WorldWideScience

Sample records for accident experimental facility

  1. Integral Test Facility PKL: Experimental PWR Accident Investigation

    OpenAIRE

    2012-01-01

    Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR) at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circul...

  2. Integral Test Facility PKL: Experimental PWR Accident Investigation

    Directory of Open Access Journals (Sweden)

    Klaus Umminger

    2012-01-01

    Full Text Available Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circulation pumps and steam generators (SGs arranged symmetrically around the reactor pressure vessel (RPV. The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermal-hydraulic phenomena. This paper presents a survey of test objectives and programs carried out to date. It also describes the test facility in its present state. Some important results obtained over the years with focus on investigations carried out since the beginning of the international cooperation are exemplarily discussed.

  3. Systematics of Reconstructed Process Facility Criticality Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; McLaughlin, T.P.; Monahan, S.P.

    1999-09-19

    The systematics of the characteristics of twenty-one criticality accidents occurring in nuclear processing facilities of the Russian Federation, the United States, and the United Kingdom are examined. By systematics the authors mean the degree of consistency or agreement between the factual parameters reported for the accidents and the experimentally known conditions for criticality. The twenty-one reported process criticality accidents are not sufficiently well described to justify attempting detailed neutronic modeling. However, results of classic hand calculations confirm the credibility of the reported accident conditions.

  4. Source term evaluation for accident transients in the experimental fusion facility ITER

    Energy Technology Data Exchange (ETDEWEB)

    Virot, F.; Barrachin, M.; Cousin, F. [IRSN, BP3-13115, Saint Paul lez Durance (France)

    2015-03-15

    We have studied the transport and chemical speciation of radio-toxic and toxic species for an event of water ingress in the vacuum vessel of experimental fusion facility ITER with the ASTEC code. In particular our evaluation takes into account an assessed thermodynamic data for the beryllium gaseous species. This study shows that deposited beryllium dusts of atomic Be and Be(OH){sub 2} are formed. It also shows that Be(OT){sub 2} could exist in some conditions in the drain tank. (authors)

  5. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  6. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  7. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  8. Assessment of Loads and Performance of a Containment in a Hypothetical Accident (ALPHA). Facility design report

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Moriyama, Kiyofumi; Ito, Hideo; Komori, Keiichi; Sonobe, Hisao; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-06-01

    In the ALPHA (Assessment of Loads and Performance of Containment in Hypothetical Accident) program, several tests have been performed to quantitatively evaluate loads to and performance of a containment vessel during a severe accident of a light water reactor. The ALPHA program focuses on investigating leak behavior through the containment vessel, fuel-coolant interaction, molten core-concrete interaction and FP aerosol behavior, which are generally recognized as significant phenomena considered to occur in the containment. In designing the experimental facility, it was considered to simulate appropriately the phenomena mentioned above, and to cover experimental conditions not covered by previous works involving high pressure and temperature. Experiments from the viewpoint of accident management were also included in the scope. The present report describes design specifications, dimensions, instrumentation of the ALPHA facility based on the specific test objectives and procedures. (author)

  9. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  10. Cold Vacuum Drying facility design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  11. Multi-Directional Experimental Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The ATLSS Multi-directional Experimental Laboratory was constructed in 1987 under funding from the National Science Foundation to be a major facility for large-scale...

  12. Accident Fault Trees for Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  13. Vulnerability assessment of chemical industry facilities in South Korea based on the chemical accident history

    Science.gov (United States)

    Heo, S.; Lee, W. K.; Jong-Ryeul, S.; Kim, M. I.

    2016-12-01

    The use of chemical compounds are keep increasing because of their use in manufacturing industry. Chemical accident is growing as the consequence of the chemical use increment. Devastating damages from chemical accidents are far enough to aware people's cautious about the risk of the chemical accident. In South Korea, Gumi Hydrofluoric acid leaking accident triggered the importance of risk management and emphasized the preventing the accident over the damage reducing process after the accident occurs. Gumi accident encouraged the government data base construction relate to the chemical accident. As the result of this effort Chemical Safety-Clearing-house (CSC) have started to record the chemical accident information and damages according to the Harmful Chemical Substance Control Act (HCSC). CSC provide details information about the chemical accidents from 2002 to present. The detail informations are including title of company, address, business type, accident dates, accident types, accident chemical compounds, human damages inside of the chemical industry facilities, human damage outside of the chemical industry facilities, financial damages inside of the chemical industry facilities, and financial damages outside of the chemical industry facilities, environmental damages and response to the chemical accident. Collected the chemical accident history of South Korea from 2002 to 2015 and provide the spatial information to the each accident records based on their address. With the spatial information, compute the data on ArcGIS for the spatial-temporal analysis. The spatial-temporal information of chemical accident is organized by the chemical accident types, damages, and damages on environment and conduct the spatial proximity with local community and environmental receptors. Find the chemical accident vulnerable area of South Korea from 2002 to 2015 and add the vulnerable area of total period to examine the historically vulnerable area from the chemical accident in

  14. Ukraine experimental neutron source facility.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Bolshinsky, I.; Nekludov, I.; Karnaukhov, I. (Nuclear Engineering Division); (INL); (Kharkov Institute of Physics and Technology)

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an experimental neutron source facility. The facility has been developed for producing medical isotopes, training young nuclear professionals, supporting the Ukraine nuclear industry, providing capability for performing reactor physics, material research, and basic science experiments. Argonne National Laboratory (ANL) of USA is collaborating with KIPT on developing this facility. A driven subcritical assembly utilizing the KIPT electron accelerator with a target assembly is used to generate the neutron source. The target assembly utilizes tungsten or uranium for neutron production through photonuclear reactions with 100-KW of electron beam power. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  15. Descriptions of selected accidents that have occurred at nuclear reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, H.W.

    1980-04-01

    This report was prepared at the request of the President's Commission on the Accident at Three Mile Island to provide the members of the Commission with some insight into the nature and significance of accidents that have occurred at nuclear reactor facilities in the past. Toward that end, this report presents a brief description of 44 accidents which have occurred throughout the world and which meet at least one of the severity criteria that were established.

  16. 77 FR 45417 - Pipeline Safety: Inspection and Protection of Pipeline Facilities After Railway Accidents

    Science.gov (United States)

    2012-07-31

    ... Pipeline Facilities After Railway Accidents AGENCY: Pipeline and Hazardous Materials Safety Administration... either during a railroad accident or other event occurring in the right-of-way. Further, the advisory... to identify and notify underground utilities that an incident has occurred in the vicinity of their...

  17. Large eddy simulation of Loss of Vacuum Accident in STARDUST facility

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, Miriam; Gaudio, Pasquale; Lupelli, Ivan [Associazione ENEA EURATOM Quantum Electronics and Plasma Physics Research Group, Department of Industrial Engineering, University of Rome “Tor Vergata,” Via del Politecnico 1, I-00133 Rome (Italy); Malizia, Andrea, E-mail: malizia@ing.uniroma2.it [Associazione ENEA EURATOM Quantum Electronics and Plasma Physics Research Group, Department of Industrial Engineering, University of Rome “Tor Vergata,” Via del Politecnico 1, I-00133 Rome (Italy); Porfiri, Maria Teresa [Associazione ENEA EURATOM Nuclear Fusion Tecnologies, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy); Richetta, Maria [Associazione ENEA EURATOM Quantum Electronics and Plasma Physics Research Group, Department of Industrial Engineering, University of Rome “Tor Vergata,” Via del Politecnico 1, I-00133 Rome (Italy)

    2013-10-15

    Highlights: ► Fusion safety, plasma material interaction. ► Numerical and experimental data comparison to analyze the consequences of Loss of Vacuum Accident that can provoke dust mobilization inside the Vacuum Vessel of the Nuclear Fusion Reactor ITER-like. -- Abstract: The development of computational fluid dynamic (CFD) models of air ingress into the vacuum vessel (VV) represents an important issue concerning the safety analysis of nuclear fusion devices, in particular in the field of dust mobilization. The present work deals with the large eddy simulations (LES) of fluid dynamic fields during a vessel filling at near vacuum conditions to support the safety study of Loss of Vacuum Accidents (LOVA) events triggered by air income. The model's results are compared to the experimental data provided by STARDUST facility at different pressurization rates (100 Pa/s, 300 Pa/s and 500 Pa/s). Simulation's results compare favorably with experimental data, demonstrating the possibility of implementing LES in large vacuum systems as tokamaks.

  18. Transient behavior of a scaled RCCS test facility under postulated fault and accident scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D.; Hu, Rui; Bucknor, Matthew D.; Gerardi, Craig D.; Farmer, Mitch T.

    2016-01-01

    Tests were performed on the Natural convection Shutdown heat removal Test Facility (NSTF) to simulate design basis accident and postulated fault scenarios. Residing at Argonne National Laboratory, the NSTF stands nearly 26-m in total height and reflects a ½ scale reactor cavity cooling system (RCCS) for high temperature gas cooled reactors. The following manuscript details three test conditions performed on the experimental test facility. The first simulated the reactor pressure vessel (RPV) boundary condition during depressurized conduction cool down accident with small primary leak, and was repeated during both winter and summer seasons. The second examined a short-circuit break between the inlet and outlet flow paths, and was performed in three incremental stages of nominal flow area break size. The third and final test case studied system behavior with varying amounts of cooling channel blockages, up to and including 50% flow areas. Nominal component temperatures, heat removal performance, and system stability will be presented to characterize the behavior at these conditions.

  19. Experimental Setup for Reflood Quench of Accident Tolerant Fuel Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan; Lee, Kwan Geun; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of accident tolerant fuel (ATF) is a solution to suppress the hydrogen generation in loss of coolant accident (LOCA) situation without safety injection, which was the critical incident in the severe accident in the Fukushima. The changes in fuel and cladding materials may cause a significant difference in reactor performance in long term operation. Properties in terms of material science and engineering have been tested and showed promising results. However, numerous tests are still required to ensure the design performance and safety. Thermal hydraulic tests including boiling and quenching are partly confirmed, but not yet complete. We have been establishing the experimental setup to confirm the properties in the terms of thermal hydraulics. Design considerations and preliminary tests are introduced in this paper. An experimental setup to test thermal hydraulic characteristics of new ATF claddings are established and tested. The W heater set inside the cladding is working properly, exceeding 690 W/m linear power with thermocouples and insulating ceramic sheaths inside. The coolant injection control was also working in good conditions. The setup is about to complete and going to simulate quenching behavior of the ATF in the LOCA situation.

  20. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

    1986-01-01

    This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs.

  1. Accidents in nuclear facilities: classification, incidence and impact; Accidentes en instalaciones nucleares: clasificacion, incidencia e impacto

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Paredes G, L. C., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    A general analysis of the 146 accidents reported officially in nuclear facilities from 1945 to 2012 is presented, among them some took place in: power or research nuclear reactors, critical and subcritical nuclear assemblies, handling of nuclear materials inside laboratories belonging to institutes or universities, in radiochemistry industrial plants and nuclear fuel factories. In form graph the incidence of these accidents is illustrated classified for; category, decades, geographical localization, country classification before the OECD, failure type, and the immediate or later victims. On the other hand, the main learned lessons of the nuclear accidents of Three Mile Island, Chernobyl and Fukushima are stood out, among those that highlight; the human factors, the necessity of designs more innovative and major technology for the operation, control and surveillance of the nuclear facilities, to increase the criterions of nuclear, radiological and physics safety applied to these facilities, the necessity to carry out probabilistic analysis of safety more detailed for cases of not very probable accidents and their impact, to revalue the selection criterions of the sites for nuclear locations, the methodology of post-accident sites recovery and major instrumentation for parameters evaluation and the radiological monitoring among others. (Author)

  2. Development and qualification of a thermal-hydraulic nodalization for modeling station blackout accident in PSB-VVER test facility

    Energy Technology Data Exchange (ETDEWEB)

    Saghafi, Mahdi [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Ghofrani, Mohammad Bagher, E-mail: ghofrani@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); D’Auria, Francesco [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, San Piero a Grado, Pisa (Italy)

    2016-07-15

    Highlights: • A thermal-hydraulic nodalization for PSB-VVER test facility has been developed. • Station blackout accident is modeled with the developed nodalization in MELCOR code. • The developed nodalization is qualified at both steady state and transient levels. • MELCOR predictions are qualitatively and quantitatively in acceptable range. • Fast Fourier Transform Base Method is used to quantify accuracy of code predictions. - Abstract: This paper deals with the development of a qualified thermal-hydraulic nodalization for modeling Station Black-Out (SBO) accident in PSB-VVER Integral Test Facility (ITF). This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr nuclear power plant. In this regard, a nodalization has been developed for thermal-hydraulic modeling of the PSB-VVER ITF by MELCOR integrated code. The nodalization is qualitatively and quantitatively qualified at both steady-state and transient levels. The accuracy of the MELCOR predictions is quantified in the transient level using the Fast Fourier Transform Base Method (FFTBM). FFTBM provides an integral representation for quantification of the code accuracy in the frequency domain. It was observed that MELCOR predictions are qualitatively and quantitatively in the acceptable range. In addition, the influence of different nodalizations on MELCOR predictions was evaluated and quantified using FFTBM by developing 8 sensitivity cases with different numbers of control volumes and heat structures in the core region and steam generator U-tubes. The most appropriate case, which provided results with minimum deviations from the experimental data, was then considered as the qualified nodalization for analysis of SBO accident in the PSB-VVER ITF. This qualified nodalization can be used for modeling of VVER-1000 nuclear power plants when performing SBO accident analysis by MELCOR code.

  3. Hot Experimental Facility reference flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    North, E.D.

    1982-01-01

    This paper is a useful set of background information of HEF flowsheets, although many changes have been made in the past three years. The HEF reference flowsheet is a modified high-acid PUREX flowsheet capable of operating in the coprocessing mode or with full partitioning of U and Pu. Adequate decontamination factors are provided to purify high-burnup, fast breeder-reactor fuels to levels required for recycle back to a fuel fabrication facility. Product streams are mixed U-Pu oxide and uranium oxide. No contaminated liquid wastes are intentionally discharged to the environment. All wastes are solidified and packaged for appropriate disposal. Acid and water are recovered for internal recycle. Excess water is treated and discharged from the plant stack. Several changes have been made in the reference flowsheet since that time, and these are noted briefly.

  4. An Accident of History: Breaking the District Monopoly on Public School Facilities

    Science.gov (United States)

    Smith, Nelson

    2012-01-01

    Traditional public school districts hold a monopoly over the financing and ownership of public education facilities. With rare exceptions, public charter schools have no legal claim to these buildings. This monopoly is an accident of history. It would never have developed had there been substantial numbers of other public schools, not supervised…

  5. Problems of the security of facility viewed from accident information; Jiko joho kara mita setsubi hozen no kadai

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, K. [The High Pressure Gas Safety Inst. of Japan, Tokyo (Japan)

    1996-02-01

    In petroleum complexes and chemical complexes in which the control of operation of the plants is being automated, most of the accidents recently occurring are accidents occurring during, especially, works which are difficult to automate, such as non-steady work and maintenance work rather than accidents ascribed to erroneous operation. The number of aged facilities has increased, and the facility maintenance work tends to be subcontracted increasingly. The facility engineering will become a still more important problem in the future. The High Pressure Gas Safety Institute of Japan has issued a compendium on the safety of high pressure gas every year since 1987, and they issued a collection of examples of accidents in complexes in 1991. This paper introduces main examples of the accidents concerning the facility maintenance, extracted from the accident information recorded in the compendium and the collection of examples of accidents. Finally, lessons learned from the accident information are enumerated, and future problems are posed which include subcontraction of the facility maintenance work, the facility management cost and the facility safety. 6 refs., 1 fig., 1 tab.

  6. Diving accidents treated at a military hospital-based recompression chamber facility in Peninsular Malaysia.

    Science.gov (United States)

    Rozali, A; Khairuddin, H; Sherina, M S; Halim, M Abd; Zin, B Mohd; Sulaiman, A

    2008-06-01

    This paper describes the pattern of diving accidents treated in a military hospital-based recompression chamber facility in Peninsular Malaysia. A retrospective study was carried out to utilize secondary data from the respective hospital medical records from 1st January 1996 to 31st December 2004. A total of 179 cases categorized as diving accidents received treatment with an average of 20 cases per year. Out of 179 cases, 96.3% (n = 173) received recompression treatment. Majority were males (93.3%), civilians (87.2%) and non-Malaysian citizens (59.2%). Commercial diving activities contributed the highest percentage of diving accidents (48.0%), followed by recreational (39.2%) and military (12.8%). Diving accidents due to commercial diving (n = 86) were mainly contributed by underwater logging activities (87.2%). The most common cases sustained were decompression illness (DCI) (96.1%). Underwater logging and recreational diving activities which contribute to a significant number of diving accidents must be closely monitored. Notification, centralised data registration, medical surveillance as well as legislations related to diving activities in Malaysia are essential to ensure adequate monitoring of diving accidents in the future.

  7. Loss of vacuum accident (LOVA): Comparison of computational fluid dynamics (CFD) flow velocities against experimental data for the model validation

    Energy Technology Data Exchange (ETDEWEB)

    Bellecci, C.; Gaudio, P.; Lupelli, I. [Faculty of Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133 Rome (Italy); Malizia, A., E-mail: malizia@ing.uniroma2.it [Faculty of Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133 Rome (Italy); Porfiri, M.T. [ENEA Nuclear Fusion Technologies, Via Enrico Fermi 45 I, 00044, Frascati (Italy); Quaranta, R.; Richetta, M. [Faculty of Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133 Rome (Italy)

    2011-06-15

    A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. Several mechanisms resulting from material response to plasma bombardment in normal and off-normal conditions are responsible for generating dust of micron and sub-micron length scales inside the VV (Vacuum Vessel) of experimental fusion facilities. The loss of coolant accidents (LOCA), loss of coolant flow accidents (LOFA) and loss of vacuum accidents (LOVA) are types of accidents, expected in experimental fusion reactors like ITER, that may jeopardize components and plasma vessel integrity and cause dust mobilization risky for workers and public. The air velocity is the driven parameter for dust resuspension and its characterization, in the very first phase of the accidents, is critical for the dust release. To study the air velocity trend a small facility, Small Tank for Aerosol Removal and Dust (STARDUST), was set up at the University of Rome 'Tor Vergata', in collaboration with ENEA Frascati laboratories. It simulates a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air inlet from two different positions of the leak: at the equatorial port level and at the divertor port level. The velocity magnitude in STARDUST was investigated in order to map the velocity field by means of a punctual capacitive transducer placed inside STARDUST without obstacles. FLUENT was used to simulate the flow behavior for the same LOVA scenarios used during the experimental tests. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected for the first four seconds, because at the beginning of the experiments the maximum velocity values (that could cause the almost complete dust mobilization) have been measured. In this paper the authors present and

  8. Accident Management & Risk-Based Compliance With 40 CFR 68 for Chemical Process Facilities

    Energy Technology Data Exchange (ETDEWEB)

    O`Kula, K.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Taylor, R.P. Jr.; Ashbaugh, S.G. [Innovative Technology Solutions, Albuquerque, NM (United States)

    1995-08-23

    A risk-based logic model is suggested as an appropriate basis for better predicting accident progression and ensuing source terms to the environment from process upset conditions in complex chemical process facilities. Under emergency conditions, decision-makers may use the Accident Progression Event Tree approach to identify the best countermeasure for minimizing deleterious consequences to receptor groups before the atmospheric release has initiated. It is concluded that the chemical process industry may use this methodology as a supplemental information provider to better comply with the Environmental Protection Agency`s proposed 40 CFR 68 Risk Management Program rule. An illustration using a benzene-nitric acid potential interaction demonstrates the value of the logic process. The identification of worst-case releases and planning for emergency response are improved through these methods, at minimum. It also provides a systematic basis for prioritizing facility modifications to correct vulnerabilities.

  9. Improved worst-case and liely accident definition in complex facilities for 40 CFR 68 compliance

    Energy Technology Data Exchange (ETDEWEB)

    O`Kula, K.R., Taylor, Robert P., Jr; Hang, P.

    1997-04-01

    Many DOE facilities potentially subject to compliance with offsite consequence criteria under the 40 CFR 68 Risk Management Program house significant inventories of toxic and flammable chemicals. The accident progression event tree methodology is suggested as a useful technical basis to define Worst-Case and Alternative Release Scenarios in facilities performing operations beyond simple storage and/or having several barriers between the chemical hazard and the environment. For multiple chemical release scenarios, a chemical mixture methodology should be applied to conservatively define concentration isopleths. In some instances, the region requiring emergency response planning is larger under this approach than if chemicals are treated individually.

  10. Geothermal Loop Experimental Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  11. Review of accident analyses of RB experimental reactor

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2003-01-01

    Full Text Available The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VTNCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62 yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin consisting of 2% enriched uranium metal and 80% enriched UO2 dispersed in aluminum matrix, have been available since 1962 and 1976 respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINĆA Institute, an independent regulatory body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given.

  12. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  13. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  14. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  15. Severe immune dysfunction after lethal neutron irradiation in a JCO nuclear facility accident victim.

    Science.gov (United States)

    Nagayama, Hitomi; Ooi, Jun; Tomonari, Akira; Iseki, Tohru; Tojo, Arinobu; Tani, Kenzaburo; Takahashi, Tsuneo A; Yamashita, Naohide; Shigetaka, Asano

    2002-08-01

    The optimal treatment for the hematological toxicity of acute radiation syndrome (ARS) is not fully established, especially in cases of high-dose nonuniform irradiation by mixed neutrons and gamma-rays, because estimation of the irradiation dose (dosimetry) and prediction of autologous hematological recovery are complicated. For the treatment of ARS, we performed HLA-DRB1-mismatched unrelated umbilical cord blood transplantation (CBT) for a nuclear accident victim who received 8 to 10 GyEq mixed neutron and gamma-ray irradiation at the JCO Co. Ltd. nuclear processing facility in Tokaimura, Japan. Donor/ recipient mixed chimerism was attained; thereafter rapid autologous hematopoietic recovery was achieved in concordance with the termination of immunosuppressants. Immune function examined in vitro showed recovery of the autologous immune system was severely impaired. Although the naive T-cell fraction and the helper T-cell subtype 1 fraction were increased, the mitogenic responses of T-cells and the allogeneic mixed leukocyte reaction were severely suppressed. Endogenous immunoglobulin production was also suppressed until 120 days after the accident. Although skin transplantation for ARS was successful, the patient died of infectious complications and subsequent acute respiratory distress syndrome 210 days after the accident. These results suggest that fast neutrons in doses higher than 8 to 10 Gy cause complete abrogation of the human immune system, which may lead to fatal outcome even if autologous hematopoiesis recovers. The roles of transplantation, autologous hematopoietic recovery, chimerism, immune suppression, and immune function are discussed.

  16. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Maolong; Ryals, Matthew; Ali, Amir; Blandford, Edward; Jensen, Colby; Condie, Keith; Svoboda, John; O' Brien, Robert

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentally investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.

  17. Radiation management during restoration works after fire and explosion accident of Asphalt Solidification Facility (ASP)

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Kenjiro; Ninomiya, Kazushige; Imakuma, Yoshikazu (and others)

    1999-04-01

    A fire broke out at 10:06 a.m. March 11 in 1997 in asphalt filling up room of Asphalt Solidification Processing Facility (ASP) in Japan Nuclear Cycle Development Institute (JNC), and an explosion occurred at 8:04 p.m. on the same day. A large number of installations and equipment in the facility were damaged by the accident. As the containment function of the facility were lost, radioactive materials were released to outside of the facility. Thirty seven workers (thirty four workers inside the ASP building at fire, and three workers near the ASP at explosion) suffered internal exposures. Effective dose equivalent for each worker which was estimated based on the intake of radioactive materials, was below the record level for internal exposure management (2msv). Restoration works of the ASP including repairs of broken windows, shutters, doors, ventilation exhaust systems, radiation control and management equipment, and decontamination, were completed on July 31 in 1998. The radiation management during the restoration are described in this report. (Suetake, M.)

  18. THERMAL ANALYSIS OF A 9975 PACKAGE IN A FACILITY FIRE ACCIDENT

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, N.

    2011-02-14

    Surplus plutonium bearing materials in the U.S. Department of Energy (DOE) complex are stored in the 3013 containers that are designed to meet the requirements of the DOE standard DOE-STD-3013. The 3013 containers are in turn packaged inside 9975 packages that are designed to meet the NRC 10 CFR Part 71 regulatory requirements for transporting the Type B fissile materials across the DOE complex. The design requirements for the hypothetical accident conditions (HAC) involving a fire are given in 10 CFR 71.73. The 9975 packages are stored at the DOE Savannah River Site in the K-Area Material Storage (KAMS) facility for long term of up to 50 years. The design requirements for safe storage in KAMS facility containing multiple sources of combustible materials are far more challenging than the HAC requirements in 10 CFR 71.73. While the 10 CFR 71.73 postulates an HAC fire of 1475 F and 30 minutes duration, the facility fire calls for a fire of 1500 F and 86 duration. This paper describes a methodology and the analysis results that meet the design limits of the 9975 component and demonstrate the robustness of the 9975 package.

  19. Nuclear Facility Accident (NFAC) Unit Test Report For HPAC Version 6.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ronald W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division; Morris, Robert W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division; Sulfredge, Charles David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division

    2015-12-01

    This is a unit test report for the Nuclear Facility Accident (NFAC) model for the Hazard Prediction and Assessment Capability (HPAC) version 6.3. NFAC’s responsibility as an HPAC component is three-fold. First, it must present an interactive graphical user interface (GUI) by which users can view and edit the definition of an NFAC incident. Second, for each incident defined, NFAC must interact with RTH to create activity table inputs and associate them with pseudo materials to be transported via SCIPUFF. Third, NFAC must create SCIPUFF releases with the associated pseudo materials for transport and dispersion. The goal of NFAC unit testing is to verify that the inputs it produces are correct for the source term or model definition as specified by the user via the GUI.

  20. Enclosed Small and Medium Caliber Firing Experimental Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility conducts completely instrumented terminal ballistics experimental tests with small and medium-caliber tungsten alloy penetrators against advanced armor...

  1. Experimental Report for Thermal Hydraulic Behavior During Startup, Power Change and MCP Transient Operation by using the High Temperature/High Pressure Test Facility(VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; Park, Hyun Sik; Cho, Seok; Lee, Sung Jae; Choi, Nam Hyun; Min, Kyong Ho; Song, Chul Hwa; Park, Chun Kyong; Chung, Moon Ki

    2005-07-15

    The VISTA (Experimental Verification by Integral Simulation of Transients and Accidents) is an experimental facility to verify the performance and safety issues of the SMART-P (Pilot plant of the System-integrated Modular Advanced Reactor). The basic design of the SMART-P has been completed by KAERI. The present report describes experimental test results for performance test items, including heatup, power change, MCP transient, and natural circulation operations by using the VISTA facility.

  2. Design of a new experimental facility to reproduce LOVA and LOCA consequences on dust resuspension

    Energy Technology Data Exchange (ETDEWEB)

    Malizia, A., E-mail: malizia@ing.uniroma2.it; Gelfusa, M.; Francia, G.; Boccitto, M.; Del Vecchio, M.; Di Giovanni, D.; Richetta, M.; Bellecci, C.; Gaudio, P.

    2015-10-15

    Highlights: • Design and realization of new experimental facility. • Numerical simulation to test the mechanical resistance of the new facility. • New way to experimentally reproduce LOVA and LOCA consequences on dust resuspension inside the tokamaks. - Abstract: Dust resuspension inside the vacuum vessel is one of the key security issues of the new-generation tokamaks (such as ITER or DEMO). It is well known that a fusion device generates dusts due to plasma–surface interactions, which cause a significant erosion of plasma facing components. Consequently, operators will have to manage several hundreds of kilograms of beryllium and tungsten dusts inside the VV. According to the reference categories, two main accidental situations lead to dusts re-suspension: loss of vacuum accidents (LOVA – air flow due to a rupture of a penetration line) and loss of coolant accidents (LOCA – fluid flashing due to a rupture of a coolant system pipe). The authors have gained a strong experience in the field of dust resuspension by virtue of the studies on the STARDUST facility, whose limitations, however, prevent from completing further analysis. These are, in particular, a reduced field of view to track the dust with optical techniques, the impossibility to replicate a LOVA from the upper port as well as any kind of LOCA. To overcome these problems, the authors have designed several new layouts of the facility. Numerical simulations to test the mechanical resistance together with a deep analysis of advantages and limitations have been performed for each layout. The authors will present the proposals for the new facility, the numerical results of the simulations and a comparison between the layouts analyzed. A new experimental facility will be then described to reproduce dust re-suspension due to both LOVA and LOCA consequences.

  3. [Activities and awareness of public health nurses working at local government facilities and health centers regarding potential nuclear accidents].

    Science.gov (United States)

    Kitamiya, Chiaki

    2011-05-01

    The purpose was to study public health service activities developed during non-emergency periods to respond to potential nuclear accidents and to contribute to an understanding of public health nurses' awareness of the possibility of such accidents. For the purpose of this study, we chose prefectural health centers located in a prefecture with a nuclear power plant and in two adjacent prefectures, along with all local administrative bodies (cities, towns, and villages) in these prefectures. For each one of 124 entities, we selected one public health nurse in charge of health crisis management from among the personnel to be targeted for a questionnaire survey conducted by mail. The survey period was from October to November 2009, and the questionnaire contained questions on the following: whether there had been any disasters over the past ten years; whether the respondent had received training in public health services regarding nuclear accidents; and public health service activities developed during non-emergency periods to respond to potential nuclear accidents (and the amount of work done in this regard). The response rate for our survey was 71.8%. Of the total of 124 entities chosen, 9 were aware of the possibility of radiation accidents and 12 had manuals on radiation accidents. Two local governments and five health centers had participated in accident drills, and at both of two local governments, public health nurses were expected to act as guides during resident evacuation in the event of a nuclear accident. Public health nurses were sent to participate in workshops on radiation at four facilities located in the prefecture with a nuclear power plant. Our analysis revealed a lack of knowledge (beta = -0.404, P manuals, provision of opportunities to gain knowledge of materials regarding past damage to the health of residents and how such damage can be coped with is likely to be effective in developing effective measures in response to disasters.

  4. Experimental investigations relevant for hydrogen and fission product issues raised by the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sanjeev [Becker Technologies GmbH, Eschborn (Germany)

    2015-02-15

    The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the

  5. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    CERN Document Server

    Balda, F

    2002-01-01

    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  6. Overview of the Neutron experimental facilities at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This presentation gives an overview of the neutron experimental facilities at LANSCE. The layout is mentioned in detail, with a map of the south-side experimental facilities, information on Target-4 and the Lujan Center. Then it goes into detail about neutron sources, specifically continuous versus pulsed. Target 4 is then discussed. In conclusion, we have introduced the south-side experimental facilities in operation at LANSCE. 1L target and Target 4 provide complementary neutron energy spectra. Two spallation neutron sources taken together cover more than 11 orders of magnitude in neutron energy.

  7. Development of the scenario-based training system to reduce hazards and prevent accidents during decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, KwanSeong; Choi, Jong-Won; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Kang, ShinYoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Decommissioning of nuclear facilities has to be accomplished by assuring the safety of workers. Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities. In the end, the safety during decommissioning of nuclear facilities will be guaranteed under the principle of ALARA.

  8. General radiation management situation at the first stage of accident occurrence. Fire and explosion of asphalt solidification processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kimio; Shimizu, Takehiko; Ishiguro, Shuji [Health and Safety Division, Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan)

    1998-03-01

    Fire accident in the cell of Asphalt Solidification Processing Facility (ASP) in PNC took placed at 10:06 a.m., March 11, 1997. Explosion accident occurred subsequently in the ASP at 8:04 p.m. of the day about 10 hours later. The accident which included loss of confinement function of the cell, release of radioactive materials to the working environment, evacuation of many workers, radioactive materials intake of the workers, alarm of many radiation monitoring system, diffusion of radiation materials to off-site, required the radiation management division to take a prompt and wide-ranging protective action. No one was inflicted an external injury by the accident. The workers who inhaled a few radioactive materials, such as Cs-137, were 37 in number. The maximum committed effective dose equivalent or a person was estimated 0.4-1.6 mSv, taking account of the effects of alpha-ray emission nuclides. Radioactive materials were released outside through the raptured windows of the facility. Radioactive nuclides, such as Cs, Sr, Pu, and Am were detected in site by the environmental monitoring. A small quantity of Cs was detected in the aerosols of Oarai area, where is located at about 20 km south-south-west distant from the accidental site. The total amount of effluent throughout the accident was estimated about 1-4 GBq for {beta}-ray emission nuclides, excluding C-14, and about 1x10{sup -4}-4 x 10{sup -3} GBq for {alpha}-ray emission nuclides. The maximum committed effective dose equivalent for the general public was estimated about 1x10{sup -3}-2 x 10{sup -2} mSv. (M. Suetake)

  9. General radiation management situation at the first stage of accident occurrence. Fire and explosion of asphalt solidification processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kimio; Shimizu, Takehiko; Ishiguro, Shuji [Health and Safety Division, Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan)

    1998-03-01

    Fire accident in the cell of Asphalt Solidification Processing Facility (ASP) in PNC took placed at 10:06 a.m., March 11, 1997. Explosion accident occurred subsequently in the ASP at 8:04 p.m. of the day about 10 hours later. The accident which included loss of confinement function of the cell, release of radioactive materials to the working environment, evacuation of many workers, radioactive materials intake of the workers, alarm of many radiation monitoring system, diffusion of radiation materials to off-site, required the radiation management division to take a prompt and wide-ranging protective action. No one was inflicted an external injury by the accident. The workers who inhaled a few radioactive materials, such as Cs-137, were 37 in number. The maximum committed effective dose equivalent or a person was estimated 0.4-1.6 mSv, taking account of the effects of alpha-ray emission nuclides. Radioactive materials were released outside through the raptured windows of the facility. Radioactive nuclides, such as Cs, Sr, Pu, and Am were detected in site by the environmental monitoring. A small quantity of Cs was detected in the aerosols of Oarai area, where is located at about 20 km south-south-west distant from the accidental site. The total amount of effluent throughout the accident was estimated about 1-4 GBq for {beta}-ray emission nuclides, excluding C-14, and about 1x10{sup -4}-4 x 10{sup -3} GBq for {alpha}-ray emission nuclides. The maximum committed effective dose equivalent for the general public was estimated about 1x10{sup -3}-2 x 10{sup -2} mSv. (M. Suetake)

  10. Safety assessment of fuel cycle facilities following the lessons learned from the accident at the Fukushima-Daiichi nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shokr, A.M. [Atomic Energy Authority, Egypt Second Research Reactor, Abouzabal (Egypt); Carr, V.M. [International Atomic Energy Agency, Vienna (Austria)

    2015-07-15

    The feedback from the accident at the Fukushima-Daiichi nuclear power plant is crucial for defining and implementing measures for preventing accidents involving large releases of radioactive material at nuclear installations, including nuclear fuel cycle facilities. Following the lessons learned from this accident, assessment of the safety of nuclear fuel cycle facilities is essential to evaluate the robustness of the facilities' protection systems and components against the impact of extreme external events. A methodology to perform this safety assessment is presented, with discussions on possible preventive measures to be applied and mitigatory actions to be taken for further improvement of the robustness of nuclear fuel cycle facilities when subjected to extreme external events. Considerations in the assessment of multi-facility sites and use of a graded approach, commensurate with the facility's potential hazard, in application of the safety assessment methodology are also discussed.

  11. A balance procedure for calculating the model fuel assemblies reflooding during design basis accident and its verification on PARAMETER test facility

    Science.gov (United States)

    Bazyuk, S. S.; Ignat'ev, D. N.; Parshin, N. Ya.; Popov, E. B.; Soldatkin, D. M.; Kuzma-Kichta, Yu. A.

    2013-05-01

    A balance procedure is proposed for estimating the main parameters characterizing the process of model fuel assemblies reflooding of a VVER reactor made on different scales under the conditions of a design basis accident by subjecting them to bottom reflooding1. The proposed procedure satisfactorily describes the experimental data obtained on PARAMETER test facility in the temperature range up to 1200°C. The times of fuel assemblies quenching by bottom reflooding calculated using the proposed procedure are in satisfactory agreement with the experimental data obtained on model fuel assemblies of VVER- and PWR-type reactors and can be used in developing measures aimed at enhancing the safety of nuclear power stations.

  12. [Clinical and experimental parallels between immunological observations of irradiated animals and patients injured during Chernobyl accident].

    Science.gov (United States)

    Mal'tsev, V N

    2011-01-01

    Immunological parameters in different periods of acute radiation syndrome (ARS) of experimental animals and Chernobyl reactor accident-injured patients have been studied. 148 patients and experimental animals (123 dogs and 198 monkeys) were observed after radiation exposure of different levels (from a sub-lethal dose to the minimal absolute lethal dose). We have found the increase in the C-reactive protein, fluctuation of normal antibody titers and the complement in blood serum, as well as the growing number of skin microbes after exposures to lethal doses. Experimental results match clinical data in terms of ARS progress phases but differ from the latter in terms of the time of clinical manifestations. The highest rate of clinical manifestations is observed on the 7-14 days for experimental animals (rats, dogs and monkeys) and on the 20-30 days for patients after radiation exposure. Regenerative processes in animals run faster than those in humans.

  13. Radiation management at the occurrence of accident and restoration works. Fire and explosion of asphalt solidification processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Kenjiro; Jin, K.; Namiki, A.; Mizutani, K.; Horiuchi, N.; Saruta, J. [Power Reactor and Nuclear Fuel Development Corp., Health and Safety Division, Tokai, Ibaraki (Japan); Ninomiya, Kazushige [Power Reactor and Nuclear Fuel Development Corp., Tsuruga, Fukui (Japan). Monju Construction Office

    1998-06-01

    Fire and explosion accident in the cell of Asphalt Solidification Processing Facility(ASP) in PNC took placed at March 11 in 1997. Following to the alarm of many radiation monitoring system in the facility, some of workers inhale radioactive materials in their bodies. Indication values of an exhaust monitor installed in the first auxiliary exhaust stack increased suddenly. A large number of windows, doors, and shutters in the facility were raptured by the explosion. A lot of radioactive materials blew up and were released to the outside of the facility. Reinforcement of radiation surveillance function, nose smearing test for the workers and confirmation of contamination situation were implemented on the fire. Investigation of radiation situation, radiation management on the site, exposure management for the workers, surveillance of exhaustion, and restoration works of the damaged radiation management monitoring system were carried out after the explosion. The detailed data of radiation management measures taken during three months after the accident are described in the paper. (M. Suetake)

  14. Experimental study of in-and-ex-vessel melt cooling during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Baik; Yoo, K. J.; Park, C. K.; Seok, S. D.; Park, R. J.; Yi, S. J.; Kang, K. H.; Ham, Y. S.; Cho, Y. R.; Kim, J. H.; Jeong, J. H.; Shin, K. Y.; Cho, J. S.; Kim, D. H.

    1997-07-01

    After code damage during a severe accident in a nuclear reactor, the degraded core has to be cooled down and the decay heat should be removed in order to cease the accident progression and maintain a stable state. The cooling of core melt is divided into in-vessel and ex-vessel cooling depending on the location of molten core which is dependent on the timing of vessel failure. Since the cooling mechanism varies with the conditions of molten core and surroundings and related phenomena, it contains many phenomenological uncertainties so far. In this study, an experimental study for verification of in-vessel corium cooling and several separate effect experiments for ex-vessel cooling are carried out to verify in- and ex-vessel cooling phenomena and finally to develop the accident management strategy and improve engineered reactor design for the severe accidents. SONATA-IV (Simulation of Naturally Arrested Thermal Attack in Vessel) program is set up for in-vessel cooling and a progression of the verification experiment has been done, and an integral verification experiment of the containment integrity for ex-vessel cooling is planned to be carried out based on the separate effect experiments performed in the first phase. First phase study of SONATA-IV is proof of principle experiment and it is composed of LALA (Lower-plenum Arrested Vessel Attack) experiment to find the gap between melt and the lower plenum during melt relocation and to certify melt quenching and CHFG (Critical Heat Flux in Gap) experiment to certify heat transfer mechanism in an artificial gap. As separate effect experiments for ex-vessel cooling, high pressure melt ejection experiment related to the initial condition for debris layer formation in the reactor cavity, crust formation and heat transfer experiment in the molten pool and molten core concrete interaction experiment are performed. (author). 150 refs., 24 tabs., 127 figs.

  15. Simulation of a hypothetical core disruptive accident in the mars test-facility

    Energy Technology Data Exchange (ETDEWEB)

    Robbe, M.F.; Lepareux, M. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)

    2001-07-01

    In France, a large experimental programme MARA/MARS was undertaken in the 80's to estimate the mechanical consequences of an HCDA (Hypothetical Core Disruptive Accident) and to validate the SIRIUS computer code used at that time for the numerical simulations. At the end of the 80's, it was preferred to add a HCDA sodium-bubble-argon tri-component constitutive law to the general ALE fast dynamics finite element CASTEM-PLEXUS code rather than going on developing and using the specialized SIRIUS code. The experimental results of the MARA programme were used in the 90's to validate and qualify the CASTEM-PLEXUS code. A first series of computations of the tests MARA 8, MARA 10 and MARS was realised. The simulations showed a rather good agreement between the experimental and computed results for the MARA 8 and MARA 10 tests - even if there were some discrepancies - but the prediction of the MARS structure displacements and strains was overestimated. This conservatism was supposed to come from the fact that several MARS non axisymmetric structures like core elements, pumps and heat exchangers were not represented in the CASTEM-PLEXUS model. These structures, acting as porous barriers, had a protective effect on the mock-up containment by absorbing energy and slowing down the fluid impacting the containment. For these reasons, we developed in CASTEM-PLEXUS a new HCDA constitutive law taking into account the presence of the internal structures (without meshing them) by means of an equivalent porosity method. In other respects, the process used for dealing with the fluid-structure coupling in CASTEM-PLEXUS was improved. Thus a second series of simulations of the tests MARA8 and MARA10 was realised. A simulation of the test MARS was carried out too with the same simplified representation of the peripheral structures as in order to estimate the improvement provided by the new fluid-structure coupling. This paper presents a third numerical simulation of the MARS

  16. CHALLENGES IN DATA INTENSIVE ANALYSIS AT SCIENTIFIC EXPERIMENTAL USER FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin; Li, Dongsheng; Miller, Stephen D.; Cobb, John W.; Green, Mark L.; Ruby, Catherine L.

    2011-12-31

    This chapter will discuss the critical data intensive analysis and visualiza-tion challenges faced by the experimental science community at large scale and laboratory based facilities. The chapter will further highlight initial solutions under development through community efforts and lay out perspectives for the future, such as the potential of more closely linked experimental and computational science approaches, methods to achieve real time analysis capabilities and the challenges and opportunities of data integration across experimental scales, levels of theory and varying techniques.

  17. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  18. Experimental program on debris reflooding (PEARL) results on prelude facility

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, G.; Garcin, T.; Eymery, S.; March, P.; Fichot, F., E-mail: georges.repetto@irsn.fr, E-mail: thierry.garcin@irsn.fr, E-mail: philippe.march@irsn.fr, E-mail: stephane.eymery@irsn.fr, E-mail: florian.fichot@irsn.fr [Inst. de Radioprotection et de Surete Nucleaire, Cadarache (France)

    2011-07-01

    The “Institut de Radioprotection et de Surete Nucleaire” is developing simulation tools to be used in the safety studies, for the optimization of the Severe Accident Management strategy and to assess the probabilities to stop the progress of In-vessel core degradation in a Nuclear Power Plant. The objective of the experimental program PEARL is to extend the validation of debris reflooding models in 2D and 3D situations. The aim is to predict the consequences of the water reflooding of a severely damaged reactor core where a significant part of the core has collapsed and formed a debris bed. (author)

  19. The reaction between iodine and organic coatings under severe PWR accident conditions. An experimental parameter study

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, S.; Funke, F.; Greger, G.U.; Bleier, A.; Morell, W. [Siemens AG, Power Generation Group, Erlangen (Germany)

    1996-12-01

    An extensive experimental parameter study was performed on the deposition and on the resuspension kinetics in the reaction system iodine/organically coated surfaces. Both reactions in the gas phase and in the liquid phase were investigated and kinetic rate constants suitable for modelling were derived. Previous experimental studies on the reaction of iodine with organic coated surfaces were mostly limited to temperatures below 100{sup o}C. Thus, this parameter study aims at filling a gap and providing kinetic data on heterogeneous reactions with organic surfaces in the accident-relevant temperature range of 100-160{sup o}C. Two types of laboratory experiments carried out at Siemens/KWU using coatings representative for German power plants (epoxy-tape paint), namely gas phase tests and liquid phase tests. (author) 6 figs., 6 tabs., 5 refs.

  20. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  1. Experimental and theoretical study of large scale debris bed reflood in the PEARL facility

    Energy Technology Data Exchange (ETDEWEB)

    Chikhi, Nourdine, E-mail: nourdine.chikhi@irsn.fr; Fichot, F.

    2017-02-15

    Highlights: • Five reflooding tests have been carried out with an experimental bed, 500 mm in height and 500 mm in diameter, made of 4 mm stainless steel balls. • For the first time, such a large bed was heated practically homogenously. • The quench front velocity was determined according to thermocouple measurements inside the bed. • An analytical model, assuming a quasi-steady progression of the quench front, allows to predict the conversion ratio in most cases. • It appears that the efficiency of cooling can be increased only up to a certain limit when increasing the inlet water flow rate. - Abstract: During a severe accident in a nuclear power plant, the degradation of fuel rods and melting of materials lead to the accumulation of core materials, which are commonly, called “debris beds”. To stop core degradation and avoid the reactor vessel rupture, the main accident management procedure consists in injecting water. In the case of debris bed, the reflooding models used for Loss of Coolant Accident are not applicable. The IRSN has launched an experimental program on debris bed reflooding to develop new models and to validate severe accident codes. The PEARL facility has been designed to perform, for the first time, the reflooding of large scale debris bed (Ø540 mm, h = 500 mm and 500 kg of steel debris) in a pressurized containment. The bed is heated by means of an induction system. A specific instrumentation has been developed to measure the debris bed temperature, pressure drop inside the bed and the steam flow rate during the reflooding. In this paper, the results of the first integral reflooding tests performed in the PEARL facility at atmospheric pressure up to 700 °C are presented. Focus is made on the quench front propagation and on the steam flow rate during reflooding. The effect of water injection flow rate, debris initial temperature and residual power are also discussed. Finally, an analytical model providing the steam flow rate and

  2. Transport calculation of neutrons leaked to the surroundings of the facilities by the JCO criticality accident in Tokai-mura.

