bunches. The facility incorporates two photo-cathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. We discuss commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator. (author)

  3. In-pile experimental facility needs for LMFR safety research

    International Nuclear Information System (INIS)

    Kawata, Norio; Niwa, Hajime

    1994-01-01

    Although the achievement of the safety research during the past years has been significant, there still exists a strong need for future research, especially when there is prospect for future LMFR commercialization. In this paper, our current views are described on future research needs especially with a new in-pile experimental facility. The basic ideas and progress are outlined of a preliminary feasibility study. (author)

  4. Experimental facilities for large-scale and full-scale study of hydrogen accidents

    Energy Technology Data Exchange (ETDEWEB)

    Merilo, E.; Groethe, M.; Colton, J. [SRI International, Poulter Laboratory, Menlo Park, CA (United States); Chiba, S. [SRI Japan, Tokyo (Japan)

    2007-07-01

    This paper summarized some of the work that has been performed at SRI International over the past 5 years that address safety issues for the hydrogen-based economy. Researchers at SRI International have conducted experiments at the Corral Hollow Experiment Site (CHES) near Livermore California to obtain fundamental data on hydrogen explosions for risk assessment. In particular, large-scale hydrogen tests were conducted using homogeneous mixtures of hydrogen in volumes from 5.3 m{sup 3} to 300 m{sup 3} to represent scenarios involving fuel cell vehicles as well as transport and storage facilities. Experiments have focused on unconfined deflagrations of hydrogen and air, and detonations of hydrogen in a semi-open space to measure free-field blast effects; the use of blast walls as a mitigation technique; turbulent enhancement of hydrogen combustion due to obstacles within the mixture, and determination of when deflagration-to-detonation transition occurs; the effect of confined hydrogen releases and explosions that could originate from an interconnecting hydrogen pipeline; and, large and small accidental releases of hydrogen. The experiments were conducted to improve the prediction of hydrogen explosions and the capabilities for performing risk assessments, and to develop mitigation techniques. Measurements included hydrogen concentration; flame speed; blast overpressure; heat flux; and, high-speed, standard, and infrared video. The data collected in these experiments is used to correlate computer models and to facilitate the development of codes and standards. This work contributes to better safety technology by evaluating the effectiveness of different blast mitigation techniques. 13 refs., 13 figs.

  5. Analysis of tritium mission FMEF/FAA fuel handling accidents

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1997-11-18

    The Fuels Material Examination Facility/Fuel Assembly Area is proposed to be used for fabrication of mixed oxide fuel to support the Fast Flux Test Facility (FFTF) tritium/medical isotope mission. The plutonium isotope mix for the new mission is different than that analyzed in the FMEF safety analysis report. A reanalysis was performed of three representative accidents for the revised plutonium mix to determine the impact on the safety analysis. Current versions computer codes and meterology data files were used for the analysis. The revised accidents were a criticality, an explosion in a glovebox, and a tornado. The analysis concluded that risk guidelines were met with the revised plutonium mix.

  6. Enhancement of safety for reprocessing facilities

    International Nuclear Information System (INIS)

    2012-06-01

    The adequacy of the safety measures for utility loss accidents in nuclear fuel reprocessing facilities which have been formulated by the nuclear enterprises is investigated in JNES which organizes an advanced committee to specifically study this problem. The results are reviewed in the present report including the case of such severe accidents as in Fukushima Daiichi Nuclear Power Plant. The report also represents a tentative proposal for examination standards of such unimaginable severe accidents as 'station blackout,' urgent safety measures necessary for reoperation of nuclear power plants and requested by nuclear and industrial safety agency, and pointing out and clarification of the potential weakness from the safety point of view, and collective and composite evaluation of safety of the relevant facilities. Furthermore, the definition of accident management is given as of controlled condition and the authorized way of thinking for the cases of plural events happening at the same time and the cases when risks exist radioactivity emits with explosion. (S. Ohno)

  7. 77 FR 10666 - Pipeline Safety: Post Accident Drug and Alcohol Testing

    Science.gov (United States)

    2012-02-23

    ... 199 [Docket No. PHMSA-2011-0335] Pipeline Safety: Post Accident Drug and Alcohol Testing AGENCY... operators of Liquefied Natural Gas (LNG) facilities to conduct post- accident drug and alcohol tests of..., operators must drug and alcohol test each covered employee whose performance either contributed to the...

  8. Validation of Advanced Computer Codes for VVER Technology: LB-LOCA Transient in PSB-VVER Facility

    Directory of Open Access Journals (Sweden)

    A. Del Nevo

    2012-01-01

    Full Text Available The OECD/NEA PSB-VVER project provided unique and useful experimental data for code validation from PSB-VVER test facility. This facility represents the scaled-down layout of the Russian-designed pressurized water reactor, namely, VVER-1000. Five experiments were executed, dealing with loss of coolant scenarios (small, intermediate, and large break loss of coolant accidents, a primary-to-secondary leak, and a parametric study (natural circulation test aimed at characterizing the VVER system at reduced mass inventory conditions. The comparative analysis, presented in the paper, regards the large break loss of coolant accident experiment. Four participants from three different institutions were involved in the benchmark and applied their own models and set up for four different thermal-hydraulic system codes. The benchmark demonstrated the performances of such codes in predicting phenomena relevant for safety on the basis of fixed criteria.

  9. The role of quantitative uncertainty in the safety analysis of flammable gas accidents in Hanford waste tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    Following a 1990 investigation into flammable gas generation, retention, and release mechanisms within the Hanford Site high-level waste tanks, personnel concluded that the existing Authorization Basis documentation did not adequately evaluate flammable gas hazards. The US Department of Energy Headquarters subsequently declared the flammable gas hazard as an unresolved safety issue. Although work scope has been focused on resolution of the issue, it has yet to be resolved due to considerable uncertainty regarding essential technical parameters and associated risk. Resolution of the Flammable Gas Safety Issue will include the identification of a set of controls for the Authorization Basis for the tanks which will require a safety analysis of flammable gas accidents. A traditional nuclear facility safety analysis is based primarily on the analysis of a set of bounding accidents to represent the risks of the possible accidents and hazardous conditions at a facility. While this approach may provide some indication of the bounding consequences of accidents for facilities, it does not provide a satisfactory basis for identification of facility risk or safety controls when there is considerable uncertainty associated with accident phenomena and/or data as is the case with potential flammable gas accidents at the Hanford Site. This is due to the difficulties in identifying the bounding case and reaching consensus among safety analysts, facility operations and engineering, and the regulator on the implications of the safety analysis results. In addition, the bounding cases are frequently based on simplifying assumptions that make the analysis results insensitive to variations among facilities or the impact of alternative safety control strategies. The existing safety analysis of flammable gas accidents for the Tank Waste Remediation system (TWRS) at the Hanford Site has these difficulties. However, Hanford Site personnel are developing a refined safety analysis approach

  10. Severe Accident Management System On-line Network SAMSON

    International Nuclear Information System (INIS)

    Silverman, Eugene B.

    2004-01-01

    SAMSON is a computational tool used by accident managers in the Technical Support Centers (TSC) and Emergency Operations Facilities (EOF) in the event of a nuclear power plant accident. SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. SAMSON uses expert systems, as well as neural networks trained with the back propagation learning algorithms to make predictions. Training on data from an accident analysis code (MAAP - Modular Accident Analysis Program) allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTRs), with breaks ranging from one tube to eight tubes, and loss of coolant accidents (LOCAs), with breaks ranging from 0.0014 square feet (1.30 cm 2 ) in size to breaks 3.0 square feet in size (2800 cm 2 ). (author)

  11. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  12. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    International Nuclear Information System (INIS)

    Virpi Kouhia, V.; Purhonen, H.; Riikonen, V.; Puustinen, M.; Kyrki-Rajamaki, R.; Vihavainen, J.

    2012-01-01

    This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  13. Judicial autopsy of radiation accidents

    International Nuclear Information System (INIS)

    Kannan, P.M.

    1990-01-01

    This paper discusses issues regarding the judicial autopsy of radiation accidents. In the litigation which follows a radiation accident, a claimant calls on the legal system to adjudicate a dispute. Scientific questions are thrust upon the court. The legal system (through attorneys for the parties) then invites scientists to assist the court in resolving such questions. The invitation, however, does not allow the scientist to bring along his full kit. Experimentation, such as repeating the accident with dosimeters to gather more accurate data, is generally not allowed. Also, the scientist must give up his practice of choosing which questions he will pursue

  14. NKS/RAK-2. Protection against radioactive release in reactor accidents

    International Nuclear Information System (INIS)

    Lindholm, I.

    1995-01-01

    The work scope of RAK-2 project is divided into three subprojects: 1. Severe accident phenomenology. 2. Computerized accident management. 3. Reactors in Nordic surroundings. All three subprojects are ongoing. The project work on three subareas is in general progressing according to the time schedule and budget. The construction of melt jet breakup test facility at Kungliga Tekniska Hoegskolan (KTH) has been delayed due to complexity of the test arrangement and due to meeting the necessary safety requirements connected to tests mixing water and high temperature melts. Because of the delay in melt jet break up tests a slight redirection of the KTH work for NKS was taken. The present KTH work concentrates on theoretical studies of melt pool behavior in the lower head and on theoretical/experimental studies on core melt discharge from the pressure vessel failure. It is expected that single drop melt-water interaction experiments to study the thermal fragmentation phenomenon will begin in very early 1996. The recriticality studies are well underway, but the work is proposed to continue in 1996 to get more analyses carried out. (au)

  15. Safety analysis of accident localization system

    International Nuclear Information System (INIS)

    1999-01-01

    A complex safety analysis of accident localization system of Ignalina NPP was performed. Calculation results obtained, results of non-destruct ing testing and experimental data of reinforced concrete testing of buildings does not revealed deficiencies of buildings of accident localization system at unit 1 of Ignalina NPP. Calculations were performed using codes NEPTUNE, ALGOR, CONTAIN

  16. Construction of an underground facility for ''in-situ'' experimentation in the boom clay

    International Nuclear Information System (INIS)

    Bonne, A.; Manfroy, P.; Van Haelewijn, R.; Heremans, R.

    1985-01-01

    The Belgian R and D Programme concerning the disposal of high-level and alpha-bearing radioactive waste in continental geological formations was launched by SCK/CEN, Mol in 1974. The programme is characterised by its site and formation specific approach, i.e. Mol and Boom clay. In the framework of site confirmation, an important issue is the ''in situ'' experimentation which should allow to determine with a higher degree of confidence the numerical value of the data needed for the evaluations, assessments and designs. The present report deals with the construction of an underground experimental facility, which was scheduled to be fully completed in mid 1984. Initially, the completion was scheduled for the end of 1983, but supplementary experiments related to geomechanics and mining capabilities and to be performed during the construction phase of the experimental facility delayed the completion of the underground facility. During the construction, a continuous observation was made of the behaviour of the clay mass and the structures. In this final contract-report, only the as-built structure, the time schedule and the ''in situ'' experiments launched or performed during the construction phase are dealt with

  17. Critical Protection Item classification for a waste processing facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Garrett, R.J.

    1993-01-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed

  18. Disposition of TA-33-21, a plutonium contaminated experimental facility

    International Nuclear Information System (INIS)

    Cox, E.J.; Garde, R.; Valentine, A.M.

    1975-01-01

    The report discusses the decontamination, demolition and disposal of a plutonium contaminated experimental physics facility which housed physics experiments with plutonium from 1951 until 1960. The results of preliminary decontamination efforts in 1960 are reported along with health physics, waste management, and environmental aspects of final disposition work accomplished during 1974 and 1975. (auth)

  19. FENIX [Fusion ENgineering International eXperimental]: A test facility for ITER [International Thermonuclear Experimental Reactor] and other new superconducting magnets

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Miller, J.R.

    1990-01-01

    The Fusion ENgineering International eXperimental (FENIX) Test Facility which is nearing completion at Lawrence Livermore National Laboratory, is a 76-t set of superconducting magnets housed in a 4-m-diameter cryostat. It represents a significant step toward meeting the testing needs for the development of superconductors appropriate for large-scale magnet applications such as the International Thermonuclear Experimental Reactor (ITER). The magnet set is configured to allow radial access to the 0.4-m-diameter high-field region where maximum fields up to 14 T will be provided. The facility is fitted with a thermally isolated test well with a port to the high-field region that allows insertion and removal of test conductors without disturbing the cryogenic environment of the magnets. It is expected that the facility will be made available to magnet developers internationally, and this paper discusses its general design features, its construction, and its capabilities

  20. Source terms derived from analyses of hypothetical accidents, 1950-1986

    International Nuclear Information System (INIS)

    Stratton, W.R.

    1987-01-01

    This paper reviews the history of reactor accident source term assumptions. After the Three Mile Island accident, a number of theoretical and experimental studies re-examined possible accident sequences and source terms. Some of these results are summarized in this paper

  1. Simulation of KAEVER experiments on aerosol behavior in a nuclear power plant containment at accident conditions with the ASTEC code

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.

    2006-01-01

    Experiments on aerosol behaviour in saturated and non-saturated atmosphere, which were performed in the KAEVER experimental facility, were simulated with the severe accident computer code ASTEC CPA V1.2. The specific purpose of the work was to assess the capability of the code to model aerosol condensation and deposition in the containment of a light-water-reactor nuclear power plant at severe accident conditions, if the atmosphere saturation conditions are simulated adequately. Five different tests were first simulated with boundary conditions, obtained from the experiments. In all five tests, a non-saturated atmosphere was simulated, although, in four tests, the atmosphere was allegedly saturated. The simulations were repeated with modified boundary conditions, to obtain a saturated atmosphere in all tests. Results of dry and wet aerosol concentrations in the test vessel atmosphere for both sets of simulations are compared to experimental results. (author)

  2. Feedback from practical experience with large sodium fire accidents

    International Nuclear Information System (INIS)

    Luster, V.P.; Freudenstein, K.F.