    Science.gov (United States)

    Imanaka, T

    2001-09-01

    A transport calculation of the neutrons leaked to the environment by the JCO criticality accident was carried out based on three-dimensional geometrical models of the buildings within the JCO territory. Our work started from an initial step to simulate the leakage process of neutrons from the precipitation tank, and proceeded to a step to calculate the neutron propagation throughout the JCO facilities. The total fission number during the accident in the precipitation tank was evaluated to be 2.5 x 10(18) by comparing the calculated neutron-induced activities per 235U fission with the measured values in a stainless-steel net sample taken 2 m from the precipitation tank. Shield effects by various structures within the JCO facilities were evaluated by comparing the present results with a previous calculation using two-dimensional models which suppose a point source of the fission spectrum in the air above the ground without any shield structures. The shield effect by the precipitation tank, itself, was obtained to be a factor of 3. The shield factor by the conversion building varied between 1.1 and 2, depending on the direction from the building. The shield effect by the surrounding buildings within the JCO territory was between I and 5, also depending on the direction.

  3. Largest Experimental Facility for Acetylene Production in Operation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Scientists from the CAS Institute of Plasma Physics (IPP) completed in early November, 2004, a 2-megawatt experimental facility for acetylene production by coal plasma pyrolysis. The successful operation of the largest installation of the kind in the world confirms a new method for the large-scale industrialization of acetylene production.

  4. Site survey for optimum location of Optical Communication Experimental Facility

    Science.gov (United States)

    1968-01-01

    Site survey was made to determine the optimum location for an Optical Communication Experimental Facility /OCEF/ and to recommend several sites, graded according to preference. A site was desired which could perform two-way laser communication with a spacecraft and laser tracking with a minimum of interruption by weather effects.

  5. An analytical investigation of cold leg small break accidents of the ATLAS facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon-Sik, E-mail: yskim3@kaeri.re.kr; Cho, Seok; Choi, Ki-Yong

    2015-09-15

    A previous parametric study of the direct vessel injection (DVI) line breaks was re-evaluated to see its applicability to that of the cold leg (CL) pipe breaks in advanced thermal-hydraulic test loop for accident simulation (ATLAS). Evaluation results of the tests and analyses for the major parameters, e.g., the pressurizer (PZR) pressure, downcomer water level, collapsed core water level, and clad temperature, were compared for four different CL pipe break scenarios. The overall trends of the major parameters showed reasonable behaviors between the tests and analyses. The clad temperature showed conservative behaviors in the analyses using the suggested options. The suggested counter-current flow limit (CCFL) options for the fuel alignment plate (FAP) and cross-over legs (COLs) can be applicable to any small-break loss-of-coolant accident (SBLOCA) scenario for the CL pipe and DVI line breaks in the ATLAS tests.

  6. Preliminary probabilistic design accident evaluation of the cold source facilities of the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, R.M.; Ramsey, C.T.

    1995-08-01

    Consistent with established Advanced Neutron Source (ANS) project policy for the use of probabilistic risk assessment (PRA) in design, a task has been established to use PRA techniques to help guide the design and safety analysis of the ANS cold sources. The work discussed in this report is the first formal output of the cold source PRA task. The major output at this stage is a list of design basis accidents, categorized into approximate frequency categories. This output is expected to focus attention on continued design work to define and optimize the design such that design basis accidents are better defined and have acceptable outcomes. Categorizing the design basis events (DBEs) into frequency categories should prove helpful because it will allow appropriate acceptance criteria to be applied. Because the design of the cold source is still proceeding, it is beyond the scope of this task to produce detailed event probability calculations or even, in some cases, detailed event sequence definitions. That work would take place as a logically planned follow-on task, to be completed as the design matures. Figure 1.1 illustrates the steps that would typically be followed in selecting design basis accidents with the help of PRA. Only those steps located above the dashed line on Fig. 1.1 are included in the scope of the present task. (Only an informal top-level failure modes and effects analysis was done.) With ANS project closeout expected in the near future, the scope of this task has been abbreviated somewhat beyond the state of available design information on the ANS cold sources, or what could be achieved in a reasonable time. This change was necessary to ensure completion before the closeout and because the in-depth analytical support necessary to define fully some of the accidents has already been curtailed.

  7. Analyses of the OSU-MASLWR Experimental Test Facility

    Directory of Open Access Journals (Sweden)

    F. Mascari

    2012-01-01

    Full Text Available Today, considering the sustainability of the nuclear technology in the energy mix policy of developing and developed countries, the international community starts the development of new advanced reactor designs. In this framework, Oregon State University (OSU has constructed, a system level test facility to examine natural circulation phenomena of importance to multi-application small light water reactor (MASLWR design, a small modular pressurized water reactor (PWR, relying on natural circulation during both steady-state and transient operation. The target of this paper is to give a review of the main characteristics of the experimental facility, to analyse the main phenomena characterizing the tests already performed, the potential transients that could be investigated in the facility, and to describe the current IAEA International Collaborative Standard Problem that is being hosted at OSU and the experimental data will be collected at the OSU-MASLWR test facility. A summary of the best estimate thermal hydraulic system code analyses, already performed, to analyze the codes capability in predicting the phenomena typical of the MASLWR prototype, thermal hydraulically characterized in the OSU-MASLWR facility, is presented as well.

  8. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  9. Hazards assessment for the Waste Experimental Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  10. Geothermal Loop Experimental Facility. Quarterly report, January-March, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, G.; Bischoff, W.S.; Bishop, H.K.

    1979-04-01

    The general operations and accomplishments of the Geothermal Loop Experimental Facility during the period from January 1, 1979 through March 31, 1979 are summarized. The construction and installation of a reactor clarifier/media filter system to treat the effluent brine continued. Startup is expected during the next reporting period. Operations of the facility evaluated the two stage flash cycle characteristics of brines from the second production well (Woolsey No. 1). The results were similar to the characteristics of the first production well (Magmamax No. 1) that were reported previously. The 1979 test program has been initiated and preliminary results documented.

  11. Summary on experimental facilities and future developments at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    With 13 experimental facilities under construction to become available during the first year of SINQ operation, a nearly complete suite of options for users will be made available to carry out research with neutrons at PSI. Three more facilities are under design and will come on line somewhat later. To complete the suite, three more specialized instruments are being evaluated. SINQ being a novel neutron source concept, significant scope for improvement is also seen on the source side. It is a major goal of PSI to exploit these opportunities and to make - among others - use of neutron instruments to carry out the necessary research. (author) 9 figs., 1 tab., 11 refs.

  12. Design and construction of the IEA Grimethorpe experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, D.H.; Wright, S.J.; Kaden, M.

    1979-06-01

    In December 1975 the Governments of the United Kingdom, the United States of America, and the Federal Republic of Germany, under the auspices of the International Energy Agency, entered into an agreement to build a large pressurized fluidized bed combustion experimental facility. The function of the facility would be to extend the range of fluidization and combustion characteristics investigated from those of the relatively small rigs then in operation across the whole range of conditions potentially applicable to combined cycle power generation systems. The ranges of conditions to be investigated in the facility are pressures 6 to 12 bar, fluidizing velocity 0.6 to 3.0 m/s and bed temperatures 750 to 950/sup 0/C. The ultimate aim is to seek an optimum condition and establish a data base from which a demonstration plant could be designed and built.

  13. Operational accidents and radiation exposures at DOE facilities. Fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    The Department of Energy's safety performance in fiscal year 1979 showed improvement in all categories over fiscal year 1978. The loss rates were less than one-half the United States industry average as reported by the National Safety Council. Incidence rates per 200,000 workhours were 1.1 lost workday cases and 17.2 lost workdays compared to 1.2 lost workday cases and 17.6 lost workdays during fiscal year 1978. The recordable occupational illness rate, based on only 80 cases, was 0.06 cases per 200,000 workhours compared to 0.07 cases per 200,000 workhours for fiscal year 1978. Nine fatalities of contractor employees resulted in an annual rate of 6.0 deaths per 100,000 workers compared with 10 fatalities during fiscal year 1978, and an annual rate of 6.7 deaths per 100,000 workers. The total Department of Energy property loss reported during fiscal year 1979 was $3.3 million; $765,400 was caused by fire, and $2.5 million by other causes. A total of 121 million vehicle miles of official travel resulted in 685 accidents with $338,400 in property damage. The loss rates of 5.7 accidents per million vehicle miles and $2.80 per 1000 miles were improvements over the fiscal year 1978 rates of 5.8 accidents per million vehicle miles and $2.97 property damage per 1000 miles. The 104,986 monitored Department of Energy and its contractor employees received a total dose of 9040 rem in calendar year 1979. Both the total dose and the 1748 employees receiving radiation exposures greater than 1 rem in 1979 represent a continuing downward trend from the calendar year 1978 total dose of 9380 rem and the 1826 employees who received radiation exposures greater than 1 rem.

  14. Experimental facility for analysis of biomass combustion characteristics

    Directory of Open Access Journals (Sweden)

    Miljković Biljana M.

    2015-01-01

    Full Text Available The objective of the present article is to present an experimental facility which was designed and built at the Faculty of Technical Sciences in order to study the combustion of different sorts of biomass and municipal solid waste. Despite its apparent simplicity, direct combustion is a complex process from a technological point of view. Conventional combustion equipment is not designed for burning agricultural residues. Devices for agricultural waste combustion are still in the development phase, which means that adequate design solution is presently not available at the world market. In order to construct a boiler and achieve optimal combustion conditions, it is necessary to develop a mathematical model for biomass combustion. Experimental facility can be used for the collection of data necessary for detailed modelling of real grate combustor of solid biomass fuels. Due to the complexity of the grate combustion process, its mathematical models and simulation software tools must be developed and verified using experimental data. This work highlights the properties required for the laboratory facility designed for the examination of biomass combustion and discusses design and operational issues.

  15. Simulating experimental investigation on the safety of nuclear heating reactor in loss-of-coolant accidents

    Science.gov (United States)

    Xu, Zhanjie

    1996-12-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology (INET) of Tsinghua University of China in 1989. Its main loop is a thermal-hydraulic system with natural circulation. This paper studies the safety of NHR under the condition of loss-of-coolant accidents (LOCAs) by means of simulant experiments. First, the background and necessity of the experiments are presented, then the experimental system, including the thermal-hydraulic system and the data collection system, and similarity criteria are introduced. Up to now, the discharge experiments with the residual heating power (20% rated heating power) have been carried out on the experimental system. The system parameters including circulation flow rate, system pressure, system temperature, void fraction, discharge mass and so on have been recorded and analyzed. Based on the results of the experiments, the conclusions are shown as follos: on the whole, the reactor is safe under the condition of LOCAs, but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  16. Experimental facility and void fraction calibration methods for impedance probes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  17. Experimental Facilities Division progress report 1996--97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD.

  18. A neutronradiography facility based on an experimental reactor

    Directory of Open Access Journals (Sweden)

    D. T. Thomas

    2015-06-01

    Full Text Available A thermal Neutron Radiography (NR facility based on the use of thermal neutron flux, generated by the PULSTAR experimental reactor, has been designed and simulated using the MCNPX code. The key objective of the proposed facility is to deliver thermal neutron flux in this range for variable values of L/D ratio, instantaneously with acceptable values for all NR parameters. Thus, with suitable aperture and collimators designs, optimization for the parameters for thermal NR was achieved, for a wide range of the collimator ratio. The short time requirements for obtaining the radiography images justify the use of the proposed system for ‘real time radiography’. The system was designed under the limitation that the total Dose Equivalent Rate does not exceed at the external shield surface the limit recommended by ICRP-26.

  19. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  20. Simulation of cryogenic He spills as basis for planning of experimental campaign in the EVITA facility

    Science.gov (United States)

    Caruso, G.; Bartels, H. W.; Iseli, M.; Meyder, R.; Nordlinder, S.; Pasler, V.; Porfiri, M. T.

    2006-01-01

    Code validation activities have been promoted inside the European fusion development agreement (EFDA) to test the capability of codes in simulating accident phenomena in fusion facilities and, specifically, in the International thermonuclear experimental reactor (ITER). This work includes a comparison between three different computer codes (CONSEN, MAGS and MELCOR) and one analytical model (ITER Model) in simulating cryogenic helium releases into the vacuum vessel (VV) which contains hot structures. The scope was the evaluation of the transient pressure inside the VV. The results will be used to design a vent duct (equivalent diameter, length and roughness) to allow pressure relief for the protection of the VV, which has a maximum design pressure of 200 kPa. The model geometry is a simplified scheme preserving the main features of the ITER design. Based on the results of the simulations, a matrix of experiments was developed to validate the calculated results and to design the vent duct for the ITER VV. The experiments are planned to be performed in the EVITA test facility, located in the CEA Cadarache research centre (France).

  1. First 3D numerical simulations validated with experimental measurements during a LOVA reproduction inside the new facility STARDUST-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ciparisse, J.F.; Malizia, A. [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome 00133 (Italy); Poggi, L.A., E-mail: poggi@ing.uniroma2.it [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome 00133 (Italy); Gelfusa, M. [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome 00133 (Italy); Murari, A. [Consorzio RFX-Associazione EUROFUSION-ENEA per la Fusione, Padova I-35127 (Italy); Mancini, A.; Gaudio, P. [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome 00133 (Italy)

    2015-12-15

    Highlights: • We model supersonic, turbulent 3D flow in the “STARDUST-Upgrade” facility. • We simulate air expansion into a low pressure vessel. • We compare numerical results with experimental results. - Abstract: The aim of this work is to simulate a Loss of Vacuum Accident (LOVA) in the STARDUST (Small Tank for Aerosol Removal and DUST)-UPGRADE facility. These events are one of the major safety concerns in Tokamaks, since they can cause the mobilization and the dispersion of radioactive dust contained in a fusion reactor. The first step in the study of a LOVA event is the estimation, by means of numerical simulations, of the pressurization transient in the vacuum chamber. The STARDUST-UPGRADE facility, which has a cylindrical shape, is considered as a case study. An air inlet is located in a radial position with respect to the facility, so the numerical domain is symmetric and, therefore, only a half of it has been considered in the simulation. A time-dependent mass flow rate is imposed at the inlet, in a range consistent with experimental estimates. The simulation takes 20 s and the attention is focused on the mean pressure value over time and on the Mach number distribution. The results are presented and discussed in the perspective of simulating LOVAs in ITER (International Thermonuclear Experimental Reactor).

  2. The LOBI Integral System Test Facility Experimental Programme

    Directory of Open Access Journals (Sweden)

    Carmelo Addabbo

    2012-01-01

    Full Text Available The LOBI project has been carried out in the framework of the European Commission Reactor Safety Research Programme in close collaboration with institutional and/or industrial research organizations of EC member countries. The primary objective of the research programme was the generation of an experimental data base for the assessment of the predictive capabilities of thermal-hydraulic system codes used in pressurised water reactor safety analysis. Within this context, experiments have been conducted in the LOBI integral system test facility designed, constructed, and operated (1979–1991 at the Ispra Site of the Joint Research Centre. This paper provides a historical perspective and summarizes major achievements of the research programme which has represented an effective approach to international collaboration in the field of reactor safety research and development. Emphasis is also placed on knowledge management aspects of the acquired experimental data base and on related online open access/retrieval user functionalities.

  3. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs.

  4. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1992-09-01

    The Accelerator Test Facility (ATF) at BNL is a users` facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF`s experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  5. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  6. Experimental analysis of the performance of machine learning algorithms in the classification of navigation accident records

    Directory of Open Access Journals (Sweden)

    REIS, M V. S. de A.

    2017-06-01

    Full Text Available This paper aims to evaluate the use of machine learning techniques in a database of marine accidents. We analyzed and evaluated the main causes and types of marine accidents in the Northern Fluminense region. For this, machine learning techniques were used. The study showed that the modeling can be done in a satisfactory manner using different configurations of classification algorithms, varying the activation functions and training parameters. The SMO (Sequential Minimal Optimization algorithm showed the best performance result.

  7. OPTIMIZATION OF EXPERIMENTAL DESIGNS BY INCORPORATING NIF FACILITY IMPACTS

    Energy Technology Data Exchange (ETDEWEB)

    Eder, D C; Whitman, P K; Koniges, A E; Anderson, R W; Wang, P; Gunney, B T; Parham, T G; Koerner, J G; Dixit, S N; . Suratwala, T I; Blue, B E; Hansen, J F; Tobin, M T; Robey, H F; Spaeth, M L; MacGowan, B J

    2005-08-31

    For experimental campaigns on the National Ignition Facility (NIF) to be successful, they must obtain useful data without causing unacceptable impact on the facility. Of particular concern is excessive damage to optics and diagnostic components. There are 192 fused silica main debris shields (MDS) exposed to the potentially hostile target chamber environment on each shot. Damage in these optics results either from the interaction of laser light with contamination and pre-existing imperfections on the optic surface or from the impact of shrapnel fragments. Mitigation of this second damage source is possible by identifying shrapnel sources and shielding optics from them. It was recently demonstrated that the addition of 1.1-mm thick borosilicate disposable debris shields (DDS) block the majority of debris and shrapnel fragments from reaching the relatively expensive MDS's. However, DDS's cannot stop large, faster moving fragments. We have experimentally demonstrated one shrapnel mitigation technique showing that it is possible to direct fast moving fragments by changing the source orientation, in this case a Ta pinhole array. Another mitigation method is to change the source material to one that produces smaller fragments. Simulations and validating experiments are necessary to determine which fragments can penetrate or break 1-3 mm thick DDS's. Three-dimensional modeling of complex target-diagnostic configurations is necessary to predict the size, velocity, and spatial distribution of shrapnel fragments. The tools we are developing will be used to set the allowed level of debris and shrapnel generation for all NIF experimental campaigns.

  8. Experimental Investigation on Small Break Loss of Coolant Accident for Direct Vessel Injection Line%DVI管小破口失水事故实验研究

    Institute of Scientific and Technical Information of China (English)

    彭传新; 张妍; 黄志刚; 昝元锋; 卓文彬; 闫晓

    2016-01-01

    在模块化小型反应堆非能动安全系统综合模拟实验装置上进行了压力容器直接注入(DVI)管小破口失水事故实验,研究了DVI管小破口失水事故过程中的热工水力现象和非能动安全系统运行特性。研究结果表明:模块化小型反应堆DVI管小破口失水事故中,非能动安全系统可对堆芯进行注水,有效导出堆芯衰变热量,保护堆芯安全。%T he small break loss of coolant accident (SBLOCA ) experiment for direct vessel injection (DVI ) line , w hich investigated the thermal‐hydraulic phenomena and the performances of passive safety system during the accident ,was performed on the passive safety system test facility for small modular reactor .The experimental results show that the passive safety system of small modular reactor can provide effective cool‐ant injection ,successful removal of core residual heat under the DVI line SBLOCA and protection to reactor core safety .

  9. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  10. Large-scale experimental facility for emergency condition investigation of a new generation NPP WWER-640 reactor with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Aniskevich, Y.N.; Vasilenko, V.A.; Zasukha, V.K.; Migrov, Y.A.; Khabensky, V.B. [Research Inst. of Technology NITI (Russian Federation)

    1997-12-31

    The creation of the large-scale integral experimental facility (KMS) is specified by the programme of the experimental investigations to justify the engineering decisions on the safety of the design of the new generation NPP with the reactor WWER-640. The construction of KMS in a full volume will allow to conduct experimental investigations of all physical phenomena and processes, practically, occurring during the accidents on the NPPs with the reactor of WWER type and including the heat - mass exchange processes with low rates of the coolant, which is typical during the utilization of the passive safety systems, process during the accidents with a large leak, and also the complex intercommunicated processes in the reactor unit, passive safety systems and in the containment with the condition of long-term heat removal to the final absorber. KMS is being constructed at the Research Institute of Technology (NITI), Sosnovy Bor, Leningrad region, Russia. (orig.). 5 refs.

  11. Experimental facility for testing nuclear instruments for planetary landing missions

    Science.gov (United States)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  12. Geothermal Loop Experimental Facility. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, G.; Bischoff, W.S.; Bishop, H.K.

    1979-01-01

    The Geothermal Loop Experimental Facility (GLEF) was modified in April 1978 from a four stage flash/binary process to a two stage cycle for the extraction of energy from a high temperature, high salinity, liquid-dominated resource. The overhaul and cleaning during October and pigging problems which led to a limited shutdown in December are discussed. Reservoir assessment, including production and injection wells, are discussed. Results of tests that were accomplished are included. Laboratory data obtained for steam, brine, binary and cooling water, and scale are indicated. Any equipment that required repairs or modifications to equipment and the clarifier/media filter are discussed. The status of the feasibility and surge studies is covered. (MHR)

  13. Geothermal Loop Experimental Facility. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, G.; Bischoff, W.S.; Bishop, H.K.

    1979-07-01

    Since the Geothermal Loop Experimental Facility (GLEF) start-up in May, 1976, a substantial amount of information has been obtained on the operation of the plant and its components, brine and steam composition, production and injection wells, and the potential of the Niland Reservoir. The GLEF was modified in April, 1978, from a four stage flash/binary process to a two stage flash cycle for the extraction of energy from a high temperature, high salinity, liquid-dominated resource. A Reactor Clarifier/Media Filter System was put in operation in May, 1979 to demonstrate that suspended solids in the brine could be removed prior to brine injection into the reservoir. The general operations and accomplishments of the GLEF during the period are summarized.

  14. Geothermal Loop Experimental Facility. Quarterly report, April--June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, W.S.; Bishop, H.K.; Cooney, C.S.; Hanenburg, W.H.; Hoaglin, G.J.; Jacobson, W.O.; Mulliner, D.K.; Newell, D.G.; Swanson, C.R.

    1978-07-01

    The Geothermal Loop Experimental Facility (GLEF) was modified to use a two stage flash process with two parallel flash trains for the extraction of energy from a high temperature, high salinity, liquid-dominated resource. Since plant start-up in May 1976, a substantial amount of information has been obtained on the operation of the plant, components, brine and steam composition, production and injection wells, and the potential of the Niland Reservoir. The general operation and accomplishments of the GLEF during the period April 1978 through June 1978 are discussed. The GLEF underwent a major redesign. Modifications and inspections of various GLEF equipment and systems are also discussed. Information about the production and injection wells flow testing and instrumentation are discussed. Information regarding coatings and linings for valves and piping is included. In the Chemistry Section there is a wide range of data taken from Brine, Steam, Scale, Binary, Condensate, and Cooling Water Systems.

  15. Analysis of criticality accident alarm system coverage of the X-744G, X-744H, X-342/344A and X-343 facilities at the Portsmouth Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Dobelbower, M.C.; Woollard, J.; Lee, B.L. Jr.; Tayloe, R.W. Jr.

    1995-09-01

    Additional services for the uranium enrichment cascade process, such as UF{sub 6} feed, sampling, and material storage are provided by several ancillary Uranium Material Handling (UMH) facilities at the PORTS site. These facilities include the X-343 Feed Vaporization and Sampling Facility, the X-744G Bulk Non-Uranium Enrichment Service Activity (UESA) Storage Building, the X-744H Waste Separation and Storage Facility, the X-344A Toll Enrichment Services Facility and the X-342A Feed Vaporization and Fluorine Generation Facility. As uranium operations are performed within these facilities, the potential for a criticality accident exists. In the event of a criticality accident within a process facility at PORTS, a Criticality Accident Alarm System (CAAS) is in place to detect the criticality accident and sound an alarm. In this report, an analysis was performed to provide verification that the existing CAAS at PORTS provides complete criticality accident coverage in the X-343, X-744G. X-744H. X-344A and X-342A facilities. The analysis has determined that all of the above-mentioned facilities have complete CAAS coverage.

  16. Expert meeting with the Belgoprocess Inc. on the fire and explosion accident of the asphalt solidification facility. Search and investigation on cause elucidation and reoccurrence control for the fire and explosion accident of the asphalt solidification facility. A visiting report on abroad

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, Hideyuki; Fujita, Hideto; Nakamura, Hirofumi; Koyama, Tomozo

    1997-11-01

    In order to investigate in detail on fire cause materials, test results of thermal analysis on waste liquids, and flow of affairs relating to the fire accident (15th December, 1981) of the Euro Bitum Plant (an asphalt solidification facility of the middle level wastes) settled at the Eurochemic reprocessing work in the Kingdom of Belgium, resemble to the present accident, 4 members of the Cause Elucidation Group and Mr. Kaneko, director of the Paris Office of PNC visited to Belgium to hold a meeting with experts of the Belgoprocess Inc. for 4 days. In this meeting, after exchanging mutual detail informations on accident occurred at the Euro Bitum Plant and fire and explosion accident of the asphalt solidification facility, some discussions on cause supposition of the present accident. For cause of the fire, mutual differences were found. As a state at occurring fires was much resemble, their followed states seemed to be extremely different on responses of operators to fire-extinguishing action, filter exchanging and so forth. As finishing to recover the plant after 1 month passed from the accident to restart its operation, the Belgoprocess, Inc. has conducted some improvements of the facility such as sufficiency of fire extinguishing apparatus, addition and improvements of fire detecting means, direct measurement of solid temperature and so on, as well as reinforcement of thermal analysis procedure and renewal to new apparatus. Although no special supposition on cause of the fire at this meeting, a lot of items to learn such as operation system, responses after accident, and so forth were acquired. (G.K.)

  17. Present Status and Future Plans of J-PARC Hadron Experimental Facility

    CERN Document Server

    Tanaka, K

    2015-01-01

    Recovery of J-PARC Hadron Experimental Facility from the radioactive material leakage incident occurred on May 23, 2013 is reported. Recovery took long time. However its essential part was completed by the beginning of Japanese Fiscal Year 2015. Then we could start the beam operation of Hadron Experimental Facility from April 9, 2015. Experiments with slow extraction beam started on April 24, 2015. The beam intensity delivered to Hadron Experimental Facility reached approximately 32kW by the end of June, 2015. Recent activities on partic le and nuclear physics in the Hadron Experimental Facility are described also.

  18. Counterpart experimental study of ISP-42 PANDA tests on PUMA facility

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun, E-mail: toyangjun@gmail.com [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-1290 (United States); Choi, Sung-Won; Lim, Jaehyok; Lee, Doo-Yong; Rassame, Somboon; Hibiki, Takashi; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-1290 (United States)

    2013-05-15

    Highlights: ► Counterpart tests were performed on two large-scale BWR integral facilities. ► Similarity of post-LOCA system behaviors observed between two tests. ► Passive core and containment cooling systems work as design in both tests. -- Abstract: A counterpart test to the Passive Nachwärmeabfuhr und Druckabbau Test Anlage (Passive Decay Heat Removal and Depressurization Test Facility, PANDA) International Standard Problem (ISP)-42 test was conducted at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. Aimed to support code validation on a range of light water reactor (LWR) containment issues, the ISP-42 test consists of six sequential phases (Phases A–F) with separately defined initial and boundary conditions, addressing different stages of anticipated accident scenario and system responses. The counterpart test was performed from Phases A to D, which are within the scope of the normal integral tests performed on the PUMA facility. A scaling methodology was developed by using the PANDA facility as prototype and PUMA facility as test model, and an engineering scaling has been applied to the PUMA facility. The counterpart test results indicated that functions of passive safety systems, such as passive containment cooling system (PCCS) start-up, gravity-driven cooling system (GDCS) discharge, PCCS normal operation and overload function were confirmed in both the PANDA and PUMA facilities with qualitative similarities.

  19. Project on Transfer Mechanism of Radioactive Source Term Under Severe Accident

    Institute of Scientific and Technical Information of China (English)

    SUN; Xue-ting; JI; Song-tao; CHEN; Lin-lin

    2012-01-01

    <正>The "Transfer mechanism of radioactive source term under severe accident" is a sub-project of the research program of "Mechanism and phenomenology of severe accident". An aerosol transfer mechanism experimental facility is built to simulate the passive containment cooling system (PCCS) of advanced pressurizer reactors to research effects to the transfer process of fission products under severe accident. An advanced CFD method is also utilized to research the effects. The objective of this project is to understand

  20. Development of Experimental Facilities for Advanced Spent Fuel Management Technology

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Jung, W. M.; Ku, J. H. [and others

    2004-07-01

    The advanced spent fuel management process(ACP), proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. This technology convert spent fuels into pure metal-base uranium with removing the highly heat generating materials(Cs, Sr) efficiently and reducing of the decay heat, volume, and radioactivity from spent fuel by 1/4. In the next phase(2004{approx}2006), the demonstration of this technology will be carried out for verification of the ACP in a laboratory scale. For this demonstration, the hot cell facilities of {alpha}-{gamma} type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of {beta}-{gamma} type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process, and safety analysis was performed to secure conservative safety of hot cell facility and process.

  1. The electrodeless Lorentz force (ELF) thruster experimental facility

    Science.gov (United States)

    Weber, T. E.; Slough, J. T.; Kirtley, D.

    2012-11-01

    An innovative facility for testing high-power, pulsed plasmoid thrusters has been constructed to develop the electrodeless Lorentz force (ELF) thruster concept. It is equipped with a suite of diagnostics optimized to study the physical processes taking place within ELF and evaluate its propulsive utility including magnetic field, neutral gas, and plasma flux diagnostics, a method to determine energy flow into the plasma from the pulsed power systems, and a new type of ballistic pendulum, which enables thrust to be measured without the need for installing the entire propulsion system on a thrust stand. Variable magnetic fields allow controlled studies of plume expansion in a small-scale experiment and dielectric chamber walls reduce electromagnetic influences on plasma behavior and thruster operation. The unique capabilities of this facility enable novel concept development to take place at greatly reduced cost and increased accessibility compared to testing at large user-facilities.

  2. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility; Kaeytetyn ydinpolttoaineen loppusijoituslaitoksen normaalikaeytoen, kaeyttoehaeirioeiden ja onnettomuustilanteiden aiheuttamien saeteilyannosten arviointi

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M. [VTT Energy, Espoo (Finland)

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  3. Superconducting magnet system for an experimental disk MHD facility

    NARCIS (Netherlands)

    Knoopers, H.G.; Kate, ten H.H.J.; Klundert, van de L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.

  4. NWFSC OA facility water chemistry - Ocean acidification species exposure experimental facility

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We have developed a unique facility for conducting high-quality experiments on marine organisms in seawater with controlled carbon chemistry conditions. The...

  5. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

  6. Effect of a new motorway on social-spatial patterning of road traffic accidents: A retrospective longitudinal natural experimental study.

    Science.gov (United States)

    Olsen, Jonathan R; Mitchell, Richard; Ogilvie, David

    2017-01-01

    The World Health Organisation reports that road traffic accidents (accidents) could become the seventh leading cause of death globally by 2030. Accidents often occur in spatial clusters and, generally, there are more accidents in less advantaged areas. Infrastructure changes, such as new roads, can affect the locations and magnitude of accident clusters but evidence of impact is lacking. A new 5-mile motorway extension was opened in 2011 in Glasgow, Scotland. Previous research found no impact on the number of accidents but did not consider their spatial location or socio-economic setting. We evaluated impacts on these, both locally and city-wide. We used STATS19 data covering the period 2008 to 2014 and describing the location and details of all reported accidents involving a personal injury. Poisson-based continuous scan statistics were used to detect spatial clusters of accidents and any change in these over time. Change in the socio-economic distribution of accident cluster locations during the study period was also assessed. In each year accidents were strongly clustered, with statistically significant clusters more likely to occur in socio-economically deprived areas. There was no significant shift in the magnitude or location of accident clusters during motorway construction or following opening, either locally or city-wide. There was also no impact on the socio-economic patterning of accident cluster locations. Although urban infrastructure changes occur constantly, all around the world, this is the first study to evaluate the impact of such changes on road accident clusters. Despite expectations to the contrary from both proponents and opponents of the M74 extension, we found no beneficial or adverse change in the socio-spatial distribution of accidents associated with its construction, opening or operation. Our approach and findings can help inform urban planning internationally.

  7. Analyses of the OSU-MASLWR Experimental Test Facility

    OpenAIRE

    2012-01-01

    Today, considering the sustainability of the nuclear technology in the energy mix policy of developing and developed countries, the international community starts the development of new advanced reactor designs. In this framework, Oregon State University (OSU) has constructed, a system level test facility to examine natural circulation phenomena of importance to multi-application small light water reactor (MASLWR) design, a small modular pressurized water reactor (PWR), relying on natural cir...

  8. Accident at Tricastin on Socatri facility. Elements of understanding; Accident a Tricastin sur l'usine SOCATRI. Elements de comprehension

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    In the night on the 7 to 8 july 2008, an incident occurred on the site of the Socatri company. A reservoir of the uranium effluents treatment plant overflowed in its tank of retention. This one was no more sealed, that provoked an environmental pollution. The uranium release was estimated at 74 kg. The incident was classified at the level 1 of the INES scale. Through the information, it is a question of an uranium release with a normal composition: {sup 238}U (99.3%), {sup 235}U (0.7%), {sup 234}U (0.006%). {sup 236}U, artificial isotope was not detected, what rejects the hypothesis of spent fuels. The analysis reveal the presence of fluorides (12 g/l), chlorides (2.3 g/l) and chromium (0.8 m g/l). for the chromium it is hexavalent chromium that is carcinogen by respiratory tract. taken into account the facility activities, it seems to be effluents of decontamination including isolated uranium, upstream from the fuel production before enrichment. Measures were realised by the operator and I.R.S.N.,on water table inside and outside the site, and on ground waters. Inside the site: the maximal concentration before release in the Gaffiere river is 66900 {mu}g/l, so 1780 Bq/l. In the public area: punctual measures made by the operator in the surface waters of the Gaffiere river are varying from 120 to 20 {mu}g/l in the day 8 july 2008 at 500 m downstream along the 'Trop long' pond. The concentrations measured are about 5 {mu}g/l two days later. Few kilometers downstream in the Lauzon river was found a contamination of 1910 {mu}g/l for this area. Measured made in the ground waters up to 64 {mu}g/l (so 1.7 Bq/l) in the well of a private individual located at 1 Km in the south of the site. Up to 50 {mu}g/l in water of ground water collected at several kilometers in the south of the site. The excess in uranium would reveal ( from I.R.S.N. information) a former contamination of ground water. The A.c.r.o. point of view reminds that nuclear industry is an industry

  9. Superconducting magnet system for an experimental disk MHD facility

    OpenAIRE

    Knoopers, H.G.; Kate, ten, H.H.J.; Klundert, van de, L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel. The optimization process, which is based on minimum conductor costs is discussed, and the proposed conductor design is described. Basic solutions for the construction of the magnet, the cryostat an...

  10. Simulating Experimental Investigation on the Safety of Nuclear Heating Reactor in Loss—of —Coolant Accidents

    Institute of Scientific and Technical Information of China (English)

    ZhanjieXu

    1996-01-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology(INET) of Tisinghuan University of CHina in 1989,Its main loop is a thermal-hydraulic system with natural circulation.This paper studies the safety of NHR under the condition of loss-of -coolant accidents(LOCAs) by means of simulant experiments.First,the Background and necessity of the experiments are presented.then the experimental system,including the thermal-hydraulic system and the data collection system,and similarity criteria are introduced.Up to now ,the discharge experiments with the residual heating power(20% rated heating power)have been carried out on the experimental system,The system prameters including circulation flow rate,system pressure,system temperature,void fraction,discharge mass and so on have been recorded and analyzed.Based on the results of the experiments,the conclusionas are shown as follos:on the whole,the reactor is safe under the condition of LOCAs,but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  11. Experimental Setup for Validation Tests in Arc-Heated Facilities

    OpenAIRE

    Esser, Burkard

    2015-01-01

    This document describes the experimental setup for the thermal verification tests in the frame of the EU FP7 Project THOR. It includes a description of the preparatory work in WP6, in particular the assembly of the test models as well as a detailed description of instrumentation and measurement techniques.

  12. Study of fast reactor safety test facilities. Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods. (DG)

  13. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  14. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  15. THAI experimental programme for containment safety assessment under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Freitag, M. [Becker Technologies GmbH, Eschborn (Germany); Poss, G.

    2016-05-15

    The THAI (THAI = Thermal hydraulics, Hydrogen, Aerosols, Iodine) experimental programme aims to address open questions concerning the behavior of hydrogen, iodine and aerosols in the containment of water cooled reactors. Since its construction in 2000, THAI programme is being performed in the frame of various national projects (sponsored by German Federal Ministry for Economic Affairs and Energy, BMWi) and two international joint projects (under auspices of OECD/NEA). THAI experimental data have been widely used for the validation and further development of Lumped Parameter (LP) and Computational Fluid Dynamics (CFD) codes with 3D capabilities. Selected examples of code benchmark exercises performed based on the THAI data include; hydrogen distribution experiment (ISP-47 and OECD/NEA THAI code benchmark), hydrogen combustion behaviour (ISP-49), hydrogen mitigation by PARs (OECD/NEA THAI-2 code benchmark), iodine/surface interactions, iodine mass transfer, and iodine transport and multi-compartment behaviour (EU-SARNET and EU-SARNET2), thermal-hydraulic tests (German CFD-network). In the present paper, a brief overview on the THAI experiments and their role in the containment safety assessment is discussed.

  16. Automated Experimental Data Analysis at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S G; Bettenhausen, R C; Beeler, R G; Bond, E J; Edwards, P W; Glenn, S M; Liebman, J A; Tappero, J D; Warrick, A L; Williams, W H

    2009-09-24

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam 1.8 MJ ultraviolet laser system designed to support high-energy-density science, including demonstration of inertial confinement fusion ignition. After each target shot lasting {approx}20 ns, scientists require data acquisition, analysis and display within 30 minutes from more than 20 specialized high-speed diagnostic instruments. These diagnostics measure critical x-ray, optical and nuclear phenomena during target burn to quantify ignition results and compare to computational models. All diagnostic data (hundreds of Gbytes) are automatically transferred to an Oracle database that triggers the NIF Shot Data Analysis (SDA) Engine, which distributes the signal and image processing tasks to a Linux cluster. The SDA Engine integrates commercial workflow tools and messaging technologies into a scientific software architecture that is highly parallel, scalable, and flexible. Results are archived in the database for scientist approval and displayed using a web-based tool. The unique architecture and functionality of the SDA Engine will be presented along with an example.

  17. 2 MV Injector as the Elise Front-End and as an Experimental Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S S; Eylon, S; Henestroza, E; Peters, C; Reginato, L; Tauschwitz, A; Grote, D; Deadrick, F

    1999-12-07

    We report on progress in the preparation of the 2 MV Injector at LBNL as the front-end of Elise, and as a multi-purpose experimental facility for Heavy Ion Fusion beam dynamics studies. Recent advances on the performance and understanding of the injector are described, and some of the on-going experimental activities are summarized.

  18. Integration of experimental facilities: A joint effort for establishing a common knowledge base in experimental work on hydrogen safety

    NARCIS (Netherlands)

    Reinecke, E.A.; Huebert, T.; Tkatschenko, I.; Kessler, A.; Kuznetsov, M.; Wilkins, M.; Hedley, D.; Azkarate, I.; Proust, C.; Acosta-Iborra, B.; Gavrikov, B.; Bruijn, P.C.J. de; Marangon, A.; Teodorczyk, A.; Grafwallner, A.

    2011-01-01

    In the area of hydrogen safety, research facilities are essential for the experimental investigation of relevant phenomena, for testing devices and safety concepts, as well as for the generation of validation data for the various numerical codes and models. Within the framework of the European HySaf

  19. Experimental program on debris reflooding (PEARL) – Results on PRELUDE facility

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, Georges, E-mail: georges.repetto@irsn.fr [Institut de Radioprotection et de Sureté Nucléaire, Cadarache, B.P. 3, 13115, Saint Paul-lez-Durance Cedex (France); Garcin, Thierry; Eymery, Stéphane; Fichot, Florian [Institut de Radioprotection et de Sureté Nucléaire, Cadarache, B.P. 3, 13115, Saint Paul-lez-Durance Cedex (France)

    2013-11-15

    The “Institut de Radioprotection et de Sureté Nucléaire” is developing simulation tools to be used in the safety studies, for the optimization of the severe accident management strategy and to assess the probabilities to stop the progress of in-vessel core degradation in a nuclear power plant. The objective of the experimental program PEARL is to extend the validation of debris reflooding models in 2D and 3D situations. The aim is to predict the consequences of the water reflooding of a severely damaged reactor core where a significant part of the core has collapsed and formed a debris bed.

  20. Texas Experimental Tokamak, a plasma research facility: Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A.J.

    1995-08-01

    In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively.

  1. The reaction between iodine and silver under severe PWR accident conditions. An experimental parameter study

    Energy Technology Data Exchange (ETDEWEB)

    Funke, F.; Greger, G.U.; Bleier, A.; Hellmann, S.; Morell, W. [Siemens AG, Power Generation Group, Erlangen (Germany)

    1996-12-01

    An extensive experimental parameter study was performed on the kinetics in the reaction system I{sub 2}/Ag and I{sup -}/Ag in a laboratory-scale apparatus.Starting with I{sub 2} or I{sup -} solutions and silver powder suspensions, the decrease of soluted I{sub 2} or I{sup -}, respectively, due to fixation on the silver particles, was monitored as function of time using the radioactive tracer I-131. The measured data were analyzed using a model of first order kinetics with respect to the iodine concentration. However, the analysis using first order kinetics had to be performed separately in an early, fast reaction phase and in a late, slow reaction phase. The reason for this unexpected behaviour was not identified. Thus, rate constant, two for each test, were deduced from 14 I{sub 2}/Ag main tests and from 36 I{sup -}/Ag tests. No dependencies of the rate constants were found on the parameters temperature, initial iodine concentration, presence of boric acid, type of silver educt, and pretreatment of the silver educt prior to the tests. However, the stirring of the reaction solution generally enhanced the kinetics highlighting the importance of mass transfer. The I{sup -}/Ag reaction proceeded only if there was no inertization of the reaction solution by sparging with nitrogen. The temperature-independent rate constant for the early, fast I{sub 2}/Ag reaction phase is 2E-5 m/s. However, a smaller rate constant of 6E-6 m/s is recommended for use in source term calculations with IMPAIR, which already contains a first order model. Analogously, the temperature-independent I{sup -}/Ag reaction rate constant is 8E-6 m/s in an early, fast reaction phase. For use in source term calculations, a smaller rate constant of 2E-6 m/s is recommended. The lower bound of the I{sup -}/Ag rate constant was 3E-8 m/s which could be used in very conservative source term calculations. (author) 20 figs., 6 tabs., 15 refs.

  2. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    OpenAIRE

    Sabharwall Piyush; O’Brien James E.; Yoon SuJong; Sun Xiaodong

    2015-01-01

    A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed includ...

  3. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  4. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  5. An experimental study of the corrosion and precipitation of aluminum in the presence of trisodium phosphate buffer following a loss of coolant accident (LOCA) scenario

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry J. [Department of Civil Engineering, University of New Mexico (United States); Leavitt, Janet J. [Department of Civil Engineering, University of New Mexico (United States); Alion Science and Technology (United States); Hammond, Kyle; Mitchell, Lana [Department of Civil Engineering, University of New Mexico (United States); Kee, Ernie [South Texas Project Nuclear Operating Company (STPNOC) (United States); Blandford, Edward D., E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States)

    2015-02-15

    Highlights: • Experimental head loss testing was conducted by aggressively promoting corrosion in loss of coolant accidents. • Blender-processed debris beds have higher head loss but tend to be less reproducible than NEI-processed debris beds. • Precipitation was observed from aluminum concentration and turbidity measurements. • Precipitation results were compared to predictions from Visual MINTEQ. - Abstract: This paper presents the results of an integrated chemical effects experiment of head loss across the sump pump screen with fibrous debris bed over a non-prototypical 10-day post-LOCA incident window. The corrosion head loss experiments (CHLE) is a reduced scaled integral effects testing facility built at the University of New Mexico (UNM) to investigate potential chemical effects on head loss across prepared fibrous debris beds. The results in this paper come from two integral effect tests performed at UNM in order to determine the chemical effects on head loss induced by a zinc source effect and an aluminum precipitation effect (T3: without Zn source case, T4: with Zn source case in containment). The tests were performed with a large surface area of aluminum coupons in the testing facility for an extended period of elevated temperature to accelerate corrosion above that expected under prototypical conditions. These conditions were sufficient to force aluminum precipitation to occur and induce the onset of chemical effects on debris bed head loss. The head loss behavior on two different types of fiber debris beds (blender-processed and NEI-processed debris bed) was evaluated in this study. It was found that the blender-processed bed is much more sensitive in filtering than the NEI-processed bed and consequently had a much higher head loss value across the beds. Aluminum precipitation was observed, with aluminum concentration and turbidity measurements, to form starting on day 7 in Test T3 and on day 6 in Test T4. The onset of aluminum precipitation

  6. Calculation notes that support accident scenario and consequence development for the leak from a railcar/tank trailer at the 204-ar waste unloading facility

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, G.W., Westinghouse Hanford

    1996-09-19

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Leak from Railcar/Tank Trailer. The calculations needed to quantify the risk associated with this accident scenario are included within.

  7. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail: emaprel@ipen.br, E-mail: wmtorres@ipen.br, E-mail: acprado@ipen.br, E-mail: umbehaun@ipen.br, E-mail: rlfranca@ipen.br, E-mail: samuelcs@ipen.br, E-mail: lamacedo@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)

    2015-07-01

    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  8. Construction of material and life science experimental facility under high intensity proton accelerator project

    CERN Document Server

    Ikeda, Y

    2002-01-01

    The outline of construction of 1MW pulse spallation neutron source in the MLF experimental facility is explained in this paper. The object, project activities, project team and construction of group are stated. 1MW pulse nuclear spallation neutron source, neutron source design and technical problems, Hg target, the basic parameters, neutron source station, moderator, reflector, shield, shutter, low temperature system, facility, spectrometer, and neutron experimental device are explained. The nuclear calculation code and nuclear data used as technical support and computer environment are illustrated. (S.Y.)

  9. Preliminary experimental results using the thermal-hydraulic integral test facility (VISTA) for the pilot plant of the system integrated modular advanced reactor, SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; Pak, Hyun Sik; Cho, Seok; Pak, Choon Kyung; Lee, Sung Jae; Song, Chul Hwa; Chung, Moon Ki [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Preliminary experimental tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual heat removal (PRHR) systems. Its scaled ratio with respect to the SMART-P is 1/1 in height and 1/96 in volume and heater power. So far, several steady states and transient tests have been carried out to verify the overall thermal hydraulic primary and secondary characteristics in a range of 10% to 100% power operation. As results of preliminary results, the steady state conditions were found to coincide with the expected design values of the SMART-P. But the major thermal hydraulic parameters are greatly affected by the initial water level and the nitrogen pressure in the reactor upper annular cavity. In the PRHR transient tests, the steam inlet temperature of the PRHR system is found to drop suddenly from a superheated condition to a saturated condition at the end period of PRHR operation.

  10. Post-test analysis of the experiment 5.2C - total loss of feed water at the BETHSY test facility

    Energy Technology Data Exchange (ETDEWEB)

    Krepper, E.; Schaefer, F.

    1998-10-01

    The BETHSY-test facility is a 1:100 scaled thermohydraulic model of a 900 MW(el) pressurized water reactor (FRAMATOME). The test facility is mainly designed to investigate various accident scenarios and to provide an experimental data base for code validation and for the verification of accident management measures. (orig.)

  11. Experimental data from a full-scale facility investigating radiant and convective terminals

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    The objective of this technical report is to provide information on the accuracy of the experiments performed in “the Cube” (part I, II and III). Moreover, this report lists the experimental data, which have been monitored in the test facility (part IV). These data are available online and can be...

  12. Experimental data from a full-scale facility investigating radiant and convective terminals

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    The objective of this technical report is to provide information on the accuracy of the experiments performed in “the Cube” (part I, II and III). Moreover, this report lists the experimental data, which have been monitored in the test facility (part IV). These data are available online and can be...

  13. Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    CERN Document Server

    Seryi, Andrei; Zimmermann, Frank; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; White, Glen; Woodley, Mark; Angal-Kalinin, Deepa

    2014-01-01

    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated.

  14. Design characteristics and requirements of irradiation holes for research reactor experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, B. C.; Chae, H. T.; Lee, C. S.; Seo, C. G

    2003-07-01

    In order to be helpful for the design of a new research reactor with high performance, are summarized the applications of research reactors in various fields and the design characteristics of experimental facility such as vertical irradiation holes and beam tubes. Basic requirements of such experimental facilities are also described. Research reactor has been widely utilized in various fields such as industry, engineering, medicine, life science, environment etc., and now the application fields are gradually being expanded together with the development of technology. Looking into the research reactors which are recently constructed or in plan, it seems that to develop a multi-purpose research reactor with intensive neutron beam research capability has become tendency. In the layout of the experimental facilities, the number and configuration of irradiation and beam holes should be optimized to meet required test conditions such as neutron flux at the early design stage. But, basically high neutron flux is required to perform experiments efficiently. In this aspect, neutron flux is regarded as one of important parameters to judge the degree of research reactor performance. One of main information for a new research reactor design is utilization demands and requirements of experimental holes. So basic requirements which should be considered in a new research reactor design were summarized from the survey of experimental facilities characteristics of various research reactors with around 20 MW thermal power and the experiences of HANARO utilization. Also is suggested an example of the requirements of experimental holes such as size, number and neutron flux, which are thought as minimum, in a new research reactor for exporting to developing countries such as Vietnam.

  15. Safety analysis of a loss-of-coolant accident in a breeding blanket for experimental fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rocco, P.; Casini, G.; Djerassi, H.; Papa, L.; Pautasso, G.; Renda, V.; Rouyer, J.L.

    1985-07-01

    A LOCA in a blanket design proposed for NET (Next European Torus) is investigated. The structural analysis of a damaged breeder unit shows that this first containment barrier has a high probability of survival to this accident. The radioactive sources involved are evaluated and an assessment is made of all containment barriers and associated protection systems.

  16. MaRIE: an experimental facility concept revolutionizing materials in extremes

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Cris W [Los Alamos National Laboratory

    2011-01-07

    The Matter-Radiation Interactions in Extremes (MaRIE) project intends to create an experimental facility that will revolutionize the control of materials in extremes. That control extends to extreme regimes where solid material has failed and begins to flow - the regimes of fluid dynamics and turbulent mixing. This presentation introduces the MaRIE facility concept, demonstrates examples of the science case that determine its functional requirements, and kicks-off the discussion of the decadal scientific challenges of mixing in extremes, including those MaRIE might address.

  17. Transient Modeling of the NETL Hybrid Fuel Cell/Gas Turbine Facility and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, M.L. (Università di Genova, Genova, Italy); Liese, E.A.; Tucker, D.A.; Lawson, L.O.; Traverso, A. (Università di Genova, Genova, Italy); Massardo, A.F. (Università di Genova, Genova, Italy)

    2007-10-01

    This paper describes the experimental validation of two different transient models of the hybrid fuel cell/gas turbine facility of the U.S. DOE-NETL at Morgantown. The first part of this work is devoted to the description of the facility, designed to experimentally investigate these plants with real components, except the fuel cell. The behavior of the SOFC is obtained with apt volumes (for the stack and the off-gas burner) and using a combustor to generate similar thermal effects. The second part of this paper shows the facility real-time transient model developed at the U.S. DOE-NETL and the detailed transient modeling activity using the TRANSEO program developed at TPG. The results obtained with both models are successfully compared with the experimental data of two different load step decreases. The more detailed model agrees more closely with the experimental data, which, of course, is more time consuming than the real-time model (the detailed model operates with a calculation over calculated time ratio around 6). Finally, the TPG model has been used to discuss the importance of performance map precision for both compressor and turbine. This is an important analysis to better understand the steady-state difference between the two models

  18. Transient Modeling of the NETL Hybrid Fuel Cell/Gas Turbine Facility and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Mario L. Ferrari; Eric Liese; David Tucker; Larry Lawson; Alberto Traverso; Aristide F. Massardo

    2007-10-01

    This paper describes the experimental validation of two different transient models of the hybrid fuel cell/gas turbine facility of the U.S. DOE-NETL at Morgantown. The first part of this work is devoted to the description of the facility, designed to experimentally investigate these plants with real components, except the fuel cell. The behavior of the SOFC is obtained with apt volumes (for the stack and the off-gas burner) and using a combustor to generate similar thermal effects. The second part of this paper shows the facility real-time transient model developed at the U.S. DOE-NETL and the detailed transient modeling activity using the TRANSEO program developed at TPG. The results obtained with both models are successfully compared with the experimental data of two different load step decreases. The more detailed model agrees more closely with the experimental data, which, of course, is more time consuming than the real-time model (the detailed model operates with a calculation over calculated time ratio around 6). Finally, the TPG model has been used to discuss the importance of performance map precision for both compressor and turbine. This is an important analysis to better understand the steady-state difference between the two models.

  19. Industrial accidents triggered by lightning.

    Science.gov (United States)

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents.

  20. Performance of the Argonne Wakefield Accelerator facility and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J. [Argonne National Lab., IL (United States). High Energy Physics Div.; Barov, N. [Univ. of California, Los Angeles, CA (United States). Physics Dept.

    1997-09-01

    The Argonne Wakefield Accelerator (AWA) facility has begun its experimental program. This unique facility is designed to address advanced acceleration research which requires very short, intense electron bunches. The facility incorporates two photo-cathode based electron sources. One produces up to 100 nC, multi-kiloamp drive bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity witness pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. The authors discuss commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator.

  1. Bicycle accidents.

    Science.gov (United States)

    Lind, M G; Wollin, S

    1986-01-01

    Information concerning 520 bicycle accidents and their victims was obtained from medical records and the victims' replies to questionnaires. The analyzed aspects included risk of injury, completeness of accident registrations by police and in hospitals, types of injuries and influence of the cyclists' age and sex, alcohol, fatigue, hunger, haste, physical disability, purpose of cycling, wearing of protective helmet and other clothing, type and quality of road surface, site of accident (road junctions, separate cycle paths, etc.) and turning manoeuvres.

  2. Survey of Thermal-Fluids Evaluation and Confirmatory Experimental Validation Requirements of Accident Tolerant Cladding Concepts with Focus on Boiling Heat Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ali, Amir [Univ. of New Mexico, Albuquerque, NM (United States); Liu, Maolong [Univ. of New Mexico, Albuquerque, NM (United States); Blandford, Edward [Univ. of New Mexico, Albuquerque, NM (United States)

    2016-06-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation and confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.

  3. Fessenheim plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident; Fessenheim - Rapport d'evaluation complementaire de la surete des installations nucleaires au regard de l'accident de Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    This CSA (Complementary Safety Assessment) analyses the robustness of the Fessenheim plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  4. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    Science.gov (United States)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  5. Experimental Investigation of Radio Signal Propagation in Scientific Facilities for Telerobotic Applications

    OpenAIRE

    Ramviyas Parasuraman; Keith Kershaw(CERN); Manuel Ferre

    2013-01-01

    Understanding the radio signal transmission characteristics in the environment where the telerobotic application is sought is a key part of achieving a reliable wireless communication link between a telerobot and a control station. In this paper, wireless communication requirements and a case study of a typical telerobotic application in an underground facility at CERN are presented. Then, the theoretical and experimental characteristics of radio propagation are investigated with respect to t...

  6. A digital computer propulsion control facility: Description of capabilities and summary of experimental program results

    Science.gov (United States)

    Zeller, J. R.; Arpasi, D. J.; Lehtinen, B.

    1976-01-01

    Flight weight digital computers are being used today to carry out many of the propulsion system control functions previously delegated exclusively to hydromechanical controllers. An operational digital computer facility for propulsion control mode studies has been used successfully in several experimental programs. This paper describes the system and some of the results concerned with engine control, inlet control, and inlet engine integrated control. Analytical designs for the digital propulsion control modes include both classical and modern/optimal techniques.

  7. Experimental studies on dynamic system characteristics of the high temperature/high pressure thermal-hydraulic test facility(VISTA) for the power variation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. Y.; Park, H. S.; Joe, S.; Park, C. K.; Lee, S. J.; Song, C. W.; Jeong, M. K. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Dynamic system characteristics tests were carried out for the power variation by using the high temperature/high pressure thermal-hydraulic test facility, VISTA(Experimental Verification by Integral Simulation of Transient and Accidents), which had been constructed to simulate the SMART-P by KAERI. Experimental tests have been performed to investigate the thermal-hydraulic dynamic characteristics of the primary and the secondary systems in the range of 5% to 85% power. Automatic PID control logics were developed and installed to the VISTA facility to control the major thermal hydraulic parameters. Power was changed with either a step or a ramp changing method from the reference power of 10%, 25%, 50% and 75% to 5% or 10% higher power. It was found that there is no noticeable difference in the responses between a step and a ramp changing method. When unique constants of P, I, and D were used in the range of 5% to 85% power, it was found to be liable to lose the system control. Further studies are required to quantify the controllability and the time constants of the major thermal hydraulic parameters.

  8. Experimental Investigation of Radio Signal Propagation in Scientific Facilities for Telerobotic Applications

    Directory of Open Access Journals (Sweden)

    Ramviyas Parasuraman

    2013-10-01

    Full Text Available Understanding the radio signal transmission characteristics in the environment where the telerobotic application is sought is a key part of achieving a reliable wireless communication link between a telerobot and a control station. In this paper, wireless communication requirements and a case study of a typical telerobotic application in an underground facility at CERN are presented. Then, the theoretical and experimental characteristics of radio propagation are investigated with respect to time, distance, location and surrounding objects. Based on analysis of the experimental findings, we show how a commercial wireless system, such as Wi-Fi, can be made suitable for a case study application at CERN.

  9. Experimental research on mercury emission from one-dimensional combustion test facility

    Institute of Scientific and Technical Information of China (English)

    WANG Quan-hai(王泉海); QIU Jian-rong(邱建荣); LIU Jing(刘晶); ZHANG Jun-ying(张军营)

    2004-01-01

    The research of mercury release from coal combustion and mercury speciation in flue gas was conducted in a one-dimensional combustion test facility. The experimental results indicated that combustion temperature was the primary factor in affecting mercury vaporization and release. Experimental measurements showed high mercury levels in the particulate phase. Hg(S) is enriched in fly ash and dispersed in bottom ash. Hg(B) content decreases and the Hg(F) content increases with higher furnace temperature. At 1 100℃, the levels of Hg2+(g) are 17%~48% for limited chemical kinetics .The mercury equilibrium in the flue-gas is frozen below some temperature.

  10. Evaluation of the concrete shield compositions from the 2010 criticality accident alarm system benchmark experiments at the CEA Valduc SILENE facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dunn, Michael E [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wagner, John C [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McMahan, Kimberly L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Authier, Nicolas [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Jacquet, Xavier [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Rousseau, Guillaume [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Wolff, Herve [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Savanier, Laurence [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Baclet, Nathalie [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Lee, Yi-kang [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Trama, Jean-Christophe [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Masse, Veronique [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Gagnier, Emmanuel [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Naury, Sylvie [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Blanc-Tranchant, Patrick [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Hunter, Richard [Babcock International Group (United Kingdom); Kim, Soon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dulik, George Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, Kevin H. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2015-01-01

    In October 2010, a series of benchmark experiments were conducted at the French Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE facility. These experiments were a joint effort between the United States Department of Energy Nuclear Criticality Safety Program and the CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems. This series of experiments consisted of three single-pulsed experiments with the SILENE reactor. For the first experiment, the reactor was bare (unshielded), whereas in the second and third experiments, it was shielded by lead and polyethylene, respectively. The polyethylene shield of the third experiment had a cadmium liner on its internal and external surfaces, which vertically was located near the fuel region of SILENE. During each experiment, several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor. Nearly half of the foils and TLDs had additional high-density magnetite concrete, high-density barite concrete, standard concrete, and/or BoroBond shields. CEA Saclay provided all the concrete, and the US Y-12 National Security Complex provided the BoroBond. Measurement data from the experiments were published at the 2011 International Conference on Nuclear Criticality (ICNC 2011) and the 2013 Nuclear Criticality Safety Division (NCSD 2013) topical meeting. Preliminary computational results for the first experiment were presented in the ICNC 2011 paper, which showed poor agreement between the computational results and the measured values of the foils shielded by concrete. Recently the hydrogen content, boron content, and density of these concrete shields were further investigated within the constraints of the previously available data. New computational results for the first experiment are now available

  11. The study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Jeun, Gyoo Dong; Cho, Sung Won; Bang, Kwang Hyun; Park, Shane; Park, Seong Yong; Kim, Jin Man; Lim, Jae Hyuck; Song, Myung Jin [Hanyang Univ., Seoul (Korea, Republic of)

    2000-03-15

    TMI-2 accident is more valuable than the related experiments in the point of view that it is a real accident offering huge information about the late phase of severe accident. Therefore it gives out good standards for evaluation of code performance and inputs suitableness by comparing the accident data and simulated outputs. In this study SCDAP/REALAP5/MOD3.4 was selected for accident simulation. And sensitivity analysis was performed on varied cases to find out the most proper input variable about the late phase of core meting phenomena. Other plants and experimental facilities input deck were collected and analyzed for the sensitivity study and the shortcomings proposed by SCDAP/RELAP5 peer review were considered to the simulation. As a result gamma heating fraction in the input affect the progress of core melting phenomena. About this a study on the related model itself will be carried out.

  12. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Aaron, Adam M [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL; Holcomb, David Eugene [ORNL; Kisner, Roger A [ORNL; Peretz, Fred J [ORNL; Robb, Kevin R [ORNL; Wilgen, John B [ORNL; Wilson, Dane F [ORNL

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  13. The National Ignition Facility: Status and Plans for the Experimental Program

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I

    2002-11-12

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system and a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF is being built by the National Nuclear Security Administration and when completed will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions where they will ignite and burn, liberating more energy than required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. NIF is now entering the first phases of its laser commissioning program. Low-energy preamplifier rod laser shots have been successfully propagated through the entire laser chain. Higher energy shots are planned through the end of 2002. NIF's target experimental systems are also being installed in preparation for laser performance and experimental capability commissioning starting in 2003.

  14. Jules Horowitz Reactor, a new irradiation facility: Improving dosimetry for the future of nuclear experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G.; Beretz, D.; Destouches, C. [CEA, DEN, DER/SPEX, F-13108 Saint-Paul-lez-Durance (France)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Jules Horowitz Reactor (JHR) is an experimental reactor under construction at the French Nuclear Energy and Alternative Energies Commission (CEA) facility at Cadarache. It will achieve its first criticality by the end of 2014. Experiments that will be conducted at JHR will deal with fuel, cladding, and material behavior. The JHR will also produce medical radio-isotopes and doped silicon for the electronic industry. As a new irradiation facility, its instrumentation will benefit from recent improvements. Nuclear instrumentation will include reactor dosimetry, as it is a reference technique to determine neutron fluence in experimental devices or characterize irradiation locations. Reactor dosimetry has been improved with the progress of simulation tools and nuclear data, but at the same time the customer needs have increased: Experimental results must have reduced and assessed uncertainties. This is now a necessary condition to perform an experimental irradiation in a test reactor. Items improved, in the framework of a general upgrading of the dosimetry process based on uncertainty minimization, will include dosimeter, nuclear data, and modelling scheme. (authors)

  15. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  16. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area

    Science.gov (United States)

    Bedogni, R.; Sperduti, A.; Pietropaolo, A.; Pillon, M.; Pola, A.; Gómez-Ros, J. M.

    2017-01-01

    A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a 241Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm-2 s-1 to 1000 cm-2 s-1 can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

  17. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    Science.gov (United States)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  18. A computer-controlled experimental facility for krypton and xenon adsorption coefficient measurements on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Del Serra, Daniele; Aquaro, Donato; Mazed, Dahmane; Pazzagli, Fabio; Ciolini, Riccardo, E-mail: r.ciolini@ing.unipi.it

    2015-07-15

    Highlights: • An experimental test facility for qualification of the krypton and xenon adsorption properties of activated carbons. • The measurement of the adsorption coefficient by using the elution curve method. • The simultaneous on-line control of the main physical parameters influencing the adsorption property of activated carbon. - Abstract: An automated experimental test facility, intended specifically for qualification of the krypton and xenon adsorption properties of activated carbon samples, was designed and constructed. The experimental apparatus was designed to allow an on-line control of the main physical parameters influencing greatly the adsorption property of activated carbon. The measurement of the adsorption coefficient, based upon the elution curve method, can be performed with a precision better than 5% at gas pressure values ranging from atmospheric pressure up to 9 bar and bed temperature from 0 up to 80 °C. The carrier gas flow rate can be varied from 40 up to 4000 N cm{sup 3} min{sup −1} allowing measurement of dynamic adsorption coefficient with face velocities from 0.3 up to 923 cm min{sup −1} depending on the gas pressure and the test cell being used. The moisture content of the activated carbon can be precisely controlled during measurement, through the relative humidity of the carrier gas.

  19. Potential for Ammonia Recapture by Farm Woodlands: Design and Application of a New Experimental Facility

    Directory of Open Access Journals (Sweden)

    Mark R. Theobald

    2001-01-01

    Full Text Available There has been increasing pressure on farmers in Europe to reduce the emissions of ammonia from their land. Due to the current financial climate in which farmers have to operate, it is important to identify ammonia control measures that can be adopted with minimum cost. The planting of trees around farmland and buildings has been identified as a potentially effective and low-cost measure to enhance ammonia recapture at a farm level and reduce long-range atmospheric transport. This work assesses experimentally what fraction of ammonia farm woodlands could potentially remove from the atmosphere. We constructed an experimental facility in southern Scotland to simulate a woodland shelterbelt planted in proximity to a small poultry unit. By measuring horizontal and vertical ammonia concentration profiles within the woodland, and comparing this to the concentration of an inert tracer (SF6 we estimate the depletion of ammonia due to dry deposition to the woodland canopy. Together with measurements of mean ammonia concentrations and throughfall fluxes of nitrogen, this information is used to provide a first estimate of the fraction of emitted ammonia that is recaptured by the woodland canopy. Analysis of these data give a lower limit of recapture of emitted ammonia, at the experimental facility, of 3%. By careful design of shelterbelt woodlands this figure could be significantly higher.

  20. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  1. Accident Statistics

    Data.gov (United States)

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  2. Operational readiness review for the Waste Experimental Reduction Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory`s (INEL`s) Waste Experimental Reduction Facility (WERF) was conducted by EG&G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report.

  3. Sports Accidents

    CERN Multimedia

    Kiebel

    1972-01-01

    Le Docteur Kiebel, chirurgien à Genève, est aussi un grand ami de sport et de temps en temps médecin des classes genevoises de ski et également médecin de l'équipe de hockey sur glace de Genève Servette. Il est bien qualifié pour nous parler d'accidents de sport et surtout d'accidents de ski.

  4. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    CERN Document Server

    Abler, Daniel; Carli, Christian; Dosanjh, Manjit; Peach, Ken; Orecchia, Roberto

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN’s competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR an...

  5. An Experimental Facility to Validate Ground Source Heat Pump Optimisation Models for the Australian Climate

    Directory of Open Access Journals (Sweden)

    Yuanshen Lu

    2017-01-01

    Full Text Available Ground source heat pumps (GSHPs are one of the most widespread forms of geothermal energy technology. They utilise the near-constant temperature of the ground below the frost line to achieve energy-efficiencies two or three times that of conventional air-conditioners, consequently allowing a significant offset in electricity demand for space heating and cooling. Relatively mature GSHP markets are established in Europe and North America. GSHP implementation in Australia, however, is limited, due to high capital price, uncertainties regarding optimum designs for the Australian climate, and limited consumer confidence in the technology. Existing GSHP design standards developed in the Northern Hemisphere are likely to lead to suboptimal performance in Australia where demand might be much more cooling-dominated. There is an urgent need to develop Australia’s own GSHP system optimisation principles on top of the industry standards to provide confidence to bring the GSHP market out of its infancy. To assist in this, the Queensland Geothermal Energy Centre of Excellence (QGECE has commissioned a fully instrumented GSHP experimental facility in Gatton, Australia, as a publically-accessible demonstration of the technology and a platform for systematic studies of GSHPs, including optimisation of design and operations. This paper presents a brief review on current GSHP use in Australia, the technical details of the Gatton GSHP facility, and an analysis on the observed cooling performance of this facility to date.

  6. Commissioning of the catalytic plasma exhaust clean-up facility caprice and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Glugla, M.; Kraemer, R.; Penzhorn, R.D.; Le, T.L.; Simon, K.H.; Guenther, K.; Besserer, U.; Schaefer, P.; Hellriegel, W. [Research Center Karlsruhe (Germany); Geissler, H. [Kraftanlagen Heidelberg (Germany)

    1995-10-01

    A fuel clean-up process for all plasma exhaust gases from DT fusion machines, based on catalytic conversion reactions combined with permeation of hydrogen isotopes through palladium/silver, has been developed. The complete process has already been proven with relevant concentrations of tritium at laboratory scale. On the basis of the results obtained the technical facility `CAPRICE` was designed, and is now under tritium operation at the Tritium Laboratory Karlsruhe (TLK). The facility is being used to demonstrate the process on a target throughput of 10 mol/h DT and 1 mol/h tritiated and non-tritiated impurities. Full scale experiments with hydrogen and deuterium have been completed to verify the design parameters of the facility and to gain detailed knowledge on the performance of the different subsystems under a variety of experimental conditions. Decontamination factors were obtained from these experiments as well as from first tritium runs employing about 350 Ci (0.5%) tritium in deuterium. 4 refs., 6 figs., 1 tab.

  7. SIRHEX—A new experimental facility for high heat flux testing of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, André, E-mail: andre.kunze@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Ghidersa, Bradut-Eugen [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Bonelli, Flavia [Politecnico di Torino, Dipartimento Energia (Italy)

    2015-10-15

    Highlights: • Commercial infrared heaters have been qualified for future First Wall experiments. • In first tests surface heat flux densities up to 470 kW/m were achieved. • The homogeneity of the heat distribution stayed within ±5% of the nominal value. • With the heaters a typical ITER pulse can be reproduced. • An adequate testing strategy will be required to improve heater lifetime. - Abstract: SIRHEX (“Surface Infrared Radiation Heating Experiment”) is a small-scale experimental facility at KIT, which has been built for testing and qualifying high heat flux radiation heaters for blanket specific conditions using an instrumented water cooled target. This paper describes the SIRHEX facility and the experimental set-up for the heater tests. The results of a series of tests focused on reproducing homogeneous surface heat flux densities up to 500 kW/m{sup 2} will be presented and the impact of the heater performance on the design of the First Wall test rig will be discussed.

  8. Preliminary CFD Assessment of an Experimental Test Facility Operating with Heavy Liquid Metals

    Directory of Open Access Journals (Sweden)

    Matteo Lizzoli

    2017-01-01

    Full Text Available The CFD analysis of a Venturi nozzle operating in LBE (key component of the CIRCE facility, owned by ENEA is presented in this paper. CIRCE is a facility developed to investigate in detail the fluid-dynamic behavior of ADS and/or LFR reactor plants. The initial CFD simulations have been developed hand in hand with the comparison with experimental data: the test results were used to confirm the reliability of the CFD model, which, in turn, was used to improve the interpretation of the experimental data. The Venturi nozzle is modeled with a 3D CFD code (STAR-CCM+. Later on, the CFD model has been used to assess the performance of the component in conditions different from the ones tested in CIRCE: the performance of the Venturi is presented, in terms of pressure drops, for various operating conditions. Finally, the CFD analysis has been focused on the evaluation of the effects of the injection of an inert gas in the flow of the liquid coolant on the performance of the Venturi nozzle.

  9. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  10. Investigation of air cleaning system response to accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.; Gregory, W.S.; Horak, H.L.; Idar, E.S.; Martin, R.A.; Ricketts, C.I.; Smith, P.R.; Tang, P.K.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.

  11. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon, E-mail: parkjw@dongguk.ac.k [Dongguk University, 707 Seokjang-Dong, Gyeongju, 780-714 (Korea, Republic of); Park, Byung Gi [Soonchunhyang University, Asan, Chungnam, 336-745 (Korea, Republic of); Kim, Chang Hyun [Korea Hydro and Nuclear Power Co., Ltd. 25-1, Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2009-12-15

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON{sup TM} and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  12. LUCI: A facility at DUSEL for large-scale experimental study of geologic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peters, C. A.; Dobson, P.F.; Oldenburg, C.M.; Wang, J. S. Y.; Onstott, T.C.; Scherer, G.W.; Freifeld, B.M.; Ramakrishnan, T.S.; Stabinski, E.L.; Liang, K.; Verma, S.

    2010-10-01

    LUCI, the Laboratory for Underground CO{sub 2} Investigations, is an experimental facility being planned for the DUSEL underground laboratory in South Dakota, USA. It is designed to study vertical flow of CO{sub 2} in porous media over length scales representative of leakage scenarios in geologic carbon sequestration. The plan for LUCI is a set of three vertical column pressure vessels, each of which is {approx}500 m long and {approx}1 m in diameter. The vessels will be filled with brine and sand or sedimentary rock. Each vessel will have an inner column to simulate a well for deployment of down-hole logging tools. The experiments are configured to simulate CO{sub 2} leakage by releasing CO{sub 2} into the bottoms of the columns. The scale of the LUCI facility will permit measurements to study CO{sub 2} flow over pressure and temperature variations that span supercritical to subcritical gas conditions. It will enable observation or inference of a variety of relevant processes such as buoyancy-driven flow in porous media, Joule-Thomson cooling, thermal exchange, viscous fingering, residual trapping, and CO{sub 2} dissolution. Experiments are also planned for reactive flow of CO{sub 2} and acidified brines in caprock sediments and well cements, and for CO{sub 2}-enhanced methanogenesis in organic-rich shales. A comprehensive suite of geophysical logging instruments will be deployed to monitor experimental conditions as well as provide data to quantify vertical resolution of sensor technologies. The experimental observations from LUCI will generate fundamental new understanding of the processes governing CO{sub 2} trapping and vertical migration, and will provide valuable data to calibrate and validate large-scale model simulations.

  13. The experimental set-up of the RIB in-flight facility EXOTIC

    Science.gov (United States)

    Pierroutsakou, D.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Mazzocco, M.; Nicoletto, M.; Parascandolo, C.; Signorini, C.; Soramel, F.; Strano, E.; Toniolo, N.; Torresi, D.; Tortone, G.; Anastasio, A.; Bettini, M.; Cassese, C.; Castellani, L.; Corti, D.; Costa, L.; De Fazio, B.; Galet, G.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Pontoriere, G.; Rocco, R.; Romoli, M.; Roscilli, L.; Sandoli, M.; Stroe, L.; Tessaro, M.; Zatti, P. G.

    2016-10-01

    We describe the experimental set-up of the Radioactive Ion Beam (RIB) in-flight facility EXOTIC consisting of: (a) two position-sensitive Parallel Plate Avalanche Counters (PPACs), dedicated to the event-by-event tracking of the produced RIBs and to time of flight measurements and (b) the new high-granularity compact telescope array EXPADES (EXotic PArticle DEtection System), designed for nuclear physics and nuclear astrophysics experiments employing low-energy light RIBs. EXPADES consists of eight ΔE -Eres telescopes arranged in a cylindrical configuration around the target. Each telescope is made up of two Double Sided Silicon Strip Detectors (DSSSDs) with a thickness of 40/60 μm and 300 μm for the ΔE and Eres layer, respectively. Additionally, eight ionization chambers were constructed to be used as an alternative ΔE stage or, in conjunction with the entire DSSSD array, to build up more complex triple telescopes. New low-noise multi-channel charge-sensitive preamplifiers and spectroscopy amplifiers, associated with constant fraction discriminators, peak-and-hold and Time to Amplitude Converter circuits were developed for the electronic readout of the ΔE stage. Application Specific Integrated Circuit-based electronics was employed for the treatment of the Eres signals. An 8-channel, 12-bit multi-sampling 50 MHz Analog to Digital Converter, a Trigger Supervisor Board for handling the trigger signals of the whole experimental set-up and an ad hoc data acquisition system were also developed. The performance of the PPACs, EXPADES and of the associated electronics was obtained offline with standard α calibration sources and in-beam by measuring the scattering process for the systems 17O+58Ni and 17O+208Pb at incident energies around their respective Coulomb barriers and, successively, during the first experimental runs with the RIBs of the EXOTIC facility.

  14. Passive decay heat removal by natural air convection after severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, F.J.; Neitzel, H.J. [Forschungszentrum Karlsruhe Institut fur Angewandte Thermo- und Fluiddynamik, Karlsruhe (Germany); Cheng, X. [Technische Universitaet Karlsruhe Institut fur Stroemungslehre und Stroemungsmaschinen, Karlsruhe (Germany)

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  15. Scientific Basis for a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL Homestake

    Science.gov (United States)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Freifeld, B. M.; Keimowitz, A. R.; Wang, J. S.

    2009-12-01

    Most natural and engineered earth system processes involve strong coupling of thermal, mechanical, chemical, and sometimes biological processes in rocks that are heterogeneous at a wide range of spatial scales. One of the most pervasive processes in the Earth’s crust is that of fluids (primarily water, but also CO2, hydrocarbons, volcanic gases, etc.) flowing through fractured heated rock under stress. A preliminary design is being formulated for a large-scale subsurface experimental facility to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock at depth. The experiment would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake Mine, South Dakota. Fundamental geochemical, isotopic, microbiological, laboratory THMC experiments, and numerical modeling will be used to guide the experimental design and evaluation of the time and spatial scales of the coupled THMCB processes. Although we sometimes analyze rocks and fluids for physical and chemical properties, it is difficult to create quantitative numerical models based on fundamental physics and chemistry that can capture the dynamic changes that have occurred or may yet take place. Initial conditions and history are only known roughly at best, and the boundary conditions have likely varied over time as well. Processes such as multicomponent chemical and thermal diffusion, multiphase flow, advection, and thermal expansion/contraction, are taking place simultaneously in rocks that are structurally and chemically complex—heterogeneous assemblages of mineral grains, pores, and fractures—and visually opaque. The only way to fully understand such processes is to carry out well-controlled experiments at a range of scales (grain/pore-scale to decimeter-scale) that can be interrogated and modeled. The THMCB experimental facility is also intended to be a unique laboratory for testing hypotheses regarding effects of

  16. Validation of PHITS Spallation Models from the Perspective of the Shielding Design of Transmutation Experimental Facility

    Science.gov (United States)

    Iwamoto, Hiroki; Meigo, Shin-ichiro

    2017-09-01

    The impact of different spallation models implemented in the particle transport code PHITS on the shielding design of Transmutation Experimental Facility is investigated. For 400-MeV proton incident on a lead-bismuth eutectic target, an effective dose rate at the end of a thick radiation shield (3-m-thick iron and 3-m-thick concrete) calculated by the Liège intranuclear cascade (INC) model version 4.6 (INCL4.6) coupled with the GEMcode (INCL4.6/GEM) yields about twice as high as the Bertini INC model (Bertini/GEM). A comparison with experimental data for 500-MeV proton incident on a thick lead target suggest that the prediction accuracy of INCL4.6/GEM would be better than that of Bertini/GEM. In contrast, it is found that the dose rates in beam ducts in front of targets calculated by the INCL4.6/GEMare lower than those by the Bertini/GEM. Since both models underestimate the experimental results for neutron-production doubledifferential cross sections at 180° for 140-MeV proton incident on carbon, iron, and gold targets, it is concluded that it is necessary to allow a margin for uncertainty caused by the spallation models, which is a factor of two, in estimating the dose rate induced by neutron streaming through a beam duct.

  17. Validation of PHITS Spallation Models from the Perspective of the Shielding Design of Transmutation Experimental Facility

    Directory of Open Access Journals (Sweden)

    Iwamoto Hiroki

    2017-01-01

    Full Text Available The impact of different spallation models implemented in the particle transport code PHITS on the shielding design of Transmutation Experimental Facility is investigated. For 400-MeV proton incident on a lead-bismuth eutectic target, an effective dose rate at the end of a thick radiation shield (3-m-thick iron and 3-m-thick concrete calculated by the Liège intranuclear cascade (INC model version 4.6 (INCL4.6 coupled with the GEMcode (INCL4.6/GEM yields about twice as high as the Bertini INC model (Bertini/GEM. A comparison with experimental data for 500-MeV proton incident on a thick lead target suggest that the prediction accuracy of INCL4.6/GEM would be better than that of Bertini/GEM. In contrast, it is found that the dose rates in beam ducts in front of targets calculated by the INCL4.6/GEMare lower than those by the Bertini/GEM. Since both models underestimate the experimental results for neutron-production doubledifferential cross sections at 180◦ for 140-MeV proton incident on carbon, iron, and gold targets, it is concluded that it is necessary to allow a margin for uncertainty caused by the spallation models, which is a factor of two, in estimating the dose rate induced by neutron streaming through a beam duct.

  18. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    Science.gov (United States)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  19. An experimental test of the weak equivalence principle for antihydrogen at the future FLAIR facility

    Science.gov (United States)

    Blaum, Klaus; Raizen, Mark G.; Quint, Wolfgang

    2014-05-01

    We present new experimental ideas to investigate the gravitational interaction of antihydrogen. The experiment can first be performed in an off-line mirror measurement on hydrogen atoms, as a testing ground for our methods, before the implementation with antihydrogen atoms. A beam of hydrogen atoms is formed by launching a cold beam of protons through a cloud of trapped electrons in a nested Penning trap arrangement. In the next step, the atoms are stopped in a series of pulsed electromagnetic coils — so-called atomic coilgun. The stopped atoms are confined in a magnetic quadrupole trap and cooled by single-photon laser cooling. We intend to employ the method of Raman interferometry to study the gravitational interaction of atomic hydrogen — and later on antihydrogen at the FLAIR facility — with high sensitivity.

  20. Survey of existing underground openings for in-situ experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.; Graf, A.; Strisower, B.; Korbin, G.

    1981-07-01

    In an earlier project, a literature search identified 60 underground openings in crystalline rock capable of providing access for an in-situ experimental facility to develop geochemical and hydrological techniques for evaluating sites for radioactive waste isolation. As part of the current project, discussions with state geologists, owners, and operators narrowed the original group to 14. Three additional sites in volcanic rock and one site in granite were also identified. Site visits and application of technical criteria, including the geologic and hydrologic settings and depth, extent of the rock unit, condition, and accessibility of underground workings, determined four primary candidate sites: the Helms Pumped Storage Project in grandiodorite of the Sierra Nevada, California; the Tungsten Queen Mine in Precambrian granodiorite of the North Carolina Piedmont; the Mount Hope Mine in Precambrian granite and gneiss of northern New Jersey; and the Minnamax Project in the Duluth gabbro complex of northern Minnesota.

  1. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  2. Beam studies and experimental facility for the AWAKE experiment at CERN

    CERN Document Server

    Bracco, Chiara; Petrenko, Alexey; Timko, Helga; Argyropoulos, Theodoros; Bartosik, Hannes; Bohl, Thomas; Esteban Müller, Juan; Goddard, Brennan; Meddahi, Malika; Pardons, Ans; Shaposhnikova, Elena; Velotti, Francesco M; Vincke, Helmut

    2014-01-01

    A Proton Driven Plasma Wakefield Acceleration Experiment has been proposed as an approach to eventually accelerate an electron beam to the TeV energy range in a single plasma section. To verify this novel technique, a proof of principle R&D experiment, AWAKE, is planned at CERN using 400 GeV proton bunches from the SPS. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility profiting from existing infrastructure where only minor modifications need to be foreseen. The design of the experimental area and the proton and electron beam lines are shown. The achievable SPS proton bunch properties and their reproducibility have been measured and are presented.

  3. Experimental geothermal research facilities study (Phase O). Final report No. 26405-6001-RU-00

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-31

    This study focuses on identification of a representative liquid-dominated geothermal reservoir of moderate temperature and salinity, preliminary design of an appropriate energy conversion system, identification of critical technology and planning for the implementation of experimental facilities. Results of Phase O of the project are reported in two volumes. Volume II presents detailed results of studies and analyses arranged in nine appendices including the final report by a subcontractor on the study. The specific appendices are: Appendix A: Geothermal Resources of the Western United States; Appendix B: Site Selection Process and the East Mesa Geothermal Field; Appendix C: East Mesa Geothermal Field Reservoir Characteristics; Appendix D: Advisor's Views and Comments; Appendix E: Thermodynamic Analyses; Appendix F: Material and Corrosion Factors; Appendix G: Preliminary Reliability/Maintainability Analyses; Appendix H: Environmental Impact Analysis Guidelines; and Appendix I: Report to the National Science Foundation/TRW Systems Group by Rogers Engineering Company, Inc., San Francisco, California.

  4. Experimental Study of the APR+ Direct ECC Bypass in the Air-water Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kihwan; Choi, Hae-Seob; Park, Kil-won; Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The APR+ is an improved Korean Nuclear Power Reactor, which has been developed as a two loop evolutionary PWR (Pressure Water Reactor) with a number of advanced design features to enhance safety based on the APR-1400 technology. The emergency core cooling system (ECC) of the APR+ is different with that of the APR-1400, though the APR+ adopted a direct vessel injection (DVI) system which is the same design features of the APR-14000. The main difference of the DVI+ is the emergency core barrel duct (ECBD) which is designed to increase the amount of the injection water to the core region. The performance of the DVI system has been an important issues for past decades, and many researchers have studied the related thermal-hydraulic technical issues such as the ECC bypass fraction, the steam condensation effect, temperature distribution, sub-cooling margin, and etc. However, the previous research cannot be directly applicable to the APR+ owing to the unique features of the DVI+. The current study will elaborate on the experimental evaluation of the direct ECC bypass performance. The 1/5 ECC bypass test facility which is designed with a linearly reduced 1/5 scale referring to the APR+ was used to investigate the effect of the DVI+ injection nozzle location and the broken cold leg velocity on the direct ECC bypass fraction. However, air is used as a working fluid to simulate the steam flow induced from the broken cold leg, and thus, the direct contact condensation effect is not considered in this study. Experimental study for the direct ECC bypass phenomena has been carryout out with various the injection mode and air velocity conditions. The tests were performed in the 1/5 scale ECC bypass test facility, and the test condition was defined using a scaling law referring to the APR+ reactor. Test results showed that the direct ECC bypass fraction was greatly enhanced compared with the reference test (w/o ECBD)

  5. System integration of RF based negative ion experimental facility at IPR

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, G; Bandyopadhyay, M; Singh, M J; Gahlaut, A; Soni, J; Pandya, K; Parmar, K G; Sonara, J; Chakraborty, A, E-mail: bansal@ipr.res.i [Institute for Plasma Research, Bhat, Gandhinagar (Gujarat) 382 428 (India)

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density {approx}5 x 10{sup 12} cm{sup -3}. The source can deliver a negative ion beam of {approx}10 A with a current density of {approx}30 mA/cm{sup 2} and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  6. Design of a Novel Experimental Facility for Testing of Tidal Arrays

    Directory of Open Access Journals (Sweden)

    Matevz Pintar

    2013-08-01

    Full Text Available In order to obtain the maximum amount of energy from tidal stream extraction devices, deployment in large arrays should be studied. The area of seabed with favorable conditions is fairly limited; therefore layout spacing has to be optimized. In this paper a feasibility study for a novel experimental facility, suitable for the testing of an array of tidal devices, is presented. To avoid space and scale limitations of towing tanks, testing is proposed to be performed in large lakes or calm seas using a self-propelled vessel, which will carry an array of devices with variable spacing, creating relevant speed differences and measuring their performance and loading. Using hydrodynamic scaling laws, an appropriate size for test turbines and the range of vessel speed was determined to fulfill experimental requirements. Computational fluid dynamic simulations, using the actuator disc method, have suggested a suitable turbine array configuration to resemble real application conditions. A simplified model of the vessel was analyzed using the finite elements method to determine the main scantlings. The hull resistance calculated by empirical formulae was found to be negligible compared to the resistance of the tested turbine. It was confirmed that turbine size and speed determined by scaling laws are also reasonable from a propulsion point of view.

  7. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  8. Velo and REXAN - Integrated Data Management and High Speed Analysis for Experimental Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin; Carson, James P.; Corrigan, Abigail L.; Einstein, Daniel R.; Guillen, Zoe C.; Heath, Brandi S.; Kuprat, Andrew P.; Lanekoff, Ingela T.; Lansing, Carina S.; Laskin, Julia; Li, Dongsheng; Liu, Yan; Marshall, Matthew J.; Miller, Erin A.; Orr, Galya; Pinheiro da Silva, Paulo; Ryu, Seun; Szymanski, Craig J.; Thomas, Mathew

    2013-01-10

    The Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL) is creating a ‘Rapid Experimental Analysis’ (REXAN) Framework, based on the concept of reusable component libraries. REXAN allows developers to quickly compose and customize high throughput analysis pipelines for a range of experiments, as well as supporting the creation of multi-modal analysis pipelines. In addition, PNNL has coupled REXAN with its collaborative data management and analysis environment Velo to create an easy to use data management and analysis environments for experimental facilities. This paper will discuss the benefits of Velo and REXAN in the context of three examples: PNNL High Resolution Mass Spectrometry - reducing analysis times from hours to seconds, and enabling the analysis of much larger data samples (100KB to 40GB) at the same time · ALS X-Ray tomography - reducing analysis times of combined STXM and EM data collected at the ALS from weeks to minutes, decreasing manual work and increasing data volumes that can be analysed in a single step ·Multi-modal nano-scale analysis of STXM and TEM data - providing a semi automated process for particle detection The creation of REXAN has significantly shortened the development time for these analysis pipelines. The integration of Velo and REXAN has significantly increased the scientific productivity of the instruments and their users by creating easy to use data management and analysis environments with greatly reduced analysis times and improved analysis capabilities.

  9. Water spray interaction with air-steam mixtures under containment spray conditions: experimental study in the TOSQAN facility

    Energy Technology Data Exchange (ETDEWEB)

    Porcheron, E.; Lemaitre, P.; Malet, J.; Nuboer, A.; Brun, P.; Bouilloux, L.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Surete des Usines, des laboratoires, des transports et des dechets, Saclay, BP 68 - 91192 Gif-sur-Yvette cedex (France)

    2005-07-01

    Full text of publication follows: During the course of an hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and steam wall condensation. In order to assess the risk of detonation generated by a high local hydrogen concentration, hydrogen distribution in the containment has to be known. The TOSQAN experimental program has been created to simulate typical accidental thermal hydraulic flow conditions in the reactor containment. The present work is devoted to study the interaction of a water spray injection used as a mitigation mean in order to reduce containment pressure and to produce a mixing of air, steam and hydrogen induced by spray entrainment and condensation on droplet. In order to have a better understanding of physical phenomena, we need to make a detailed characterization of the spray and the gas. The TOSQAN facility that is highly instrumented with non-intrusive diagnostics consists in a closed cylindrical vessel (7 m{sup 3} volume, 4 m high, 1.5 m i.d.) into which steam is injected. Water droplets size is measured in the vessel by the Interferometric Laser Imaging for Droplet Sizing technique. Droplet velocity is obtained by Particle Image Velocimetry and Laser Doppler Velocimetry, and droplet temperature is measured by global rainbow refractometry. Gas concentration measurements are performed by Spontaneous Raman Scattering. The walls of the vessel are thermostatically controlled by heated oil circulation. Inner spray system that is located on the top of the enclosure on the vertical axis, is composed of a single nozzle producing a full cone water spray. Spray test scenario consists of water spray injection in TOSQAN that is first pressurized with a steam injection (steam injection is stopped before spray injection). Water spray falling into the sump is removed to avoid accumulation and evaporation

  10. Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

    2008-10-31

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured

  11. Accident: Reminder

    CERN Document Server

    2003-01-01

    There is no left turn to Point 1 from the customs, direction CERN. A terrible accident happened last week on the Route de Meyrin just outside Entrance B because traffic regulations were not respected. You are reminded that when travelling from the customs, direction CERN, turning left to Point 1 is forbidden. Access to Point 1 from the customs is only via entering CERN, going down to the roundabout and coming back up to the traffic lights at Entrance B

  12. Experimental investigation of heat transfer during severe accident of a Pressurized Heavy Water Reactor with simulated decay heat generation in molten pool inside calandria vessel

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Sumit Vishnu, E-mail: svprasad@barc.gov.in; Nayak, Arun Kumar, E-mail: arunths@barc.gov.in

    2016-07-15

    Highlights: • Scaled test facility simulating the calandria vessel and calandria vault water of PHWR with simulated decay heat was built. • Experiments conducted with simulant material at about 1200 °C. • Experimental result shows that melt coolability and growth rate of crust thickness are affected by presence of decay heat. • No gap was observed between the crust and vessel on opening. • Result shows that vessel integrity is intact with presence of water inside water tank in both cases. - Abstract: The present study focuses on experimental investigation in a scaled facility of an Indian PHWR to investigate the coolability of molten corium with simulated decay heat in the simulated calandria vessel. Molten borosilicate glass was used as the simulant due to its comparable heat transfer characteristics similar to prototypic material. About 60 kg of the molten material was poured into the test section at about 1200 °C. Decay heat in the melt pool was simulated using four high watt heaters cartridges, each having 9.2 kW. The temperature distributions inside the molten pool, across the vessel wall thickness and vault water were measured. Experimental results obtained are compared with the results obtained previously for no decay heat case. The results indicated that presence of decay heat seriously affects the coolability behaviour and formation of crust in the melt pool. The location and magnitude of maximum heat flux and surface temperature of the vessel also are affected in the presence of decay heat.