    1996-01-01

    The paper reviews the important feedback from the practical experience from two large sodium fires; the first at ALMERIA in Spain and the second in the Na laboratories at Bensberg, Germany. One of the most important sodium fire accidents was the ALMERIA spray fire accident. The origin of this accident was the repair of a valve when about 14 t of sodium was spilled in the plant room over a period of 1/2 hour. The event has been reported (IAEA/IWGFR meeting in 1988) and this presentation gives a short review of important feedback. The Almeria accident was one of the reasons that from that time spray fires had to be taken into account in the safety analyses of nuclear power plants. Due to the fact that spray fire codes were not available in a sufficiently validated state, safety analyses were provisionally based on the feedback from sodium fire tests and also from the Almeria accident itself. The behaviour of spray fires showed that severe destruction, up to melting of metallic structures may occur, but even with a large spray fire is limited roughly within the spray fire zone itself. This could be subsequently be predicted by codes like NABRAND in Germany and FEUMIX in France. Almeria accident has accelerated R and D and code development with respect to spray fires. As example for a code validation some figures are given for the NABRAND code. Another large sodium fire accident happened in 1992 in the test facility at Bensberg in Germany (ILONA). This accident occurred during preheating of a sodium filled vessel which was provisionally installed in the basement of the ILONA test facility at Bensberg. Due to failure of a pressure relief valve the pressure in the vessel increased. As a consequence the plug in a dip tube for draining the vessel failed and about 4,5 t of sodium leaked slowly from the vessel. The plant room was not cladded with steel liners or collecting pans (it was not designed for permanent sodium plant operation). So leaking sodium came directly in

  3. Core to surge-line energy transport in a severe accident scenario

    International Nuclear Information System (INIS)

    Marzo, M. di; Almenas, K.; Gopalnarayanan, S.

    1994-01-01

    The analysis of loss of coolant accidents in a nuclear power plant, which progress to the stage where the core is uncovered, poses important safety related questions. One of these concerns the rate of energy transport to metal components of the primary system. An experimental program has been conducted at the Univ. of Maryland test facility which quantifies the rate of energy transfer from an uncovered core in a B ampersand W (once-through type steam generators) plant. SF 6 is used to simulate the natural circulation driving force of the high pressure steam expected at prototypical conditions. A time-dependent scaling methodology is developed to transpose experimental data to prototypical conditions. To achieve this transformation, a nominal fluid temperature increase rate of 1.0 degrees C/s is inferred from available TMI-2 event data. To bracket the range of potential prototypical transient scenarios, temperature ramps of 0.8 degrees C/s and 1.2 degrees C/s are also considered. Repeated tests, covering a range of test facility conditions, lead to estimated failure times at the surge line nozzle of 1.5 to 2 hours after initiation of the natural circulation phase of the transient

  4. Analysis of Aircraft Crash Accident for WETF

    International Nuclear Information System (INIS)

    Jordan, Hans

    2001-01-01

    This report applies the methodology of DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities'', to the Weapons Engineering Tritium Facility (WETF) at LANL. Straightforward application of that methodology shows that including local helicopter flights with those of all other aircraft with potential to impact the facility poses a facility impact risk slightly in excess of the DOE standard's threshold--10 -6 impacts per year. It is also shown that helicopters can penetrate the facility if their engines impact that facility's roof. However, a refinement of the helicopter impact analysis shows that penetration risk of the facility for all aircraft lies below the DOE standard's threshold. By that standard, therefore, the potential for release of hazardous material from the facility as a result of an aircraft crashing into the facility is negligible and need not be analyzed further

  5. Probabilistic risk analysis for Test Area North Hot Shop Storage Pool Facility

    International Nuclear Information System (INIS)

    Meale, B.M.; Satterwhite, D.G.

    1990-01-01

    A storage pool facility used for storing spent fuel and radioactive debris from the Three Mile Island (TMI) accident was evaluated to determine the risk associated with its normal operations. Several hazards were identified and examined to determine if any any credible accident scenarios existed. Expected annual occurrence frequencies were calculated for hazards for which accident scenarios were identified through use of fault trees modeling techniques. Fault tree models were developed for two hazards: (1) increased radiation field and (2) spread of contamination. The models incorporated facets of the operations within the facility as well as the facility itself. 6 refs

  6. Nuclear engineering experiments at experimental facilities of JNC in graduate course of Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Hayashizaki, Noriyosu; Takahashi, Minoru; Aoyama, Takafumi; Onose, Shoji

    2005-01-01

    Nuclear engineering experiments using outside facilities of the campus have been offered for graduate students in the nuclear engineering course in Tokyo Institute of Technology (Tokyo Tech.). The experiments are managed with the collaboration of Japan Nuclear Cycle Development Institute (JNC), Japan Atomic Energy Research Institute (JAERI) and Research Reactor Institute, Kyoto University (KUR). This report presents the new curriculum of the nuclear engineering experiments at JNC since 2002. The change is due to the shutdown of Deuterium Criticality Assembly Facility (DCA) that was used as an experimental facility until 2001. Reactor physics experiment using the training simulator of the experimental fast reactor JOYO is continued from the previous curriculum with the addition of the criticality approach experiment and control rods calibration. A new experimental subject is an irradiated material experiment at the Material Monitoring Facility (MMF). As a result, both are acceptable as the student experiments on the fast reactor. (author)

  7. WASTE-ACC: A computer model for analysis of waste management accidents

    International Nuclear Information System (INIS)

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  8. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Science.gov (United States)

    2010-01-01

    ... postulated accidents that could lead to loss of safety functions. (5) Chemical protection. The design must... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for new facilities or new processes at... Critical Mass of Special Nuclear Material § 70.64 Requirements for new facilities or new processes at...

  9. The once-through mode of steam generator reflux condensation in loss of coolant accident scenarios

    International Nuclear Information System (INIS)

    Liao, Y.; Guentay, S.; Suckow, D.

    2009-01-01

    The once-through mode of steam generator reflux condensation in the presence of noncondensable gases and/or aerosols for LOCA scenarios is introduced. This phenomenon is planned to be investigated at Paul Scherrer Institute in the ARTIST/RFLX experimental program. The plausible accident scenarios associated with the once-through reflux condensation are analyzed with MELCOR to study the safety significance and the boundary conditions of this phenomenon. This work presents the recent PSI experimental and analytical work on reflux condensation: the progress of modification to the ARTIST test facility for the purpose to study reflux condensation, and the analytical model for the once-through reflux condensation in the presence of noncondensable gas using the heat and mass transfer analogy approach. Future experimental and analytical work on reflux condensation is also outlined. (author)

  10. Beam studies and experimental facility for the AWAKE experiment at CERN

    International Nuclear Information System (INIS)

    Bracco, Chiara; Gschwendtner, Edda; Petrenko, Alexey; Timko, Helga; Argyropoulos, Theodoros; Bartosik, Hannes; Bohl, Thomas; Esteban Müller, Juan; Goddard, Brennan; Meddahi, Malika; Pardons, Ans; Shaposhnikova, Elena; Velotti, Francesco M.; Vincke, Helmut

    2014-01-01

    A Proton Driven Plasma Wakefield Acceleration Experiment has been proposed as an approach to eventually accelerate an electron beam to the TeV energy range in a single plasma section. To verify this novel technique, a proof of principle R and D experiment, AWAKE, is planned at CERN using 400 GeV proton bunches from the SPS. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility profiting from existing infrastructure where only minor modifications need to be foreseen. The design of the experimental area and the proton and electron beam lines are shown. The achievable SPS proton bunch properties and their reproducibility have been measured and are presented. - Highlights: • A proton driven plasma wakefield experiment using the first time protons as drive beam is proposed. • The integration of AWAKE experiment, the proton, laser and electron beam line in an existing CERN facility is demonstrated. • The necessary modifications in the experimental facility are presented. • Proton beam optics and a new electron beam line are adapted to match with the required beam parameters. • Short high-intensity bunches were studied in the SPS to guide the design parameters of the AWAKE project

  11. TREAT experimental data base regarding fuel dispersals in LMFBR loss-of-flow accidents

    International Nuclear Information System (INIS)

    Simms, R.; Fink, C.L.; Stanford, G.S.; Regis, J.P.

    1981-01-01

    The reactivity feedback from fuel relocation is a central issue in the analysis of loss-of-flow (LOF) accidents in LMFBRs. Fuel relocation has been studied in a number of LOF simulations in the TREAT reactor. In this paper the results of these tests are analyzed, using, as the principal figure of merit, the changes in equivalent fuel worth associated with the fuel motion. The equivalent fuel worth was calculated from the measured axial fuel distributions by weighting the data with a typical LMFBR fuel-worth function. At nominal power, the initial fuel relocation resulted in increases in equivalent fuel worth. Above nominal power the fuel motion was dispersive, but the dispersive driving forces could not unequivocally be identified from the experimental data

  12. Experimental facility and void fraction calibration methods for impedance probes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  13. Experimental facility and void fraction calibration methods for impedance probes

    International Nuclear Information System (INIS)

    Oliveira, Fernando L. de; Rocha, Marcelo S.

    2013-01-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  14. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2014-02-01

    Full Text Available The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC. The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  15. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    Science.gov (United States)

    Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.

    2014-02-01

    The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  16. Knowledge data base for severe accident management of nuclear power plants

    International Nuclear Information System (INIS)

    Ogino, Masao; Kawabe, Ryuhei; Nagasaka, Hideo; Sumida, Susumu; Fukasawa, Masanori; Muta, Hitoshi

    2011-01-01

    For the reinforcement of the safety of NPPs, the continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of this present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of severe accident, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of accident management. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the severe accident analysis codes and the accident management knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2010 are as follows; Experimental study on OECD/NEA projects such as MCCI, SERENA, SFP and international cooperative PSI-ARTIST project, and analytical study on accident management review of new plant and making regulation for severe accident. (author)

  17. JAERI's activities in JCO accident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Japan Atomic Energy Research Institute (JAERI) was actively involved in a variety of technical supports and cooperative activities, such as advice on terminating the criticality condition, contamination checks of the residents and consultation services for the residents, as emergency response actions to the criticality accident at the uranium processing facility operated by the JCO Co. Ltd., which occurred on September 30, 1999. These activities were carried out in collaborative ways by the JAERI staff from the Tokai Research Establishment, Naka Fusion Research Establishment, Oarai Research Establishment, and Headquarter Office in Tokyo. As well, the JAERI was engaged in the post-accident activities such as identification of accident causes, analyses of the criticality accident, and dose assessment of exposed residents, to support the Headquarter for Accident Countermeasures of the Science and Technology Agency (STA), the Accident Investigation Committee and the Health Control Committee of the Nuclear Safety Commission of Japan (NSC). This report compiles the activities, that the JAERI has conducted to date, including the discussions on measures for terminating the criticality condition, evaluation of the fission number, radiation monitoring in the environment, dose assessment, analyses of criticality dynamics. (author)

  18. Safety evaluation of the NSRR facility relevant to the modification for improved pulse operation and preirradiated fuel experiments

    International Nuclear Information System (INIS)

    Inabe, Teruo; Terakado, Yoshibumi; Tanzawa, Sadamitsu; Katagiri, Hiroshi; Kobayashi, Hideo

    1988-11-01

    The Nuclear Safety Research Reactor (NSRR) is a pulse reactor for the inpile experiments to study the fuel behavior under reactivity initiated accident conditions. The present operation modes of the NSRR consist of the steady state operation up to 300 kW and the natural pulse operation in which a sharp pulsed power is generated from substantially zero power level. In addition to these, two new modes of shaped pulse operation and combined pulse operation will be conducted in the near future as the improved pulse operations. A transient power up to 10 MW will be generated in the shaped pulse operation, and a combination of a transient power up to 10 MW and a sharp pulsed power will be generated in the combined pulse operation. Furthermore, preirradiated fuel rods will be employed in the future experiments whereas the present experiments are confined to the test specimens of unirradiated fuel rods. To provide for these programs, the fundamental design works relevant to the modification of the reactor facility including the reactor instrumentation and control systems and experimental provision were developed. The reactor safety evaluation is prerequisite for confirming the propriety of the fundamental design of the reactor facility from the safety point of view. The safety evaluation was therefore conducted postulating such events that would bring about abnormal conditions in the reactor facility. As a result of the safety evaluation, it has been confirmed as to the NSRR facility after modification that the anticipated transients, the postulated accidents, the major accident and the hypothetical accident do not result respectively in any serious safety problem and that the fundamental design principles and the reactor siting are adequate and acceptable. (author)

  19. PMK-2 the Hungarian integral type test facility. Documentations, publications and archivations of experiments

    International Nuclear Information System (INIS)

    Perneczky, L.; Guba, A.; Ezsoel, G.; Toth, I.; Szabados, L.

    2002-01-01

    The PMK-2 experimental facility at the KFKI-AEKI, Budapest, is a full pressure, scaled down model of the primary and partly the secondary circuit of the Paks NPP, which is equipped with four VVER-440/213-type reactors. Since the start-up of the facility altogether 48 experiments have been performed for groups of transients as follows: one- and two-phase natural circulation, loss of coolant accidents, special plant transients and experiments in support of accident management procedures. The results have been used for the validation of thermal-hydraulic system codes for VVER applications. Following the experiments a detailed documentation and archiving activity - using an optimised data storage - was required to preserve the essential information and to assure these for a widely utilisation for the international nuclear community. In the publication list related to the facility and the experiments for the moment altogether 280 items - documents, articles in periodicals, papers in proceedings and research reports - in six languages were collected. The paper gives an overview on this activity including the participation in the EU CERTA-TN programme, where AEKI introduced representative databases of two PMK-2 tests in the STRESA Network.(author)

  20. Outcomes from the EURATOM–ROSATOM ERCOSAM SAMARA projects on containment thermal-hydraulics for severe accident management

    International Nuclear Information System (INIS)

    Paladino, Domenico; Andreani, Michele; Guentay, Salih; Mignot, Guillaume; Kapulla, Ralf; Paranjape, Sidharth; Sharabi, Medhat; Kisselev, Arkadi; Yudina, Tatiana; Filippov, Aleksandr; Kamnev, Mikhail; Khizbullin, Akhmir; Tyurikov, Oleg; Liang, Zhe; Abdo, Daniele; Brinster, Jérôme; Dabbene, Frédéric; Kelm, Stephan; Klauck, Michael; Götz, Lasse

    2016-01-01

    Highlights: • Hydrogen distribution in the containment of PWR was investigated for scenario leading to stratification. • The scenario was scaled from a generic PWR containment to four facilities. • Effect of spray, cooler and heat sources was investigated experimentally and with LP and CFD. • Code-to-code benchmarks aiming a scaling up the facilities to a large containment. - Abstract: ERCOSAM and SAMARA are the acronyms for two parallel projects co-financed respectively by EURATOM and ROSATOM during the period 2010–2014 with the general aim to advance the knowledge on the phenomenology associated with the hydrogen and steam spreading and stratification in the LWR containment during a postulated severe accident. The important peculiarity of the projects was in experimental and analytical investigating the impact of systems such as spray, cooler and heat sources (simulating thermal effect of PARs) on the distribution of gas mixture (e.g. hydrogen, steam, air). This paper presents the main outcomes of the ERCOSAM–SAMARA projects.