  13. The Army Needs to Recoup Funds Expended on Property Damaged in an Accident at a Development Subcontractor’s Facility (Redacted)

    Science.gov (United States)

    2012-05-24

    JLENS Platfo1m Accident 3 Damage to JLENS Platfonn Number 3 4 DCM.A Pro e1 Administrator Concluded • 5 6 Anny Did Not Seek Reimbursement of the...te1ms and conditions, as well as the Government prope1ty clause that was included in contract DASG60-98-C-0001, the DCMA prope1ty administrator ...the CWBS stmcture. TCOM shall suppo1t Raytheon in genera.ting a quarterly Estimate at Completion (EAC). [Emphasis Added) ePe~e) Fmt hennore, the

  14. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant.

    Science.gov (United States)

    Camplani, M; Malizia, A; Gelfusa, M; Barbato, F; Antonelli, L; Poggi, L A; Ciparisse, J F; Salgado, L; Richetta, M; Gaudio, P

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  15. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant

    Energy Technology Data Exchange (ETDEWEB)

    Camplani, M. [Visual Information Laboratory, University of Bristol, Bristol (United Kingdom); Grupo de Tratamiento de Imágenes, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Madrid (Spain); Malizia, A.; Gelfusa, M.; Poggi, L. A.; Ciparisse, J. F.; Richetta, M.; Gaudio, P. [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata,” Via del Politecnico 1, 00133 Rome (Italy); Barbato, F. [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata,” Via del Politecnico 1, 00133 Rome (Italy); EPMA, Materials Science and Technology, Uberlandstrasse 129, Dubendorf CH-8600 (Switzerland); Antonelli, L. [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata,” Via del Politecnico 1, 00133 Rome (Italy); Dipartimento di Scienze di base e applicate per l’Ingegneria, Universita degli Studi di Roma La Sapienza, Roma (Italy); Salgado, L. [Grupo de Tratamiento de Imágenes, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Madrid (Spain); Video Processing and Understanding Laboratory, Universidad Autónoma de Madrid, Madrid (Spain)

    2016-01-15

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles’ velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  16. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  17. Experimental characterization of the ITER TF structure cooling in HELIOS test facility

    Science.gov (United States)

    Hoa, C.; Rousset, B.; Lacroix, B.; Nicollet, S.; Vallcorba, R.; Bessette, D.; Vostner, A.; Gauthier, F.

    2015-12-01

    During ITER plasma operation, large thermal loads are generated in the stainless steel Toroidal Field (TF) coil casing. To minimize the impact on the temperature of the TF Cable in Conduit Conductor (CICC), these heat loads are intercepted by case cooling channels which are implemented at the interface to the winding pack. One of the design options for the case cooling channels consists of a stainless steel pipe inserted in a rectangular groove which is machined in the casing and filled by a charged resin of high thermal conductivity. A higher number of cooling pipes is arranged at the plasma facing wall of the case, thus providing a better shielding to the TF conductor at high field. To assess the efficiency of the cooling pipes and their thermal coupling with the charged resin, experimental characterizations have been performed. First of all, the thermal resistance vs temperature of some of the individual components of a TF coil has been measured on representative samples in a cryogenic bench. Further characterizations have been performed on an integrated mock-up of the TF cooling scheme at cryogenic temperature in HELIOS test facility at CEA Grenoble. The mock-up consists of a piece of TF casing that can be heated uniformly on its surface, one cooling channel implemented in the groove which is filled with the charged resin, the filler, the ground insulation, the radial plate and one insulated CICC. The cooling pipe and the CICC are cooled by supercritical helium at 4.4 K and 5 bar; the instrumentation consists of temperature, pressure and mass flow sensors. Both stationary and transient operating modes have been investigated to assess the thermal efficiency of the case cooling design. The experimental tests are presented and the first results are discussed and analyzed in this document.

  18. Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, D P; Wysong, A R; Heinrichs, D P; Wong, C T; Merritt, M J; Topper, J D; Gressmann, F A; Madden, D J

    2011-06-21

    The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and

  19. Modern Facilities for Experimental Measurement of Dynamic Loads Induced by Humans: A Literature Review

    Directory of Open Access Journals (Sweden)

    Vitomir Racic

    2013-01-01

    Full Text Available This paper provides a critical overview of available technology and facilities for determining human-induced dynamic forces of civil engineering structures, such as due to walking, running, jumping and bouncing. In addition to traditional equipment for direct force measurements comprising force plate(s, foot pressure insoles and instrumented treadmills, the review also investigates possibility of using optical motion tracking systems (marker-based and marker-free optoelectronic technology and non-optical motion tracking systems (inertial sensors to reproduce contact forces between humans and structures based on body kinematics data and known body mass distribution. Although significant technological advancements have been made in the last decade, the literature survey showed that the state-of-the-art force measurements are often limited to individuals in artificial laboratory environments. Experimental identification of seriously needed group- and crowd-induced force data recorded on as-built structures, such as footbridges, grandstands and floors, still remains a challenge due to the complexity of human actions and the lack of adequate equipment.

  20. Experimental neutron capture data of $^{58}$Ni from the CERN n_TOF facility

    CERN Document Server

    Žugec, P; Colonna, N; Bosnar, D; Altstadt, S; Andrzejewski, J; Audouin, L; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martìnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T

    2013-01-01

    The $^{58}$Ni $(n,\\gamma)$ cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT$=$5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2$\\pm$0.6$_\\mathrm{stat}\\pm$1.8$_\\mathrm{sys}$ mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When included in models of the s-process nucleosynthesis in massive stars, this change results in a 60% increase of the abundance of $^{58}$Ni, with a negligible propagation on heavier isotopes. The reason is that, using both the old or the new MACS, 58Ni is efficiently depleted by neutron captures.

  1. EXPERIMENTAL AND COMPUTATIONAL ACTIVITIES AT THE OREGON STATE UNIVERSITY NEES TSUNAMI RESEARCH FACILITY

    Directory of Open Access Journals (Sweden)

    S.C. Yim

    2009-01-01

    Full Text Available A diverse series of research projects have taken place or are underway at the NEES Tsunami Research Facility at Oregon State University. Projects range from the simulation of the processes and effects of tsunamis generated by sub-aerial and submarine landslides (NEESR, Georgia Tech., model comparisons of tsunami wave effects on bottom profiles and scouring (NEESR, Princeton University, model comparisons of wave induced motions on rigid and free bodies (Shared-Use, Cornell, numerical model simulations and testing of breaking waves and inundation over topography (NEESR, TAMU, structural testing and development of standards for tsunami engineering and design (NEESR, University of Hawaii, and wave loads on coastal bridge structures (non-NEES, to upgrading the two-dimensional wave generator of the Large Wave Flume. A NEESR payload project (Colorado State University was undertaken that seeks to improve the understanding of the stresses from wave loading and run-up on residential structures. Advanced computational tools for coupling fluid-structure interaction including turbulence, contact and impact are being developed to assist with the design of experiments and complement parametric studies. These projects will contribute towards understanding the physical processes that occur during earthquake generated tsunamis including structural stress, debris flow and scour, inundation and overland flow, and landslide generated tsunamis. Analytical and numerical model development and comparisons with the experimental results give engineers additional predictive tools to assist in the development of robust structures as well as identification of hazard zones and formulation of hazard plans.

  2. Parameter estimation of the vibrational model for the SCOLE experimental facility

    Science.gov (United States)

    Crotts, B. D.; Kakad, Y. P.

    1994-01-01

    The objective of this study is to experimentally determine an empirical model of the vibrational dynamics of the Spacecraft COntrol Laboratory Experiment (SCOLE) facility. The first two flexible modes of this test article are identified using a linear least-square identification procedure and the data utilized for this procedure are obtained by exciting the structure from a quiescent state with torque wheels. The time history data of rate gyro sensors and accelerometers due to excitation and after excitation in terms of free-decay are used in the parameter estimation of the vibrational model. The free-decay portion of the data is analyzed using the Discrete Fourier transform to determine the optimal model order to use in modelling the response. Linear least-square analysis is then used to select the parameters that best fit the output of an Autoregressive (AR) model to the data. The control effectiveness of the torque wheels is then determined using the excitation portion of the test data, again using linear least squares.

  3. Experimental study on imploding characteristics of wire-array Z pinches on Qiangguang-1 facility

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Xu Rong-Kun; Yang Jian-Lun; Hua Xin-Sheng; Li Lin-Bo; Xu Ze-Ping; Ning Jia-Min; Song Feng-Jun

    2007-01-01

    To investigate the imploding characteristics of cylindrical wire array,experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility.The complicated temporal-spatial distribution of x-ray radiation was measured by the one-dimensional (1D) x-ray imaging system.Other diagnostic equipments including the x-ray power meter(XRPM) and the time-integrated pinhole camera were used to record time-resolved x-ray power pulse and pinhole x-ray images.Analysis shows that the fast leading edge of the local x-ray radiation pulse is of primary importance in sharpening x-ray power pulse rather than the temporal synchrony and the spatial uniformity of implosion.Experimental results indicated that the better axial imploding synchrony,the faster the increase of X-ray power for an array consisting of 32 tungsten wires of 5μm diameter than for the others,and the higher the x-ray radiation power with maximal convergence ratio (r0/r1) of 10.5.A 'zipper-like' effect of x-ray radiation extending from the cathode Was also observed.

  4. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities.

    Science.gov (United States)

    Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio

    2016-06-29

    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.

  5. The ZECOMIX experimental facility for hydrogen and power generation from coal

    Energy Technology Data Exchange (ETDEWEB)

    A. Calabro; P. Deiana; P. Fiorini; S. Stendardo; G. Girardi [ENEA - Italian Agency for New Technologies, Rome (Italy). Energy and Environment Energy and Plants Division

    2006-07-01

    The Zecomix project, conceived by ENEA in the framework of Italian National Hydrogen Project, is aimed at studying an integrated process that produces both hydrogen and electricity from coal, with zero emissions and very high efficiency. The Zero Emission Coal Mixed technology concept combines two different systems: the Zero Emission Coal gasification and the Zero Emission Combustion Technology based on Hydrogen-fuelled internal combustion turbine cycle. The key element is the integration of a gasification process, characterized by coal hydrogasification technology and carbon dioxide sequestration, with the power island, where an oxy-combustion occurs. The experimental facility will be realized at the ENEA Research Centre of Casaccia at about thirty kilometres from the centre of Rome. It consists of a very flexible plant, in which more components can be tested separately or connected together. The plant is provided with an atmospheric fixed bed gasifier coal and a carbonator/calcinator reactor; moreover a pressurized hydrogasifier reactor and a 100 kWe microturbine test bench are present. Other auxiliary components are a gas mixing system, for hydrogen-based syngas production, and a 200 kW steam generator. 5 refs., 5 figs., 1 tab.

  6. Vast Area Detection for Experimental Radiochemistry (VADER) at the National Ignition Facility

    Science.gov (United States)

    Galbraith, Justin; Bettencourt, Ron; Shaughnessy, Dawn; Gharibyan, Narek; Talison, Bahram; Morris, Kevin; Smith, Cal

    2015-08-01

    At the National Ignition Facility (NIF), the flux of neutrons and charged particles at peak burn in an inertial confinement fusion capsule induces measureable concentrations of nuclear reaction products in the target material. Radiochemical analysis of post-shot debris can be used to determine diagnostic parameters associated with implosion of the capsule, including fuel areal density and ablator-fuel mixing. Additionally, analysis of debris from specially doped targets can support nuclear forensic research. We have developed and are deploying the Vast Area Detection for Experimental Radiochemistry (VADER) diagnostic to collect shot debris and interact with post-shot reaction products at the NIF. VADER uses quick release collectors that are easily reconfigured for different materials and geometries. Collectors are located ~50 cm from the NIF target; each of up to 9 collectors views ~0.005-0.0125 steradians solid angle, dependent upon configuration. Dynamic loading of the NIF target vaporized mass was modelled using LS-DYNA. 3-dimensional printing was utilized to expedite the design process. Model-based manufacturing was used throughout. We will describe the design and operation of this diagnostic as well as some initial results.

  7. High-Resolution Melting Curve Analysis for Identification of Pasteurellaceae Species in Experimental Animal Facilities.

    Science.gov (United States)

    Miller, Manuel; Zorn, Julia; Brielmeier, Markus

    2015-01-01

    Pasteurellaceae are among the most prevalent bacterial pathogens isolated from mice housed in experimental animal facilities. Reliable detection and differentiation of Pasteurellaceae are essential for high-quality health monitoring. In this study, we combined a real-time PCR assay amplifying a variable region in the 16S rRNA sequence with high-resolution melting curve analysis (HRM) to identify and differentiate among the commonly isolated species Pasteurella pneumotropica biotypes "Jawetz" and "Heyl", Actinobacillus muris, and Haemophilus influenzaemurium. We used a set of six reference strains for assay development, with the melting profiles of these strains clearly distinguishable due to DNA sequence variations in the amplicon. For evaluation, we used real-time PCR/HRM to test 25 unknown Pasteurellaceae isolates obtained from an external diagnostic laboratory and found the results to be consistent with those of partial 16S rRNA sequencing. The real-time PCR/HRM method provides a sensitive, rapid, and closed-tube approach for Pasteurellaceae species identification for health monitoring of laboratory mice.

  8. High-Resolution Melting Curve Analysis for Identification of Pasteurellaceae Species in Experimental Animal Facilities.

    Directory of Open Access Journals (Sweden)

    Manuel Miller

    Full Text Available Pasteurellaceae are among the most prevalent bacterial pathogens isolated from mice housed in experimental animal facilities. Reliable detection and differentiation of Pasteurellaceae are essential for high-quality health monitoring. In this study, we combined a real-time PCR assay amplifying a variable region in the 16S rRNA sequence with high-resolution melting curve analysis (HRM to identify and differentiate among the commonly isolated species Pasteurella pneumotropica biotypes "Jawetz" and "Heyl", Actinobacillus muris, and Haemophilus influenzaemurium. We used a set of six reference strains for assay development, with the melting profiles of these strains clearly distinguishable due to DNA sequence variations in the amplicon. For evaluation, we used real-time PCR/HRM to test 25 unknown Pasteurellaceae isolates obtained from an external diagnostic laboratory and found the results to be consistent with those of partial 16S rRNA sequencing. The real-time PCR/HRM method provides a sensitive, rapid, and closed-tube approach for Pasteurellaceae species identification for health monitoring of laboratory mice.

  9. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities

    Directory of Open Access Journals (Sweden)

    Jorge Lanza

    2016-06-01

    Full Text Available The Internet-of-Things (IoT is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.

  10. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities

    Science.gov (United States)

    Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio

    2016-01-01

    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds. PMID:27367695

  11. Experimental engineering section off-gas decontamination facility's fractionator column: installation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T. M.; Fowler, V. L.; Inman, D. J.

    1978-03-01

    A detailed description of the third column recently installed in the Experimental Engineering Section Off-Gas Decontamination Facility (EES-ODF) is presented. The EES-ODF is being used to provide engineering-scale experiments (nominal gas and liquid flows of 5 scfm and 0.5 gpm, respectively) in the development of the Krypton Absorption in Liquid CO/sub 2/ (KALC) process. A detailed discussion of the column's construction is provided. This discussion includes the peripherals associated with the column, such as refrigeration, heat exchangers, instrumentation, etc. The compressibility of Goodloe packing (the packing in the other columns) and the possible reduced throughput due to this compression have revealed the desirablility of a random (i.e., noncompressible) packing. Toward this end, the third column is packed with a new random packing (PRO-PAK). A preliminary comparison between this packing and the woven wire mesh packing (Goodloe) used in the other two columns has been made. Experiments comparing the throughput capacity indicate that the PRO-PAK packing has approximately 60% the capacity of Goodloe for a CO/sub 2/ system. When used as a fractionator or stripper with the basic O/sub 2/-Kr-CO/sub 2/ KALC system, the PRO-PAK column produced HTU values less than or equal to the GOODLOE columns under similar operating conditions.

  12. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  13. A heat transport benchmark problem for predicting the impact of measurements on experimental facility design

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, Dan Gabriel, E-mail: cacuci@cec.sc.edu

    2016-04-15

    Highlights: • Predictive Modeling of Coupled Multi-Physics Systems (PM-CMPS) methodology is used. • Impact of measurements for reducing predicted uncertainties is highlighted. • Presented thermal-hydraulics benchmark illustrates generally applicable concepts. - Abstract: This work presents the application of the “Predictive Modeling of Coupled Multi-Physics Systems” (PM-CMPS) methodology conceived by Cacuci (2014) to a “test-section benchmark” problem in order to quantify the impact of measurements for reducing the uncertainties in the conceptual design of a proposed experimental facility aimed at investigating the thermal-hydraulics characteristics expected in the conceptual design of the G4M reactor (GEN4ENERGY, 2012). This “test-section benchmark” simulates the conditions experienced by the hottest rod within the conceptual design of the facility's test section, modeling the steady-state conduction in a rod heated internally by a cosinus-like heat source, as typically encountered in nuclear reactors, and cooled by forced convection to a surrounding coolant flowing along the rod. The PM-CMPS methodology constructs a prior distribution using all of the available computational and experimental information, by relying on the maximum entropy principle to maximize the impact of all available information and minimize the impact of ignorance. The PM-CMPS methodology then constructs the posterior distribution using Bayes’ theorem, and subsequently evaluates it via saddle-point methods to obtain explicit formulas for the predicted optimal temperature distributions and predicted optimal values for the thermal-hydraulics model parameters that characterized the test-section benchmark. In addition, the PM-CMPS methodology also yields reduced uncertainties for both the model parameters and responses. As a general rule, it is important to measure a quantity consistently with, and more accurately than, the information extant prior to the measurement. For

  14. A Experimental Study of Ion Behavior in the Advanced Toroidal Facility

    Science.gov (United States)

    Wade, Mickey Ray

    Stellarators represent one of the most promising magnetic confinement concepts for a fusion reactor because of their intrinsic ability to operate at steady state, though legitimate concerns about various aspects of the stellarator concept must be addressed. One of these concerns is the seemingly unfavorable single-particle confinement properties inherent to the stellarator design. Although previous experimental studies of ion confinement in stellarators have indicated that the ions behave classically and are generally well confined, these studies were limited in scope. To complement these experiments and to provide additional information about ion behavior in stellarators, an experimental investigation of ion behavior has been performed on the Advanced Toroidal Facility (ATF). Measurements were made of both the thermal- and fast-ion distributions during electron cyclotron heating (ECH) and neutral beam injection (NBI). The purpose of this work was to study thermal- and fast-ion confinement in ATF with particular emphasis placed on constructing a consistent picture of ion confinement based on experimentally measured data. The primary ion diagnostic used in these studies was a two -dimensional scanning neutral particle analyzer (NPA). Extensive studies of fast-ion behavior in various operating regimes on ATF were conducted. These studies were performed during NBI and encompass a wide range of plasma densities, ranging from extremely low density ( |{n}_{e} =q 8.0 times 10^ {13} cm^{-3}) . Fokker-Planck simulations of the measured data suggest that the injected ions behave classically and indicate that the injected beam power is not well absorbed at low and intermediate densities because of large charge-exchange and shine-through losses. Further simulations using the PROCTR transport analysis code indicate that this reduced absorption is probably the cause of the thermal collapse observed in intermediate-density NBI discharges. Thermal ion confinement studies were

  15. Impact of the Fukushima Daiichi Nuclear Power Plant accident on hemodialysis facilities: an evaluation of radioactive contaminants in water used for hemodialysis.

    Science.gov (United States)

    Kamei, Daigo; Kuno, Tsutomu; Sato, Sumihiko; Nitta, Kosaku; Akiba, Takashi

    2012-02-01

    Following the crisis at the Fukushima Daiichi Nuclear Power Plant caused by the 2011 Tohoku earthquake and tsunami, radioactive substances ((131) I, (134) Cs, (137) Cs) were detected in tap water throughout eastern Japan. There is now concern that internal exposure to radioactive substances in the dialysate could pose a danger to hemodialysis patients. Radioactive substances were measured in three hemodialysis facilities before and after purification of tap water for use in hemodialysis. Radioactive iodine was detected at levels between 13 and 15 Bq/kg in tap water from the three facilities, but was not detected by reverse osmosis membrane at any of the facilities. We confirmed that the amount of radioactive substances in dialysate fell below the limit of detection (7-8 Bq/kg) by reverse osmosis membrane. It is now necessary to clarify the maximum safe level of radiation in dialysate for chronic hemodialysis patients.

  16. Memorandum of understanding between the Government of the Kingdom of Norway and the Government of the Kingdom of the Netherlands on early notification of a nuclear accident and exchange of safety related information concerning the operation and management of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-18

    This Agreement was concluded in implementation of the IAEA 1986 Convention on Early Notification of a Nuclear Accident. Both Governments undertake to notify each other forthwith of any abnormal radiation levels in their respective countries. They will exchange safety related information on nuclear facilities and inform each other of measures to protect the population and the environment. (NEA).

  17. Self-reported accidents

    DEFF Research Database (Denmark)

    Møller, Katrine Meltofte; Andersen, Camilla Sloth

    2016-01-01

    The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals.......The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals....

  18. Rocket propulsion experimental facilities at the Phillips Laboratory, Edwards Air Force Base, California

    Science.gov (United States)

    Beckmann, Joel W.; Kalliomaa, Wayne M.

    The Phillips Laboratory has extensive rocket propulsion faciliteis at Edwards Air Force Base, California. These facilities range form small scale cells capable of firing liquid rocket engines as small as 0.01 lbf (0.04 Newtons (N)) thrust up to very large liquid/solid test stands designed for firings up to 10 million lbf (44.5 million N) thrust. This paper gives a review of the variety and capabilities of the numerous facilities at Edwards Air Force Base, as well as an overview of current projects. Emphasis is placed on the general capabilities of these facilities; specifics are available upon request to the author. Trends in the evolution of rocket test facilities are discussed.

  19. Earth Systems Questions in Experimental Climate Change Science: Pressing Questions and Necessary Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Osmond, B.

    2002-05-20

    Sixty-four scientists from universities, national laboratories, and other research institutions worldwide met to evaluate the feasibility and potential of the Biosphere2 Laboratory (B2L) as an inclusive multi-user scientific facility (i.e., a facility open to researchers from all institutions, according to agreed principles of access) for earth system studies and engineering research, education, and training relevant to the mission of the United States Department of Energy (DOE).

  20. Key Technology and Experimental Results of the Clean Air Heated Facility for Supersonic Combustion

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zipeng; SONG Wenyan; LE Jialing

    2009-01-01

    The scramjet, which is the propulsion of hypersonic vehicle, has become the focus in many military developed countries. The ground tests play an important role in the research of scramjet. There is defect of test medium contamination (the thermochemical characteristic of the ground test medium is different from that of the flight medium) in existing ground test facilities for scramjet combustor experiment. To solve the problem of test medium contamination, the first clean air heated facility of China for scramjet combustor experiment is designed. The key technology of designing the clean air heated facility is summarized. By using bypass duct, combustor model is protected from high temperature. To reduce the switching time between main duct and bypass duct, solenoid valve and water-cooled system were used. Having centrosymmetric structure, the heat radiating area of the facility and heat loss of the facility are much lower than others. Clean air heated facility is adopted to conduct experiment, which is the first experiment of China in clean air inflow, research on hydrogen-fueled and ethylene-fueled ignition and combustion for scramjet combustor at different equivalence ratio. Successful ignition and sustained combustion of hydrogen has been achieved. Successful ethylene ignition and sustained main stream combustion is achieved with normal fuel injection and taking hydrogen as pilot flame. Experiment result shows that the wall pressure of combustor model rises when the equivalence ratio of hydrogen rises. As the wall pressure of combustor model rises, the pressure disturbance influences the shock train in the upstream.

  1. ORNL rod-bundle heat-transfer test data. Volume 6. Thermal-hydraulic test facility experimental data report for test 3. 05. 5B - double-ended cold-leg break simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.

    1982-05-18

    Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  2. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high

  3. Characterization and Modeling of a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL

    Science.gov (United States)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Conrad, M. E.; Jones, T. L.; Olsen, N. J.

    2010-12-01

    A design is being formulated for a large-scale subsurface experimental facility at the 4850 foot level of the Homestake Mine in South Dakota. The purpose of the experiment is to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock under stress and would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL). Key questions we propose to answer are: 1) What are the effective reaction rates for mineral-fluid interaction in fractured rock under stress?; 2) How does mineral and fluid chemistry affect fracture mechanical behavior and permeability changes under stress at elevated temperatures?; and 3) How do microbial communities evolve in fractured rock under a thermal gradient and under changing stress conditions? In addition to the experiment as an in-situ laboratory for studying crustal processes, it has significant benefits for evaluating stimulation and production in Enhanced Geothermal Systems. Design and planning of the experiment included characterization of the geological, chemical, and isotopic characteristics of the rock and seeping fluids, thermal-hydrological and reactive transport modeling. During a reconnaissance study, strong heterogeneity in fracture fluxes and permeability were observed at the block site with some open boreholes continuously flowing at up to 1 liter/minute, and locally elevated fluid temperatures. A two-dimensional thermal-hydrological model was developed to evaluate fluid fluxes and temperatures as a function of heat input and borehole heater configuration. The dual permeability model considers fluid flow and heat transfer between an array of fractures and rock matrix, both having permeability anisotropy. A horizontal rock matrix permeability of 10-18 m2 was based on recent lab measurements, with a vertical matrix permeability estimated to be one order-of-magnitude higher to account for the strong nearly vertical foliation in the Homestake and Poorman

  4. Review of models applicable to accident aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.

    1983-07-01

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  5. An Experimental Study of Upward Burning Over Long Solid Fuels: Facility Development and Comparison

    Science.gov (United States)

    Kleinhenz, Julie; Yuan, Zeng-Guang

    2011-01-01

    As NASA's mission evolves, new spacecraft and habitat environments necessitate expanded study of materials flammability. Most of the upward burning tests to date, including the NASA standard material screening method NASA-STD-6001, have been conducted in small chambers where the flame often terminates before a steady state flame is established. In real environments, the same limitations may not be present. The use of long fuel samples would allow the flames to proceed in an unhindered manner. In order to explore sample size and chamber size effects, two large chambers were developed at NASA GRC under the Flame Prevention, Detection and Suppression (FPDS) project. The first was an existing vacuum facility, VF-13, located at NASA John Glenn Research Center. This 6350 liter chamber could accommodate fuels sample lengths up to 2 m. However, operational costs and restricted accessibility limited the test program, so a second laboratory scale facility was developed in parallel. By stacking additional two chambers on top of an existing combustion chamber facility, this 81 liter Stacked-chamber facility could accommodate a 1.5 m sample length. The larger volume, more ideal environment of VF-13 was used to obtain baseline data for comparison with the stacked chamber facility. In this way, the stacked chamber facility was intended for long term testing, with VF-13 as the proving ground. Four different solid fuels (adding machine paper, poster paper, PMMA plates, and Nomex fabric) were tested with fuel sample lengths up to 2 m. For thin samples (papers) with widths up to 5 cm, the flame reached a steady state length, which demonstrates that flame length may be stabilized even when the edge effects are reduced. For the thick PMMA plates, flames reached lengths up to 70 cm but were highly energetic and restricted by oxygen depletion. Tests with the Nomex fabric confirmed that the cyclic flame phenomena, observed in small facility tests, continued over longer sample. New

  6. Experimental facility for studying MHD effects in liquid metal cooled blankets

    Science.gov (United States)

    Reed, C. B.; Picologlou, B. F.; Dauzvardis, P. V.

    The capabilities of a facility, brought into service to collect data on magnetohydrodynamic (MHD) effects, pertinent to liquid metal cooled fusion reactor blankets, are presented. The facility, design to extend significantly the existing data base on liquid metal MHD, employs eutectic NaK as the working fluid in a room temperature closed loop. The instrumentation system is capable of collecting detailed data on pressure, voltage, and velocity distributions at any axial position within the base of a 2 Tesla conventional magnet. The axial magnetic field distribution can be uniform or varying with either rapid or slow spatial variations.

  7. Accident Generated Particulate Materials and Their Characteristics -- A Review of Background Information

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, S. L.

    1982-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of the amount of radioactive particulate material initially airborne (source term) during accidents. Pacific Northwest Laboratory (PNL) has surveyed the literature, gathering information on the amount and size of these particles that has been developed from limited experimental work, measurements made from operational accidents, and known aerosol behavior. Information useful for calculating both liquid and powder source terms is compiled in this report. Potential aerosol generating events discussed are spills, resuspension, aerodynamic entrainment, explosions and pressurized releases, comminution, and airborne chemical reactions. A discussion of liquid behavior in sprays, sparging, evaporation, and condensation as applied to accident situations is also included.

  8. Wind refrigeration : design and results of an experimental facility; Refrigeracion eolica: Diseno y resultados de una instalacion experimental

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, R. G.; Talero, A.

    2004-07-01

    This article describes the experimental setup used to obtain design parameters for a wind driven refrigeration equipment. The system compressor is directly coupled to the wind mill and will provide refrigeration to a community located in La Guajira in northern Colombia. The testing on the experimental installation assessed the refrigeration capacity that could be provided by an open type commercial compressor coupled to the wind mill axis. Power and torque requirements have been evaluated for different wind mill rotational speeds. An assessment of the local conditions relating to wind speed, frequency and preferred direction for the installation site has been made based on measurements by the Meteorological National Institute and independent data from other sources. (Author)

  9. Experimental data report for transient flow calibration facility tests IA101, AI102 and IA103

    Science.gov (United States)

    Martinell, J. S.; Wambach, J. L.; Crapo, H. S.

    1980-03-01

    Thermal hydraulic response data are presented for the transient performance tests of a modular Drag Disc - Turbine transducer rake. The tests were conducted in a system which provided full scale simulation of the pressure vessel and broken loop cold leg piping of the Loss of Fluid Test Facility. A low cell system was used to provide a reference mass flow rate measurement.

  10. Experimental Studies for the VVER-440/213 Bubble Condenser System for Kola NPP at the Integral Test Facility BC V-213

    Directory of Open Access Journals (Sweden)

    Vladimir N. Blinkov

    2012-01-01

    Full Text Available In the frame of Tacis Project R2.01/99, which was running from 2003 to 2005, the bubble condenser system of Kola NPP (unit 3 was qualified at the integral test facility BC V-213. Three LB LOCA tests, two MSLB tests, and one SB LOCA test were performed. The appropriate test scenarios for BC V-213 test facility, modeling accidents in the Kola NPP unit 3, were determined with pretest calculations. Analysis of test results has shown that calculated initial conditions and test scenarios were properly reproduced in the tests. The detailed posttest analysis of the tests performed at BC V-213 test facility was aimed to validate the COCOSYS code for the calculation of thermohydraulic processes in the hermetic compartments and bubble condenser. After that the validated COCOSYS code was applied to NPP calculations for Kola NPP (unit 3. Results of Tacis R2.01/99 Project confirmed the bubble condenser functionality during large and small break LOCAs and MSLB accidents. Maximum loads were reached in the LB LOCA case. No condensation oscillations were observed.

  11. Visible and near-infrared reflectance spectroscopy of planetary analog materials. Experimental facility at Laboratoire de Planetologie de Grenoble.

    Science.gov (United States)

    Pommerol, A.; Brissaud, O.; Schmitt, B.; Quirico, E.; Doute, S.

    2007-08-01

    We have developed an original experimental facility designed to measure the bidirectional reflectance spectra of planetary analog materials. These measurements are helpful to interpret the observations of the spectrometers on board space probes in orbit around various Solar System bodies. The central part of the facility is the LPG spectrogonio- radiometer (Brissaud et al., 2004). This instrument provides measurements of samples BRDF (Bidirectional Reflectance Distribution Function) with high photometric and spectrometric accuracy in the spectral range of visible and near-infrared (0.3 - 4.8 microns). Measurements can be made at any value of incidence and emergence angle up to 80°. Azimuth angle is allowed to vary between 0 and 180°. The instrument was recently installed in a cold room allowing ambient temperatures as low as -20°C. This makes possible the measurements on different kinds of water ice samples (slab ice, frost, snow...) and mixtures of minerals and water ice with unprecedented accuracy. We also have designed and built a simulation chamber to measure spectra of samples (water ice and/or minerals) under an atmosphere with perfectly controlled temperature, pressure and composition. The main objective of this last improvement is the study of water exchange between planetary regolith analogs and atmosphere (adsorption/ desorption, condensation/sublimation). Experimental results will mainly apply to Martian water cycle and hydrated mineralogy. This simulation chamber also provides an efficient way to obtain bidirectional reflectance spectra of dry materials (removal of adsorbed water) with implications for planetary bodies without atmospheric or surface water (Titan, asteroids...). The reflectance spectroscopy facility is part of a large panel of instruments and techniques available at Laboratoire de Planetologie de Grenoble that provide complementary measurements on the same samples: infrared transmission spectroscopy of thin ice films, thick liquid and

  12. The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    CERN Document Server

    Moses, E I

    2001-01-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

  13. MHD seawater thruster performance: A comparison of predictions with experimental results from a two Tesla test facility

    Energy Technology Data Exchange (ETDEWEB)

    Picologlou, B.F.; Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (United States)); Sikes, W.C.; Ranellone, R.F. (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-01-01

    A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate a design oriented MHD thruster performance computer code. The thruster performance code consists of a one-dimensional MHD hydrodynamic model coupled to a two-dimensional electrical model. The code includes major loss mechanisms affecting the performance of the thruster. Among these losses are the joule dissipation losses, frictional losses, electrical end losses, and single electrode potential losses. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.

  14. Deconstructing energy use in microelectronics manufacturing: an experimental case study of a MEMS fabrication facility.

    Science.gov (United States)

    Branham, Matthew S; Gutowski, Timothy G

    2010-06-01

    Semiconductors are quite energy intensive to manufacture on the basis of energy required per mass of material processed. This analysis draws on original data from a case study of the Analog Devices Micromachined Products Division MEMS fabrication facility to examine the consequence of process rate on the energy intensity of semiconductor manufacturing. We trace the impact of process rate on energy intensity at different length scales, first presenting top-down data, then results of a bottom-up study, and concluding with individual process analyses. Interestingly, while production increased by almost a factor of 2 over the course of the study, energy demand remained virtually constant. At its most efficient, 270 kWh of electricity were required per six inch wafer in the manufacture of the MEMS devices produced at the fabrication facility. In part, the large amount of energy required per unit output is a function of the preponderance of energy used by support equipment; our data show that the facility support equipment is responsible for 58% of total energy requirements.

  15. Basic Design of Experimental Facility for Measuring Pressure Drop of IHX in a SFR

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Yung-Joo; Eoh, Jae-Hyuk; Kim, Hyungmo; Lee, Dong-Won; Jeong, Ji-Young; Lee, Hyeong-Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Kyungpook National Univ., Daegu (Korea, Republic of)

    2015-05-15

    The conceptual design of the Prototype gen-IV SFR (PGSFR) with a 150 MWe capacity was commenced in 2012 through the national long-term R and D program by KAERI. Then, PGSFR is now being designed with the defense in depth concept with active, passive and inherent safety features to acquire design approval for PGSFR from the Korean regulatory authority by 2020. PGSFR is a sodium-cooled pool-type fast reactor with all primary components including the primary heat transport system (PHTS) pumps and IHXs are located inside a sodium pool. The heat produced due to fission in the core is transported by primary sodium to secondary sodium in a sodium to sodium intermediate heat exchanger (IHX), which in turn is transferred to water in a steam generator (SG). Basic design of the IHX flow characteristic test facility, WEIPA was conducted based on the three-level scaling methodology in order to preserve the flow characteristics of the IHX in PGSFR. This test facility is intended to measure a high precision pressure drop at the shell-side of the IHX. This paper describes the aspects of the current design features of the IHX in PGSFR, scaling and basic design features of the facility.

  16. The SPES3 Experimental Facility Design for the IRIS Reactor Simulation

    Directory of Open Access Journals (Sweden)

    Mario Carelli

    2009-01-01

    Full Text Available IRIS is an advanced integral pressurized water reactor, developed by an international consortium led by Westinghouse. The licensing process requires the execution of integral and separate effect tests on a properly scaled reactor simulator for reactor concept, safety system verification, and code assessment. Within the framework of an Italian R&D program on Nuclear Fission, managed by ENEA and supported by the Ministry of Economic Development, the SPES3 facility is under design and will be built and operated at SIET laboratories. SPES3 simulates the primary, secondary, and containment systems of IRIS with 1 : 100 volume scale, full elevation, and prototypical thermal-hydraulic conditions. The simulation of the facility with the RELAP5 code and the execution of the tests will provide a reliable tool for data extrapolation and safety analyses of the final IRIS design. This paper summarises the main design steps of the SPES3 integral test facility, underlying choices and phases that lead to the final design.

  17. Validation of raw experimental data during shoting at the LIL facility

    Science.gov (United States)

    Henry, Olivier; Domin, Vincent; Romary, Philippe; Raffestin, Didier

    2012-10-01

    The LIL (Laser Integration Line) facility at CESTA (Aquitaine, France) is a facility allowing the delivery of 20 kJ at 3φ. The experiment system includes 13 diagnostics. The facility must be able to deliver, within one hour following shoting, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. These results have to be guaranteed in terms of conformity to the request and quality of measurement. The LIL has developed a tool for the visualisation, analysis and validation of the data. The software is written in the Delphi language for the main body. The configuration is based on XML files. It is thus possible to re-read the external analysis modules in Python (the language used on the future LMJ). The software is built on three pillars: definition of a validation model prior to the campaign, basic physical models to qualify the signal as compliant and exploitable, and inter-comparison of the shoting and signals over a given campaign or period. Validation of the raw plasma data must serve to validate and guarantee performances, assure the conformity of the PD configuration to the request from the client, check the consistency of measurements, trigger corrective maintenance if necessary.

  18. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, C

    2001-10-29

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  19. Radioactive materials transport accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    McSweeney, T.I.; Maheras, S.J.; Ross, S.B. [Battelle Memorial Inst. (United States)

    2004-07-01

    Over the last 25 years, one of the major issues raised regarding radioactive material transportation has been the risk of severe accidents. While numerous studies have shown that traffic fatalities dominate the risk, modeling the risk of severe accidents has remained one of the most difficult analysis problems. This paper will show how models that were developed for nuclear spent fuel transport accident analysis can be adopted to obtain estimates of release fractions for other types of radioactive material such as vitrified highlevel radioactive waste. The paper will also show how some experimental results from fire experiments involving low level waste packaging can be used in modeling transport accident analysis with this waste form. The results of the analysis enable an analyst to clearly show the differences in the release fractions as a function of accident severity. The paper will also show that by placing the data in a database such as ACCESS trademark, it is possible to obtain risk measures for transporting the waste forms along proposed routes from the generator site to potential final disposal sites.

  20. Tests of the space gamma spectrometer prototype at the JINR experimental facility with different types of neutron generators

    Science.gov (United States)

    Litvak, M. L.; Vostrukhin, A. A.; Golovin, D. V.; Dubasov, P. V.; Zontikov, A. O.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Mitrofanov, I. G.; Mokrousov, M. I.; Repkin, A. N.; Timoshenko, G. N.; Udovichenko, K. V.; Shvetsov, V. N.

    2017-07-01

    The results of the tests of the HPGe gamma spectrometer performed with a planetary soil model and different types of pulse neutron generators are presented. All measurements have been performed at the experimental nuclear planetary science facility (Joint Institute for Nuclear Research) for the physical calibration of active gamma and neutron spectrometers. The aim of the study is to model a space experiment on determining the elemental composition of Martian planetary matter by neutron-induced gamma spectroscopy. The advantages and disadvantages of a gas-filled neutron generator in comparison with a vacuum-tube neutron generator are examined.

  1. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  2. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    Science.gov (United States)

    Bondarenko, S. V.; Garanin, Sergey G.; Zhidkov, N. V.; Pinegin, A. V.; Suslov, N. A.

    2012-01-01

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 — 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s — 2p transitions in Al atoms and the 2p — 3d transitions in Ge atoms are presented.

  3. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2002-12-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  4. Initial design for an experimental investigation of strongly coupled plasma behavior in the ATLAS facility

    CERN Document Server

    Munson, C P; Taylor, A J; Trainor, R J; Wood, B P; Wysocki, F J

    1999-01-01

    Summary form only given. Atlas is a high current (~30 MA peak, with a current risetime ~4.5 mu sec), high energy (E/sub stored/=24 MJ, E /sub load/=3-6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (>20 Mbar), adiabatic compression ( rho / rho /sub 0/>5, P>10 Mbar), high magnetic fields (~2000 T), high strain and strain rates ( epsilon >200, d epsilon /dt~10/sup 4/ to 10/sup 6/ s/sup -1/), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (<0.1 solid), relatively cold (~1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This target plasma will be compressed against a central column conta...

  5. Biomass accident investigations – missed opportunities for learning and accident prevention

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2017-01-01

    selected serious accidents involving biogas and wood pellets in Denmark and argues that such opportunities for learning were missed because accident investigations were superficial, follow-up incomplete and information sharing absent. In one particularly distressing case, a facility saw a repeat accident......, this time with fatal outcome, still without any learning taking place. The paper presents some information on other biomass accidents in Denmark, mostly involving biogas from anaerobic digestion. Details are lacking however, precisely because the accidents were insufficiently investigated and results...... not communicated. The biomass industry needs to pay more attention to safety. Utmost care should be taken to avoid so-called mediashifting i.e. that the resolution of a problem within one domain, the environmental, creates a new problem in another, the workplace safety domain....

  6. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y. [All-Russian Inst. of Experimental Physics, Moscow (Russian Federation)] [and others

    1998-12-31

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons.

  7. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I; Wuest, C R

    2002-10-16

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system and a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF is being built by the National Nuclear Security Administration and when completed will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF will provide 192 energetic laser beams that will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for very high power and extreme electromagnetic field research and applications. We discuss here the technology challenges and solutions that have made NIF possible, along with enhancements to NIF's design that could lead to near-exawatt power levels.

  8. Post-Test Analysis of 11% Break at PSB-VVER Experimental Facility using Cathare 2 Code

    Science.gov (United States)

    Sabotinov, Luben; Chevrier, Patrick

    The best estimate French thermal-hydraulic computer code CATHARE 2 Version 2.5_1 was used for post-test analysis of the experiment “11% upper plenum break”, conducted at the large-scale test facility PSB-VVER in Russia. The PSB rig is 1:300 scaled model of VVER-1000 NPP. A computer model has been developed for CATHARE 2 V2.5_1, taking into account all important components of the PSB facility: reactor model (lower plenum, core, bypass, upper plenum, downcomer), 4 separated loops, pressurizer, horizontal multitube steam generators, break section. The secondary side is represented by recirculation model. A large number of sensitivity calculations has been performed regarding break modeling, reactor pressure vessel modeling, counter current flow modeling, hydraulic losses, heat losses. The comparison between calculated and experimental results shows good prediction of the basic thermal-hydraulic phenomena and parameters such as pressures, temperatures, void fractions, loop seal clearance, etc. The experimental and calculation results are very sensitive regarding the fuel cladding temperature, which show a periodical nature. With the applied CATHARE 1D modeling, the global thermal-hydraulic parameters and the core heat up have been reasonably predicted.

  9. Experimental facility for containment sump reliability studies (Generic Task A-43). [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Durgin, W. W.; Padmanabhan, M.; Janik, C. R.

    1980-12-01

    On July 3, 1979, Sandia National Laboratories (Sandia) contracted the Alden Research Laboratory (ARL) to conduct tests on unresolved safety issues associated with containment sump performance during the recirculation mode (Generic Task A-43). This report describes the test facility constructed and completed under Phase I, Task III of the contract. Sump performance is determined through the observation of vortex formation in the main tank and the measurement of swirl, pressure gradient, and entrained air in the suction pipes. The use of electrically operated valves and a sophisticated data acquisition system, with computer interface, allows the test flow parameters to be set and test data to be taken (with the exception of vortex observations) from a single central office.

  10. Summaries of FY16 LANL experimental campaigns at the OMEGA and EP Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, Eric Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Merritt, Elizabeth Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montgomery, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kim, Yong Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Murphy, Thomas Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Heather Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shah, Rahul C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zylstra, Alex [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Herrmann, Hans W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schmitt, Mark J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flippo, Kirk Adler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rasmus, Alexander Martin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-25

    In FY16, Los Alamos National Laboratory carried out 22 shot days on the OMEGA and OMEGA- EP laser facilities in the areas of High Energy Density (HED) Science and Inertial Confinement Fusion (ICF). In HED our focus areas were on radiation flow, hydrodynamic turbulent mix and burn, warm dense matter equations of state, and coupled Kelvin-­Helmholtz (KH)/Richtmyer-­ Meshkov (RM) instability growth. For ICF our campaigns focused on the Priority Research Directions (PRD) of implosion phase mix and stagnation and burn, specifically as they pertain to Laser Direct Drive (LDD). We also had several focused shot days on transport properties in the kinetic regime. We continue to develop advanced diagnostics such as Neutron Imaging, Gamma Reaction History, and Gas Cherenkov Detectors. Below are a summary of our campaigns, their motivation, and main results from this year.

  11. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  12. Towards an Experimental Testbed Facility for Cyber-Physical Security Research

    Energy Technology Data Exchange (ETDEWEB)

    Edgar, Thomas W.; Manz, David O.; Carroll, Thomas E.