  1. Outcomes from the EURATOM–ROSATOM ERCOSAM SAMARA projects on containment thermal-hydraulics for severe accident management

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Domenico, E-mail: domenico.paladino@psi.ch [Paul Scherrer Institut (Switzerland); Andreani, Michele [Paul Scherrer Institut (Switzerland); Guentay, Salih [Innovative, Technology Development GmbH (Switzerland); Mignot, Guillaume; Kapulla, Ralf; Paranjape, Sidharth; Sharabi, Medhat [Paul Scherrer Institut (Switzerland); Kisselev, Arkadi; Yudina, Tatiana; Filippov, Aleksandr [Nuclear Safety Institute of the Russian Academy of Sciences, Moscow 115191 (Russian Federation); Kamnev, Mikhail; Khizbullin, Akhmir; Tyurikov, Oleg [JSC “Afrikantov OKB Mechanical Engineering”, Nizhny Novgorod 603074 (Russian Federation); Liang, Zhe [CNL-2251 Speakman Drive, Mississauga, ON L5K 1B2 (Canada); Abdo, Daniele; Brinster, Jérôme; Dabbene, Frédéric [CEA, DEN, DM2S, STMF, F-91191 Gif-sur-Yvette Cedex (France); Kelm, Stephan [Forschungszentrum Juelich, 52425 Jülich (Germany); Klauck, Michael; Götz, Lasse [RWTH Aachen University (Germany); and others

    2016-11-15

    Highlights: • Hydrogen distribution in the containment of PWR was investigated for scenario leading to stratification. • The scenario was scaled from a generic PWR containment to four facilities. • Effect of spray, cooler and heat sources was investigated experimentally and with LP and CFD. • Code-to-code benchmarks aiming a scaling up the facilities to a large containment. - Abstract: ERCOSAM and SAMARA are the acronyms for two parallel projects co-financed respectively by EURATOM and ROSATOM during the period 2010–2014 with the general aim to advance the knowledge on the phenomenology associated with the hydrogen and steam spreading and stratification in the LWR containment during a postulated severe accident. The important peculiarity of the projects was in experimental and analytical investigating the impact of systems such as spray, cooler and heat sources (simulating thermal effect of PARs) on the distribution of gas mixture (e.g. hydrogen, steam, air). This paper presents the main outcomes of the ERCOSAM–SAMARA projects.

  2. 2 MV injector as the Elise front-end and as an experimental facility

    International Nuclear Information System (INIS)

    Yu, S.S.; Eylon, S.; Henestroza, E.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-01-01

    We report on progress in the preparation of the 2 MV injector at LBNL as the front end of Elise and as a multipurpose experimental facility for heavy ion fusion beam dynamics studies. Recent advances in the performance and understanding of the injector are described, and some of the ongoing experimental activities are summarized. (orig.)

  3. Criticality safety and facility design considerations

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1991-06-01

    Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems

  4. Experimental Study on the Molten Corium Interaction with Structure by Induction Heating Technique

    Energy Technology Data Exchange (ETDEWEB)

    An, Sang Mo; Ha, Kwang Soon; Min, Beong Tae; Hong, Seong Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The corium compositions strongly depend on the accident scenarios, and thus the melt generation technique for various melt compositions is essential to investigate the corium-structural material interaction characteristics according to the accident scenarios. Since 1997, KAERI has several years of experiences with melt generation to investigate the material ablation characteristics and steam explosion phenomena. Based on the experiences of the TROI (Test for Real cOrium Interaction with water) facility for the steam explosion experiments, the VESTA (Verification of Ex-vessel corium STAbilization) test facility was designed and constructed in 2010 for the development of a core catcher under the APR+ project. At the same time, the VESTA-S (VESTA-Small) was established for small scale material ablation experiments. Some experimental results were reported for the interactions of metallic or oxidic melt with the structural materials such as special concrete or penetration weld. The objective of this paper is to provide the specific features of the VESTA and VESTA-S facilities including information on the melt generation technique adopted for the facilities. Some issues are also addressed in this paper for further facility improvement. In the present paper, the principles of induction heating adopted for the VESTA and VESTA-S facilities were summarized briefly and the system features for the melt-structural material interaction experiments were explained. As a major characteristic of the VESTA facility, up to 400 kg of corium melt is expected to be generated using the currently installed system. The jet impingement effect on the material ablation characteristics was demonstrated successfully in the VESTA facility. In the VESTA-S facility, the small scale material ablation experiments by long term melt interaction were performed properly by adopting the melt delivery method. However, for a more realistic severe accident simulation, we need to improve the melt temperature

  5. Experimental support at proton--proton colliding beam facilities

    International Nuclear Information System (INIS)

    Potter, K.

    1977-01-01

    Proton--proton colliding beam facilities have a number of special features which increase the importance of support for experiments when compared to fixed target accelerators: (1) the laboratory system is very close to the center-of-mass system; this affects the geometry and general size of the experiments; (2) the primary p--p interaction is inaccessible, that is, it takes place in an ultrahigh vacuum chamber; and (3) the experiment detection system is necessarily inside the machine structure and becomes very closely linked to it in many respects. An overall picture is given of experimental support based on experience at the CERN ISR under the following headings: Experimental Areas, Scheduling, Intersection Vacuum Chambers, Machine Background, and Magnets for Experiments. The first two of these topics concern the requirements in space and time of an experiment, while the last three are all related to the close interaction between experiment and machine

  6. Some existing Experimental Facilities for Fast Neutron Systems at KIT

    International Nuclear Information System (INIS)

    Litfin, K.

    2013-01-01

    An overview is given of: • Liquid Metal Loops at the Karlsruhe Liquid Metal Laboratory (KALLA) of KIT; • THESYS: Technologies for HEavy metal SYStems; • Thermal Hydraulic experiments in THESYS; • THEADES: THErmalhydraulics and Ads DESign; • Thermal Hydraulic experiments in THEADES; • CORRIDA: CORRosion In Dynamic lead Alloys; • Experimental stagnant facilities at KALLA; • INR Liquid metal research

  7. RELAP5 Prediction of Transient Tests in the RD-14 Test Facility

    International Nuclear Information System (INIS)

    Lee, Sukho; Kim, Manwoong; Kim, Hho-Jung; Lee, John C.

    2005-01-01

    Although the RELAP5 computer code has been developed for best-estimate transient simulation of a pressurized water reactor and its associated systems, it could not assess the thermal-hydraulic behavior of a Canada deuterium uranium (CANDU) reactor adequately. However, some studies have been initiated to explore the applicability for simulating a large-break loss-of-coolant accident in CANDU reactors. In the present study, the small-reactor inlet header break test and the steam generator secondary-side depressurization test conducted in the RD-14 test facility were simulated with the RELAP5/MOD3.2.2 code to examine its extended capability for all the postulated transients and accidents in CANDU reactors. The results were compared with experimental data and those of the CATHENA code performed by Atomic Energy of Canada Limited.In the RELAP5 analyses, the heated sections in the facility were simulated as a multichannel with five pipe models, which have identical flow areas and hydraulic elevations, as well as a single-pipe model.The results of the small-reactor inlet header break and the steam generator secondary-side depressurization simulations predicted experimental data reasonably well. However, some discrepancies in the depressurization of the primary heat transport system after the header break and consequent time delay of the major phenomena were observed in the simulation of the small-reactor inlet header break test

  8. Bagheera: A new experimental facility at Cea / Valduc for actinides studies under high dynamic loading

    International Nuclear Information System (INIS)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-01-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for 'Hopkinson And High Speed Experiments Glove Box'. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single 10 m long, 3 m high and 1.5 m large glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). A unique highly automated system drives all devices. The overall architecture of the facility takes into account the useful ability to carry out symmetrical and reverse experiments with the gas gun, that is actinide to actinide impact and actinide to inert material impact. Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications

  9. State of reaction on news media for JCO criticality accident on abroad

    International Nuclear Information System (INIS)

    Itoh, Takeshi

    1999-01-01

    The criticality accident, which occurred in JCO Tokai on September 30th 1999, was the first accident accompanied with serious radiation exposure to persons at Japanese nuclear facilities. As an evacuation order for local residents was issued, it caused uneasiness to the public. It also gave great impact to the foreign countries. In this report we have investigated the reactions in such countries, as U.S., France, Germany and U.K. by means of news media like TV, newspapers and magazines. Finding are as follows: They were all surprised to know the cause of the accident, which was by improper procedure of JCO workers. Because they couldn't imagine that such an accident might happen in such a high-tech country as Japan. The Japanese regulator was criticized for their insufficient criticality facility surveillance. There arose some questions for Japanese nuclear reliabilities. Because of the delayed announcement of the accident by Japanese public sector, anti-nuclear groups, like Greenpeace, NCI, etc., have a chance to carry on their campaign. The information from Japanese public sector was not enough to satisfy the foreign news media. We concluded that it is also necessary to develop effective information dissemination to overseas in case of a nuclear accident. (author)

  10. The reaction between iodine and organic coatings under severe PWR accident conditions. An experimental parameter study

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, S; Funke, F; Greger, G U; Bleier, A; Morell, W [Siemens AG, Power Generation Group, Erlangen (Germany)

    1996-12-01

    An extensive experimental parameter study was performed on the deposition and on the resuspension kinetics in the reaction system iodine/organically coated surfaces. Both reactions in the gas phase and in the liquid phase were investigated and kinetic rate constants suitable for modelling were derived. Previous experimental studies on the reaction of iodine with organic coated surfaces were mostly limited to temperatures below 100{sup o}C. Thus, this parameter study aims at filling a gap and providing kinetic data on heterogeneous reactions with organic surfaces in the accident-relevant temperature range of 100-160{sup o}C. Two types of laboratory experiments carried out at Siemens/KWU using coatings representative for German power plants (epoxy-tape paint), namely gas phase tests and liquid phase tests. (author) 6 figs., 6 tabs., 5 refs.

  11. Accident analysis for US fast burst reactors

    International Nuclear Information System (INIS)

    Paternoster, R.; Flanders, M.; Kazi, H.

    1994-01-01

    In the US fast burst reactor (FBR) community there has been increasing emphasis and scrutiny on safety analysis and understanding of possible accident scenarios. This paper summarizes recent work in these areas that is going on at the different US FBR sites. At this time, all of the FBR facilities have or in the process of updating and refining their accident analyses. This effort is driven by two objectives: to obtain a more realistic scenario for emergency response procedures and contingency plans, and to determine compliance with changing regulatory standards

  12. A review of accidents, prevention and mitigation options related to hazardous gases

    International Nuclear Information System (INIS)

    Fthenakis, V.M.

    1993-05-01

    Statistics on industrial accidents are incomplete due to lack of specific criteria on what constitutes a release or accident. In this country, most major industrial accidents were related to explosions and fires of flammable materials, not to releases of chemicals into the environment. The EPA in a study of 6,928 accidental releases of toxic chemicals revealed that accidents at stationary facilities accounted for 75% of the total number of releases, and transportation accidents for the other 25%. About 7% of all reported accidents (468 cases) resulted in 138 deaths and 4,717 injuries ranging from temporary respiratory problems to critical injuries. In-plant accidents accounted for 65% of the casualties. The most efficient strategy to reduce hazards is to choose technologies which do not require the use of large quantities of hazardous gases. For new technologies this approach can be implemented early in development, before large financial resources and efforts are committed to specific options. Once specific materials and options have been selected, strategies to prevent accident initiating events need to be evaluated and implemented. The next step is to implement safety options which suppress a hazard when an accident initiating event occurs. Releases can be prevented or reduced with fail-safe equipment and valves, adequate warning systems and controls to reduce and interrupt gas leakage. If an accident occurs and safety systems fail to contain a hazardous gas release, then engineering control systems will be relied on to reduce/minimize environmental releases. As a final defensive barrier, the prevention of human exposure is needed if a hazardous gas is released, in spite of previous strategies. Prevention of consequences forms the final defensive barrier. Medical facilities close by that can accommodate victims of the worst accident can reduce the consequences of personnel exposure to hazardous gases

  13. Reactor accidents. Chernobyl and Three Miles Island

    International Nuclear Information System (INIS)

    Marx, G.

    1990-01-01

    A description of the facilities at Chernobyl and TMI, as well as of the course of the accidents is given. Supplementary information relates to the quantities and types of radionuclides released and to the size of the group of persons concerned. (DG) [de

  14. Methods for air cleaning system design and accident analysis

    International Nuclear Information System (INIS)

    Gregory, W.S.; Nichols, B.D.

    1987-01-01

    This paper describes methods, in the form of a handbook and five computer codes, that can be used for nuclear facility air cleaning system design and accident analysis. Four of the codes were developed primarily at the Los Alamos National Laboratory, and one was developed in France. Tools such as these are used to design ventilation systems in the mining industry but do not seem to be commonly used in the nuclear industry. For example, the Nuclear Air Cleaning Handbook is an excellent design reference, but it fails to include information on computer codes that can be used to aid in the design process. These computer codes allow the analyst to use the handbook information to form all the elements of a complete system design. Because these analysis methods are in the form of computer codes they allow the analyst to investigate many alternative designs. In addition, the effects of many accident scenarios on the operation of the air cleaning system can be evaluated. These tools originally were intended for accident analysis, but they have been used mostly as design tools by several architect-engineering firms. The Cray, VAX, and personal computer versions of the codes, an accident analysis handbook, and the codes availability will be discussed. The application of these codes to several design operations of nuclear facilities will be illustrated, and their use to analyze the effect of several accident scenarios also will be described

  15. BAGHEERA: A new experimental facility at CEA / Valduc for actinides studies under high dynamic loading

    Science.gov (United States)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-08-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for “Hopkinson And High Speed Experiments Glove Box”. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications.

  16. Analysis of factors related to man-induced hazard for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Young Soon; Jung, Jea Hee; Lee, Keun O; Son, Ki Sang; Wang, Sang Chul; Lee, Chang Jin; Ku, Min Ho; Park, Nam Young

    2003-03-01

    This study is to show a guide for installing hazardous facilities adjoined atomic power plant after finding out how much these facilities could impact to the atomic plant. Nuclear power plant is an important facility which is closely connected with public life, industrial activity, and the conduct of public business, so it should not be damaged. Therefore, if there are hazardous and harmful facilities near the plant, then they must be evaluated by the size, the type, and the shape. First of all, any factors that could cause man induced accident must be investigated. And they must be exactly evaluated from how much it will damage the plant facilities. The purpose of this study is to set a technical standard for the installation of these facilities by evaluating the man induced accident. Also, it is to make out the evaluation methods by investigating the hazardous facilities which are placed near the plant. Our country is now using CFR standard : reg. guide and IAEA safety series. However, not only the standard of technology which is related to man induced accident but also the evaluation methods for facilities are not yet layed down. As It was mentioned above, we should evaluate these facilities adequately, and these methods must be made out

  17. Analysis of factors related to man-induced hazard for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Soon; Jung, Jea Hee; Lee, Keun O; Son, Ki Sang; Wang, Sang Chul; Lee, Chang Jin; Ku, Min Ho; Park, Nam Young [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2003-03-15

    This study is to show a guide for installing hazardous facilities adjoined atomic power plant after finding out how much these facilities could impact to the atomic plant. Nuclear power plant is an important facility which is closely connected with public life, industrial activity, and the conduct of public business, so it should not be damaged. Therefore, if there are hazardous and harmful facilities near the plant, then they must be evaluated by the size, the type, and the shape. First of all, any factors that could cause man induced accident must be investigated. And they must be exactly evaluated from how much it will damage the plant facilities. The purpose of this study is to set a technical standard for the installation of these facilities by evaluating the man induced accident. Also, it is to make out the evaluation methods by investigating the hazardous facilities which are placed near the plant. Our country is now using CFR standard : reg. guide and IAEA safety series. However, not only the standard of technology which is related to man induced accident but also the evaluation methods for facilities are not yet layed down. As It was mentioned above, we should evaluate these facilities adequately, and these methods must be made out.

  18. Guide on medical management of persons exposed in radiation accidents

    International Nuclear Information System (INIS)

    1990-01-01

    The present guide has been prepared in order to provide guidance to medical and para-medical personnel regarding medical management of the different types of radiation accidents. It discusses briefly the physical aspects and biological effect of radiation, for the benefit of those who have not specialised in radiation medicine. The diagnosis, medical management and follow-up of persons involved in different types of radiation accidents are also dealt with. The implementation of the procedures described calls for organisation of appropriate facilities and provision of requisite equipment as well as education and training of the staff. It is emphasised that major radiation accidents are rare events and the multi-disciplinary nature of the response required to deal with them calls for proper planning and continuous liaison among plant management, radiation protection personnel, first-aid assistants and medical and paramedical staff. The organisation and conduct of emergency drills may help in maintaining preparedness of the medical facilities for efficient management of radiation casualities. (original). 64 refs., tabs., figs

  19. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  20. Comparison and verification of two computer programs used to analyze ventilation systems under accident conditions

    International Nuclear Information System (INIS)

    Hartig, S.H.; Wurz, D.E.; Arnitz, T.; Ruedinger, V.

    1985-01-01

    Two computer codes, TVENT and EVENT, which were developed at the Los Alamos National Laboratory (LANL) for the analysis of ventilation systems, have been modified to model air-cleaning systems that include active components with time-dependent flow-resistance characteristics. With both modified programs, fluid-dynamic transients were calculated for a test facility used to simulate accident conditions in air-cleaning systems. Experiments were performed in the test facility whereby flow and pressure transients were generated with the help of two quick-actuating air-stream control valves. The numerical calculations are compared with the test results. Although EVENT makes use of a more complex theoretical flow model than TVENT, the numerical simulations of both codes were found to be very similar for the flow conditions studied and to closely follow the experimental results

  1. Development of Auditing Technology for Accident Analysis of SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, Y. J.; Jeong, J. J.; Kim, H. C.; Chung, Y. J.; Bae, K. H

    2006-02-15

    The objective of this project is to develop thermal hydraulic models of the regulatory auditing codes for the application of SMART-P integrated reactor. At initial period, PIRT has been performed to identify the model deficiencies and determine the priority of model improvements. The identified thermal hydraulic models has been implemented to RELAP5/MOD3.3 auditing code according to the PIRT ranking. The input model for SMART-P has been developed with consistent to the current design status documents and checked by independent reviewer as Q/A procedure.The evaluation of experimental availabilities and code collapsible has been done by expert group and summarized as validation matrix forms. The experimental data of VISTA, which is the only integral effect test facility, were used to validate the improved model. The safety analysis has been demonstrated for the essential accident scenario. The validation and demonstration show that the developed models are applicable to utilize in reliable and independent auditing for SMART design certification.

  2. APET methodology for Defense Waste Processing Facility: Mode C operation

    International Nuclear Information System (INIS)

    Taylor, R.P. Jr.; Massey, W.M.

    1995-04-01

    Safe operation of SRS facilities continues to be the highest priority of the Savannah River Site (SRS). One of these facilities, the Defense Waste Processing Facility or DWPF, is currently undergoing cold chemical runs to verify the design and construction preparatory to hot startup in 1995. The DWPFF is a facility designed to convert the waste currently stored in tanks at the 200-Area tank farm into a form that is suitable for long term storage in engineered surface facilities and, ultimately, geologic isolation. As a part of the program to ensure safe operation of the DWPF, a probabilistic Safety Assessment of the DWPF has been completed. The results of this analysis are incorporated into the Safety Analysis Report (SAR) for DWPF. The usual practice in preparation of Safety Analysis Reports is to include only a conservative analysis of certain design basis accidents. A major part of a Probabilistic Safety Assessment is the development and quantification of an Accident Progression Event Tree or APET. The APET provides a probabilistic representation of potential sequences along which an accident may progress. The methodology used to determine the risk of operation of the DWPF borrows heavily from methods applied to the Probabilistic Safety Assessment of SRS reactors and to some commercial reactors. This report describes the Accident Progression Event Tree developed for the Probabilistic Safety Assessment of the DWPF

  3. U. S. Department of energy actions to ensure nuclear safety at its nuclear facilities in response to lessons being learned from the Fukushima dacha accident

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dae; O' Brien, James [U. S. Department of Energy, Washington (United States)

    2012-03-15

    The U. S. Department of Energy (DOE) has established a rigorous nuclear safety regulatory infrastructure for the protection of workers, the public, and the environment. An essential part of this infrastructure is a safety culture that promotes organizational learning and includes a commitment to safety by senior leaders that is demonstrated through their actions and behaviors. The tragic Fukushima Dacha accident presented an important challenge for DOE leaders to demonstrate a robust safety culture by critically examining the Department' s regulatory infrastructure and its implementation to ensure that appropriate safety provisions were in place. This paper discusses the actions DOE has taken to date in this regard and further planned action to ensure safety at DOE facilities in light of lessons being learned from the Fukushima Dacha accident.

  4. U. S. Department of energy actions to ensure nuclear safety at its nuclear facilities in response to lessons being learned from the Fukushima dacha accident

    International Nuclear Information System (INIS)

    Chung, Dae; O'Brien, James

    2012-01-01

    The U. S. Department of Energy (DOE) has established a rigorous nuclear safety regulatory infrastructure for the protection of workers, the public, and the environment. An essential part of this infrastructure is a safety culture that promotes organizational learning and includes a commitment to safety by senior leaders that is demonstrated through their actions and behaviors. The tragic Fukushima Dacha accident presented an important challenge for DOE leaders to demonstrate a robust safety culture by critically examining the Department' s regulatory infrastructure and its implementation to ensure that appropriate safety provisions were in place. This paper discusses the actions DOE has taken to date in this regard and further planned action to ensure safety at DOE facilities in light of lessons being learned from the Fukushima Dacha accident

  5. Simulation of a loss of coolant accident with rupture in the steam generator hot collector

    International Nuclear Information System (INIS)

    1991-03-01

    The Central Research Institute for Physics of the Hungarian Academy of Sciences designed and constructed the PMK-NVH test facility, a scaled down model of the WWER-440 Paks nuclear power plant. Hungary made the PMK-NVH facility available to the IAEA. The IAEA, having identified the need for experimental data due to the difficulties of building integral test facilities and the high costs of these experiments, has accepted the offer of the Hungarian Academy of Sciences and has organized three standard problem exercises. In these exercises, experimental data from the simulation of loss of coolant accidents were compared with analytical predictions of the behaviour of the facility, calculated with computer codes. The third standard problem exercise involved a test, in which the rupture was simulated to occur at the top of the hot collector of the steam generator, therefore creating a leak from primary to secondary side. Both hydroaccumulators and high pressure injection were allowed to actuate as prescribed in the actual plant. Eighteen organizations from 15 Member States took part in the exercise presenting pre-test and some post-test analyses which were discussed in a final meeting in Vienna in August, 1990. This document presents a complete overview of the third standard problem exercise, including description of the facility, the experiment, the codes and models used by the participants and a detailed intercomparison of calculated and experimental results. It is recognized that code assessment is a long process which involves many interrelated steps; therefore, no general conclusion or optimum code or best model was reached. However, the exercise was recognized as an important contributor to code validation. 42 refs, figs and tabs

  6. NRC action plan developed as a result of the TMI-2 accident. Volume 2

    International Nuclear Information System (INIS)

    1980-05-01

    The Action Plan provides a comprehensive and integrated plan for all actions judged necessary by the Nuclear Regulatory Commission to correct or improve the regulation and operation of nuclear facilities based on the experience from the accident at the Three Mile Island, Unit 2, nuclear facility and the official studies and investigations of the accident. The tables included in this volume list the recommendations from the various organizations and task forces investigating the accident at Three Mile Island. The tables are annotated to provide easy references to the associated parts of the Action Plan in Volume 1. The tables are also annotated to provide a shorthand indication of how the various recommendations are treated in the Action Plan

  7. SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005.

    Science.gov (United States)

    Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F

    2009-01-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.

  8. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail: emaprel@ipen.br, E-mail: wmtorres@ipen.br, E-mail: acprado@ipen.br, E-mail: umbehaun@ipen.br, E-mail: rlfranca@ipen.br, E-mail: samuelcs@ipen.br, E-mail: lamacedo@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)

    2015-07-01

    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  9. Lessons learned from early criticality accidents

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1996-01-01

    Four accidents involving the approach to criticality occurred during the period July, 1945, through May, 1996. These have been described in the format of the OPERATING EXPERIENCE WEEKLY SUMMARY which is distributed by the Office of Nuclear and Facility Safety. Although the lessons learned have been incorporated in standards, codes, and formal procedures during the last fifty years, this is their first presentation in this format. It is particularly appropriate that they be presented in the forum of the Nuclear Criticality Technology Safety Project Workshop closest to the fiftieth anniversary of the last of the four accidents, and that which was most instrumental in demonstrating the need to incorporate lessons learned

  10. Comparison of the MAAP4 code with the station blackout simulation in the IIST facility

    International Nuclear Information System (INIS)

    Robert E Henry; Christopher E Henry; Chan Y Paik; George M Hauser

    2005-01-01

    Full text of publication follows: The Modular Accident Analysis Program (MAAP) is an integral system model to assess challenges to the reactor core, Reactor Coolant System (RCS) and containment for accident conditions. MAAP4 is the current version used by the MAAP Users Group to assess the responses to a spectrum of accident conditions. Benchmarking of the MAAP code with integral system experiments has been a continuing effort by MAAP developers and users. Several of these have been configured into dynamic benchmarks and are included in Volume III (Benchmarking) of the MAAP4 Users Manual (EPRI, 2004). One such integral experiment is the INER integral system test (IIST) constructed at the Institute of Nuclear Energy Research in Taiwan. This experimental facility is a reduced height, reduced pressure representation of a 3-loop PWR and has been used to examine several different types of accident sequences. One of these is a station blackout simulation with loss of auxiliary feedwater at the time that the transient is initiated. This is an important integral experiment to be compared with the MAAP4 code models. A parameter file (those values representing the system design and boundary experimental conditions) has been developed for the IIST facility and an input deck has been configured to represent a station blackout sequence with instantaneous loss of auxiliary feedwater. Of importance in this benchmark is (a) the rate at which the secondary side inventory is depleted, (b) the depletion of water within the reactor pressure vessel and (c) the time at which the top of the reactor core is uncovered. Comparisons have been made with these three different intervals and there is good agreement between the timing of these events for the MAAP4 benchmark. This is important since this reference sequence represents a set of boundary conditions that is continually with subsequent analyses being perturbations on this type of accident sequence. The good agreement between MAAP4 and

  11. Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop

    International Nuclear Information System (INIS)

    Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C.; Palma, Daniel A.P.

    2017-01-01

    A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)

  12. Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C., E-mail: sabrinapral@gmail.com, E-mail: amir@cdtn.brm, E-mail: hcr@cdtn.br, E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)

  13. Pressure suppression system (PSS) for nuclear ships. Experimental results obtained at the GKSS PSS-test-facillity

    International Nuclear Information System (INIS)

    Aust, E.; Niemann, H.R.; Schwan, H.; Vollbrandt, J.

    1978-01-01

    The PSS-test facility is shortly presented which was designed to show experimentally the operation of the pressure suppression containment for the NCS 80 concept. The results of the experimental LOCA-simulation tests in the PSS-test facility are illustrated by diagrams. The observed phenomena as chugging and pessure oscillations immediately after vent clearing are reported as well as the thermohydraulic loadings of the total system. Finally a short view is given on the future test program

  14. Offsite radiological consequence analysis for the bounding aircraft crash accident

    International Nuclear Information System (INIS)

    OBERG, B.D.

    2003-01-01

    The purpose of this calculation note is to quantitatively analyze a bounding aircraft crash accident for comparison to the DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', Appendix A, Evaluation Guideline of 25 rem. The potential of aircraft impacting a facility was evaluated using the approach given in DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities''. The following aircraft crash FR-equencies were determined for the Tank Farms in RPP-11736, ''Assessment Of Aircraft Crash FR-equency For The Hanford Site 200 Area Tank Farms'': (1) The total aircraft crash FR-equency is ''extremely unlikely.'' (2) The general aviation crash FR-equency is ''extremely unlikely.'' (3) The helicopter crash FR-equency is ''beyond extremely unlikely.'' (4) For the Hanford Site 200 Areas, other aircraft type, commercial or military, each above ground facility, and any other type of underground facility is ''beyond extremely unlikely.'' As the potential of aircraft crash into the 200 Area tank farms is more FR-equent than ''beyond extremely unlikely,'' consequence analysis of the aircraft crash is required

  15. Current state of the construction of an integrated test facility for hydrogen risk

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong-Ho; Hong, Seong-Wan [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Experimental research on hydrogen as a combustible gas is important for an assessment of the integrity of a containment building under a severe accident. The Korea Atomic Energy Research Institute (KAERI) is preparing a large-scaled test facility, called SPARC (SPray-Aerosol-Recombiner-Combustion), to estimate the hydrogen behavior such as the distribution, combustion and mitigation. This paper introduces the experimental research activity on hydrogen risk, which was presented at International Congress on Advances in Nuclear Power Plants (ICAPP) this year. The KAERI is preparing a test facility, called SPARC (SPray-Aerosol-Recombiner-Combustion test facility), for an assessment of the hydrogen risk. In the SPARC, hydrogen behavior such as mixing with steam and air, distribution, and combustion in the containment atmosphere will be observed. The SPARC consists of a pressure vessel with a 9.5 m height and 3.4 m in diameter and the operating system to control the thermal hydraulic conditions up to 1.5 MPa at 453 K in a vessel. The temperature, pressure, and gas concentration at various locations will be measured to estimate the atmospheric behavior in a vessel. To install the SPARC, an experimental building, called LIFE (Laboratory for Innovative mitigation of threats from Fission products and Explosion), was constructed at the KAERI site. LIFE has an area of 480 m''2 and height of 18.6 m, and it was designed by considering the experimental safety and specification of a large-sized test facility.