    2012-01-07

    Cyber-Physical Systems (CPSs) are under great scrutiny due to large Smart Grid investments and recent high profile security vulnerabilities and attacks. Research into improved security technologies, communication models, and emergent behavior is necessary to protect these systems from sophisticated adversaries and new risks posed by the convergence of CPSs with IT equipment. However, cyber-physical security research is limited by the lack of access to universal cyber-physical testbed facilities that permit flexible, high-fidelity experiments. This paper presents a remotely-configurable and community-accessible testbed design that integrates elements from the virtual, simulated, and physical environments. Fusing data between the three environments enables the creation of realistic and scalable environments where new functionality and ideas can be exercised. This novel design will enable the research community to analyze and evaluate the security of current environments and design future, secure, cyber-physical technologies.

  13. The multipurpose thermalhydraulic test facility TOPFLOW: an overview on experimental capabilities, instrumentation and results

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.; Beyer, M.; Carl, H.; Manera, A.; Pietruske, H.; Schuetz, P.; Weiss, F.P. [Forschungszentrum Rossedorf e.V. (FZR), Dresden (Germany). Inst. fuer Sicherheitsforschung

    2006-08-15

    A new multipurpose thermalhydraulic test facility TOPFLOW (TwO Phase FLOW) was built and put into operation at Forschungszentrum Rossendorf in 2002 and 2003. Since then, it has been mainly used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes in the frame of the German CFD initiative. The advantage of TOPFLOW consists in the combination of a large scale of the test channels with a wide operational range both of the flow velocities as well as of the system pressures and temperatures plus finally the availability of a special instrumentation that is capable in high spatial and temporal resolving two phase flow phenomena, for example the wire-mesh sensors. (orig.)

  14. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    Science.gov (United States)

    Manuel, M. J.-E.; Kuranz, C. C.; Rasmus, A. M.; Klein, S. R.; MacDonald, M. J.; Trantham, M. R.; Fein, J. R.; Belancourt, P. X.; Young, R. P.; Keiter, P. A.; Drake, R. P.; Pollock, B. B.; Park, J.; Hazi, A. U.; Williams, G. J.; Chen, H.

    2015-12-01

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysical systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. This result is a topic of ongoing investigation.

  15. Experimental neutron capture data of 58Ni from the CERN n_TOF facility

    Directory of Open Access Journals (Sweden)

    Žugec P.

    2015-01-01

    Full Text Available The neutron capture cross section of 58Ni was measured at the neutron time of flight facility n_TOF at CERN, from 27 meV to 400 keV neutron energy. Special care has been taken to identify all the possible sources of background, with the so-called neutron background obtained for the first time using high-precision GEANT4 simulations. The energy range up to 122 keV was treated as the resolved resonance region, where 51 resonances were identified and analyzed by a multilevel R-matrix code SAMMY. Above 122 keV the code SESH was used in analyzing the unresolved resonance region of the capture yield. Maxwellian averaged cross sections were calculated in the temperature range of kT = 5 – 100 keV, and their astrophysical implications were investigated.

  16. The Chornobyl accident: A comprehensive risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.J. [ed.; Poyarkov, V.; Bar`yakhtar, V.; Kukhar, V.; Los, I.; Kholosha, V.; Shestopalov, V.

    1999-10-01

    The authors, all of whom are Ukrainian and Russian scientists involved with Chornobyl nuclear power plant since the April 1986 accident, present a comprehensive review of the accident. In addition, they present a risk assessment of the remains of the destroyed reactor and its surrounding shelter, Chornobyl radioactive waste storage and disposal sites, and environmental contamination in the region. The authors explore such questions as the risks posed by a collapse of the shelter, radionuclide migration from storage and disposal facilities in the exclusion zone, and transfer from soil to vegetation and its potential regional impact. The answers to these questions provide a scientific basis for the development of countermeasures against the Chornobyl accident in particular and the mitigation of environmental radioactive contamination in general. They also provide an important basis for understanding the human health and ecological risks posed by the accident.

  17. Decision no. 2011-DC-0214 of the French nuclear safety authority from May 5, 2011, ordering CIS bio international company to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0214 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a CIS bio international de proceder a une evaluation complementaire de la surete de son installation nucleaire de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to CIS bio international company, operator of the radiopharmaceuticals fabrication facility (INB 29) of Saclay (France). (J.S.)

  18. Decision no. 2011-DC-0215 of the French nuclear safety authority from May 5, 2011, ordering ITER Organization to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0215 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a ITER ORGANIZATION de proceder a une evaluation complementaire de la surete de son installation nucleaire de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the ITER Organization, operator of the ITER tokamak facility of Cadarache (France). (J.S.)

  19. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  20. Experimental facility for the study of acoustic emission registered in the primary circuit components of WWER power units

    Science.gov (United States)

    Petrosyan, V. G.; Hovakimyan, T. H.; Yeghoyan, E. A.; Hovhannisyan, H. T.; Mayilyan, D. G.; Petrosyan, A. P.

    2017-01-01

    This paper is dedicated to the creation of a facility for the experimental study of a phenomenon of background acoustic emission (AE), which is detected in the main circulation loop (MCL) of WWER power units. The analysis of the operating principle and the design of a primary feed-and-blow down system (FB) deaerator of NPP as the most likely source of continuous acoustic emission is carried out. The experimental facility for the systematic study of a phenomenon of continuous AE is developed. A physical model of a thermal deaerator is designed and constructed. A thermal monitoring system is introduced. An automatic system providing acoustic signal registration in a low frequency (0.03-30 kHz) and high frequency (30-300 kHz) bands and study of its spectral characteristics is designed. Special software for recording and processing of digitized electrical sensor signals is developed. A separate and independent principle of study of the most probable processes responsible for the generation of acoustic emission signals in the deaerator is applied. Trial series of experiments and prechecks of acoustic signals in different modes of the deaerator model are conducted. Compliance of basic technological parameters with operating range of the real deaerator was provided. It is shown that the acoustic signal time-intensity curve has several typical regions. The pilot research showed an impact of various processes that come about during the operation of the deaerator physical model on the intensity of the AE signal. The experimental results suggest that the main sources of generation of the AE signals are the processes of steam condensation, turbulent flow of gas-vapor medium, and water boiling.

  1. Learning lessons from Natech accidents - the eNATECH accident database

    Science.gov (United States)

    Krausmann, Elisabeth; Girgin, Serkan

    2016-04-01

    When natural hazards impact industrial facilities that house or process hazardous materials, fires, explosions and toxic releases can occur. This type of accident is commonly referred to as Natech accident. In order to prevent the recurrence of accidents or to better mitigate their consequences, lessons-learned type studies using available accident data are usually carried out. Through post-accident analysis, conclusions can be drawn on the most common damage and failure modes and hazmat release paths, particularly vulnerable storage and process equipment, and the hazardous materials most commonly involved in these types of accidents. These analyses also lend themselves to identifying technical and organisational risk-reduction measures that require improvement or are missing. Industrial accident databases are commonly used for retrieving sets of Natech accident case histories for further analysis. These databases contain accident data from the open literature, government authorities or in-company sources. The quality of reported information is not uniform and exhibits different levels of detail and accuracy. This is due to the difficulty of finding qualified information sources, especially in situations where accident reporting by the industry or by authorities is not compulsory, e.g. when spill quantities are below the reporting threshold. Data collection has then to rely on voluntary record keeping often by non-experts. The level of detail is particularly non-uniform for Natech accident data depending on whether the consequences of the Natech event were major or minor, and whether comprehensive information was available for reporting. In addition to the reporting bias towards high-consequence events, industrial accident databases frequently lack information on the severity of the triggering natural hazard, as well as on failure modes that led to the hazmat release. This makes it difficult to reconstruct the dynamics of the accident and renders the development of

  2. Status and Plans for the National Spherical Torus Experimental Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors

    2005-07-27

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

  3. Experimental facilities for investigation of structural material properties for fusion reactor under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G.M.; Strebkov, Yu.S.; Sidorenkov, A.V.; Zyryanov, A.P.; Barsanov, V.I.; Shushlebin, V.V. (Research and Development Inst. of Power Engineering, Moscow (Russia)); Rybin, V.V.; Vinokurov, V.F.; Odintsov, N.B. (Central Scientific and Research Inst. of Structural Materials, St. Petersburg (Russia)); Zykanov, V.A.; Shamardin, V.K.; Kazakov, V.A. (Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russia))

    1992-09-01

    The study of sturctural and breeding materials for fusion reactors covers a wide range of investigations including the effect of different operating factors; irradiation is the main factor. This paper presents basic reactor characteristics, the types of investigations on structural and breeding materials carried out at these reactors, and the reactor irradiation conditions. The design of equipment used for parameter control during the irradiations is also discussed. CM-2 and BOR-60 reactors are primarily used to irradiate structural materials for the blanket, first wall and divertor at temperatures of 80 and 350deg C and fluences up to 5x10[sup 22] n/cm[sup 2]. The IVV-2 reactor is used to investigate breeding blanket materials and to study the problems of hydrogen/tritium permeability and recovery from Li-Pb eutectic and through 0.4C-16Cr-11Ni-3Mo-Ti steel. In addition, there are facilities for carrying out irradiation experiments at cryogenic temperatures as well as in different media. (orig.).

  4. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    Science.gov (United States)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  5. Status and Plans for the National Spherical Torus Experimental Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors

    2005-07-27

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

  6. Results from phase 2 of the radioiodine test facility experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J.M.; Kupferschmid, W.C.H.; Wren, J.C. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-01

    A series of intermediate-scale experiments were conducted in the Radioiodine Test Facility (RTF) in a vinyl-painted, zinc-primer coated, carbon steel vessel in order to assess the effects of vinyl surfaces on iodine volatility in both the presence and absence of radiation. This test series, Phase 2 of a larger, comprehensive program assessing a variety of containment surfaces, also examined the effects of organic (i.e., methyl ethyl ketone) and inorganic (i.e., hydrazine) additives, pH, and venting on the aqueous chemistry and volatility of solutions initially containing cesium iodide. These tests have clearly demonstrated that organics are released to the aqueous phase from the vinyl coating and that, under radiation conditions, these organics can have a significant effect on the formation of volatile iodine species. In particular, the RTF results suggest that radiolytic decomposition of the released organics results in dramatic reductions in pH and dissolved oxygen concentration, which in turn are responsible for increased formation of molecular iodine and organic iodides. When the pH was maintained at 10 (Test 3), much lower iodine volatility was observed; low iodine volatility was also observed in the absence of radiation. This test series also demonstrated that vinyl surfaces, particularly those in contact with the gas phase, were a sink for iodine. (author) 4 figs., 6 tabs., 17 refs.

  7. Experimental investigation of iodine removal and containment depressurization in containment spray system test facility of 700 MWe Indian pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Kandar, T.K.; Vhora, S.F.; Mohan, Nalini [Directorate of Technology Development, Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2017-05-15

    Highlights: • Depressurization rate in a scaled down vessel filled with air and steam is studied. • Iodine removal rate in a scaled down vessel filled with steam/air is investigated. • Effect of SMD and vessel pressure on depressurization rate is studied. • Depressurization rate decreases with the increase in the droplet size (590 μm – 1 mm) • Decrease in pressure and iodine concentration with time follow exponential trend. - Abstract: As an additional safety measure in the new 700 MWe Indian pressurized heavy water reactors, the first of a kind system called containment Spray System is introduced. The system is designed to cater/mitigate the conditions after design basis accidents i.e., loss of coolant accident and main steam line break. As a contribution to the safety analysis of condition following loss-of-coolant accidents, experiments are carried out to establish the performance of the system. The loss of coolant is simulated by injecting saturated steam and iodine vapors into the containment vessel in which air is enclosed at atmospheric and room temperature, and then the steam-air mixture is cooled by sprays of water. The effect of water spray on the containment vessel pressure and the iodine scrubbing in a scaled down facility is investigated for the containment spray system of Indian pressurized heavy water reactors. The experiments are carried out in the scaled down vessel of the diameter of 2.0 m and height of 3.5 m respectively. Experiments are conducted with water at room temperature as the spray medium. Two different initial vessel pressure i.e. 0.7 bar and 1.0 bar are chosen for the studies as they are nearing the loss of coolant accident & main steam line break pressures in Indian pressurized heavy water reactors. These pressures are chosen based on the containment resultant pressures after a design basis accident. The transient temperature and pressure distribution of the steam in the vessel are measured during the depressurization

  8. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  9. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Science.gov (United States)

    Destouches, Christophe

    2016-03-01

    The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND) and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  10. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Directory of Open Access Journals (Sweden)

    Destouches Christophe

    2016-01-01

    Full Text Available The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  11. Effects assessment of 10 functioning years on the main components of the molten salt PCS experimental facility of ENEA

    Science.gov (United States)

    Gaggioli, Walter; Di Ascenzi, Primo; Rinaldi, Luca; Tarquini, Pietro; Fabrizi, Fabrizio

    2016-05-01

    In the frame of the Solar Thermodynamic Laboratory, ENEA has improved CSP Parabolic Trough technologies by adopting new advanced solutions for linear tube receivers and by implementing a binary mixture of molten salt (60% NaNO3 and 40% KNO3) [1] as both heat transfer fluid and heat storage medium in solar field and in storage tanks, thus allowing the solar plants to operate at high temperatures up to 550°C. Further improvements have regarded parabolic mirror collectors, piping and process instrumentation. All the innovative components developed by ENEA, together with other standard parts of the plant, have been tested and qualified under actual solar operating conditions on the PCS experimental facility at the ENEA Casaccia Research Center in Rome (Italy). The PCS (Prova Collettori Solari, i.e. Test of Solar Collectors) facility is the main testing loop built by ENEA and it is unique in the world for what concerns the high operating temperature and the fluid used (mixture of molten salt). It consists in one line of parabolic trough collectors (test section of 100 m long life-size solar collectors) using, as heat transfer fluid, the aforesaid binary mixture of molten salt up to 10 bar, at high temperature in the range 270° and 550°C and a flow rate up to 6.5 kg/s. It has been working since early 2004 [2] till now; it consists in a unique closed loop, and it is totally instrumented. In this paper the effects of over ten years qualification tests on the pressurized tank will be presented, together with the characterization of the thermal losses of the piping of the molten salt circuit, and some observations performed on the PCS facility during its first ten years of operation.

  12. Experimental and field approach to the hydraulics of nature-like pool-type fish migration facilities

    Directory of Open Access Journals (Sweden)

    Wang R.W.

    2011-02-01

    Full Text Available Nature-like fish migration facilities have gradually become a common type to ensure longitudinal connectivity of fish movements in running waters. This article presents verification on hydraulic and geometric parameters of nature-like pool-type fish passes via experimental and field investigations. The experiment verified that the maximum streamwise velocity near a slot ranged from 0.8–1.0 time of the theoretical maximum velocity. Large vertical recirculations presented below sills, moved downstream with the increase in discharge, and were likely to vanish or to change the rotation direction with high flow conditions. High turbulent kinetic energy distributed immediately downstream from boulder sills instead of along the water jet. Fieldwork was conducted at a full-width ramp in Kolbermoor and a partial-width ramp in Leitner in Bavaria under low, mean and high flow conditions to investigate the flow and geometry characteristics in real constructions and under various hydrologic conditions. The results for velocity show confidence in the method to obtain the maximum value around a slot by measuring at one depth only. Instead of flow velocity, water depth played a more critical role in the performance of a nature-like fishway, in particular under low flow conditions, and so did the arrangement of boulders along a sill. A detailed hydraulic/geometric investigation, together with biological monitoring, should be conducted to identify appropriate criteria on assessment of fish free passage at nature-like fish migration facilities.

  13. Calibration of a new experimental chamber for PIXE analysis at the Accelerator Facilities Division of Atomic Energy Centre Dhaka (AECD)

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Md. Taufique, E-mail: thassan@tulane.edu [Department of Physics, University of Dhaka (Bangladesh); Shariff, Md. Asad [Tandem Accelerator Facilities division, INST, AERE, Savar (Bangladesh); Hossein, Amzad; Abedin, Md. Joynal [Accelerator Facilities division, AECD (Bangladesh); Fazlul Hoque, A.K.M. [Daffodil International University, Dhaka (Bangladesh); Chowdhuri, M.S. [Department of Physics, University of Dhaka (Bangladesh)

    2015-05-01

    A new experimental chamber has been installed at the 3 MV Van de Graaff Accelerator Facilities Division in the Atomic Energy Centre, Dhaka, to perform different Ion Beam Analysis (IBA) techniques. The calibration of this new setup for Particle Induced X-ray Emission (PIXE) technique has been done using a set of thin MicroMatter standards and GUPIX (PIXE spectrum analysis software), which is explicated in this paper. The effective thicknesses of the beryllium window of the X-ray detector and of the different absorbers used were determined. For standardization, the so called instrumental constant H (product of detector solid angle and the correction factor for the setup) as function of X-ray energy were determined and stored inside the GUPIX library for further PIXE analysis.

  14. Deployment of RFID in healthcare facilities-experimental design in MRI department.

    Science.gov (United States)

    Cheng, Chen-Yang; Chai, Jyh-Wen

    2012-12-01

    Patient safety has become an important issue due to medical errors. Some health care systems use Radio Frequency Identification (RFID) to identify patients during medical procedures. However, the RFID data readability especially depends upon the environment, an investigation of data reliability and signal loss is essential to making an effective deployment plan. The operation of Magnetic Resonance Imaging (MRI) is the major source of electromagnetic interference in the hospital. Therefore, this research conducts an experimental design of reading performance considering various notable factors in the MRI department. In addition to the readability experiment, this paper also measures the efficiency and reliability of implementing RFID technology in the MRI department using a simulation approach and helps hospitals by providing the measured outcomes.

  15. Visualization of Traffic Accidents

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  16. Can we remove iodine-131 from tap water in Japan by boiling? - Experimental testing in response to the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Tagami, K; Uchida, S

    2011-08-01

    Iodine-131 concentrations in tap water higher than 100 BqL(-1) were reported by several local governments in Japan following the Fukushima Daiichi Nuclear Power Plant accident. Some individuals in the emergency-response community recommended the boiling of tap water to remove iodine-131. However, the tap water boiling tests in this study showed no iodine-131 loss from the tap water with either short-term boiling (1-10 min) or prolonged boiling (up to 30 min) resulting in up to 3-fold volume reductions. In this situation, boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process.

  17. Characteristics and performance analysis report of the major thermal hydraulic components in the high temperature/high pressure thermal hydraulic test facility (VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; Park, Hyun Sik; Cho, Seok; Lee, Sung Jae; Song, Chul Hwa; Park, Chun Kyong; Chung, Moon Ki

    2003-12-01

    The VISTA (Experimental Verification by Integral Simulation of Transients and Accidents) is an experimental facility to verify the performance and safety issues of the SMART-P (Pilot plant of the System-integrated Modular Advanced Reactor). The basic design of the SMART-P has been completed by KAERI. The present report describes the characteristics and performance of the major thermal hydraulic components in the VISTA Facility.

  18. Design of the Grimethorpe Experimental Facility as of March 1981: a technical report

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    The Experimental Pressurized Fluidized Bed Combustor, which has been built as an extension to the National Coal Board Power Station, which is adjacent to Grimethorpe Colliery, Yorkshire, England, is described in this report. The Governments of the United Kingdom, the United States of America and the Federal Republic of Germany, under the auspices of the International Energy Agency, have agreed to share equally between them the costs of building and operating the plant. Control of the project was vested in an Executive Committee consisting of one representative of each Government with all decisions requiring unanimity. The actual operation of the project was vested in an Operating Agent, NCB (IEA Services) Ltd., a wholly owned subsidiary of the National Coal Board. The Implementing Agreement envisages a seven year project to be executed in four stages: (1) Procurement of Design Study with accompanying tender documents. (2) Tendering for construction of the Plant; study of appraisal of tenders. (3) Construction and acceptance of the Plant. (4) Operation of the Plant. The project is now towards the end of Stage 3. Construction has been completed and commissioning is in progress to prepare the plant for the start of the operational phase in Autumn 1981. Because of the confidentiality of much of the design information, for the purposes of this report technical descriptions have been confined to that of a general appraisal.

  19. Safety and licensing issues that are being addressed by the Power Burst Facility test programs. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    McCardell, R.K.; MacDonald, P.E.

    1980-01-01

    This paper presents an overview of the results of the experimental program being conducted in the Power Burst Facility and the relationship of these results to certain safety and licensing issues. The safety issues that were addressed by the Power-Cooling-Mismatch, Reactivity Initiated Accident, and Loss of Coolant Accident tests, which comprised the original test program in the Power Burst Facility, are discussed. The resolution of these safety issues based on the results of the thirty-six tests performed to date, is presented. The future resolution of safety issues identified in the new Power Burst Facility test program which consists of tests which simulate BWR and PWR operational transients, anticipated transients without scram, and severe fuel damage accidents, is described.

  20. Experimental facility for investigation of gaseous pollutants removal process stimulated by electron beam and microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z.; Chmielewski, A.G.; Bulka, S.; Roman, K.; Licki, J. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1994-12-31

    A laboratory unit for the investigation of toxic gases removal from flue gases based on an ILU 6 accelerator has been built at the Institute of Nuclear Chemistry and Technology. This installation was provided with independent pulsed and continuous wave (c.w.) microwave generators to create electrical discharge and another pulsed microwave generator for plasma diagnostics. This allows to investigate a combined removal process based on the simultaneous use of the electron beam and streams of microwave energy in one reaction vessel. Two heating furnaces, each of them being a water-tube boiler with 100 kW thermal power, were applied for the production of combustion gas with flow rates 5-400 Nm{sup 3}/h. Proper composition of the flue gas was obtained by introducing such components as SO{sub 2}, NO and NH{sub 3} to the gas stream. The installation consists of: inlet system (two boilers - house heating furnace, boiler pressure regulator, SO{sub 2}, NO and NH{sub 3} dosage system, analytical equipment); reaction vessel where the electron beam from ILU 6 accelerator and microwave streams from the pulse and c.w. generators can be introduced simultaneously or separately and plasma diagnostic pulsed microwave stream can be applied; outlet system (retention chamber, filtration unit, fan, off-take duct of gas, analytical equipment). The experiments have demonstrated that it is possible to investigate the removal process in the presence of NH{sub 3} by separate or simultaneous application of the electron beam and of microwave energy streams under stable experimental conditions. (author). 15 refs, 26 figs, 5 tabs.

  1. Laser accidents: Being Prepared

    Energy Technology Data Exchange (ETDEWEB)

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  2. Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Hu, Rui; Lisowski, Darius; Kraus, Adam

    2016-04-17

    The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at the NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.

  3. Study on critical heat flux in narrow rectangular channel with repeated-rib roughness. 1. Experimental facility and preliminary experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hidetaka; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-10-01

    In the design of a spallation target system, the water cooling system, for example a proton beam window and a safety hull, is used with narrow channels, in order to remove high heat flux and prevent lowering of system performance by absorption of neutron. And in narrow channel, heat transfer enhancement using 2-D rib is considered for reduction the cost of cooling component and decrease inventory of water in the cooling system, that is, decrease of the amount of irradiated water. But few studies on CHF with rib have been carried out. Experimental and analytical studies with rib-roughened test section, in 10:1 ratio of pitch to height, are being carried out in order to clarify the CHF in rib-roughened channel. This paper presents the review of previous researches on heat transfer in channel with rib roughness, overview of the test facility and the preliminary experimental and analytical results. As a result, wall friction factors were about 3 times as large as that of smooth channel, and heat transfer coefficients are about 2 times as large as that of smooth channel. The obtained CHF was as same as previous mechanistic model by Sudo. (author)

  4. [Accidents with the "paraglider"].

    Science.gov (United States)

    Lang, T H; Dengg, C; Gabl, M

    1988-09-01

    With a collective of 46 patients we show the details and kinds of accidents caused by paragliding. The base for the casuistry of the accidents was a questionnaire which was answered by most of the injured persons. These were questions about the theoretical and practical training, the course of the flight during the different phases, and the subjective point of view of the course of the accident. The patterns of the injuries showed a high incidence of injuries of the spinal column and high risks for the ankles. At the end, we give some advice how to prevent these accidents.

  5. Accidents (FARS) (National)

    Data.gov (United States)

    Department of Transportation — Accident - (1975-current): This data file (NTAD) contains information about crash characteristics and environmental conditions at the time of the crash. There is one...

  6. LUGH an experimental facility for preferential flow-colloidal transport in heterogeneous unsaturated soil

    Science.gov (United States)

    Angulo-Jaramillo, R.; Bien, L.; Hehn, V.; Winiarski, T.

    2011-12-01

    with detachment efficiency depending upon the history of the detachment process. A relationship between the outflow and both solute and colloid transfer is established on the separate analysis of the 15 breakthrough curves, leading to the estimation of 15 darcian velocities. Velocity variability witnesses the flow heterogeneity and spatial variability of local capillary barriers. Numerical modeling shows actual flow field and travel length that can be related to each breakthrourgh curve. The spatial distribution of concentrations on some hydrofacies shows that both solute and colloids are predominantly transported through those preferential pathways. The use of a suitable lysimeter allows coupling a good simulation of the heterogeneity of the medium with a precise analysis of the 3D distribution of water, solute and colloids. It allows, experimentally and by modeling to point out the lithofacies that are predominant in the unsaturated zone regarding colloid transport.

  7. Lessons learned from early criticality accidents

    Energy Technology Data Exchange (ETDEWEB)

    Malenfant, R.E.

    1996-06-01

    Four accidents involving the approach to criticality occurred during the period July, 1945, through May, 1996. These have been described in the format of the OPERATING EXPERIENCE WEEKLY SUMMARY which is distributed by the Office of Nuclear and Facility Safety. Although the lessons learned have been incorporated in standards, codes, and formal procedures during the last fifty years, this is their first presentation in this format. It is particularly appropriate that they be presented in the forum of the Nuclear Criticality Technology Safety Project Workshop closest to the fiftieth anniversary of the last of the four accidents, and that which was most instrumental in demonstrating the need to incorporate lessons learned.

  8. Ruthenium release from fuel in accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, G.; Marchetto, C.; Plumecocq, W. [Inst. de Radioprotection et de Surete Nucleaire, DPAM, SEMIC, LETR and LIMSI, Saint-Paul-Lez-Durance (France)

    2010-07-01

    During a hypothetical nuclear power plant accident, fission products may be released from the fuel matrix and then reach the containment building and the environment. Ruthenium is a very hazardous fission product that can be highly and rapidly released in some accident scenarios. The impact of the atmosphere redox properties, temperature, and fuel burn-up on the ruthenium release is discussed. In order to improve the evaluation of the radiological impact by accident codes, a model of the ruthenium release from fuel is proposed using thermodynamic equilibrium calculations. In addition, a model of fuel oxidation under air is described. Finally, these models have been integrated in the ASTEC accident code and validation calculations have been performed on several experimental tests. (orig.)

  9. Decision no. 2011-DC-0213 of the French nuclear safety authority from May 5, 2011, ordering Electricite de France (EDF) company to proceed to a complementary safety evaluation of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0213 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a Electricite de France (EDF) de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to Electricite de France (EDF) company, operator of the French NPPs. (J.S.)

  10. Decision no. 2011-DC-0222 of the French nuclear safety authority from May 5, 2011, ordering the Comurhex company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0222 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a Comurhex de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to Comurhex company, operator of the Tricastin uranium conversion plant (France). (J.S.)

  11. Decision no. 2011-DC-0218 of the French nuclear safety authority from May 5, 2011, ordering the EURODIF SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0218 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a EURODIF SA de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the EURODIF SA company, operator of the George Besse I uranium enrichment plant of the Tricastin site (France). (J.S.)

  12. Decision no. 2011-DC-0224 of the French nuclear safety authority from May 5, 2011, ordering the French atomic energy and alternative energies commission (CEA) to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0224 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant au Commissariat a l'Energie Atomique et aux energies alternatives (CEA) de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the French atomic energy commission (CEA). (J.S.)

  13. Decision no. 2011-DC-0220 of the French nuclear safety authority from May 5, 2011, ordering the FBFC company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0220 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a FBFC de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the FBFC (Franco-Belge de Fabrication du Combustible), a daughter fuel fabrication company of Areva NC (France). (J.S.)

  14. Decision no. 2011-DC-0216 of the French nuclear safety authority from May 5, 2011, ordering the Laue Langevin Institute to proceed to a complementary safety evaluation of its basic nuclear facility (high flux reactor - INB no. 67) in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0216 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a l'Institut Laue Langevin (ILL) de proceder a une evaluation complementaire de la surete de son installation nucleaire de base (Reacteur a Haut Flux - INB n.67) au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the Laue Langevin Institute, operator of the high flux research reactor (RHF) of Grenoble (France). (J.S.)

  15. Decision no. 2011-DC-0221 of the French nuclear safety authority from May 5, 2011, ordering the SET company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0221 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a la SET de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the SET company, operator of the Georges Besse II and RECII uranium enrichment plants of the Tricastin site (France). (J.S.)

  16. Decision no. 2011-DC-0217 of the French nuclear safety authority from May 5, 2011, ordering the AREVA NC group to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0217 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a AREVA NC de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the AREVA NC group. (J.S.)

  17. Decision no. 2011-DC-0223 of the French nuclear safety authority from May 5, 2011, ordering the MELOX SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0223 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a MELOX SA de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to MELOX SA company, operator of the Melox MOX fuel fabrication plant of Marcoule (France). (J.S.)

  18. Decision no. 2011-DC-0219 of the French nuclear safety authority from May 5, 2011, ordering the SOCATRI company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0219 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a SOCATRI de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the SOCATRI company, operator of the nuclear dismantling and waste processing plants of the Tricastin site (France). (J.S.)

  19. Communication and industrial accidents

    NARCIS (Netherlands)

    As, Sicco van

    2001-01-01

    This paper deals with the influence of organizational communication on safety. Accidents are actually caused by individual mistakes. However the underlying causes of accidents are often organizational. As a link between these two levels - the organizational failures and mistakes - I suggest the conc

  20. Accidents - personal factors

    Energy Technology Data Exchange (ETDEWEB)

    Zaitsev, S.L.; Tsygankov, A.V.

    1982-03-01

    This paper evaluates influence of selected personal factors on accident rate in underground coal mines in the USSR. Investigations show that so-called organizational factors cause from 80 to 85% of all accidents. About 70% of the organizational factors is associated with social, personal and economic features of personnel. Selected results of the investigations carried out in Donbass mines are discussed. Causes of miner dissatisfaction are reviewed: 14% is caused by unsatisfactory working conditions, 21% by repeated machine failures, 16% by forced labor during days off, 14% by unsatisfactory material supply, 16% by hard physical labor, 19% by other reasons. About 25% of miners injured during work accidents are characterized as highly professionally qualified with automatic reactions, and about 41% by medium qualifications. About 60% of accidents is caused by miners with less than a 3 year period of service. About 15% of accidents occurs during the first month after a miner has returned from a leave. More than 30% of accidents occurs on the first work day after a day or days off. Distribution of accidents is also presented: 19% of accidents occurs during the first 2 hours of a shift, 36% from the second to the fourth hour, and 45% occurs after the fourth hour and before the shift ends.

  1. Accident investigation and analysis

    NARCIS (Netherlands)

    Kampen, J. van; Drupsteen, L.

    2013-01-01

    Many organisations and companies take extensive proactive measures to identify, evaluate and reduce occupational risks. However, despite these efforts things still go wrong and unintended events occur. After a major incident or accident, conducting an accident investigation is generally the next ste

  2. The Design of PSB-VVER Experiments Relevant to Accident Management

    Science.gov (United States)

    Nevo, Alessandro Del; D'Auria, Francesco; Mazzini, Marino; Bykov, Michael; Elkin, Ilya V.; Suslov, Alexander

    Experimental programs carried-out in integral test facilities are relevant for validating the best estimate thermal-hydraulic codes(1), which are used for accident analyses, design of accident management procedures, licensing of nuclear power plants, etc. The validation process, in fact, is based on well designed experiments. It consists in the comparison of the measured and calculated parameters and the determination whether a computer code has an adequate capability in predicting the major phenomena expected to occur in the course of transient and/or accidents. University of Pisa was responsible of the numerical design of the 12 experiments executed in PSB-VVER facility (2), operated at Electrogorsk Research and Engineering Center (Russia), in the framework of the TACIS 2.03/97 Contract 3.03.03 Part A, EC financed (3). The paper describes the methodology adopted at University of Pisa, starting form the scenarios foreseen in the final test matrix until the execution of the experiments. This process considers three key topics: a) the scaling issue and the simulation, with unavoidable distortions, of the expected performance of the reference nuclear power plants; b) the code assessment process involving the identification of phenomena challenging the code models; c) the features of the concerned integral test facility (scaling limitations, control logics, data acquisition system, instrumentation, etc.). The activities performed in this respect are discussed, and emphasis is also given to the relevance of the thermal losses to the environment. This issue affects particularly the small scaled facilities and has relevance on the scaling approach related to the power and volume of the facility.

  3. Experimental Fabrication Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides aviation fabrication support to special operations aircraft residing at Fort Eustis and other bases in the United States. Support is also provided to AATD...

  4. Experimental investigation for an isolation technique on conducting the electromechanical impedance method in high-temperature pipeline facilities

    Science.gov (United States)

    Na, Wongi S.; Lee, Hyeonseok

    2016-11-01

    In general, the pipelines within a nuclear power plant facility may experience high temperatures up to several hundred degrees. Thus it is absolutely vital to monitor these pipes to prevent leakage of radioactive substances which may lead to a catastrophic outcome of the surrounding environment. Over the years, one of the structural health monitoring technique known as the electromechanical impedance (EMI) technique has been of great interests in various fields including civil infrastructures, mechanical and aerospace structures. Although it has one of the best advantages to be able for a single piezoelectric transducer to act as a sensor and an actuator, simultaneously, its low curie temperature makes it difficult for the EMI technique to be conducted at high temperature environment. To overcome this problem, this study shows a method to avoid attaching the piezoelectric transducer directly onto the target structure using a metal wire for damage detection at high temperature. By shifting the frequency to compensate the signature changes subjected to the variations in temperature, the experimental results indicate that damage identification is more successful above 200 oC, making the metal wire method suitable for the EMI technique at high temperature environment.

  5. New experimental limits on violations of the Pauli exclusion principle obtained with the Borexino Counting Test Facility

    CERN Document Server

    Back, H O; De Bari, A; De Bellefon, A; Bellini, G; Benziger, J; Bonetti, S; Buck, C; Caccianiga, B; Cadonati, L; Calaprice, F; Cecchet, G; Chen, M; Di Credico, A; Dadoun, O; D'Angelo, D; Derbin, A; Deutsch, M; Etenko, A; Von Feilitzsch, F; Fernholz, R; Ford, R; Franco, D; Freudiger, B; Galbiati, C; Gazzana, S; Giammarchi, M G; Goeger-Neff, M; Goretti, A; Grieb, C; Hampel, W; Harding, E; Hartmann, F X; Heusser, G; Ianni, A; Ianni, A M; De Kerret, H; Kiko, J; Kirsten, T; Kobychev, V V; Korga, G; Korschinek, G; Kozlov, Y; Kryn, D; Laubenstein, M; Lendvai, C; Leung, M; Litvinovich, E; Lombardi, P; Machulin, I; Malvezzi, S; Maneira, J; Manno, I; Manuzio, D; Manuzio, G; Masetti, F; Martemianov, A; Mazzucato, U; McCarty, K; Meroni, E; Mention, G; Miramonti, L; Monzani, M E; Muratova, V; Musico, P; Niedermeier, L; Oberauer, L; Obolensky, M; Ortica, F; Pallavicini, M; Papp, L; Perasso, L; Peiffer, P; Pocar, A; Raghavan, R S; Ranucci, G; Razeto, A; Sabelnikov, A; Salvo, C; Scardaoni, R; Schimizzi, D; Schönert, S; Simgen, H; Shutt, T A; Skorokhvatov, M; Smirnov, O; Sonnenschein, A; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tarasenkov, V; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; Vyrodov, V N; Wójcik, M; Zaimidoroga, O A; Zuzel, G

    2004-01-01

    The Pauli exclusion principle (PEP) has been tested for nucleons ($n,p$) in $^{12}C$ and $^{16}O$ nuclei, using the results of background measurements with the prototype of the Borexino detector, the Counting Test Facility (CTF). The approach consisted of a search for $\\gamma$, $n$, $p$ and/or $\\alpha$'s emitted in a non-Paulian transition of 1$P$- shell nucleons to the filled 1$S_{1/2}$ shell in nuclei. Similarly, the Pauli-forbidden $\\beta^{\\pm}$ decay processes were searched for. Due to the extremely low background and the large mass (4.2 tons) of the CTF detector, the following most stringent up-to-date experimental bounds on PEP violating transitions of nucleons have been established: $\\tau(^{12}C\\to^{12}\\widetilde{C}+\\gamma) > 2.1\\cdot10^{27}$ y, $\\tau(^{12}C\\to^{11}\\widetilde{B}+ p) > 5.0\\cdot10^{26}$ y, $\\tau(^{12}C(^{16}O)\\to^{11}\\widetilde{C}(^{15}\\widetilde{O})+ n) > 3.7 \\cdot 10^{26}$ y, $\\tau(^{12}C\\to^{8}\\widetilde{Be}+\\alpha) > 6.1 \\cdot 10^{23}$ y, $\\tau(^{12}C\\to^{12}\\widetilde{N}+ e^- + \\wid...

  6. Persistence of airline accidents.

    Science.gov (United States)

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  7. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  8. Experimental Investigation of the Thermal Upset and Recovery of the National Ignition Facility's Optics Module

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bernardin

    1999-05-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is being constructed as the latest in a series of high-power laser facilities to study inertial confinement fusion. In particular, the NIF will generate and amplify 192 laser beams and focus them onto a fusion fuel capsule the size of a BB. The energy deposited by the laser beams will raise the core temperature of the target to 100,OOO,OOO C, which will ignite the fusion fuel and produce a fusion energy output that is several times greater than the energy input. The ability to generate, condition, and focus 192 laser beams onto a target the size of a BB, requires precision optical hardware and instrumentation. One of the most critical pieces of optical hardware within the NIF is the Optics Module (OM), a mechanical apparatus which is responsible for optical focusing and frequency conversion of the laser beam to optimize the energy deposition at the fusion target. The OM contains two potassium dihydrogen phosphate (KDP), frequency conversion crystals and a focusing lens. The functionality of the KDP crystals is extremely temperature sensitive. Small temperature changes on the order of 0.1 C can significantly alter the performance of these components. Consequently, to maximize NIF system availability and minimize beam conditioning problems, accurate temperature control of the OM optical components was deemed a necessity. In this study, an experimental OM prototype, containing mock frequency conversion crystals and a focusing lens, was used determine the thermal stability provided by a prototype water temperature control system. More importantly, the OM prototype was used to identify and characterize potential thermal upsets and corresponding recovery times of the KDP crystals. The results of this study indicate that the water temperature control system is adequate in maintaining uniform steady-state temperatures within the OM. Vacuum pump-down and venting of the OM generated significant

  9. Severe accident testing of electrical penetration assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, D.B. (Sandia National Labs., Albuquerque, NM (USA))

    1989-11-01

    This report describes the results of tests conducted on three different designs of full-size electrical penetration assemblies (EPAs) that are used in the containment buildings of nuclear power plants. The objective of the tests was to evaluate the behavior of the EPAs under simulated severe accident conditions using steam at elevated temperature and pressure. Leakage, temperature, and cable insulation resistance were monitored throughout the tests. Nuclear-qualified EPAs were produced from D. G. O'Brien, Westinghouse, and Conax. Severe-accident-sequence analysis was used to generate the severe accident conditions (SAC) for a large dry pressurized-water reactor (PWR), a boiling-water reactor (BWR) Mark I drywell, and a BWR Mark III wetwell. Based on a survey conducted by Sandia, each EPA was matched with the severe accident conditions for a specific reactor type. This included the type of containment that a particular EPA design was used in most frequently. Thus, the D. G. O'Brien EPA was chosen for the PWR SAC test, the Westinghouse was chosen for the Mark III test, and the Conax was chosen for the Mark I test. The EPAs were radiation and thermal aged to simulate the effects of a 40-year service life and loss-of-coolant accident (LOCA) before the SAC tests were conducted. The design, test preparations, conduct of the severe accident test, experimental results, posttest observations, and conclusions about the integrity and electrical performance of each EPA tested in this program are described in this report. In general, the leak integrity of the EPAs tested in this program was not compromised by severe accident loads. However, there was significant degradation in the insulation resistance of the cables, which could affect the electrical performance of equipment and devices inside containment at some point during the progression of a severe accident. 10 refs., 165 figs., 16 tabs.

  10. Accident Management in VVER-1000

    Directory of Open Access Journals (Sweden)

    F. D'Auria

    2008-01-01

    Full Text Available The present paper deals with the investigation study on accident management in VVER-1000 reactor type conducted in the framework of a European Commission funded project. The mentioned study involved both experimental and computational fields. The purpose of this paper is to summarize the main findings from the execution of a wide-range analysis focused on AM in VVER-1000 with main regard to the qualification of computational tools and the proposal for an optimal AM strategy for this kind of NPP.

  11. New experimental limits on violations of the Pauli exclusion principle obtained with the Borexino Counting Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O. [Virginia Polytechnic Institute and State Univ., Physics Dept., Blacksburg (United States); Balata, M.; Credico, A. di [I.N.F.N Lab. Nazionali del Gran Sasso, Assergi (Italy); Bari, A. de; Cecchet, G. [Dipt. di Fisica Nucleare e Teorica Univ. and I.N.F.N., Pavia (Italy); Bellefon, A. de; Dadoun, O. [Lab. de Physique Corpusculaire et Cosmologie, Paris (France); Bellini, G.; Bonetti, S.; Caccianiga, B. [Dipt. di Fisica Univ. and I.N.F.N., Milano (Italy); Benziger, J.; Cadonati, L.; Calaprice, F. [Princeton Univ., Dept. of Physics, Princeton (United States); Buck, C. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Chen, M. [Queen' s Univ. Stirling Hall, Dept. of Physics, Kingston, Ontario (Canada); D' Angelo, D.; Feilitzsch, F. von [Technische Univ. Muenchen, Garching (Germany); Derbin, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Deutsch, M. [Dept. of Physics, Massachusetts Inst. of Tech., Cambridge (United States); Etenko, A. [RRC Kurchatov Inst., Moscow (Russian Federation); Fernholz, R.; Ford, R.; Franco, D.; Freudiger, B.; Galbiati, C.; Gazzana, S.; Giammarchi, M.G.; Goeger-Neff, M.; Goretti, A.; Grieb, C.; Hampel, W.; Harding, E.; Hartmann, F.X.; Heusser, G.; Ianni, A.; Ianni, A.M.; Kerret, H. de; Kiko, J.; Kirsten, T.; Kobychev, V.V.; Korga, G.; Korschinek, G.; Kozlov, Y.; Kryn, D.; Laubenstein, M.; Lendvai, C.; Leung, M.; Itvinovich, E.L.; Lombardi, P.; Machulin, I.; Malvezzi, S.; Maneira, J.; Manno, I.; Manuzio, D.; Manuzio, G.; Masetti, F.; Martemianov, A.; Mazzucato, U.; McCarty, K.; Meroni, E.; Mention, G.; Miramonti, L.; Monzani, M.E.; Muratova, V.; Musico, P.; Niedermeier, L.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Peiffer, P.; Pocar, A.; Raghavan, R.S.; Ranucci, G.; Razeto, A.; Sabelnikov, A.; Salvo, C.; Scardaoni, R.; Schimizzi, D.; Schoenert, S.; Simgen, H.; Shutt, T.; Skorokhvatov, M.; Smirnov, O.; Sonnenschein, A.; Sotnikov, A.; Sukhotin, S. [and others

    2004-11-01

    The Pauli exclusion principle (PEP) has been tested for nucleons (n,p) in {sup 12}C and {sup 16}O nuclei, using the results of background measurements with the prototype of the Borexino detector, the Counting Test Facility (CTF). The approach consisted of a search for {gamma}, n, p and/or {alpha}'s emitted in a non-Paulian transition of 1P- shell nucleons to the filled 1S{sub 1/2} shell in nuclei. Similarly, the Pauli-forbidden {beta}{sup {+-}} decay processes were searched for. Due to the extremely low background and the large mass (4.2 tons) of the CTF detector, the following most stringent up-to-date experimental bounds on PEP violating transitions of nucleons have been established: {tau}({sup 12}C{yields}{sup 12}C+{gamma})>2.1.10{sup 27}y, {tau}({sup 12}C{yields}{sup 11}B+p)>5.0.10{sup 26}y, {tau}({sup 12}C({sup 16}O){yields}{sup 11}C({sup 15}O)+n)>3.7.10{sup 26}y, {tau}({sup 12}C{yields}{sup 8}Be+{alpha})>6.1.10{sup 23}y, {tau}({sup 12}C{yields}{sup 12}N+e{sup -}+{nu}{sub e})>7.6.10{sup 27}y and {tau}({sup 12}C{yields}{sup 12}B+e{sup +}+{nu}{sub e})>7.7.10{sup 27}y, all at 90 % C.L. (orig.)

  12. Traffic Accidents on Slippery Roads

    DEFF Research Database (Denmark)

    Fonnesbech, J. K.; Bolet, Lars

    2014-01-01

    Police registrations from 65 accidents on slippery roads in normally Danish winters have been studied. The study showed: • 1 accident per 100 km when using brine spread with nozzles • 2 accidents per 100 km when using pre wetted salt • 3 accidents per 100 km when using kombi spreaders The results...

  13. Boating Accident Statistics

    Data.gov (United States)

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  14. Accident resistant transport container

    Science.gov (United States)

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  15. The Fukushima accident; Accident nucleaire a Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, D.

    2012-02-15

    The Fukushima accident is characterized by a sequence of natural disasters: earthquake and tsunamis that deprived simultaneously 3 reactors from cooling and electrical power for quite a long time. A series of hydrogen explosion has added to the mess. Experts agree to say that certainly nuclear fuel has melt to form corium in all 3 reactors. The accident has contaminated tens of thousand acres of land around the plant and has jeopardized local coastal fishery. The human toll is unexpectedly low: no direct casualty in the population but several suicides among the people that was forced to leave their home. 5 people from the plant staff died certainly from the consequences of the tsunami. (A.C.)

  16. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  17. Cyclical Fluctuations in Workplace Accidents

    OpenAIRE

    Boone, J.; J. C. VAN OURS

    2002-01-01

    This Paper presents a theory and an empirical investigation on cyclical fluctuations in workplace accidents. The theory is based on the idea that reporting an accident dents the reputation of a worker and raises the probability that he is fired. Therefore a country with a high or an increasing unemployment rate has a low (reported) workplace accident rate. The empirical investigation concerns workplace accidents in OECD countries. The analysis confirms that workplace accident rates are invers...