  16. Analytical and experimental assessment of TVS-2006 fuel assembly thermal-mechanical shape deformation at temperature modeling of a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Afanasiev, A.; Semishkin, V.; Makarov, V.; Matvienko, I.; Puzanov, D.

    2015-01-01

    Full or partial core drying-out takes place in loss-of-coolant accidents, which leads to worsening of heat removal from the fuel rods. Depending on the accident scenario the fuel rod cladding temperature can be in a wide range from 350 to 1200°C. It is worth mentioning, that the length of the process can considerably affect the fuel rod cladding loadcarrying capacity and the FA structure as a whole, and in the long run it defines the radiation consequences of the accident and the possibility of postaccident core disassembly at low cost. Most experiments staged of late were devoted to a study of FA behaviour in the temperature range 800-900°C of α→β phase transition that is characterized by a sharp increase in the rate of zirconium alloy creep which leads to fuel rod cladding ballooning and loss of their tightness within a short period of time. The 600-700°C temperature range turned out to be less investigated whereas this is the range where the change of zirconium alloy mechanical properties is also observed but only with the retention of α-phase. The tests of a full-scale FA dummy with the skeleton of guide tubes and spacer grids connected by friction forces, carried out at the testing facility of JSC OKB “GIDROPRESS”, were devoted to a study of FA behaviour in this temperature range. The model was heated up with hot air to 650°C for 6 hours. The tests ended with fuel rod cladding ballooning due to gauge pressure and shape deformation. No loss of fuel rod cladding integrity was observed. Therefore, a conclusion can be made that a long-time core holdup at the parameters implemented at the test facility is permitted and the deformations of the FA structure do not lead to the damage that could considerably complicate the core disassembly. The test results were used for the verification of the calculational model of FA TVS-2006 structure with a welded skeleton by ANSYS code. On the basis of the verified calculational model a calculational model was

  17. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Basic Sciences; Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Young Researchers and Elite Club; Pourgol-Mohammad, Mohammad [Sahand Univ. of Technology, Tabriz (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Yousefpour, Faramarz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-03-15

    This paper deals with simulation, sensitivity and uncertainty analysis of LP-FP-2 experiment of LOFT test facility. The test facility simulates the major components and system response of a pressurized water reactor during a LOCA. MELCOR code is used for predicting the fission product release from the core fuel elements in LOFT LP-FP-2 experiment. Moreover, sensitivity and uncertainty analysis is performed for different CORSOR models simulating release of fission products in severe accident calculations for nuclear power plants. The calculated values for the fission product release are compared under different modeling options to the experimental data available from the experiment. In conclusion, the performance of 8 CORSOR modeling options is assessed for available modeling alternatives in the code structure.

  18. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  19. Accidents - Chernobyl accident

    International Nuclear Information System (INIS)

    2004-01-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  20. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Auvinen, A.; Maekynen, J.; Valmari, T.

    1998-01-01

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  1. PCDP [Prototypical Spent Fuel Consolidation Equipment Demonstration Project] design basis accident report 9315-P-103, Rev. A

    International Nuclear Information System (INIS)

    1987-12-01

    The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) has identified a requirement to integrate the spent fuel rod consolidation design activities of each of several proposed geological repository facilities and the Monitored Retrievable Storage (MRS) facility, and to develop efficient and cost-effective equipment for the consolidation process. The equipment to be developed for the rod consolidation system will be required to operate in a dry environment at rates which can be appropriately scaled to approximate the waste management system acceptance rates, irrespective of repository geologic characteristics or the existence of an MRS facility in the waste management system. The purpose of this report is to identify and analyze the range of facility credible events and accident occurrences (from minor to the design basis accidents) and their causes and consequences. For each situation, the considerations to prevent or mitigate the event or accident is addressed

  2. Elise: a new facility for unprecedented experimental nuclear fission studies

    International Nuclear Information System (INIS)

    Taieb, J.; Belier, G.; Chatillon, A.; Granier, T.; Kelic, A.; Ricciardi, V.; Schmidt, K.H.; Voss, B.; Coste-Delclaux, M.; Diop, C.; Jouanne, C.; Schmitt, C.; Aiche, M.; Czajkowski, S.; Jurado, B.; Audouin, L.; Peyre, J.; Rosier, P.; Tassan-Got, L.; Bertoumieux, E.; Dore, D.; Dupont, E.; Letourneau, A.; Panebianco, S.

    2009-01-01

    A novel experimental program aiming to study the properties of fragments and neutrons emitted in the fission process has been initiated. The experiment will be held at the ELISe electron-ion collider to be constructed at GSI, Darmstadt in the framework of the FAIR extension of the facility. The experiment will take advantage of the inverse kinematics allowing, in particular, a total mass and charge resolution for all fission fragments. (authors)

  3. Radiation risk and its estimation for nuclear facilities

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1979-01-01

    The level of knowledge achieved in estimating risks due to the operation of nuclear facilities is discussed. In this connection it is analyzed to what extent risk estimates may be used for establishing requirements for facilities and measures of radiation protection and accident prevention. At present, estimates of risks are subject to great uncertainties. However, the results attainable already permit to discern the causes of possible accidents and to develop effective measures for preventing such accidents. For the time being (and maybe in principle) risk estimation is possible only with more or less arbitrary premises. Within the foreseeable future, cost-benefit comparisons cannot compensate for discretionary decisions in establishing requirements for measures of radiation protection and accident prevention. In preparing such decisions based on experience, expert opinions, political and socio-economic reflections and views, comparison of the risk of novel technologies with existing ones or accepted risks may be a useful means. (author)

  4. Accident analysis for transuranic waste management alternatives in the U.S. Department of Energy waste management program

    International Nuclear Information System (INIS)

    Nabelssi, B.; Mueller, C.; Roglans-Ribas, J.; Folga, S.; Tompkins, M.; Jackson, R.

    1995-01-01

    Preliminary accident analyses and radiological source term evaluations have been conducted for transuranic waste (TRUW) as part of the US Department of Energy (DOE) effort to manage storage, treatment, and disposal of radioactive wastes at its various sites. The approach to assessing radiological releases from facility accidents was developed in support of the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The methodology developed in this work is in accordance with the latest DOE guidelines, which consider the spectrum of possible accident scenarios in the implementation of various actions evaluated in an EIS. The radiological releases from potential risk-dominant accidents in storage and treatment facilities considered in the EM PEIS TRUW alternatives are described in this paper. The results show that significant releases can be predicted for only the most severe and extremely improbable accidents sequences

  5. Economic burden of motorcycle accidents in Northern Ghana.

    Science.gov (United States)

    Kudebong, M; Wurapa, F; Nonvignon, J; Norman, I; Awoonor-Williams, J K; Aikins, M

    2011-12-01

    Motorcycles are the most popular means of transportation in northern Ghana, and their accidents are major causes of out-patient attendance and admissions in the Bolgatanga Municipality. This paper estimates the economic burden of motorcycle accidents in the Bolgatanga Municipality in Northern Ghana. Retrospective cross-sectional cost study. Data were collected from Drivers and Vehicle Licensing Authority, the Police, health facilities and motorcycle accident victims. Both quantitative and qualitative approaches were used for data collection. Cost analysis was based on the standard road accident cost conceptual framework. Ninety-eight percent of vehicles registered in the municipality in 2004 - 2008 were motorcycles. The motorcycles were significantly more than the cars registered. The economic burden of motorcycle accidents was estimated to be about US$1.2 million, of which, 52% were accident-related costs (i.e. property damage and administration) and 48% casualty-related costs (i.e. medical costs, out-of-pocket expenses, lost labour outputs, intangible costs and funeral expenses). Most motorcycle accident victims were in their productive ages and were males. Only a third of the motorcycles were insured. Majority of the riders (71%) did not possess valid driving license and would want to avoid the police. Main motorcycle injuries were head injuries, fractures, lacerations and contusions. Majority of the accidents were caused by lack of formal motorcycle riding training, abuse of alcohol, unrestrained animals and donkey carts. Motorcycle accidents could be reduced through law enforcement, continuous mass education and helmet use.

  6. PWR blowdown heat transfer separate-effects program: thermal-hydraulic test facility experimental data report for test 104

    International Nuclear Information System (INIS)

    Leon, D.M.; White, M.D.; Moore, P.A.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 104, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in the PWR system. Test 104 was conducted to obtain CHF in bundle 1 under blowdown conditions. The primary purpose of this report is to make the reduced instrument responses during test 104 available

  7. Concept of scaled test facility for simulating the PWR thermalhydraulic behaviour

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1990-01-01

    This work deals with the design of a scaled test facility of a typical pressurized water reactor plant, to simulation of small break Loss-of-Coolant Accident. The computer code RELAP 5/ MOD1 has been utilized to simulate the accident and to compare the test facility behaviour with the reactor plant one. The results demonstrate similar thermal-hydraulic behaviours of the two sistema. (author)

  8. Empirical Risk Analysis of Severe Reactor Accidents in Nuclear Power Plants after Fukushima

    OpenAIRE

    Kaiser, Jan Christian

    2012-01-01

    Many countries are reexamining the risks connected with nuclear power generation after the Fukushima accidents. To provide updated information for the corresponding discussion a simple empirical approach is applied for risk quantification of severe reactor accidents with International Nuclear and Radiological Event Scale (INES) level ≥5. The analysis is based on worldwide data of commercial nuclear facilities. An empirical hazard of 21 (95% confidence intervals (CI) 4; 62) severe accidents am...

  9. The relationship of JNC and JCO in the uranium processing plant criticality accident

    International Nuclear Information System (INIS)

    Kanamori, Masashi; Yanagibashi, Katsumi; Okamoto, Naritoshi

    2002-12-01

    On September 30th 1999, the criticality accident occurred at JCO's uranium conversion building in Tokai. The accident occurred during reconversion from U 3 O 8 to uranium nitrate solution (UNH) with uranium enriched 18.8% and about 60 kgU. JCO contacted with JNC to supply UNH that is fuel material for the experimental fast breeder reactor 'JOYO'. JNC has contracted with JCO that had started nuclear fuel material processing business following a definite policy of Japanese government and developed SUMITOMO ADU PROCESS'. JNC made the first contract with JCO in 1985 and has made a contact every year. There had never been a problem in their products. JNC inspected products based on contract. JNC discharge our duty as customer inspecting products based on contract. As for safety control, JCO had taken licensing safety review and had been permitted to be 'a processing facility'. Therefore JNC understood that JCO produced following this license. 'The Uranium Processing Plant Criticality Accident Investigation' showed that JCO had been taking a different method from the permit and violating the license. However JNC had never been explained about that and JCO's operation procedures had never described about that. Therefore the Criticality Accident couldn't be avoided. This report describes the relationship of JNC and JCO in the uranium reconversion contract for JOYO, atomic development policy of Japanese government, process to the order and the contents of contract. (author)

  10. ROAD ACCIDENT AND SAFETY STUDY IN SYLHET REGION OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    B. K. BANIK

    2011-08-01

    Full Text Available Roads, highways and streets are fundamental infrastructure facilities to provide the transportation for passenger travel and goods movement from one place to another in Sylhet, north–eastern division of Bangladesh with rapid growth of road vehicle, being comparatively developed economic tourist prone area faces severe road traffic accident. Such severe road accidents cause harsh safety hazards on the roads of Sylhet area. This research work presents an overview of the road traffic accident and degraded road safety situation in Sylhet zone which in particular, discusses the key road accident problem characteristics identifying the hazardous roads and spots, most responsible vehicles and related components, conditions of drivers and pedestrians, most victims of accident, effects of accident on society, safety priorities and options available in Sylhet. In this regard, a comprehensive questionnaire survey was conducted on the concerned groups of transportation and detailed accident data was collected from a popular local newspaper. Analysis of the study reveals that Dhaka- Sylhet highway is the most hazardous in road basis and Sylhet Sador thana is the most vulnerable in thana basis in Sylhet region.

  11. Stored energy analysis in the scaled-down test facilities

    International Nuclear Information System (INIS)

    Deng, Chengcheng; Chang, Huajian; Qin, Benke; Wu, Qiao

    2016-01-01

    Highlights: • Three methods are developed to evaluate stored energy in the scaled-down test facilities. • The mechanism behind stored energy distortion in the test facilities is revealed. • The application of stored energy analysis is demonstrated for the ACME facility of China. - Abstract: In the scaled-down test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy release in the metal structures has an important influence on the accuracy and effectiveness of the experimental data. Three methods of stored energy analysis are developed, and the mechanism behind stored energy distortion in the test facilities is revealed. Moreover, the application of stored energy analysis is demonstrated for the ACME test facility newly built in China. The results show that the similarity requirements of three methods analyzing the stored energy release decrease gradually. The physical mechanism of stored energy release process can be characterized by the dimensionless numbers including Stanton number, Fourier number and Biot number. Under the premise of satisfying the overall similarity of natural circulation, the stored energy release process in the scale-down test facilities cannot maintain exact similarity. The results of the application of stored energy analysis illustrate that both the transient release process and integral total stored energy of the reactor pressure vessel wall of CAP1400 power plant can be well reproduced in the ACME test facility.

  12. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    International Nuclear Information System (INIS)

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  13. Flowing and freezing of molten core materials during unprotected loss of flow accidents in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Maschek, W.; Royl, P.

    1988-09-01

    Flowing and freezing of mobile core materials change the fissile material distribution and core-inventory under hypothetical accident conditions and determine the path to permanent shutdown of the neutronic events and the energetic potentials. The report classifies the bondary conditions for such flowing and freezing processes by going through the different situations under which these processes can occur in the scenario of the unprotected loss of flow (ULOF) accident. The classification is based on ULOF-accident simulations for a homogeneous reactor core concept of a 300 MWe LMFBR (e. g. SNR-300), but many boundary conditions are also characteristic for other core designs. A review of the relevant experiments is then made to correlate the available experimental information with these classified boundary conditions and to look at the resulting flowing and freezing processes. Boundary conditions that have been experimentally shown to be important are assigned high priorities. The data are specifically valued in relation to these boundary conditions of high priorities. The review includes the major experimental programs with published results. The discussion shows that the results from most clean condition tests for melt relocations are valuable for a better understanding of basic phenomena and analytical model development, but are not directly applicable to real accident conditions. The database for relevant boundary conditions from the ULOF scenario is limited and largely included in integral sequence tests from which quantitative information for modelling is difficult to obtain. Needs for additional investigations are identified. The suggestions are mainly restricted to investigations of the early phase of fuel removal. They are given with reference to candidate facilities and include relocations in the subassemblies and in the inter-subassembly gaps. Particular emphasis is put on the leading edge properties and possible driving forces to which more attention

  14. Uncertainty and sensitivity analysis on probabilistic safety assessment of an experimental facility

    International Nuclear Information System (INIS)

    Burgazzi, L.

    2000-01-01

    The aim of this work is to perform an uncertainty and sensitivity analysis on the probabilistic safety assessment of the International Fusion Materials Irradiation Facility (IFMIF), in order to assess the effect on the final risk values of the uncertainties associated with the generic data used for the initiating events and component reliability and to identify the key quantities contributing to this uncertainty. The analysis is conducted on the expected frequency calculated for the accident sequences, defined through the event tree (ET) modeling. This is in order to increment credit to the ET model quantification, to calculate frequency distributions for the occurrence of events and, consequently, to assess if sequences have been correctly selected on the probability standpoint and finally to verify the fulfillment of the safety conditions. Uncertainty and sensitivity analysis are performed using respectively Monte Carlo sampling and an importance parameter technique. (author)

  15. Accident dynamics of LR-0 reactor

    International Nuclear Information System (INIS)

    Vorisek, M.; Tinka, I.

    1981-01-01

    The results are given of calculating the accident dynamics of the LR-0 light water experimental zero power reactor. Calculations of the time dependence of power, the total released energy, the temperature of fuel and its cladding were made using program FATRAP for different values of the total inserted reactivity. Using the results, an analysis is made of hypothetic accident states of the LR-0 reactor. The results are shown graphically. (J.B.)

  16. Presentations for the 2nd Muon science experimental facility advisory committee meeting

    International Nuclear Information System (INIS)

    2004-06-01

    This booklet is reporting a committee-report and materials presented at the Second J-PARC Muon-Science-Experimental-Facility Advisory Committee (MuSAC) held at KEK on February 19 and 20, 2004. Distinguished examples of deep considerations and discussions are the following three directions: 1) as for the facility construction, new high-radiation effect on graphite-production target was pointed out; 2) towards the first-beam experiment, more detailed instrumentations were proposed; 3) regarding financial and muon-power arrangements for the future facility operation, the concept of 'core-user' was introduced. The content included executive summary, introduction, response to recommendations from the 1st MuSAC meeting, review of J-PARC MSL construction plan, core funding issues, access to muon beams for Japanese physicists, conclusions and recommendations and appendices. (S.Y.)

  17. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    International Nuclear Information System (INIS)

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B.

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked ampersand influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs

  18. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B. [and others

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked & influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs.

  19. Mutual emergency assistance for radiation accidents

    International Nuclear Information System (INIS)

    1971-01-01

    This document presents the result of a questionnaire survey conducted in order to assess what type of emergency assistance IAEA member states could provide in the event of radiation accidents. The survey covers resources like skilled personnel in collection, analysis and interpretation of data, surveying and radiation protection equipment, radiochemical analysis facilities, and medical assistance capacities

  20. Particular intervention plan of the Areva La Hague facility - 2012 edition

    International Nuclear Information System (INIS)

    2012-01-01

    The Particular intervention plan (PPI in French) is an emergency plan which foresees the measures and means to be implemented to address the potential risks of the presence and operation of a nuclear facility. This plan is implemented and developed by the Prefect in case of nuclear accident (or incident leading to a potential accident), the impact of which extending beyond the facility perimeter. It represents a special section of the organisation plan for civil protection response (ORSEC plan). The PPI foresees the necessary measures and means for crisis management during the first hours following the accident and is triggered by the Department Prefect according to the information provided by the facility operator. Its aim is to protect the populations leaving within 10 km of the facility against a potential radiological hazard. The PPI describes: the facility, the intervention area, the protection measures for the population, the conditions of emergency plan triggering, the crisis organisation, the action forms of the different services, and the post-accident stage. This document is the public version of the Particular intervention plan of the Areva NC La Hague fuel reprocessing plant (located on the territories of Beaumont-Hague, Digulleville, Herqueville, Jobourg and Omonville-la-Petite towns, Manche, France) which comprises the totally decommissioned UP2 400 unit, and the UP2 800 production unit still in operation

  1. SIMBATH 1976-1992, seventeen years of experimental investigation of key issues concerned with severe reactor accidents

    International Nuclear Information System (INIS)

    Kaiser, A.; Peppler, W.; Will, H.

    1994-01-01

    The course of the initiating phase of severe fast reactor accidents is determined by early material motion. In simulation experiments (SIMBATH, simulation experiments in fuel element mock-ups with thermite) the behavior of single pin, 7 pin, 19 pin, 37 pin bundles undergoing meltdown was investigated. Thermite (Al + Fe 2 O 3 ) filled tubes were used to simulate fuel rods, while exothermal heat of the thermite reaction simulated the nuclear heat. The energy of 3.4 kJ per centimeter of pin length resulted in melting temperature of about 3200 K. SIMBATH is an out-of-pile experimental program with non-radioactive materials which provided the possibility to perform numerous experiments. The x-ray high speed photography used in the test enabled to visualise material motion and relocation qualitatively, and furthermore to gain quantitative results by additionally installed photodiodes. The results of the experiment serve as a database to evaluate physical phenomena relevant to be modelled by computer codes (SIMMER) and to verify the codes. The experiments were carried out either in stagnant sodium with an axial temperature gradient, or in flowing sodium, simulating unprotected loss of flow (ULOF) or unprotected transient overpower accidents (UTOP) conditions, respectively

  2. Systematic approach for assessment of accident risks in chemical and nuclear processing

    International Nuclear Information System (INIS)

    Senne Junior, Murillo

    2003-07-01

    The industrial accidents which occurred in the last years, particularly in the 80's, contributed a significant way to draw the attention of the government, industry and the society as a whole to the mechanisms for preventing events that could affect people's safety and the environment quality. Techniques and methods extensively used the nuclear, aeronautic and war industries so far were adapted to performing analysis and evaluation of the risks associated to other industrial activities, especially in the petroleum, chemistry and petrochemical areas. The risk analysis in industrial facilities is carried out through the evaluation of the probability or frequency of the accidents and their consequences. However, no systematized methodology that could supply the tools for identifying possible accidents likely to take place in an installation is available in the literature. Neither existing are methodologies for the identification of the models for evaluation of the accidents' consequences nor for the selection of the available techniques for qualitative or quantitative analysis of the possibility of occurrence of the accident being focused. The objective of this work is to develop and implement a methodology for identification of the risks of accidents in chemical and nuclear processing facilities as well as for the evaluation of their consequences on persons. For the development of the methodology, the main possible accidents that could occur in such installations were identified and the qualitative and quantitative techniques available for the identification of the risks and for the evaluation of the consequences of each identified accidents were selected. The use of the methodology was illustrated by applying it in two case examples adapted from the literature, involving accidents with inflammable, explosives, and radioactive materials. The computer code MRA - Methodology for Risk Assessment was developed using DELPHI, version 5.0, with the purpose of systematizing

  3. Study on the offsite emergency planning against an accident in NPP

    International Nuclear Information System (INIS)

    Khang, Byung Oui; Lee, Goan Yup; Wu, Jong Sup; Kim, Joo Hag; Lee, Jong Tai; Lee, Jae Eun; Ahn, Chul Hyun; Ahn, Jae Hyun; Park, Dae Woo

    2009-12-01

    - Proposing effective local nuclear emergency preparedness system against nuclear/radiological accidents. - Proposing improved preparation/operation scheme on emergency response facilities, installations and equipment. - Establishing protection scheme on the general public against nuclear/radiological accidents. - Proposing effective preparation/operation scheme on local radioactive monitoring system. - Establishing effective training/drill scheme on the nuclear emergency preparedness. - Proposing effective technical administrative system of the local government (Busan metropolitan city)

  4. An Experimental Study on the Heat Focusing of the Metallic layer in a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je-Young; Chung, Bum-Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-10-15

    By flooding the reactor cavity that surrounds the vessel, significant energy can be removed from relocated corium materials through the vessel wall. The aim of this study is to investigate the heat focusing depending on the aspect ratios and heat transfer characteristic of upper boundary for applications related to severe accident phenomena. Experiments were carried out for Rayleigh numbers and aspect ratio in the range of 8.49x10{sup 7}-5.49x10{sup 9}, 0.128-0.512 respectively. Also, the conditions of the top wall and the side wall are considered: (a) top plate cooling, side wall adiabatic, (b) top plate adiabatic, side wall cooling, (c) both walls cooling. In order to achieve high Rayleigh numbers, the heat transfer experiments were replaced by mass transfer experiments based on heat and mass transfer analogy concept. A sulfuric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system was adopted as the mass transfer system.An experimental study was performed to investigate the focusing effect appeared in the metallic layer in a severe accident condition. Mass transfer experiments, based on the analogy concept, carried out in order to achieve high Rayleigh number. The height of the side wall was varied for three different cooling conditions: top only, side only, and both top and side. The experimental results agreed well with the Rayleigh-Benard convection correlations of Dropkin and Somerscales and Globe and Dropkin. The test results for the three configurations (only top cooling, only side wall cooling and both walls cooling) presented that the heat transfer on side wall cooling condition without top cooling is biggest. Also, the heat transfer was enhanced by decreasing the aspect ratio (H/R)

  5. Occupational accidents: a perspective of pakistan construction industry

    International Nuclear Information System (INIS)

    Ali, T.H.; Khahro, S.H.; Memon, F.A.

    2014-01-01

    It has been observed that the construction industry is one of the notorious industry having higher rate of facilities and injuries. Resulting in higher financial losses and work hour losses, which are normally faced by this industry due to occupational accidents. Construction industry has the highest occupational accidents rate recorded throughout the world after agriculture industry. The construction work site is often a busy place having an incredibly high account of activities taking place, where everyone is moving in frenzy having particular task assigned. In such an environment, occupational accidents do occur. This paper gives information about different types of occupational accidents and their causes in the construction industry of Pakistan. A survey has been carried out to identify the types of occupational accidents often occur at construction site. The impact of each occupational accident has also been identified. The input from the different stakeholders involved on the work site was analyzed using RIW (Relative Importance Weight) method. The findings of this research show that fall from elevation, electrocution from building power and snake bite are the frequent occupational accidents occur within the work site where as fall from elevation, struck by, snake bite and electrocution from faulty tool are the occupational accident with high impact within the construction industry of Pakistan. The results also shows the final ranking of the accidents based on higher frequency and higher impact. Poor Management, Human Element and Poor Site Condition are found as the root causes leading to such occupational accidents. Hence, this paper identify that what type of occupational accidents occur at the work place in construction industry of pakistan, in order to develop the corrective actions which should be adequate enough to prevent the re-occurrence of such accidents at work site. (author)

  6. Closure of 324 Facility potential HEPA filter failure unreviewed safety questions

    International Nuclear Information System (INIS)

    Enghusen, M.B.

    1997-01-01

    This document summarizes the activities which occurred to resolve an Unreviewed Safety Question (USQ) for the 324 Facility [Waste Technology Engineering Laboratory] involving Potential HEPA Filter Breach. The facility ventilation system had the capacity to fail the HEPA filters during accident conditions which would totally plug the filters. The ventilation system fans were modified which lowered fan operating parameters and prevented HEPA filter failures which might occur during accident conditions

  7. Analysis of search and rescue emergency evaluation in ship accidents in Indonesia

    Directory of Open Access Journals (Sweden)

    Arleiny

    2018-01-01

    Full Text Available The objectives og this research is to describe the factors causing ship accident in Indonesia and know the effectiveness of SAR emergency in ship accident in Indonesia. The research method used in this research is qualitative research. Techniques Collection of literature study data and documents. Data validity method using triangulation. Data analysis uses interactive data analysis. The conclusions of this study are Factors that cause the occurrence of ship accidents in Indonesia, among others, the resources of the crew, the eligibility of ships, supporting facilities for shipping, operators, lack of supervision of apparatus, service users and other factors. The high number of ship accidents in Indonesia shows the ineffective implementation of SAR in ship accident in Indonesia.

  8. Use of radiological accident experience in establishing appropriate perspectives in emergency planning

    International Nuclear Information System (INIS)

    Selby, J.M.; Vallario, E.J.; Moeller, D.W.; Stephan, J.G.

    1987-08-01

    Within a nuclear facility, an emergency can range from a situation that only involves the employees of that facility to a series of events that have both onsite and offsite consequences. Analyses of nuclear and non-nuclear emergencies can provide valuable information on the causes of, as well as the problems encountered during emergencies. Reports on facility emergencies indicate that up to 90% involve human error. Such events occur more frequently during the night shifts or on weekends. These occurrences may result from the absence of experienced personnel as well as the reduced alertness of onsite personnel. Therefore, this paper emphasizes the human element in a review of accidents that have occurred at nuclear facilities including Windscale, SL-1, the Recuplex criticality, the Wood River Junction criticality, the Browns Ferry fire, Three Mile Island, and Chernobyl. These accidents are described, and their consequences are evaluated. The information obtained from these evaluations may be useful for inclusion in nuclear plant operating and testing procedures. 21 refs

  9. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    International Nuclear Information System (INIS)

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo

    2016-01-01

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted

  10. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted.

  11. Theoretical and experimental investigations into the filtration of the atmosphere within the containments of pressurized water reactors after serious reactor accidents

    International Nuclear Information System (INIS)

    Dillmann, H.G.; Pasler, H.

    1981-01-01

    For serious accidents in nuclear power stations equipped with pressurized water reactors and with boundary conditions assumed, a conservative evaluation was made of the condition of the atmosphere within the reactor containment, particularly referring to pressure, temperature, air humidity and activity release. Based on these data the loads were calculated of accident filter systems of different designs as a function of parameters such as the course of releases and the volume flow through the filter systems. A number of experimental results are indicated on the behaviour of iodine sorption materials under extreme conditions including the least favorable temperature, humidity and pressure derived from the calculations above. Reference is made to the targets of future R and D work on aerosol removal

  12. Theoretical and experimental investigations on the behaviour of iodine during severe accidents: volatile iodine. Final report

    International Nuclear Information System (INIS)

    Funke, F.; Zeh, P.; Greger, G.U.; Hellmann, S.