  18. ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J E; Hess, R A; Hylton, J O

    1983-11-01

    Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions.

  19. Analysis of radiological accident emissions of a lead-cooled experimental reactor. LEADER Project; Analisis radiologico de las emisiones en caso de accidente de un reactor experimental refrigerado por plomo. Proyecto LEADER

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Salcedo, F.; Cortes Martin, A.

    2013-07-01

    The LEADER project develops a conceptual level industrial size reactor cooled lead and a demonstration plant of this technology. The project objectives are to define the characteristics and design to installation scale reactor using available technologies and short-term components and assess safety aspects conducting a preliminary analysis of the impact of the facility.

  20. [Accidents of fulguration].

    Science.gov (United States)

    Virenque, C; Laguerre, J

    1976-01-01

    Fulguration, first electric accident in which the man was a victim, is to day better known. A clap of thunder is decomposed in two elements: lightning, and thunder. Lightning is caused by an electrical discharge, either within a cloud, or between two clouds, or, above all, between a cloud and the surface of the ground. Experimental equipments owned by the French Electricity Company and by the Atomic Energy Commission, have allowed to photograph lightnings and to measure certain physical characteristics (Intensity variable between 25 to 100 kA, voltage variable between 20 to 1 000 kV). The frequency of storms was learned: the isokeraunic level, in France, is about 20, meaning that thunder is heard twenty days during one year. Man may be stricken by thunder by direct hit, by sudden bursting, by earth current, or through various conductors. The electric charge which reached him may go to the earth directly by contact with the ground or may dissipate in the air through a bony promontory (elbow). The total number of victims, "wounded" or deceased, is not now known by statistics. Death comes by insulation breakdown of one of several anatomic cephalic formations: skull, meninx, brain. Many various lesions may happen in survivors: loss of consciousness, more or less long, sensorial or motion deficiencies. All these signs are momentary and generally reversible. Besides one may observe much more intense lesions on the skin: burns and, over all, characteristic aborescence (skin effect by high frequency current). The heart is protected, contrarily to what happens with industrial electrocution. The curative treatment is merely symptomatic : reanimation, surgery for burns or associated traumatic lesions. A prevention is researched to help the lonely man, in the country or in the mountains in the houses (lightning conductor, Faraday cage), in vehicles (aircraft, cars, ships). The mysterious and unforseeable character of lightning still stays, leaving a door opened for numerous

  1. Severe Accident Test Station Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  2. Accidents in nuclear ships

    Energy Technology Data Exchange (ETDEWEB)

    Oelgaard, P.L. [Risoe National Lab., Roskilde (Denmark)]|[Technical Univ. of Denmark, Lyngby (Denmark)

    1996-12-01

    This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events in considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10{sup -3} per ship reactor years. It if finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. It is emphasized that some of the information on which this report is based, may not be correct. Consequently some of the results of the assessments made may not be correct. (au).

  3. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium. [Wave functions, preliminary experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.

  4. Injury risk prediction for traffic accidents in Porto Alegre/RS, Brazil

    OpenAIRE

    Perone, Christian S.

    2015-01-01

    This study describes the experimental application of Machine Learning techniques to build prediction models that can assess the injury risk associated with traffic accidents. This work uses an freely available data set of traffic accident records that took place in the city of Porto Alegre/RS (Brazil) during the year of 2013. This study also provides an analysis of the most important attributes of a traffic accident that could produce an outcome of injury to the people involved in the accident.

  5. Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code

    Energy Technology Data Exchange (ETDEWEB)

    Gyoergy, Hunor [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques (BME NTI); Trosztel, Istvan [Hungarian Academy of Sciences, Budapest (Hungary). Centre for Energy Research (MTA EK)

    2013-09-15

    Severe accident - if no mitigation action is taken - leads to core melt. An effective severe accident management strategy can be the external reactor pressure vessel cooling for corium localization and stabilization. For some time discussion was going on, whether the in-vessel retention can be applied for the VVER-440 type reactors. It had to be demonstrated that the available space between the reactor vessel and biological protection allows sufficient cooling to keep the melted core in the vessel, without the reactor pressure vessel losing its integrity. In order to demonstrate the feasibility of the concept an experimental facility was realized in Hungary. The facility called Cooling Effectiveness on the Reactor External Surface (CERES) is modeling the vessel external surface and the biological protection of Paks NPP. A model of the CERES facility for the ATHLET TH system code was developed. The results of the ATHLET calculation agree well with the measurements showing that the vessel cooling can be insured for a long time in a VVER-440 reactor. (orig.)

  6. Report on preliminary analysis of state of nuclear criticality accident at JCO at Tokaimura, Ibaraki, Japan (I)

    Energy Technology Data Exchange (ETDEWEB)

    Ha, J.J.; Park, J.H.; Chang, J.H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This preliminary report was prepared by the Special Task Force Team of KAERI in order to analysis status of nuclear criticality accident broken out at 10:35 September 30, 1999 at JCO nuclear conversion test facility located at Tokaimura, Ibaraki, Japan. The report was consisted of accident summary of cause of accident summary of cause of accident and response by relevant organizations, and preliminary technical analysis of radiation exposure of JCO workers, analysis of cause of accident, and accident assessment and preventive actions against criticality accident. It is expected that JCO accident, Japan's first nuclear criticality accident, would make significant effects to Japan nuclear policy and would be also a good example to Korea future actions to be taken in use and development of nuclear energy. 63 refs., 3 figs., 1 tab. (Author)

  7. Who by accident? The social morphology of car accidents.

    Science.gov (United States)

    Factor, Roni; Yair, Gad; Mahalel, David

    2010-09-01

    Prior studies in the sociology of accidents have shown that different social groups have different rates of accident involvement. This study extends those studies by implementing Bourdieu's relational perspective of social space to systematically explore the homology between drivers' social characteristics and their involvement in specific types of motor vehicle accident. Using a large database that merges official Israeli road-accident records with socioeconomic data from two censuses, this research maps the social order of road accidents through multiple correspondence analysis. Extending prior studies, the results show that different social groups indeed tend to be involved in motor vehicle accidents of different types and severity. For example, we find that drivers from low socioeconomic backgrounds are overinvolved in severe accidents with fatal outcomes. The new findings reported here shed light on the social regularity of road accidents and expose new facets in the social organization of death. © 2010 Society for Risk Analysis.

  8. Radiation dose assessment of ACP hot cell in accident

    Energy Technology Data Exchange (ETDEWEB)

    Kook, D. H.; Jeong, W. M.; Koo, J. H.; Jeo, I. J.; Lee, E. P.; Ryu, K. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The Advanced spent fuel Condition in Process(ACP) is under development for the effective management of spent fuel which had been generated in nuclear plants. The ACP needs a hot cell where most operations will be performed. To give priority to the environments safety, radiation doses evaluations for the radioactive nuclides in accident cases were preliminarily performed with the meteorological data around facility site. Fire accident prevails over several accidnets. Internal Dose and External Dose evaluation according to short dispersion data for that case show a safe margin for regulation limits and SAR limit of IMEF where this facility will be constructed.

  9. ALICE Injected Beam Accidents

    CERN Document Server

    Appleby, R B

    2009-01-01

    The ALICE (point 2) interaction region is sensitive to beam orbit errors arising from magnet setting errors on injection. In this report, beam accident scenarios under injection for ALICE are described, focusing on ultra- fast error injection scenarios for the interaction straight correctors and dipoles. Beam 1 and beam 2 accident scenarios are considered, where the errors can lead to beam orbits striking the ALICE vacuum chamber or elements of the machine. The required thresholds for magnet current interlocks are calculated to avoid machine and detector risk.

  10. LHCb Injected Beam Accidents

    CERN Document Server

    Appleby, R B

    2009-01-01

    The LHCb (point 8) interaction region is sensitive to beam orbit errors arising from magnet setting errors on injection. In this report, beam accident scenarios under injection for LHCb are described, focusing on ultra- fast error injection scenarios for the interaction straight correctors and dipoles. Beam 1 and beam 2 accident scenarios are considered, where the errors can lead to beam orbits striking the LHCb vacuum chamber or elements of the machine. The required thresholds for magnet current interlocks are calculated to avoid machine and detector risk.

  11. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    Energy Technology Data Exchange (ETDEWEB)

    Macek, R.J.

    1994-07-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

  12. SBLOCA AND LOFW EXPERIMENTS IN A SCALED-DOWN IET FACILITY OF REX-10 REACTOR

    Directory of Open Access Journals (Sweden)

    YEON-GUN LEE

    2013-06-01

    Full Text Available This paper presents an experimental investigation of the small-break loss-of-coolant accident (SBLOCA and the loss-of-feedwater accident (LOFW in a scaled integral test facility of REX-10. REX-10 is a small integral-type PWR in which the coolant flow is driven by natural circulation, and the RCS is pressurized by the steam-gas pressurizer. The postulated accidents of REX-10 include the system depressurization initiated by the break of a nitrogen injection line connected to the steam-gas pressurizer and the complete loss of normal feedwater flow by the malfunction of control systems. The integral effect tests on SBLOCA and LOFW are conducted at the REX-10 Test Facility (RTF, a full-height full-pressure facility with reduced power by 1/50. The SBLOCA experiment is initiated by opening a flow passage out of the pressurizer vessel, and the LOFW experiment begins with the termination of the feedwater supply into the helical-coil steam generator. The experimental results reveal that the RTF can assure sufficient cooldown capability with the simulated PRHRS flow during these DBAs. In particular, the RTF exhibits faster pressurization during the LOFW test when employing the steam-gas pressurizer than the steam pressurizer. This experimental study can provide unique data to validate the thermal-hydraulic analysis code for REX-10.

  13. Experimental Facilities in Water Resources Education. A Contribution to the International Hydrological Programme. UNESCO Technical Papers in Hydrology No. 24.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This monograph is intended to guide teachers of water resources, technicians and university students in establishing physical facilities which can introduce learners to methods, techniques, and instruments used in water resources management and assessment. It is not intended to serve as an exhaustive list of equipment and their descriptions or as…

  14. Further development and data basis for safety and accident analyses of nuclear front end and back end facilities and actualization and revision of calculation methods for nuclear safety analyses. Final report; Weiterentwicklung von Methoden und Datengrundlagen zu Sicherheits- und Stoerfallanalysen fuer Anlagen der nuklearen Ver- und Entsorgung sowie Aktualisierung und Ueberpruefung von Rechenmethoden zu nuklearen Sicherheitsanalysen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kilger, Robert; Peters, Elisabeth; Sommer, Fabian; Moser, Eberhard-Franz; Kessen, Sven; Stuke, Maik

    2016-07-15

    This report briefly describes the activities carried out under the project 3613R03350 on the GRS ''Handbook on Accident Analysis for Nuclear Front and Back End Facilities'', and in detail the continuing work on the revision and updating of the GRS ''Handbook on Criticality'', which here focused on fissile systems with plutonium and {sup 233}U. The in previous projects started and ongoing literature study on innovative fuel concepts is continued. Also described are the review and qualification of computational methods by research and active benchmark participation, and the results of tracking the state of science and technology in the field of computational methods for criticality safety analysis. Special in-depth analyzes of selected criticality-relevant occurrences in the past are also documented.

  15. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B. [and others

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked & influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs.

  16. Computational and Experimental Characterization of the Mach 6 Facility Nozzle Flow for the Enhanced Injection and Mixing Project at NASA Langley Research Center

    Science.gov (United States)

    Drozda, Tomasz G.; Cabell, Karen F.; Passe, Bradley J.; Baurle, Robert A.

    2017-01-01

    Computational fluid dynamics analyses and experimental data are presented for the Mach 6 facility nozzle used in the Arc-Heated Scramjet Test Facility for the Enhanced Injection and Mixing Project (EIMP). This project, conducted at the NASA Langley Research Center, aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics relevant to flight Mach numbers greater than 8. The EIMP experiments use a two-dimensional Mach 6 facility nozzle to provide the high-speed air simulating the combustor entrance flow of a scramjet engine. Of interest are the physical extent and the thermodynamic properties of the core flow at the nozzle exit plane. The detailed characterization of this flow is obtained from three-dimensional, viscous, Reynolds-averaged simulations. Thermodynamic nonequilibrium effects are also investigated. The simulations are compared with the available experimental data, which includes wall static pressures as well as in-stream static pressure, pitot pressure and total temperature obtained via in-stream probes positioned just downstream of the nozzle exit plane.

  17. Lessons learned from accidents investigations

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Bello, P. [Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico City (Mexico); Croft, J. [National Radiological Protection Board (United Kingdom); Glenn, J

    1997-12-31

    Accidents from three main practices: medical applications, industrial radiography and industrial irradiators are used to illustrate some common causes of accidents and the main lessons to be learned. A brief description of some of these accidents is given. Lessons learned from the described accidents are approached by subjects covering: safety culture, quality assurance, human factors, good engineering practice, defence in depth, security of sources, safety assessment and monitoring and verification compliance. (author)

  18. Calculation of an accident with delayed scram at NPP Greifswald using the coupled code DYN3D/ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    1998-10-01

    Complex computer codes modeling the whole reactor system including 3D neutron kinetics in combination with advanced thermohydraulic plant models become more and more important for the safety assessment of nuclear reactors. Transients or experiments with both neutron kinetic and thermalhydraulic data are needed for the validation of such coupled codes like DYN3D/ATHLET. First of all measured results from nuclear power plant (NPP) transients should be used, because the experimental thermalhydraulic facilities do not offer the possibility to model space-dependent neutron kinetic effects and research reactors with reliably measured 3D neutron kinetic data do not allow to study thermalhydraulic feedback effects. In this paper, an accident with delayed scram which occurred in 1989 at the NPP Greifswald is analyzed. Calculations of this accident were carried out with the goal to validate the coupled code DYN3D/ATHLET. (orig.)

  19. The effects of aircraft certification rules on general aviation accidents

    Science.gov (United States)

    Anderson, Carolina Lenz

    The purpose of this study was to analyze the frequency of general aviation airplane accidents and accident rates on the basis of aircraft certification to determine whether or not differences in aircraft certification rules had an influence on accidents. In addition, the narrative cause descriptions contained within the accident reports were analyzed to determine whether there were differences in the qualitative data for the different certification categories. The certification categories examined were: Federal Aviation Regulations Part 23, Civil Air Regulations 3, Light Sport Aircraft, and Experimental-Amateur Built. The accident causes examined were those classified as: Loss of Control, Controlled Flight into Terrain, Engine Failure, and Structural Failure. Airworthiness certification categories represent a wide diversity of government oversight. Part 23 rules have evolved from the initial set of simpler design standards and have progressed into a comprehensive and strict set of rules to address the safety issues of the more complex airplanes within the category. Experimental-Amateur Built airplanes have the least amount of government oversight and are the fastest growing segment. The Light Sport Aircraft category is a more recent certification category that utilizes consensus standards in the approval process. Civil Air Regulations 3 airplanes were designed and manufactured under simpler rules but modifying these airplanes has become lengthy and expensive. The study was conducted using a mixed methods methodology which involves both quantitative and qualitative elements. A Chi-Square test was used for a quantitative analysis of the accident frequency among aircraft certification categories. Accident rate analysis of the accidents among aircraft certification categories involved an ANCOVA test. The qualitative component involved the use of text mining techniques for the analysis of the narrative cause descriptions contained within the accident reports. The Chi

  20. Authority structure and industrial accidents

    NARCIS (Netherlands)

    As, Sicco van

    2001-01-01

    This paper deals with the influence of organizational characteristics on safety. Accidents are actually caused by individual mistakes. However the underlying causes of accidents are often organizational. The general hypothesis is that the authority structure is a main cause of accident-proneness

  1. Nuclear Heating Measurement in Critical Facilities and Experimental Validation of Code and Libraries - An Application to Prompt and Delayed γ Nuclear Data Needs

    Science.gov (United States)

    Blaise, P.; Di Salvo, J.; Vaglio-Gaudard, C.; Bernard, D.; Amharrak, H.; Lemaire, M.; Ravaux, S.

    Energy from prompt and delayed gammas in actual and future nuclear systems are more and more taken into account into design studies as they play an important role in the assessment of performance and safety concerns. Their incomplete knowledge (both prompt and delayed) require to take conservative design margins on local dimensioning parameters, thus reducing the awaited performances or flexibility of these facilities, with costs that are far from being negligible. The local energy photon deposit must be accurately known for Generation-III (Gen-III), Generation-IV (Gen-IV) or the new MTR Jules Horowitz Reactor (JHR). The last 2 decades has seen the realization, in Zero Power Reactors (ZPR), of several programs partially devoted to γ-heating measurements. Experimental programs were and are still conducted in different Cadarache facilities such as MASURCA (for SFR), and later in MINERVE and EOLE (for JHR and Gen-III reactors). The adequacy of the γ-heating calculation was compared to experimental data using thermo-luminescent (TL) detectors and γ-fission chambers. Inconsistencies in C/E and associated uncertainties led to improvement of both libraries and experimental techniques. For these last one, characterization for TL and optically stimulated (OSL) detectors (calibration, individual response), and Monte Carlo calculation of charge repartition in those detectors and their environment were carefully checked and optimized. This step enabled to reduce the associated experimental uncertainty by a factor of 2 (8% at 2σ). Nevertheless, interpretation of integral experiment with updated calculation schemes and improved experimental techniques still tend to prove that there are some nuclei for which there are missing or erroneous data, mainly in structural and absorbing materials. New integral and differential measurements are needed to guide new evaluation efforts, which could benefit from consolidated theoretical and experimental modeling techniques.

  2. Identification of the security threshold by logistic regression applied to fuel under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Baptista Filho, Benedito; Oliveira, Fabio Branco de, E-mail: dsgomes@ipen.br, E-mail: bdbfilho@ipen.br, E-mail: fabio@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    A reactivity-initiated Accident (RIA) is a disastrous failure, which occurs because of an unexpected rise in the fission rate and reactor power. This sudden increase in the reactor power may activate processes that might lead to the failure of fuel cladding. In severe accidents, a disruption of fuel and core melting can occur. The purpose of the present research is to study the patterns of such accidents using exploratory data analysis techniques. A study based on applied statistics was used for simulations. Then, we chose peak enthalpy, pulse width, burnup, fission gas release, and the oxidation of zirconium as input parameters and set the safety boundary conditions. This new approach includes the logistic regression. With this, the present research aims also to develop the ability to identify the conditions and the probability of failures. Zirconium-based alloys fabricating the cladding of the fuel rod elements with niobium 1% were analyzed for high burnup limits at 65 MWd/kgU. The data based on six decades of investigations from experimental programs. In test, perform in American reactors such as the transient reactor test (TREAT), and power Burst Facility (PBF). In experiments realized in Japanese program at nuclear in the safety research reactor (NSRR), and in Kazakhstan as impulse graphite reactor (IGR). The database obtained from the tests and served as a support for our study. (author)

  3. ROAD ACCIDENT AND SAFETY STUDY IN SYLHET REGION OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    B. K. BANIK

    2011-08-01

    Full Text Available Roads, highways and streets are fundamental infrastructure facilities to provide the transportation for passenger travel and goods movement from one place to another in Sylhet, north–eastern division of Bangladesh with rapid growth of road vehicle, being comparatively developed economic tourist prone area faces severe road traffic accident. Such severe road accidents cause harsh safety hazards on the roads of Sylhet area. This research work presents an overview of the road traffic accident and degraded road safety situation in Sylhet zone which in particular, discusses the key road accident problem characteristics identifying the hazardous roads and spots, most responsible vehicles and related components, conditions of drivers and pedestrians, most victims of accident, effects of accident on society, safety priorities and options available in Sylhet. In this regard, a comprehensive questionnaire survey was conducted on the concerned groups of transportation and detailed accident data was collected from a popular local newspaper. Analysis of the study reveals that Dhaka- Sylhet highway is the most hazardous in road basis and Sylhet Sador thana is the most vulnerable in thana basis in Sylhet region.

  4. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Grenier, D.; Wollmann, D. [CERN-AB, 1211 Geneva 23 (Switzerland); Blanco Sancho, J. [CERN-AB, 1211 Geneva 23, Switzerland and Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Burkart, F. [CERN-AB, 1211 Geneva 23, Switzerland and Goethe University, Frankfurt (Germany); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A. R. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  5. Tools to prevent process safety events at university research facility - chemical risk assessment and experimental set-up risk assessment

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    The article discusses the two forms developed to examine the hazards of the chemicals to be used in the experiments in the experimental setup in the Department of Chemical and Biochemical Engineering of the Technical University of Denmark. A system for the safety assessment of new experimental...

  6. Experimental Polyurethane Foam (PUF) Roofing Systems. III. Naval Station, Roosevelt Roads, Puerto Rico, and Naval Facility, Cape Hatteras, North Carolina.

    Science.gov (United States)

    1986-01-01

    other sources of energy loss must be investigated. The units had jalousie windows that permitted a moderate degree of air infiltration and resultant...units with jalousie windows, optimum energy conservation is obtained with 1-1/2 to 3 inches of foam. Naval Facility, Cape Hatteras, N.C. 1. A 25- to...replacing jalousie windows with a closed window. Two to 3 inches of foam should be used to provide maximum energy conservation in semitropical

  7. Chernobyl accident and its consequences

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.

    1987-06-01

    The paper concerns the Chernobyl reactor accident, with emphasis on the design of the RBMK reactor and nuclear safety. A description is given of the Chernobyl nuclear power plant, including details of the RMBK reactor and safety systems. Comments on the design of the RBMK by UK experts prior to the accident are summarized, along with post-accident design changes to improve RBMK safety. Events of the Chernobyl accident are described, as well as design deficiencies highlighted by the accident. Differences between the USSR and UK approaches to nuclear safety are commented on. Finally source terms, release periods and environmental consequences are briefly discussed.

  8. ROSA-III base test series for a large break loss-of-coolant accident in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Abe, N.; Anoda, Y.; Koizumi, Y.; Shiba, M.

    1982-05-01

    The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. It is confirmed from the experimental results obtained so far that the ROSA-III test facility can simulate major aspects of a BWR LOCA, such as boiling transition by lowering of the mixture level in the core, rewetting by the lower plenum flashing, and final quenching by the ECCS. The overall agreement between the calculated results by the RELAP5/ MOD0 code and the experimental results is good; however, the calculated lower plenum flashing rewetted the whole core and the calculated cladding temperature considerably underpredicts the measured value at the upper part of the core.

  9. Analysis on the severe accidents in KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Jae; Cheong, Y. H.; Choi, Y. S.; Cheon, E. J. [PlaGen, Seoul (Korea, Republic of)

    2003-11-15

    The establishment of regulatory and approval systems for KSTAR (Korea Superconducting Tokamak Advanced Research) has been demanded as the facility is targeted to be completed in the year of 2005. Such establishment can be achieved by performing adequate and in-depth analyses on safety issues covering radiological and chemical hazard materials, radiation protection, high vacuum, very low temperature, etc. The loss of coolant accidents and the loss of vacuum accident in fusion facilities have been introduced with summary of simulation results that were previously reported for ITER and JET. Computer codes that are actively used for accident simulation research are examined and their main features are briefly described. It can be stated that the safety analysis is indispensable to secure the safety of workers and individual members of the public as well as to establish the regulatory and approval systems for KSTAR tokamak.

  10. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  11. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  12. Occupational accidents aboard merchant ships

    DEFF Research Database (Denmark)

    Hansen, H.L.; Nielsen, D.; Frydenberg, Morten

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may...... be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were...... rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious...

  13. KSTAR Severe Accident Analysis using MELCOR : Ex-vessel Coolant Pipe Break with Failure of Fusion Power Termination System

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    To investigate the consequence of severe accidents in fusion reactor, a number of thermal hydraulics simulation codes were used (ECART, INTRA, ATHENA/RELAP and so on). MELCOR is chosen as the thermal hydraulics code to simulate the consequence of radioactive material release from accident in preliminary safety report. Capability of the simulation code for fusion reactor severe accident analysis is ability to simulate the hydraulic system in ITER and the transport phenomenon of radionuclides. MELCOR is a fully integrated code that models the accidents in Light Water Reactor (LWR). There are three kinds of radioactive materials in fusion reactor; tritium (or Tiritiated water: HTO), activation products (AP) of divertor or first-wall and activated corrosion products(ACP). In generic Site Safety Report (GSSR), the release guidelines for tritium and activation products are listed for normal operation, incidents, and accidents. And this guidelines presented in Table 1. Not only ITER, the KSTAR (Korea Superconducting Tokamak Advanced Research) is also developing fusion research reactor. The scale of facility is smaller than ITER but this small scale of facility offers the experimental flexibility to develop fusion technology. The major differences between KSTAR and ITER systems are presented in Table 2. Fusion source difference between KSTAR and ITER is D-D fusion reaction (Deuterium-Deuterium fusion reaction) and D-T fusion reaction (Deuterium-Tritium fusion reaction). This D-D fusion makes one tritium by 50 percent chance. The radioactivity of tritium is small to consider compared to radioactive materials in nuclear fission reactor. This reaction is presented in equation (1) In the present work, conservatively estimated tritium inventory amount in KSTAR is used with one of the most severe accident in ITER; Ex-vessel pipe break with Fusion Power Termination System (FPTS). The MELCOR KSTAR input is made by scaling down the ITER input deck. So, the detail system is not same

  14. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  15. CFD Analyses of Air-Ingress Accident for VHTRs

    Science.gov (United States)

    Ham, Tae Kyu

    The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air

  16. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  17. [Drowning accidents in childhood].

    Science.gov (United States)

    Krandick, G; Mantel, K

    1990-09-30

    This is a report on five boys aged between 1 and 5 years who, after prolonged submersion in cold water, were treated at our department. On being taken out of the water, all the patients were clinically dead. After 1- to 3-hour successful cardiopulmonary resuscitation, with a rectal temperature of about 27 degrees C, they were rewarmed at a rate of 1 degree/hour. Two patients died within a few hours after the accident. One patient survived with an apallic syndrome, 2 children survived with no sequelae. In the event of a water-related accident associated with hypothermia, we consider suitable resuscitation to have preference over rewarming measures. The most important treatment guidelines and prognostic factors are discussed.

  18. RENEB accident simulation exercise

    OpenAIRE

    Brzozowska, Beata; Ainsbury, Elizabeth; Baert, Annelot; Beaton-Green, Lindsay; Barrios, Leonardo; Barquinero, Joan Francesc; Bassinet, Celine; Beinke, Christina; Benedek, Anett; Beukes, Philip; Bortolin, Emanuela; Buraczewska, Iwona; Burbidge, Christopher; De Amicis, Andrea; De Angelis, Cinzia

    2017-01-01

    Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Materials and methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results ob...

  19. PREVENTION OF OCCUPATIONAL ACCIDENTS

    Directory of Open Access Journals (Sweden)

    Jovica Jovanovic

    2004-01-01

    Full Text Available Medical services, physicians and nurses play an essential role in the plant safety program through primary treatment of injured workers and by helping to identify workplace hazards. The physician and nurse should participate in the worksite investigations to identify specific hazard or stresses potentially causing the occupational accidents and injuries and in planning the subsequent hazard control program. Physicians and nurses must work closely and cooperatively with supervisors to ensure the prompt reporting and treatment of all work related health and safety problems. Occupational accidents, work related injuries and fatalities result from multiple causes, affect different segments of the working population, and occur in a myriad of occupations and industrial settings. Multiple factors and risks contribute to traumatic injuries, such as hazardous exposures, workplace and process design, work organization and environment, economics, and other social factors. With such a diversity of theories, it will not be difficult to understand that there does not exist one single theory that is considered right or correct and is universally accepted. These theories are nonetheless necessary, but not sufficient, for developing a frame of reference for understanding accident occurrences. Prevention strategies are also varied, and multiple strategies may be applicable to many settings, including engineering controls, protective equipment and technologies, management commitment to and investment in safety, regulatory controls, and education and training. Research needs are thus broad, and the development and application of interventions involve many disciplines and organizations.

  20. Experimental-based Modelling and Simulation of Water Hydraulic Mechatronics Test Facilities for Motion Control and Operation in Environmental Sensitive Applications` Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2003-01-01

    proportional valves and servo actuators for motion control and power transmission undertaken in co-operation by Technical University, DTU and Cracow University of Technology, CUT. The results of this research co-operation include engineering design and test of simulation models compared with two mechatronic......The paper presents experimental-based modelling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The contributions includes results from on-going research projects on fluid power and mechatronics based on tap water hydraulic...... test rig facilities powered by environmental friendly water hydraulic servo actuator system. Test rigs with measurement and data acquisition system were designed and build up with tap water hydraulic components of the Danfoss Nessie® product family. This paper presents selected experimental...

  1. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I

    2002-01-11

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory is a $2.25B stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system. NIF is being built by the National Nuclear Security Agency and when completed will be the world's largest laser system, providing a national center to study inertial confinement fusion and the physics of extreme energy densities and pressures. In NIF up to 192 energetic laser beams will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for high power applications. We discuss here the technology challenges and solutions that have made NIF possible along with enhancements to NIF's design that could lead to exawatt power levels.

  2. ANS severe accident program overview & planning document

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.

    1995-09-01

    The Advanced Neutron Source (ANS) severe accident document was developed to provide a concise and coherent mechanism for presenting the ANS SAP goals, a strategy satisfying these goals, a succinct summary of the work done to date, and what needs to be done in the future to ensure timely licensability. Guidance was received from various bodies [viz., panel members of the ANS severe accident workshop and safety review committee, Department of Energy (DOE) orders, Nuclear Regulatory Commission (NRC) requirements for ALWRs and advanced reactors, ACRS comments, world-wide trends] were utilized to set up the ANS-relevant SAS goals and strategy. An in-containment worker protection goal was also set up to account for the routine experimenters and other workers within containment. The strategy for achieving the goals is centered upon closing the severe accident issues that have the potential for becoming certification issues when assessed against realistic bounding events. Realistic bounding events are defined as events with an occurrency frequency greater than 10{sup {minus}6}/y. Currently, based upon the level-1 probabilistic risk assessment studies, the realistic bounding events for application for issue closure are flow blockage of fuel element coolant channels, and rapid depressurization-related accidents.

  3. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  4. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, E. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)], E-mail: epozzi@cnea.gov.ar; Nigg, D.W. [Idaho National Laboratory, Idaho Falls (United States); Miller, M.; Thorp, S.I. [Instrumentation and Control Department, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Zarza, L.; Estryk, G. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Monti Hughes, A.; Molinari, A.J.; Garabalino, M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Quintana, J. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Trivillin, V.A.; Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)

    2009-07-15

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10{sup 9} n cm{sup -2} s{sup -1} and the fast neutron flux was 2.5x10{sup 6} n cm{sup -2} s{sup -1}, indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in {sup 6}Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  5. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    Science.gov (United States)

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  6. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    Science.gov (United States)

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  7. Experimental infection of one-day-old chicks with Salmonella Serotypes Previously isolated from poultry facilities, wild birds, and swine

    Directory of Open Access Journals (Sweden)

    E de Sousa

    2013-12-01

    Full Text Available In order to maintain the high production and export rates achieved by the Brazilian poultry industry, it is necessary to prevent and control certain disease agents, such as Salmonella spp. Using bacterial cultures, the aim of the present study was to investigate the prevalence of Salmonella spp. in specimens collected from broiler facilities. Local wild birds were also sampled, as well as the feces of swine housed on the poultry farm. After sample collection, the isolated serotypes were subsequently inoculated into broiler chicks to determine their effects. Positive samples were collected from the following locations in the poultry facilities: poultry litter (S. serotype 4,5,12:R:-; S. Heidelberg; S. Infantis, broiler feces (S. Heidelberg; S. serotype 6,7:R:-; S. serotype 4,5,12:R:-; S. Tennessee, water (S. Glostrup; S. serotype 6,8:d:-;, and lesser mealworms (Alphitobius diaperinus found in the litter (S. Tennessee. Among the 36 wild birds captured, S. Heidelberg was isolated from one bird's organs and intestinal contents (Colaptes campestris, and S. Enteritidis was isolated from another bird's intestinal contents (Zenaida auriculata. Salmonella Panama and Salmonella Typhimurium were isolated from swine feces. One-day-old chicks (150 were divided into 10 groups of 15 animals each. Each group was orally inoculated with a previously isolated serotype of Salmonella. Soft stools were observed on the cage floor and around the birds' cloaca between 3 and 12 days post-infection (dpi. The different serotypes of Salmonella used to inoculate the chicks were re-isolated from the spleen, liver, and cecal content samples of the infected birds on 15 and 21 dpi.

  8. Analysis of a nuclear accident: fission and activation product releases from the Fukushima Daiichi nuclear facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear fuel.

    Science.gov (United States)

    Schwantes, Jon M; Orton, Christopher R; Clark, Richard A

    2012-08-21

    Researchers evaluated radionuclide measurements of environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Co. Website following the 2011 tsunami-initiated catastrophe. This effort identified Units 1 and 3 as the major source of radioactive contamination to the surface soil near the facility. Radionuclide trends identified in the soils suggested that: (1) chemical volatility driven by temperature and reduction potential within the vented reactors' primary containment vessels dictated the extent of release of radiation; (2) all coolant had likely evaporated by the time of venting; and (3) physical migration through the fuel matrix and across the cladding wall were minimally effective at containing volatile species, suggesting damage to fuel bundles was extensive. Plutonium isotopic ratios and their distance from the source indicated that the damaged reactors were the major contributor of plutonium to surface soil at the source, decreasing rapidly with distance from the facility. Two independent evaluations estimated the fraction of the total plutonium inventory released to the environment relative to cesium from venting Units 1 and 3 to be ∼0.002-0.004%. This study suggests significant volatile radionuclides within the spent fuel at the time of venting, but not as yet observed and reported within environmental samples, as potential analytes of concern for future environmental surveys around the site. The majority of the reactor inventories of isotopes of less volatile elements like Pu, Nb, and Sr were likely contained within the damaged reactors during venting.

  9. Truck Drivers' Experiences and Perspectives Regarding Factors Influencing Traffic Accidents: A Qualitative Study.

    Science.gov (United States)

    Karimi Moonaghi, Hossein; Ranjbar, Hossein; Heydari, Abbas; Scurlock-Evans, Laura

    2015-08-01

    Traffic accidents are a major public health problem, leading to death and disability. Although pertinent studies have been conducted, little data are available in Iran. This study explored the experiences of truck drivers and their perspectives regarding factors contributing to traffic accidents. Eighteen truck drivers, purposively sampled, participated in semi-structured interviews. Data were analyzed using qualitative content analysis. A main theme, lack of ability to control stress, emerged as a factor influencing the incidence of traffic accidents. This main theme was found to have three subthemes: poor organization of the job, lack of workplace facilities and proper equipment, and unsupportive environment. Although several factors were found to contribute to traffic accidents, their effects were not independent, and all were considered significant. Identifying factors that contribute to traffic accidents requires a systematic and holistic approach. Findings could be used by the transportation industry and community health centers to prevent traffic accidents. © 2015 The Author(s).

  10. Analysis of traffic accident size for Korean highway using structural equation models.

    Science.gov (United States)

    Lee, Ju-Yeon; Chung, Jin-Hyuk; Son, Bongsoo

    2008-11-01

    Accident size can be expressed as the number of involved vehicles, the number of damaged vehicles, the number of deaths and/or the number of injured. Accident size is the one of the important indices to measure the level of safety of transportation facilities. Factors such as road geometric condition, driver characteristic and vehicle type may be related to traffic accident size. However, all these factors interact in complicate ways so that the interrelationships among the variables are not easily identified. A structural equation model is adopted to capture the complex relationships among variables because the model can handle complex relationships among endogenous and exogenous variables simultaneously and furthermore it can include latent variables in the model. In this study, we use 2649 accident data occurred on highways in Korea and estimate relationship among exogenous factors and traffic accident size. The model suggests that road factors, driver factors and environment factors are strongly related to the accident size.

  11. JAERI's activities in JCO accident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Japan Atomic Energy Research Institute (JAERI) was actively involved in a variety of technical supports and cooperative activities, such as advice on terminating the criticality condition, contamination checks of the residents and consultation services for the residents, as emergency response actions to the criticality accident at the uranium processing facility operated by the JCO Co. Ltd., which occurred on September 30, 1999. These activities were carried out in collaborative ways by the JAERI staff from the Tokai Research Establishment, Naka Fusion Research Establishment, Oarai Research Establishment, and Headquarter Office in Tokyo. As well, the JAERI was engaged in the post-accident activities such as identification of accident causes, analyses of the criticality accident, and dose assessment of exposed residents, to support the Headquarter for Accident Countermeasures of the Science and Technology Agency (STA), the Accident Investigation Committee and the Health Control Committee of the Nuclear Safety Commission of Japan (NSC). This report compiles the activities, that the JAERI has conducted to date, including the discussions on measures for terminating the criticality condition, evaluation of the fission number, radiation monitoring in the environment, dose assessment, analyses of criticality dynamics. (author)

  12. Experimental capabilities of 0.4 PW, 1 shot/min Scarlet laser facility for high energy density science.

    Science.gov (United States)

    Poole, P L; Willis, C; Daskalova, R L; George, K M; Feister, S; Jiang, S; Snyder, J; Marketon, J; Schumacher, D W; Akli, K U; Van Woerkom, L; Freeman, R R; Chowdhury, E A

    2016-06-10

    We report on the recently completed 400 TW upgrade to the Scarlet laser at The Ohio State University. Scarlet is a Ti:sapphire-based ultrashort pulse system that delivers >10  J in 30 fs pulses to a 2 μm full width at half-maximum focal spot, resulting in intensities exceeding 5×1021  W/cm2. The laser fires at a repetition rate of once per minute and is equipped with a suite of on-demand and on-shot diagnostics detailed here, allowing for rapid collection of experimental statistics. As part of the upgrade, the entire laser system has been redesigned to facilitate consistent, characterized high intensity data collection at high repetition rates. The design and functionality of the laser and target chambers are described along with initial data from commissioning experimental shots.

  13. Radiation protection design of the APPA experimental hall at the FAIR facility; Strahlenschutzplanung fuer die APPA-Experimentierhalle bei FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, R.; Braeuning-Demian, A.; Conrad, I.; Evdokimov, A.; Lang, R.; Radon, T.; Zieser, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Belousov, A. [NASA, Pasadena, CA (United States). Jet Propulsion Lab.; Fehrenbacher, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); FAIR - Facility for Antiproton and Ion Research in Europe GmbH, Darmstadt (Germany)

    2016-07-01

    The APPA-research program (Atomic, Plasma Physics and Applications) comprises experiments for fundamental research in atomic and plasma physics, biophysics and materials research. A dedicated building for the experimental areas including a technical supply annex is planned. In the hall are located four different experimental setups for the four APPA collaborations. Two beamlines for protons and heavy ions, both from the SIS18 and SIS100 synchrotrons are designed. The demands for beam energies, intensities and time structure differ significantly among the experiments. Consequently, different types of beams will be used, for example uranium beams with energies of 2 GeV/nucleon and an intensity of 3 x 10{sup 11} ions/pulse (pulse length of the order of hundred nanoseconds, repetition period 180 seconds). Another experiment requires a proton beam with energies of around 10 GeV and a primary intensity of 5 x 10{sup 10} protons/second. The highest interaction rate is expected by the plasma physics experiments with about 50 % of the primary intensity. The remaining beam will be stopped in a so called beam dump producing further radiation, especially neutron radiation which must be shielded. For the design of the shielding it is necessary to know the spatial distribution of the dose rate for uranium beams and for proton beams with different energies and intensities in the experimental hall. The aim for the shielding layout is to achieve a dose rate below 0,5 μSv/hour at the premises.

  14. Design, operation, and monitoring capability of an experimental artificial-recharge facility at East Meadow, Long Island, New York

    Science.gov (United States)

    Schneider, B.J.; Oaksford, E.T.

    1986-01-01

    Artificial recharge with tertiary-treated sewage is being tested at East Meadow to evaluate the physical and chemical effects on the groundwater system. The recharge facility contains 11 recharge basins and 5 injection wells and is designed to accept 4 million gallons of reclaimed water per day. Of the 11 basins, 7 are recently constructed and will accept 0.5 million gallons per day each. An observation manhole (12-foot inside diameter and extending 16 feet below the basin floor) was installed in each of two basins to enable monitoring and sampling of percolating reclaimed water in the unsaturated zone with instruments such as tensiometers, gravity lysimeters, thermocouples, and soil-gas samplers. Five shallow (100-feet deep) injection wells will each return 0.5 million gallons per day to the groundwater reservoir. Three types of injection-well design are being tested; the differences are in the type of gravel pack around the well screen. When clogging at the well screen occurs, redevelopment should restore the injection capability. Flow to the basins and wells is regulated by automatic flow controllers in which a desired flow rate is maintained by electronic sensors. Basins can also operate in a constant-head mode in which a specified head is maintained in the basin automatically. An observation-well network consisting of 2-inch- and 6-inch-diameter wells was installed within a 1-square-mile area at the recharge facility to monitor aquifer response and recharge. During 48 days of operation within a 17-week period (October 1982 through January 1983), 88.5 million gallons of reclaimed water was applied to the shallow water table aquifer through the recharge basins. A 4.29-foot-high groundwater mound developed during a 14-day test; some water level increase associated with the mound was detected 1,000 ft from the basins. Preliminary water quality data from wells affected by reclaimed water show evidence that mechanisms of mixing, dilution, and dispersion are

  15. The study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Jeun, Gyoo Dong; Park, Seh In; Lim, Jae Hyuck; Park, Seong Yong [Hanyang Univ., Seoul (Korea, Republic of); Bang, Kwang Hyun; Kim, Ki Yong [Korea Maritime Univ., Busan (Korea, Republic of)

    1999-03-15

    After TMI-2 accident, it has been paid much attention to severe accidents beyond the design basis accidents and the research on the progress of severe accidents and mitigation and the closure of severe accidents has been actively performed. In particular, a great deal of uncertainties yet exist in the phase of late core melt progression and thus the research on this phase of severe accident progress has a key role in obtaining confidence in severe accident mitigation and nuclear reactor safety. In the present study, physics of late core melt progression, experimental data and the major phenomenological models of computer codes are reviewed and a direction of reducing the uncertainties in the late core melt progression is proposed.

  16. The study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Jeun, Gyoo Dong; Park, Seh In; Lim, Jae Hyuck; Park, Seong Yong [Hanyang Univ., Seoul (Korea, Republic of); Bang, Kwang Hyun; Kim, Ki Yong [Korea Maritime Univ., Busan (Korea, Republic of)

    1999-03-15

    After TMI-2 accident, it has been paid much attention to severe accidents beyond the design basis accidents and the research on the progress of severe accidents and mitigation and the closure of severe accidents has been actively performed. In particular, a great deal of uncertainties yet exist in the phase of late core melt progression and thus the research on this phase of severe accident progress has a key role in obtaining confidence in severe accident mitigation and nuclear reactor safety. In the present study, physics of late core melt progression, experimental data and the major phenomenological models of computer codes are reviewed and a direction of reducing the uncertainties in the late core melt progression is proposed.

  17. A study on the late core melt progression in pressurized water reactor severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Jeun Gyoo Dong; Bang, Kwang Hyun; Park, Seh In; Lim, Jae Hyuck; Park, Seong Yong [Hanyang Univ., Seoul (Korea, Republic of); Back, Hyung Hmm [Korea Maritime Univ., Busan (Korea, Republic of)

    1998-03-15

    After TMI-2 accidents, it has been paid much attention to severe accidents beyond the design basis accidents and the research on the progress of severe accidents and mitigation and the closure of severe accidents has been actively performed. In particular, a great deal of uncertainties yet exist in the phase of late core melt progression and thus the research on this phase of severe accident progress has a key role in obtaining in severe accident mitigation and nuclear reactor safety. In the present study, physics of late core melt progression, experimental data and the major phenomenological models of computer codes are reviewed and a direction of reducing the uncertainties in the late core melt progression os proposed.

  18. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    Science.gov (United States)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  19. Accident Emergency Response And Routing Software (AERARS using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Naveen Ramachandran,

    2011-07-01

    Full Text Available AERARS is a response and routing software for accident emergency requirement. A method has been proposed in this project for using a genetic algorithm to find the shortest route between a source and adestination. It make use of genetic algorithms ability to search the opt solution from the population helping to solve spatially addressed problem. The numbers of accident spots are plotted in ArcGISenvironment and ten major accident spots are identified. The software package is designed with closest facility estimation and shortest route generation along with other basic software facilities in Visual Basic environment. Genetic algorithm provided a great optimality to the solutions. The closest facility tool helps to estimate the nearest hospital, ambulance, police station and fire station. The shortest route estimation tool generates shortest path between a locations to the hospital or ambulance spot. The various risk zonesare assessed and more safety measures can be taken to reduce the frequency of accident. The software efficiency can be further increased by incorporating GPS and satellite technology.

  20. Criticality accident dosimetry with ESR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    D`Errico, F. [DCMN, Universita degli Studi di Pisa (Italy); Fattibene, P.; Onori, S.; Pantaloni, M. [Istituto Superiore di Sanita, Rome (Italy). Lab. di Fisica

    1997-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled criticality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30% in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses. (Author).

  1. Radiation accident grips Goiania

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L.

    1987-11-20

    On 13 September two young scavengers in Goiania, Brazil, removed a stainless steel cylinder from a cancer therapy machine in an abandoned clinic, touching off a radiation accident second only to Chernobyl in its severity. On 18 September they sold the cylinder, the size of a 1-gallon paint can, to a scrap dealer for $25. At the junk yard an employee dismantled the cylinder and pried open the platinum capsule inside to reveal a glowing blue salt-like substance - 1400 curies of cesium-137. Fascinated by the luminescent powder, several people took it home with them. Some children reportedly rubbed in on their bodies like carnival glitter - an eerie image of how wrong things can go when vigilance over radioactive materials lapses. In all, 244 people in Goiania, a city of 1 million in central Brazil, were contaminated. The eventual toll, in terms of cancer or genetic defects, cannot yet be estimated. Parts of the city are cordoned off as radiation teams continue washing down buildings and scooping up radioactive soil. The government is also grappling with the political fallout from the accident.

  2. Severe accident research and management in Nordic Countries - A status report

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. [Swedish Nuclear Power Inspectorate, SKI (Sweden)] (ed.)