    1999-01-01

    Analysis of the consequences of severe accidents in nuclear power plants requires knowledge of the behaviour of radionuclides relevant from the radiological viewpoint, especially the iodine. The current modelling of iodine behaviour is not conclusive, owing to insufficiently known data. This project is intended to eliminate some of these data gaps in critical areas. 350 tests on the radiation-induced oxidation of elemental iodine (I 2 ) in the containment atmosphere were performed yielding an extended database. Moreover, irradiation tests were performed on the formation and decomposition of ozone which is a reaction partner for I 2 . The reaction with ozone converts volatile I 2 into non-volatile iodine oxides or iodate. An improved kinetic modelling was developed for the iodine accident code IMPAIR. Now the model is valid also for steam-containing atmospheres and, additionally, considers dose rate and thus the actual ozone concentration. An assessment of the literature concludes that β and γ radiation have no different impact on iodine chemistry and thus do not need to be modelled separately in iodine accident codes. An assessment of the literature shows a partly significant chemical interaction of volatile iodine with aerosols. Since such reactions lead to a faster decrease of volatile iodine at least at high aerosol concentrations, a modelling should be foreseen in the future. In the frame of the international ISP-41 project, calculations to an integral test in the Canadian Radioiodine Test Facility (RTF) were performed with IMPAIR. The existing model of the radiation-induced I 2 formation in the sump in IMPAIR is identified as a weakness requiring future improvement. A theoretical assessment on the iodine chemistry in the droplets of a spray system concludes that a modelling is necessary in case of spraying with fresh water, and that this is already contained in available spray models. During recirculation spraying in an examplary, hypothetical EPR case, no

  13. Experiments on injection performance of SMART ECC facility using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Il; Cho, Seok; Ko, Yung Joo; Min, Kyoung Ho; Shin, Yong Cheol; Kwon, Tae Soon; Yi, Sung Jae; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SMART (System-integrated Modular Advanced ReacTor), an advanced integrated PWR is now in the under developing stages by KAERI. Such integral PWR excludes large-size piping of the primary system of conventional PWR and incorporates the SGs into RPV, which means no LBLOCA could occur in SMART. Therefore, the SBLOCA is considered as a major DBA (Design Basis Accident) in SMART and it is mainly analyzed by using TASS/SMR computer code. The TASS/SMR code should be validated using experimental data from both Integral Effect Test and Separate Effect Test facilities. To investigate injection performance of the ECC system, on SET facility, named as SWAT (SMART ECC Water Asymmetric Two-phase choking test facility), has been constructed at KAERI. The SWAT simulates the geometric configurations of the SG-side upper downcomer annulus and ECCSs of those of SMART. It is designed based on the modified linear scaling method with a scaling ratio of 1/5, to preserve the geometrical similarity and minimize gravitational distortion. The purpose of the SWAT tests is to investigate the safety injection performance, such as the ECC bypass in the downcomer and the penetration rate in the core during the SBLOCA, and hence to produce experimental data to validate and the prediction capability of safety analysis codes, TASS/SMR

  14. United States position on severe accidents

    International Nuclear Information System (INIS)

    Ross, D.F.

    1988-01-01

    The United States policy on severe accidents was published in 1985 for both new plant applications and for existing plants. Implementation of this policy is in progress. This policy, aided by a related safety goal policy and by analysis capabilities emerging from improved understanding of accident phenomenology, is viewed as a logical development from the pioneering work in the WASH-1400 Reactor Safety Study published by the United States Nuclear Regulatory Commission (NRC) in 1975. This work provided an estimate of the probability and consequences of severe accidents which, prior to that time, had been mostly evaluated by somewhat arbitrary assumptions dating back 30 years. The early history of severe accident evaluation is briefly summarized for the period 1957-1979. Then, the galvanizing action of Three Mile Island Unit 2 (TMI-2) on severe accident analysis, experimentation and regulation is reviewed. Expressions of US policy in the form of rulemaking, severe accident policy, safety research, safety goal policy and court decisions (on adequacy of safety) are discussed. Finally, the NRC policy as of March 1988 is stated, along with a prospective look at the next few years. (author). 19 refs

  15. Experimental data from a full-scale facility investigating radiant and convective terminals

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    The objective of this technical report is to provide information on the accuracy of the experiments performed in “the Cube” (part I, II and III). Moreover, this report lists the experimental data, which have been monitored in the test facility (part IV). These data are available online and can be...

  16. ANSI/ANS-8.23-1997: nuclear criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Baker, J.S.

    2004-01-01

    American National Standard ANSUANS-8.23 was developed to expand upon the basic emergency response guidance given in American National Standard, 'Administrative Practices for Nuclear Criticality Safety' ANSI/ANS-8.19-1996 (Ref. 1). This standard provides guidance for minimizing risks to personnel during emergency response to a nuclear criticality accident outside reactors. This standard is intended to apply to those facilities for which a criticality accident alarm system, as specified in American National Standard, 'Criticality Accident Alarm System', ANSI/ANS-8.3-1997 (Ref. 2) is in use. The Working Group was established in 1990, with Norman L. Pruvost as chairman. The Working Group had up to twenty-three members representing a broad range of the nuclear industry, and has included members from Canada, Japan and the United Kingdom. The initial edition of ANSI/ANS-8.23 was approved by the American National Standards Institute on December 30, 1997. It provides guidance for the following topics: (1) Management and technical staff responsibilities; (2) Evaluation of a potential criticality accident; (3) Emergency plan provisions; (4) Evacuation; (5) Re-entry, rescue and stabilization; and (6) Classroom training, exercises and evacuation drills. This guidance is not for generic emergency planning issues, but is specific to nuclear criticality accidents. For example, it assumes that an Emergency Plan is already established at facilities that implement the standard. During the development of the initial edition of ANSI/ANS-8.23, each Working Group member evaluated potential use of the standard at a facility with which the member was familiar. This revealed areas where a facility could have difficulty complying with the standard. These reviews helped identify and eliminate many potential problems and ambiguities with the guidance. The Working Group has received very limited feedback from the user community since the first edition of the standard was published. Suggestions

  17. Simulation of a hypothetical core disruptive accident in the mars test-facility

    International Nuclear Information System (INIS)

    Robbe, M.F.; Lepareux, M.

    2001-01-01

    In France, a large experimental programme MARA/MARS was undertaken in the 80's to estimate the mechanical consequences of an HCDA (Hypothetical Core Disruptive Accident) and to validate the SIRIUS computer code used at that time for the numerical simulations. At the end of the 80's, it was preferred to add a HCDA sodium-bubble-argon tri-component constitutive law to the general ALE fast dynamics finite element CASTEM-PLEXUS code rather than going on developing and using the specialized SIRIUS code. The experimental results of the MARA programme were used in the 90's to validate and qualify the CASTEM-PLEXUS code. A first series of computations of the tests MARA 8, MARA 10 and MARS was realised. The simulations showed a rather good agreement between the experimental and computed results for the MARA 8 and MARA 10 tests - even if there were some discrepancies - but the prediction of the MARS structure displacements and strains was overestimated. This conservatism was supposed to come from the fact that several MARS non axisymmetric structures like core elements, pumps and heat exchangers were not represented in the CASTEM-PLEXUS model. These structures, acting as porous barriers, had a protective effect on the mock-up containment by absorbing energy and slowing down the fluid impacting the containment. For these reasons, we developed in CASTEM-PLEXUS a new HCDA constitutive law taking into account the presence of the internal structures (without meshing them) by means of an equivalent porosity method. In other respects, the process used for dealing with the fluid-structure coupling in CASTEM-PLEXUS was improved. Thus a second series of simulations of the tests MARA8 and MARA10 was realised. A simulation of the test MARS was carried out too with the same simplified representation of the peripheral structures as in order to estimate the improvement provided by the new fluid-structure coupling. This paper presents a third numerical simulation of the MARS test with the

  18. Scoping-level Probabilistic Safety Assessment of a complex experimental facility: Challenges and first results from the application to a neutron source facility (MEGAPIE)

    International Nuclear Information System (INIS)

    Podofillini, L.; Dang, V.N.; Thomsen, K.

    2008-01-01

    This paper presents a scoping-level application of Probabilistic Safety Assessment (PSA) to selected systems of a complex experimental facility. In performing a PSA for this type of facility, a number of challenges arise, mainly due to the extensive use of electronic and programmable components and of one-of-a-kind components. The experimental facility is the Megawatt Pilot Target Experiment (MEGAPIE), which was hosted at the Paul Scherrer Institut (PSI). MEGAPIE demonstrated the feasibility of a liquid lead-bismuth target for spallation facilities at a proton beam power level of 1 MW. Given the challenges to estimate initiating event frequencies and failure event probabilities, emphasis is placed on the qualitative results obtainable from the PSA. Even though this does not allow a complete and appropriate characterization of the risk profile, some level of importance/significance evaluation was feasible, and practical and detailed recommendations on potential system improvements were derived. The second part of the work reports on a preliminary quantification of the facility risk. This provides more information on risk significance, which allows prioritizing the insights and recommendations obtained from the PSA. At the present stage, the limited knowledge on initiating and failure events is reflected in the uncertainties in their probabilities as well as in inputs quantified with bounding values. Detailed analyses to improve the quantification of these inputs, many of which turn out to be important contributors, were out of the scope of this study. Consequently, the reported results should be primarily considered as a demonstration of how quantification of the facility risk by a PSA can support risk-informed decisions, rather than precise figures of the facility risk

  19. Technology, safety, and costs of decommissioning reference light-water reactors following postulated accidents. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E S; Holter, G M

    1982-11-01

    Appendices contain information concerning the reference site description; reference PWR facility description; details of reference accident scenarios and resultant contamination levels; generic cleanup and decommissioning information; details of activities and manpower requirements for accident cleanup at a reference PWR; activities and manpower requirements for decommissioning at a reference PWR; costs of decommissioning at a reference PWR; cost estimating bases; safety assessment details; and details of post-accident cleanup and decommissioning at a reference BWR.

  20. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    International Nuclear Information System (INIS)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. (author)

  1. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    Science.gov (United States)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  2. Evaluation of selected ex-reactor accidents related to the tritium and medical isotope production mission at the FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1997-11-17

    The Fast Flux Test Facility (FFTF) has been proposed as a production facility for tritium and medical isotopes. A range of postulated accidents related to ex-reactor irradiated fuel and target handling were identified and evaluated using new source terms for the higher fuel enrichment and for the tritium and medical isotope targets. In addition, two in-containment sodium spill accidents were re-evaluated to estimate effects of increased fuel enrichment and the presence of the Rapid Retrieval System. Radiological and toxicological consequences of the analyzed accidents were found to be well within applicable risk guidelines.

  3. Nuclear Fuel Behaviour during Reactivity Initiated Accidents. Workshop Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    A reactivity initiated accident (RIA) is a nuclear reactor accident that involves an unwanted increase in fission rate and reactor power. The power increase may damage the reactor core. The main objective of the workshop was to review the current status of the experimental and analytical studies of the fuel behavior during the RIA transients in PWR and BWR reactors and the acceptance criteria for RIA in use and under consideration. The workshop was organized in an opening session and 5 technical sessions: 1) Recent experimental results and experimental techniques used; 2) Modelling and Data Interpretation; 3) Code Assessment; 4) RIA Core Analysis and 5) Revision and application of safety criteria

  4. Accident and emergency management

    International Nuclear Information System (INIS)

    Andersen, V.; Moellenbach, K.; Heinonen, R.; Jakobsson, S.; Kukko, T.; Berg, Oe.; Larsen, J.S.; Westgaard, T.; Magnusson, B.; Andersson, H.; Holmstroem, C.; Brehmer, B.; Allard, R.

    1988-06-01

    There is an increasing potential for severe accidents as the industrial development tends towards large, centralised production units. In several industries this has led to the formation of large organisations which are prepared for accidents fighting and for emergency management. The functioning of these organisations critically depends upon efficient decision making and exchange of information. This project is aimed at securing and possibly improving the functionality and efficiency of the accident and emergency management by verifying, demonstrating, and validating the possible use of advanced information technology in the organisations mentioned above. With the nuclear industry in focus the project consists of five main activities: 1) The study and detailed analysis of accident and emergency scenarios based on records from incidents and rills in nuclear installations. 2) Development of a conceptual understanding of accident and emergency management with emphasis on distributed decision making, information flow, and control structure sthat are involved. 3) Development of a general experimental methodology for evaluating the effects of different kinds of decision aids and forms of organisation for emergency management systems with distributed decision making. 4) Development and test of a prototype system for a limited part of an accident and emergency organisation to demonstrate the potential use of computer and communication systems, data-base and knowledge base technology, and applications of expert systems and methods used in artificial intelligence. 5) Production of guidelines for the introduction of advanced information technology in the organisations based on evaluation and validation of the prototype system. (author)

  5. Nuclear energy. Danger only in case of accidents?

    International Nuclear Information System (INIS)

    Scherb, Hagen; Voigt, Kristina; Kusmierz, Ralf

    2014-01-01

    The environmental impacts of nuclear energy are highly underestimated. Nuclear weapons, atomic bomb tests, and nuclear accidents are considered a danger for the environment and a human cancer risk. However, childhood leukemia is consistently elevated near nuclear power plants and the Chernobyl accident entailed elevated human birth sex ratios across Europe. We studied the annual sex ratio near nuclear facilities in Germany, France, and Switzerland at the municipality level. We will demonstrate that low doses of ionizing radiation cause effects in human beings. This is shown by strongly consistent spatial-temporal shifts in the human sex ratio trends in the vicinity of nuclear facilities. In the chosen countries complete official data on over 70 million gender specific annual births at the municipality level are available. By Lambert-93 coordinates (France) and GK3 coordinates (Germany, Switzerland) we determined the minimum distances of municipalities from major nuclear facilities. Spatial-temporal trend analyses of the annual sex ratio depending on municipalities' minimum distances from nuclear facilities were carried out. Applying ordinary linear logistic regression (jump or broken-stick functions) and non-linear logistic regression (Rayleigh functions) we demonstrate that the sex ratio at birth shows the influence of mutagenic ionizing radiation on human health. As important environmental chemical contaminants are also mutagenic, the usefulness of the sex ratio at birth as a genetic health indicator can be inferred by analogy.