    2002-01-01

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  3. Current status of the J-PARC muon facility, MUSE

    Science.gov (United States)

    Miyake, Y.; Shimomura, K.; Kawamura, N.; Strasser, P.; Koda, A.; Fujimori, H.; Ikedo, Y.; Makimura, S.; Kobayashi, Y.; Nakamura, J.; Kojima, K.; Adachi, T.; Kadono, R.; Takeshita, S.; Nishiyama, K.; Higemoto, W.; Ito, T.; Nagamine, K.; Ohata, H.; Makida, Y.; Yoshida, M.; Okamura, T.; Okada, R.; Ogitsu, T.

    2014-12-01

    The muon science facility (MUSE), along with the neutron, hadron, and neutrino facilities, is one of the experimental areas of the J-PARC project. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Since the autumn of 2008, users operation is effective and making use of the pulsed muon beam particularly at the D-Line. Unfortunately, MUSE suffered severe damages from the earthquake on March 11, 2011, the so-called "Higashi-Nippon Dai-Shinsai". We managed to have a stable operation of the superconducting solenoid magnet with use of the on-line refrigerator on December, 2012, although we had to overcome a lot of difficulties against components not working properly. But we had to stop again the whole operations on May 2013, because of the radioactive materials leakage accident at the Hadron Hall Experimental Facility. Finally we restarted the users' runs on February 2014.

  4. Chemical Accident Prevention Publications

    Science.gov (United States)

    These include chemical safety alerts, emergency preparedness and prevention advisories, and topical backgrounders. Excess flow valves, protecting workers in ethylene oxide sterilization facilities, reactivity hazards, and delayed coker units are covered.

  5. Experimental Evaluation for the Microvibration Performance of a Segmented PC Method Based High Technology Industrial Facility Using 1/2 Scale Test Models

    Directory of Open Access Journals (Sweden)

    Sijun Kim

    2017-01-01

    Full Text Available The precast concrete (PC method used in the construction process of high technology industrial facilities is limited when applied to those with greater span lengths, due to the transport length restriction (maximum length of 15~16 m in Korea set by traffic laws. In order to resolve this, this study introduces a structural system with a segmented PC system, and a 1/2 scale model with a width of 9000 mm (hereafter Segmented Model is manufactured to evaluate vibration performance. Since a real vibrational environment cannot be reproduced for vibration testing using a scale model, a comparative analysis of their relative performances is conducted in this study. For this purpose, a 1/2 scale model with a width of 7200 mm (hereafter Nonsegmented Model of a high technology industrial facility is additionally prepared using the conventional PC method. By applying the same experiment method for both scale models and comparing the results, the relative vibration performance of the Segmented Model is observed. Through impact testing, the natural frequencies of the two scale models are compared. Also, in order to analyze the estimated response induced by the equipment, the vibration responses due to the exciter are compared. The experimental results show that the Segmented Model exhibits similar or superior performances when compared to the Nonsegmented Model.

  6. Introduction of a terrestrial free-space optical communications network facility: IN-orbit and Networked Optical ground stations experimental Verification Advanced testbed (INNOVA)

    Science.gov (United States)

    Toyoshima, Morio; Munemasa, Yasushi; Takenaka, Hideki; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo; Kubooka, Toshihiro; Suzuki, Kenji; Yamamoto, Shinichi; Taira, Shinichi; Tsuji, Hiroyuki; Nakazawa, Isao; Akioka, Maki

    2014-03-01

    A terrestrial free-space optical communications network facility, named IN-orbit and Networked Optical ground stations experimental Verification Advanced testbed (INNOVA) is introduced. Many demonstrations have been conducted to verify the usability of sophisticated optical communications equipment in orbit. However, the influence of terrestrial weather conditions remains as an issue to be solved. One potential solution is site diversity, where several ground stations are used. In such systems, implementing direct high-speed optical communications links for transmission of data from satellites to terrestrial sites requires that links can be established even in the presence of clouds and rain. NICT is developing a terrestrial free-space optical communications network called INNOVA for future airborne and satellitebased optical communications projects. Several ground stations and environmental monitoring stations around Japan are being used to explore the site diversity concept. This paper describes the terrestrial free-space optical communications network facility, the monitoring stations around Japan for free-space laser communications, and potential research at NICT.

  7. Experimental studies on heat transfer characteristics and natural circulation performance of PRHRS of the high temperature and high pressure thermal-hydraulic test facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, H. S.; Choi, K. Y.; Joe, S.; Park, C. K.; Lee, S. J.; Song, C. W.; Jeong, M. K. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Several experiments are performed to investigate the heat transfer characteristics and natural circulation performance of passive residual removal system (PRHRS) of the high temperature and high pressure thermal-hydraulic test facility. Especially the natural circulation performance of PRHRS, the heat transfer characteristics of PRHRS heat exchangers and emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are investigated in detail. The coolant flows steadily in the natural circulation loop which is composed of the steam generator (SG) primary side, the secondary system, and the PRHRS. The heat transfers through the PRHRS heat exchanger and ECT are sufficient enough to enable the natural circulation of the coolant. Also the experimental results show that the core decay heat are sufficiently removed with the operation of the PRHRS.

  8. [With the introduction of Infection Control Committees in mid-sized private hospitals, cutting-edge accident prevention methods and solutions will be utilized to reduce the impact of needlestick accidents].

    Science.gov (United States)

    Hatano, Yoshiji

    2012-10-01

    Exposure to medical equipment, such as needles and other sharp objects, can accidentally cause injury or transmit an infectious blood-borne disease. Because the risk of infection due to needlestick injury accidents is always a possibility it is important to inform medical staff of the best ways to reduce the possible risks and the appropriate measures to take when an accident occurs, in order to reduce the frequency or seriousness of an accident; however, it is extremely difficult to completely prevent accidents. Therefore, when needlestick accidents do occur, steps need to be taken to ease the psychological burden and reduce the severity of accidents. Contingency measures for needlestick and related injuries will be introduced in private and mid-sized hospital facilities. This will be accomplished by taking measure against exposure and emergent accidents. Introducing an Infection Committee will change administrative procedures.

  9. Experimental demonstration of longitudinal beam phase space linearizer in a free-electron laser facility by corrugated structures

    CERN Document Server

    Deng, Haixiao; Feng, Chao; Zhang, Tong; Wang, Xingtao; Lan, Taihe; Feng, Lie; Zhang, Wenyan; Liu, Xiaoqing; Yao, Haifeng; Shen, Lei; Li, Bin; Zhang, Junqiang; Li, Xuan; Fang, Wencheng; Wang, Dan; Couprie, Marie-emmanuelle; Lin, Guoqiang; Liu, Bo; Gu, Qiang; Wang, Dong; Zhao, Zhentang

    2014-01-01

    Removal of residual linear energy chirp and intrinsic nonlinear energy curvature in the relativistic electron beam from radiofrequency linear accelerator is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it was theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons itself in the corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ~10,000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by about 50% was observed, in good agreement with the theoretical expectations.

  10. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  11. Fatal motorcycle accidents and alcohol

    DEFF Research Database (Denmark)

    Larsen, C F; Hardt-Madsen, M

    1987-01-01

    A series of fatal motorcycle accidents from a 7-year period (1977-1983) has been analyzed. Of the fatalities 30 were operators of the motorcycle, 11 pillion passengers and 8 counterparts. Of 41 operators 37% were sober at the time of accident, 66% had measurable blood alcohol concentration (BAC...

  12. Learning from incidents and accidents

    NARCIS (Netherlands)

    Drupsteen, L.; Kampen, J. van

    2014-01-01

    There are many different definitions for what constitutes an incident or an accident, however the focus is always on unintended and often unforeseen events that cause unintended consequences. This article is focused on the process of learning from incidents and accidents. The focus is on making sure

  13. [Practical management of CPB accident].

    Science.gov (United States)

    Depoix, J-P; Fenet, L; Provenchere, S

    2012-05-01

    Accident of CPB is a reality. It is important to be prepared for discussion with the family, with the hospital administration, eventually with the justice. But we have also to support perfusionnist and anesthetic team in charge of the patient during accident.

  14. Learning from incidents and accidents

    NARCIS (Netherlands)

    Drupsteen, L.; Kampen, J. van

    2014-01-01

    There are many different definitions for what constitutes an incident or an accident, however the focus is always on unintended and often unforeseen events that cause unintended consequences. This article is focused on the process of learning from incidents and accidents. The focus is on making sure

  15. Quench front progression in a superheated porous medium: experimental analysis and model development

    Energy Technology Data Exchange (ETDEWEB)

    Bachrata, A.; Fichot, F.; Repetto, G., E-mail: andrea.bachrata@irsn.fr, E-mail: florian.fichot@irsn.fr, E-mail: georges.repetto@irsn.fr [Inst. de Radioprotection et de Surete Nucleaire, Cadarache (France); Quintard, M., E-mail: michel.quintard@imft.fr [Univ. de Toulouse, Toulouse (France); CNRS, IMFT, Toulouse (France); Fleurot, J. [Inst. de Radioprotection et de Surete Nucleaire, Cadarache (France)

    2011-07-01

    In case of severe accident in a nuclear reactor, the fuel rods may be highly damaged and oxidized and finally collapse to form a debris bed. Removal of decay heat from a debris bed is a challenging issue because of the difficulty for water to flow inside. Currently, IRSN has started experimental program PEARL with two experimental facilities PRELUDE and PEARL, to investigate the reflood process at high temperature, for various particle sizes. On the basis of PRELUDE experimental results, the thermal hydraulic features of the quench front have been analysed and the intensity of heat transfers was estimated. From a selection of experimental results, a reflooding model was improved and validated. The model is implemented in the code ICARE-CATHARE developed by IRSN which is used for severe accident reactor analysis. (author)

  16. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities; Hochrisikoanlagen. Notfallschutz bei Kernkraft-, Chemie- und Sondermuellanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Kloepfer, Michael (ed.) [Humboldt-Universitaet, Berlin (Germany)

    2012-07-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  17. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Basic Sciences; Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Young Researchers and Elite Club; Pourgol-Mohammad, Mohammad [Sahand Univ. of Technology, Tabriz (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Yousefpour, Faramarz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-03-15

    This paper deals with simulation, sensitivity and uncertainty analysis of LP-FP-2 experiment of LOFT test facility. The test facility simulates the major components and system response of a pressurized water reactor during a LOCA. MELCOR code is used for predicting the fission product release from the core fuel elements in LOFT LP-FP-2 experiment. Moreover, sensitivity and uncertainty analysis is performed for different CORSOR models simulating release of fission products in severe accident calculations for nuclear power plants. The calculated values for the fission product release are compared under different modeling options to the experimental data available from the experiment. In conclusion, the performance of 8 CORSOR modeling options is assessed for available modeling alternatives in the code structure.

  18. Traffic Accidents on Slippery Roads

    DEFF Research Database (Denmark)

    Fonnesbech, J. K.; Bolet, Lars

    2014-01-01

    Police registrations from 65 accidents on slippery roads in normally Danish winters have been studied. The study showed: • 1 accident per 100 km when using brine spread with nozzles • 2 accidents per 100 km when using pre wetted salt • 3 accidents per 100 km when using kombi spreaders The results...... of accidents in normally Danish winter seasons are remarkable alike the amount of salt used in praxis in the winter 2011/2012. • 2.7 ton NaCl/km when using brine spread with nozzles • 5 ton NaCl/km when using pre wetted salt. • 5.7 ton NaCl/km when using kombi spreaders The explanation is that spreading...

  19. Corporate Cost of Occupational Accidents

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.; Impgaard, M.

    2004-01-01

    method could be used in all of the companies without revisions. The evaluation of accident cost showed that 2/3 of the costs of occupational accidents are visible in the Danish corporate accounting systems reviewed while 1/3 is hidden from management view. The highest cost of occupational accidents......The systematic accident cost analysis (SACA) project was carried out during 2001 by The Aarhus School of Business and PricewaterhouseCoopers Denmark with financial support from The Danish National Working Environment Authority. Its focused on developing and testing a method for evaluating...... occupational costs of companies for use by occupational health and safety professionals. The method was tested in nine Danish companies within three different industry sectors and the costs of 27 selected occupational accidents in these companies were calculated. One of the main conclusions is that the SACA...

  20. High Energy Beam Impact Tests on a LHC Tertiary Collimator at CERN HiRadMat Facility

    CERN Document Server

    Cauchi, M; Assmann, R; Bertarelli, A; Carra, F; Dallocchio, A; Deboy, D; Redaelli, S; Rossi, A; Salvachua, B; Lari, L; Mollicone, P; Sammut, N

    2013-01-01

    The correct functioning of the collimation system is crucial to safelyoperate the LHC. The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN HiRadMat (High Irradiation to Materials) facility, involved 440 GeV beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained together with some first outcomes from visual inspection.

  1. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2014-02-01

    Full Text Available The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC. The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  2. Fukushima nuclear power plant accident was preventable

    Science.gov (United States)

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One

  3. Can performance-based incentives improve motivation of nurses and midwives in primary facilities in northern Ghana? A quasi-experimental study

    Directory of Open Access Journals (Sweden)

    Gifty Apiung Aninanya

    2016-10-01

    Full Text Available Background: Lack of an adequate and well-performing health workforce has emerged as the biggest barrier to scaling up health services provision in sub-Saharan Africa. As the global community commits to the Sustainable Development Goals and universal health coverage, health workforce challenges are critical. In northern Ghana, performance-based incentives (PBIs were introduced to improve health worker motivation and service quality. Objective: The goal of this study was to determine the impact of PBIs on maternal health worker motivation in two districts in northern Ghana. Design: A quasi-experimental study design with pre- and post-intervention measurement was used. PBIs were implemented for 2 years in six health facilities in Kassena-Nankana District with six health facilities in Builsa District serving as comparison sites. Fifty pre- and post-intervention structured interviews and 66 post-intervention in-depth interviews were conducted with health workers. Motivation was assessed using constructs for job satisfaction, pride, intrinsic motivation, timelines/attendance, and organisational commitment. Quantitative data were analysed to determine changes in motivation between intervention and comparison facilities pre- and post-intervention using STATA™ version 13. Qualitative data were analysed thematically using NVivo 10 to explore possible reasons for quantitative findings. Results: PBIs were associated with slightly improved maternal health worker motivation. Mean values for overall motivation between intervention and comparison health workers were 0.6 versus 0.7 at baseline and 0.8 versus 0.7 at end line, respectively. Differences at baseline and end line were 0.1 (p=0.40 and p=0.50 respectively, with an overall 0.01 difference in difference (p=0.90. Qualitative interviews indicated that PBIs encouraged health workers to work harder and be more punctual, increasing reported pride and job satisfaction. Conclusions: The results contribute

  4. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted.

  5. Predicting cycling accident risk in Brussels: a spatial case-control approach.

    Science.gov (United States)

    Vandenbulcke, Grégory; Thomas, Isabelle; Int Panis, Luc

    2014-01-01

    This paper aims at predicting cycling accident risk for an entire network and identifying how road infrastructure influences cycling safety in the Brussels-Capital Region (Belgium). A spatial Bayesian modelling approach is proposed using a binary dependent variable (accident, no accident at location i) constructed from a case-control strategy. Control sites are sampled along the 'bikeable' road network in function of the potential bicycle traffic transiting in each ward. Risk factors are limited to infrastructure, traffic and environmental characteristics. Results suggest that a high risk is statistically associated with the presence of on-road tram tracks, bridges without cycling facility, complex intersections, proximity to shopping centres or garages, and busy van and truck traffic. Cycle facilities built at intersections and parked vehicles located next to separated cycle facilities are also associated with an increased risk, whereas contraflow cycling is associated with a reduced risk. The cycling accident risk is far from being negligible in points where there is actually no reported cycling accident but where they are yet expected to occur. Hence, mapping predicted accident risks provides planners and policy makers with a useful tool for accurately locating places with a high potential risk even before accidents actually happen. This also provides comprehensible information for orienting cyclists to the safest routes in Brussels.

  6. Experimental study on iodine chemistry (EXSI) - Containment experiments with elemental iodine

    Energy Technology Data Exchange (ETDEWEB)

    Kaerkelae, T.; Auvinen, A. (VTT Technical Research Centre of Finland (Finland)); Holm, J.; Ekberg, C. (Chalmers Univ. of Technology (Sweden)); Glaenneskog, H. (Vattenfall Power Consultant (Sweden))

    2009-10-15

    The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. Oxidation of iodine in gas phase has been one of the greatest remaining uncertainties in iodine behaviour during a severe accident. In this study the possible formation of iodine oxide aerosol due to radiolytic oxidation of gaseous iodine is experimentally tested and the reaction products are analysed. The experimental facility applied in this study is based on the sampling system built at VTT for ISTP program project CHIP conducted IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. The results from the experiments show an extensive particle formation when ozone and gaseous iodine react with each other. The formed particles were collected on filters, while gaseous iodine was trapped into bubbles. The particles were iodine oxides and the size of particles was approximately 100 nm. The transport of gaseous iodine through the facility decreased when both gaseous iodine and ozone were fed together into facility. Experimental study on radiolytic oxidation of iodine was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. (author)

  7. Typologie des Accidents Cyclistes

    OpenAIRE

    Amoros, Emmanuelle; BILLOT-GRASSET, Alice; Hours, Martine

    2015-01-01

    L'usage du vélo est en hausse en ville ; cette pratique est encouragée dans le cadre du développement durable et de la lutte contre la sédentarité. Pour accompagner cela, il faut réduire les risques d'accident, et pour ce faire, mieux les connaître. Nous utilisons le Registre des victimes de la circulation routière du Rhône, basé sur les services hospitaliers (dont les urgences) ; il est quasi-exhaustif : env. 1100 blessés à vélo/an versus 120 dans les données officielles. L'ensemble des cycl...

  8. Measurement of basic thermal-hydraulic characteristics under the test facility and reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Eduard A Boltenko; Victor P Sharov [Elektrogorsk Research and Engineering Center, EREC, Bezimyannaja Street, 6, Elektrogorsk, Moscow Region, 142530 (Russian Federation); Dmitriy E Boltenko [State Scientific Center of Russian Federation IPPE, Bondarenko Square, Obhinsk, Kaluga Region, 249020 (Russian Federation)

    2005-07-01

    Full text of publication follows: The nuclear power of Russia is based on the reactors of two types: water-water - WWER and uranium - graphite channel RBMK. The nuclear power development is possible with performance of the basic condition - level of nuclear power plants (NPP) safety should satisfy the rigid requirements. The calculated proof of NPPs safety made by means of thermal-hydraulic codes of improved estimation, verified on experimental data is the characteristic of this level. The data for code verification can be obtained at the integral facilities simulating a circulation circuit of NPP with the basic units and intended for investigation of circuit behaviour in transient and accident conditions. For verification of mathematical models in transient and accident conditions, development of physically reasonable methods for definition of the various characteristics of two-phase flow the experimental data, as the integrated characteristics of a flow, and data on the local characteristics and structure of a flow is necessary. For safety assurance of NPP it is necessary to monitor and determine the basic thermalhydraulic characteristics of reactor facility (RF). It is possible to refer coolant flow-rate, core input and output water temperature, heat-power. The description of the EREC works in the field completion and adaptation of certain methods with reference to measurements in dynamic modes of test facility conditions and development of methods for measurements of basic thermal-hydraulic characteristics of reactor facilities is presented in the paper. (authors)

  9. Interventions by Mothers of 1-6 Year Old Children after Home Accidents

    Directory of Open Access Journals (Sweden)

    Belkis Karatas

    2006-12-01

    Full Text Available PURPOSE: The purpose of the research was to determine the interventions after home accidents by women with a child between 1-6 years old.INSTRUMENT AND METHODS: The research was conducted as a descriptive study in the neighborhoods served by Çukurova Health Clinic affiliated with Mersin province center municipality. Using a simple random sampling method 100 women were taken into the sample by numbering the 1-6 year old child monitoring records. Data were collected on a questionnaire. Percentage distribution and Chi square test were used in the analysis of data obtained in the research.FINDINGS: The children of 66.0% of the women had had at least one home accident and the most frequent of the accidents was falling (66.7% followed by burns (43.9%. The majority of women, following their child's fall (61.4% applied a wound ointment and took the child to a health care facility and following a burn to their child 44.8% of the women used a cold application and took the child to a health care facility. The overwhelming majority of the women learned about first aid for childhood accidents from the people close to them, such as a relative or neighbor. There was no statistically significant difference between the women's sociodemographic characteristics and frequency of home accidents and the kind of first aid used for home accidents (P>0.05. RESULTS: The frequency of accidents in the homes of children between 1-6 years was high, and the majority of the first aid treatments administered by women following an accident was correct. Although the percentage was small some of the women did use inappropriate procedures.Keywords: Accident, injury, home accidents, childhood accidents

  10. Interventions by Mothers of 1-6 Year Old Children after Home Accidents

    Directory of Open Access Journals (Sweden)

    Belkis Karatas

    2006-12-01

    Full Text Available PURPOSE: The purpose of the research was to determine the interventions after home accidents by women with a child between 1-6 years old.INSTRUMENT AND METHODS: The research was conducted as a descriptive study in the neighborhoods served by Çukurova Health Clinic affiliated with Mersin province center municipality. Using a simple random sampling method 100 women were taken into the sample by numbering the 1-6 year old child monitoring records. Data were collected on a questionnaire. Percentage distribution and Chi square test were used in the analysis of data obtained in the research.FINDINGS: The children of 66.0% of the women had had at least one home accident and the most frequent of the accidents was falling (66.7% followed by burns (43.9%. The majority of women, following their child's fall (61.4% applied a wound ointment and took the child to a health care facility and following a burn to their child 44.8% of the women used a cold application and took the child to a health care facility. The overwhelming majority of the women learned about first aid for childhood accidents from the people close to them, such as a relative or neighbor. There was no statistically significant difference between the women's sociodemographic characteristics and frequency of home accidents and the kind of first aid used for home accidents (P>0.05. RESULTS: The frequency of accidents in the homes of children between 1-6 years was high, and the majority of the first aid treatments administered by women following an accident was correct. Although the percentage was small some of the women did use inappropriate procedures.Keywords: Accident, injury, home accidents, childhood accidents 

  11. Validation of Advanced Computer Codes for VVER Technology: LB-LOCA Transient in PSB-VVER Facility

    Directory of Open Access Journals (Sweden)

    A. Del Nevo

    2012-01-01

    Full Text Available The OECD/NEA PSB-VVER project provided unique and useful experimental data for code validation from PSB-VVER test facility. This facility represents the scaled-down layout of the Russian-designed pressurized water reactor, namely, VVER-1000. Five experiments were executed, dealing with loss of coolant scenarios (small, intermediate, and large break loss of coolant accidents, a primary-to-secondary leak, and a parametric study (natural circulation test aimed at characterizing the VVER system at reduced mass inventory conditions. The comparative analysis, presented in the paper, regards the large break loss of coolant accident experiment. Four participants from three different institutions were involved in the benchmark and applied their own models and set up for four different thermal-hydraulic system codes. The benchmark demonstrated the performances of such codes in predicting phenomena relevant for safety on the basis of fixed criteria.

  12. Construction accident narrative classification: An evaluation of text mining techniques.

    Science.gov (United States)

    Goh, Yang Miang; Ubeynarayana, C U

    2017-08-31

    Learning from past accidents is fundamental to accident prevention. Thus, accident and near miss reporting are encouraged by organizations and regulators. However, for organizations managing large safety databases, the time taken to accurately classify accident and near miss narratives will be very significant. This study aims to evaluate the utility of various text mining classification techniques in classifying 1000 publicly available construction accident narratives obtained from the US OSHA website. The study evaluated six machine learning algorithms, including support vector machine (SVM), linear regression (LR), random forest (RF), k-nearest neighbor (KNN), decision tree (DT) and Naive Bayes (NB), and found that SVM produced the best performance in classifying the test set of 251 cases. Further experimentation with tokenization of the processed text and non-linear SVM were also conducted. In addition, a grid search was conducted on the hyperparameters of the SVM models. It was found that the best performing classifiers were linear SVM with unigram tokenization and radial basis function (RBF) SVM with uni-gram tokenization. In view of its relative simplicity, the linear SVM is recommended. Across the 11 labels of accident causes or types, the precision of the linear SVM ranged from 0.5 to 1, recall ranged from 0.36 to 0.9 and F1 score was between 0.45 and 0.92. The reasons for misclassification were discussed and suggestions on ways to improve the performance were provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chernobyl accident and its consequences

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.; Bonell, P.G.; Hicks, D.

    1987-01-01

    The USSR power reactor programme is first described. The reasons for the accident at the Chernobyl-4 RBMK nuclear reactor on 26 April 1986, the sequence of events that took place, and the immediate and long-term consequences are considered. A description of the RBMK-type reactors is given and the design changes resulting from the experience of the accident are explained. The source terms describing the details of the radioactivity release associated with the accident and the environmental consequences are covered in the last two sections of the report. Throughout the text comments referring to the UK Nuclear Installations Inspectorate Safety assessment principles have been inserted. (U.K.).

  14. [Prevention of bicycle accidents].

    Science.gov (United States)

    Zwipp, H; Barthel, P; Bönninger, J; Bürkle, H; Hagemeister, C; Hannawald, L; Huhn, R; Kühn, M; Liers, H; Maier, R; Otte, D; Prokop, G; Seeck, A; Sturm, J; Unger, T

    2015-04-01

    For a very precise analysis of all injured bicyclists in Germany it would be important to have definitions for "severely injured", "seriously injured" and "critically injured". By this, e.g., two-thirds of surgically treated bicyclists who are not registered by the police could become available for a general analysis. Elderly bicyclists (> 60 years) are a minority (10 %) but represent a majority (50 %) of all fatalities. They profit most by wearing a helmet and would be less injured by using special bicycle bags, switching on their hearing aids and following all traffic rules. E-bikes are used more and more (145 % more in 2012 vs. 2011) with 600,000 at the end of 2011 and are increasingly involved in accidents but still have a lack of legislation. So even for pedelecs 45 with 500 W and a possible speed of 45 km/h there is still no legislative demand for the use of a protecting helmet. 96 % of all injured cyclists in Germany had more than 0.5 ‰ alcohol in their blood, 86 % more than 1.1 ‰ and 59 % more than 1.7 ‰. Fatalities are seen in 24.2 % of cases without any collision partner. Therefore the ADFC calls for a limit of 1.1 ‰. Some virtual studies conclude that integrated sensors in bicycle helmets which would interact with sensors in cars could prevent collisions or reduce the severity of injury by stopping the cars automatically. Integrated sensors in cars with opening angles of 180° enable about 93 % of all bicyclists to be detected leading to a high rate of injury avoidance and/or mitigation. Hanging lamps reduce with 35 % significantly bicycle accidents for children, traffic education for children and special trainings for elderly bicyclists are also recommended as prevention tools. As long as helmet use for bicyclists in Germany rates only 9 % on average and legislative orders for using a helmet will not be in force in the near future, coming up campaigns seem to be necessary to be promoted by the Deutscher

  15. Facility-level intervention to improve attendance and adherence among patients on anti-retroviral treatment in Kenya--a quasi-experimental study using time series analysis.

    Science.gov (United States)

    Boruett, Patrick; Kagai, Dorine; Njogo, Susan; Nguhiu, Peter; Awuor, Christine; Gitau, Lillian; Chalker, John; Ross-Degnan, Dennis; Wahlström, Rolf; Tomson, Göran

    2013-07-01

    Achieving high rates of adherence to antiretroviral therapy (ART) in resource-poor settings comprises serious, but different, challenges in both the first months of treatment and during the life-long maintenance phase. We measured the impact of a health system-oriented, facility-based intervention to improve clinic attendance and patient adherence. This was a quasi-experimental, longitudinal, controlled intervention study using interrupted time series analysis. The intervention consisted of (1) using a clinic appointment diary to track patient attendance and monitor monthly performance; (2) changing the mode of asking for self-reported adherence; (3) training staff on adherence concepts, intervention methods, and use of monitoring data; (4) conducting visits to support facility teams with the implementation.We conducted the study in 12 rural district hospitals (6 intervention, 6 control) in Kenya and randomly selected 1894 adult patients over 18 years of age in two cohorts: experienced patients on treatment for at least one year, and newly treated patients initiating ART during the study. Outcome measures were: attending the clinic on or before the date of a scheduled appointment, attending within 3 days of a scheduled appointment, reporting perfect adherence, and experiencing a gap in medication supply of more than 14 days. Among experienced patients, the percentage attending the clinic on or before a scheduled appointment increased in both level (average total increase immediately after intervention) (+5.7%; 95% CI=2.1, 9.3) and trend (increase per month) (+1.0% per month; 95% CI=0.6, 1.5) following the intervention, as did the level and trend of those keeping appointments within three days (+4.2%; 95% CI=1.6, 6.7; and +0.8% per month; 95% CI=0.6, 1.1, respectively). The relative difference between the intervention and control groups based on the monthly difference in visit rates increased significantly in both level (+6.5; 95% CI=1.4, 11.6) and trend (1.0% per

  16. Questions concerning safety and risk after the nuclear accidents in Japan. Deepened accident analysis for the Fukushima Daiichi power plant; Sicherheits- und Risikofragen im Nachgang zu den nuklearen Stoer- und Unfaellen in Japan. Vertiefte Ereignisanalyse zur Anlage Fukushima-Daini

    Energy Technology Data Exchange (ETDEWEB)

    Pistner, Christoph; Englert, Matthias [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Darmstadt (Germany)

    2015-02-25

    The study questions concerning safety and risk in Japanese power plants following the disastrous nuclear accident covers the following issues: the nuclear facility Fukushima Daiichi, site characterization, important technical equipment, important electro-technical equipment, personal; description of the accident progression in the Fukushima nuclear power plant: impact of the earthquake, impact of the tsunami, short-term measures of the operating personnel, pressure and temperature situation in the containments, restoration of the after-heat cooling system in the units 1/2 and 4, fuel element storage pool, summarized parameters during the accident progress; comparative analysis of the accident progression at the Fukushima Daiichi site.

  17. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  18. Three Mile Island Accident Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Three Mile Island Accident Data consists of mostly upper air and wind observations immediately following the nuclear meltdown occurring on March 28, 1979, near...

  19. Analysis of an AP600 intermediate-size loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, B.E.; Lime, J.F. [Los Alamos National Lab., NM (United States)

    1995-09-01

    A postulated double-ended guillotine break of an AP600 direct-vessel-injection line has been analyzed. This event is characterized as an intermediate-break loss-of-coolant accident. Most of the insights regarding the response of the AP600 safety systems to the postulated accident are derived from calculations preformed with the TRAC-PF1/MOD2 code. However, complementary insights derived from a scaled experiment conducted in the ROSA facility, as well as insights based upon calculations by other codes, are also presented. Based upon the calculated and experimental results, the AP600 will not experience a core heat up and will reach a safe shutdown state using only safety-class equipment. Only the early part of the long-term cooling period initiated by In-containment Refueling Water Storage Tank injection was evaluated. Thus, the observation that the core is continuously cooled should be verified for the later phase of the long-term cooling period when sump injection and containment cooling processes are important.

  20. Paragliding accidents in remote areas.

    Science.gov (United States)

    Fasching, G; Schippinger, G; Pretscher, R

    1997-08-01

    Paragliding is an increasingly popular hobby, as people try to find new and more adventurous activities. However, there is an increased and inherent danger with this sport. For this reason, as well as the inexperience of many operators, injuries occur frequently. This retrospective study centers on the helicopter rescue of 70 individuals in paragliding accidents. All histories were examined, and 43 patients answered a questionnaire. Nineteen (42%) pilots were injured when taking off, 20 (44%) during the flight, and six (13%) when landing. Routine and experience did not affect the prevalence of accident. Analysis of the causes of accident revealed pilot errors in all but three cases. In 34 rescue operations a landing of the helicopter near the site of the accident was possible. Half of the patients had to be rescued by a cable winch or a long rope fixed to the helicopter. Seven (10%) of the pilots suffered multiple trauma, 38 (54%) had injuries of the lower extremities, and 32 (84%) of them sustained fractures. Injuries to the spine were diagnosed in 34 cases with a fracture rate of 85%. One patient had an incomplete paraplegia. Injuries to the head occurred in 17 patients. No paraglider pilot died. The average hospitalization was 22 days, and average time of working inability was 14 weeks. Fourteen (34%) patients suffered from a permanent damage to their nerves or joints. Forty-three percent of the paragliders continued their sport despite the accident; two of them had another accident. An improved training program is necessary to lower the incidence of paragliding accidents. Optimal equipment to reduce injuries in case of accidents is mandatory. The helicopter emergency physician must perform a careful examination, provide stabilization of airways and circulation, give analgesics, splint fractured extremities, and transport the victim on a vacuum mattress to the appropriate hospital.

  1. Assessment of two BWR accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.; Petek, M.

    1991-01-01

    Candidate mitigative strategies for management of in-vessel events during the late phase (after core degradation has occurred) of postulated BWR severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for additional assessment. The first is a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertains to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose is to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies have been performed during 1991 under the auspices of the Detailed Assessment of BWR In-Vessel Strategies Program. This paper provides a discussion of the motivation for and purpose of these strategies and the potential for their success. 33 refs., 9 figs.

  2. Recent experimental and analytical results on hydrogen combustion at RRC {open_quotes}Kurchatov Institute{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Dorofeev, S.B.; Efimenko, A.A.; Kochurko, A.S.; Sidorov, V.P. [Kurchatov Institute, Moscow (Russian Federation)

    1996-03-01

    A review of hydrogen combustion research at Kurchatov Institute is presented. Criterion for spontaneous detonation onset possibility and its application to severe accidents in a nuclear power plant is discussed. Theoretical and experimental results on spontaneous detonation onset conditions are summarized. Three series of large scale turbulent jet initiation experiments have been carried out in KOPER facility (50 m{sup 3} and 150 m{sup 3}). Series of jet initiation experiments in initially confined H{sub 2} - air mixtures have been carried out in KOPER facility (20-46 m{sup 3}). Turbulent deflagration/DDT experiments were carried out in large scale confined volume of 480 m{sup 3} in RUT facility. Results showed, that the characteristic volume size should be used for conservative estimates in accident analysis. Series of experiments on detonation transition from one mixture to another of lower sensitivity has been carried in DRIVER facility. The experiments were aimed on the estimation of the minimum size of a detonation kernel. The received results are in a good agreement with the 7 cell width criterion. Results of combined hydrogen injection/ignition experiments are presented. The experiments are aimed on the investigation of possible consequences of deliberate ignition at dynamic conditions. Analysis of the experimental data showed applicability of 7 cell width criterion to dynamic conditions. The sum of the results on the scaling of spontaneous detonations is discussed in connection with the strategy of hydrogen mitigation at severe accidents.

  3. Severe accident analysis using dynamic accident progression event trees

    Science.gov (United States)

    Hakobyan, Aram P.

    In present, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce and also can be phenomenologically inconsistent. One of the principal deficiencies lies in the static nature of conventional APETs. In the conventional event tree techniques, the sequence of events is pre-determined in a fixed order based on the expert judgments. The main objective of this PhD dissertation was to develop a software tool (ADAPT) for automated APET generation using the concept of dynamic event trees. As implied by the name, in dynamic event trees the order and timing of events are determined by the progression of the accident. The tool determines the branching times from a severe accident analysis code based on user specified criteria for branching. It assigns user specified probabilities to every branch, tracks the total branch probability, and truncates branches based on the given pruning/truncation rules to avoid an unmanageable number of scenarios. The function of a dynamic APET developed includes prediction of the conditions, timing, and location of containment failure or bypass leading to the release of radioactive material, and calculation of probabilities of those failures. Thus, scenarios that can potentially lead to early containment failure or bypass, such as through accident induced failure of steam generator tubes, are of particular interest. Also, the work is focused on treatment of uncertainties in severe accident phenomena such as creep rupture of major RCS components, hydrogen burn, containment failure, timing of power recovery, etc. Although the ADAPT methodology (Analysis of Dynamic Accident Progression Trees) could be applied to any severe accident analysis code, in this dissertation the approach is demonstrated by applying it to the MELCOR code [1]. A case study is presented involving station blackout with the loss of auxiliary feedwater system for a

  4. Air Defense Radar Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of laboratories, experimental test equipment including state-of-theart test bed radar, and test ranges. The facilities are used to design, develop,...

  5. Air Defense Radar Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of laboratories, experimental test equipment including state-of-theart test bed radar, and test ranges. The facilities are used to design, develop,...

  6. Engineering Sciences Experimental Facilities (ESEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer, fluid mechanics,...

  7. NIRS report of the criticality accident in a uranium conversion test plant in Tokai-mura

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    This report is a detailed account of the roles that National Institute of Radiological Sciences (NIRS) played at the criticality accident in the title, which occurred at around 10:35, on Sep. 30, 1999 and resulted in death of two workers after all, and is published to discharge NIRS responsibilities in regards to the accident. The accident caused many residents concern on their health and rumors had both social and economic consequences. The report involves chapters of detailed outline of the accident; demand for acceptance of the victims and communications until the identification of the criticality'' accident; the acceptance and initial treatment; the exposure dose estimation (based on acute symptoms, on physics, on chromosomal analyses and on neutron-activated dental metals, and detailed analyses for dose distribution); decision made for therapeutic strategies; cooperation with the Network Council for Radiation Emergency and with other medical facilities; the urgent import of medicine; treatment and processes (patients, nursing system and radiation injuries); radiation protection in medical facilities; response to nearby residents of the Plant; international response; press release; Uranium Processing Plant Criticality Accident Investigation Committee and the Health Management Committee organized by the Nuclear Safety Commission; handling of information; and radiation emergency medical preparedness at the NIRS (future issues and prospect). The report is hopefully useful in preventing the occurrence of future accidents. (N.I.)

  8. Experimental Investigation of Cross-Beam Energy Transfer Mitigation via Wavelength Detuning in Directly Driven Implosions at the National Ignition Facility

    Science.gov (United States)

    Hohenberger, M.; Marozas, J. A.; McKenty, P. W.; Rosenberg, M. J.; Radha, P. B.; Cao, D.; Knauer, J. P.; Regan, S. P.

    2016-10-01

    Cross-beam energy transfer (CBET) affects directly driven, inertial confinement fusion implosions by reducing the absorbed light and the coupling of driver energy to the target. A mitigation strategy is to detune the laser wavelength of interacting beams (Δλ ≠ 0 ) to reduce the CBET interaction volume. In polar-direct-drive (PDD) experiments at the National Ignition Facility (NIF) the CBET-imposed energy losses occur predominantly in the equatorial region. The NIF does not support a hemispheric wavelength detuning but does have Δλ capabilities between inner and outer quads. Using a north-south asymmetric beam pointing, it is therefore possible to introduce a hemispheric wavelength difference of up to Δλ = 4.6 Å in the UV. We report on experiments to test this CBET mitigation scheme in PDD experiments on the NIF. Using this asymmetric beam pointing, we have completed experiments with both Δλ = 0 and 4.6 Å. The effect of CBET on the driver-target coupling is diagnosed via implosion velocities, implosion shape, and scattered-light spectra and by comparing experimental data to 2-D DRACO simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Ranking of severe accident research priorities

    Energy Technology Data Exchange (ETDEWEB)

    Schwinges, B. [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany); Journeau, C. [CEA Cadarache, DEN STRI LMA, F-13115 St Paul Les Durance (France); Haste, T. [Paul Scherrer Inst, NES LTH, OVGA 312, CH-5232 Villigen (Switzerland); Meyer, L.; Tromm, W. [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Trambauer, K. [GRS mbH, Forschungsgelande, D-85748 Garching (Germany)

    2010-07-01

    The objectives of the SARNET network are to define common research programmes in the field of severe accidents and to develop common computer tools and methodologies for safety assessment in this field. To reach these objectives, one of the work packages, named 'Severe Accident Research Priorities' (SARP), aimed at reviewing and reassessing the priorities of research issues as a basis to harmonize and to re-orient research programmes, to define new ones, and to close - if possible - resolved issues on a common basis. The work was performed in close collaboration with 8 participating institutions, led by GRS, representing technical safety organisations, industry and utilities (IRSN, CEA, EDF, FZK, GRS, KTH, TUS, VTT). This action made use notably of (1) the outcomes of the EURSAFE project in the 5. Framework Programme, i. e. the Phenomena Identification and Ranking Tables (PIRT) on severe accidents, (2) the results of the validation and benchmarking activities on ASTEC, (3) the results of reactor calculations carried out in the other SARNET tasks, and (4) the outcome of the research performed in the three thematic sub-domains of SARNET (corium, containment and source term). The main outcome of EURSAFE was a list of 21 topics which included recommendations for experimental programmes and code developments. This list formed the basis of the work in SARP. Also the methodology applied in EURSAFE to consider both the risk potential and the severe accident issues where large uncertainties still subsist was adopted. The analyses of the progress of research and development activities considered whether (1) any research issue was resolved due to reduction of uncertainties or gain of scientific insights, (2) any new issue had to be added to the list of needed research, (3) any new process or phenomenon had to be included in the general PIRT list taking into account the safety relevance and the lack of knowledge, and (4) any new accident management program has to be

  10. Accident tolerant fuel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Laboratory; Chichester, Heather [Idaho National Laboratory; Johns, Jesse [Texas A& M University; Teague, Melissa [Idaho National Laboratory; Tonks, Michael Idaho National Laboratory; Youngblood, Robert [Idaho National Laboratory

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant

  11. Accident Tolerant Fuel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional “accident-tolerant” (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and

  12. Core characterization of the new CABRI Water Loop Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.; Rodiac, F.; Beretz, D.; Girard, J.M.; Gueton, O. [CEA/Nuclear Energy Division, Cadarache Nuclear Research Center, Reactor Studies Department (France)

    2011-07-01

    The CABRI experimental reactor is located at the Cadarache nuclear research center, southern France. It is operated by the Atomic Energy Commission (CEA) and devoted to IRSN (Institut de Radioprotection et de Surete Nucleaire) safety programmes. It has been successfully operated during the last 30 years, enlightening the knowledge of FBR and LWR fuel behaviour during Reactivity Insertion Accident (RIA) and Loss Of Coolant Accident (LOCA) transients in the frame of IPSN (Institut de Protection et de Surete Nucleaire) and now IRSN programmes devoted to reactor safety. This operation was interrupted in 2003 to allow for a whole facility renewal programme for the need of the CABRI International Programme (CIP) carried out by IRSN under the OECD umbrella. The principle of operation of the facility is based on the control of {sup 3}He, a major gaseous neutron absorber, in the core geometry. The purpose of this paper is to illustrate how several dosimetric devices have been set up to better characterize the core during the upcoming commissioning campaign. It presents the schemes and tools dedicated to core characterization. (authors)

  13. Advanced sodium fast reactor accident source terms :

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding Rates of radionuclide leaching from fuel by liquid sodium Surface enrichment of sodium pools by dissolved and suspended radionuclides Thermal decomposition of sodium iodide in the containment atmosphere Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  14. A Bayesian ensemble of sensitivity measures for severe accident modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Vagnoli, Matteo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge, Fondation EDF – Electricite de France Ecole Centrale, Paris, and Supelec, Paris (France); Pourgol-Mohammad, Mohammad [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • We propose a sensitivity analysis (SA) method based on a Bayesian updating scheme. • The Bayesian updating schemes adjourns an ensemble of sensitivity measures. • Bootstrap replicates of a severe accident code output are fed to the Bayesian scheme. • The MELCOR code simulates the fission products release of LOFT LP-FP-2 experiment. • Results are compared with those of traditional SA methods. - Abstract: In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: (i) the propagation of the uncertainty in the input variables through the severe accident code; (ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of finite mixture models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; (iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley–Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the loss of fluid test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).

  15. ASTEC V2 severe accident integral code: Fission product modelling and validation

    Energy Technology Data Exchange (ETDEWEB)

    Cantrel, L., E-mail: laurent.cantrel@irsn.fr; Cousin, F.; Bosland, L.; Chevalier-Jabet, K.; Marchetto, C.

    2014-06-01

    One main goal of the severe accident integral code ASTEC V2, jointly developed since almost more than 15 years by IRSN and GRS, is to simulate the overall behaviour of fission products (FP) in a damaged nuclear facility. ASTEC applications are source term determinations, level 2 Probabilistic Safety Assessment (PSA2) studies including the determination of uncertainties, accident management studies and physical analyses of FP experiments to improve the understanding of the phenomenology. ASTEC is a modular code and models of a part of the phenomenology are implemented in each module: the release of FPs and structural materials from degraded fuel in the ELSA module; the transport through the reactor coolant system approximated as a sequence of control volumes in the SOPHAEROS module; and the radiochemistry inside the containment nuclear building in the IODE module. Three other modules, CPA, ISODOP and DOSE, allow respectively computing the deposition rate of aerosols inside the containment, the activities of the isotopes as a function of time, and the gaseous dose rate which is needed to model radiochemistry in the gaseous phase. In ELSA, release models are semi-mechanistic and have been validated for a wide range of experimental data, and noticeably for VERCORS experiments. For SOPHAEROS, the models can be divided into two parts: vapour phase phenomena and aerosol phase phenomena. For IODE, iodine and ruthenium chemistry are modelled based on a semi-mechanistic approach, these FPs can form some volatile species and are particularly important in terms of potential radiological consequences. The models in these 3 modules are based on a wide experimental database, resulting for a large part from international programmes, and they are considered at the state of the art of the R and D knowledge. This paper illustrates some FPs modelling capabilities of ASTEC and computed values are compared to some experimental results, which are parts of the validation matrix.

  16. The large-volume high-pressure facility at GSECARS: A 'Swiss-army-knife' approach to synchrotron-based experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanbin; Rivers, Mark; Sutton, Steve; Nishiyama, Norimasa; Uchida, Takeyuki; Sanehira, Takeshi; (UC)

    2009-06-01

    A number of new techniques have been developed at the large-volume press (LVP) high-pressure facility at the GeoSoilEnviroCARS (GSECARS) sector of the advanced photon source (APS). This article describes the 10 MN (1000 T) and 2.5 MN (250 T) hydraulic presses in the insertion device (ID) and bending magnet (BM) beamlines, respectively, with several apparatus and various diffraction and imaging techniques developed since the inception of the facility. Several Kawai-type high-pressure modules, whose second-stage anvils range from 10 mm to 25.4 mm in edge lengths, are used in the hydraulic presses, with pressure (P) and temperature (T) capabilities up to 30 GPa and 3000 K. A DIA-type apparatus can be compressed in both presses for studies requiring large sample volumes. A deformation DIA (D-DIA) has been developed to allow controlled deformation studies on both crystalline and glass materials, using monochromatic diffraction and imaging, up to 20 GPa and 1800 K. A high-pressure tomography apparatus is available for conducting tomography studies at high P and T, with a typical spatial resolution of a few micrometers. Toroidal anvil modules provide large 2{theta} angles for studies of non-crystalline materials, and a new large D-DIA module is under construction for double-stage megabar pressure generation as well as deformation on large samples with the capability of acoustic emission detection. The flexible design of the monochromator at the BM beamline makes it feasible to switch between monochromatic and white-beam mode during an experiment, ideal for monochromatic imaging studies (e.g., high-P tomography) with energy-dispersive diffraction for pressure measurements. A new angle-dispersive diffraction technique has been developed for high P-T crystallography studies, where a solid-state detector is step-scanned, thereby collecting a large number of angle-dispersive spectra over a wide range of photon energies recorded in the multi-channel analyzer. An ultrasonic

  17. Pit Fragment Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility contains two large (20 foot high by 20 foot diameter) double walled steel tubs in which experimental munitions are exploded while covered with sawdust....

  18. Accident knowledge and emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, B.; Groenberg, C.D.

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs.

  19. Nuclear accident dosimetry intercomparison studies.

    Science.gov (United States)

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  20. Facility-level intervention to improve attendance and adherence among patients on anti-retroviral treatment in Kenya—a quasi-experimental study using time series analysis

    Science.gov (United States)

    2013-01-01

    Background Achieving high rates of adherence to antiretroviral therapy (ART) in resource-poor settings comprises serious, but different, challenges in both the first months of treatment and during the life-long maintenance phase. We measured the impact of a health system-oriented, facility-based intervention to improve clinic attendance and patient adherence. Methods This was a quasi-experimental, longitudinal, controlled intervention study using interrupted time series analysis. The intervention consisted of (1) using a clinic appointment diary to track patient attendance and monitor monthly performance; (2) changing the mode of asking for self-reported adherence; (3) training staff on adherence concepts, intervention methods, and use of monitoring data; (4) conducting visits to support facility teams with the implementation. We conducted the study in 12 rural district hospitals (6 intervention, 6 control) in Kenya and randomly selected 1894 adult patients over 18 years of age in two cohorts: experienced patients on treatment for at least one year, and newly treated patients initiating ART during the study. Outcome measures were: attending the clinic on or before the date of a scheduled appointment, attending within 3 days of a scheduled appointment, reporting perfect adherence, and experiencing a gap in medication supply of more than 14 days. Results Among experienced patients, the percentage attending the clinic on or before a scheduled appointment increased in both level (average total increase immediately after intervention) (+5.7%; 95% CI = 2.1, 9.3) and trend (increase per month) (+1.0% per month; 95% CI = 0.6, 1.5) following the intervention, as did the level and trend of those keeping appointments within three days (+4.2%; 95% CI = 1.6, 6.7; and +0.8% per month; 95% CI = 0.6, 1.1, respectively). The relative difference between the intervention and control groups based on the monthly difference in visit rates increased significantly in both

  1. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  2. The child accident repeater: a review.

    Science.gov (United States)

    Jones, J G

    1980-04-01

    The child accident repeater is defined as one who has at least three accidents that come to medical attention within a year. The accident situation has features in common with those of the child who has a single accident through simple "bad luck", but other factors predispose him to repeated injury. In the child who has a susceptible personality, a tendency for accident repetition may be due to a breakdown in adjustment to a stressful environment. Prevention of repeat accidents should involve the usual measures considered appropriate for all children as well as an attempt to provide treatment of significant maladjustment and modification of a stressful environment.

  3. Hindsight Bias in Cause Analysis of Accident

    Institute of Scientific and Technical Information of China (English)

    Atsuo Murata; Yasunari Matsushita

    2014-01-01

    It is suggested that hindsight becomes an obstacle to the objective investigation of an accident, and that the proper countermeasures for the prevention of such an accident is impossible if we view the accident with hindsight. Therefore, it is important for organizational managers to prevent hindsight from occurring so that hindsight does not hinder objective and proper measures to be taken and this does not lead to a serious accident. In this study, a basic phenomenon potentially related to accidents, that is, hindsight was taken up, and an attempt was made to explore the phenomenon in order to get basically insights into the prevention of accidents caused by such a cognitive bias.

  4. Safety Analysis Results for Cryostat Ingress Accidents in ITER

    Science.gov (United States)

    Merrill, B. J.; Cadwallader, L. C.; Petti, D. A.

    1997-06-01

    Accidents involving the ingress of air, helium, or water into the cryostat of the International Thermonuclear Experimental Reactor (ITER) tokamak design have been analyzed with a modified version of the MELCOR code for the ITER Non-site Specific Safety Report (NSSR-1). The air ingress accident is the result of a postulated breach of the cryostat boundary into an adjoining room. MELCOR results for this accident demonstrate that the condensed air mass and increased heat loads are not a magnet safety concern, but that the partial vacuum in the adjoining room must be accommodated in the building design. The water ingress accident is the result of a postulated magnet arc that results in melting of a Primary Heat Transport System (PHTS) coolant pipe, discharging PHTS water and PHTS water activated corrosion products and HTO into the cryostat. MELCOR results for this accident demonstrate that the condensed water mass and increased heat loads are not a magnet safety concern, that the cryostat pressure remains below design limits, and that the corrosion product and HTO releases are well within the ITER release limits.

  5. Severe accident simulation at Olkiuoto

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkonen, H.; Saarenpaeae, T. [Teollisuuden Voima Oy (TVO), Olkiluoto (Finland); Cliff Po, L.C. [Micro-Simulation Technology, Montville, NJ (United States)

    1995-09-01

    A personal computer-based simulator was developed for the Olkiluoto nuclear plant in Finland for training in severe accident management. The generic software PCTRAN was expanded to model the plant-specific features of the ABB Atom designed BWR including its containment over-pressure protection and filtered vent systems. Scenarios including core heat-up, hydrogen generation, core melt and vessel penetration were developed in this work. Radiation leakage paths and dose rate distribution are presented graphically for operator use in diagnosis and mitigation of accidents. Operating on an graphically for operator use in diagnosis and mitigation of accidents. Operating on an 486 DX2-66, PCTRAN-TVO achieves a speed about 15 times faster than real-time. A convenient and user-friendly graphic interface allows full interactive control. In this paper a review of the component models and verification runs are presented.

  6. Road characteristics and bicycle accidents.

    Science.gov (United States)

    Nyberg, P; Björnstig, U; Bygren, L O

    1996-12-01

    In Umeå, Sweden, defects in the physical road surface contributed to nearly half of the single bicycle accidents. The total social cost of these injuries to people amount to at least SEK 20 million (SEK 60,000 or about USD 8,500 per accident), which corresponds to the estimated loss of "eight life equivalents a year". Improved winter maintenance seems to have the greatest injury prevention potential and would probably reduce the number of injuries considerably, whereas improved road quality and modification of kerbs would reduce the most severe injuries. A local traffic safety program should try to prevent road accidents instead of handling the consequences of them. In accordance with Parliament decisions on traffic we would like to see increased investment in measures favoring bicycle traffic, where cycling is seen as a solution, not as a problem.

  7. Bathtub immersion accidents involving children.

    Science.gov (United States)

    Pearn, J; Nixon, J

    1977-02-12

    A review of 19 consecutive serious bathtub immersion accidents (11 survivals, 8 fatalities) is presented. In all instances, consciousness was lost in the water. Unlike other childhood accidents which usually show a male predominance, the sexes are equally affected. The modal age is 11 months. Six separate causes of bath drownings and near-drownings have been identified, and in 14 of the 19 accidents, two or more causes were operating concurrently. Median estimated immersion time for survivals was four minutes, and five minutes for fatalities. The median depth of water was eight inches. An 'at risk' profile for home bathtub drownings is presented; this includes the youngest or second youngest child of a large family, a family of grade 4 to 7 sociooccupational status (congalton) and a family in which routine is temporarily broken.

  8. Internal Accident Report on EDH

    CERN Multimedia

    SC Department

    2006-01-01

    The A2 Safety Code requires that, the Internal Accident Report form must be filled in by the person concerned or any witness to ensure that all the relevant services are informed. Please note that an electronic version of this form has been elaborated in collaboration with SC-IE, HR-OPS-OP and IT-AIS. Whenever possible, the electronic form shall be used. The relative icon is available on the EDH Desktop, Other tasks page, under the Safety heading, or directly here: https://edh.cern.ch/Document/Accident/. If you have any questions, please contact the SC Secretariat, tel. 75097 Please notice that the Internal Accident Report is an integral part of the Safety Code A2 and does not replace the HS50.

  9. Fukushima accident study using MELCOR

    Institute of Scientific and Technical Information of China (English)

    Randall O Gauntt

    2013-01-01

    The accidents at the Fukushima Daiichi nuclear power station stunned the world as the sequences played out over severals days and videos of hydrogen explosions were televised as they took place.The accidents all resulted in severe damage to the reactor cores and releases of radioactivity to the environment despite heroic measures had taken by the operating personnel.The following paper provides some background into the development of these accidents and their root causes,chief among them,the prolonged station blackout conditions that isolated the reactors from their ultimate heat sink — the ocean.The interpretations given in this paper are summarized from a recently completed report funded by the United States Department of Energy (USDOE).

  10. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  11. Catastrophe model of the accident process, safety climate, and anxiety.

    Science.gov (United States)

    Guastello, Stephen J; Lynn, Mark

    2014-04-01

    This study aimed (a) to address the evidence for situational specificity in the connection between safety climate to occupational accidents, (b) to resolve similar issues between anxiety and accidents, (c) to expand and develop the concept of safety climate to include a wider range of organizational constructs, (d) to assess a cusp catastrophe model for occupational accidents where safety climate and anxiety are treated as bifurcation variables, and environ-mental hazards are asymmetry variables. Bifurcation, or trigger variables can have a positive or negative effect on outcomes, depending on the levels of asymmetry, or background variables. The participants were 1262 production employees of two steel manufacturing facilities who completed a survey that measured safety management, anxiety, subjective danger, dysregulation, stressors and hazards. Nonlinear regression analyses showed, for this industry, that the accident process was explained by a cusp catastrophe model in which safety management and anxiety were bifurcation variables, and hazards, age and experience were asymmetry variables. The accuracy of the cusp model (R2 = .72) exceeded that of the next best log-linear model (R2 = .08) composed from the same survey variables. The results are thought to generalize to any industry where serious injuries could occur, although situationally specific effects should be anticipated as well.

  12. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  13. SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005.

    Science.gov (United States)

    Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F

    2009-01-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.

  14. Nuclear energy. Danger only in case of accidents?

    Energy Technology Data Exchange (ETDEWEB)

    Scherb, Hagen; Voigt, Kristina; Kusmierz, Ralf [Helmholtz Zentrum Muenchen, Neuherberg (Germany). Inst. of Computational Biology

    2014-07-01

    The environmental impacts of nuclear energy are highly underestimated. Nuclear weapons, atomic bomb tests, and nuclear accidents are considered a danger for the environment and a human cancer risk. However, childhood leukemia is consistently elevated near nuclear power plants and the Chernobyl accident entailed elevated human birth sex ratios across Europe. We studied the annual sex ratio near nuclear facilities in Germany, France, and Switzerland at the municipality level. We will demonstrate that low doses of ionizing radiation cause effects in human beings. This is shown by strongly consistent spatial-temporal shifts in the human sex ratio trends in the vicinity of nuclear facilities. In the chosen countries complete official data on over 70 million gender specific annual births at the municipality level are available. By Lambert-93 coordinates (France) and GK3 coordinates (Germany, Switzerland) we determined the minimum distances of municipalities from major nuclear facilities. Spatial-temporal trend analyses of the annual sex ratio depending on municipalities' minimum distances from nuclear facilities were carried out. Applying ordinary linear logistic regression (jump or broken-stick functions) and non-linear logistic regression (Rayleigh functions) we demonstrate that the sex ratio at birth shows the influence of mutagenic ionizing radiation on human health. As important environmental chemical contaminants are also mutagenic, the usefulness of the sex ratio at birth as a genetic health indicator can be inferred by analogy.

  15. ATMOSPHERIC MODELING IN SUPPORT OF A ROADWAY ACCIDENT

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.; Hunter, C.

    2010-10-21

    The United States Forest Service-Savannah River (USFS) routinely performs prescribed fires at the Savannah River Site (SRS), a Department of Energy (DOE) facility located in southwest South Carolina. This facility covers {approx}800 square kilometers and is mainly wooded except for scattered industrial areas containing facilities used in managing nuclear materials for national defense and waste processing. Prescribed fires of forest undergrowth are necessary to reduce the risk of inadvertent wild fires which have the potential to destroy large areas and threaten nuclear facility operations. This paper discusses meteorological observations and numerical model simulations from a period in early 2002 of an incident involving an early-morning multicar accident caused by poor visibility along a major roadway on the northern border of the SRS. At the time of the accident, it was not clear if the limited visibility was due solely to fog or whether smoke from a prescribed burn conducted the previous day just to the northwest of the crash site had contributed to the visibility. Through use of available meteorological information and detailed modeling, it was determined that the primary reason for the low visibility on this night was fog induced by meteorological conditions.

  16. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  17. How to reduce the number of accidents

    CERN Multimedia

    2012-01-01

    Among the safety objectives that the Director-General has established for CERN in 2012 is a reduction in the number of workplace accidents.   The best way to prevent workplace accidents is to learn from experience. This is why any accident, fire, instance of pollution, or even a near-miss, should be reported using the EDH form that can be found here. All accident reports are followed up. The departments investigate all accidents that result in sick leave, as well as all the more common categories of accidents at CERN, essentially falls (slipping, falling on stairs, etc.), regardless of whether or not they lead to sick leave. By studying the accident causes that come to light in this way, it is possible to take preventive action to avoid such accidents in the future. If you have any questions, the HSE Unit will be happy to answer them. Contact us at safety-general@cern.ch. HSE Unit

  18. [Hospital information system performance for road traffic accidents analysis in a hospital recruitment based area].

    Science.gov (United States)

    Jannot, A-S; Fauconnier, J

    2013-06-01

    Road traffic accidents in France are mainly analyzed through reports completed by the security forces (police and gendarmerie). But the hospital information systems can also identify road traffic accidents via specific documentary codes of the International Classification of Diseases (ICD-10). The aim of this study was therefore to determine whether hospital stays consecutive to road traffic accident were truly identified by these documentary codes in a facility that collects data routinely and to study the consistency of results from hospital information systems and from security forces during the 2002-2008 period. We retrieved all patients for whom a documentary code for road traffic accident was entered in 2002-2008. We manually checked the concordance of documentary code for road traffic accident and trauma origin in 350 patient files. The number of accidents in the Grenoble area was then inferred by combining with hospitalization regional data and compared to the number of persons injured by traffic accidents declared by the security force. These hospital information systems successfully report road traffic accidents with 96% sensitivity (95%CI: [92%, 100%]) and 97% specificity (95%CI: [95%, 99%]). The decrease in road traffic accidents observed was significantly less than that observed was significantly lower than that observed in the data from the security force (45% for security force data against 27% for hospital data). Overall, this study shows that hospital information systems are a powerful tool for studying road traffic accidents morbidity in hospital and are complementary to security force data. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. The report of the criticality accident in a uranium conversion test plant in Tokai-mura

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Hajime (ed.) [National Inst. of Radiological Sciences, Chiba (Japan). Research Center for Charged Particle Therapy; Akashi, Makoto (ed.) [National Inst. of Radiological Sciences, Chiba (Japan). Research Center for Radiation Emergency Medicine

    2002-03-01

    The criticality accident in the title occurred at around 10:35, on Sep. 30, 1999, cost the lives of two workers and caused many residents concern on their health. Moreover, rumors had both social and economic consequences. This report is a detailed account of the roles that many individuals and groups in the National Institute of Radiological Sciences (NIRS) performed in a range of the areas, and is published to discharge NIRS responsibilities in regards to the accident. The report involves chapters of detailed outline of the accident; acceptance of the victims and communications until the identification of the ''criticality'' accident; initial treatment; dose estimation (medical, hematological, physical and biological ones and that by dental metals activated by the neutron); decision making for therapeutic strategies; cooperation with the Network Council for Radiation Emergency Medicine and other medical facilities; emergency importation of medical supplies; treatment and progress (nursing system and radiation injuries); protection from radiation in medical facilities; response to nearby residents of the Plant; international response; press release; Uranium Processing Plant Criticality Accident Investigation Committee and the Health Management Committee organized by the Nuclear Safety Commission; handling of information; and radiation emergency medical preparedness at the NIRS (future issues and prospect). The report is hoped to be useful in preventing the occurrence of future accidents. (K.H.)

  20. Hot Cell Installation and Demonstration of the Severe Accident Test Station

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [ORNL; Burns, Zachary M. [ORNL; Terrani, Kurt A. [ORNL; Yan, Yong [ORNL

    2017-08-01

    A Severe Accident Test Station (SATS) capable of examining the oxidation kinetics and accident response of irradiated fuel and cladding materials for design basis accident (DBA) and beyond design basis accident (BDBA) scenarios has been successfully installed and demonstrated in the Irradiated Fuels Examination Laboratory (IFEL), a hot cell facility at Oak Ridge National Laboratory. The two test station modules provide various temperature profiles, steam, and the thermal shock conditions necessary for integral loss of coolant accident (LOCA) testing, defueled oxidation quench testing and high temperature BDBA testing. The installation of the SATS system restores the domestic capability to examine postulated and extended LOCA conditions on spent fuel and cladding and provides a platform for evaluation of advanced fuel and accident tolerant fuel (ATF) cladding concepts. This document reports on the successful in-cell demonstration testing of unirradiated Zircaloy-4. It also contains descriptions of the integral test facility capabilities, installation activities, and out-of-cell benchmark testing to calibrate and optimize the system.

  1. Trismus: An unusual presentation following road accident

    Directory of Open Access Journals (Sweden)

    Thakur Jagdeep

    2007-01-01

    Full Text Available Trismus due to trauma usually follows road accidents leading to massive faciomaxillary injury. In the literature there is no report of a foreign body causing trismus following a road accident, this rare case is an exception. We present a case of isolated presentation of trismus following a road accident. This case report stresses on the thorough evaluation of patients presenting with trismus following a road accident.

  2. The Physics of Traffic Accidents

    Science.gov (United States)

    Knight, Peter

    1975-01-01

    Shows how physics can be used to analyze and prevent traffic accidents by determining critical speeds on curves, the behavior of motor cycles and stability of articulated vehicles, and the visibility that is needed to make a minor road junction safe. (MLH)

  3. Work Accidents and Professional Diseases

    Directory of Open Access Journals (Sweden)

    Doru Hauptmann

    2009-10-01

    Full Text Available The major accident is defined as “any event occurred, like an emission of dangerous materials or agents, which emerges from uncontrolled evolutions along the exploitation of any objective that leads to the immediate or delayed occurrence of serious dangers with impact over human health or over the environment, inside or outside the objective in which are involved one or more than one dangerous materials”.The dangerous phenomenon is a potential source of harms. In the ambit of industrial risks of accidental origins, this expression more frequently refers to physical phenomena like conflagrations, explosions, toxic gases dispersion, etc.Any accident scenario relates itself to the potential effects at the level of environmental “targets”. In the case of major accidents, we can distinguish the following categories of “targets”: human (employees of the objective, working or resident people in the nearby of the emplacement; the installation or equipments that may stay at the origin of the accidents (dangerous equipments; certain all-important equipments to ensure the safety level of the installation (critical security equipments: control rooms, civil fire brigade headquarters, etc; goods and structures situated in the installation’ environment (ground water, rivers, soil, flora, fauna.

  4. New technology for accident prevention

    Energy Technology Data Exchange (ETDEWEB)

    Byne, P. [Shiftwork Solutions, Vancouver, BC (Canada)

    2006-07-01

    This power point presentation examined the effects of fatigue in the workplace and presented 3 technologies designed to prevent or monitor fatigue. The relationship between mental fatigue, circadian rhythms and cognitive performance was explored. Details of vigilance related degradations in the workplace were presented, as well as data on fatigue-related accidents and a time-line of meter-reading errors. It was noted that the direct cause of the Exxon Valdez disaster was sleep deprivation. Fatigue related accidents during the Gulf War were reviewed. The effects of fatigue on workplace performance include impaired logical reasoning and decision-making; impaired vigilance and attention; slowed mental operations; loss of situational awareness; slowed reaction time; and short cuts and lapses in optional or self-paced behaviours. New technologies to prevent fatigue-related accidents include (1) the driver fatigue monitor, an infra-red camera and computer that tracks a driver's slow eye-lid closures to prevent fatigue related accidents; (2) a fatigue avoidance scheduling tool (FAST) which collects actigraphs of sleep activity; and (3) SAFTE, a sleep, activity, fatigue and effectiveness model. refs., tabs., figs.

  5. Corporate Cost of Occupational Accidents

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.; Impgaard, M.

    2004-01-01

    The systematic accident cost analysis (SACA) project was carried out during 2001 by The Aarhus School of Business and PricewaterhouseCoopers Denmark with financial support from The Danish National Working Environment Authority. Its focused on developing and testing a method for evaluating...

  6. Crime, accidents and social control

    NARCIS (Netherlands)

    Junger, Marianne; Terlouw, Gert-Jan; van der Heijden, Peter G.M.

    1995-01-01

    This paper addresses to questions. (1) Is there a demonstrable relation between accidents and crime, does this relation hold for each type of crime and each means of transport, and does it subsist after controlling for age and gender? (2) Can social control theory explain involvements in both

  7. Detection and analysis of accident black spots with even small accident figures.

    NARCIS (Netherlands)

    Oppe, S.

    1982-01-01

    Accident black spots are usually defined as road locations with high accident potentials. In order to detect such hazardous locations we have to know the probability of an accident for a traffic situation of some kind, or the mean number of accidents for some unit of time. In almost all procedures

  8. Detection and analysis of accident black spots with even small accident figures.

    NARCIS (Netherlands)

    Oppe, S.

    1982-01-01

    Accident black spots are usually defined as road locations with high accident potentials. In order to detect such hazardous locations we have to know the probability of an accident for a traffic situation of some kind, or the mean number of accidents for some unit of time. In almost all procedures

  9. Traffic accident and emission reduction through intermittent release measures for heavy fog weather

    Science.gov (United States)

    Shi, Jing; Tan, Jin-Hua

    2015-09-01

    Heavy fog weather can increase traffic accidents and lead to freeway closures which result in delays. This paper aims at exploring traffic accident and emission characteristics in heavy fog, as well as freeway intermittent release measures for heavy fog weather. A driving simulator experiment is conducted for obtaining driving behaviors in heavy fog. By proposing a multi-cell cellular automaton (CA) model based on the experimental data, the role of intermittent release measures on the reduction of traffic accidents and CO emissions is studied. The results show that, affected by heavy fog, when cellular occupancy ρ traffic accidents is much higher; and CO emissions increase significantly when ρ traffic accidents and level of CO emissions become reasonable. Obviously, the measure can enhance traffic safety and reduce emissions.

  10. Intersection layout, traffic volumes and accidents.

    NARCIS (Netherlands)

    Poppe, F.

    1988-01-01

    This paper reports on the accident research carried out as a part of a large project started in 1983. For this accident research an inventory was made of a large number of intersections.Recorded were layout features, accident data and estimates of traffic volumes. Attention will be given to the

  11. 48 CFR 836.513 - Accident prevention.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Accident prevention. 836... prevention. The contracting officer must insert the clause at 852.236-87, Accident Prevention, in solicitations and contracts for construction that contain the clause at FAR 52.236-13, Accident Prevention....

  12. 48 CFR 1836.513 - Accident prevention.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Accident prevention. 1836... 1836.513 Accident prevention. The contracting officer must insert the clause at 1852.223-70, Safety and Health, in lieu of FAR clause 52.236-13, Accident Prevention, and its Alternate I....

  13. 48 CFR 636.513 - Accident prevention.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Accident prevention. 636... CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 636.513 Accident prevention. (a) In... contracting activities shall insert DOSAR 652.236-70, Accident Prevention, in lieu of FAR clause...

  14. Barriers to learning from incidents and accidents

    NARCIS (Netherlands)

    Dechy, N.; Dien, Y.; Drupsteen, L.; Felicio, A.; Cunha, C.; Roed-Larsen, S.; Marsden, E.; Tulonen, T.; Stoop, J.; Strucic, M.; Vetere Arellano, A.L.; Vorm, J.K.J. van der; Benner, L.

    2015-01-01

    This document provides an overview of knowledge concerning barriers to learning from incidents and accidents. It focuses on learning from accident investigations, public inquiries and operational experience feedback, in industrial sectors that are exposed to major accident hazards. The document disc

  15. Analysing truck position data to study roundabout accident risk

    OpenAIRE

    Kamla, Jwan Jameel Shekh Mohammed

    2016-01-01

    In order to reduce accident risk, highway authorities prioritise maintenance budgets partly based upon previous accident history. However, as accident rates have continued to fall in most contexts, this approach has become problematic as accident ‘black spots’ have been treated and the number of accidents at any individual site has fallen. Another way of identifying sites of higher accident risk might be to identify near-miss accidents (where an accident nearly happened, but was avoided), whi...

  16. Bilateral Carotid Artery Dissection after High Impact Road Traffic Accident

    Directory of Open Access Journals (Sweden)

    Michael Kelly

    2008-11-01

    Full Text Available A 58 year old man was involved in a high impact road traffic incident and was admitted for observation. Asymptomatic for the first 24 hours, he collapsed with symptoms and signs consistent with a cerebrovascular accident. Computed tomography angiogram (CTA and Magnetic resonance angiogram (MRA demonstrated bilateral internal carotid artery dissections and a left middle cerebral artery infarct. It was not considered appropriate to attempt stenting or other revascularistation. The patient was treated with heparin prior to starting warfarin. He made a partial recovery and was discharged to a rehabilitation facility. This case is a reminder of carotid dissection as an uncommon but serious complication of high speed motor vehicle accident, which may be silent initially. Literature Review suggests risk stratification before relevant radiological screening at risk patients. Significant advances in CTA have made it the diagnostic tool of choice, but ultrasound is an important screening tool.

  17. Upgrading the safety toolkit: Initiatives of the accident analysis subgroup

    Energy Technology Data Exchange (ETDEWEB)

    O' Kula, K.R.; Chung, D.Y.

    1999-07-01

    Since its inception, the Accident Analysis Subgroup (AAS) of the Energy Facility Contractors Group (EFCOG) has been a leading organization promoting development and application of appropriate methodologies for safety analysis of US Department of Energy (DOE) installations. The AAS, one of seven chartered by the EFCOG Safety Analysis Working Group, has performed an oversight function and provided direction to several technical groups. These efforts have been instrumental toward formal evaluation of computer models, improving the pedigree on high-use computer models, and development of the user-friendly Accident Analysis Guidebook (AAG). All of these improvements have improved the analytical toolkit for best complying with DOE orders and standards shaping safety analysis reports (SARs) and related documentation. Major support for these objectives has been through DOE/DP-45.

  18. Cerebrovascular accident (stroke) in captive, group-housed, female chimpanzees.

    Science.gov (United States)

    Jean, Sherrie M; Preuss, Todd M; Sharma, Prachi; Anderson, Daniel C; Provenzale, James M; Strobert, Elizabeth; Ross, Stephen R; Stroud, Fawn C

    2012-08-01

    Over a 5-y period, 3 chimpanzees at our institution experienced cerebrovascular accidents (strokes). In light of the increasing population of aged captive chimpanzees and lack of literature documenting the prevalence and effectiveness of various treatments for stroke in chimpanzees, we performed a retrospective review of the medical records and necropsy reports from our institution. A survey was sent to other facilities housing chimpanzees that participate in the Chimpanzee Species Survival Plan to inquire about their experience with diagnosing and treating stroke. This case report describes the presentation, clinical signs, and diagnosis of stroke in 3 recent cases and in historical cases at our institution. Predisposing factors, diagnosis, and treatment options of cerebral vascular accident in the captive chimpanzee population are discussed also.

  19. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  20. Predictive model for motorcycle accidents at three-legged priority junctions.

    Science.gov (United States)

    Harnen, S; Umar, R S Radin; Wong, S V; Wan Hashim, W I

    2003-12-01

    In conjunction with a nationwide motorcycle safety program, the provision of exclusive motorcycle lanes has been implemented to overcome link-motorcycle accidents along trunk roads in Malaysia. However, not much work has been done to address accidents at junctions involving motorcycles. This article presents the development of predictive model for motorcycle accidents at three-legged major-minor priority junctions of urban roads in Malaysia. The generalized linear modeling technique was used to develop the model. The final model reveals that motorcycle accidents are proportional to the power of traffic flow. An increase in nonmotorcycle and motorcycle flows entering the junctions is associated with an increase in motorcycle accidents. Nonmotorcycle flow on major roads had the highest effect on the probability of motorcycle accidents. Approach speed, lane width, number of lanes, shoulder width, and land use were found to be significant in explaining motorcycle accidents at the three-legged major-minor priority junctions. These findings should enable traffic engineers to specifically design appropriate junction treatment criteria for nonexclusive motorcycle lane facilities.

  1. Recent numerical simulations and experiments on coolability of debris beds during severe accidents of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J., E-mail: joerg.starflinger@ike.uni-stuttgart.de; Buck, M.; Hartmann, A.; Kulenovic, R.; Leininger, S.; Rahman, S.; Rashid, M.

    2015-12-01

    Highlights: • Investigation on coolability of three-dimensional debris beds has been performed. • Computer code MEWA (Melt Water) is introduced and described briefly. • Validation experiments have been carried out in DEBRIS facility. • Comparison of MEWA simulations and DEBRIS experiments show good agreement. • Example simulation on reactor scale was performed to explain the analysis method. - Abstract: In the course of a severe accident in light water reactors with core degradation, so-called debris beds can be formed inside the reactor pressure vessel or in the reactor cavity. The strategy to analyse the coolability of such debris beds with both experiments and numerical simulations is discussed. The numerical simulations are carried out with MEWA (MElt WAter) code, being developed at the institute for the prediction of the thermal-hydraulic conditions inside a debris bed, including the prediction of dryout heat flux. The simulations show good agreement with experimental data of the DEBRIS experiments.

  2. A Quasi-Poisson Approach on Modeling Accident Hazard Index for Urban Road Segments

    Directory of Open Access Journals (Sweden)

    Lu Ma

    2014-01-01

    Full Text Available In light of the recently emphasized studies on risk evaluation of crashes, accident counts under specific transportation facilities are adopted to reflect the chance of crash occurrence. The current study introduces more comprehensive measure with the supplement information of accidental harmfulness into the expression of accident risks which are also named Accident Hazard Index (AHI in the following context. Before the statistical analysis, datasets from various sources are integrated under a GIS platform and the corresponding procedures are presented as an illustrated example for similar analysis. Then, a quasi-Poisson regression model is suggested for analyses and the results show that the model is appropriate for dealing with overdispersed count data and several key explanatory variables were found to have significant impact on the estimation of AHI. In addition, the effect of weight on different severity levels of accidents is examined and the selection of the weight is also discussed.

  3. Willingness to use safety belt and levels of injury in car accidents.

    Science.gov (United States)

    de Lapparent, Matthieu

    2008-05-01

    In this article, we develop a bivariate ordered Probit model to analyze the decision to fasten the safety belt in a car and the resulting severity of accidents if it happens. The approach takes into account the fact that the decision to fasten the safety belt has a direct causal effect on the category of injury if an accident happens. Our application to a sample drawn from the database of French accident reports in 2003 for three populations of car users (drivers, front passengers, rear passengers) shows that fastening the safety belt is significantly related to a decrease in severe injuries but it shows also that these car users compensate partly for this safety benefit. Furthermore, it is observed that demographic characteristics of car users, as well as transport facilities, play important roles in decisions to fasten safety belts and in the eventual resulting accident injuries.

  4. IMPROVEMENT OF ROAD TRAFFIC QUALITY IN ACCIDENT CLUSTERS

    Directory of Open Access Journals (Sweden)

    D. V. Kapsky

    2015-01-01

    Full Text Available Road traffic with its share from 2/3 to 3/4 of the total volume of transport service represents rather large and complicated social and production system with several subsystems that include roads, transport facilities, road traffic organization, law enforcement, personnel training, road traffic service and others. Road traffic quality can be quantitatively evaluated in accordance with values of losses pertaining to social and economic cost of discretionary (unenforced expenses for road traffic process. Road traffic contains accident, ecological, economic and social risks. Accidence is considered as the most important risk for participants involved in road traffic because it directly concerns their life, health and welfare. So accident response has rather high social significance and it is considered as a matter of national importance. In this connection role of road traffic organization has become very important and it is directed on improvement of its quality including security in the accident clusters.Methodological principles for improvement of road traffic quality have been developed in the paper. These principles presuppose the following: maximization of danger while selecting investigation object; minimization of total losses while evaluating quality and selecting solutions on improvement in road traffic safety; balanced accountability of accidental and ecological losses while selecting solutions on higher road traffic safety in ambiguous situations; minimization of total cost pertaining to object operation while selecting measures on improvement of road traffic safety; obligatory operative control evaluation of accidence on the basis of method for conflict situations while introducing measures of road traffic safety. Such approaches will contribute to higher quality of the decisions taken in the field of road traffic organization.

  5. [Hanggliding accidents. Distribution of injuries and accident analysis].

    Science.gov (United States)

    Ballmer, F T; Jakob, R P

    1989-12-01

    Paragliding--a relatively new sport to Switzerland--brought 23 patients with 48 injuries (38% lower limb and 29% spinal) within a period of 8 months to the Inselspital University hospital in Berne. The aim of the study in characterizing these injuries is to formulate some guidelines towards prevention. With over 90% of accidents occurring at either take off or landing, emphasis on better training for the beginner is proposed with strict guidelines for the more experienced pilot flying in unfavourable conditions.

  6. Preliminary Modeling of Accident Tolerant Fuel Concepts under Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle A.; Hales, Jason D.

    2016-12-01

    The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. Thus, the United States Department of Energy through its NEAMS (Nuclear Energy Advanced Modeling and Simulation) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is funded for a three-year period. The purpose of the HIP is to perform research into two potential accident tolerant concepts and provide an in-depth report to the Advanced Fuels Campaign (AFC) describing the behavior of the concepts, both of which are being considered for inclusion in a lead test assembly scheduled for placement into a commercial reactor in 2022. The initial focus of the HIP is on uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (INL, LANL, and ANL) a comprehensive mulitscale approach to modeling is being used including atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. In this paper, we present simulations of two proposed accident tolerant fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. The simulations investigate the fuel performance response of the proposed ATF systems under Loss of Coolant and Station Blackout conditions using the BISON code. Sensitivity analyses are completed using Sandia National Laboratories’ DAKOTA software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). Early results indicate that each concept has significant advantages as well as areas of concern. Further work is required prior to formulating the proposition report for the Advanced Fuels Campaign.

  7. SARNET: Severe accident research network of excellence

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, T.; Van Dorsselaere, J. P. [IRSN, DPAM, F-13115 St Paul Les Durance (France); Chaumont, B. [IRSN, DSR, SAGR, F-92262 Fontenay Aux Roses (France); Haste, T. [Paul Scherrer Inst, NES, LTH, OVGA 312, CH-5232 Villigen (Switzerland); Journeau, Ch. [CEA Cadarache, DEN, STRI, LMA, F-13115 St Paul Les Durance (France); Meyer, L. [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Sehgal, Bal Raj [KTH, AlbaNova Univ Ctr, S-10691 Stockholm (Sweden); Schwinges, Bernd [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany); Beraha, D. [GRS mbH, Forschungsgelande, D-85748 Garching (Germany); Annunziato, A. [Commiss European Communities, JRC, IPSC, I-21020 Ispra, VA (Italy); Zeyen, R. [Commiss European Communities, JRC IE, IRSN DPAM DIR, F-13115 St Paul Les Durance (France)

    2010-07-01

    Fifty-one organisations network in SARNET (Severe Accident Research Network of Excellence) their research capacities in order to resolve the most important pending issues for enhancing, with regard to Severe Accidents (SA), the safety of existing and future Nuclear Power Plants (NPPs). This project. co-funded by the European Commission (EC) under the 6. Framework Programme, has been defined in order to optimise the use of the available means and to constitute sustainable research groups in the European Union. SARNET tackles the fragmentation that may exist between the different national R and D programmes, in defining common research programmes and developing common computer tools and methodologies for safety assessment. SARNET comprises most of the organisations involved in SA research in Europe, plus Canada. To reach these objectives, all the organisations networked in SARNET contributed to a joint Programme of Activities, which consisted of: Implementation of an advanced communication tool for accessing all project information, fostering exchange of information, and managing documents; Harmonization and re-orientation of the research programmes, and definition of new ones; Analysis of the experimental results provided by research programmes in order to elaborate a common understanding of relevant phenomena; Development of the ASTEC code (integral computer code used to predict the NPP behaviour during a postulated SA), which capitalizes in terms of physical models the knowledge produced within SARNET; Development of Scientific Databases in which all the results of research programmes are stored in a common format (DATANET); Development of a common methodology for Probabilistic Safety Assessment of NPPs; Development of short courses and writing a textbook on Severe Accidents for students and researchers; Promotion of personnel mobility amongst various European organisations. This paper presents the major achievements after four and a half years of operation of the

  8. Numerical Simulation and Experimental Comparison on Atmospheric Pollution Chemical Accident Hazard Predicting(CDM)%大气污染化学事故危害预测数值模拟(CDM)与验证

    Institute of Scientific and Technical Information of China (English)

    黄顺祥; 陈海平; 刘峰; 刘树华; 朱凤荣

    2011-01-01

    The concentration and dose model on chemical agents diffusion or the toxic clouds diffusion model over complex terrain(CDM) is established, which can be used to assess and predict atmospheric pollution chemical accident hazard, and provides fast, intuitionistic and qnaniticational decision information for emergency. Contaminated field, contaminated rate, contaminated area, and contaminated depth may be computed in a few minutes. The comparison of field experiment results with numerical simulation results shows that contaminated field, contaminated rate, and contaminated depth are consistent on the whole, and the relative error of dose at different distance is less than one time. The mean relative error is 20.6%, and the relative error of contaminated depth are -26.3% and 10.2% respectively at 0.66 g.s/m3 and 0.24 g's/m3 dose. The comparison of CDM simulating results with water tank experiment results shows that they are similar highly in neutral atmosphere or stable atmosphere.%建立了对复杂地形上大气污染化学事故进行危害评估与预测的数值模式(CDM),该模式可以快速预测大气污染化学事故的危害范围、危害等级、危害面积和危害纵深等,为事故应急处置提供快速、直观和定量的决策依据。分别应用外场扩散和水槽模拟实验对CDM进行了验证。数值模拟与外场扩散实验的验证结果表明,二者在危害范围、危害纵深和危害等级等方面均具有很好的一致性,不同距离上剂量相对误差在1倍以内,平均相对误差为20.6%,剂量阈值为O.66和0.24g·s/m0的危害纵深相对误差分别为-26.3%和10.2%。数值模拟与水槽

  9. Fuel Performance Characterisation under Various PWR Conditions: Description of the Annealing Test Facilities available at the LECA-STAR laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pontillon, Y.; Cornu, B.; Clement, S.; Ferroud-Plattet, M.P.; Malgouyres, P.P. [Commissariat a l' Energie Atomique, CEA/DEN/DEC/SA3C - Centre d' Etudes de Cadarache, BP1, 13108 Saint Paul Lez Durance (France)

    2008-07-01

    The aim to improve LWR fuel behaviour has led Cea to improve its post-irradiation examination capacities in term of test facilities and characterization techniques in the shielded hot cells of the LECA-STAR facility, located in Cadarache Cea center. as far as the annealing test facilities are concerned, fuel qualification and improvement of knowledge require a set of furnaces which are already used or will be used. The main characteristics of these furnaces strongly depend on the experimental objectives. The aim of this paper is to review the main aspects of these specific experiments concerning: (i) fission gas release from high burn up fuel, (ii) global fission product release in severe-accident conditions and (iii) fuel microstructural changes, potential cladding failure, radionuclide source terms... under conditions representative of long term dry storage and geological disposal. (authors)

  10. The use of- and the need for- large experimental facilities for education and training in nuclear sciences and technologies: a quantitative study

    Energy Technology Data Exchange (ETDEWEB)

    Giot, M. [Universite catholique de Louvain and SCK.CEN, 200, Boeretang B-2400 Mol (Belgium)

    2010-07-01

    This paper summarises the results of a study carried out by the ETKM working group of the Sustainable Nuclear Energy Technological Platform aimed at identifying facilities to support E and T and R and D requirements in the up-skilling the future workforce. The required identification implied acquiring reliable information about the numbers of students and trainees presently using nuclear research infrastructure, and the numbers of those who could be accommodated additionally to meet future challenges. The presented data were collected from the operators of the facilities (offer side), and from the people in charge of the E and T programmes (demand side). Two aspects were found particularly relevant: the access to research reactors and the access to thermal-hydraulic test facilities. Simulators were also considered as relevant for this study. Two educational levels were considered: the Doctoral and the Master levels. The numbers of doctoral theses produced in Europe with the help of research reactors and thermal-hydraulic loops are respectively of the order of 70 and 20 per year. It appears that less than ten research reactors are intensively used for laboratory sessions at the Bachelor and Master levels, and that there is presently a potential for increased of the accommodated students by at least 50%. The thermal-hydraulic facilities could accommodate three times more students if necessary. Recommendations are formulated for a more intensive use of the facilities in the future. (authors)

  11. Learning Safety Assessment from Accidents in a University Environment

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2013-01-01

    This contribution describes how a chemical engineering department started learning from accidents during experimental work and ended up implementing an industrially inspired system for risk assessment of new and existing experimental setups as well as a system for assessing potential risk from...... the chemicals used in the experimental work. These experiences have led to recent developments which focus increasingly on the a theoretical basis for modeling and reasoning on safety as well as operational aspects within a common framework. Presently this framework is being extended with barrier concepts both...

  12. Exploratory analysis of Spanish energetic mining accidents.

    Science.gov (United States)

    Sanmiquel, Lluís; Freijo, Modesto; Rossell, Josep M

    2012-01-01

    Using data on work accidents and annual mining statistics, the paper studies work-related accidents in the Spanish energetic mining sector in 1999-2008. The following 3 parameters are considered: age, experience and size of the mine (in number of workers) where the accident took place. The main objective of this paper is to show the relationship between different accident indicators: risk index (as an expression of the incidence), average duration index for the age and size of the mine variables (as a measure of the seriousness of an accident), and the gravity index for the various sizes of mines (which measures the seriousness of an accident, too). The conclusions of this study could be useful to develop suitable prevention policies that would contribute towards a decrease in work-related accidents in the Spanish energetic mining industry.

  13. The dominance of accidents caused by banalities

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    . Nevertheless, the fact is that the simpler accidents normally caused by what might be regarded as banalities occur at a much higher frequencies and with many more fatalities and invalidities than any of what are usually regarded as the most dangerous kinds of accidents. In depth analysis of national statistics...... on accidents could reveal the kind of accidents we are talking about, where they happen, to whom, how, and what can be done about them. This would require a special registration system of the events leading up to the accident. The main results for the four most frequent types of accident will be described...... as an example of how much information such systems can offer in general for the work of accident prevention in more traditional and common enterprises....

  14. Effect of steam generator configuration in a loss of the RHR during mid-loop operation at PKL facility

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, J. F.; Carlos, S.; Martorell, S.; Sanchez, F. [Dpto. Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino Vera s/n, 46022 Valencia (Spain)

    2012-07-01

    The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primary coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)

  15. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  16. Sports Safety. Accident Prevention and Injury Control in Physical Education, Athletics, and Recreation.

    Science.gov (United States)

    Yost, Charles Peter, Ed.

    This anthology of articles concerned with injury in sports and safety procedures is divided into three parts. Part One is devoted to general discussions of safety and a guiding philosophy for accident prevention. Part Two develops articles on administration and supervision, including discussions of health examination, legal liability, facilities,…

  17. A probability risk assessment for MACSTOR/KN-400 during an air inlet blockage accident sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, J.H.; Jae, M. [Hanyang Univ., Dept. of Nuclear Engineering, Sungdong-Gu, Seoul (Korea, Republic of); Jeong, C. [Korea Inst. of Nuclear Safety, Yusong-Gu, Taejon (Korea, Republic of)

    2006-07-01

    The safety assessment framework for evaluating the spent fuel dry storage facility during the air inlet blockage accident composing of three phases has been established and applied to an interim storage system. They include the analysis of the failure probability of a basket and a cylinder, the accident modeling of spent fuel dry storage facility and the accident consequence assessments. The first phase of the analysis calculated the module failure probability by modeling of the basket and the cylinder, which is major element for containing radioactive substances. The second phase includes a modeling of spent fuel dry storage facility. At this phase, the probability that radioactive substances are released to outside when the initial event happens has been calculated by the construction of the event tree methods against a various elements which affects the air inlet blockage accident. At the third phase of releasing radioactive substances, the radiation damage to affect neighborhood and storage facility worker using MACCS2 code has been evaluated quantitatively. (author)

  18. Potential behavior of depleted uranium penetrators under shipping and bulk storage accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Parkhurst, M.A.; Scherpelz, R.I.

    1985-03-01

    An investigation of the potential hazard from airborne releases of depleted uranium (DU) from the Army's M829 munitions was conducted at the Pacific Northwest Laboratory. The study included: (1) assessing the characteristics of DU oxide from an April 1983 burn test, (2) postulating conditions of specific accident situations, and (3) reviewing laboratory and theoretical studies of oxidation and airborne transport of DU from accidents. Results of the experimental measurements of the DU oxides were combined with atmospheric transport models and lung and kidney exposure data to help establish reasonable exclusion boundaries to protect personnel and the public at an accident site. 121 references, 44 figures, 30 tables.

  19. Practical approaches in accident analysis

    Science.gov (United States)

    Stock, M.

    An accident analysis technique based on successive application of structural response, explosion dynamics, gas cloud formation, and plant operation failure mode models is proposed. The method takes into account the nonideal explosion characteristic of a deflagration in the unconfined cloud. The resulting pressure wave differs significantly from a shock wave and the response of structures like lamp posts and walls can differ correspondingly. This gives a more realistic insight into explosion courses than a simple TNT-equivalent approach.

  20. Facility Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.