  6. Nuclear energy. Danger only in case of accidents?

    Energy Technology Data Exchange (ETDEWEB)

    Scherb, Hagen; Voigt, Kristina; Kusmierz, Ralf [Helmholtz Zentrum Muenchen, Neuherberg (Germany). Inst. of Computational Biology

    2014-07-01

    The environmental impacts of nuclear energy are highly underestimated. Nuclear weapons, atomic bomb tests, and nuclear accidents are considered a danger for the environment and a human cancer risk. However, childhood leukemia is consistently elevated near nuclear power plants and the Chernobyl accident entailed elevated human birth sex ratios across Europe. We studied the annual sex ratio near nuclear facilities in Germany, France, and Switzerland at the municipality level. We will demonstrate that low doses of ionizing radiation cause effects in human beings. This is shown by strongly consistent spatial-temporal shifts in the human sex ratio trends in the vicinity of nuclear facilities. In the chosen countries complete official data on over 70 million gender specific annual births at the municipality level are available. By Lambert-93 coordinates (France) and GK3 coordinates (Germany, Switzerland) we determined the minimum distances of municipalities from major nuclear facilities. Spatial-temporal trend analyses of the annual sex ratio depending on municipalities' minimum distances from nuclear facilities were carried out. Applying ordinary linear logistic regression (jump or broken-stick functions) and non-linear logistic regression (Rayleigh functions) we demonstrate that the sex ratio at birth shows the influence of mutagenic ionizing radiation on human health. As important environmental chemical contaminants are also mutagenic, the usefulness of the sex ratio at birth as a genetic health indicator can be inferred by analogy.

  7. Operational safety assessment of underground test facilities for mined geologic waste disposal

    International Nuclear Information System (INIS)

    Elder, H.K.

    1993-01-01

    This paper describes the operational safety assessment for the underground facilities for the exploratory studies facility (ESF) at the Yucca Mountain Project. The systematic identification and evaluation of hazards related to the ESF is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach based on the analysis of potential accidents was used since radiological safety analysis was not required. The risk assessment summarized credible accident scenarios and the design provides mitigation of the risks to a level that the facility can be constructed and operated with an adequate level of safety. The risk assessment also provides reasonable assurance that all identifiable major accident scenarios have been reviewed and design mitigation features provided to ensure an adequate level of safety

  8. Dilatational behaviour of ZrNb1 fuel cans of a WWER-type reactor during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Adam, E.; Stephan, M.; Wetzel, L.

    1987-01-01

    Based on an assessment of various factors of influence on the performance of fuel cans during normal operation and imaginable accidents, the necessity of studying creep and burst behaviour of WWER-type fuel cans of ZrNb1 under simulated LOCA conditions has been proved and an experimental facility designed for this purpose is described. Control of fuel can temperature is accomplished through a minicomputer during the creep and bursts experiments. With this, various temperature loading profiles of the fuel cans can be realized. Experimental results on dilatational behaviour of ZrNb1 fuel cans from isothermal creep and burst experiments in air are presented and compared with values for Zircaloy. (author)

  9. Techniques and decision making in the assessment of off-site consequences of an accident in a nuclear facility

    International Nuclear Information System (INIS)

    1987-01-01

    This Guide is intended to complement the IAEA's existing technical guidance on emergency planning and preparedness by providing information and practical guidance related to the assessment of off-site consequences of an accident in a nuclear or radioactive materials installation and to the decision making process in implementing protective measures. This Guide contains information on emergency response philosophy, fundamental factors affecting accident consequences, principles of accident assessment, data acquisition and handling, systems, techniques and decision making principles. Many of the accident assessment concepts presented are considerably more advanced than some of those that now pertain in most countries. They could, if properly interpreted, developed and applied, significantly improve emergency response in the early and intermediate phases of an accident. Furthermore, they are considered to be applicable to a broad range of serious nuclear accidents and radiological emergencies. The extent of their application is governed by both the scale of the accident and by the availability of preplanned resources for accident assessment and emergency response. 68 refs, 28 figs, 14 tabs

  10. Experimental facilities for PEC reactor design central channel test loop: CPC-1 - thermal shocks loop: CEDI

    International Nuclear Information System (INIS)

    Calvaresi, C.; Moreschi, L.F.

    1983-01-01

    PEC (Prova Elementi di Combustibile: Fuel Elements Test) is an experimental fast sodium-cooled reactor with a power of 120 MWt. This reactor aims at studying the behaviour of fuel elements under thermal and neutron conditions comparable with those existing in fast power nuclear facilities. Given the particular structure of the core, the complex operations to be performed in the transfer cell and the strict operating conditions of the central channel, two experimental facilities, CPC-1 and CEDI, have been designed as a support to the construction of the reactor. CPC-1 is a 1:1 scale model of the channel, transfer-cell and loop unit of the channel, whereas CEDI is a sodium-cooled loop which enables to carry out tests of isothermal endurance and thermal shocks on the group of seven forced elements, by simulating the thermo-hydraulic and mechanical conditions existing in the reactor. In this paper some experimental test are briefy discussed and some facilities are listed, both for the CPC-1 and for the CEDI. (Auth.)

  11. The PSI Artist Project: Aerosol Retention and Accident Management Issues Following a Steam Generator Tube Rupture

    International Nuclear Information System (INIS)

    Guntay, Salih; Dehbi, Abdel; Suckow, Detlef; Birchley, Jon

    2002-01-01

    Steam generator tube rupture (SGTR) incidents, such as those, which occurred in various operating pressurized, water reactors in the past, are serious operational concerns and remain among the most risk-dominant events. Although considerable efforts have been spent to understand tube degradation processes, develop improved modes of operation, and take preventative and corrective measures, SGTR incidents cannot be completely ruled out. Under certain conditions, high releases of radionuclides to the environment are possible during design basis accidents (DBA) and severe accidents. The severe accident codes' models for aerosol retention in the secondary side of a steam generator (SG) have not been assessed against any experimental data, which means that the uncertainties in the source term following an un-isolated SGTR concurrent with a severe accident are not currently quantified. The accident management (AM) procedures aim at avoiding or minimizing the release of fission products from the SG. The enhanced retention of activity within the SG defines the effectiveness of the accident management actions for the specific hardware characteristics and accident conditions of concern. A sound database on aerosol retention due to natural processes in the SG is not available, nor is an assessment of the effect of management actions on these processes. Hence, the effectiveness of the AM in SGTR events is not presently known. To help reduce uncertainties relating to SGTR issues, an experimental project, ARTIST (Aerosol Trapping In a Steam generator), has been initiated at the Paul Scherrer Institut to address aerosol and droplet retention in the various parts of the SG. The test section is comprised of a scaled-down tube bundle, a full-size separator and a full-size dryer unit. The project will study phenomena at the separate effect and integral levels and address AM issues in seven distinct phases: Aerosol retention in 1) the broken tube under dry secondary side conditions, 2

  12. Modeling of criticality accidents and their environmental consequences

    International Nuclear Information System (INIS)

    Thomas, W.; Gmal, B.

    1987-01-01

    In the Federal Republic of Germany, potential radiological consequences of accidental nuclear criticality have to be evaluated in the licensing procedure for fuel cycle facilities. A prerequisite to this evaluation is to establish conceivable accident scenarios. First, possibilities for a criticality exceeding the generally applied double contingency principle of safety are identified by screening the equipment and operation of the facility. Identification of undetected accumulations of fissile material or incorrect transfer of fissile solution to unfavorable geometry normally are most important. Second, relevant and credible scenarios causing the most severe consequences are derived from these possibilities. For the identified relevant scenarios, time-dependent fission rates and reasonable numbers for peak power and total fissions must be determined. Experience from real accidents and experiments (KEWB, SPERT, CRAC, SILENE) has been evaluated using empirical formulas. To model the time-dependent behavior of criticality excursions in fissile solutions, a computer program FELIX has been developed

  13. A Bayesian ensemble of sensitivity measures for severe accident modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Vagnoli, Matteo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge, Fondation EDF – Electricite de France Ecole Centrale, Paris, and Supelec, Paris (France); Pourgol-Mohammad, Mohammad [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • We propose a sensitivity analysis (SA) method based on a Bayesian updating scheme. • The Bayesian updating schemes adjourns an ensemble of sensitivity measures. • Bootstrap replicates of a severe accident code output are fed to the Bayesian scheme. • The MELCOR code simulates the fission products release of LOFT LP-FP-2 experiment. • Results are compared with those of traditional SA methods. - Abstract: In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: (i) the propagation of the uncertainty in the input variables through the severe accident code; (ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of finite mixture models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; (iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley–Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the loss of fluid test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).

  14. Determination of gamma-ray exposure rate from short-lived fission products under criticality accident conditions

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Ohno, Akio; Aizawa, Eijyu

    2002-01-01

    For the assessment of γ-ray doses from short-lived fission products (FPs) under criticality accident conditions, γ-ray exposure rates varying with time were experimentally determined in the Transient Experiment Critical Facility (TRACY). The data were obtained by reactivity insertion in the range of 1.50 to 2.93$. It was clarified from the experiments that the contribution of γ-ray from short-lived FPs to total exposure during the experiments was evaluated to be 15 to 17%. Hence, the contribution cannot be neglected for the assessment of γ-ray doses under criticality accident conditions. Computational analyses also indicated that γ-ray exposure rates from short-lived FPs calculated with the Monte Carlo code, MCNP4B, and photon sources based on the latest FP decay data, the JENDL FP Decay Data File 2000, well agreed with the experimental results. The exposure rates were, however, extremely underestimated when the photon sources were obtained by the ORIGEN2 code. The underestimation is due to lack of energy-dependent photon emission data for major short-lived FP nuclides in the photon database attached to the ORIGEN2 code. It was also confirmed that the underestimation arose in 1,000 or less of time lapse after an initial power burst. (author)

  15. NIRS report of the criticality accident in a uranium conversion test plant in Tokai-mura

    International Nuclear Information System (INIS)

    2001-01-01

    This report is a detailed account of the roles that National Institute of Radiological Sciences (NIRS) played at the criticality accident in the title, which occurred at around 10:35, on Sep. 30, 1999 and resulted in death of two workers after all, and is published to discharge NIRS responsibilities in regards to the accident. The accident caused many residents concern on their health and rumors had both social and economic consequences. The report involves chapters of detailed outline of the accident; demand for acceptance of the victims and communications until the identification of the criticality'' accident; the acceptance and initial treatment; the exposure dose estimation (based on acute symptoms, on physics, on chromosomal analyses and on neutron-activated dental metals, and detailed analyses for dose distribution); decision made for therapeutic strategies; cooperation with the Network Council for Radiation Emergency and with other medical facilities; the urgent import of medicine; treatment and processes (patients, nursing system and radiation injuries); radiation protection in medical facilities; response to nearby residents of the Plant; international response; press release; Uranium Processing Plant Criticality Accident Investigation Committee and the Health Management Committee organized by the Nuclear Safety Commission; handling of information; and radiation emergency medical preparedness at the NIRS (future issues and prospect). The report is hopefully useful in preventing the occurrence of future accidents. (N.I.)

  16. Accident management for severe accidents

    International Nuclear Information System (INIS)

    Bari, R.A.; Pratt, W.T.; Lehner, J.; Leonard, M.; Disalvo, R.; Sheron, B.

    1988-01-01

    The management of severe accidents in light water reactors is receiving much attention in several countries. The reduction of risk by measures and/or actions that would affect the behavior of a severe accident is discussed. The research program that is being conducted by the US Nuclear Regulatory Commission focuses on both in-vessel accident management and containment and release accident management. The key issues and approaches taken in this program are summarized. 6 refs

  17. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Glaenneskog, H.; Ekberg, C. (Chalmers Univ. of Technology (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT Technical Research Centre of Finland (Finland))

    2010-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment was started. During 2009, oxidation of iodine, especially organic iodine, was studied within the NROI project. The chemistry of organic iodine in the gas phase is still one of the greatest remaining uncertainties concerning iodine behaviour during a severe accident. During the first year of the NROI project the oxidation of elemental iodine, I2, with ozone and UV-light was investigated. In this study organic iodide, in this case methyl iodide, was investigated in similar conditions as in the NROI-1 project. The experimental facility applied in this study is based on the sampling system built at VTT for the ISTP project CHIP conducted by IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UVC intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. Instant and extensive particle formation occurred when methyl iodide was transported through a UVC radiation field and/or when ozone was present. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-150 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine

  18. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    International Nuclear Information System (INIS)

    Holm, J.; Glaenneskog, H.; Ekberg, C.; Kaerkelae, T.; Auvinen, A.

    2010-05-01

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment was started. During 2009, oxidation of iodine, especially organic iodine, was studied within the NROI project. The chemistry of organic iodine in the gas phase is still one of the greatest remaining uncertainties concerning iodine behaviour during a severe accident. During the first year of the NROI project the oxidation of elemental iodine, I2, with ozone and UV-light was investigated. In this study organic iodide, in this case methyl iodide, was investigated in similar conditions as in the NROI-1 project. The experimental facility applied in this study is based on the sampling system built at VTT for the ISTP project CHIP conducted by IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UVC intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. Instant and extensive particle formation occurred when methyl iodide was transported through a UVC radiation field and/or when ozone was present. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-150 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine

  19. Accident and Off-Normal Response and Recovery from Multi-Canister Overpack (MCO) Processing Events

    International Nuclear Information System (INIS)

    ALDERMAN, C.A.

    2000-01-01

    In the process of removing spent nuclear fuel (SNF) from the K Basins through its subsequent packaging, drymg, transportation and storage steps, the SNF Project must be able to respond to all anticipated or foreseeable off-normal and accident events that may occur. Response procedures and recovery plans need to be in place, personnel training established and implemented to ensure the project will be capable of appropriate actions. To establish suitable project planning, these events must first be identified and analyzed for their expected impact to the project. This document assesses all off-normal and accident events for their potential cross-facility or Multi-Canister Overpack (MCO) process reversal impact. Table 1 provides the methodology for establishing the event planning level and these events are provided in Table 2 along with the general response and recovery planning. Accidents and off-normal events of the SNF Project have been evaluated and are identified in the appropriate facility Safety Analysis Report (SAR) or in the transportation Safety Analysis Report for Packaging (SARP). Hazards and accidents are summarized from these safety analyses and listed in separate tables for each facility and the transportation system in Appendix A, along with identified off-normal events. The tables identify the general response time required to ensure a stable state after the event, governing response documents, and the events with potential cross-facility or SNF process reversal impacts. The event closure is predicated on stable state response time, impact to operations and the mitigated annual occurrence frequency of the event as developed in the hazard analysis process

  20. Design and Development of a Severe Accident Training System

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Park, Sun Hee; Kim, Dong Ha

    2005-01-01

    The nuclear plants' severe accidents have two big characteristics. One is that they are very rare accidents, and the other is that they bring extreme conditions such as the high pressure and temperature in their process. It is, therefore, very hard to get the severe accident data, without inquiring that the data should be real or experimental. In fact, most of severe accident analyses rely on the simulation codes where almost all severe accident knowledge is contained. These codes are, however, programmed by the Fortran language, so that their output are typical text files which are very complicated. To avoid this kind of difficulty in understanding the code output data, several kinds of graphic user interface (GUI) programs could be developed. In this paper, we will introduce a GUI system for severe accident management and training, partly developed and partly in design stage